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1.0 LEARNING OBJECTIVE 
 
After studying this unit students should be able to: 
 

● Comprehend the fundamental concepts of machine learning 

● Understand key features and characteristics of machine learning 

● Familiarize themselves with essential concepts and terminology in machine 

learning 

● Explore the historical development and advancements in the field of machine 

learning 

 

1.1 INTRODUCTION 
 
What is Machine Learning? 

Machine learning (ML), a core branch of artificial intelligence (AI), enables computers 

to identify patterns in data, learn from them, and make decisions with minimal human 

intervention. Unlike traditional rule-based programming, where systems follow explicit 

instructions, machine learning models improve their performance over time by learning 

from data. As NVIDIA defines it, machine learning "uses algorithms to analyze data, 

extract insights, and automatically make educated predictions or decisions without 

direct human involvement."  

A notable milestone in AI history occurred in 1997 when IBM's Deep Blue defeated 

chess champion Garry Kasparov. While Deep Blue relied on brute-force algorithms 

executing millions of moves per second, it lacked the ability to learn or adapt from 

experience; features that distinguish modern machine learning systems. Figure 1.1 

represents a Machine Learning System workflow. 
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Figure 1.1: Machine Learning System Workflow 

Machine Learning Systems 

A traditional system works and adheres to established, predetermined regulations. On 

the other hand, machine learning systems which are integrated with artificial 

intelligence, evolve and enhance themselves by acquiring knowledge from data. For 

example; An ATM machine executes a set of predetermined functions like dispensing 

money, showing bank account details, etc.; but a chatbot when used by a person 

acquires knowledge through user engagement and is capable of answering differently 

for the same question asked. As can be seen in the figure, there is a machine learning 

system that does three things namely; Learn, Predict and Refine. Let us discuss these 

components in brief: 

Gain Insights (Learning):  
The machine learning systems evaluate extensive datasets to identify patterns and 

insights. These findings constitute the basis for forecasts. For example; a medical 

model may utilize imaging data to facilitate early disease detection. 

Forecast Results (Prediction):  
The machine learning systems use data-driven insights to make forecasts and 

recommend actions. The predictive models improve their accuracy over time through 

continuous learning. For example; Netflix suggests films based on the user's activity 

and interactions. 
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Refine Accuracy (Improve):  
The machine learning systems consistently refine their predictions by incorporating 

new data. The model’s accuracy keeps on improving with each iteration or interaction. 

For example; Google's search algorithm improves with every query it analyzes. 

 

1.2 FEATURES OF MACHINE LEARNING 
 

Tom Mitchell further explains that a computer program is said to learn from experience 

(E) in relation to a task (T) and a performance measure (P) if its performance on T 

improves with experience E.  

Task (T): The task refers to a specific problem that the program is attempting to solve. 

It might involve tasks like identifying items in photos, forecasting home values, or 

determining if emails are spam. 

Experience (E): The experience refers to the data or examples that are fed to the 

program as input. The can be labeled, historical, or of any other type from which the 

program can learn. 

Performance Measure (P): It specifies how the program's effectiveness is evaluated. 

It provides a metric to evaluate how well the program performs the task. For instance, 

this could represent mean squared error (MSE) in a regression work or accuracy or 

F1-score in a classification task. 

Let us see how the 8-puzzle problem can be explored on the basis of the above three 

features: 

Task: The task in this case is to solve the 8-puzzle, where the goal is to rearrange a 

3 x 3 grid of numbered tiles into a specified order by sliding tiles into an empty space. 

The algorithm's objective is to achieve this arrangement, demonstrating its capability 

to solve combinatorial puzzles. 

 
Experience: The algorithm enhances its puzzle-solving skills by learning from past 

attempts. It uses data from previous moves and outcomes to develop more effective 

strategies, enabling it to make better decisions in future attempts. 
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Performance Measure: The model’s performance is evaluated based on the number 

of moves it takes to reach the solution and the time required to solve the puzzle. These 

metrics guide the algorithm to optimize its strategy, aiming for faster and more efficient 

solutions. 

 

Check Your Progress-1 
a) ML systems acquire knowledge from data, but traditional systems adhere to 

predetermined rules. (True/False) 

b) Number of tiles used is crucial in the 8-puzzle problem. (True/False) 

c) According to Tom Mitchell, a machine learning program improves its 

performance on a task if it uses more data for training. (True/False) 

d) "Enhancing performance metrics" involves improving model accuracy and 

precision. (True/False) 

 

1.3 CHARACTERISTICS OF MACHINE LEARNING 
 
Machine learning (ML) is a subset of artificial intelligence (AI) some key characteristics 

of machine learning are acquiring knowledge from data, ongoing enhancement, 

automation, identification of patterns, scalability and self-assessment criterion.  

Let us look at them in brief: 

Acquiring Knowledge from Data - It refers to the process of extracting valuable 

insights, trends, or patterns from raw data.  

Ongoing Enhancement - This is the process of continuously making a system or 

model better over time.  

Automation - It is a process of developing a system that can perform tasks without 

human intervention.  

Identification of Patterns - It involves identifying recurring patterns, correlations, or 

trends that can be utilized to categorize new occurrences or forecast future events. 

Scalability - It refers to the capacity of a system or model to accommodate expansion, 

whether it be in terms of data volume or user count. 
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Self-Assessment Criterion - It involves evaluating the performance of a model or 

system based on predefined standards. 

Let us have a look at an E-commerce Recommendation System and see how these 

characteristics have been imbibed in it. 

Learning from Data: An E-commerce recommendation system learns user 

preferences by analyzing their browsing and purchase history to suggest products 

tailored to individual shoppers. 

Continuous Improvement: The system continuously updates its recommendations 

based on new user interactions and trends, adapting to changes in consumer behavior 

without requiring manual adjustments. 

Automation: Once trained, the system automatically generates personalized product 

suggestions for users, enhancing their shopping experience without human 

intervention. 

Pattern Recognition: The recommendation system identifies complex patterns in 

consumer behavior, such as recognizing that users who buy a certain item often 

purchase complementary products, which traditional programming might overlook. 

Scalability: The system can process massive amounts of user data across millions of 

transactions, allowing it to provide relevant recommendations to a large user base. 

Self-Assessment: The system assesses the effectiveness of its recommendations by 

tracking user engagement and conversion rates, refining its algorithms based on this 

feedback to improve accuracy and relevance. 

 

1.4 KEY CONCEPTS AND TERMINOLOGIES 
 

Designing a Machine Learning system is a multi-step process. It involves different processes 

like data collection, pre-processing of data, feature engineering, model training and evaluation, 

model deployment and market testing. Figure 1.2 shows these processes as key concepts 

and terminologies. 
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Figure 1.2: Key Concepts and Terminologies 

Data Collection: The first step involves gathering raw data relevant to the problem at 

hand. 

Example: If a company wants to predict customer churn; they need to collect data 

from various sources, including customer demographics, transaction history, and 

customer support interactions. 

Data Preprocessing: In this step, the raw data is cleaned and prepared for analysis. 

This includes removing duplicates, handling missing values, and normalizing data. 

Example: In the customer churn dataset, missing values for age are filled with the 

average age, and transaction amounts are normalized to a common scale for better 

model performance. 

Feature Engineering: This step involves selecting and transforming raw data into 

meaningful features that improve the model's ability to learn. 

Example: From the customer data, new features such as "total spending" (sum of all 

transactions) and "average support calls per month" can be created to provide more 

insight into customer behavior. 

Model Training and Evaluation: The dataset is divided into training and testing 

subsets. The model is trained using the training data, and its performance is evaluated 

using various metrics. 
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Example: The training dataset is used to train a logistic regression model to predict 

churn. The model is then tested on the testing dataset, and metrics like precision and 

recall are calculated to assess its effectiveness. 

Model Deployment and Tuning: Once the model is trained and evaluated, it is 

deployed into a production environment. Continuous tuning and optimization are 

performed to enhance its accuracy. 

Example: The churn prediction model is integrated into the company's CRM system, 

where it flags at-risk customers. Hyperparameters that control the behavior and 

performance of a learning algorithm are adjusted based on real-time feedback to 

improve predictions. 

CASE STUDY: 

An illustrative instance of machine learning (ML) use in predictive maintenance 

within the manufacturing sector. This case study illustrates how a major automobile 

corporation employed machine learning to forecast equipment malfunctions within 

its manufacturing facilities. 

● Issue: The organization had recurrent and unforeseen equipment malfunctions, 

resulting in expensive downtime and repairs. Conventional maintenance 

regimens were ineffective, being either excessively frequent, squandering 

resources, or inadequately timed, leading to equipment failures. 

● Resolution: The company deployed a machine learning algorithm that 

examined historical data from sensors affixed to the machines. The sensors 

gathered real-time data including temperature, vibration, and pressure. Utilizing 

this data, the machine learning system detected patterns and correlations that 

suggested the likelihood of machine failure. 

● Effect: The machine learning algorithm precisely forecasted imminent 

equipment breakdowns prior to their manifestation. This enabled the 

organization to conduct maintenance solely when required, so averting 

unanticipated downtime, reducing expenses, and prolonging the longevity of 

their equipment. With time, the model enhanced its accuracy by assimilating 

fresh data, hence streamlining the maintenance process further. 
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● The above case study illustrates how machine learning may enhance operational 

efficiency, decrease expenses, and yield actionable insights in manufacturing 

settings. 

 

Check Your Progress-2 

a) Machine learning models continuously improve their predictions by analyzing 

________ 

b) The first step in the machine learning process is ________. 

c) Machine learning systems are scalable as they don’t need data to function. 

(True/False) 

d) Data collection involves cleaning and preparing data for analysis in machine 

learning. (True/False) 

e) Primary way machine learning models improve precision by analyzing data 

to identify patterns. (True/False) 

 

1.5 HISTORY AND EVOLUTION 

The concept of machine learning (ML) began in the year 1950 when Arthur Samuel, a 

pioneer in the field of artificial intelligence started development of a checkers-playing 

program, one of the earliest instances of a machine learning system. The phrase 

"machine learning" achieved prominence in this decade. In the 1960s, Frank 

Rosenblatt, a psychologist and computer scientist at Cornell University unveiled the 

perceptron, a primitive neural network model. Interest in machine learning varied, but 

it experienced a resurgence in the 1980s with the advent of the back-propagation 

algorithm, which significantly enhanced neural network training. The 1990s witnessed 

breakthroughs in algorithms such as Support Vector Machines (SVM), signifying 

substantial progress in the domain. In 1997, IBM's Deep Blue, a chess-playing 

computer system, achieved a historic milestone in artificial intelligence by defeating 

global chess champion Garry Kasparov. The 2000s ushered in the era of large data 

and advanced GPUs, facilitating the emergence of deep learning. In 2012, deep 

learning garnered significant attention when a deep convolutional neural network 

triumphed in the ImageNet competition, transforming domains such as computer 
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vision and natural language processing. Currently, machine learning persists in its 

evolution, propelling advancements across several industries. 

Figure 1.3 illustrates the diagrammatic representation of the history and evolution of 

machine learning. 

 

Figure 1.3: Journey of ML 

Let us have a brief discussion of how ML evolved over different decades. 

1950s - Conceptual Origins: Alan Turing, a British mathematician, logician, 

cryptanalyst, and computer scientist introduced the idea of machines learning from 

data in his famous paper "Computing Machinery and Intelligence"; Arthur Samuel 

coined the term "machine learning" while creating a self-improving checkers program. 

 
1960s - Birth of Neural Networks: Frank Rosenblatt developed the perceptron, an 

early neural network model, marking the first attempt at mimicking the human brain's 

structure. 

 
1970s - Shift to Symbolic AI: Artificial Intelligence research focused on rule-based 

systems and expert systems, where computers used predefined rules to mimic human 

decision-making. 
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1980s - Decline of Neural Networks: Due to limited computing power and inefficient 

learning algorithms, interest in neural networks declined in favor of other artificial 

intelligence methods like symbolic reasoning. 

 
1990s - Machine Learning Revival: Increased computational power, algorithmic 

improvements, and larger datasets revived interest in machine learning, with IBM’s 

Deep Blue famously defeating chess champion Garry Kasparov in 1997. 

 
2000s - Rise of Big Data: The explosion of digital data, cloud computing, and 

advances in hardware accelerated machine learning research, enabling more complex 

models and applications. 

 
2010s - Deep Learning Revolution: The development of deep learning techniques 

(Convolutional Neural Networks - CNNs and Recurrent Neural Networks - RNNs) 

transformed fields like computer vision, speech recognition, and game-playing AI, with 

milestones like Google's AlphaGo defeating the world Go champion in 2016. 

Check Your Progress-3 

a) In 1997, IBM's Deep Blue made history by defeating ________, the reigning 

world chess champion. 
b) The ImageNet competition in ________ was a turning point for the rise of deep 

learning. 
c) The term "machine learning" became widely recognized in the ________. 
d) The first neural network model, the perceptron, was introduced by Frank 

Rosenblatt in 1958. (True/False) 
e) The development of ________ in the 1980s marked a significant leap in neural 

network training. 

 
1.6 LET US SUM UP 
Machine learning (ML) is a subset of artificial intelligence. It is dedicated towards 

developing systems that are capable of continuous learning. This continuous learning 

further enhances the performance of machine learning systems via experience, 
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without the need of explicit programming. Some of the essential characteristics of 

machine learning are task classification. The system uses performance indicators like 

accuracy that allows it to improve over time as it keeps on learning new things. 

Moreover, machine learning systems depend on large datasets to gain their 

experience. These large datasets allow us to extract patterns and insights. 

Early developments in machine learning, such the perceptron and Arthur Samuel's 

checkers-playing program, date back to the 1950s. The programs for playing checkers 

and perceptron were important turning points in the field. The invention of neural 

networks and the back-propagation algorithm in the 1980s rekindled interest in 

machine learning. The 1990s saw the development of Support Vector Machines (SVM) 

and other cutting-edge methods. In 2012, deep learning gained prominence after a 

convolutional neural network won the ImageNet competition, thanks to large data and 

greater processing capacity. 

1.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
1-a True 

1-b False 

1-c False 

1-d True 

2-a Data 

2-b Data collection 

2-c False 

2-d False 

2-e True 

3-a Garry Kasparov 

3-b 2012 

3-c 1950s 

3-d True 

3-e backpropagation 
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1.8 ASSIGNMENTS 
 

● Explain the concept of machine learning.  

● How does ML differ from traditional rule-based systems?  

● Provide examples of ML systems to illustrate its practical applications in various 

industries. 

● Discuss the essential features of machine learning. How do these features shape 

the learning process of a model? 

● Highlight key milestones and breakthroughs that have shaped the field of ML over 

time. 

● Explore machine learning applications in a field of your choice such as healthcare, 

finance, or manufacturing. Analyze how machine learning has improved 

processes, decision-making, or operational efficiency in that domain. 
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Unit-2:Techniques of Machine  
Learning 

 
   Unit Structure 

 
2.0 Learning Objectives 
 
2.1 Introduction 
 
2.2 Supervised Learning 
 
2.3 Unsupervised Learning 
 
2.4 Semi Supervised Learning 
 
2.5 Reinforcement Learning 
 
2.6 Let us sum up 
 
2.7 Check your Progress: Possible Answers  
 
2.8 Assignments 
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2.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 
● Understand different types of Machine Learning technique. 

● Understand the concept of Supervised Learning. 

● Understand the concept of Unsupervised Learning. 

● Understand the concept of Reinforcement Learning. 

 

2.1 INTRODUCTION 
 

Depending on the nature of the task, the data available, and the learning process 

machine learning algorithms are classified into several type. Often the machine 

learning techniques are classified into three major categories: Supervised Learning, 

Unsupervised Learning and Semi Supervised Learning. Figure 2.1 shows the 

classification of machine learning techniques. 

 

 
Figure 2.1:  Machine Learning Techniques 

 

In this chapter we will have a look at all these machine learning techniques to 

understand the basic working fundamentals used in each of them. 
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2.2 SUPERVISED LEARNING 

Supervised learning is a technique of machine learning in which an algorithm is trained 

using labeled data. The model learns from the data by identifying patterns between 

the input features and known output labels. As machine solely depends on the given 

data for its training, the data provided for training should be correct and should not 

contain any false data.  

Once trained, the model can use its prior knowledge to predict or categorize new, 

previously unknown data. The term "supervised" refers to the fact that the learning 

process is directed by the labels included in the training data. 

Let's try to get an idea of how supervised learning works. Assume you are learning to 

tell the difference between a sparrow and a parrot. The process starts with your 

teacher showing you a picture of a sparrow and saying, "This is a sparrow". The 

teacher then again takes a picture of a parrot and says "This is a parrot". You look at 

several such photographs of sparrows and parrots (labels) until you can tell which is 

which. Later, if someone shows you a photo of a bird you have never seen before, you 

will be able to tell if it is a sparrow or a parrot based on what you learned when you 

were being trained. Figure 2.2 shows the flow diagram of Supervised Learning 

process. 

 
Figure 2.2: Flow Diagram  of Supervised Learning 
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Supervised learning enables a computer to learn same things again and again by 

training it on labeled examples and allowing it to make estimates about new objects it 

has never seen before. 

 

Supervised learning can be further categorized in two: classification and regression. 
Let us have a look at each of these categories. 
 
Classification 
In classification, the model learns to divide data into distinct groups or categories 

based on some predefined labels. 

 
Example: Imagine you have a basket filled with different fruits, like apples, bananas, 

and oranges. You teach the computer to classify each fruit into categories based on 

its type, shape, size or color. Figure 2.3 explains the process of classification. 

   
Figure 2.3:  Example of Classification 

Regression 
In regression the model predicts a continuous value, such as a number or a range. 

Example: Suppose you keep record of your age and height that you had in that age. 

Now you want to estimate your future height based on past data. Regression uses the 

past data to make predictions about your height over time. Figure 2.4 explains the 

process of regression. 



19 

 
 Figure 2.4:  Example of Regression 

 

2.3 UNSUPERVISED LEARNING 

Unsupervised learning is a machine learning technique in which the model is fed data 

with no labels. The model examines the data to discover hidden patterns or groups on 

its own. This method is effective for clustering similar data points or discovering 

correlations in data without particular prior instructions.  

Imagine that kid is given a big pile of mixed LEGO blocks of different colors, sizes and 

shapes. No one tells the kid what to do with them, so the kid decides to group all the 

blue blocks of a particular shape in one pile, red blocks into another pile, and green 

ones in yet another pile. The kid organized the blocks based on the color and shape 

as they seemed similar without any instructions given. Figure 2.5 shows the flow 

diagram of unsupervised learning process. 
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                        Figure 2.5: Flow Diagram of Unsupervised Learning      

Thus, in unsupervised learning the computer groups the data which look similar 

without being told what to look for.  

Unsupervised learning can be further categorized in two: clustering and association. 

Let us have a look at each of them. 

Clustering 
Clustering is an unsupervised learning type where the model organizes similar data 

points into groups based on some shared features. 

 

Example: Imagine that you have a big pile of crayons without proper labels, and you 

decide to group them. The options that you have is size, shape or color. Assume that 

you group them using similar colors, like putting all the blue crayons together, all the 

red crayons together, and so on. Clustering allows us to group data by similarities, 

even without knowing or having the exact labels. Figure 2.6 shows the example of 

clustering. 
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Figure 2.6: Example of Clustering 

 

Association 
Association tries to uncover the relationships or patterns between different items within 

a dataset. 

 
Example: Imagine that you have a stationary store. You want to understand the buying 

habits of your customers. You start observing your customers and notice that the 

customer who buys pencil may also buy a notebook, an eraser or a scale. After many 

such observations it becomes clear that a customer that buys pencil often buys a 

notebook. This buying pattern of the customers helps you decide to place the pencil 

and notebooks closer together. Alternatively, you can offer discounts on both these 

items to encourage sales of these products. This example illustrates what association 

does: it identifies the patterns between items that frequently appear together. Figure 

2.7 shows the example of association. 
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Figure 2.7: Example of Association 

 

Check Your Progress-1 

a) In supervised learning the models learn from unlabeled data. (True/False) 
b) Regression comes under supervised learning algorithms. (True/False) 
c) Unsupervised learning finds patterns in unlabeled data. (True/ False) 

d) Association is a supervised learning method that uses different rules to find 

relationships between variables in a given dataset. (True/False) 

e) In a supermarket, finding that customers who buy milk also buy cookies is an 

example of Classification. (True/False) 

 

2.4 SEMI SUPERVISED LEARNING 
 
Semi-supervised learning as the name suggests is a machine learning technique that 

uses both unsupervised and supervised learning techniques to obtain the outcome. 

Acquiring huge volumes of unlabeled data is reasonably easy, but obtaining a 

substantial amount of labeled data is excessively difficult or expensive at times. In 

order to create a model, the semi-supervised learning approach uses a little amount 

of labeled data in addition to a larger pool of unlabeled data. The semi-supervised 

learning approach can outperform an unsupervised technique in terms of accuracy. It 

uses the restricted labeled data to direct the model's learning process and then uses 

the unlabeled data to improve its generalization. 
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Example: When discussing supervised learning we had talked about image 

classification. Assume, that you might have a very small set of labeled images (e.g., 

200 labeled images of parrots and sparrows) and a much larger set of unlabeled 

images (e.g., 15,000 images). A semi-supervised learning algorithm can use the 

labeled images to initially train the model and then leverage the structure and patterns 

in the unlabeled images to refine the model's understanding of how to distinguish 

parrots from sparrows, ultimately improving performance even with the small labeled 

dataset. Figure 2.8 shows the flow diagram of Semi Supervised Learning process. 

 

 
Figure 2.8: Flow Diagram of Semi Supervised Learning 

 

2.5 REINFORCEMENT LEARNING 
 
In machine learning reinforcement learning is a method where we have an agent that  

learns by interacting with an environment. The agent makes decisions based on 

certain situations, it then receives a feedback. This feedback is in the form of rewards 

or a penalty based on the actions taken by the agent. Over a period of time, the agent 

adjusts its decision-making strategy to maximize the rewards. Thus, it now becomes 

capable of learning the best actions to achieve a desired goal through trial and error. 
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Example: Let's say you're interested in learning how to ride a bike. You might initially 

stumble or fall a few times. But each time you try and stay balanced, you get 

appreciation from your parents, which makes you feel happy and encourages you to 

keep trying. If you fall, you know that you need to get up and try again, if you fall again 

now you know what not to do the next time. Slowly you will learn which movements 

keep you balanced and which makes you fall. Eventually, after some time you can ride 

confidently without falling. 

 
Definition: Reinforcement learning is the process of choosing actions that maximize 

rewards to achieve a goal based on learned experiences.  

 
Let us have a look at another example, imagine you’re playing a game where you help 

a virtual puppy reach a treat in a maze. Every time the puppy goes the right way, it 

gets closer to the treat and earns a "point." But if it goes the wrong way or hits a wall, 

it doesn’t earn any points, or it may even lose points. 

 

The puppy doesn’t know the maze at first, so it tries different paths. Over time, it 

remembers which moves helped it get closer to the treat and avoids moves that didn’t 

work. The more it plays, the better it gets at picking the right moves because it 

remembers past actions and the points it got. 

 

In this way, decision-making in reinforcement learning is like helping the puppy learn 

to reach the treat by choosing the best path, one step at a time, based on what 

happened after each choice. Figure 2.9 shows the example of the above decision 

making. 
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Figure 2.9: Flowchart of decision making 

 

Check Your Progress-2 

a) Semi-supervised learning uses only labeled data to train models. (True/False) 

b) Semi-supervised learning can outperform unsupervised learning in terms of 

accuracy by leveraging a small amount of labeled data alongside a larger pool 

of unlabeled data. (True/False) 

c) In reinforcement learning the feedback is given in the form of rewards or 

penalties. (True/False). 

d) In reinforcement learning, the agent learns by receiving feedback only when it 

takes the right actions. (True/False) 

e) Reinforcement learning can be compared to learning how to ride a bike, where 

you gradually learn the right movements through feedback, such as falling or 

staying balanced. (True/False) 
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2.6 LET US SUM UP 
 
In this chapter we learnt about different techniques of machine learning. Supervised 

learning is a machine learning method where models are trained using labeled data to 

recognize patterns between inputs and outputs. Supervised learning includes two 

main types: classification and regression. 

 

Unsupervised learning uses data without labels, allowing the model to discover 

patterns on its own. This approach helps find natural groupings or associations within 

the data. Unsupervised learning includes clustering and association. 

 

Semi-supervised learning combines both supervised and unsupervised learning 

techniques, using a small amount of labeled data and a larger amount of unlabeled 

data. This approach helps improve model accuracy and generalization. 

 

In reinforcement learning, a model (or agent) learns by interacting with an environment 

and receiving feedback in the form of rewards or penalties. The goal is to maximize 

rewards through a process of trial and error.  

 

2.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
1-a False 

1-b True 

1-c True 

1-d False 

1-e False 

2-a False 

2-b True 

2-c False 

2-d False 

2-e True 
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2.8 ASSIGNMENTS 
 

● Explain the concept of supervised learning and give an example. 

● What are the two main types of supervised learning, and how do they differ from 

each other? Provide examples for both. 

● Describe the process of unsupervised learning. How does it differ from supervised 

learning? Include an example to support your explanation. 

● What is the role of clustering in unsupervised learning? Provide a real-world 

example where clustering would be applied. 

● In reinforcement learning, how does decision-making work? Illustrate with an 

example of how an agent learns to make better decisions over time. 
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3.0 LEARNING OBJECTIVE 
 
After studying this unit students should be able to: 
 

● Comprehend the core principles of Deep Learning 

● Identify the five essential features of Deep Learning 

● Recognize the distinctive characteristics of Deep Learning 

● Understand the fundamentals of Neural Networks 

● Explore significant algorithms and architectures in Deep Learning 

 

3.1 INTRODUCTION 
One well-known definition of Deep Learning is provided by Ian Goodfellow, Yoshua 

Bengio, and Aaron Courville in their book Deep Learning (2016). 

“Deep learning is a type of machine learning that uses multiple layers to progressively 

extract higher-level features from raw input. For example, in image processing, lower 

layers may identify edges, while higher layers may identify the concepts relevant to a 

human, such as digits or letters or faces.” 

Artificial intelligence that employs neural networks to replicate the human brain's 

learning process through experience is referred to as Deep Learning. Several layers 

of interconnected nodes, or "neurons," are used to train models in order to find patterns 

and make decisions. These networks are particularly skilled at tasks like audio and 

image recognition, natural language processing, and autonomous driving because 

they can independently extract and learn complex features from large datasets. Unlike 

traditional machine learning models that usually require human feature extraction, 

deep learning networks learn features in a hierarchical fashion, starting with simple 

elements like lines and curves and working their way up to complex patterns.  

Consider a deep learning network that can identify cats in photos. The model first 

recognizes fundamental components like edges and textures. As it examines more 

data, it then begins to recognize increasingly intricate traits, like a cat's eyes, ears, and 

whiskers. The model develops a comprehensive understanding of cat appearance by 

combining these characteristics on multiple levels, finally attaining high accuracy in 
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distinguishing cats from other species. Figure 3.1 shows the workflow of a Deep 

Learning System. 

 
 

Figure 3.1:  Workflow of Deep Learning System 

 
Let us try and associate each component shown in figure 3.1 with a real-life example. 
 
Input Data: The model initiates with input data, specifically. Assume that we have 

thousands of images of apples and oranges in different colors, shapes, and sizes. 
 
Data Preprocessing: The images have been cleaned and formatted for model 

comprehension. This may require resizing the photographs, turning them to grayscale, 

or normalizing pixel values. Assume that we have images of different sizes, we resize 

them so that the model can process them uniformly. 
 
Model Architecture: The Deep Learning model is built with layers of neurons that 

learn to extract features from the given images. A common architecture for images is 

a Convolutional Neural Network (CNN). Assume that the first layer learns about simple 

features like edges or colors, while deeper layers learn complex features like the shape 

of the fruit. 

 
Training: The model acquires knowledge by examining the data and generating 

predictions. When the forecast is mistaken, the model modifies its internal parameters 

(weights and biases) through a method known as backpropagation to reduce 

inaccuracies. Assume that the model guesses whether an image is an apple or an 
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orange. If the output generated is wrong, it learns from this mistake and tries to 

improve its accuracy the next time. 
 
Model Evaluation: After training, the model is tested on new images to see how well 

it has learned to identify apples and oranges. The performance is measured using 

metrics like accuracy or error rate.  
 

Deployment: Once the model performs as per the required expectations, it is 

deployed in a real-world application. It can then be used to classify images of apples 

and oranges uploaded by users. The model may be used in a mobile application where 

users take a picture of a fruit, and gets an output indicating if the uploaded image is of 

an apple or an orange. 

 
3.2 FIVE ESSENTIAL FEATURES OF DEEP LEARNING 

 
Deep learning can be used in a wide variety of applications such as image recognition, 

natural language processing, finance, text to image conversions, chatbots and code 

generators, digital assistants and many more. The five essential features that allows 

use of Deep Learning in such applications are as mentioned: 

 

1. Automated Feature Extraction: The deep learning models find and remove 

crucial characteristics from unprocessed data by themselves, therefore doing away 

with manual feature engineering. 
Example: In first layers, a deep learning model finds simple characteristics like 

edges and textures in image classification; as it goes further, it identifies more 

intricate ones like shapes and patterns. The model eventually identifies things, 

such separating a cat from a tree. 

2. Capacity to Manage Unstructured Data: Deep learning particularly performs 

well in handling unstructured data including text, audio, and images; conventional 

machine learning methods sometimes find this difficult. 
Example: Speech recognition systems based on deep learning can convert 

spoken words into text while managing noise, accents, and different speech 

patterns, hence making them more robust than previous approaches. 
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3. Scalability with Extensive Datasets: Deep learning models' accuracy gets 

better with data volume. Learning much from the wealth of knowledge, they may 

handle huge amounts of data. 
 Example: Self-driving vehicles employ deep learning to scrutinize millions of 

driving photos and videos. This enables the vehicle to enhance decision-making, 

such as identifying pedestrians or reading traffic signs. 

 

4. Comprehensive Learning: By handling end-to-end chores in one process, deep 

learning models lessen the demand for distinct stages or components. 
Example: For instance, in a language translation system, a deep learning model 

can immediately convert a sentence from one language to another without 

requiring intermediary processing stages, hence enhancing the accuracy and 

fluidity of the translation. 

 

5. Hierarchical Feature Acquisition: Building on more and more abstract feature 

levels, deep learning models learn difficult data patterns. Starting from basic 

components, the model gradually identifies more advanced structures. 
Example: In facial recognition, initial layers acquire fundamental traits such as 

eyes and mouth, whereas subsequent layers discern the configuration of these 

elements to identify an individual's face. 

 

Check Your Progress-1 

a) Key advantage of Deep Learning over traditional machine learning is that it 

handles unstructured data effectively. (True/False) 
b) Backpropagation method is used to adjust weights and minimize errors. 

(True/False) 
c) In a voice recognition system, the model learns to convert speech into ______. 
d) The ability of deep learning to work well with large datasets is called  _______. 
e) The process of preparing data for a model, such as resizing or normalizing 

images, is called ___________. 
f) Deep learning is particularly effective at handling _________ data like images 

and sound. 
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3.3 NEURAL NETWORK BASICS 
 
In neural networks, the computers are programmed to evaluate data as human brains 

would. Deep learning is a machine learning (ML) technique that uses layered 

architectures of connected nodes or neurons to imitate the human brain. It sets an 

evolutionary model whereby computers can always improve upon their faults. Artificial 

neural networks therefore try to solve difficult problems—face recognition or document 

summarization, for example—with improved accuracy. 
 

How do neural networks work? 
The cells of the human brain, called neurons, create a sophisticated, highly 

interconnected network and pass electrical signals to assist information processing. 

An artificial neural network consists of artificial neurons that collaborate to address a 

problem. Whereas artificial neural networks are algorithms fundamentally using 

computers systems to perform mathematical calculations, artificial neurons are 

software parts called nodes. 

 

Basic neural network architecture 
A fundamental neural network architecture comprises of interconnected artificial 

neurons organized into three layers. The basic structure of a neural network is  shown 

in figure 3.2. 

 

 
Figure 3.2: Basic Structure of Neural Network 



34 

Input Layer: External information is received by the artificial neural network through 

the input layer. Input nodes process, analyze, or categorize data and transmit it to the 

subsequent layer. 
 

Hidden Layer: Hidden layers receive their input from either the input layer or other 

hidden layers. Artificial neural networks may possess numerous hidden layers. Each 

concealed layer evaluates the output from the preceding layer, processes it further, 

and transmits it to the subsequent layer. 
 

Output Layer: The output layer gives the definitive result of all artificial neural network 

data analysis. It could have several nodes or a solitary one. The output layer in a binary 

classification problem will comprise only one output node generating results either 1 

or 0. In a multi-class classification issue, the output layer may contain many output 

nodes. 
 
Example:  Anticipating Student Success or Failure 

Input Layer: The input layer acquires data pertaining to the student's study habits 

and attendance. 

● Feature 1: Study hours (e.g., 10 hours) 

● Feature 2: Attendance rate (e.g., 90%) 

Hidden Layer: The hidden layer analyzes the input data and discerns the correlation 

among study hours, attendance, and exam success. 

● Node 1: Executes computations (weighted sum) and implements an 

activation function (e.g., ReLU). 

● Node 2: Executes analogous functions with varying weights and biases. 

Output Layer: The output layer provides the conclusive conclusion (pass/fail). 

● Node 1: The output node produces a result of either 1 (Pass) or 0 (Fail).  
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Architecture of deep neural networks 
 
Deep learning networks, also called deep neural networks, have many hidden levels 

each made of millions of linked artificial neurons. One node's connections to another 

are shown by a numerical value called weight. The weight is positive if one node 

stimulates another, negative if one inhibits the other. Other nodes are more affected 

by nodes with more weight values. 

In theory, deep neural networks may associate any type of input with any type of 

output. Nevertheless, they require significantly more training than other machine 

learning techniques. 

  

Check Your Progress-2 

a) The input Layer in a neural network receives the raw input data. (True/False) 
b) The output layer in a deep neural network typically has most number of neurons. 

(True/False) 
c) A neural network with more than one hidden layer is often referred to as a 

________ neural network. 
d) The final layer in a neural network is known as the ________ layer, which 

generates the output for the classification or regression task. 
e)  In a deep neural network if the network has more layers then it is more likely to 

underfit the data. (True/False) 
 
 
3.4 KEY ALGORITHMS AND ARCHITECTURE 
 
Many different neural network architectures and the algorithms driving them have 

greatly improved deep learning. Thanks to these algorithms and structures, machines 

can carry our activities including image recognition, natural language processing, and 

speech recognition. The primary categories of neural networks are as follows: 

 

Feedforward Neural Networks (FNN): Feedforward Neural Networks (FNN) are the 

most basic form of neural network, characterized by unidirectional data flow—from 

input to output—traversing through hidden layers without any feedback loops. 
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Characteristics: 
● Data progresses unidirectionally: from the input layer to the output layer. 

● Each layer exclusively obtains information from the preceding layer. 

● Frequently employed for classification and regression tasks. 

 

Example: Envision a basic neural network engineered to forecast a customer's 

likelihood of purchasing a product based on age and wealth. 

● Input Layer: Age, Income 

● Hidden Layer: Analyzes features through the application of weights and 

activation functions. 

● Output Layer: Determines the likelihood of the client purchasing the product 

(Yes or No) 

 
Convolutional Neural Networks (CNNs): Convolutional Neural Networks (CNNs) are 

engineered to process grid-structured data, including pictures and time-series data. 

Convolutional Neural Networks (CNNs) employ convolutional layers that utilize filters 

(kernels) on input data to identify patterns such as edges, textures, and forms. 
 
Characteristics: 
 
● Primarily utilized for image processing, video analysis, and time-series analysis. 

● Comprises layers such as convolutional layers, pooling layers, and fully linked 

layers. 

● Facilitates the extraction of spatial hierarchies from data (e.g., edges, forms, 

objects). 

 
Example : For image classification, CNNs categorize photos into classes such as 

"cat" or "dog" by utilizing filters to identify elements like ears, eyes, and nose within 

the image. 

● Input Layer: A 64x64 pixel picture. 
● Convolutional Layers: Extract features, including edges and textures, from the 

image. 

● Pooling Layers: Decrease dimensionality while preserving essential features. 

● Fully Connected Layers: Classify the image according to retrieved features. 
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Recurrent Neural Networks (RNNs): Recurrent Neural Networks (RNNs) are 

designed for sequential or time-series data. In contrast to Feedforward Neural 

Networks (FNNs), Recurrent Neural Networks (RNNs) possess feedback connections 

that facilitate the retention and transmission of information throughout the network over 

time. 
 
Characteristics: 
 

● Utilized for time-series analysis, linguistic modeling, speech recognition, and 

sequential forecasting. 

● Can retain prior inputs owing to their feedback linkages. 

● Frequently experiences vanishing or inflating gradients; however, technologies 

such as LSTM (Long Short-Term Memory) assist in alleviating this problem. 

 
Example: An RNN can anticipate the subsequent word in a sentence based on 

preceding ones. 

● Input Layer: A sequence of lexemes (e.g., "I am proceeding to the"). 

● Hidden Layers: The network retains prior words and modifies the prediction for 

the subsequent word. 

● Output Layer: Forecasts the subsequent word in the sequence (e.g., "market"). 

 
Long Short-Term Memory Networks (LSTMs): LSTM is a variant of RNN 

engineered to address the vanishing gradient issue, enabling the network to acquire 

long-term dependencies in sequential input. 
 

Characteristics: 
 

● Engineered to retain knowledge over extended durations, a task at which 

conventional RNNs falter. 

● Utilizes memory cells and gates (input, forget, and output) to regulate the flow 

of information. 

● Proficient in activities such as machine translation, speech recognition, and 

time-series forecasting. 
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Example : LSTMs are frequently employed in machine translation. For instance, 

translating the phrase "I am going to the market" from English to French: 

● Input Layer: A series of words in English. 

● LSTM Layers: Analyzes the sequence while retaining long-term dependencies. 

● Output Layer: Produces the translation in French ("Je vais au marché"). 

 
Generative Adversarial Networks (GANs): Generative Adversarial Networks 

(GANs) comprise two neural networks; the generator and the discriminator that 

engage in competition. The generator produces synthetic data, while the discriminator 

assesses the authenticity of the data as either real or fabricated. In this adversarial 

process, the generator acquires the ability to provide progressively realistic data. 
 

Characteristics: 
 

● Consists of two networks that are concurrently trained: the generator and the 

discriminator. 

● Utilized for the generation of authentic data, including photos, music, or text. 

● Utilized in domains such as deepfake production, picture generation, and 

artistic synthesis. 

 
Example: Generative Adversarial Networks (GANs) can produce lifelike 

representations of non-existent individuals. 

● Generator: Produces an image of an individual. 

● Discriminator: Assesses if the image is authentic (sourced from a dataset of 

real individuals) or fabricated (produced by the network). 

● Output: Over time, the generator enhances its capabilities and produces very 

lifelike visuals. 

 
Radial Basis Function Networks (RBFNs): Radial Basis Function Networks 

(RBFNs) employ radial basis functions as its activation functions. These networks are 

mostly utilized for classification, regression, and function approximation applications. 
Characteristics: 
 

● The hidden layer employs radial basis functions, such as Gaussian functions, 

to calculate activations. 
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● Frequently employed for pattern recognition, function approximation, and time-

series forecasting. 

● May exhibit greater efficiency than alternative network types in specific 

situations 

 
Example: Radial Basis Function Networks (RBFNs) may classify data points 

according to their similarity. 

● Input Layer: Characteristics of data points (e.g., dimensions of an item). 

● Hidden Layer: Assesses the resemblance of input data points to established 

patterns. 

● Output Layer: Categorizes the data point into a certain class (e.g., "circle" or 

"square"). 

 
Autoencoders: Autoencoders are employed for unsupervised learning tasks, 

specifically for dimensionality reduction or feature extraction. They acquire the ability 

to compress (encode) input data into a more compact representation and 

subsequently reconstruct (decode) it to its original form. 
 
Characteristics: 
 

● Consists of an encoder and a decoder. 

● Frequently employed for anomaly detection, data compression, or noise 

reduction. 

● Operates with unsupervised learning tasks, indicating it does not necessitate 

labeled data. 

 
Example : For anomaly detection, an autoencoder may be employed to identify 

atypical patterns in network traffic. 

● Encoder: Compresses network traffic data into a reduced latent space. 

● Decoder: Endeavors to reassemble the original data. 

● Output: If the rebuilt data substantially deviates from the original data, it may 

signify an anomaly (e.g., a security violation). 
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Check Your Progress-3 

a) Full Form of FNN is Fit Forward Neural Networks. (True/False) 
b) LSTM is a type of RNN that is designed to address the vanishing gradient 

problem.(True/False) 
c) Input layer of a neural network responsible for adjusting weights based on the 

error between predicted and actual values. (True/False) 
d) Feedforward Neural Network (FNN) indicates Data flows only in one direction 

from input to output. (True/False) 

 

3.5 LET US SUM UP 
 

Deep learning is a branch of machine learning that employs artificial neural networks 

to model and address intricate issues. It allows machines to autonomously learn and 

enhance from experience by analyzing data through layers of interconnected neurons.  

These networks incrementally derive advanced characteristics from raw input, 

rendering them suitable for applications including image recognition, speech 

processing, and natural language comprehension. In contrast to conventional machine 

learning, deep learning obviates the necessity for manual feature extraction, enabling 

models to independently identify patterns in extensive datasets, hence facilitating their 

efficacy in domains such as autonomous driving and AI-driven medical diagnostics. 

A deep learning model often adheres to a workflow comprising multiple phases, 

commencing with the entry of raw data (e.g., pictures), succeeded by preprocessing 

to ready the data for analysis. The model architecture, often founded on Convolutional 

Neural Networks (CNNs) for image-related tasks, is designed to extract significant 

information across several layers. The model is trained by modifying its internal 

parameters through backpropagation, enhancing predictions by reducing mistakes.  

The model is assessed using previously unencountered data following training to 

determine its performance. Upon success, it is implemented in practical applications, 

such as mobile applications for picture classification, allowing users to engage with 

the trained model. 
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Deep learning is characterized by automated feature extraction, proficiency in 

managing unstructured data, scalability with extensive datasets, and holistic learning 

within a singular process. These characteristics render deep learning especially 

proficient for tasks involving unstructured data, including images, text, and audio.  

Neural networks, fundamental to deep learning, function via layers of artificial neurons 

that analyze information, acquiring knowledge from input data to generate output.  

Various neural network architectures, such as Convolutional Neural Networks (CNNs) 

for image processing and Recurrent Neural Networks (RNNs) for sequential data, 

have transformed sectors by offering effective answers to challenges previously 

deemed too intricate for machines. 

 
3.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
1-a True 

1-b True 

1-c text 

1-d scalability 

1-e preprocessing 

1-f unstructured 

2-a True 

2-b False 

2-c Deep neural network 

2-d Output layer 

2-e False 

3-a False 

3-b True 

3-c False 

3-d True 
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3.7 ASSIGNMENTS 
 

● What is deep learning and how does it differ from traditional machine learning? 

● Describe the role of backpropagation in deep learning training. How does it help 

improve model accuracy? 

● Explain input layer, hidden layer, and output layer in a neural network? 

● What are Generative Adversarial Networks (GANs), and how do they generate 

realistic data? 

● Explain the concept of hierarchical feature extraction in deep learning. Provide an 

example. 
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4.0 LEARNING OBJECTIVE 
 
After studying this unit students should be able to: 
 

● Understand how machine learning is applied across different industries and 

sectors. 

● Analyze real-world case studies demonstrating successful ML applications. 

● Identify key challenges and limitations faced during the implementation of ML 

models. 

● Evaluate potential solutions to address common issues in machine learning. 

4.1  REAL WORLD APPLICATION OF ML 
Many fields are transforming thanks to machine learning (ML), which allows systems 

to learn from data, detect patterns, and make judgments with little human assist. Here 

are some examples of real-world machine learning applications: 

Healthcare 

The use of machine learning in healthcare have changed the way we diagnose, cure 

and monitor patients. By generating more precise diagnoses and allowing more 

personalized therapies, this technology is revolutionizing healthcare research and 

results. The capacity of artificial intelligence and machine learning in medical to rapidly 

examine large quantities of clinical data assists doctors to spot disease markers and 

trends otherwise missed. From early radiological image scanning to forecasting 

outcomes from digital health records, the possible uses of machine learning in 

medicine are many and wide-ranging. Using artificial intelligence and machine learning 

in hospital settings and clinics, healthcare systems can be more intelligent, quicker, 

and more efficient in delivering millions of people across the world with care.  

Example: 

● Google’s DeepMind developed an ML model that detects over 50 eye diseases 

from retinal scans with accuracy comparable to top ophthalmologists. 

● ML models analyze MRI and CT scans to detect early signs of cancer and 

neurological diseases. 
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Impact: 

● Faster and more accurate diagnoses. 

● Reduction in human error. 

● Early detection leading to better treatment outcomes. 

Finance 

By enhancing decision-making, risk management, and customer experience, machine 

learning is changing the finance scene. It is widely used for fraud detection by 

identifying anomalous transactions, enhancing credit scoring through more accurate 

assessments of financial behaviors, and driving algorithmic trading by analyzing 

market data for optimal trading strategies. In addition to enabling personalized 

customer experiences through sophisticated segmentation, ML assists in risk 

management by forecasting market, credit, and operational risks. Moreover, ML 

enhances portfolio management by looking at asset performance and forecasting 

market trends, hence enabling better financial forecast and more knowledgeable 

investment choices. 

Example: 

● PayPal uses ML to detect fraudulent transactions by identifying unusual 

patterns in user behavior. 

● Banks employ ML algorithms to automate loan approval processes by 

analyzing credit history and transaction data. 

Impact: 
● Increased sales and user engagement. 

● Higher customer satisfaction through personalized experiences. 

 

Transportation 

The sector of transportation has been transformed by the use of machine learning. By 

incorporating machine learning in transit, clever transportation systems are being 

developed to improve safety, performance, and sustainability. By optimizing traffic 

flow, estimating maintenance demands, and enhancing the general travel experience, 
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machine learning algorithms can examine huge amounts of data from different sources 

including sensors, cameras, and GPS.  

Example: 

● Tesla’s Autopilot uses ML to analyze data from vehicle sensors and cameras, 

enabling self-driving capabilities. 

● Google Maps predicts traffic congestion using real-time location data and ML 

models. 

Impact: 

● Enhanced safety and convenience in transportation. 

● Reduced travel time through efficient route planning. 

Manufacturing 

Machine learning (ML) is revolutionizing manufacturing by enhancing efficiency, 

quality control, and predictive maintenance when it comes to operations. By examining 

data in real time, spotting bottlenecks, and improving supply chain management, ML 

algorithms help to improve production processes. By knowing ahead of time when 

machines will fail, predictive maintenance models can help lower maintenance 

expenses and downtime. Machine learning guarantees better output by helping in 

quality control by identifying during manufacturing any product flaws. By means of 

demand prediction and inventory control, ML helps companies to modify production 

schedules and maximize resource distribution for improved cost efficiency.  

Example: 

● Siemens uses ML to predict equipment failures by analyzing sensor data from 

machines, allowing for maintenance before breakdowns occur. 

Impact: 

● Reduction in downtime and maintenance costs. 

● Improved operational efficiency. 
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Entertainment 
The entertainment field uses machine learning (ML) to refine user experiences, 

streamline content production, and provide better suggestions. From generating 

lifelike animations to helping with scriptwriting and automating video editing and 

special effects, ML also significantly helps with content development. By means of 

machine learning, intelligent game characters and dynamic difficulty levels are built to 

produce more engaging experiences in gaming. Furthermore, ML is used in marketing 

to forecast audience engagement and customize advertising campaigns, hence 

increasing reach and earnings for media businesses.  

Example: 
● Netflix applies ML to suggest movies and TV shows by analyzing user viewing 

habits and ratings. 

     Impact: 
● Increased viewer retention and engagement. 

● Personalized viewing experience. 

 
Education 
Machine learning is reshaping education by customizing learning opportunities, raising 

student performance, and increasing administrative efficiency. ML algorithms are 

employed to build adjustable learning systems which customize material to students' 

learning styles and requirements, hence enabling them to learn at their own pace. 

Furthermore, it helps predict student performance, find people who might fall behind, 

and offer tailored therapies. It also helps teachers to concentrate more on instruction 

as ML can be used to automate administrative duties including scheduling and 

grading. ML also assists with curriculum planning and resource allocation optimization 

via data analysis. 

Example: 
● Duolingo uses ML to personalize lessons based on user progress and areas of 

weakness. 

Impact: 
● Improved learning outcomes through tailored content. 

● Enhanced student engagement. 
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Check Your Progress-1: 
 
a) Google DeepMind company developed an ML model that detects over 50 eye 

diseases from retinal scans. (True/False) 
b) ML models allows early detection leading to better treatment outcomes for 

neurological diseases. (True/False) 
c) The primary use of machine learning in PayPal's system is to personalize 

recommendations. (True/False) 
d) In the ______ sector, ML algorithms are used to automate loan approval 

processes  by analyzing credit history and transaction data. 
e) ML can be used to predict traffic congestion using real-time location data. 

(True/False) 
 

4.2 ISSUES IN MACHINE LEARNING 
 

Even though machine learning (ML) has advanced significantly, there are still a 

number of obstacles to overcome. From data collection and model training to 

deployment and interpretation, these problems might occur at various phases of 

machine learning.  

 

The list of typical machine learning problems is as mentioned:  

1. Insufficient or Poor-Quality Data: The quality and quantity of data are critical to 

the performance of machine learning models. Insufficient data, noisy data, or 

imbalanced datasets can lead to inaccurate or biased models. 
Example: A model trained on a dataset of only 100 images of dogs and 100 images 

of cats will likely struggle to generalize well to new, unseen images, especially if 

the dataset doesn’t include enough diversity (e.g., different breeds or lighting 

conditions). 

 

2. Overfitting and Underfitting: 
Overfitting: When a model learns the training data too well, including its noise and 

outliers, it performs poorly on new, unseen data. 

Underfitting: When a model is too simple or doesn’t capture the underlying pattern 

in the data, resulting in poor performance even on the training set. 
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Example: In a spam email classifier, overfitting could occur if the model memorizes 

specific words in the training set, leading it to misclassify new emails. Underfitting 

may happen if the model is too simplistic, ignoring important features like the 

structure of the email. 

 

3. Bias and Fairness: If the data used to train a model is biased or unrepresentative 

of the. population, the model can produce biased predictions. Bias can result in 

unfair outcomes, such as discrimination against certain groups. 
Example: Even if two candidates are equally qualified, a recruiting algorithm 

trained on past data from a company that has typically recruited more men than 

women may make biased decisions that disadvantage the female candidates. 

 

4. Data Privacy and Security: The machine learning models, especially those 

dealing with sensitive personal data, can present privacy concerns. Ensuring that 

models do not leak private information from training data is a critical issue. 
Example: A model trained on health data could unintentionally reveal information 

about individuals' health conditions, even if those conditions are not directly 

included as features in the model. 

 

5. Model Interpretability and Explainability: Most of the machine learning models, 

especially the deep learning models, function as "black boxes". It is thus difficult to 

understand why a certain decision or prediction was made. Thus, proper 

explanation of how the model interpret data and provides result is required. It may 

so happen that the lack of interpretability and explainability in machine learning 

models can hinder trust and adoption, particularly when it’s difficult to understand 

why a decision was made. 
Example: In a medical diagnosis system, if a model incorrectly diagnoses a patient 

with cancer, it might be challenging to understand which features led to this 

decision, hindering trust in the system and its adoption. 

 

6. Scalability and Computational Resources: The machine learning algorithms 

usually require significant computational resources, especially the deep learning 

models. Training a deep learning model on a large dataset of images may require 
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hardware like Graphics Processing Units (GPUs) or Tensor Processing Units 

(TPUs).This can be a bottleneck at times as we usually work with large datasets or 

in resource-constrained environments.  
Example: Training a deep neural network for image recognition on a large dataset 

of millions of images can take days or weeks, requiring expensive hardware like 

GPUs or TPUs. 

 

Let us have a look at a simple case study that illustrates how the mentioned issues 

may appear in real-world scenarios. 

Case Study:  
A real estate company aims to create a machine learning model to predict house 

prices based on features such as square footage, number of bedrooms, location, 

and age of the property. After carefully looking at the dataset they had, following 

issues were identified and certain solutions were proposed to solve them as 

mentioned: 

 

Data Quality 
Problem: It was observed that some features, like the number of bathrooms and 

renovation year, had missing values, potentially affecting the model's accuracy. 

Solution: The company addressed this by filling in missing values with the mean or 

median for each respective feature, ensuring data completeness. 

 

Feature Selection 
Problem: It was observed that irrelevant features, such as the house color or roofing 

type, were included in the dataset and didn't contribute to price prediction. 

Solution: The company used correlation analysis to eliminate irrelevant features, 

focusing on important ones like square footage and location. 

 

Overfitting 
Problem: A complex decision tree model was performing well on training data but 

struggled to generalize on new data. 

Solution: To counter this, the company reduced the tree’s depth and implemented 

cross-validation to improve generalization on unseen data. 
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Model Interpretability 
Problem: The company needed a model that could explain the reasoning behind 

predicted house prices. 

Solution: They selected a linear regression model for its simplicity and 

transparency, enabling easy explanation of how features like square footage 

influenced price predictions. 

 

Conclusion: 
This case study highlights that even straightforward machine learning projects can 

encounter issues such as missing data, irrelevant features, overfitting, and 

interpretability concerns. Through the application of appropriate techniques, the 

company was able to create an effective and practical house price prediction model. 

 

Check Your Progress-2 
 
a) Bias arises when a machine learning model learns the training data too well, 

including its noise and outliers. (True/False) 
b) Poor quality data occurs when the dataset is not diverse enough, like having 

limited images of only a few breeds of dogs or cats. (True/False) 
c) When a model is too simple or doesn’t capture the underlying pattern in the data, 

it leads to _________. 
d) Training a deep learning model on a large dataset of images may require 

hardware _______. 
e) The lack of _______ and _______ in machine learning models can hinder trust 

and adoption, particularly when it’s difficult to understand why a decision was 

made. 
 
 

4.3 LET US SUM UP 
By letting devices learn from data and make decisions with little human intervention, 

machine learning (ML) is transforming many sectors. Google DeepMind, for instance, 

has developed a model in healthcare able to identify more than 50 eye issues from 

retinal scans, therefore lowering human error, offering quick and accurate diagnoses. 
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By examining unusual user actions, ML algorithms in the financial industry find fake 

transactions and also help to streamline the loan approval process. Leading the field, 

businesses like Tesla and Google help the transportation industry benefit from 

autonomous vehicles and traffic prediction using machine learning. In a similar way, 

the manufacturing and entertainment industries utilize ML for predictive maintenance 

and custom content suggestions. Adaptive systems like Duolingo, which adapts 

lessons based on user advancement, also uses ML in education.  

Although ML has great advantages, it also has major obstacles including problems 

with data quality, overfitting, underfitting, and biased forecasts, which might result in 

unfair or erroneous results. For example, a real estate firm developing a model to 

forecast home values ran into issues with overfitting, irrelevant characteristics, and 

incomplete data. By utilizing techniques such as filling in missing values, removing 

unimportant features, simplifying the model and going with a linear regression 

approach that made more sense, the company solved these difficulties. These 

strategies highlight the need of dealing with data problems, simplifying model 

complexity, and ensuring openness if machine learning initiatives are to be successful. 

 

4.4 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
 
1-a True 

1-b True 

1-c False 

1-d finance 

1-e True 
2-a False 

2-b True 

2-c Underfitting 

2-d GPUs or TPUs 

2-e Interpretability and explainability 
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4.5 ASSIGNMENTS 
 

• Try and find some additional applications areas in real life where machine 

learning can be implied. 

• Discuss how machine learning is transforming healthcare, specifically focusing 

on the model developed by Google DeepMind. What are the potential impacts 

of this model on disease diagnosis, and how does it compare to traditional 

diagnostic methods? 

• Explain the common challenges faced by companies when implementing 

machine learning models. 

• Identify and explain at least three sectors where machine learning is being 

applied. For each sector, describe the problem ML is solving and the impact it 

has on the respective industry.  
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Block-2 
Regression, Classification and 

Ensemble Methods 
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Unit-1:  Introduction to 
Regression 

  
Unit Structure 
 

1.0    Learning Objectives 

1.1   Overview of Regression 

1.2   Regression Algorithms 

1.3   Linear Regression 

1.4   Polynomial Regression 

1.5   Comparative Study 

1.6   Let us sum up 

1.7   Check your Progress: Possible Answers 

1.8   Assignments 

 

 
  

1 
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1.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

● Understand the fundamental concept of regression along with its applications. 

● Develop an understanding of various types of regression 

● Implement linear and polynomial regression techniques. 

1.1 INTRODUCTION TO REGRESSION 
Ever thought how a child learns to recognize objects? Parent shows the child various 

pictures (input) of the object along with mentioning its name (output). With time, the 

child is able to recognize this object. This is exactly how supervised learning works. 

Here the model learns from the labelled data.    

Regression is a type of supervised learning technique which is used to predict 

continuous values and modeling relationship between these values. Consider the case 

when the output variable is continuous like Sales of a product. Assume that we have 

a training set with values of two feature(s), TV advertising budget and the output as 

Sales figure of TV. Assume that we would like to learn a linear function that relates 

both these features. For a new value of TV budget, we will use the regression function 

to predict the sales figure of TV. Figure 1.1 shows an overview of the problem. 

 

Figure 1.1: Sample Regression Line 
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Regression plays a pivotal role in understanding relationships and predicting 

outcomes. Further, it tends to give estimates for possible future sales, demand, or 

even market performance for worthwhile business planning. 

Regression is a stepping-stone to the next level of modeling in advanced machine 

learning. Simplicity, stability, and the ability to be applied in many scenarios make 

regression a quintessential methodology for problem-solving and discoveries in 

various realms.   

1.2 REGRESSION ALGORITHMS 
Regression algorithms are a group of machine learning techniques used to predict the 

continuous outcome variables. These algorithms are commonly employed to analyze 

and model relationship between variables, where one or more input characteristics 

(independent variables) are utilized to predict the target characteristics (dependent 

variables).  

Using regression algorithms, we are much able to adequately describe a mathematical 

function-a line or perhaps a curve-that best fits the data, to make predictions about 

new data and understand how different levels of input characteristics affect the target. 

Regression algorithms cover a broad spectrum of application domains due to its 

accuracy in prediction for solving daily life challenges: 

• Finance: Estimate stock prices, assess credit risk, and model socio-

economics. 

• Healthcare: Disease progression and approximations of patient out-turns and 

healthcare expenses. 

• Marketing: Customer values; sales predictions analysis of trends in the market. 

• Engineering: Predictive maintenance and minimize downtime. 

• Environment: Forecasting weather conditions, modelling climate change, and 

pollution predictions. 

• Retail: Demand forecasting and price setting. 

• Logistics: Estimation of delivery times, given distance travelled, and 

reasoning.  
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Regression algorithms are a mathematical way to carry out regression analysis. Each 

algorithm has its own set of advantages and limitations. Some of the popular 

regression algorithms are as mentioned: 

• Linear Regression 

• Polynomial Regression 

• Lasso regression  

• Support Vector Regression 

• Decision Tree 

• Random Forest Regression 

We will be focusing on the algorithms like linear regression and polynomial regression.  

 Check Your Progress - 1  

a) What is the basis of supervised learning? 

a) Random data without labels   

b) Learning from unlabelled data   

c) Learning from labelled data where inputs and outputs are provided   

d) Learning without any examples 

b) Primary objective of regression algorithms is 

a) Identifying clusters in data   

b) Predicting continuous outcomes and modeling relationships between 

values   

c) Reducing the size of datasets   

d) Matching data to predefined categories 

c) Which of the following is an example of regression in supervised learning?  

a) Predicting whether an email is spam or not   

b) Forecasting the price of a house based on its size   

c) Classifying animals into different categories   

d) Grouping customers based on buying patterns   

d) Why is regression widely used in problem-solving? 

a) Its complexity and unpredictability   

b) Its simplicity, stability, and versatility   

c) Its ability to classify categorical data   

d) Its focus on clustering similar data points 
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e) Which of the following is NOT an example of regression algorithm 

applications in healthcare domain? 

a) Predicting disease progression 

b) Forecasting patient outcomes 

c) Diagnosing diseases from X-rays 

d) Estimating healthcare costs 

f) From the following, which is an application of regression algorithms in the 

logistics domain. 

a) Predicting market trends 

b) Estimating delivery times 

c) Modelling climate change 

d) Forecasting product demand 

 

1.3 LINEAR REGRESSION  
Linear regression is the most fundamental and widely used supervised learning 

technique. This technique analyzes the linear relationship between the dependent 

variable (target) and one or more independent variables (predictors).  

Key concepts of Linear Regression are: 

1. The General Equation of a Linear Regression Model: This model is the one in  

    which the relationships among variables are represented with a straight line, given   

    as:  

y = β0 + β1x + ϵ 

   Where, 

y: Dependent variable (output) 

x: Independent variable (input or feature) 

β0: Intercept of the line i.e. value of y when x=0 

β1: Slope of the line i.e. the rate of change of y with respect to x 

ϵ: Deviations between actual values of output y and its predicted values. 
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The general linear regression model is represented as shown in figure 1.2. 

 

Figure 1.2: Linear Regression Line 

The greater the linear relationship between the dependent and independent variables, 

the more the data points lie on a straight line as shown in figure 1.3. 

 

Figure 1.3: Relationship within Linear Regression Line 

2. Cost Function: To optimize the model, linear regression uses the Mean Squared  

    Error (MSE) as the cost function: 

MSE =  1

𝑛
 ∑ (𝑦𝑖 −  𝑦𝑖̂)

2𝑛
𝑖=1  

Here, 𝑦𝑖 reflects the actual value, 𝑦𝑖̂ is the predicted value, and n signifies the total 

number of observations. Reducing the cost function helps determine the best-fit 

line. 
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3. Optimization Using Gradient Descent: It is an optimization technique that 

minimizes the cost function by carrying out the updating of the parameters and 

iteratively.  

 

Steps to be followed for performing Linear Regression are as mentioned: 

1. Data Gathering: Gathering input and output variables for any relevant data 

concerning the problems you want to solve. 

2. Data Pre-processing: Cleaning the data for replacing empty entries, removing 

outliers, and normalizing features forms the basis of pre-processing. The aim is 

creation of a clean data-set ready for analysis. 

3. Data Splitting: The dataset is further divided into training and test data. The training 

data form is used to make the model learn, while the testing portion helps to know 

how well the model performs against unseen data. 

4. Train Model: A linear regression model is fitted to the training set. The fit is 

computed for minimizing the cost function, which in this case is that of the mean 

squared error. 

5. Prediction: The trained model uses new or unseen input data to predict an unseen 

or new output variable. 

6. Performance Evaluation: Performance evaluation can be done with metrics like 

mean absolute error, root mean squared error, and R-squared values, which help 

understand how well a model defines the relationship among variables.  

 
Example of Linear Regression:  
Assume that we have a dataset pertaining to the size of the house and its price. We 

are going to estimate the price of the house based on the size given by the user. 

 

Input data: Size of house 

Output data: Predicted price of house 

Step 1: Data Collection 

Let's assume we have the data for house sizes and prices as shown in table 1.1. 
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House Size (sq ft) Price (in lakhs Rs.) 

1500 30 

1700 34 

2000 40 

2200 44 

2500 50 

 
Table 1.1 Dataset of house size and price 

Step 2: Formulate the Model 

The simple linear regression model can be represented by the equation: 

y = β0 + β1x 

Where: 

• y is the predicted price 

• β1 is the slope of the line (the change in price for each additional square foot) 

• x is the house size 

• β0 is the y-intercept (the predicted price when house size is zero) 

Step 3: Calculate Mean Values 

First, we need to calculate the mean of both the house sizes and prices. 

Mean of 𝑥(𝑥‾) =
∑  𝑥

𝑛
=

1500 + 1700 + 2000 + 2200 + 2500

5
=

10800

5
= 2160 

Mean of 𝑦(𝑦‾) =
∑  𝑦

𝑛
=

30 + 34 + 40 + 44 + 50

5
=

198

5
= 39.6 

Step 4: Calculate Slope (β1) 

The formula for calculating the slope is: 

β1 =
∑  (𝑥𝑖 − 𝑥‾)(𝑦𝑖 − 𝑦‾)

∑  (𝑥𝑖 − 𝑥‾)2
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Table 1.2 shows the calculation of each of the components: 

House 
Size (𝒙𝒊) 

Price 
(𝒚𝒊) 

𝒙𝒊 − 𝒙‾  𝒚𝒊 − 𝒚‾  (𝒙𝒊 − 𝒙‾)(𝒚𝒊 − 𝒚‾ ) (𝒙𝒊 − 𝒙‾)𝟐 

1500 30 -660 -9.6 6336 435600 

1700 34 -460 -5.6 2576 211600 

2000 40 -160 0.40 -64 25600 

2200 44 40 4.4 176 1600 

2500 50 340 10.4 3536 115600 

Table 1.2: Calculation of components for finding slope 

Sum of products: 

∑  (𝑥𝑖 − 𝑥‾)(𝑦𝑖 − 𝑦‾) = 6336 + 2576 − 64 + 176 + 3536 = 12560 

 
Sum of squares: 

∑  (𝑥𝑖 − 𝑥‾)2 = 435600 + 211600 + 25600 + 1600 + 115600 = 790000 

Now we can calculate the slope: 

β1 =
12560

790000
=

1256

79000
≈ 0.0158 

Step 5: Calculate Intercept (β0) 

The formula for calculating the intercept is: 

β0 = 𝑦‾ − β1𝑥‾ 

Substituting the values, we obtained in the above equation we get: 

β0 = 39.6 − (0.0158)(2160) 

β0 ≈ 39.6 − 34.34 ≈ 5.26 



64 

Step 6: Final Model 

Now we have our regression equation: 

𝑦 ≈ 0.0158𝑥 + 5.26 

Step 7: Making Predictions 

Using this model, we can predict the price of a house based on its size. For example, 

if a house has a size of 1800 sq ft, we can substitute into our model: 

𝑦 ≈ (0.0158)(1800) + 5.26 

𝑦 ≈ 28.44 + 5.26 ≈ 33.7 

Thus, we predict that a house with 1800 sq ft would be priced at approximately Rs. 

33.7 lakhs. Figure 1.4 shows the regression line generated in this example. 

 

Figure 1.4: Linear Regression Line generated in example 

This example illustrates how to perform simple linear regression using a small dataset 

to establish a relationship between house size and price, allowing us to make 

predictions based on that relationship. 
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Assumptions of Linear Regression: 

In order to interpret the results of the regression analysis meaningfully, the following 

conditions must be met. 

• Linearity: There must be a linear relationship between the dependent and 

independent variables. 

• Homoscedasticity: In practice the regression model never exactly predicts the 

value of dependent variable, there is always an error. This error must have a 

constant variance over the predicted range. 

• Normality: The error epsilon must be normally distributed. 

• No multicollinearity: No high correlation between the independent variables. 

• No auto-correlation: The error component should have no auto correlation. 

 

Advantages of Linear Regression: 

• It is simple to implement and interpret, hence most suitable for beginners in 

machine learning. 

• It is computationally inexpensive and works right for small to medium-sized 

datasets. 

• The nature of the relationship between the variables is straightforward and is easy 

to be understood. 

 

Limitations of Linear Regression: 

• Linear Regression works on the primary assumption of linearity which is never true 

in the real world. 

• Outliers can make the predictions substantially skewed. 

• When independent variables are highly correlated, the coefficients of the model 

may be unstable. 
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1.4 POLYNOMIAL REGRESSION  
Polynomial Regression is the extension of linear regression, the result of which is 

fitting an object into the polynomial function in order to model the relationship between 

the independent variable(s) and dependent variable (response). Hence, polynomial 

regression is much more useful in cases where it would be impossible to draw a 

straight line due to non-linear relationships among the input and output variables. 

General Equation of Polynomial Regression is: Polynomial regression is a form of 

regression analysis in which the relationship between the independent variable (x) and 

the dependent variable (y) is modeled as a polynomial of degree n. The generalized 

equation of polynomial regression can be defined as: 

   

 

Here, 

y: Dependent variable (output) 

x: Independent variable (input or feature) 

β0, β1,……,βn : Coefficients of the polynomial terms 

ϵ: Error term 

The general polynomial regression model is represented as shown in figure 1.5. 

 

Figure 1.5: Polynomial regression line 

y = β0 + β1x + β2x2 + β3x3 +…..+ βnxn + ϵ 
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Steps to be followed for performing polynomial regression are: 

1. Data Collection: Prepare a dataset consisting of inputs (independent variables) 

and outputs (dependent variable), indicating at least one non-linear relationship. 

2. Data Cleaning and Preparation: Clean the dataset, taking care of missing values 

and outliers. Normalize or scale the dataset, if needed, so that polynomial terms 

do not dominate other terms in model fitting. 

3. Feature Engineering:  Convert the independent variable into polynomial features 

by adding any terms depending on the order (degree) of the polynomial you want 

to model.  

4. Model Fitting:  Find a line of best fit coefficients for the polynomial equation using 

the linear regression model and transformed polynomial features. 

5. Prediction: Feed the dependent variable for new input data to the trained model 

by substituting the values of these predictors into their respective polynomial 

equation. 

6. Performance Assessment: Use evaluation metrics such as Mean-Squared Error 

(MSE) to check model performance on how accurately it is fit to the provided 

dataset. 

This simple process makes polynomial regression capable of expressing these non-

linear trends and providing inferences. 

 

Example of Polynomial Regression:  

Assume that we have a dataset pertaining to the age in years and length in millimeters 

of a fish. We are going to estimate the length of the fish based on the age given by the 

user. 

 

Input data: Age of fish 

Output data: Predicted length of fish 

Step 1: Organize the Data 

Let's assume we have the data for age and length as shown in table 1.3. 
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Age (x) Length (y) 
1 67 

1 62 

2 109 

2 83 

2 91 

3 137 

3 122 

3 122 

2 123 

3 122 

4 138 

4 135 

4 146 

4 145 

4 144 

Table 1.3: Dataset for age and length of fish 

Let us plot the scatter chart for the dataset given in table 1.3 just to see the way 

dataset is arranged. The scatter is as shown in figure 1.6. 

 

Figure 1.6: Scatter plot of dataset in table 1.3 
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As can be seen in figure 1.6 the data does not seem to go in straight line, hence we 

need to fit a polynomial here. Let us try and fit a second-degree polynomial as shown 

herewith. 

Y = β0 + β1x + β2x2.   Here, 

x is the independent variable (age). 

y is the dependent variable (length). 

β2, β1, and β0 are the coefficients we need to calculate. 

Step 2: Compute Summations 

To obtain the values of β0, β1, and β2 we need the summations of x, y, x2, x3, x4, xy 

and x2y. The calculation is as shown in table 1.4. 

 
Age (x) Length (y) x2 x3 x4 xy x2y 

1 67 1 1 1 67 67 

1 62 1 1 1 62 62 

2 109 4 8 16 218 436 

2 83 4 8 16 166 332 

2 91 4 8 16 182 364 

3 137 9 27 81 411 1233 

3 122 9 27 81 366 1098 

3 122 9 27 81 366 1098 

2 123 4 8 16 246 492 

3 122 9 27 81 366 1098 

4 138 16 64 256 552 2208 

4 135 16 64 256 540 2160 

4 146 16 64 256 584 2336 

4 145 16 64 256 580 2320 

4 144 16 64 256 576 2304 

 ∑ 𝒙  ∑ 𝒚 ∑ 𝒙𝟐   ∑ 𝒙𝟑 ∑ 𝒙𝟒  ∑ 𝒙𝒚  ∑ 𝒙𝟐𝒚  
42 1746 134 462 1670 5282 17608 

 
Table 1.4: Calculation of summations 
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Step 3: Set Up Normal Equations 

The coefficients can be calculated by solving the following system of equations: 

Equation for Intercept (β0): 

𝑁 ⋅ 𝛃𝟎 + 𝛃𝟏 ⋅ ∑  𝑥 + 𝛃𝟐 ⋅ ∑  𝑥2 = ∑  𝑦 

Equation for Linear Coefficient (β1): 

𝛃𝟎 ⋅ ∑  𝑥 + 𝛃𝟏 ⋅ ∑  𝑥2 + 𝛃𝟐 ⋅ ∑  𝑥3 = ∑  𝑥𝑦 

Equation for Quadratic Coefficient (β2): 

𝛃𝟎 ⋅ ∑  𝑥2 + 𝛃𝟏 ⋅ ∑  𝑥3 + 𝛃𝟐 ⋅ ∑  𝑥4 = ∑  𝑥2𝑦 

Where: 

N is the number of data points. 

Step 4: Solve the System of Equations 

Substitute the computed summations into the three normal equations and solve to get 

values of β2, β1, and β0 using algebraic methods. 

[ 

𝑁 ∑𝑥 ∑𝑥2

∑𝑥 ∑𝑥2  ∑𝑥3

∑𝑥2 ∑𝑥3 ∑𝑥4

] [
β0
β1
β2

] = [
∑𝑦

∑𝑥𝑦

∑𝑥2𝑦
] 

Thus we need to solve the following  

[ 
15 42 134
42 134  462

134 462 1670
] [

β0
β1
β2

] = [
1746
5282

17608
] 

The matrix equation translates to: 

15𝛽0 + 42𝛽1 + 134𝛽2 = 1746   − − − − − −  (Eq. 1)

42𝛽0 + 134𝛽1 + 462𝛽2 = 5282  − − − − −     (Eq. 2)

134𝛽0 + 462𝛽1 + 1670𝛽2 = 17608 − − − −   (Eq. 3)
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Eliminate 𝛽0 

Subtract 42/15 times Equation 1 from Equation 2: 

Multiply Equation 1 by 14/5: 

42𝛽0 +
588

5
𝛽1 +

1876

5
𝛽2 =

24444

5
 

Subtract this from Equation 2: 

(134 −
588

5
) 𝛽1 + (462 −

1876

5
) 𝛽2 = 5282 −

24444

5
 

Simplify: 

82

5
𝛽1 +

434

5
𝛽2 =

1966

5
 ⟹  41𝛽1 + 217𝛽2 = 983 − − − − (Eq. 4) 

 

Eliminate 𝛽0 Again 

Subtract 134/15 times Equation 1 from Equation 3 

Multiply Equation 1 by 134/15: 

134𝛽0 +
5628

15
𝛽1 +

17956

15
𝛽2 =

233964

15
 

Subtract this from Equation 3: 

(462 −
5628

15
) 𝛽1 + (1670 −

17956

15
) 𝛽2 = 17608 −

233964

15
 

Simplify: 

1302

15
𝛽1 +

7094

15
𝛽2 =

30156

15
 ⟹  651𝛽1 + 3547𝛽2 = 15078 − − − − (Eq. 5) 

 

Solve Equations 4 and 5 

Eliminate 𝛽1: Multiply Equation 4 by 651 and Equation 5 by 41: 
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26, 691𝛽1 + 141, 267𝛽2

26, 691𝛽1 + 145, 427𝛽2
 

Subtract the scaled equations: 

4, 160𝛽2 = −21, 735 ⟹  𝛽2 =
−21, 735

4, 160
≈ −5.22 

Solve for 𝛽1: 
Substitute 𝛽2 = −5.22 into Equation 4: 

41𝛽1 + 217(−5.22) = 983 ⟹  𝛽1 ≈
983 + 1, 133.74

41
≈ 51.63 

Solve for 𝛽0 

Substitute 𝛽1 ≈ 51.63 and 𝛽2 ≈ −5.22 into Equation 1: 

15𝛽0 + 42(51.63) + 134(−5.22) = 1, 746 

Simplify: 

15𝛽0 ≈ 277.5 ⟹  𝛽0 ≈ 18.50 

The final solution thus is 

𝛽0  ≈ 18.50
𝛽1  ≈ 51.63
𝛽2  ≈  −5.22

 

 

Step 5: Write Final Quadratic Equation 

Substitute the values of obtained coefficients into the quadratic equation:  

Y = β0 + β1x + β2x2. 

Thus equation that best-fit quadratic curve for our data is  

Y = 18.50 + 51.63x – 5.22x2. 
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Step 6: Making Predictions 

Using this model, we can predict the length of the fish based on its age. For example, 

if a fish is 5 years old, we can substitute into our model: 

𝑦 ≈18.50 + (51.63)(5) – (5.22)(5)2. 

𝑦 ≈ 18.50 +  258.15  –  130.5 

𝑦 ≈ 146.15 

Thus, we predict that fish having 5 years of age would be approximately 146.15 

millimetres in length. 

 

Advantages of Polynomial Regression: 

• Effectively handles non-linear relationships by fitting curves around the dataset. 

• Flexible enough to adapt varying levels of complexity and adjustable by modifying 

the degree of the polynomial. 

• Easy to implement using linear regression methods after feature transformation. 

 

Limitations of Polynomial Regression: 

• Very susceptible to overfitting for high-degree polynomials, rendering poor in 

performance with new, unseen data. 

• Being vulnerable to noise and hence results in unstable predictions on new 

instances. 

• Higher computational complexity in processing whenever new polynomial terms 

are included, may result in slower processing with large datasets. 

• Higher-degree equations reduce the interpretability of the relationships making it 

difficult to understand the relationships between the variables. 

 
1.5 COMPARATIVE STUDY  
 
Having studied both linear and polynomial regression let us have a comparative look 

at them. Table 1.5 gives the comparison of both the methods. 
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Aspect Linear Regression Polynomial Regression 

Relationship 
Modeled 

Assumes a straight-line 

relationship between variables. 

Models non-linear relationships 

with polynomial terms. 

Complexity Simpler and computationally 

efficient. 

More complex and 

computationally demanding. 

Use Cases Effective for data with linear 

trends. 

Suitable for data with curved or 

non-linear trends. 

Overfitting 
Risk 

Lower risk of overfitting. Higher risk, especially with high-

degree polynomials. 

Interpretability Easy to interpret and explain. Harder to interpret due to 

complex polynomial terms. 

 
Table 1:5: Comparison of regression models 

 
Check Your Progress - 2 

a. What is the general equation of a linear regression model?   
a) y = β0+β1x2+ϵ 

b) y = β0+β1x+ϵ   

c) y = β0+β1x3+ϵ   

d) y = β0+ϵ 

       b. What is the primary purpose of the cost function in linear regression?  
a) To increase the number of observations.   

b) To optimize the model by minimizing prediction errors.   

c) To create polynomial features for the model.   

d) To ensure all input variables are normalized.   

       c. Which of the following is a step in performing linear regression?   
a) Applying clustering techniques.   

b) Transforming features into polynomial terms.   

c) Dividing the dataset into training and testing subsets.   

d) Using cross-entropy loss for optimization.   

       d. Which of the following is a limitation of linear regression?   
a) It cannot handle small datasets.   

b) It assumes a linear relationship between variables, which may not hold 

true in the real world.   
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c) It is computationally expensive for small datasets.   

d) It cannot handle missing data.   

       e. What is the primary purpose of polynomial regression?  
a) To model linear relationships between variables.   

b) To fit data into a polynomial function and capture non-linear trends.   

c) To reduce the computational cost of regression models.   

d) To classify data into distinct categories.   

       f. Which of the following is a limitation of polynomial regression?   
a) It cannot handle non-linear relationships.   
b) It is difficult to implement using linear regression methods.   
c) It is prone to overfitting for high-degree polynomials.   
d) It requires no preprocessing of data.   

       g. What does ϵ represent in the below equation of polynomial regression,  
           y = β0 + β1x + β2x2 +  β3x3 +…..+ βnxn + ϵ ? 

a) The independent variable.   

b) The coefficient of the polynomial term.   

c) The error term or residual. 

d) The dependent variable.   

 
 
1.6 LET US SUM UP 
This unit primarily focusses on supervised learning techniques and provides an 

understanding of how relations between variables can be modeled. Regression 

algorithms are indeed one of the most versatile tools for performing predictions of 

continuous outcomes, from sales forecasts to predicting outcomes in medicine. 

Linear regression is simple, efficient, and widely used; in reality, it is far from sufficient, 

as the patterns fall outside of a linear relationship. Polynomial regression can easily 

be said to be a more complex regression that accommodates polynomial terms to 

accommodate non-linear trends and analyze complex relationships and challenges 

like overfitting and sensitivity towards outliers. 

A thorough understanding of the regression models provides a platform for effective 

application in predictive analytics and diverse problem-solving domains. 
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1.7 CHECK YOUR PROGRESS: POSSIBLE SOLUTIONS 
 

1-a Learning from labelled data where inputs and outputs are provided   

1-b Predicting continuous outcomes and modeling relationships between values 

1-c Forecasting the price of a house based on its size 

1-d Its simplicity, stability, and versatility 

1-e Diagnosing diseases from X-rays 

1-f Estimating delivery times 

2-a y = β0+β1x+ϵ 

2-b To optimize the model by minimizing prediction errors. 

2-c Dividing the dataset into training and testing subsets. 

2-d It assumes a linear relationship between variables, which may not hold true in 

the real world. 

2-e To fit data into a polynomial function and capture non-linear trends. 

2-f It is prone to overfitting for high-degree polynomials. 

2-g The error term or residual. 

 

1.8 ASSIGNMENTS 
 

• What is the importance of regression algorithms? 

• Explain the concept of linear regression. 

• Differentiate between linear and polynomial regression. 

• List the advantages and limitations of linear regression. 

• With an example, explain how polynomial regression is performed. 
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Unit-2:  Introduction to 
Classification 

  
Unit Structure 
 

2.0 Learning Objectives 

2.1 Overview of Classification 

2.2 Classification Algorithms 

2.3 Naive Bayes 

2.4 K-Nearest Neighbors (KNN)  

2.5 Decision Trees 

2.6 Logistic Regression 

2.7 Support Vector Machines (SVM) 

2.8 Let us sum up 

2.9 Check your Progress: Possible Answers 

2.10 Assignments 

 

 
  

2 
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2.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

● Understand what is classification, as well as how it forms a part of supervised 

learning.  

● Working mechanisms behind different classification algorithms like Naïve 

Bayes, KNN, Decision Trees, Logistic Regression, and SVM.  

● The student will be able to compare and contrast the strengths, weaknesses, 

and the appropriate use cases of these classification techniques. 

● Apply classification algorithms in solving real-world problems.  

2.1 INTRODUCTION TO CLASSIFICATION 
Classification is one of the basic machine learning techniques used in supervised 

learning. It is used to associate the data points with some predefined categories or 

labels. It implements learning by associating input labels to that with the output labels 

by recognizing patterns and makes predictions on data not yet seen. 

Unlike regression, which focuses on predicting continuous numerical values, 

classification categorizes data points into distinct, predefined labels or groups. Thus, 

classification focuses on a discrete set of values by means of attempting to develop a 

model to conduct actual assignments of new data into previously established 

categories. For instance, an accurate classification algorithm can identify whether the 

sent mail is spam or not spam, depending on its content and other features, such as 

metadata. 

Essential characteristics of classification are as follows: 

Categorical Predictions: Classification predicts categorical labels, such as “Yes” or 

“No”, “Spam” or “Not Spam” or many classes, such as “Dog”, “Cat”, or “Bird”. 

Defining Decision Boundaries: Classification algorithms create boundaries in the 

feature space to separate the classes to assure accurate predictions on the unseen 

data. 
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Learning from Labeled Data: Models are trained on labeled datasets where each 

input is associated with a corresponding label. 

Steps to be followed for performing classification are:  

1. Data Preparation: Data is cleaned and measured so as to prepare it for analysis. 

We might need to handle missing values, normalizing values, and encoding 

categorical variables. 

2. Model Training: Using a labeled data set, a classification algorithm is trained to 

learn the relationship between inputs and the outputs. 

3. Prediction: The trained model can be used to predict the class label of new data 

that has never been seen before. 

4. Performance Evaluation: Evaluate model performance with different metrics to 

ascertain how accurate, reliable, and efficient the model is.  

Classification can have various application areas like: 

• Spam Detection: Spam is identified via clear division into spam and not spam 

categories so that users can be spared the unwarranted messages in their inbox. 

• Medical Diagnosis: Identifying diseases based on the symptoms presented by 

patients and the results of diagnostic tests. 

• Customer Segmentation: Groups customers into categories for running 

particular targeted marketing campaigns. 

• Sentiment Analysis: It is a process of determining the sentiment (whether it be 

positive, negative, or neutral) expressed in text data, such as product reviews or 

social media posts. 

• Image Recognition: It categorizes images into one of the predefined classes, 

such as finding objects in a photo. 

Classification serves as one of the cornerstones of many decision-making 

automations, and is remarkably effective in many practical applications since it 

increases accuracy, thus saving much time. Because it learns from the labeled data, 

it is one of the most widely used techniques for solving difficult categorization 

problems. 
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2.2 CLASSIFICATION ALGORITHMS 
Classification algorithms form a major part of supervised learning, effectively applied 

by the machine to learn from labelled data to perform a forecast on unseen cases or 

instances. The algorithms are quick to trace out patterns and relations between 

features and labels so that existing categories are assigned in a reasonable and fast 

way to new data points. The choice of which algorithm to apply depends on the nature, 

size, and complexity of the data set. Some of the common classification algorithms 

are as mentioned:  

1. Naive Bayes: A probabilistic algorithm based on Bayes' Theorem. Assumes all 

features are independent. Efficient in cases like text classification and spam 

detection. 

2. K-Nearest Neighbours (KNN): An easy, instance-based algorithm that classifies 

data points according to the majority vote of the nearest neighbours . It works 

best with small datasets. 

3. Decision trees: A tree-like structure to divide data based on some feature values 

using metrics like Gini Index or Information Gain. Are applicable in both binary and 

multi-class classification instances. 

4. Logistic regression: A statistical model that can classify binary and multi-class 

probability using a sigmoid function. It is used mainly for linearly separable data. 

5. Support vector machines: Identify an optimal hyperplane to separate classes, 

working through linear and non-linear with the help of kernels. They usually work 

well with high-dimensional datasets. 

6. Random forest: An ensemble method comprising several decision trees to avoid 

overfitting and bolster the accuracy. Best suited for larger datasets. 

7. Neural networks: Mimicking the processes of human brains via networks of 

interconnected layers primarily acting to be able to solve highly sophisticated non-

linear problems. Requires a substantial amount of data and a high computing 

power. 
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Some of the factors that play a crucial role in selection of an algorithm are: 

• Suitability for Dataset Size: While basic techniques such as Naive Bayes and 

Logistic Regression suffice for small datasets while larger datasets could be more 

effectively tackled by Random forest and Neural Networks.  

• Handling Data Complexity: Logistic Regression and SVMs with linear kernels 

show empirically that they can successfully separate straightforward datasets, 

whereas Decision Trees and Neural Networks seem more suitable for non-linear 

patterns. 

• Achieving High Accuracy: Ensemble methods such as Random Forest and 

Gradient Boosting are consistently associated with improved accuracy rates. 

• Need for Speed: Since algorithms such as Naive Bayes and Logistic regression 

tend to be computationally efficient, they are naturally practical in applications in 

which real-time predictions are required. 

 Check Your Progress - 1  

a. What does the term "decision boundaries" refer to in classification?   

  a) The limit of a model's computational capacity   

  b) The distance between training and testing data  

  c) The boundaries that separate classes in the feature space   

  d) The number of classes a model can predict   

b. What is a common step in the classification process? 

  a) Encoding categorical variables in the dataset   

  b) Clustering data into groups   

  c) Using regression models for predictions   

  d) Ignoring missing values in the dataset   

c. Which of the following is an application of classification?  

  a) Predicting house prices based on square footage   

  b) Diagnosing diseases based on patient symptoms   

  c) Calculating the average rainfall in a region   

  d) Estimating the duration of a video   

d. What is the main principle behind K-Nearest Neighbours (KNN)?   

  a) Finding the best-fit line between two variables   
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  b) Classifying data based on the majority vote of nearest neighbors   

  c) Using probability to predict outcomes   

  d) Building a tree-like structure to split data   

e. Which algorithm is best suited for linearly separable datasets?   

  a) Logistic Regression   

  b) Random Forest   

  c) Neural Networks   

  d) Decision Trees   

f. What is the key feature of Support Vector Machines (SVM)?  

a) Combines multiple decision trees for classification   

b) Finds the optimal hyperplane separating classes   

c) Assumes feature independence for predictions   

d) Uses majority voting of neighbors for predictions   

 

2.3 NAIVE BAYES  
Naive Bayes is a supervised classification algorithm, built from Bayes' theorem and 

specifically designed for classification problems. It is very effective with other high-

dimensional data text categorization problems. As simple and very efficient classifier 

algorithm, Naive Bayes builds fast models for machine learning that are able to make 

real-time predictions. The probabilistic classifier Naive Bayes therefore assigns a class 

label to an object based on the probability that the object belongs to that particular 

class.  

Applications of the Naive Bayes algorithm include spam filtering, sentiment 

classification, real time predictions and text classification. 

The terms "Naive" and "Bayes" in the Naive Bayes algorithm play an important role. 

"Naive" is named so because the algorithm considers all the features when predicting 

one variable to be independent of each other. It is basically assuming that the 

contribution of each feature towards the identification is done separately without 

consideration of the influence that other features may have. "Bayes" is used because 

the algorithm is based on Bayes' theorem. 
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Bayes' theorem, which is also called Bayes' Rule or Bayes' Law, allows you to update 

a probability about some hypothesis in light of prior information. It heavily relies on the 

idea of conditional probability. 

The general formula for Bayes' theorem is: 

P(A|B) = 
𝐏(𝐁|𝐀)𝐏(𝐀)

𝑷(𝑩)
 

Where: 

P(A∣B) (Posterior Probability): The probability of hypothesis A given the observed 

event B. 

P(B|A) (Likelihood Probability): The probability of observing evidence B given that 

hypothesis A is true. 

P(A) (Prior Probability): The initial probability of hypothesis A before any 

consideration of the evidence. 

P(B) (Marginal Probability): The probability of observed evidence B. 

Working of Naive Bayes Algorithm: 
The functioning of the Naive Bayes classifier can be illustrated with the following 

example:   

 

Given a dataset of weather conditions considered in conjunction with a target variable 

known as "play", it is required to find whether a player will play on a day based on the 

weather conditions.  

 

We could follow the steps given below to resolve the issue: 

1. Create frequency tables from the dataset. 

2. Compute the likelihood table through the probabilities of each feature. 

3. Apply Bayes' theorem to calculate the posterior probability. 

 

Problem: If it is sunny, will the player play or will be refrained? 

Solution: For analysis, we consider the dataset given in table 2.1: 
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Outlook Play 

0 Rainy Yes 

1 Sunny Yes 

2 Overcast Yes 

3 Overcast Yes 

4 Sunny No 

5 Rainy Yes 

6 Sunny Yes 

7 Overcast Yes 

8 Rainy No 

9 Sunny No 

10 Sunny Yes 

11 Rainy No 

12 Overcast Yes 

13 Overcast Yes 

 
Table 2.1: Dataset of Weather Conditions 

 

The weather conditions frequency would then be as shown in table 2.2: 

Weather Yes No 

Overcast 5 0 

Rainy 2 2 

Sunny 3 2 

Total 10 4 
 

Table 2.2: Weather Conditions Frequency Table 
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The weather conditions likelihood would be as shown in table 2.3: 

Weather No Yes  

Overcast 0 5 5/14 = 0.35 

Rainy 2 2 4/14 = 0.29 

Sunny 2 3 5/14 = 0.35 

All 4/14 = 0.29 10/14 = 0.71  

Table 2.3: Weather Conditions Likelihood Table 
 
Applying Bayes' theorem: 
P(Yes|Sunny) =  [P(Sunny|Yes)*P(Yes) ] / P(Sunny) 
P(Sunny|Yes) = 3/10 = 0.3 

P(Sunny) = 0.35 

P(Yes) = 0.71 

So P(Yes|Sunny) = [0.3 * 0.71] / 0.35 = 0.60 

 
P(No|Sunny) = [P(Sunny|No) * P(No)] / P(Sunny) 
P(Sunny|NO) = 2/4 = 0.5 

P(No) = 0.29 

P(Sunny) = 0.35 

So P(No|Sunny)= [0.5 * 0.29] / 0.35 = 0.41 

 

So as we can see from the above calculation that P(Yes|Sunny) > P(No|Sunny) 
Hence on a Sunny day, Player can play the game. 

 
Advantages of the Naive Bayes Classifier: 

• Naive Bayes is a quick-and-easy learning-based algorithm for predicting classes 

to be assigned to the input data sets. 

• Naive Bayes can resolve binary as well as multiclass classification problems. 

• It is relatively efficient during difficulties of multi-class classification better than 

other algorithms. 

• Naive Bayes is very popular for routinely solving text classification problems. 
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Disadvantages of the Naive Bayes Classifier: 

• Naive Bayes can rely on claiming that each feature is independent, thus meaning 

that any relation between these features is not measurable in Naive Bayes. 

 

2.4 K-NEAREST NEIGBOURS (KNN)  
The K-Nearest Neighbours (KNN) algorithm is a simple and powerful classification 

method based on the principle of similarity. KNN considers similarity between the new 

sample data and available cases and assigns it to the most appropriate category 

based on this similarity. The KNN algorithm keeps track of all available data and can 

easily classify some new data points using this similarity criterion at the time the new 

data appear. This means that new data can be classified easily into a well-suited 

category by using the KNN algorithm. 

K-nearest neighbour is sometimes referred to as a lazy learner due to the fact that it 

does not learn at once from the training set but rather retains the entire dataset and 

deals with it when asked for classification. 

KNN algorithm, during the training phase, only memorizes the dataset, and when it is 

supplied with new data, it classifies the data based on the categories that resemble 

that data closely. KNN provides a straightforward procedure for recognizing the 

category/class of a dataset. 

For example, we have an image of an animal that looks like a cat and a dog but, we 

want to tell, if this animal is a cat or a dog. To carry out this identification, one can 

surely use the KNN algorithm, since the latter operates on a similarity measure. The 

KNN model will look for the most similar features of the new image with that of the cat 

and dog images and will classify it into either a cat or dog category depending on which 

features were most similar to by this algorithm. Figure 2.1 gives an example of the 

classification. 
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Figure 2.1: Classification Example 

Working of KNN Algorithm: 

KNN expects new data entry to get compared to the shared feature values with 

different classes/categories among the data set. Based on its closeness or similarities 

in a given range (K) of neighbours, the algorithm assigns the new data to the class or 

category in the data set (training data). The entire process can be broken down in the 

following way: 

Step-1: Decide on K number of neighbouring samples. 

Step-2: Calculate their Euclidean distances for K number of neighbouring items. 

Step-3: Out of these K neighbouring items, select those that are closest according to 

the calculated Euclidean distances. 

Step-4: Count the number of data points in each category among the K neighbouring 

contents. 

Step-5: Assign the category of the new data point where the number of neighbours is 

the maximum. 

Step-6: The model is ready.  

Consider the dataset given in figure 2.2 that consists of two categories: blue and green. 

Now we have a new data point (orange) for which we need to identify the appropriate 

category. 
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Figure 2.2: Data points corresponding categories - Blue and Green 

Here we will assign some value k to represent the number of neighbours that should 

be taken into account before classifying the new entry. Let K = 3 for this purpose. 

In this case, the algorithm will consider only the 3 nearest neighbours of the new point 

(new entry), represented in the figure 2.2.  

Let us now see the working of kNN algorithm. Assume that we have data for two 

attributes namely brightness and saturation and classes green and blue as shown in 

table 2.4. 

Brightness Saturation Class 
40 20 Green 
50 50 Blue 
60 90 Blue 
10 25 Green 
70 70 Blue 
60 10 Green 
25 80 Green 

Table 2.4: Dataset based on Attributes: Green and Blue 

The new data sample has the  values for the brightness and saturation attributes as 

shown in table 2.5.  

Brightness Saturation Class 
20 35 ? 

Table 2.5: New entry to the existing dataset 
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Let’s identify the class to which it belongs using KNN. To decide its class, we need to 

find the distance from the new entry to other entries in the data set using some 

distance formula. The most common distance formula used is the Euclidean distance. 

Euclidean Distance = √(𝒙𝟐 −  𝒙𝟏)𝟐 + (𝒚𝟐 − 𝒚𝟏)𝟐 

Where: 

𝑥2 = The brightness of the new entry (20). 

𝑥1 = The brightness of an existing entry. 

𝑦2 = The saturation of the new entry (35). 

𝑦1 = The saturation of an existing entry. 

Table 2.6 shows the data of the first row from the dataset used in table 2.4.  

Brightness Saturation Class 
40 20 Green 

Table 2.6: First row from the dataset used in table 2.4 
 

Let us now calculate distance ‘d1’ between the new point (20, 35) and the data in table 

2.6 (40, 20). 

d1 = √(𝟐𝟎 −  𝟒𝟎)𝟐 + (𝟑𝟓 − 𝟐𝟎)𝟐 

     = √(−𝟐𝟎)𝟐 + (𝟏𝟓)𝟐  

    = √𝟒𝟎𝟎 +  𝟐𝟐𝟓 

    = √𝟔𝟐𝟓 

    = 25 

Now, we have computed the distance from the new data entry to the first entry in the 

table. Let's update the contents of table 4.2 and add one more field  called Distance. 

The new data will be as shown in table 2.7. 

Brightness Saturation Class Distance 
40 20 Green 25 
50 50 Blue ? 
60 90 Blue ? 
10 25 Green ? 
70 70 Blue ? 
60 10 Green ? 
25 80 Green ? 

Table 2.7: Adding a new column named distance to the dataset 
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Calculate the distance of all the data points given in table 2.7 as shown in table 2.8. 

Point Calculation 
(50, 50) d2 = √(𝟐𝟎 −  𝟓𝟎)𝟐 + (𝟑𝟓 − 𝟓𝟎)𝟐 

     = √(−𝟑𝟎)𝟐 + (−𝟏𝟓)𝟐  

    = √𝟗𝟎𝟎 +  𝟐𝟐𝟓 
    = √𝟏𝟏𝟐𝟓 
    = 33.54 

(60, 90) d3 = √(𝟐𝟎 −  𝟔𝟎)𝟐 + (𝟑𝟓 − 𝟗𝟎)𝟐 
     = √(−𝟒𝟎)𝟐 + (−𝟓𝟓)𝟐  

    = √𝟏𝟔𝟎𝟎 +  𝟑𝟎𝟐𝟓 
    = √𝟒𝟔𝟐𝟓 
    = 68.01 

(10, 25) d4 = √(𝟐𝟎 −  𝟏𝟎)𝟐 + (𝟑𝟓 − 𝟐𝟓)𝟐 
     = √(𝟏𝟎)𝟐 + (𝟏𝟎)𝟐  

    = √𝟏𝟎𝟎 + 𝟏𝟎𝟎 
    = √𝟐𝟎𝟎 
    = 14.14 

(70, 70) d5 = √(𝟐𝟎 −  𝟕𝟎)𝟐 + (𝟑𝟓 − 𝟕𝟎)𝟐 
     = √(−𝟓𝟎)𝟐 + (−𝟑𝟓)𝟐  

    = √𝟐𝟓𝟎𝟎 +  𝟏𝟐𝟐𝟓 
    = √𝟑𝟕𝟐𝟓 
    = 61.03 

(60, 10) d6 = √(𝟐𝟎 −  𝟔𝟎)𝟐 + (𝟑𝟓 − 𝟏𝟎)𝟐 
     = √(−𝟒𝟎)𝟐 + (𝟐𝟓)𝟐  

    = √𝟏𝟔𝟎𝟎 +  𝟔𝟐𝟓 
    = √𝟐𝟐𝟐𝟓 
    = 47.16 

(25, 80) d7 = √(𝟐𝟎 −  𝟐𝟓)𝟐 + (𝟑𝟓 − 𝟖𝟎)𝟐 
     = √(−𝟓)𝟐 + (−𝟒𝟓)𝟐  

    = √𝟐𝟓 +  𝟐𝟎𝟐𝟓 
    = √𝟐𝟎𝟓𝟎 
    = 45.27 

Table 2.8: Computing the distance for all the records 
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The final distance table will be as shown in table 2.9. 

Brightness Saturation Class Distance 

40 20 Green 25 

50 50 Blue 33.54 

60 90 Blue 68.01 

10 25 Green 14.14 

70 70 Blue 61.03 

60 10 Green 47.16 

25 80 Green 45.27 

Table 2.9: Final distance table for all the records 

Let us arrange the distances in ascending order as shown in table 2.10. 

Brightness Saturation Class Distance 

10 25 Green 14.14 

40 20 Green 25 

50 50 Blue 33.54 

25 80 Green 45.27 

60 10 Green 47.16 

70 70 Blue 61.03 

60 90 Blue 68.01 

Table 2.10: Rearranging the records in ascending order of distance 

Since we have chosen the value of K=3, we will be considering only the first three rows 

from the table 2.10: Table 2.11 shows the subset. 
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Brightness Saturation Class Distance 

10 25 Green 10 

40 20 Green 25 

50 50 Blue 33.54 

Table 2.11: Considering first three records from the dataset since K=3 

 

From table 2.11 it can be seen that the majority class of 3 nearest neighbours of the 

new entry is Green. So we classify the new entry as green. So the updated dataset is 

as shown in table 2.12. 

Brightness Saturation Class 

40 20 Green 

50 50 Blue 

60 90 Blue 

10 25 Green 

70 70 Blue 

60 10 Green 

25 80 Green 

20 35 Green 

Table 2.12: Newly identified class for the record 

There is no specific method to determine the value of K, but here are some general 

conventions of consideration when we choose it: 

• Low values for K will almost always lead to inaccurate predictions. 

• Odd values for K should always be maintained. 
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Advantages of the KNN Algorithm: 

• It is easy to implement. 

• Classification does not require training beforehand. 

Disadvantages of the KNN Algorithm: 

• It takes considerable time for a large data set. 

• While working with huge data sets, a lot of memory is required. 

• Determining the right value of K can be arduous. 

 

2.5 DECISION TREE  
A decision tree is a supervised learning algorithm that can be used for both 

classification and regression problems with a greater preference for classification. It 

consists of a tree-like structure in which internal nodes represent the features, 

branches indicate the decision rules, and leaf nodes denote the final outcome. 

In a decision tree, there are two kinds of nodes: Decision Nodes and Leaf Nodes. 

Decision Nodes (i.e. the attributes) are in charge of making decisions and have 

branches. Meanwhile, Leaf Nodes (i.e. class labels) are the final results of decisions, 

meaning that they cannot branch anymore. The tree makes decisions or conducts 

tests based on features of the model. 

A decision tree represents all possible solutions to a problem or decision with certain 

conditions. It is called a tree because it begins from a root node and expands into 

branches as such forming a shape like a tree. Then it asks a question in which case 

the tree would split into a smaller subtree.  

Example: Predicting whether a person likes computer games? 

Suppose you want a prediction on whether or not a person engages in computer 

games, depending on age and gender. The decision tree goes like this: 
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Start with the Root Question (Age): 

The first question is: “Is the person’s age less than 15?” 

• If Yes, go to left. 

• If No, proceed to right. 

Branch Based on Age: 

• If the person is younger than 15, he/she will like them with a prediction score of 

more than 2 points. 

• If the person is 15 or older, ask the next question: Is the person male? 

Branch Based on Gender (For Age 15+): 

• If the person is a male, he is somewhat likely to enjoy computer games (+0.1 

prediction score). 

• If the person is a not a male, he is not likely to enjoy computer games (-1 

prediction score) 

The figure 2.3 illustrates in a broad way the structure of a decision tree for the above 

problem. 

 

Figure 2.3: Decision Tree 
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Various categorizations of decision trees along with their distinctive algorithms are as 

mentioned: 

1. Based on the target variable (Classification versus Regression) 

This classification pertains to the use of the decision tree, whether for categorical or 

continuous outputs. 

Classification Trees:  

These trees are built when the target variable is categorical (for example, Yes/No, 

Spam/Not Spam). These will predict discrete labels based on input features. 

Example: Classifying an email as spam or non-spam. 

Splitting Criteria: 

• Gini Index (CART - Classification and Regression Trees) : It is a measure of 

impurity or randomness in a dataset. Generally, it calculates probability of 

misclassifying a randomly chosen element. 

• Entropy and Information Gain (ID3 and C4.5): It also measures the randomness 

or uncertainty in a dataset. It is a fundamental concept in information theory. 

Regression Trees:  

These are the trees are built when the target variable is continuous (for example, 

predict temperature, predict stock price). This will predict value. 

Example: House price prediction based on location and size.  

Splitting Criteria: 

• Mean Squared Error (MSE) : It is a primary splitting criterion for regression 

trees. It measures average squared difference between predicted and actual 

values. 

• Mean Absolute Error (MAE): It is an alternative splitting criterion for regression 

trees. It measures average absolute difference between predicted and actual 

values. 
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2. Based on Specific Algorithms 

Most of the algorithms defining ways of building decision trees fall within this category. 

ID3 (Iterative Dichotomiser 3) works only with categorical data for classification as it 

uses entropy and information gain to determine the best splits. Nevertheless, it can 

quickly become an overfitted model. Example: Decision-making based on a set of 

symptoms as to whether the patient suffers from a certain disease or not. 

C4.5 is an improvement over ID3, able to support categorical and numerical data while 

splitting on subjective entropy and information gain. Additionally, it uses pruning to 

remove unnecessary branches in order to minimize overfitting. Example: Classifying 

customers into the different creditworthiness categories.  

CART (Classification and Regression Trees) is applicable in invoking both 

classification and regression, with Gini Index for classification and Mean Squared Error 

for regression. Example: Defaulting on a loan (Yes/No) as classification, and 

estimating salary with a regression based on experience.  

The Chi-Square Automatic Interaction Detector performs its optimal splits through a 

Chi-Square test and is extensively used in marketing and survey analysis.  

C5.0 is a more advanced version of C4.5, which is more efficient and scalable, capable 

of producing much smaller and faster decision trees and is thus very well suited for 

larger business datasets. 

3. Ensemble Methods (Combining Multiple Decision Trees for Better Accuracy) 

Ensemble techniques combine multiple trees for more accurate predictions and 

decreased errors, rather than relying on a single decision tree. 

One of the very well-known ensemble techniques is Random Forest. In this method, 

multiple decision trees are made and combined for prediction by averaging over the 

predicted values in the case of regression or taking a majority vote when it is a 

classification problem. It reduces the probability of overfitting as against a single 

decision tree. Example: loan approval decision based on various criteria. 

Other ensemble methods are gradient boosting and adaptive boosting. 
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Some terminologies to be followed while creating a decision tree are: 

Root Node: The root node represents the whole population or sample that 

subsequently gets divided into two or more subsets in a uniform system.  

Splitting: It refers to the process of dividing a node into two or more sub-nodes.  

Decision Node: A sub-node which further divides into a sub-tree or sub-nodes is 

designated as a decision node.  

Leaf/Terminal Node: The final nodes that do not undergo further branching.  

Pruning: It indicates the removal of certain sub-nodes of a tree; an opposite direction 

to splitting. It can be said that when splitting is done, the cavity made is more of a tree 

diagram; when pruning is done, that cavity is closed.  

Branch/Subtree: A legitimately joined subset of a tree is a branch or a subtree.  

Parent and Child Node: The node that takes division into sub-nodes is called the 

parent of the respective sub-nodes, the latter are termed the child. 

Figure 2.4 shows the terminologies used in creating a decision tree. 

 

Figure 2.4: Decision Tree Terminology 

The decision tree algorithm starts at the root and proceeds in a stepwise fashion to 

predict the class of a particular dataset like this: 
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• It takes the attribute value at the root node and compares it with that of the 

dataset. 

• Based on this information, it will follow a particular branch that leads to the next 

node.  

Algorithm for creating Decision Tree: 

Step 1. Create a new tree with one node, which is the entire data. 

Step 2. Using an Attribute Selection Measure(ASM), select the best attribute. 

Step 3. Divide the entire dataset into subsets by using the possible values of the  

  selected attribute. 

Step 4. Create a new decision tree node for the best attribute. 

Step 5. Grow the child trees, in a recursive manner, of the created nodes until 

  classification is no longer possible.  

Step 6. Leaf-nodes are the final nodes in the tree. 

One of the main challenges when creating a decision tree is selecting the best attribute 

for the root node and its subsequent sub-nodes. For such reasons, the concept of 

attribute selection measure (ASM) is used. ASM can select the appropriate attribute 

for each node in the tree for efficient decision-making. The two most popular measures 

applied in attribute selection measure are: 

i. Information Gain 

ii. Gini Index 

Information Gain refers to the effectiveness of a question (or feature) regarding a 

dataset partitioning. It is essentially a measure of how much uncertainty is reduced 

after a given split. A good question creates more distinguished groups, and the feature 

with the highest Information Gain is then used for making the decision. 

Example, consider a dataset of people that can be separated into "Young" and "Old" 

based on their age: in case every young person purchased and no old person 
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purchased the product in question, the Information Gain will be high, showing that the 

split separates two groups without any uncertainty left! 

If S is a set of instances, A is an attribute, Sv is the subset of S, v represents an 

individual value that the attribute A can take, and Values (A) is the set of all possible 

values of A, then 

Gain (S, A) = Entropy (S) – ∑
|𝐒𝐯|

|𝐒|
  𝐄𝐧𝐭𝐫𝐨𝐩𝐲(𝐒𝐯)𝑨

𝒗  

Here, Entropy is a measurement of uncertainty connected to the variable, which 

defines the impurity of an arbitrary collection of cases. The greater is the entropy; 

hence higher is the amount of information contained. Entropy(S) for a set of instances 

in S can be given by:  

Entropy(S) =  ∑ − 𝑨
𝒗 pv log2 pv 

 Where p represents the proportion of values falling in v. 

In simple words, suppose we've got a dataset where there are the same number of 

"yes" and "no" outcomes-existing, implying 3 people bought a product and 3 did not. 

Then, in this case, the entropy is really high, as it is uncertain which outcome to predict. 

If, on the other hand, they are all the same outcome-all "yes" or all "no"-then the 

entropy equals zero, no uncertainty is left in predicting the outcome. 

Example: For the set X = {a, a, b, b, b, b, b} 

Total instances: 7 

Instances of b: 5 

Instances of a: 2 

Entropy H(X)= - [ (2

7
) log2(2

7
) + (5

7
) log2(5

7
) ] 

                     = - [0.286 x [-1.8074] + 0.714 x [-0.4854]] 

  = - [-0.863492]  

                      =0.863492 
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The Gini index measures how frequently a randomly selected element would be 

wrongly classified. It suggests that an attribute with less Gini index value can be 

preferred. 

For example, if in a random selection of people, all bought the product (100% "Yes"), 

then the Gini Index is 0, which indicates perfect purity; but if an equal proportion of 

have bought and have not bought the product, the Gini Index is 0.5, indicating that 

there is a higher impurity or uncertainty. 

The formula for the Gini Index is given as follows: 

Gini = 1 -  ∑  𝑨
𝒗 pv 2 

Advantages of the Decision Tree 

• It is easy to interpret since the same process was undertaken by a human when 

deciding prior to solving a real-life problem. 

• Helps in solving decision-related problems. 

• It helps to think about all possible outcomes for a problem. 

• Less data cleaning is required as compared to other algorithms. 

Disadvantages of the Decision Tree 

• Decision trees are deep because they have more levels, so they become 

complex. 

• There could be an overfitting issue, which could be tackled with the Random 

Forest algorithm. 

• With an increase in the number of class labels, there is an increase in the 

computational complexity of the decision tree. 

2.6 LOGISTIC REGRESSION  
Logistic regression is a well-known and widely used supervised machine learning 

algorithm mainly employed for solving classification problems. It provides a framework 

to predict, in terms of probability, whether a particular instance belongs to a certain 

class. Unlike linear regression, which attempts to predict continuous numerical values, 
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logistic regression handles problems having a categorical output like Yes/No, 

True/False, and 0/1.  

Logistic Regression hence makes use of the sigmoid function, which transforms the 

value of the variable into a value between 0 and 1 representing its probability. When 

this value crosses a particular threshold, usually 0.5, the instance is said to belong to 

one class; otherwise, it belongs to the other category. Figure2.5 shows the logistic 

regression S-Curve. 

 

Figure 2.5: Logistic Regression S-Curve 

Hence, logistic regression is commonly used for binary classification problems such 

as spam detection, medical diagnosis, where it has to decide whether a tumour is 

cancerous or not, and credit risk assessment.  

Logistic regression is employed more for classification than for regression tasks. While 

it is an extension of linear regression, this model applies a logistic transformation to 

describe the relationship between independent variables and a categorical dependent 

variable. Thus, it can efficiently deal with both continuous and discrete datasets, 

allowing for its use in different fields including finance, medicine, and marketing.   

Logistic regression is a type of regression analysis used when the dependent variable 

is categorical. In logistic regression, the dependent variable, Y, is binary (0,1), while 

X, the independent variables are continuous in nature.  
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For example, we might want to predict whether a small project will be successful based 

on the number of years of experience of the project manager who manages that 

particular project. We believe that the more years of experience the project manager 

has, the more risk he or she is willing to take in successfully managing projects. 

Therefore, as X, the number of years of project management experience increases, 

the probability that Y = 1, where Y equals success on a new project, tends to increase. 

In work already covered in an example with hypothetical data of 60 previously 

executed projects, project managers' years of experience were found to lie 

somewhere between 0 and 20. We described this increasing probability that Y = 1 in 

graphical form. 

To illustrate, it is convenient to segregate years of experience into categories (i.e. 0 - 

8, 9 - 16, 17 - 24, 25 - 32, 33 - 40). The mean score on Y (averaging the 0s and 1s) 

for each category of years of experience is computed as follows: 

The data set of table 2.13 shows the years of project management experience (X) and 

corresponding success ratio (Y). 

X Y 

0 - 8 0.27 

9 - 16 0.50 

17 - 24 0.60 

25 - 32 0.66 

33 - 40 0.93 

Table 2.13: Years of project management experience (X) vs success ratio (Y) 

When these X and Y values are plotted on a graph, it will resemble the graph shown 

in figure 2.6. As can be observed if X increases, so does the probability that Y = 1. 

This means that as the project manager experiences more years, an increasingly high 

percentage of projects succeed. This perfect relationship is instead represented by an 

S-shaped curve rather than by a straight line. 
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Figure 2.6: Graph representing years of experience vs probability of success 

The logistic function can take values ranging from 0 to 1. The formulas of logistic are 

given in terms of the  probability that y=1, called p, and the  probability that y=0, given 

as 1−p. The equation of logistic regression can be obtained  from the equation of linear 

regression. The mathematical steps to get Logistic  regression equations:  

The equation of the  straight line can be written as follows:  

y = b0 + b1x1 + b2x2 + b3x3 + b4x4 +.....+ bnxn 

In logistic regression, the value y can vary between 0 and 1. Hence, we  divide this 

whole equation from (1-y):  

𝑦

1−𝑦
 ; 0 for y=0 and infinity for y=1 

But we need range between -∞ and +∞. So we take logarithm of the equation: 

log [
𝑦

1−𝑦
] =  b0 + b1x1 + b2x2 + b3x3 + b4x4 +.....+ bnxn 

Thus the above equation is the final equation for logistic regression. 

Based on number of categories, Logistic Regression can be classified broadly into 

three types: 

1. Binomial: In Binomial Logistic regression, a dependent variable can take only 

two possible types, e.g., 0 or 1, Pass or Fail, etc. 
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2. Multinomial: In Multinomial Logistic regression, there can be 3 or more 

possible unordered types of the dependent variable, such as "cat", "dogs", or 

"sheep". 

3. Ordinal: In Ordinal Logistic regression, there can be 3 or more possible ordered 

types of dependent variables, such as "low", "Medium", or "High". 

Advantages of Logistic Regression  

• Simple and interpretable, logistic regression is easy to implement and 

understand. 

• Efficient for binary classification and works well when the dependent variable is 

categorical. 

• Probability estimates make it useful for decision-making or custom applications. 

• Performs well with linearly separable data, ensuring effective classification 

when classes are well separated. 

• It is less prone to overfitting for small datasets with noisy features. 

Disadvantages of Logistic Regression 

• Linear assumptions make it challenging to find a good decision boundary in 

cases with too much complexity.  

• Seldom usable on large feature sets since the more independent variables 

there are, the poor its performance.  

• It is sensitive to outliers and adversely affects its accuracy.  

• For binary classification, it sets apart the extension of one-vs-all to hack through 

multi-class virtually. 

2.7 SUPPORT VECTOR MACHINES(SVM)  
Support Vector Machine, or SVM, is one of the most popular Supervised Learning 

algorithms, applied to Classification and Regression problems. However, it primarily 

finds its use in Classification problems in Machine Learning. 

The SVM algorithm aims to create the best line or decision boundary that can separate 

the n-dimensional space into classes so that, in the future, we can place the new data 

point in its correct category easily. This best decision boundary is called a hyperplane. 
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Extension of a hyperplane depends on the number of used features, that to say, if it 

has two features, then a hyperplane will consist of a straight line, and if it has three 

features, then a hyperplane will consist of a two-dimensional plane. 

A hyperplane is always created that has maximal-margin, i.e. the greatest distance 

between the data points. 

Those data points that lie close to the hyperplane and thus affect the location of the 

hyperplane are called Support Vector. Since these vectors support the hyperplane, 

they are thus called a Support vector. 

Based upon the nature of the decision boundary, Support Vector Machines can be 

divided into two major classes: 

1. Linear SVM: Linear SVM is for linearly separable data, which means if data can be 

classified into two classes using a single straight line, this data is called linearly 

separable data, and the classifier used is called a Linear SVM classifier. 

The working of the SVM algorithm can be made clear using an example. Suppose we 

have a dataset that has two classes (green and blue) and two features x1 and x2. We 

look for a classifier that can classify the pair (x1, x2) belonging to either the green class 

or the blue class as shown in figure 2.7. 

 
 

Figure 2.7: Dataset of green and blue class 
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Since this is a 2-d space, we can easily separate the two classes using a straight line. 

But there can be many lines that can separate this space as shown in figure 2.8: 

 
 

Figure 2.8: Dataset with separated green and blue class 

This is where SVM comes in, it finds the line or decision boundary that has the 

maximum clear path between the two classes; this is called hyperplane. The SVM 

approach finds the nearest points of the lines from both the classes. These points are 

called support vectors. The distance between the vectors and the hyperplane is called 

the margin. And the goal of SVM is to maximize this margin. Hence the hyperplane 

with maximum margin is called the optimal hyperplane as show in figure 2.9. 

 
 

Figure 2.9: Dataset with hyperplane 
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2. Non-linear SVM: Non-Linear SVM is for non-linearly separated data, which means 

if data cannot be classified by using a straight line, then such data is called non-linear 

data, and the classifier used is called a Non-linear SVM classifier. 

If the data is arranged linearly, then it can be separated with the help of a straight line, 

but for nonlinear data it is impossible to draw a unique straight line as can be seen in 

figure 2.10. 

 
 

Figure 2.10: Nonlinear Dataset 

The data that cannot be linearly separated-SVM employs techniques called kernels to 

map them to a higher-dimensional space where they become separable. This 

transformation enables SVM to form a decision boundary even when the data is non-

linear. 

Kernels are functions through which data points are mapped into some higher-

dimensional space without explicitly obtaining the coordinates in that space. Thus, 

SVM can become increasingly efficient with non-linear data by implicitly performing 

the mapping. 

Consider data points in the above image that are not linearly separable. By applying 

a kernel function, SVM transforms the data points into a higher-dimensional space 

where they become linearly separable. To separate these data points, we must add 

one more dimension. For linear data, we have used two dimensions: x and y, so for 



108 
 

non-linear data, we will add a third dimension, z. With the addition of another 

dimension, the sample space will now look as shown in figure 2.11. 

 
 

Figure 2.11: Dataset with z dimension 

Thus, an SVM separates the datasets into classes in the manner, as illustrated in 

figure 2.12. 

 
 

Figure 2.12: Separated Dataset 
 

The hyperplane here appears to be a plane parallel to the x-axis since we are in 3D 

space. In case we convert this into 2D with z=1, it will take the form as shown in figure 

2.13.  
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Figure 2.13: Separated Dataset in 2D 
 

Thus we get a circle of a radius of 1 in case of non-linear data. 

Advantages of SVM: 

• SVM can deal with high-dimensional data effectively, and in addition, performs 

better where the number of features far exceeds the number of samples.  

• Nonlinear data can be effectively handled since the kernel trick can deal with 

complex decision boundaries.  

• Very robust concerning overfitting-for instance, the right regularization in high-

dimensional spaces.  

• Works well for small datasets; efficient for structured and limited data.  

Disadvantages of SVM: 

• The computationally expensive training time raises the cost exponentially on 

the increase of the size of the dataset.  

• Careful finetuning is a must since choosing the kernel and the hyperparameters 

for it is quite a challenge. 

• It does not readily admit direct estimates of probability output like logistic 

regression, hence not very interpretable. 

• Memory-consuming particularly on employing the use of nonlinear kernels. 
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Check Your Progress – 2 
a. What assumption does Naïve Bayes make about the features in a dataset? 

a) All features are dependent on each other 
b) All features are independent of each other given the class label 
c) Only numerical features are considered 
d) Features are selected randomly 

b. Which of the following is true about KNN? 
a) It is a parametric algorithm 
b) It requires a training phase 
c) It is a lazy learning algorithm 
d) It is not affected by the choice of K 

c. What is the primary factor influencing the performance of KNN? 
a) The number of layers in the model 
b) The choice of distance metric and the value of K 
c) The number of neurons in the hidden layer 
d) The activation function used 

d. What criterion does a decision tree use to split nodes? 
a) Standard deviation 
b) Entropy or Gini Index 
c) Mean squared error 
d) Root mean square error 

e. Which function is used in Logistic Regression to transform linear output into 
probabilities? 
a) Linear function 
b) ReLU function 
c) Sigmoid function 
d) Softmax function 

f. What is the key idea behind the Support Vector Machine (SVM) algorithm? 
a) Maximizing the margin between the decision boundary and the closest    

data points. 
b) Minimizing the margin between the decision boundary and the closest 

data points. 
c) Maximizing the number of support vectors. 
d) Minimizing the number of support vectors.   

 
2.8 LET US SUM UP 
This unit primarily explored the fundamentals of classification, a key supervised 

learning technique used to categorize data into predefined labels. We examined 

various classification algorithms, including Naïve Bayes, K-Nearest Neighbours 

(KNN), Decision Trees, Logistic Regression, and Support Vector Machines (SVM).   
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Naive Bayes is a probabilistic classifier based on Bayes' Theorem, assuming feature 

independence, and is widely used for text classification. KNN is a simple, instance-

based algorithm that classifies new data points based on the majority vote of its 

nearest neighbours. Decision Trees use a hierarchical structure to make decisions 

based on feature values, making them interpretable but prone to overfitting. Logistic 

Regression is a statistical model used for binary classification, applying the sigmoid 

function to predict probability values. SVM finds an optimal hyperplane to separate 

data points and works well with complex, high-dimensional datasets.   

Each of the algorithms discussed has its own advantages and limitations, making them 

suitable for different types of classification problems. Understanding their working 

principles, strengths, and challenges enables the selection of the most appropriate 

model for a given dataset. 

2.9 CHECK YOUR PROGRESS: POSSIBLE SOLUTIONS  
1-a The boundaries that separate classes in the feature space 

1-b Encoding categorical variables in the dataset 

1-c Diagnosing diseases based on patient symptoms 

1-d Classifying data based on the majority vote of nearest neighbours 

1-e Logistic Regression 

1-f Finds the optimal hyperplane separating classes   

2-a All features are independent of each other given the class label 
2-b It is a lazy learning algorithm 

2-c The choice of distance metric and the value of K 

2-d Entropy or Gini Index 

2-e Sigmoid function 

2-f Maximizing the margin between the decision boundary and the closest data  

points. 

 

2.10 ASSIGNMENTS 
 
• What is classification in machine learning, and how does it differ from regression?   

• Describe the key assumptions made by the Naïve Bayes classifier and explain 

how it handles classification tasks.   
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• How does the K-Nearest Neighbors (KNN) algorithm classify data points, and 

what are the challenges associated with its use on large datasets?   

• In Decision Trees, how does the algorithm decide which attribute to split the data 

on at each node?   

• What is the primary difference between Logistic Regression and Linear 

Regression, and why is logistic regression used for classification?   

• Explain the concept of the hyperplane in Support Vector Machines (SVM) and 

how it helps in classifying data.   

• Compare the strengths and weaknesses of Naive Bayes and Decision Trees for 

classification problems. 
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3.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

● Understand the basic ideas of ensemble learning in machine learning. 

● Understand several ensemble learning techniques and their utilization.  

● Distinguish between bagging boosting techniques in ensemble methods. 

● Acquire knowledge regarding essential ensemble learning methods, including 

Random Forests and Gradient Boosting Machines  

● Determine the advantages, disadvantages, and applications of different 

ensemble approaches through comparing and contrasting them. 

3.1 INTRODUCTION  
In the previous chapter, we studied classification as a supervised learning technique 

that classifies data into groups. Our detailed analytically meaningful categorization 

algorithms were Naïve Bayes, which uses probabilistic approach to make predictions; 

K-Nearest Neighbour (K-NN), which relies on proximity to the nearest data points; 

Decision Trees are optimized to repeatedly partition data into branch structures for 

optimal decisions; Logistic Regression predicted probabilities of binary outcomes 

effectively; Support Vector Machines (SVMs) reliably determine the correct boundary 

to accurately distinguish the classes. 

This chapter shall cover the basic idea of ensemble learning, a general process that 

raises the predictiveness of decisions taken from multiple models. It discusses such 

things as bagging and boosting and proceeds to elaborate a whole range of advanced 

algorithms such as Random Forests and Gradient Boosting, stating each one's 

specific advantages and disadvantages in dealing with the complicated nature of real-

world machine learning problems. 
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3.2  ENSEMBLE  LEARNING TECHNIQUE 
 

Ensemble learning is a paradigm of integrating and training various base models, 

usually called “weak learners”, to solve a specific problem. This technique hinges upon 

the idea that a weak learner is ineffective by itself, yet, when combined with other weak 

learners, becomes a very strong learner-the ensemble model-which yields much more 

accurate predictions, the flow of Ensemble learning is shown in figure 3.1. 

 

 
Figure 3.1: Ensemble Learning  

Imagine that you want to settle on a movie for the weekend. Instead of just asking one 

friend, now you're asking for recommendations from five friends. If three out of the five 

suggest watching the same movie, you go for that particular movie. This is the whole 

idea behind ensemble learning, voting, or basically integrating multiple individuals or 

models to come to a better decision. 

 

3.3  SIMPLE ENSEMBLE LEARNING TECHNIQUE 
 
Voting and averaging methods belonging to the ensemble learning class are the 

simplest and least obscure forms of developing models. For classification problems, 

one typically uses voting, while averaging is used for regression-type issues. 

 

1. Averaging 
This strategy consists of taking the average of the predictions of all models. 

 
Example: Assume that we want to predict the price of the house. 
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The three base models predict the prices as Rs. 4,52,000/-, Rs. 5,01,000/-, and Rs. 

5,00,000/- respectively.  

 

Then the final predicted price of the house would be found by taking the average of 

the initial three predictions:  

 

Final predicted price = (4,52,000 + 5,01,000 + 5,00,000) / 3  

 = 1,453,000 / 3  

 = 4,84,334 

 
2. Max Voting Classifier 
Max voting works practically on the same principle as average voting, but it has 

particular applications in categorization problems. This technique combines 

predictions from different models, typically termed votes, and the prediction with the 

greatest number of votes is given as a final outcome. 

 

Example: Assume that we want to predict the price of the house. 

 

If the house price predictions from a set of final prices obtained from multiple models 

are Rs. 5,00,001/-, Rs. 4,50,600/-, Rs. 6,00,001/-, Rs. 4,50,600/-, Rs. 6,50,000/-, Rs. 

4,50,600/-, and Rs. 6,00,000/- respectively.  

 

Then, by applying the maximum voting classifier the prediction of the house price, in 

this case would be Rs. 4,50,600. (As 3 out of 7 models predicted the price of the house 

as Rs. 4,50,600) 

 
3. Weighted Averaging 
The weighted average is basically a refinement on the averaging process. In other 

words, if averaging gives equal preference to all base models, this technique gives 

different weights to all the base models, where the best performing one would have a 

higher weight relative to others. 

 

Weights for the models will obviously take values between 0 and 1 and are such that 

the value of the total weights is equal to one. 
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Example: Assume that we want to predict the price of the house. 

 

The three base models predict the prices as Rs. 4,50,000/-, Rs. 6,00,000/-, and Rs. 

6,50,000/- respectively. If the weights for these each of the models are given as 20, 

50, and 25 respectively. 

 

Then the final predicted price of the house would be as mentioned: 

= 0.20 × 450,000 + 0.50 × 600,000 + 0.25 × 650,000  

= Rs. 5,52,500/- 

 

Check Your Progress-1 

a) Ensemble learning combines a large number of weak learners to form a strong 

model that generates better predictions. (True/False) 
b) In ensemble learning, a weak learner is competent by itself and does not need 

combinations with other models. (True/False) 
c) Voting and averaging provide the basis for ensemble learning methods. 

(True/False) 
d) Averaging is an operation where the final forecast is computed as the mean of 

the predictions from all the foundational models. (True/False) 
e) In max voting, the final result is determined by the forecast with the least votes. 

(True/False) 

 

3.4 ADVANCED ENSEMBLE LEARNING TECHNIQUE 
 
Advanced Ensemble learning technique uses two types of methods namely; bagging 

and boosting. Let us have a look at each of these methods. 

  

1. Bagging (Parallel) 
Bagging, an acronym for Bootstrap Aggregating, is a collective learning method which 

increases the accuracy and stability of any machine learning algorithm. The steps 

used in bagging are as mentioned: 
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● Subset Selection: Bagging begins with the selection of a random sample from the 

complete dataset. 

● Bootstrap: Means for sampling with replacement; given this, a model will 

invariably learn from the same training examples of that original dataset. 

● Bootstrapped_ aggregation: Combining models using bootstrapped samples, 

which might have identical training instances. 

● Independent training: Each model will be trained independently, using its 

respective bootstrapped set. This generates an output for each model. 

● Majority Voting: This is the method of acquiring final output by taking the majority 

vote. In other words, we identify the most commonly predicted outcome for each 

model. 

● Aggregation: In this step, we combine the results obtained from all the models 

and declare final output through majority voting, known as aggregation. 

 
Figure 3.2 shows the process of bagging. 

 
Figure 3.2: Bagging Ensemble Method 

Main Benefits: 
● Reducing the Variance: Bagging reduces the variance for model predictions and 

reduces the risk of overfitting by averaging the predictions from several predictors. 
● Improves Accuracy: Usually, an ensemble of models has much improved 

performance than a single model. 
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Random Forest Algorithm 

The Random Forest Algorithm is the most common application of bagging. In Random 

Forest, several decision trees are trained on different bootstrapped samples of the 

dataset, and the predictions of these trees are combined. The method is vibrant 

because it gives the benefits of decision trees fused together with the stability and 

robustness of bagging 

The steps to implement the random forest algorithm are as mentioned: 

Step 1: Randomly select n records and m features from a dataset containing k 

records to construct each decision tree. 

Step 2: Create different decision trees for different samples. 

Step 3: Any new test record will be classified based on the majority output 

among present decision trees in terms of votes. 

Step 4: Evaluate the final output using Majority Voting for classification and 

Averaging for regression, respectively. 

 

Example:  

 

Figure 3.3: Working of random forest algorithm 
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The fruit basket shown in figure 3.3 is equivalent to data. It specifies how many 

samples will be extracted from the fruit basket to create a different decision tree for 

each sample.  

Every decision tree produces an output, as seen in the figure 3.3. Finally, the ultimate 

result is then determined based on majority voting. 

In this case, the graphic indicates that the decision tree produces the output of a 

mango instead of an apple, and therefore it is then designated a mango. 

Check Your Progress-2 

a) Bootstrap sampling denotes the selection of data samples without replacement. 

(True/False) 
b) In Bagging, each model is trained autonomously utilizing its corresponding 

bootstrapped dataset. (True/False) 
c) Random Forest exhibits less robustness and stability compared to individual 

decision trees. (True/False) 
d) The primary benefit of Bagging is the enhancement of model accuracy by the 

aggregation of many predictions. (True/False) 
e) Majority vote in Bagging is employed to ascertain the ultimate output by choosing 

the least often expected result. (True/False) 

 

2. Boosting (Sequential) 

Boosting is an ensemble method that attempts to put together a strong model with a 

combination of diverse weak models. The steps of used in boosting algorithm are as 

mentioned: 

● Sequential Training: This involves training the models one after each other, with 

each model trying to solve the mistakes made by the former. 

● Weight Adjustment: Each example in the training set is assigned a weight. At the 

beginning, all instances have the same weight. After one model has been trained, 

the weight of incorrectly classified examples is increased so that the next model 

will give priority to these difficult examples. 

● Model Combination: The predictions of all the different models are merged into a 

single output through either weighted voting or weighted average. 
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Figure 3.4 shows the process of boosting. 

 
     Figure 3.4: The Process of Boosting 

Main Benefits 

Reduces Bias: The focus on difficult-to-classify instances causes boosting to remove 

bias from the model, thereby increasing accuracy. 
Strong Predictors: The combined effect of weak learners leads to a much more 

powerful predictive model. 

 

Gradient Boosting Algorithm 

Gradient Boosting Machine is a widely utilized forward learning ensemble technique 

in machine learning. Despite the number of algorithms employed in machine learning, 

boosting techniques gained a reputation in the global community in machine learning.  

The main idea of this boosting is that it follows the ensemble learning principles by 

combining several weak learners or base estimators to generate the final output. 

Gradient Boosting Machine is one of the several ensemble techniques employed in 

machine learning, and it acts by transforming weak learners into strong learners. 

 

 



 

122 

Gradient Boosting Machines (GBM) facilitate the development of a predictive model 

using an ensemble of weak predictive models, such as decision trees. When a 

decision tree functions as a weak learner, the resultant algorithm is termed gradient-

boosted trees. 

This aggregation allows us to combine predictions from multiple learner models to 

develop a final predictive model having accurate predictions. Figure 3.5 shows the 

process of gradient boosting. 

 

Figure 3.5:  The Process of Gradient Boosting 

The nodes of the decision tree use different subsets of features to determine their best 

split. Each tree behaves differently, catching different signals from the entire data. 

Gradient Boosting machine consist of 3 elements as follows: 

1. Loss Function 

2. Weak Learners 

3. Additive model 

 



 

123 

Check Your Progress-3 

a) In Boosting, all training occurrences retain uniform weight during the training 

process. (True/False) 
b)  Weighted voting or weighted averaging is employed to amalgamate predictions 

in Boosting. (True/False) 
c) A Gradient Boosting Machine (GBM) employs a singular decision tree to produce 

final predictions. (True/False) 
d) Gradient Boosting Machines (GBM) function by converting weak learners into 

robust learners. (True/False) 

e) The three fundamental components of a Gradient Boosting Machine (GBM) are 

the Loss Function, Weak Learners, and the Additive Model. (True/False) 

 

3.5 DIFFERENCE BETWEEN BAGGING & BOOSTING 
 

The ensemble techniques that are highly adopted are Bagging and Boosting. Figure 

3.6 shows both of them, while they both amplify model performance in different ways, 

Bagging tries to reduce variance through the training of many independent models, 

whereas Boosting will reduce bias by sequentially training models in such a way that 

each model learns from the errors of its predecessors.  

 

      Figure 3.6:  Bagging (Parallel) and Boosting(Sequential) 
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Table 3.1 gives the comparative study of bagging and boosting method. 

Aspects Bagging  Boosting 

Objective Minimize the variance by 

averaging forecasts from 

various models. 

Trying to reduce bias through 

learning iteratively from the 

asymmetric predictions of a 

model. 

Model 
Development 

Models are trained 

autonomously on distinct 

subsets of the data . 

Models are being built by 

starting from a single, which 

learns from the previous 

model's biases. 

Data sampling Using bootstrapped datasets 

only. 

Using the complete dataset, 

focusing on instances that 

were misclassified. 

Model Integration Voting for classification; 

averaging for regression. 

Weighting the models in 

accordance with their 

performance against one 

another. 

Risk of Overfitting Reduced likelihood of 

overfitting through the 

building up of the 

independent models. 

More likely to overfit, 

particularly if the model 

attains excessive complexity. 

Diversity of Models Several models that are 

trained simultaneously 

undergo diversity generally 

because of bootstrapping. 

Models are trained in 

sequence and rely on the 

errors of the preceding 

models. 

Fundamental 
Learner 

Generally, employs robust 

learners such as decision 

trees. 

Generally, use weak learners 

such as shallow decision 

trees. 

 
Table 3.1: Comparison of Bagging and Boosting methods 
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Check Your Progress-4 
a) Bagging primarily seeks to reduce bias in models. (True/False) 
b) Bagging employs bootstrapped datasets, which entails selecting random 

samples with replacement. (True/False) 
c) Boosting invariably ensures superior performance compared to Bagging in 

every situation. (True/False) 
d) Boosting assigns uniform weights to all training occurrences during the 

learning process. (True/False) 
e) Bagging is generally executed by the Random Forest algorithm. (True/False) 

 

3.6 LET US SUM UP 
Ensemble learning is an effective methodology in machine learning that integrates 

different models to enhance predictive accuracy. The fundamental concept is that 

combining the outputs of several weak learners yields a more robust and dependable 

model. Basic ensemble techniques encompass averaging and maximum voting, which 

improve forecasts by amalgamating results from various models. Ensemble learning 

is strengthened by advanced methods like bagging and boosting by lessening 

variation and bias. Whereas bagging, its shortened version which stands for Bootstrap 

Aggregating, works with models trained independently, boosting is sequential and 

corrects a preceding model's error.  

Bagging techniques, such as Random Forest, train numerous decision trees on 

various data subsets and consolidate their outputs to formulate a more robust and 

precise predictive model. Boosting, conversely, emphasizes challenging-to-classify 

examples by modifying the weights of misclassified samples to improve learning. 

Gradient Boosting Machines (GBM) are a widely utilized boosting technique that 

incrementally enhances weak learners into a strong prediction model. Bagging 

effectively mitigates overfitting and enhances stability, whereas boosting is proficient 

at decreasing bias but may occasionally result in overfitting if not meticulously 

calibrated. 

A fundamental difference between bagging and boosting is their methodology: 

bagging mitigates variation through the training of many independent models, whereas 

boosting lowers bias by successively enhancing weak learners. Both methodologies 
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have extensive applicability in practical machine learning challenges, ranging from 

medical diagnosis to financial predictions. Ensemble learning enhances the accuracy, 

stability, and generalization of machine learning models, becoming essential in 

contemporary predictive analytics. 

3.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
1-a True 

1-b False 

1-c True 

1-d True 

1-e False 

2-a False 

2-b True 

2-c False 

2-d True 

2-e False 

3-a False 

3-b True 

3-c False 

3-d True 

3-e True 

4-a False 

4-b True 

4-c False 

4-d False 

4-e True 

 
3.8 ASSIGNMENTS 
● Explain Ensemble Learning Technique with an example? 

● Explain the key differences between Bagging and Boosting? 

● Write Main Benefits of Bagging and Boosting? 

● Explain Gradient Boosting Algorithm? 

● Explain Simple Ensemble learning technique?        
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Unit-4:  Model Evaluation 
 

 
Unit Structure 
 

4.0. Learning Objectives 

4.1. Introduction to Model Evaluation 

4.2. Evaluation Metrics for Classification and  Regression 

4.3. Train-Test Split 

4.4. Cross-Validation Techniques 

4.5. Let us sum up 

4.6. Check your Progress: Possible Answers  

4.7. Assignments 

 

 
  

4 
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4.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

● Understand the purpose and importance of evaluating machine learning 

models. 

● Learn key metrics used to evaluate classification and regression models. 

● Understand train-test split and cross-validation techniques for model validation 

 

4.1 INTRODUCTION TO MODEL EVALUATION 
Model evaluation is the process of assessing the machine learning model. In order to 

determine how well, accurately, and efficiently the model can produce predictions, we 

assess it using specific metrics. Each metric provides unique insights into how well a 

model is performing and helps in guiding the choice of model and tuning. Evaluation 

helps us know both the strengths and the weaknesses of the model. 

Why is Evaluation important when building a model? 

Evaluating a model is not only a formality, it is the key. Without evaluation, we would 

not know if the model is capable of making reliable predictions on new data in the real-

world. A model could be excellent on training data but then perform terribly when 

encountering unfamiliar data. Evaluation gives us the confidence that the model is 

precise, and more importantly, generalizable and therefore reliable. Overfitting and 

underfitting is an example of two issues that could ruin a model's performance. 

Overfitting: A model is said to be overfit when the model learns the training data too 

well, even with the noise and random fluctuations but struggles to learn from new data. 

Underfitting: Underfitting is the opposite of overfitting. A model is said to be underfit 

if it is too basic to understand the underlying patterns in the data. Both on the training 

and new data, it performs poorly because it lacks the complexity required to accurately 

depict the relationships that exist. 

Right Fit: Occurs when both the training data error and the test data are minimal. 
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4.2 EVALUATION METRICS 
Evaluation metrics are numerical measures used to assess the effectiveness and 

performance of a statistical model or machine learning model. Evaluation metrics 

provide not only a basis for comparing different models or algorithms but also insights 

into model effectiveness. It is crucial to assess the quality, generalizability, and 

predictability of a machine learning model. Evaluation metrics are selected based on 

the type of data, the outcome desired, and the specific context. 

Evaluation Metrics for Classification: 

Classification metrics in machine learning are important for evaluating a model's ability 

to separate the classes from one another. The most frequent metrics used are 

accuracy, precision, recall, and the F1-score.  

Accuracy indicates the overall proportion of accurate predictions. Precision indicates 

the percentage of positive predictions that were actually positive. Recall evaluates the 

percentage of actual positives that were identified correctly. The F1-score indicates a 

balanced measure of precision and recall.  

In addition to these metrics, it is also important to interpret and understand confusion 

matrices and Area Under the Receiver Operating Characteristic curve (ROC-AUC 

curves) in order to select the best model for a given classification task and ensure that 

it will perform properly on new data. 

1. Accuracy: 

Accuracy is defined as the number of correct predictions to the total number of 

predictions. This is the most fundamental metric used to evaluate the model. The 

formula to calculate accuracy is as mentioned: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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Here: 

True Positive (TP): Cases where the model correctly predicted the positive class. For 

example, An OCR predicting that a character is ‘A’ when it actually is character ‘A’. 

True Negative (TN): Cases where the model correctly predicted the negative class. 

For example, An OCR predicting that a character is not ‘A’ when it actually is not 

character ‘A’. 

False Positive (FP): Cases where the model incorrectly predicted the positive class. 

For example, An OCR predicting that a character is ‘A’ when it actually is character 

‘B’. It is also known as a "Type I error" or "false alarm." 

False Negative (FN): Cases where the model incorrectly predicted the negative class. 

For example, An OCR predicting that a character is not ‘A’ when it actually is character 

‘A’. It is also known as a "Type II error" or "miss." 

Strengths: 

● It is easily interpretable. 

● Good for balanced classes, meaning when you have roughly the same 

character of each class (e.g., accuracy is a good overall performance metric 

when you have at least reasonably balanced class distributions within a 

dataset). 

Limitations: 

Sensitive to imbalanced class: In severe scenarios (e.g., fraud, when most of the 

transactions are not fraud) a model would get high accuracy just predicting the majority 

class. 

2. Precision (Positive Predictive Value): 

Precision measures the proportion of predicted positive cases that are truly positive. 

Precision tells you how reliable the model is when it says something is positive. A high-

precision model is less likely to produce false alarms. The formula for calculating 

precision is as mentioned: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

3. Recall (Sensitivity) 

Recall measures the proportion of actual positive cases the model correctly identifies. 

Recall reflects how good your model is at not missing out on the class you are truly 

interested in. A high recall model minimizes false negatives. The formula to calculate 

recall is as mentioned: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

4. F1 score: 

F1 score is the harmonic mean of precision and recall. It is seen that during the 

precision-recall trade-off if we increase the precision, recall decreases and vice versa. 

Unlike a simple average, the harmonic mean is more sensitive to low values. The 

formula is given by: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

5. ROC (Receiver Operating Characteristic) Curve: 

ROC is a graph illustrating a classifier’s performance at all possible classification 

thresholds. 

Axes: 

X-axis: False Positive Rate (FPR) = 1 - Specificity  

It measures how often a negative instance is wrongly classified as positive. It can also 

be calculated using the formula as mentioned: 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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Y-axis: True Positive Rate (TPR) = Recall  

It measures how many of the positive cases the model catches. It can also be 

calculated using the formula as mentioned: 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Figure 4.1 shows the graph for Receiver Operating Characteristic) Curve 

 

Figure 4.1: Representation of ROC Curve 

6. Confusion Matrix: 

It is a table that summarizes the performance of a classification model based on the 

values of true positives, false positives, true negatives and false negatives. It’s 

especially helpful when comparing the actual results with the predictions. Figure 4.2 

shows the confusion matrix. 
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Figure 4.2: Confusion Matrix 

Evaluation Metrics for Regression: 

Regression identifies continuous values. Regression is primarily used to evaluate the 

relationship between a dependent and an independent variable. With classifiers, we 

can summarize the prediction quality with a confusion matrix, accuracy, f1 score, etc.  

Since regression is predicting a numerical value, it may differ from the actual 

prediction, therefore, we perform an error calculation, providing a summary measure 

of the prediction value to the actual value. There are many metrics available for 

evaluating the regression model. 

1. Mean Absolute Error (MAE): 

It is the average of the absolute differences between the actual value and the value 

predicted by model. 

𝑀𝐴𝐸 =
1

𝑁
 ∑

 𝑁 

𝑖=1

 | 𝑦𝑖 − 𝑦𝑖̂ |  

where, 

N = total number of data points 

yi = actual value 

ŷi = predicted value 
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2. Mean Squared Error (MSE): 

It is the average of the squared differences between the actual and the predicted 

values. Lower the value, the better the regression model. 

𝑀𝑆𝐸 =
1

𝑁
 ∑

 𝑁 

𝑖=1

( 𝑦𝑖 − 𝑦𝑖̂ )
2  

 
 

3. Root Mean Squared Error (RMSE) 

It is the mean squared difference between the actual value and the predicted value. 

Then we take the square root of MSE to get the Root Mean Square Error. The lower 

RMSE is, the better the model is with its predictions. A higher RMSE means that there 

are larger deviations between the predicted and actual value. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑

 𝑁 

𝑖=1

( 𝑦𝑖 − 𝑦𝑖̂ )
2 

4. R-squared or the coefficient of determination (R²): 

R-squared (R²) indicates the proportion of variance of the dependent variable that the 

independent variable explains. R² is a common measure of model accuracy which 

indicates how close data points are to the fitted line created by a regression algorithm. 

A larger R squared indicates a better fit. This helps us identify the relationship of the 

independent variable towards the dependent variable. 

 

R² score ranges from 0 to 1. The closer to 1 the R², the better the regression model is. 

If R² is equal to 0, the model is not performing better than a random model. If R² is 

negative, the regression model is erroneous. 

 

It is the ratio of the sum of squares and the total sum of squares. 
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𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 

where  

SSE : is the sum of the square of the difference between the actual value and the 

predicted value 

𝑆𝑆𝐸 = ∑

 𝑚 

𝑖=1

( 𝑦𝑖 − 𝑦𝑖̂ )
2 

SST : is the total sum of the square of the difference between the actual value and the 

mean of the actual value. 

𝑆𝑆𝑇 = ∑

 𝑚 

𝑖=1

( 𝑦𝑖 − 𝑦𝑖  )2 

 Check Your Progress - 1  

a) Overfitting occurs when a model performs well on both training and test data. 

(True/False) 

b) Mean Squared Error (MSE) is a suitable metric for evaluating classification 

problems. (True/False) 

c) Recall measures the proportion of actual positives correctly identified by the 

model. (True/False) 

d) Mean Absolute Error (MAE) is commonly used to evaluate regression models. 

(True/False) 

e) F1-Score is the average of accuracy and recall. (True/False) 

f) ROC is used to evaluate classification models by analyzing the trade-off 

between sensitivity (recall) and specificity. (True/False) 

g) After adding a feature in the feature space, whether that feature is an important 

or unimportant one, the R-squared always increases. (True/False) 

 

4.3 TRAIN-TEST SPLIT  
 

Train test split is a validation method used for a model that simulates how a model 

would perform on unseen data through a simple split of a dataset into two groups. The 

first group, the training set, comprises the data used to train the model. The second 

group of data, the testing set (which is considered new to the model), is used to test 
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the model's performance (accuracy). Train test split can also include a validation set, 

which is data used to adjust hyperparameters and optimize the model during the 

training process. Figure 4.3 give the general overview of the train test split procedure. 

 

Figure 4.3: Train test split procedure 

Training Set: 
 

Training set is a portion of the dataset designated for model fitting. To put it another 

way, the model is given the training set of data so that it can learn from it and adjust 

its parameters.  

 

The training set must be  

i. sufficiently large to yield decent results (without being so huge that the model 

overfits) 

ii. representative of the entire dataset in order to maximize the model's 

performance during training.  

 

This will improve the trained model's future predictive power on unobserved data. 

When a machine learning model becomes so specialized and tailored to the training 

data that it is unable to generalize or predict accurately with any new data, this is 

known as overfitting. Thus, an overfit model will overperform with the training set, but 

underperform when introduced to the validation sets and test sets. 

 



137 

Test Set: 
When assessing a trained model's ultimate efficiency, the test dataset is utilized. It 

offers an objective evaluation of how effectively the finished model generalizes to fresh 

data and, eventually, to the actual world. An accurate assessment of the model's 

performance is successfully provided by keeping a distinct test dataset up to date 

during the model-building process. 

 

Additionally, the test dataset indicates how well the trained model can handle fresh 

data. An objective indicator of how well the model will probably generalize to the real 

world is provided by assessing model fit on the test dataset, which consists of new 

data that the model has never seen before. This assessment enables us to determine 

if the trained model has successfully learned relevant patterns and can make accurate 

predictions beyond the training and validation contexts. 

 
Validation Set: 
Data used to evaluate and improve a machine learning model during training is known 

as the validation set. This is done in order to evaluate the model's output and maximize 

its performance. We can determine how effectively the trained model generalizes to 

unknown data by evaluating it on the validation set.  

This evaluation may highlight issues like overfitting, which could significantly affect the 

model's practical applicability. Hyperparameters can also be adjusted using the 

validation set.  

 

The model's performance is controlled by hyperparameters, which include 

regularization strength and learning rate. We can identify the hyperparameters that get 

the best results by experimenting with different values during training on the training 

set and assessing on the validation set. 

Methods for Splitting Data in a Train Test Split: 
There are various methods of splitting datasets for machine learning models. The 

selected data split method and data split ratios will differ based on the following factors: 

(1) the intended use case, (2) the available data amount, (3) the data quality, and (4) 

the parameters that one might consider. Here’s some common methods of splitting 

data in a train test split: 
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1. Random Sampling 

Random splitting refers to the practice of shuffling the dataset at random and creating 

training and testing datasets according to a specific percentage (for example, 80% 

training and 20% testing). It is one of the most common ways to split data into train 

test splits because of its simplicity and ease of execution. Random splitting is effective 

on large datasets with categories that are typically equally represented in the dataset. 

 

2. Stratified Splitting: 

Splitting a dataset using a stratified approach is often utilized with datasets that are 

imbalanced, which means certain classes/categories have considerably less 

instances to other classes/categories. In this situation, it is important to properly reflect 

the class distribution of the dataset in the splits for training, validation, and test set, so 

that the final model will not be biased. 

 

With stratified splitting, we divide the dataset while maintaining the relative sizes of 

each of the classes in each of the splits. The training, validation, and test set will then 

have a representative portion of each of the classes, maintaining the same proportions 

navigated. This way, the model is able to learn to identify patterns and predict across 

all classes, which will result in a more robust, reliable machine learning algorithm. 

 

Cross-Validation Splitting 

Cross-validation sampling refers to the method of partitioning a dataset into training 

and validation data as part of cross-validation. The cross-validation sampling process 

involves creating multiple copies of a dataset subset, with each subset serving as 

training or validation data in the cross-validation process.  

 

This process is very easy to understand and to implement, and it usually has lower 

estimated bias than available alternatives for tracking the efficiency scores of a 

machine learning model. There are a lot of different techniques that may be used to 

cross-validate a model.  
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4.4 CROSS-VALIDATION TECHNIQUES  
To ensure that the model is correctly trained on the data provided without much noise, 

you need to use cross-validation techniques. These are statistical methods used to 

estimate the performance of machine learning models. Let’s the different types of 

cross-validation techniques: 

1. K-fold cross-validation 

In this method, the entire dataset is split into k equal-sized portions. Each portion is 

referred to as a fold. It is referred to as k-fold because the dataset is partitioned into 

k distinct portions where k is an integer of 3, 4, 5, etc. 

One fold will be used for validating the model, and the other K-1 folds will be used for 

training the model. This method is carried out k times until each fold is used once as 

a validation set and the remaining portions are used for training the model. Figure 4.4 

shows the general working of K-fold cross-validation. 

 
Figure 4.4: K-fold cross-validation 

The illustration in figure 4.4 shows 5 folds (k), or 5 iterations. In every instance, one 

fold is the test set/validation set and the other k-1 sets (4 sets) are the train set. To 

get the final accuracy, you take the accuracy of the k-models validation data.  

Note that this validation method is not suitable for imbalanced datasets because the 

model will not get trained properly due to not having the correct ratio of each class's 

data. 
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2. Hold-out cross-validation 

This is the most straightforward evaluation technique and is popular in any Machine 

Learning projects, where the full dataset (population) is divided into 2 sets - train set 

and test set. The portion of train and test data could be split in the ratio of 70-30 or 

60-40 or 75-25 or 80-20 or even 50-50 depending on use case. 

As a rule, however, the proportion of training data has to be greater than test data. 

The data is split randomly and essentially, we do not know which data ends up in the 

train or test bucket when we split the data unless you set random_state. The random 

assignment generates very high variance, and every time we carry out the split, we 

get a different accuracy score. Figure 5.5 shows the block diagram of hold-out 

method. 

 
Figure 4.5: Hold-Out method 

Drawback of hold-out methods are:  

● Test error rates are highly variable (high variance) and entirely dependent on 

which observations end up in the training set and test set.  

● With hold out methods, also only a portion of the dataset is used for training the 

model (high bias) which is not a good idea when data is not ample, and will lead 

to overestimation of test error. 

The major advantage of this method holds in its computational efficiency with respect 

to all cross-validation methods. 
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3. Stratified k-fold cross-validation 

As illustrated previously, k-fold validation cannot be performed with imbalanced 

datasets because the data is split into k-folds with a uniform probability distribution. 

However, this is not true for stratified k-fold, which is a better version of k-fold cross-

validation. It also splits the dataset into k equal parts with each part having the same 

ratio of instances of target variables that are found in the entire dataset. This allows 

it to work perfectly for imbalanced datasets, but not work for time-series data. Figure 

5.6 shows the process of Stratified k-fold method. 

 

Figure 4.6: Stratified k-fold method 

In the aforementioned illustration the dataset consists of Male (M) and Female (F). 

The original dataset has females that are exponentially lower than males, meaning 

this target variable has an imbalanced distribution. Stratified k-fold cross-validation 

maintains this target variable ratio of instances in all folds. 

4. Leave-p-out cross-validation 

An extensive cross-validation method – for example, if a dataset has n samples, p 

samples will be used as the validation set, and n-p samples will be used as the 

training set. One would then repeat this process until all samples have been used for 

each run, where the samples change each time so the last n-p samples will be the 

training set and p samples will be the validation set and so forth, until all samples 

have been used in a running process and considered each as a validation set. 
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The method is computationally intense, yet yields good results. However, it is not 

suitable for an imbalanced dataset, and is impractical as a mode of computational 

use. If all training set samples are of one class, the model will be unable to generalize 

properly and will be biased towards the other class. 

5. Leave-one-out cross-validation 

In this approach, only 1 observation datum is used as the validation set and all 

remaining n-1 observations are used to construct the training set. You can think of 

this as a more specific version of the leave-p-out cross-validation approach in which 

P=1. Figure 5.7 shows the process of Leave-one-out method. 

 

Figure 5.7: Leave-one-out method 

To better understand what this means, consider the following example:  

Suppose you have a dataset with 1000 observations. In each iteration, you will leave 

1 observation for the validation set and will use all remaining 999 observations to 

construct a training set.  

This process is then repeated until every observation from the dataset has been used 

as a validation sample. The leave-one-out cross-validation method can be 

computationally expensive to conduct and ought to not be used with very large 

datasets. On the plus side, this approach is very simple to use and requires no 

parameter configuration to specify a single validation observation. Additionally, it can 

provide a trustworthy and unbiased estimation of your model performance.  
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Check Your Progress – 2 
a) Train-test split helps detect overfitting and underfitting. (True/False) 

b) Cross-validation involves splitting the dataset into multiple subsets or folds. 

(True/False) 

c) Leave-One-Out Cross-Validation uses all data points for testing at once. 

(True/False) 

d) A classifier that attains 100% accuracy on the training set and 70% accuracy on 

the test set is better than a classifier that attains 70% accuracy on the training 

set and 75% accuracy on test set. (True/False) 

 
4.5 LET US SUM UP 
 

This unit primarily explored the fundamentals of model evaluation in machine learning 

and its critical role in assessing model performance. It covered key classification 

metrics such as accuracy, precision, recall, and F1-score, along with regression 

metrics like MAE, MSE, and R². The train-test split technique was introduced as a 

basic evaluation method to test model generalization. To overcome limitations of 

single splits, cross-validation methods like k-fold were discussed for more reliable 

evaluation. 

Overall, the unit emphasized selecting appropriate metrics and validation strategies to 

build robust and effective models. 
 

4.6 CHECK YOUR PROGRESS: POSSIBLE SOLUTIONS  
 
1-a False 

1-b False 

1-c True 

1-d True 

1-e False 

1-f True 

1-g True 

2-a True 

2-b True 

2-c False 

2-d False 
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4.7 ASSIGNMENTS 
 

● Explain the importance of model evaluation in machine learning. 

● Why is it necessary even after training the model with high accuracy on training 

data? 

● Differentiate between the following metrics with examples: 

a) Precision b) Recall c) F1-Score d) Accuracy 

● What is the role of Mean Absolute Error (MAE) and Mean Squared Error (MSE) 

in regression tasks? 

● Explain R-squared (R²) with an example. 

● Discuss the concept of Train-Test Split. 

● What problems may arise from using only a single train-test split to evaluate a 

model? How can they be addressed? 

● Explain k-Fold Cross-Validation with a diagram. 

● What is Stratified k-Fold Cross-Validation and when is it preferred over regular 

k-Fold?  
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Unit-1:  Introduction to Neural              
             Networks 

 
Unit Structure 
 

1.0. Learning Objectives 

1.1. Overview of Artificial Neural Networks 

1.2. Basic Concepts: Neurons, Layers, and Activation Functions 

1.3. Key Architectures 

1.4. Let us sum up 

1.5. Check your Progress: Possible Answers 

1.6. Assignment 

 

 
  

1 
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1.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

● Understand the foundational principles of Artificial Neural Networks (ANNs). 

● Explain the basic concepts related to ANNs, including neurons, layers, and 

activation functions. 

● Identify and describe key architectures such as Feedforward Neural 

Networks. 

1.1 OVERVIEW OF ARTIFICIAL NEURAL NETWORKS 
Artificial Neural Networks (ANNs) have significantly transformed the domain of artificial 

intelligence, becoming a foundational element in numerous AI-driven applications. 

Over the years, advancements in neural network architectures and methodologies 

have enhanced the capabilities of ANNs, enabling them to deliver superior outcomes 

across various AI projects. 

ANNs are instrumental in empowering developers to create models that produce 

reliable and scalable results. As a result, they are often seen as an improvement over 

traditional machine learning algorithms in various tasks, particularly when dealing with 

complex and high-dimensional data. For example Neural networks are highly effective 

in tasks such as facial recognition and object detection in images. where traditional 

machine learning algorithms find it challenging. 

What is an Artificial Neural Network? 

An Artificial Neural Network (ANN) is a computational model inspired by the way 

biological neural networks in the human brain function. It is composed of 

interconnected layers of nodes (called neurons), where each node processes input 

data and passes the information to the next layer, ultimately producing an output. 
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As shown in figure 1.1, Artificial Neural Networks are composed of neurons, which act 

as basic processing units similar to neurons in the brain. After receiving information, 

neurons perform a mathematical operation to produce an output. The input layer of 

the network accepts data; hidden layers perform computations to identify patterns; and 

the output layer generates predictions. Weights and biases regulate the connections 

between neurons by determining the relevance of the input and modifying the output. 

By introducing non-linearity, activation functions like sigmoid, ReLU, and tanh enable 

the network to record complex interactions. 

 

Figure 1.1: Artificial Neural Network 

 
1.2 BASIC CONCEPTS: NEURONS, LAYERS, AND 
ACTIVATION FUNCTIONS 

Neural network consists of several concepts that work together to process and learn 

from data. The concepts have been discussed herewith: 
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Neuron 
Artificial neural networks are widely used machine learning methods that mimic the 

learning process of biological organisms. In the human nervous system, cells known 

as neurons are interconnected by axons and dendrites. The junctions where these 

axons and dendrites meet are called synapses, as shown in figure 1.2. The strength 

of synaptic connections typically adjusts in response to external stimuli, facilitating the 

learning process in living beings. This biological phenomenon is emulated in artificial 

neural networks, where computational elements, referred to as neurons, perform 

similar functions. 

 

 
Figure 2. A Biological Neuron 

An artificial neuron (also referred to as a perceptron) shown in figure 1.3 is a 

mathematical function. It takes one or more inputs that are multiplied by values called 

“weights” and added together. This value is then passed to a nonlinear function, known 

as an activation function, to become the neuron’s output. 
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Figure 1.3:  An Artificial Neuron 

 
Components of Artificial Neuron: 
The artificial neuron consists of five components namely; input values, weights, bias, 

weighted sum and activation function. This section describes them in brief. 

 

1. Input Values (x): An artificial neuron takes input values (also known as 

features) from the preceding layer or from the input data directly. Each input is 

assigned a weight that signifies its importance. 
2. Weights (w): Each input value is multiplied by a weight, which affects its 

importance in the computation of the neuron. During training, weights are 

modified to allow the network to learn from data. 
3. Bias (b): To the weighted total of inputs, a bias factor is applied. It enables the 

neuron to control its output independently of its inputs. Bias aids in shifting the 

curvature of the activation function. 
4. Weighted Sum (z): The following formula is used to determine the weighted 

sum of inputs and bias: 
   z = (w1 * x1) + (w2 * x2) + ... + (wn * xn) + b, where w is the weight, x denotes 

the input value, n denotes the number of inputs, and b denotes the bias. 

5. Activation Function(f(z)): To incorporate non-linearity, the weighted sum is 

processed via an activation function (also known as a transfer function). ReLU 

(Rectified Linear Activation), sigmoid, and tanh are examples of common 
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activation functions. The neuron's output is determined by the activation 

function. The neuron’s output, represented as ypred, is the result of applying the 

activation function to the weighted sum and bias:    
ypred = activation_function(f(z)) 

 

Calculating the weighted sum of inputs, adding the bias, sending the result through an 

activation function, and producing the output are all steps in the computation of an 

artificial neuron. This output is subsequently used as input by other neurons in the 

neural network's succeeding layers. 

 

An artificial neural network's architecture is made up of numerous interconnected 

neurons organized into layers. Based on the data it is trained on, this network can 

learn to approximate complex functions, recognize patterns, and make predictions. 

 

Layers 
A basic neural network has interconnected artificial neurons in three layers: 

1. Input Layer: Information from the outside world enters the artificial neural 

network from the input layer. Input nodes process the data, analyze or 

categorize it, and pass it on to the next layer. 
2. Hidden Layer: Hidden layers take their input from the input layer or other 

hidden layers. Artificial neural networks can have a large number of hidden 

layers. Each hidden layer analyzes the output from the previous layer, 

processes it further, and passes it on to the next layer. 
3. Output Layer: The output layer gives the final result of all the data processing 

by the artificial neural network. It can have single or multiple nodes. For 

instance, if we have a binary (yes/no) classification problem, the output layer 

will have one output node, which will give the result as 1 or 0. However, if we 

have a multi-class classification problem, the output layer might consist of more 

than one output node. 
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Activation Functions 

In neural networks, an activation function is a mathematical function that, given an 

input, determines the output of a neuron. It is a function that is intended to "activate" 

the neuron, as the name implies. 

Neural network neurons function similarly to brain neurons in that they receive signals 

from the body and decide how best to process them. They perform the role of transfer 

functions, taking in values as inputs and generating equivalent outputs. 

Why Are Activation Functions Essential? 

Adding non-linearity to the neural network is the aim of an activation function. 

Activation functions add a step at every layer in the forward propagation process, but 

the computational cost is justified. Here's the reason: 

 

Assume for the moment that the activation functions of a neural network are absent. 

In that scenario, the only operation that each neuron does on the inputs is a linear 

transformation using the weights and biases. The reason behind this is that, since the 

composite of two linear functions is a linear function in and of itself, all hidden layers 

in a neural network will act in the same manner regardless of the number of layers we 

attach. 

 

By incorporating non-linear behaviors through activation functions, neural networks 

are able to learn these non-linear correlations. This significantly boosts neural 

networks' adaptability and capacity to represent intricate and nuanced input. 

 

The Activation Functions can be basically divided into three types: 

1. Binary Step Function:  The most crucial factor to take into account when using 

an activation function is a threshold-based classifier, which indicates whether 

or not the value of the linear transformation is required to activate the neuron. 

Alternatively put, we can state that a neuron is activated if its input exceeds a 
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threshold value, and deactivated otherwise. The output is then not used as an 

input by the next hidden layer. The binary step function is shown in figure 1.4. 

 

  Figure 1.4:  Binary Step Function 

2. Linear Activation Function: Because the output of a linear activation function 

as shown in figure 1.5. is always proportionate to the input, it is often referred 

to as an "identity function" or "no activation." 

Therefore, in theory, such a function returns the value fed into the network and 

gives you the weighted sum of the input. 

Mathematically represented as:  f(x)=x 

 

Figure 1.5:  Linear Function 
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3. Non-linear Activation Functions: The most popular activation functions are 

the nonlinear ones shown in figure 1.6. It facilitates the model's ability to 

distinguish between outputs and to generalize or adapt to a variety of data. 

 

Figure 1.6:  Non-Linear Function 

Check Your Progress-1 
a) What is the primary function of the input layer in an Artificial Neural Network? 

a) To process data 

b) To receive initial data for processing 

c) To provide final predictions 

d) To adjust weights 

b) What is the purpose of hidden layers in an ANN? 

a) To store the final output 

b) To receive input data 

c) To perform computations and learn complex patterns 

d) To initialize the network 

c) In an ANN, what do weights determine? 

a) The number of neurons 

b) The importance of inputs in processing 
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c) The final output 

d) The learning rate 

d) What process is used to minimize error in an ANN during training? 

a) Forward propagation 

b) Weight initialization 

c) Backpropagation 

d) Activation function adjustment 

e) Which layer in an ANN provides the final output or prediction? 

a) Input Layer 

b) Hidden Layer 

c) Output Layer 

d) Activation Layer 

f) What is the role of an activation function in a neuron? 

a) To adjust weights 

b) To determine the importance of the neuron 

c) To introduce non-linearity in the output 

d) To store input data 

 

1.3 KEY ARCHITECTURES OF NEURAL NETWORK 
The number and kinds of layers in a neural network, as well as their organization, are 

referred to as its architecture. Let's dive in and explore key Architectures of Neural 

Network: 

1. Feedforward Neural Networks  
One of the more fundamental types of neural networks is a feedforward, and its 

architecture is frequently used to build more specialized networks. Feedforward neural 

networks, as the name implies, transfer data forward; that is, without loops or circles, 

from input to output. Even though it's among the most basic neural network designs, 

the hidden layers that connect input and output can nevertheless be quite intricate. 

This kind of neural network can be used for a number of tasks, including classification, 

regression analysis, and pattern and picture recognition. 
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How Feedforward Neural Networks Work? 

An input layer precedes a number of hidden layers in a feedforward neural network, 

and it concludes with an output layer. Via the input, data enters the algorithm and 

moves through the first layer's nodes. By using each node's weight to calculate the 

data, the first layer of nodes transfers the computation to the subsequent layer of 

nodes. The data can only move in the direction of the output, even though every node 

in one layer is connected to every other layer's node. 

Benefits: 

● Simplicity: The construction of FNNs is simple; data flows from input to output 

in a single direction. 

● Versatility: May be applied to a variety of issues, including regression, 

classification, and (with some adjustments) unsupervised learning. 

● Faster to Train: Compared to RNNs, training may be done more easily and 

quickly because there is no feedback or recurrent link. 

Challenges: 

● Lack of Memory: FNNs are not appropriate for sequential data such as time 

series, speech, or text since they are unable to remember the past. 

● Data Requirements: Overfitting occurs when the dataset is small, and requires 

a significant amount of labeled data for training. 

● Complexity Growth: The number of parameters may increase dramatically as 

input dimensions increase, making training more challenging. 

2. Convolutional Neural Networks 
Convolutional networks, also known as convolutional neural networks, or CNNs, are 

a specialized kind of neural network for processing data that has a known grid-like 

topology. Examples include time-series data, which can be thought of as a 1-D grid 

taking samples at regular time intervals, and image data, which can be thought of as 

a 2-D grid of pixels. The name “convolutional neural network” indicates that the 

network employs a mathematical operation called convolution. Convolution is a 

specialized kind of linear operation. Convolutional Networks are simply neural 

networks that use convolution in place of general matrix multiplication in at least one 
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of their layers. CNNs are very useful for applications like object identification, picture 

segmentation, and image classification because of their capacity to extract hierarchical 

representations and local patterns. 

 
How Convolutional Neural Networks Work? 

CNN is a mathematical construct that is typically composed of three types of layers (or 

building blocks): convolution, pooling, and fully connected layers in addition to input 

and output layers. Convolutional Neural Networks (CNNs) work by hierarchically 

learning features from input data, typically images, to make predictions or 

classifications.  

 

The process begins with the input layer, where the image, represented as a 2D or 3D 

grid of pixel values, is fed into the network. The first key operation occurs in the 

convolutional layers, where small filters (kernels) are applied to the image. These 

kernels perform convolution, a mathematical operation that extracts features like 

edges, textures, and patterns by sliding over the image and computing weighted sums 

at each position. The output of this operation is a feature map, which represents the 

presence of detected features at various locations in the image. To introduce non-

linearity and enable the network to learn complex patterns, an activation function, 

typically ReLU (Rectified Linear Unit), is applied after the convolution.  

 

The network then uses pooling layers to reduce the spatial dimensions of the feature 

maps, typically using max pooling or average pooling, which simplifies the 

representation and reduces computation while retaining important information. As data 

progresses through deeper layers, the network extracts more abstract and high-level 

features. In the fully connected layers, the high-level features from the convolutions 

and pooling are flattened into a vector and passed through one or more layers of 

neurons to map the features to the final output, such as class probabilities for 

classification tasks.  

 

The output layer applies an activation function like softmax (for classification) or a 

linear function (for regression) to produce the final prediction. During training, the 

network's parameters, such as the kernels, are optimized using algorithms like 
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backpropagation and gradient descent, which adjust the parameters to minimize 

the error between the predicted outputs and the actual labels. This process enables 

the network to automatically learn relevant features from data, making CNNs highly 

effective for tasks like image recognition, object detection, and segmentation. Figure 

1.7 shows the architecture of a CNN. 

 

 
Figure 1.7: Architecture of CNN 

Benefits: 

● Spatial Hierarchy: CNNs are perfect for computer vision tasks like object 

recognition and picture classification because of their superior ability to capture 

spatial characteristics in images through convolutional layers. 

● Sharing of parameters: By using filters, the network can share parameters, 

which drastically lowers the number of parameters and improves computing 

performance. 

● Translation Invariance: CNNs' filters are resilient to translation since they can 

identify patterns in any part of the input. 
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Challenges: 

● Application-specific: RNNs perform better than CNNs for sequential tasks 

(such as text or time-series data) even if CNNs perform better in jobs like image 

and video processing. 

● Requirement for Big Datasets: For training, CNNs, particularly deep CNN 

architectures, usually need big volumes of labeled data as well as a lot of 

processing capacity. 

● Overfitting: On small datasets, CNNs with deep architectures are prone to 

overfitting, which may call for regularization strategies like dropout and data 

augmentation. 

3. Recurrent Neural Network  
A Recurrent Neural Network (RNN) is a specialized type of neural network designed 

for time series predictions. It learns patterns from previous data points and uses this 

knowledge to predict future values. The neurons in the hidden layers act as memory 

units, retaining outputs from prior steps to inform subsequent predictions. In an RNN, 

data points from earlier steps are continually utilized for each prediction, making it a 

recurrent process. While the network can store a limited sequence of past outputs, it 

is not well-suited for handling longer sequences.  

How Recurrent Neural Networks Work? 

Recurrent networks have a design similar to feedforward neural networks, but they 

also use loops to circle back through the hidden layers with the data and return an 

output. Context layers are specific hidden layers that are occasionally included in 

recurrent neural networks. These layers give feedback to the neural network and aid 

in its accuracy.  

Benefits: 

● Memory Retention: RNNs are perfect for time-series forecasting, speech 

recognition, and natural language processing because they can remember past 

information in sequences. 

● Sequential Data: Ideal for applications such as handwriting recognition and 

language modeling where the context of earlier inputs is important. 
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● Recurrent Connections: These enable RNNs to modify the current output by 

utilizing data from earlier time steps. 

Challenges: 

● Vanishing/Exploding Gradient Problem: The gradients can either become 

too small (vanish) or too large (explode), during backpropagation through time, 

making training difficult. 

● Long-Term Dependencies: Standard RNNs struggle with learning long-term 

dependencies (addressed to some extent by LSTMs and GRUs). 

● Training Complexity: RNNs generally take longer to train compared to FNNs 

and CNNs due to their recurrent structure. 

Understanding the Differences in Neural Networks 
Neural networks come in various architectures, each designed to handle different 

types of data and tasks. Table 1.1 gives a comparison between FNN, CNN and RNN. 

Category Feedforward Neural 
Networks (FNN) 

Convolutional Neural 
Networks (CNN) 

Recurrent Neural 
Networks (RNN) 

Definition 

   

A type of artificial 

neural network where 

information moves in 

only one direction, 

from input to output. 

   

A class of deep neural 

networks most 

commonly applied to 

analyzing visual imagery. 

   

A class of artificial 

neural networks 

where connections 

between nodes form 

a directed graph 

along a temporal 

sequence.  

Data Type 

   

Suitable for structured 

data, where inputs do 

not have temporal or 

spatial dependencies. 

Suitable for spatial data 

like images. 

   

Suitable for temporal 

data (sequential 

data), such as time-

series or text.  
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Structure 

   

Simple feed-forward 

architecture with no 

feedback connections. 

   

A feed-forward artificial 

neural network with 

variations designed  to 

use minimal amounts of 

preprocessing, using 

convolutional layers 

RNNs have internal 

memory (feedback 

connections) that 

allow them to process 

arbitrary sequences 

of inputs. 

Power 
Comparison 

   

FNN is generally 

simpler but less 

powerful compared to 

CNN and RNN in 

handling complex 

data types. 

CNN is considered to be 

more powerful than RNN 

for spatial data analysis.

  

RNN has less feature 

compatibility 

compared to CNN but 

is superior in 

sequential 

processing. 

Input/Output 
Handling 

   

Typically handles 

fixed-size inputs and 

outputs, lacking the 

flexibility of RNNs for 

sequential or variable 

data. 

Takes fixed-size inputs 

and generates fixed-size 

outputs.  

Can handle arbitrary 

input/output lengths, 

making them flexible 

for sequence data. 

Memory 
Retention 

   

No memory retention; 

each input is treated 

independently of 

others. 

No memory capability; 

processes data 

independently of 

previous inputs. 

Retains memory of 

previous inputs due to 

its recurrent 

connections, useful 

for time-dependent 

patterns.  

Applications 

   

Binary Classification, 

Multiclass 

Classification, 

Regression Tasks, 

Anomaly Detection, 

and recommendation 

Systems.  

Image Recognition, 

Image Classification, 

Medical Image Analysis, 

Face Detection, and 

Computer Vision. 

Text Translation, 

Natural Language 

Processing (NLP), 

Sentiment Analysis, 

Speech Recognition. 
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Table 1.1 FNN vs. CNN vs. RNN 

 
Check Your Progress-2 

a) Data in a feedforward neural network flows in a looped or cyclic manner. 

(True/False) 

b) The main challenge for RNN is gradient vanishing and exploding. (True/False) 

c) CNN is most suitable for tasks like image recognition and classification. 

(True/False) 

d) Pooling layers in CNNs are used to increase the spatial dimensions of the 

feature maps. (True/False) 

e) The purpose of the ReLU activation function in CNNs is to introduce non-

linearity and enable the network to learn complex patterns. (True/False) 

 
1.4 LET US SUM UP 
In this unit, we explored how Artificial Neural Networks (ANNs) have transformed the 

field of artificial intelligence, providing enhanced performance in numerous AI 

applications. ANNs, composed of interconnected layers of neurons, emulate the 

structure of the human brain's neural networks. Each neuron processes input data, 

which is then passed through activation functions to introduce non-linearity. These 

networks are made up of input, hidden, and output layers that collaborate to make 

predictions. The training process involves adjusting neuron weights through 

backpropagation to reduce errors and improve overall performance. Feedforward 

neural networks (FNNs), convolutional neural networks (CNNs), and recurrent neural 

networks (RNNs) are examples of neural network designs. Depending on the type of 

data and the purpose, each design offers unique advantages and disadvantages. 

1.5 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 

1-a to receive initial data for processing 

1-b to perform computations and learn complex patterns 

1-c the importance of inputs in processing 
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1-d Backpropagation 

1-e Output Layer 

1-f To introduce non-linearity in the output 

2-a False 

2-b True 

2-c True 

2-d False 

2-e True 

 
1.6 ASSIGNMENTS 
 
● What is the importance of artificial neural networks? 

● What are the most important advantages of using neural networks? 

● Explain the architecture of an Artificial Neural Network (ANN). Include a description 

of the different layers and their functions. 

● Discuss the role of activation functions in ANNs. Why is it important to introduce 

non-linearity in the network? Provide examples of common activation functions. 

● What are different layers of neural network? 

● Differentiate between CNN and RNN. 

● Explain different layers of CNN. 
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Unit-2:  Activation Functions 
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2.0. Learning Objectives 

2.1. Introduction 

2.2. Need of Activation Function 

2.3. Need for Nonlinearity in Neural Network 

2.4. Types of Activation Functions 

2.5. Choosing right activation function 

2.6. Let us sum up 

2.7. Check your Progress: Possible Answers 

2.8. Assignment 
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2.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 

● Understand the role of activation functions. 

● Explore different types of activation functions. 

● Learn Strategies for choosing the right activation function. 

2.1 INTRODUCTION 
Activation functions are integral to artificial neural networks, it transforms the input 

signals into output signals passed on to subsequent layers. In a neural network, the 

output of each layer is determined by computing the weighted sum of inputs, followed 

by applying an activation function. This output is then used as input for the following 

layer. The accuracy of neural networks in making predictions is influenced by both the 

number of layers and the type of activation function utilized. While no strict guidelines 

exist regarding the minimum or maximum number of layers, it is generally 

recommended to use at least two layers to achieve meaningful outcomes. 

 
2.2 NEED OF ACTIVATION FUNCTION 
An activation functions are essential to the functioning of neural networks, as they 

introduce the capacity to learn and model complex data patterns. Without them, neural 

networks would be reduced to simple linear regression models, offering limited ability 

to handle intricate real-world data. Activation functions enable non-linearity, allowing 

the network to capture complex relationships within the data and perform more 

advanced tasks. By controlling whether neurons should fire or not, activation functions 

simulate decision-making processes, improving the network's ability to generalize 

predictions. 

Moreover, activation functions influence how efficiently a neural network is trained. 

The choice of activation function determines the gradient in backpropagation, which 

affects weight adjustments during learning. Various activation functions, such as 

ReLU, sigmoid, and tanh, have distinct properties that cater to different types of neural 

networks. The right activation function not only enhances feature learning but also 

helps prevent common training issues like vanishing or exploding gradients, which can 

impede the learning process. 
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2.3 NEED FOR NONLINEARITY IN NEURAL NETWORK  
Functions with a degree greater than one, which exhibit curvature when plotted, are 

referred to as non-linear functions. For a neural network to effectively learn, represent, 

and process various forms of data, it must be capable of handling any arbitrary, 

complex function that maps inputs to outputs. Neural networks are also recognized as 

Universal Function Approximators, meaning they have the ability to compute and learn 

any given function. Essentially, any conceivable process can be represented as a 

functional computation within neural networks. 

To enable neural networks to dynamically extract finer details and complex information 

from data, an activation function is necessary. This activation function introduces non-

linearity, allowing the network to model the non-linear relationships between inputs 

and outputs, which is crucial for representing the complex functional mappings in real-

world data. By incorporating non-linear activation functions, neural networks can 

perform non-linear transformations from input to output. Additionally, an activation 

function must be differentiable, as this allows the implementation of backpropagation 

to compute errors or losses concerning the weights. This enables the network to 

optimize the weights using techniques like gradient descent, ultimately reducing errors 

and improving performance. 

 
Check Your Progress-1 
a. What does the term ‘activation function’ refer to in neural networks? 

a) A function that scales input data 

b) A function that determines the output of a neuron 

c) A function that initializes weights 

d) A function that optimizes the model 

b. What is the primary purpose of an activation function in a neural network? 

a) To adjust the learning rate of the network 

b) To transform the input data to a normalized form 

c) To introduce nonlinearity to the network, enabling it to learn complex 

patterns 

d) To reduce the size of the neural network 
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c. In practice, what is the most accurate description for activation functions used 

in neural networks? 

a) They must be differentiable. 

b) They can be non-differentiable, but only for a small amount of points 

c) They can be any continuous functions. 

d) They must be non-linear to be learnable. 

 
2.4 TYPES OF ACTIVATION FUNCTIONS 
The key elements within a neural network are its net inputs, which undergo processing 

and are transformed into outputs through a scalar-to-scalar transformation, often 

referred to as the activation function, transfer function, or threshold function. 

Squashing functions are used to confine the output of a neuron within a specific range 

and limit the signal's amplitude. These functions effectively compress the output signal 

to a finite value. 

The Activation Functions can be basically divided into 3 types: 

1. Binary Step Function  

2. Linear Activation Function 

3. Non-linear Activation Functions 

1. Binary Step Function 

The most basic activation function available is the Binary Step Function, which is 

implemented in Python using basic if-else expressions. It is common practice to 

employ binary activation functions while developing binary classifiers. However, in the 

event that the target carriage has many classes, the binary step function is not 

applicable. 

 

Also, the gradient of the binary step function is zero which may cause a hindrance in 

back propagation step i.e if we calculate the derivative of f(x) with respect to x, it is 

equal to zero. 

 

Mathematically the binary step function can be represented as shown herewith: 
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𝑓(𝑥) = 0 𝑓𝑜𝑟 𝑥 < 0   

𝑓(𝑥) = 1 𝑓𝑜𝑟 𝑥 ≥ 0 
Figure 2.1 is the visual representation of the binary step function. 

 

 
Figure 2.1:  Binary Step Function 

2. Linear Activation Function 

When data scientists want the output of a neural network to be identical to the input 

signal, they employ linear activation functions, sometimes referred to as identity 

functions. Internal layers of a neural network do not apply this activation function 

because identity is differentiable and, like a train moving through a station without 

stopping, it does not alter the signal in any way.  

This may not seem particularly helpful in most situations, but it is when you want your 

neural network's outputs to be continuous instead of discrete or changed. Nothing 

declines, and the data does not converge. The layers in a neural network would 

collapse into one if this activation function were applied to each layer. Therefore, it 

isn't particularly helpful unless you really need it or the successive concealed layers 

have different activation functions.  

Mathematically it can be represented as shown herewith: 

𝑓(𝑥) = 𝑥 
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Figure 2.2 is the visual representation of the linear activation function. 

 
Figure 2.2: Linear Activation Function 

However, a linear activation function has two major problems : 

● It’s not possible to use backpropagation as the derivative of the function is a 

constant and has no relation to the input x.  

● All layers of the neural network will collapse into one if a linear activation 

function is used. No matter the number of layers in the neural network, the last 

layer will still be a linear function of the first layer. So, essentially, a linear 

activation function turns the neural network into just one layer. 

3. Non-linear Activation Functions 
A linear regression model is all that the linear activation function above represents. 

This limits the model's ability to create complex mappings between the network’s 

inputs and outputs.  

The constraints of linear activation functions are addressed by non-linear activation 

functions. 

● Given that the derivative function is now connected to the input, they permit 

backpropagation, which makes it feasible to determine which input neuron 

weights are most suited for making predictions. 

● As a result of the input being carried via many layers in a non-linear fashion, 

they enable the stacking of numerous layers of neurons. Any output can be 

represented in a neural network as a functional computation. 
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Non-linear activation functions are mainly divided basis on their range or curves as 

Sigmoid, Tanh, ReLU, Leaky ReLU, Parametrized ReLU, Exponential Linear Unit, 
Swish, SoftMax, GeLU and SeLU. Let us look at each of them in brief. 

 

1. Sigmoid / Logistic Activation Function 
Sigmoid Activation function is very simple which takes a real value as input and gives 

probability that’s always between 0 or 1. It looks like ‘S’ shape. 

Mathematically it can be represented as: 

                            𝑓(𝑥) = 1 / 1 + 𝑒−𝑥 
 

The sigmoid/logistic activation function is one of the most used functions for the 

following reasons: 

● It is commonly used for models where we have to predict the probability as an 

output. Since probability of anything exists only between the range of 0 and 1, 

sigmoid is the right choice because of its range. 

● The function is differentiable and provides a smooth gradient, i.e., preventing 

jumps in output values. This is represented by an S-shape of the sigmoid 

activation function. 

 

Figure 2.3 is the visual representation of the Sigmoid Activation Function and Its 

Derivative. 

 

 
Figure 2.3: Sigmoid Activation Function and Its Derivative 
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The following paragraph describes the sigmoid function's limitations: 

● The derivative of the function is 𝑓′(𝑥) = 𝑓(𝑥) ∗ (1 − 𝑓(𝑥)) 

● According to the above figure, the gradient values are only significant for the 

range -3 to 3, and the graph gets much flatter in other regions.  

● It implies that for values greater than 3 or less than -3, the function will have very 

small gradients. The network experiences the Vanishing Gradient Problem and 

stops learning when the gradient value gets closer to zero. 

● Around zero the logistic function's output is not symmetrical. Consequently, 

every neuron's output will have the same sign. As a result, neural network 

training becomes more challenging and unstable. 

 

2. Tanh Function (Hyperbolic Tangent) 
The Tanh function closely resembles the sigmoid or logistic activation function, sharing 

an S-shaped curve. However, a key distinction lies in its output range, which spans 

from -1 to 1. For larger (more positive) input values, the output of Tanh approaches 

1.0, while for smaller (more negative) inputs, the output nears -1.0. 

Mathematically it can be represented as: 

𝑓(𝑥) = (𝑒𝑥 − 𝑒−𝑥 )/( 𝑒𝑥 + 𝑒−𝑥 ) 

 
Figure 2.4 is the visual representation of the Tanh Activation Function and Its 

Derivative. 

 
Figure 2.4: Tanh Activation Function and Its Derivative 
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Advantages of using the Tanh activation function include: 

● Its output is zero-centered, which allows for easier interpretation of the results 

as strongly negative, neutral, or strongly positive. 

● It is commonly used in the hidden layers of neural networks because its output 

values range from -1 to 1. This property helps ensure that the mean of the hidden 

layer is close to zero, facilitating better data centering and simplifying learning 

for subsequent layers. 

 

Examining the gradient of the Tanh activation function reveals its limitations.  

● Like the sigmoid function, Tanh also suffers from the vanishing gradient problem.  

● Additionally, the gradient of the Tanh function is steeper compared to that of the 

sigmoid function. 

 
Note:  
Although both sigmoid and Tanh functions experience the vanishing gradient 

problem, Tanh has the advantage of being zero-centered, allowing gradients to 

move more freely without being constrained in a specific direction. As a result, Tanh 

nonlinearity is generally preferred over sigmoid nonlinearity in practice. 

 

3. ReLU Function 
ReLU, which stands for Rectified Linear Unit, may seem like a linear function, but it 

has a derivative, enabling backpropagation and making it computationally efficient. 

One notable aspect of ReLU is that it does not activate all neurons simultaneously. 

Neurons become deactivated only when the output of the linear transformation is less 

than zero. 

 

Mathematically it can be represented as: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 
 

The advantages of using ReLU as an activation function include: 

● ReLU is more computationally efficient than sigmoid and Tanh functions 

because only a subset of neurons is activated at any given time. 

● Its linear, non-saturating nature speeds up the convergence of gradient descent 

towards the global minimum of the loss function. 
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Figure 2.5 is the visual representation of the ReLU Activation function. 

 
Figure 2.5: ReLU Activation Function 

 

The limitation faced by this function is: 

● This function encounters a limitation known as the "Dying ReLU" problem. In 

this issue, neurons can become inactive if they consistently output zero for 

certain inputs, effectively "dying" and ceasing to contribute to the learning 

process. This occurs because the gradient becomes zero, preventing any 

further updates to those neurons during training. 

 

Figure 2.6 is the visual representation of the dying ReLU problem. 

 
Figure 2.6: The Dying ReLU Problem 
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4. Leaky ReLU Function 
Leaky ReLU is a modified version of the ReLU function designed to address the Dying 

ReLU problem. It introduces a small positive slope for negative input values, ensuring 

that neurons do not become completely inactive. 

Mathematically it can be represented as: 

𝑓(𝑥) = 𝑥        𝑖𝑓 𝑥 ≥ 0 

𝑓(𝑥) = 𝛼𝑥     𝑖𝑓 𝑥 < 0 
where α is a small positive constant (e.g., 0.05) that defines the slope for negative 

values of x. Figure 2.7 is the visual representation of the Leaky ReLU activation 

function. 

 
Figure 2.7: Leaky ReLU Activation Function 

 

The advantages of using Leaky ReLU as an activation function include: 

● Leaky ReLU helps prevent the Dying ReLU problem by allowing a small 

gradient for negative inputs, keeping neurons active. 

● It maintains non-linearity, which is essential for modeling complex data 

relationships. 

 

The limitations that this function faces include: 

● The predictions may not be consistent for negative input values.  

● The gradient for negative values is a small value that makes the learning of 

model parameters time-consuming. 
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5. Parametrized ReLU 
Parametric ReLU is a variation of the ReLU function designed to address the issue of 

gradients becoming zero for negative input values.  

This function allows the slope of the negative side to be defined by a parameter a. 

During backpropagation, the model learns the optimal value of a for improved 

performance. 

Mathematically it can be represented as: 

𝑓(𝑥) = 𝑚𝑎𝑥(𝑎𝑥, 𝑥) 
Where "a" is the slope parameter for negative values. Figure 2.8 is the visual 

representation of the PReLU activation function. 

 
Figure 2.8: Parametrized ReLU (PReLU) Activation Function 

The advantage of using parameterized ReLU as an activation function include: 

● The parameterized ReLU function is utilized when the leaky ReLU function 

does not fully address the issue of dead neurons, resulting in relevant 

information not being effectively transmitted to the next layer.  

The limitation that this function faces include: 

● The performance can vary across different problems, depending on the chosen 

value of the slope parameter a. 

 

6. Exponential Linear Unit  
Another variation of ReLU that alters the slope of the function's negative portion is the 

Exponential Linear Unit, or ELU for short. 

In contrast to the leaky ReLU and parametric ReLU functions, which utilize a straight 

line to determine the negative values, ELU uses a log curve. 
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Mathematically it can be represented as: 

𝑓(𝑥) = 𝑥        𝑖𝑓 𝑥 ≥ 0        

   𝑓(𝑥) = 𝛼(𝑒𝑥 − 1)     𝑖𝑓 𝑥 < 0 
 

Figure 2.9 is the visual representation of the Exponential Linear Unit (ELU) Activation 

Function. 

 
 Figure 2.9: Exponential Linear Unit (ELU) Activation Function 

 

ReLU can be effectively replaced with ELU due to the following advantages: 

● ELU becomes smooth slowly until its output equal to -α whereas RELU sharply 

smoothes. 

● The log curve is introduced for negative input values to prevent the dead ReLU 

problem. It facilitates the network's adjustment of weights and biases. 

 

The limitations of the ELU function are as follow: 

● It increases the computational time because of the exponential operation 

included 

● There is no learning of the "a" value. 

● The problem of the exploding gradient 
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7. Swish 
The Swish function is a relatively recent activation function developed by researchers 

at Google. Its unique characteristic is that it is not monotonic, meaning that the 

function's value can decrease even as the input values increase. In certain situations, 

the Swish function has been shown to outperform the ReLU function. 

Mathematically it can be represented as: 

𝑓(𝑥) = 𝑥 ∗  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) 
where the sigmoid function defined as: 

𝑓(𝑥) = 1/(1 + 𝑒−𝑥) 
Thus, the Swish function can also be expressed as: 

𝑓(𝑥) = 𝑥/(1 + 𝑒−𝑥 ) 
Figure 2.10 is the visual representation of the Swish Activation Function. 

 
 Figure 2.10: Swish Activation Function 

Advantages of the Swish activation function over ReLU are as follows: 

● Since Swish is a smooth function, it doesn't change direction suddenly like 

ReLU does when x = 0. Instead, it bends smoothly from 0 to values less than 0 

and back up. 

● The ReLU activation function was wiped out for small negative values. 

Nevertheless, those negative values could still be important for identifying 

underlying patterns in the data. It is a win-win situation because large negative 

numbers are zeroed out for sparsity reasons. 

● The non-monotonous nature of the swish function improves the expression of 

input data and learning weight. 
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8. SoftMax  
The Softmax function can be viewed as a generalization of multiple sigmoid functions. 

While a sigmoid function outputs values between 0 and 1, which can be interpreted as 

probabilities for a binary classification problem, the Softmax function extends this 

concept to multi-class classification. 

In Softmax, each output can be treated as the probability of a particular class given a 

set of data points, ensuring that the sum of all output probabilities equals 1. This allows 

the model to provide a clear probabilistic interpretation of the likelihood of each class, 

making it suitable for tasks involving multiple classes. 

Mathematically it can be represented as: 

𝑓( 𝑥𝑖 ) = 𝑒  𝑥𝑖 / ∑

𝐾

𝑗=1

𝑒  𝑥𝑗  

Figure 2.11 is the visual representation of the Softmax Activation Function. 

 
 Figure 2.11: Softmax Activation Function 

When implementing a neural network for multi-class classification, the output layer 

typically employs the Softmax function to determine class probabilities. The final layer 

will have a number of neurons equal to the number of target classes, and after passing 

through the network, the Softmax function is applied to the raw outputs to produce 

probabilities for each class. This output can then be used to make predictions, 

selecting the class with the highest probability as the model's prediction.  
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9. GeLU 
Top NLP models like as BERT, ROBERTa, and ALBERT are compatible with the 

Gaussian Error Linear Unit (GELU) activation function. The combination of features 

from zoneout, dropout, and ReLUs motivates this activation function. 

Together, ReLU and dropout produce the output of a neuron. ReLU does it 

stochastically by multiplying by zero and deterministically by multiplying the input by 

either zero or one, depending on whether the input value is positive or negative. 

Zoneout is an RNN regularizer that randomly multiplies inputs by one. 

We merge this functionality by multiplying the input by either zero or one which is 

stochastically determined and is dependent upon the input. We multiply the neuron 

input x by  

m ∼ Bernoulli(Φ(x)), where Φ(x) = P(X ≤x), X ∼ N (0, 1) is the cumulative distribution 

function of the standard normal distribution.  

This distribution is chosen since neuron inputs tend to follow a normal distribution, 

especially with Batch Normalization. 

Mathematically it can be represented as: 𝑓(𝑥) = 𝑥𝑃(𝑋 ≤ 𝑥) = 𝑥𝜙(𝑥) 
= 0.5𝑥(1 + 𝑡𝑎𝑛ℎ[√2/𝛱 (𝑥 + 0.044715𝑥3)]) 

or 
𝑓(𝑥) = 0.5𝑥(1 + 𝑒𝑟𝑓(𝑥/√2 ) 

where erf is the error function. Figure 2.12 is the visual representation of the GELU 

Activation Function. 

 
Figure 2.12: GELU Activation Function 

In computer vision, natural language processing, and speech recognition, GELU 

nonlinearity outperforms ReLU and ELU activations and improves performance on all 

tasks. 



180 

10. SeLU 
Scaled Exponential Linear Unit (SeLU), which was defined in self-normalizing 

networks, handles internal normalization, meaning that every layer maintains the 

variance and mean from the layers before it. This normalization is made possible by 

SeLU, which modifies the variance and mean. 

 

SeLU has both positive and negative values to shift the mean, which was impossible 

for ReLU activation function as it cannot output negative values. 

To modify the variance, gradients can be employed. To raise it, the activation function 

requires a region with a gradient greater than one. 

 

Mathematically it can be represented as: 

𝑓(𝑥) = 𝜆𝛼(𝑒𝑥 − 1)     𝑓𝑜𝑟 𝑥 < 0 

𝑓(𝑥) = 𝜆𝑥                    𝑓𝑜𝑟 𝑥 ≥ 0 
SeLU has values of α and  λ predefined. Figure 2.13 is the visual representation of the 

SeLU Activation Function. 

 

 
Figure 2.13: SELU Activation Function 

SELU is a relatively newer activation function and needs more papers on architectures 

such as CNNs and RNNs, where it is comparatively explored. 
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Table 2.1 lists all the activation functions discussed along with their derivatives. 

Activation 
Function 

Equation Derivative 

Linear 𝑓(𝑥) = 𝑥 𝑓′(𝑥) = 1 

Sigmoid 𝑓(𝑥) = 1 / 1 + 𝑒−𝑥 𝑓′(𝑥) = 𝑓(𝑥) ∗ (1 − 𝑓(𝑥)) 

TanH 𝑓(𝑥) = (𝑒𝑥 − 𝑒−𝑥 )/( 𝑒𝑥

+ 𝑒−𝑥 ) 
𝑓′(𝑥) = 1 − 𝑓(𝑥)2 

ReLU 
(Rectified 
Linear Unit) 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 𝑓′(𝑥) = 1   𝑖𝑓 𝑥 ≥ 0 
𝑓′(𝑥) = 0   𝑖𝑓 𝑥 < 0 

Leaky 
ReLU 

𝑓(𝑥) = 𝑥        𝑖𝑓 𝑥 ≥ 0 
𝑓(𝑥) = 𝛼𝑥     𝑖𝑓 𝑥 < 0                                                        
where α is a small constant 
(e.g., 0.01) 

𝑓′(𝑥) = 1      𝑖𝑓 𝑥 ≥ 0 
𝑓′(𝑥) = 𝛼    𝑖𝑓 𝑥 < 0 

PReLU 𝑓(𝑥) = 𝑚𝑎𝑥(𝑎𝑥, 𝑥) or 
𝑓(𝑥) = 𝑥        𝑖𝑓 𝑥 ≥ 0 

𝑓(𝑥) = 𝑎𝑥     𝑖𝑓 𝑥 < 0                                                        
where a is a learnable 
parameter 

𝑓′(𝑥) = 1      𝑖𝑓 𝑥 ≥ 0 
𝑓′(𝑥) = 𝑎    𝑖𝑓 𝑥 < 0 

Exponential 
Linear Unit 
(ELU) 

𝑓(𝑥) = 𝑥        𝑖𝑓 𝑥 ≥ 0 
𝑓(𝑥) = 𝛼(𝑒𝑥 − 1)     𝑖𝑓 𝑥 < 0 

where α is a constant   
(e.g., 1) 

𝑓′(𝑥) = 1      𝑖𝑓 𝑥 ≥ 0 
𝑓′(𝑥) = 𝑓(𝑥)  + 𝛼    𝑖𝑓 𝑥 < 0 

Swish 𝑓(𝑥) = 𝑥/(1 + 𝑒−𝑥 ) 𝑓′(𝑥) = 𝑓(𝑥) + 𝜎(𝑥) ∗ (1 − 𝑓(𝑥))   
where σ(x) is the Sigmoid function 

SoftMax 
𝑓( 𝑥𝑖 ) = 𝑒  𝑥𝑖 / ∑

𝐾

𝑗=1

𝑒  𝑥𝑗  
𝑓′( 𝑥𝑖 ) = 𝑓( 𝑥𝑖 ) ∗ (1 − 𝑓( 𝑥𝑖 ))  

for each output in multi-class 
probability distribution 

Gaussian 
Error 
Linear Unit 
(GeLU) 

𝑓(𝑥) = 0.5𝑥(1 + 𝑒𝑟𝑓(𝑥/√2 ) 𝑓′(𝑥) ≈ 0.5(1 + 𝑒𝑟𝑓(𝑥/√2 )

+  𝑥𝑒−𝑥2 /2   / √2𝛱 ) 

Scaled 
Exponential 
Linear Unit 
(SELU) 

𝑓(𝑥) = 𝜆𝛼(𝑒𝑥 − 1) 𝑓𝑜𝑟 𝑥 < 0 
𝑓(𝑥) = 𝜆𝑥              𝑓𝑜𝑟 𝑥 ≥ 0 

𝑓′(𝑥) = 𝑓(𝑥) + 𝜆𝛼     𝑓𝑜𝑟 𝑥 < 0 
   𝑓′(𝑥) = 𝜆                      𝑓𝑜𝑟 𝑥 ≥ 0 

Table 2.1: Activation Functions and their Derivatives 
Table 2.2 gives the pros and cons of activation functions discussed.     
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Activation 
Function  

Pros Cons 

Linear 
 

Simple and useful for 
regression; direct 
proportionality between input 
and output. 

Lacks non-linearity, so complex 
patterns can't be captured; may 
cause deep networks to act 
linearly. 

Sigmoid 
  
  

Maps input to a 0–1 range, 
making it useful in binary 
classification problems. 

Prone to vanishing gradients, 
slowing training in deeper layers. 
    

Tanh 
  
  

Centered around zero, 
reducing bias in activation; 
stronger  gradient than 
Sigmoid. 

Still affected by vanishing 
gradients, slowing convergence for 
high values.  

ReLU 
(Rectified 
Linear Unit) 

Computationally efficient; 
mitigates vanishing gradient 
issue; faster convergence. 

Can result in dead neurons 
(permanent zero output) when 
inputs are non-positive.   

Leaky ReLU 
 

Provides a small gradient for 
negative inputs, reducing the 
likelihood of dead neurons. 

May result in instability if the 
negative slope (α) is too high; 

requires fine-tuning.  
Parametric 
ReLU 
(PReLU) 
  

Adaptive negative slope, 
learning the best parameter for 
each neuron. 

Higher computational cost due to 
additional parameters; may risk 
 overfitting.   

Exponential 
Linear Unit 
(ELU) 

Avoids dead neuron issue by 
allowing small negative values; 
helps gradients stay strong. 

More computationally intensive; 
requires tuning of the α parameter. 

Swish 
  

Enhances learning in deeper 
models; combines the 
advantages of Sigmoid and 
ReLU functions.   

Computationally heavier than 
ReLU; benefits may be minimal for 
shallow networks. 

SoftMax 
 

Converts outputs to 
probabilities for multi-class 
classification tasks. 

Sensitive to outliers; gradients may 
saturate for large inputs,  slowing 
optimization.   

Gaussian 
Error Linear 
Unit (GeLU) 

Used in advanced 
architectures; combines 
smoothness with probabilistic 
properties.  

Complex to compute;    may 
require specialized functions (e.g., 
error function) in implementation.
  

Scaled 
Exponential 
Linear Unit 
(SELU) 

Enables self-normalization, 
preserving stable activations; 
beneficial for deep networks. 

Requires specific parameters; 
performance may vary on non-
scaled or non-centered data  

Table 2.2: Pros and Cons of Activation Functions 
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2.5 CHOOSING RIGHT ACTIVATION FUNCTION 
 

To achieve better performance and minimize errors in neural networks, several factors 

must be taken into account, such as the number of hidden layers, training techniques, 

hyperparameter tuning, and the selection of an appropriate activation function. Among 

these, the activation function is one of the most critical elements. Choosing the right 

activation function for a specific task can be a challenging process that often requires 

extensive research. There is no universal rule for selecting an activation function, as 

the choice is highly dependent on the task at hand. Different activation functions come 

with their own advantages and disadvantages, and the best one depends on the 

design of the system.  

 

For example,  

● sigmoid functions tend to work well in classification tasks.  

● However, both sigmoid and tanh functions are avoided in certain cases due to 

the vanishing gradient problem, where gradients approach zero, slowing down 

the learning process. T 

● The ReLU function is the most commonly used activation function and typically 

outperforms others in many scenarios.  

● When facing issues like dead neurons in the network, leaky ReLU can be 

applied as an alternative.  

● ReLU, however, should only be used in hidden layers and not in the output 

layer.  

 

Studies have shown that both sigmoid and tanh functions are not ideal for hidden 

layers, as their slopes become negligible for large or small inputs, slowing down 

gradient descent. ReLU, with a derivative of 1, is often the preferred choice for hidden 

layers, and leaky ReLU can be used when zero derivatives are encountered.  

 

Selecting an activation function that approximates the desired function efficiently and 

enables faster training is also essential for improving model performance. 
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Check Your Progress-2 
a. The Sigmoid Activation function f(x) is defined as: 

a) 𝑓(𝑥) = 1 /𝑒−𝑥 + 𝑒𝑥 

b) 𝑓(𝑥) = 𝑥 ∗ 𝑒𝑥 

c) 𝑓(𝑥) = 1 / 1 + 𝑒𝑥 

d) 𝑓(𝑥) = 1 / 1 + 𝑒−𝑥 

b. Which activation function is commonly used in the hidden layers of a deep 

neural network? 

a) ReLU 

b) Sigmoid 

c) Tanh 

d) Softmax 

c. Which of the following functions can be used as an activation function in the 

output layer if we wish to predict the probabilities of n classes (p1, p2..pk) such 

that sum of p over all n equals to 1? 

a) ReLU 

b) Sigmoid 

c) Tanh 

d) Softmax 

d. Sigmoid and tanh activation functions cannot be with many layers due to the 

____________ problem. 

e. __________ function overcomes the vanishing gradient problem, allowing 

models to learn faster and perform better 

f. __________ Functions are most often used as the output of a classifier, to 

represent the probability distribution over n different classes 

 
 

2.6 LET US SUM UP 
 

In this unit we have discussed Activation Functions which are essential components 

in neural networks, transforming inputs to meaningful outputs for each layer. This 

process adds nonlinearity, making the network better at recognizing complex data 

patterns. Without it, the network would just act like a basic linear model and miss 

important details in data. We explored different types of activation functions—such as 
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Sigmoid, Tanh, and ReLU - each with its own properties. Choosing the right activation 

function is critical and often depends on the data and the network's design, making it 

important to experiment to find the best option for improving accuracy. 

 
2.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 

 
    1-a A function that determines the output of a neuron 

    1-b To introduce nonlinearity to the network, enabling it to learn complex patterns 

    1-c  They must be differentiable  

    2-a  𝑓(𝑥) = 1 / 1 + 𝑒−𝑥 

    2-b  ReLU 

    2-c Softmax 

    2-d vanishing gradient problem 

    2-e ReLU 

    2-f  Softmax 

 

2.8 ASSIGNMENTS 
 
● Explain what an activation function is and its purpose in a neural network. 

● Why is nonlinearity important in neural networks? Describe what would happen if 

only linear functions were used. 

● List three common activation functions. Describe each one, including when and 

why it is typically used in neural networks. 

● What factors should be considered when selecting an activation function for a 

neural network? 
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Unit-3: Backpropagation and 
Optimization 

 
Unit Structure 
 

3.0. Learning Objectives 

3.1. Introduction 

3.2. Backpropagation : Understanding the Process,  

3.3. Optimizer 

3.4. A Model-Optimization Algorithm 

3.5. Gradient Descent 

3.6. Stochastic Gradient Descent (SGD) 

3.7. Mini-batch Gradient Descent 

3.8. AdaGrad (Adaptive Gradient Algorithm) 

3.9. RMSprop (Root Mean Square Propagation) 

3.10. Adam (Adaptive Moment Estimation) 

3.11. Let us sum up 

3.12. Assignment 

3.13. Solution Check your Progress 

 
  

3 
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3.0 LEARNING OBJECTIVE 
 

After studying this unit student should be able to: 

● Understand the Backpropagation Process. 

● Derive and analyze the mathematical equations governing backpropagation. 

● Identify Gradient Descent Variants. 

● Compare and evaluate various optimization techniques, such as SGD, 

RMSProp, Adam, and Adagrad, based on their effectiveness and efficiency. 

3.1 INTRODUCTION 
 

An effective technique for training an ANN was found in 1986. This approach 

propagates errors; that is, the discrepancy between the output layer's values and the 

expected values backward from the output layer to the layers that came before it. 

Backpropagation, or propagating the errors backward to the preceding layers, is the 

name given to the algorithm that uses this technique. 

The backpropagation technique can be used in feed forward networks with multiple 

layers. The goal of this supervised learning approach is to minimize the output signal's 

deviation from the desired output by continuously modifying the weights of the 

connected neurons. There are several iterations, or epochs, in this process. Every 

epoch has two distinct phases forward and backward: 

● In the forward phase, signals move through the hidden layers from the input 

layer's neurons to the output layer's neurons. Throughout the flow, the 

activation functions and connectivity weights are utilized. The output signals are 

produced in the output layer. 

● In the backward phase the expected value and the output signal are 

compared. From the output to the layers before it, the calculated errors are 

propagated backwards. The connectivity weights between the layers are 

modified using the propagated back faults. 
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3.2 BACKPROPAGATION : UNDERSTANDING THE 
PROCESS 
The figure 3.1 shows the workflows of the backpropagation process which includes 

various computation activities such as: 

● Find Error rate: Here we need to calculate the model output with actual output 

● Minimum Error: Cross verifying whether the error is minimized or not. 

● Update the Weights: The error is more than the acceptable range then, update 

the weights and biases. After that, again check the error. Repeat the process 

until the error becomes low. 

● Neural Network Model: Once the error rate was acceptable range then the 

model is ready to use for forecasting the data 

 

Figure 3.1:Process of backpropagation 

Working of Backpropagation Algorithm 

The Forward Pass and the Backward Pass are the two primary steps of the 

Backpropagation algorithm. The forward pass involves feeding the input layer with the 

data. Figure 3.2 shows the general working of backpropagation algorithm. 
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Figure 3.2: Working of Backpropagation Algorithm 

It passes these inputs to hidden layers along with their corresponding weights. The 

output of h1 is used as the input for h2 in a network with two hidden layers (h1 and h2, 

as seen in figure 3.2). Before applying an activation function, a bias is added to the 

weighted inputs. 

An activation function such as ReLU (Rectified Linear Unit), which returns the input if 

it is positive and 0 otherwise, is applied by each hidden layer. By adding non-linearity, 

the model is able to discover intricate linkages within the data. The output layer 

receives the outputs from the final hidden layer and uses an activation function, like 

softmax, to transform the weighted outputs into classification probabilities. 

The backward pass modifies the weights and biases in the network by propagating the 

error, the discrepancy between the expected and actual output backwards. The Mean 

Squared Error (MSE), which is calculated using the formula as follows, it is a popular 

technique for calculating errors: 

MSE = (Predicted Output − Actual Output)2 

After calculating the error, the network uses gradients which are determined by the 

chain rule to modify weights. These gradients show the amount that each bias and 
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weight should be changed in order to reduce the error in the subsequent iteration. In 

order to make sure the network learns and gets better at what it does, the backward 

pass keeps going layer by layer. During backpropagation, the activation function is 

essential in calculating these gradients through its derivative. Figure 3.3 shows an 

example of a neural network. 

Example: 

 

Figure 3.3: Example of A Neural Network  

Above example of a neural network is self-explanatory. There are two units in the Input 

Layer, two units in the Hidden Layer and two units in the Output Layer. The w1, w2, 

w2, …, w8 represent the respective weights. The b1 and b2 are the biases for Hidden 

Layer and Output Layer, respectively. 

We'll be passing two inputs i1 and i2, and perform a forward pass to compute total 

error and then a backward pass to distribute the error inside the network and update 

weights accordingly. 

Before getting started, let us deal with two basic concepts which should be sufficient 

to comprehend this point. 
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Peeking inside a single neuron as shown in figure 3.4 

 

Figure 3.4: Inside h1 (first unit of the hidden layer) 

Two actions take place within a unit: (i) the weighted sum is computed, and (ii) an 

activation function is used to squash the weighted sum. Until the subsequent layer is 

an output layer, the activation function's result serves as an input. The Sigmoid 

function, often known as the logistic function, is used as the activation function. In 

essence, the Sigmoid function restricts an input value between 0 and +1. However, 

the two actions mentioned above take place inside a neural network unit. Assuming 

that the input layer's linear function yields the same value as the input, we can 

proceed. 

Chain Rule in Calculus 

If we have functions y = f ( u ) and u = g ( x ) then we can write the derivative of y as: 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
∗

𝑑𝑢

𝑑𝑥
   

The Forward Pass 

Each unit of a neural network performs two operations: compute weighted sum and 

process the sum through an activation function. The outcome of the activation function 

determines if that particular unit should activate or become insignificant. 
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Let’s get started with the forward pass, the values of all the parameters is as shown in 

figure 3.4. 

For h1, 

𝑠𝑢𝑚ℎ1 = 𝑖1 ∗  𝑤1 + 𝑖2 ∗  𝑤3 + 𝑏1 

𝑠𝑢𝑚ℎ1 = 0.1 ∗  0.1 +  0.5 ∗ 0.3 +  0.25 =  0.41 

Now pass this weighted sum through the logistic function (sigmoid function) so as to 

squash the weighted sum into the range (0 and +1). The logistic function is an 

activation function for our example neural network. 

𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 =
1

1 + 𝑒−𝑠𝑢𝑚ℎ1
 

𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 =
1

1 + 𝑒−0.41
= 0.60108 

 

Similarly, for h2, we perform the weighted sum operation sumh2 and compute the 

activation value outputh2outputh2. 

𝑠𝑢𝑚ℎ2 = 𝑖1 ∗  𝑤2 + 𝑖2 ∗  𝑤4 + 𝑏1 

𝑠𝑢𝑚ℎ2 = 0.1 ∗  0.2 +  0.5 ∗ 0.4 +  0.25 =  0.47 

𝑜𝑢𝑡𝑝𝑢𝑡ℎ2 =
1

1 + 𝑒−0.47
= 0.61538  

Now, 𝑜𝑢𝑡𝑝𝑢𝑡ℎ1  and 𝑜𝑢𝑡𝑝𝑢𝑡ℎ2 will be considered as inputs to the next layer. 

For o1, 

𝑠𝑢𝑚𝑜1 = 𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 ∗  𝑤5 +  𝑜𝑢𝑡𝑝𝑢𝑡ℎ2  ∗  𝑤6 + 𝑏2 = 1.01977 

𝑜𝑢𝑡𝑝𝑢𝑡𝑜1 =
1

1 + 𝑒−𝑠𝑢𝑚𝑜1
= 0.73492  

 

For o2, 

𝑠𝑢𝑚𝑜2 = 𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 ∗  𝑤7 +  𝑜𝑢𝑡𝑝𝑢𝑡ℎ2  ∗  𝑤8 + 𝑏2 = 1.26306 

𝑜𝑢𝑡𝑝𝑢𝑡𝑜2 =
1

1 + 𝑒−𝑠𝑢𝑚𝑜2
= 0.77955  

  



193 

Computing the total error 

We started off supposing the expected outputs to be 0.05 and 0.95 respectively for 

𝑜𝑢𝑡𝑝𝑢𝑡𝑜1  and 𝑜𝑢𝑡𝑝𝑢𝑡𝑜2  Now we will compute the errors based on the outputs received 

until now and the expected outputs. 

Use the following error formula, 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 −  𝑜𝑢𝑡𝑝𝑢𝑡)2  

To compute 𝐸𝑡𝑜𝑡𝑎𝑙 , we need to first find out the respective errors at o1 and o2. 

𝐸1 = ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡1  −  𝑜𝑢𝑡𝑝𝑢𝑡𝑜1)2  

𝐸1 = ∑
1

2
(0.05 − 0.73492 )2 = 0.23456  

Similarly, for E2, 

𝐸2 = ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡2  −  𝑜𝑢𝑡𝑝𝑢𝑡𝑜2)2  

𝐸1 = ∑
1

2
(0.95 − 0.77955 )2 = 0.01452  

Therefore, 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸1 + 𝐸2 = 0.24908  

The Backpropagation 

The aim of backpropagation (backward pass) is to distribute the total error back to the 

network so as to update the weights in order to minimize the cost function (loss). The 

weights are updated in such a way that when the next forward pass utilizes the 

updated weights, the total error will be reduced by a certain margin (until the minima 

is reached). 

For weights in the output layer (w5, w6, w7, w8) 

For w5, 
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Let’s compute how much contribution w5 has on E1. If we become clear on how w5 is 

updated, then it would be really easy for us to generalize the same to the rest of the 

weights. If we look closely at the example neural network, we can see that E1 is 

affected by outputo1,outputo1 is affected by sumo1, and sumo1 is affected by w5. It’s 

time to recall the Chain Rule. 
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤5
=

𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1
∗  

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1

𝑑𝑠𝑢𝑚𝑜1
∗

𝑑𝑠𝑢𝑚𝑜1

𝑑𝑤5
  

Let’s deal with each component of the above chain separately. 

Component 1: partial derivative of Error w.r.t. Output 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 −  𝑜𝑢𝑡𝑝𝑢𝑡)2  

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡1  −  𝑜𝑢𝑡𝑝𝑢𝑡𝑜1)2 +

1

2
(𝑡𝑎𝑟𝑔𝑒𝑡2  −  𝑜𝑢𝑡𝑝𝑢𝑡𝑜2)2   

 

Therefore, 

 
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1
= 2 ∗

1

2
∗ (𝑡𝑎𝑟𝑔𝑒𝑡1 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑜1) ∗ −1 = 𝑜𝑢𝑡𝑝𝑢𝑡𝑜1− 𝑡𝑎𝑟𝑔𝑒𝑡1  

Component 2: partial derivative of Output w.r.t. Sum 

The output section of a unit of a neural network uses non-linear activation functions. 

The activation function used in this example is Logistic Function. When we compute 

the derivative of the Logistic Function, we get: 

𝜎(𝒙) =
1

1+ 𝑒−𝑥 

𝒅

𝒅𝒙
𝝈(𝒙) = 𝝈(𝒙)(𝟏 − 𝝈(𝒙)) 

Therefore, the derivative of the Logistic function is equal to output multiplied by (1 – 

output). 

𝒅𝒐𝒖𝒕𝒑𝒖𝒕𝒐𝟏

𝒅𝒔𝒖𝒎𝒐𝟏
= 𝒐𝒖𝒕𝒑𝒖𝒕𝒐𝟏(𝟏 − 𝒐𝒖𝒕𝒑𝒖𝒕𝒐𝟏) 
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Component 3: partial derivative of Sum w.r.t. Weight 

𝑠𝑢𝑚𝑜1 = 𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 ∗  𝑤5 +  𝑜𝑢𝑡𝑝𝑢𝑡ℎ2  ∗  𝑤6 + 𝑏2 

Therefore, 

𝒅𝒔𝒖𝒎𝒐𝟏

𝒅𝒘𝟓
= 𝒐𝒖𝒕𝒑𝒖𝒕𝒉𝟏 

Putting them together, 

𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤5
=

𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1
∗  

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1

𝑑𝑠𝑢𝑚𝑜1
∗

𝑑𝑠𝑢𝑚𝑜1

𝑑𝑤5
  

𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤5
= [ 𝑜𝑢𝑡𝑝𝑢𝑡𝑜1− 𝑡𝑎𝑟𝑔𝑒𝑡1 ] ∗ [𝒐𝒖𝒕𝒑𝒖𝒕𝒐𝟏(𝟏 − 𝒐𝒖𝒕𝒑𝒖𝒕𝒐𝟏)][𝒐𝒖𝒕𝒑𝒖𝒕𝒉𝟏 ]

𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤5

= 0.68492 ∗ 0.19480 ∗ 0.60108 
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤5
=0.08020 

The new_w5 is, 

𝑛𝑒𝑤𝑤5 = 𝑤5 − 𝑛 ∗
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤5
, where n is learning rate 

𝑛𝑒𝑤𝑤5 = 0.5 − 0.6 ∗ 0.08020 

𝑛𝑒𝑤𝑤5 = 0.45187 

We can proceed similarly for w6,w7,w8. 

For w6, 
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤6
=

𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1
∗  

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1

𝑑𝑠𝑢𝑚𝑜1
∗

𝑑𝑠𝑢𝑚𝑜1

𝑑𝑤6
  

The first two components of this chain have already been calculated. The last 

component 𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤5
= 𝑜𝑢𝑡𝑝𝑢𝑡ℎ2 

𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤6
=0.68492*0.19480*0.61538=0.08211 

 

The new_w6 is, 

𝑛𝑒𝑤𝑤6 = 𝑤6 − 𝑛 ∗
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤6
, where n is learning rate 

𝑛𝑒𝑤𝑤6 = 0.6 − 0.6 ∗ 0.08211 

𝑛𝑒𝑤𝑤6 = 0.55073 

For w7, 
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤7
=

𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜2
∗  

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜2

𝑑𝑠𝑢𝑚𝑜2
∗

𝑑𝑠𝑢𝑚𝑜2

𝑑𝑤7
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The first  component of the above chain Let’s recall how the partial derivative of Error 

is computed w.r.t. Output. 

 
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜2
=  𝑜𝑢𝑡𝑝𝑢𝑡𝑜2 − 𝑡𝑎𝑟𝑔𝑒𝑡2 

 

For the second component, 

 
𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜2

𝑑𝑠𝑢𝑚𝑜2
= 𝑜𝑢𝑡𝑝𝑢𝑡𝑜2(1 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑜2 ) 

For the third component, 

 
𝑑𝑠𝑢𝑚𝑜2

𝑑𝑤7
= 𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 

Putting them together, 
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤7
= −0.17044 ∗ 0.17184 ∗ 0.60108=-0.01760 

 

The new_w7 is, 

𝑛𝑒𝑤𝑤7 = 𝑤7 − 𝑛 ∗
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤7
 

𝑛𝑒𝑤𝑤7 = 0.7 − 0.6 ∗  −0.01760 

𝑛𝑒𝑤𝑤7 = 0.71056 

Proceeding similarly, we get  new_w8=0.81081(with 𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤8
= −0.01802 

For weights in the hidden layer (w1, w2, w3, w4) 

Similar calculations are made to update the weights in the hidden layer. However, this 

time the chain becomes a bit longer. It does not matter how deep the neural network 

goes, all we need to find out is how much error is propagated (contributed) by a 

particular weight to the total error of the network. For that purpose, we need to find the 

partial derivative of Error w.r.t. to the particular weight. Let’s work on updating w1 and 

we’ll be able to generalize similar calculations to update the rest of the weights. 

For w1 (with respect to E1), 
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For simplicity let us compute 𝑑𝐸1

𝑑𝑤1
 and 𝑑𝐸2

𝑑𝑤1
 separately, and later we can add them to 

compute 𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤1
. 

𝑑𝐸1
𝑑𝑤1

=
𝑑𝐸1

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1
=

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1

𝑑𝑠𝑢𝑚𝑜1
∗  

𝑑𝑠𝑢𝑚𝑜1

𝑑𝑜𝑢𝑡𝑝𝑢𝑡ℎ1
∗

𝑑𝑜𝑢𝑡𝑝𝑢𝑡ℎ1

𝑑𝑠𝑢𝑚ℎ1
∗

𝑑𝑠𝑢𝑚ℎ1

𝑑𝑤1
  

 

Let’s quickly go through the above chain. We know that E1 is affected by outputo1, 

outputo1 is affected by sumo1, sumo1 is affected by outputh1, outputh1 is affected by 

sumh1, and finally sumh1 is affected by w1. It is quite easy to comprehend. 

For the first component of the above chain, 

𝑑𝐸1
𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1

= 𝑜𝑢𝑡𝑝𝑢𝑡𝑜1 − 𝑡𝑎𝑟𝑔𝑒𝑡1 

For the third component, 

𝑠𝑢𝑚𝑜1 = 𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 ∗  𝑤5 + 𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 ∗  𝑤6 + 𝑏2   
𝑑𝑠𝑢𝑚𝑜1

𝑑𝑜𝑢𝑡𝑝𝑢𝑡ℎ1
= 𝑤5 

For the fourth component, 
𝑑𝑜𝑢𝑡𝑝𝑢𝑡ℎ1

𝑑𝑠𝑢𝑚ℎ1
= 𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 ∗  (1 − 𝑜𝑢𝑡𝑝𝑢𝑡ℎ1 ) 

for the fifth component, 

𝑠𝑢𝑚ℎ1 = 𝑖1 ∗  𝑤1 + 𝑖2 ∗  𝑤3 + 𝑏1   
𝑑𝑠𝑢𝑚ℎ1

𝑑𝑤1
= 𝑖1 

Putting them all together, 
𝑑𝐸1
𝑑𝑤1

=
𝑑𝐸1

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1
=

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜1

𝑑𝑠𝑢𝑚𝑜1
∗  

𝑑𝑠𝑢𝑚𝑜1

𝑑𝑜𝑢𝑡𝑝𝑢𝑡ℎ1
∗

𝑑𝑜𝑢𝑡𝑝𝑢𝑡ℎ1

𝑑𝑠𝑢𝑚ℎ1
∗

𝑑𝑠𝑢𝑚ℎ1

𝑑𝑤1
  

𝑑𝐸1
𝑑𝑤1

= 0.68492 ∗ 0.19480 ∗ 05 ∗ 0.23978 ∗ 0.1 = 0.00159  

similarly, for w1(with respect to E2), 
𝑑𝐸2
𝑑𝑤1

=
𝑑𝐸2

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜21
=

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑜2

𝑑𝑠𝑢𝑚𝑜2
∗  

𝑑𝑠𝑢𝑚𝑜2

𝑑𝑜𝑢𝑡𝑝𝑢𝑡ℎ1
∗

𝑑𝑜𝑢𝑡𝑝𝑢𝑡ℎ1

𝑑𝑠𝑢𝑚ℎ1
∗

𝑑𝑠𝑢𝑚ℎ1

𝑑𝑤1
 

𝑑𝐸2
𝑑𝑤1

= −0.17044 ∗ 0.17184 ∗ 0.7 ∗ 0.23978 ∗ 0.1 = −0.00049  
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Now we can compute  
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤1

=
𝑑𝐸1
𝑑𝑤1

+
𝑑𝐸2
𝑑𝑤1

= 0.00159 + (−0.00049) = 0.00110  

The new_w1 is, 

𝑛𝑒𝑤𝑤1 = 𝑤1 − 𝑛 ∗
𝑑𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝑤1

 

𝑛𝑒𝑤𝑤1 = 0.1 − 0.6 ∗ 0.00110 = 0.09933 

Proceeding similarly, we can easily update the other weights (w2, w3 and w4). 

𝑛𝑒𝑤𝑤2 = 0.19919 

𝑛𝑒𝑤𝑤3 = 0.29667 

𝑛𝑒𝑤𝑤4 = 0.39597 

Once we’ve computed all the new weights, we need to update all the old weights with 

these new weights. Once the weights are updated, one backpropagation cycle is 

finished. Now the forward pass is done and the total new error is computed. And based 

on this newly computed total error the weights are again updated. This goes on until 

the loss value converges to minima. This way a neural network starts with random 

values for its weights and finally converges to optimum values. 

 

Check your progress-1 

a) Backpropagation is used to minimize the _________ function in a neural 

network. 

b) The _________ pass of backpropagation calculates the gradients of the loss 

function with respect to the network parameters. 

c) The derivative of the _________ function is used during backpropagation to 

compute gradients. 

d) The _________ rate determines the size of weight updates during training. 

e) Backpropagation calculates the gradients for all layers of the network using 

the chain rule. (True/False) 

f) The vanishing gradient problem is more common in deep networks with 

sigmoid or tanh activations. (True/False) 
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3.3 OPTIMIZER  
 

In deep learning, optimizers are crucial as algorithms that dynamically fine-tune a 

model’s parameters throughout the training process, aiming to minimize a predefined 

loss function. These specialized algorithms facilitate the learning process of neural 

networks by iteratively refining the weights and biases based on the feedback received 

from the data. Well-known optimizers in deep learning encompass Gradient Descent, 

Stochastic Gradient Descent (SGD), Adam, and RMSprop, each equipped with distinct 

update rules, learning rates, and momentum strategies, all geared towards the 

overarching goal of discovering and converging upon optimal model parameters, 

thereby enhancing overall performance. 

 
3.4 A MODEL-OPTIMIZATION ALGORITHM 
 
A deep learning model comprises multiple layers of interconnected neurons organized 

into layers. After calculating an activation function from the incoming data, each 

neuron sends the result to the layer below. Complex mappings between inputs and 

outputs are made possible by the non-linearity introduced by the activation functions. 

Weights and biases parametrize the strength of the link between neurons and their 

activations. To reduce the difference between the model's output and the intended 

output provided by the training data, these parameters are iteratively changed 

throughout training. A loss function measures the difference. Figure 3.5 shows the 

mechanism of model optimization. 

 

 
Figure 3.5: Model Optimization  
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There is an optimization algorithm that controls this modification. In order to efficiently 

traverse the model's high-dimensional parameter space, optimizers use gradients 

calculated via backpropagation to identify the direction and magnitude of parameter 

changes. In order to avoid local minima and converge to optimal or nearly optimal 

solutions, optimizers use a variety of tactics to strike a balance between exploration 

and exploitation. 

 

Any data scientist training deep learning models must be aware of the advantages and 

disadvantages of various optimization strategies. To get the greatest training 

outcomes in the shortest period of time, it is crucial to choose the appropriate optimizer 

for the task. 

 

Maxima and Minima 

Maxima is the largest and Minima is the smallest value of a function within a given 

range. The maxima and minima is represented as shown in figure 3.6: 

 

 
Figure 3.6: Maxima and Minima 

 

● Global Maxima and Minima: It is the maximum value and minimum value 

respectively on the entire domain of the function  

● Local Maxima and Minima: It is the maximum value and minimum value 

respectively of the function within a given range 

There can be only one global minima and maxima but there can be more than one 

local minima and maxima. 
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3.5 GRADIENT DESCENT 
 
Gradient Descent is an algorithm designed to minimize a function by iteratively moving 

towards the minimum value of the function. It’s akin to a hiker trying to find the lowest 

point in a valley shrouded in fog. The hiker starts at a random location and can only 

feel the slope of the ground beneath their feet. To reach the valley’s lowest point, the 

hiker takes steps in the direction of the steepest descent. 

All deep learning model optimization algorithms widely used today are based on 

Gradient Descent. Hence, having a good grasp of the technical and mathematical 

details is essential. So, let’s take a look: 

 
● Objective: Gradient Descent aims to find a function’s parameters (weights) that 

minimize the cost function. In the case of a deep learning model, the cost function 

is the average of the loss for all training samples as given by the loss function. 

While the loss function is a function of the model’s output and the ground truth, the 

cost function is a function of the model’s weights and biases. Figure 3.7 shows the 

graphical representation of gradient descent. 

 

 
Figure 3.7: Gradient Descent  
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● How it works: 

○ Initialization: Start with random values for the model’s weights. 

○ Gradient computation: Calculate the gradient of the cost function with 

respect to each parameter. The gradient is a vector that points in the direction 

of the steepest increase of the function. In the context of optimization, we’re 

interested in the negative gradient, which points towards the direction of the 

steepest decrease. 

○ Update parameters: Adjust the model’s parameters in the direction opposite 

to the gradient. This step is done by subtracting a fraction of the gradient from 

the current values of the parameters. The size of this step is determined by the 

learning rate, a hyperparameter that controls how fast or slow we move toward 

the optimal weights. 

● Mathematical representation: the update rule for each parameter 𝒘 can be 

mathematically represented as: 

𝜔: = 𝜔 − 𝛼𝛻𝜔 𝐽(𝜔) 

where w represents the model’s parameters (weights) and 𝛼 is the learning rate. 

Δ𝑤𝐽(w) is the gradient of the cost function 𝐽(w) with respect to w. 

The learning rate is a crucial hyperparameter that needs to be chosen carefully. If it’s 

too small, the algorithm will converge very slowly. If it’s too large, the algorithm might 

overshoot the minimum and fail to converge. 

Challenges: 

● Local minima and saddle points: In complex cost landscapes, Gradient Descent 

can get stuck in local minima or saddle points, especially in non-convex 

optimization problems common in deep learning.  

● Choosing the right learning rate: Finding an optimal learning rate requires 

experimentation and tuning.   

Figure 3.8 shows the convergence and divergence scenario of gradient descent. 
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Figure: 3.8: Convergence and Divergence Scenario 

 

3.6 STOCHASTIC GRADIENT DESCENT (SGD) 
 
Stochastic Gradient Descent (SGD) is a variant of the traditional Gradient Descent 

optimization algorithm that introduces randomness into the optimization process to 

improve convergence speed and potentially escape local minima. To understand the 

intuition behind SGD, we can again invoke the analogy of a hiker descending a foggy 

valley. If Gradient Descent represents a cautious hiker who carefully evaluates the 

slope around them before taking a step, Stochastic Gradient Descent is akin to a more 

impulsive hiker who decides their next step based only on the slope of the ground 

immediately beneath their feet. 

This approach can lead to a quicker descent but might involve more meandering. Let’s 

take a closer look at the specifics of Stochastic Gradient Descent: 

● Objective: like Gradient Descent, the primary goal of SGD is to minimize the cost 

function of a model by iteratively adjusting its parameters (weights). However, SGD 

aims to achieve this goal more efficiently by using only a single training example at 

a time to inform the update of the model’s parameters. 

● How it works: 
○ Initialization: Start with a random set of parameters for the model. 

○ Gradient computation: Instead of calculating the gradient of the cost function 

over the entire training data, SGD computes the gradient based on a single 

randomly selected training example. 
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○ Update parameters: Update the model’s parameters using this computed 

gradient. The parameters are adjusted in the direction opposite to the gradient, 

similar to basic Gradient Descent. 

● Mathematical representation: The parameter update rule in SGD is similar to that 

of Gradient Descent but applies to a single example i: 

𝜔: = 𝜔 − 𝛼𝛻𝜔 𝐽𝑖(𝜔) 

Here, w represents the model’s parameters (weights), 𝛼 is the learning rate, and 

∆𝘸𝘑𝘪(𝘸) is the gradient of the cost function 𝐽i(w) for the ith training example with respect 

to w. 

 
Challenges: 
● Variance: The updates can be noisy due to the reliance on a single example, 

potentially causing the cost function to fluctuate. As a result, the algorithm does not 

converge to a minimum but jumps around the cost landscape. 

● Hyperparameter tuning: Correctly setting the learning rate requires 

experimentation. 

 
Advantages: 

● Efficiency: Using only one example at a time, SGD significantly reduces the 

computational requirements, making it faster and more scalable than Gradient 

Descent. 

● Escape local minima: The inherent noise in SGD can help the algorithm escape 

shallow local minima, potentially leading to better solutions in complex cost 

landscapes. 

● Online learning: SGD is well-suited for online learning scenarios where the model 

needs to update continuously as new data arrives. 

3.7 MINI-BATCH GRADIENT DESCENT 
Mini-batch Gradient Descent strikes a balance between the thorough, calculated 

approach of Gradient Descent and the unpredictable, swift nature of Stochastic 

Gradient Descent (SGD). Imagine a group of hikers navigating through a foggy valley. 
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Each hiker independently assesses a small, distinct section of the surrounding area 

before the group decides on the best direction to take. 

Based on a broader but still limited view of the terrain, this collective decision-making 

process allows for a more informed and steady progression toward the valley’s lowest 

point compared to an individual hiker’s erratic journey. Here’s a deep dive into Mini-

batch Gradient Descent: 

 

● Objective: Similar to other gradient descent variants, the aim of Mini-batch 

Gradient Descent is to optimize the model’s parameters to minimize the cost 

function. It seeks to combine the efficiency of SGD with the stability of Gradient 

Descent by using a subset of the training data to compute gradients and update 

parameters. 

● How it works: 

○ Initialization: Start with initial random values for the model’s parameters. 

○ Gradient computation: Instead of calculating the gradient using the entire 

dataset (as in Gradient Descent) or a single example (as in SGD), Mini-batch 

Gradient Descent computes the gradient using a small subset of the training 

data, known as a mini-batch. 

○ Update parameters: Adjust the parameters in the direction opposite to the 

computed gradient. This adjustment is made based on the gradient derived 

from the mini-batch, aiming to reduce the cost function. 

● Mathematical representation: The parameter update rule for Mini-batch Gradient 

Descent can be represented as 

𝜔: = 𝜔 − 𝛼𝛻𝜔 𝐽𝑚𝑖𝑛𝑖−𝑏𝑎𝑡𝑐ℎ(𝜔) 

where 𝑤 represents the model’s parameters (weights), 𝛼 is the learning rate, and 

∆𝘸𝘑𝘪(𝘸) is the gradient of the cost function 𝘑𝘮𝘪𝘯𝘪-𝘣𝘢𝘵𝘤𝘩(𝘸) for the current mini-

batch of training samples with respect to w. 

Challenges: 
● Hyperparameter tuning: Like with the other variants we’ve discussed so far, 

selecting the learning rate requires experimentation. Further, we need to choose 

the batch size. If the batch size is too small, we face the drawbacks of SGD, and if 

the batch size is too large, we’re prone to the issues of basic Gradient Descent. 
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Advantages: 

● Efficiency and stability: Mini-batch Gradient Descent offers a compromise 

between the computational efficiency of SGD and the stability of Gradient Descent. 

● Parallelization: Since mini-batches only contain a small, fixed number of samples, 

they can be computed in parallel, speeding up the training process. 

● Generalization: By not using the entire dataset for each update, Mini-batch 

Gradient Descent can help prevent overfitting, leading to models that generalize 

better on unseen data. 

 

3.8 ADAGRAD (ADAPTIVE GRADIENT ALGORITHM) 
AdaGrad (Adaptive Gradient Algorithm) introduces an innovative twist to the 

conventional Gradient Descent optimization technique by dynamically adapting the 

learning rate, allowing for a more nuanced and effective optimization process. Imagine 

a scenario where our group of hikers, navigating the foggy valley, now has access to 

a map highlighting area of varying difficulty. With this map, they can adjust their pace, 

taking smaller steps in steep, difficult terrain and larger strides in flatter regions to 

optimize their path toward the valley’s bottom. 

Here’s a closer look at AdaGrad: 

● Objective: AdaGrad aims to fine-tune the model’s parameters to minimize the cost 

function, similar to Gradient Descent. Its distinctive feature is individually adjusting 

learning rates for each parameter based on the historical gradient information for 

those parameters. This leads to more aggressive learning rate adjustments for 

weights tied to rare but important features, ensuring these parameters are 

optimized adequately when their respective features play a role in predictions. 

● How it works: 
○ Initialization: Begin with random values for the model’s parameters and 

initialize a gradient accumulation variable, typically a vector of zeros, of the 

same size as the parameters. 

○ Gradient computation: Square and accumulate the gradients in the gradient 

accumulation variable, which consequently tracks the sum of squares of the 

gradients for each parameter. 
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○ Adjust learning rate: Modify the learning rate for each parameter inversely 

proportional to the square root of its accumulated gradient, ensuring 

parameters with smaller gradients to have larger updates. 

○ Update parameters: Update each parameter using its adjusted learning rate 

and the computed gradient. 

● Mathematical representation: The parameter update rule for Mini-batch Gradient 

Descent can be represented as 

𝜔: = 𝜔 −
𝛼

√𝐺𝑡 + 𝜖
 𝛻𝜔 𝐽 (𝜔) 

Where w represents the model’s parameters (weights), 𝛼 is the initial learning rate, 

𝘎 is the accumulation of the squared gradients, ∈ is a small smoothing term to 

prevent division by zero, and ∆𝘸𝘑(𝘸) is the gradient of the cost function 𝐽(w) for the 

training samples with respect to w. 

Advantages: 
● Adaptive learning rates: By adjusting the learning rates based on past gradients, 

AdaGrad can effectively handle data with sparse features and different scales. 

● Simplicity and efficiency: AdaGrad simplify the need for manual tuning of the 

learning rate, making the optimization process more straightforward. 

Challenges: 
● Diminishing learning rates: As training progresses, the accumulated squared 

gradients can grow very large, causing the learning rates to shrink and become 

infinitesimally small. This can prematurely halt the learning process. 

3.9 RMSPROP (ROOT MEAN SQUARE PROPAGATION) 
RMSprop (Root Mean Square Propagation) is an adaptive learning rate optimization 

algorithm designed to address AdaGrad’s diminishing learning rates issue. 

Continuing with the analogy of hikers navigating a foggy valley, RMSprop equips our 

hikers with an adaptive tool that allows them to maintain a consistent pace despite the 

terrain’s complexity. This tool evaluates the recent terrain and adjusts their steps 

accordingly, ensuring they neither get stuck in difficult areas due to excessively small 

steps nor overshoot their target with overly large steps. RMSprop achieves this by 
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modulating the learning rate based on a moving average of the squared gradients. 

Here’s an in-depth look at RMSprop: 

● Objective: RMSprop, like its predecessors, aims to optimize the model’s 

parameters to minimize the cost function. Its key innovation lies in adjusting the 

learning rate for each parameter using a moving average of recent squared 

gradients, ensuring efficient and stable convergence. 

● How it works: 

○ Initialization: Start with random initial values for the model’s parameters and 

initialize a running average of squared gradients, typically as a vector of zeros 

of the same size as the parameters. 

○ Compute gradient: Calculate the gradient of the cost function with respect to 

each parameter using a selected subset of the training data (mini-batch). 

○ Update squared gradient average: Update the running average of squared 

gradients using a decay factor, γ, often set to 0.9. This moving average 

emphasizes more recent gradients, preventing the learning rate from 

diminishing too rapidly. 

○ Adjust learning rate: Scale down the gradient by the square root of the 

updated running average, normalizing the updates and allowing for a 

consistent pace of learning across parameters. 

○ Update parameters: Apply the adjusted gradients to update the model’s 

parameters. 

● Mathematical representation: The parameter update rule for RMSprop can be 

represented as follows: 

𝜔: = 𝜔 −
𝛼

√𝐸[(𝑔)
2
]𝑡 + 𝜖

 𝛻𝜔 𝐽 (𝜔) 

Here, 𝘸 represents the parameters, α is the initial learning rate, 𝘌[𝘨²]ₜ is the running 

average of squared gradients at a certain time, ∈ is a small smoothing term to 

prevent division by zero, and ∆𝘸𝘑(𝘸) is the gradient of the cost function 𝘑(𝘸) with 

respect to 𝘸. 
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Advantages: 
● Adaptive learning rates: RMSprop dynamically adjusts learning rates, making it 

robust to the scale of gradients and well-suited for optimizing deep neural 

networks. 

● Overcoming AdaGrad’s limitations: By focusing on recent gradients, RMSprop 

prevents the aggressive, monotonically decreasing learning rate problem seen in 

AdaGrad, ensuring sustained progress in training. 

3.10 ADAM (ADAPTIVE MOMENT ESTIMATION) 
Adam (Adaptive Moment Estimation) combines the best properties of AdaGrad and 

RMSprop to provide an optimization algorithm that can handle sparse gradients on 

noisy problems. 

Using our hiking analogy, imagine that the hikers now have access to a state-of-the-

art navigation tool that not only adapts to the terrain’s difficulty but also keeps track of 

their direction to ensure smooth progress. This tool adjusts their pace based on both 

the recent and accumulated gradients, ensuring they efficiently navigate towards the 

valley’s bottom without veering off course. Adam achieves this by maintaining 

estimates of the first and second moments of the gradients, thus providing an adaptive 

learning rate mechanism. 

Here’s a breakdown of Adam’s approach: 

● Objective: Adam seeks to optimize the model’s parameters to minimize the cost 

function, utilizing adaptive learning rates for each parameter. It uniquely combines 

momentum (keeping track of past gradients) and scaling the learning rate based 

on the second moments of the gradients, making it effective for a wide range of 

problems. 

● How it works: 

● Initialization: Start with random initial parameter values and initialize a first 

moment vector (m) and a second moment vector (v). Each “moment vector” stores 

aggregated information about the gradients of the cost function with respect to the 

model’s parameters: 

○ The first moment vector accumulates the means (or the first moments) of the 

gradients, acting like a momentum by averaging past gradients to determine 

the direction to update the parameters. 
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○ The second moment vector accumulates the variances (or second moments) 

of the gradients, helping adjust the size of the updates by considering the 

variability of past gradients. 

Both moment vectors are initialized to zero at the start of the optimization. Their size 

is identical to the size of the model’s parameters (i.e., if a model has N parameters, 

both vectors will be vectors of size N). 

 

Adam also introduces a bias correction mechanism to account for these vectors being 

initialized as zeros. The vectors’ initial state leads to a bias towards zero, especially in 

the early stages of training, because they haven’t yet accumulated enough gradient 

information. To correct this bias, Adam adjusts the calculations of the adaptive learning 

rate by applying a correction factor to both moment vectors. This factor grows smaller 

over time and asymptotically approaches 1, ensuring that the influence of the initial 

bias diminishes as training progresses. 

● Compute gradient: For each mini-batch, compute the gradients of the cost 

function with respect to the parameters. 

● Update moments: Update the first moment vector (m) with the bias-corrected 

moving average of the gradients. Similarly, update the second moment vector (v) 

with the bias-corrected moving average of the squared gradients. 

● Adjust learning rate: Calculate the adaptive learning rate for each parameter 

using the updated first and second moment vectors, ensuring effective parameter 

updates. 

● Update parameters: Use the adaptive learning rates to update the model’s 

parameters. 

● The second moment vector accumulates the variances (or second moments) of 

the gradients, helping adjust the size of the updates by considering the variability 

of past gradients. 

● Mathematical representation: The parameter update rule for Adam can be 

expressed as 

𝜔: = 𝜔 −
𝛼. 𝑚̂𝑡

√𝑣̂𝑡  + 𝜖
  

Where 𝘸 represents the parameters, α is the learning rate, and 𝘮ₜ and 𝘷ₜ are bias-

corrected estimates of first and second moments of the gradients, respectively. 



211 

Advantages: 
● Adaptive learning rates: Adam adjusts the learning rate for each parameter 

based on the estimates of the gradients’ first and second moments, making it 

robust to variations in gradient and curvature. 

● Bias correction: The inclusion of bias correction helps Adam to be effective from 

the very start of the optimization process. 

● Efficiency: Adam is computationally efficient and is well-suited for problems with 

large datasets or parameters. 

 
Check your progress-2 
a. The __________ rate controls how fast or slow Gradient Descent moves toward 

the optimal weights. 
b. In Stochastic Gradient Descent, gradients are computed based on a 

__________ training example. 

c. RMSprop addresses AdaGrad’s issue of diminishing learning rates by using a 

__________ average of squared gradients. 

d. Adam combines the features of AdaGrad and __________ to provide an 

adaptive learning rate optimization algorithm. 

e. The second moment vector in Adam accumulates the __________ of gradients. 

f. Gradient Descent is guaranteed to converge to the global minimum in all 

optimization problems.(True/False) 

g. Mini-batch Gradient Descent strikes a balance between the computational 

efficiency of SGD and the stability of traditional Gradient Descent. 

h. AdaGrad ensures that parameters associated with frequently occurring features 

are updated more aggressively than those associated with rare features. 

i. Bias correction in Adam ensures that the algorithm performs well even in the 

early stages of training. 

j. Mini-batch Gradient Descent can parallelize computations, leading to faster 

training. 

 
3.11 LET US SUM UP 
In this unit, we have discussed the backpropagation process and its role in training 

neural networks. We explored the mathematical derivations involved in 

backpropagation, focusing on gradient calculations and parameter updates. 

Additionally, we examined various gradient descent variants, including Stochastic 
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Gradient Descent (SGD), RMSProp, Adam, and Adagrad. We compared these 

optimization algorithms in terms of their efficiency and effectiveness in training deep 

learning models. 

 

3.12 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
1-a  loss/cost 

1-b backword 

1-c Activation 

1-d learning 

1-e True 

1-f True 

2-a learning 

2-b single 

2-c moving 

2-d RMSprop 

2-e variance 

2-f False 

2-g True 

2-h False 

2-i True 

2-j True 

 
3.13 ASSIGNMENTS 
● Explain the concept of backpropagation in neural networks.  

● Derive the mathematical equations used for calculating the gradients during 

backpropagation. 

● Compare and contrast the Gradient Descent, Stochastic Gradient Descent (SGD), 

and Mini-batch Gradient Descent algorithms. 

● Explain maxima and minima. 

● What role do optimizers play in deep learning? 
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Unit-4: Feature Selection and 
Extraction 

 
Unit Structure 
 

4.0. Learning Objectives 

4.1. Introduction  

4.2. Curse of Dimensionality 

4.3. Dimensionality Reduction  

4.4. Feature Selection 

4.5. Feature Extraction 

4.6. Techniques: Principal Component Analysis (PCA),  

4.7. Linear Discriminant Analysis (LDA) 

4.8. Let us sum up 

4.9. Solution Check your Progress 

4.10. Assignment 

 

 
  

4 
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4.0 LEARNING OBJECTIVE 
After studying this unit student should be able to: 

● Understand dimensionality reduction, feature selection, and feature extraction 

techniques. 

● Understand the principles of Principal Component Analysis (PCA) for 

dimensionality reduction. 

● Understand the key ideas behind Linear Discriminant Analysis (LDA) and its 

role in feature extraction for classification tasks. 

● Evaluate the effectiveness of PCA and LDA in improving model performance 

and reducing computational complexity. 

 

4.1 INTRODUCTION 
Nowadays, data mining and knowledge discovery have a great role in several digital 

applications. Knowledge is detected by processing and analyzing a large amount of 

the previously collected data. Data generated in a huge volume in different fields, and 

it is on continuous growth in size, complexity, and dimensionality. A dataset with high 

dimensionality features its numerous features, but few samples have a direct relation 

with data mining and machine learning tasks. Therefore, these issues of data become 

a big challenge for extracting potentially useful, and ultimately understandable patterns 

or information in almost every data mining task. Also, working in high dimensional data 

increases the difficulty of knowledge discovery and pattern classification because 

there are a lot of redundant and irrelevant features. Reducing high dimensional 

datasets to a low dimensional dataset by filter or remove redundant and noise 

information is a method to solve this problem, and this is known as dimensionality 

reduction. 

 

4.2 CURSE OF DIMENSIONALITY 
In machine learning, increasing the number of features or observables in a problem 

results in higher computational costs, more memory usage for storing inputs and 

intermediate results, and a greater need for data samples for effective learning. While, 

in theory, adding more features could improve model performance, in practice, the 

opposite often occurs. This is due to the "curse of dimensionality," where the number 

of training examples required grows exponentially as the number of features 

increases, leading to diminished performance and efficiency. 
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4.3 DIMENSIONALITY REDUCTION 
Data mining and machine learning face significant challenges when handling large 

datasets with many attributes. The feature space’s dimensionality, also known as 

model attributes, plays a crucial role in the complexity of these processes. As the 

number of dimensions increases, processing algorithms become more difficult to 

implement and more time-consuming. These attributes, which can be either variables 

or features, represent the fundamental characteristics of the data. When there are 

numerous features, it becomes increasingly challenging to analyze them all, making 

the training process more complicated. The complexity increases further when a large 

number of features are highly correlated, leading to issues such as irrelevant 

classifications. 

In such cases, dimensionality reduction techniques become highly valuable. 

Dimensionality reduction is essentially the process of transforming a large set of 

random variables into a smaller set of major variables, preserving essential information 

while eliminating unnecessary complexity. As a preprocessing step in data mining, 

dimensionality reduction helps mitigate the effects of noise, correlations, and 

excessive dimensionality, ultimately improving the performance and efficiency of 

machine learning models. 

There are two main approaches to dimensionality reduction namely; feature selection 

and feature extraction.:  

● Feature Selection: Feature selection is a means of selecting the input data set's 

optimal, relevant features and removing irrelevant features. 

○ Filter methods: This method filters down the data set into a relevant subset. 

○ Wrapper methods: This method uses the machine learning model to 

evaluate the performance of features fed into it. The performance determines 

whether it’s better to keep or remove the features to improve the model’s 

accuracy. This method is more accurate than filtering but is also more 

complex. 

○ Embedded methods: The embedded process checks the machine learning 

model’s various training iterations and evaluates each feature’s importance 

● Feature Extraction: Feature extraction involves creating new features by 

combining or transforming the original features. The goal is to create a set of 

features that captures the essence of the original data in a lower-dimensional 

space. There are several methods for feature extraction, including principal 
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component analysis (PCA), linear discriminant analysis (LDA), and t-distributed 

stochastic neighbor embedding (t-SNE). PCA is a popular technique that projects 

the original features onto a lower-dimensional space while preserving as much of 

the variance as possible. 

4.4 FEATURE SELECTION 
Feature selection is utilized to reduce the dimensionality impact on the dataset through 

finding the subset of features which efficiently define the data . It selects the important 

and relevant features to the mining task from the input data and removes redundant 

and irrelevant features. It is useful for detecting a good subset of features that is 

appropriate for the given problem. The main purpose of feature selection is to 

construct a subset of features as small as possible but represents the whole input data 

vital features. Feature selection provides numerous advantages: reduce the size of 

data, decrease needed storage, prediction accuracy improvement, overfitting evading, 

and reduce executing and training time from easily understanding variables.  

Feature selection algorithm phase is divided into two-phase such as  

(i) Subset Generation: we need to generate subset from the input dataset. 

(ii) Subset Evaluation: we have to check whether the generated subset is optimal or 

not. 

Figure 4.1 shows the overall method of the feature selection process. 

 
Figure 4.1: Feature Selection Process 
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Feature Selection Methods: 
It is the process of choosing a few characteristics from a given set of potential features 

and then eliminating the other characteristics. Feature selection can be used to avoid 

having duplicate or irrelevant features or to obtain a small number of attributes to avoid 

overfitting. The capacity to select features is a critical skill for data scientists. The 

machine learning algorithm's performance depends on your ability to select the most 

pertinent features for analysis. The learning performance, accuracy, and processing 

cost of an algorithm might be negatively impacted by features that are noisy, 

redundant, or irrelevant. As the amount and complexity of the usual dataset continue 

to grow at an exponential rate, feature selection will become ever more crucial. Figure 

4.2 gives the list of available feature selection techniques. 

 
Figure 4.2: Feature Selection Techniques 

Filter Method: 
Filter, commonly referred to as an open-loop method, is regarded as the oldest 

approach.  Before beginning the learning activities, it verifies the features based on 

the inherent properties.  Information, dependency, consistency, and distance are the 

four types of measurement criteria that are primarily used to measure the feature 

qualities.  
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The feature selection procedure in the filter approach is carried out separately from 

the data mining algorithm. It assesses the subset's ranking using statistical criteria. 

The method can compute with high efficiency and good performance, and is easily 

scalable in high-dimensional datasets. This method's main drawback is that it ignores 

the relationship between the induction algorithm's performance and the chosen 

subset. The advantage of using filter methods is that it needs low computational time 

and does not overfit the data. Figure 4.3 shows the general approach of applying filter 

method. 

 

Figure 4.3: Filter Method 

Some common techniques of Filter methods are as follows: 

● Missing Value Ratio: The feature set can be assessed against the threshold 

value using the missing value ratio value. The missing value ratio can be 

calculated by dividing the total number of observations by the number of 

missing values in each column. If the variable's value exceeds the threshold, it 

can be removed. 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
∗ 100 

● Information Gain: Information gain determines the reduction in entropy while 

transforming the dataset. It can be used as a feature selection technique by 

calculating the information gain of each variable with respect to the target 

variable. 

● Chi-square Test: Chi-square test is a technique to determine the relationship 

between the categorical variables. The chi-square value is calculated between 

each feature and the target variable, and the desired number of features with 

the best chi-square value is selected. 
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● Fisher's score: It is one of the popular supervised technique of features 

selection. It returns the rank of the variable on the fisher's criteria in descending 

order. Then we can select the variables with a large fisher's score. 

Embedded Method:  

The embedded approach is an integrated feature selection mechanism that guides 

feature evaluation by integrating feature selection into the learning algorithm and 

utilizing its properties. While maintaining comparable performance, the embedded 

approach is computationally more efficient and tractable than the wrapper method. 

This is due to the fact that the embedded approach bypasses the need to run the 

classifier repeatedly and analyze each feature subset.  The advantages of the filter 

and wrapper approaches are combined in the embedded method.  It is less 

computationally expensive since it chooses features as the mining technique is being 

implemented. Figure 4.4 shows the general approach of applying the embedded 

method. 

 

Figure 4.4: Embedded Method 

Some techniques of embedded methods are: 

● Regularization: To prevent overfitting in the machine learning model, 

regularization applies a penalty term to various model parameters. Some 

coefficients are shrunk to zero because this penalty term is added to the 

coefficients. It is possible to eliminate features from the dataset that have zero 

coefficients. Elastic Nets (L1 and L2 regularization) or L1 Regularization (Lasso 

regularization) are the two types of regularization techniques. 
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● Random Forest Importance: Various tree-based feature selection techniques 

assist us in determining the significance of features and offer a method for feature 

selection. In this case, feature importance indicates which feature is more crucial 

for model construction or has a significant influence on the target variable. One 

such tree-based technique is Random Forest, a kind of bagging algorithm that 

combines a variety of decision trees. Across all trees, it automatically ranks the 

nodes according to their performance or the decline in the impurity (Gini impurity). 

Trees below a certain node can be pruned because nodes are ordered according 

to impurity levels. A subset of the most significant features is produced by the 

remaining nodes. 

Wrapper Method:  

Also known as a close-loop approach, it bases feature selection on the learning 

algorithm and evaluates features based on performance accuracy or classification 

process error rate. A classifier selects the most discriminative collection of 

characteristics by lowering its estimation error. Based on the learning algorithm's 

performance, the wrapper technique chooses the best feature for the prediction 

algorithm. Therefore, it outperforms the filter algorithm and achieves high accuracy. In 

contrast to the filter strategy, this method's primary drawbacks are its increased 

computational complexity and susceptibility to overfitting. On the basis of the output of 

the model, features are added or subtracted, and with this feature set, the model has 

trained again. 

Figure 4.5 shows the general approach of applying wrapper method. 

 

Figure 4.5: Wrapper Method 
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Some techniques of wrapper methods are: 

● Forward selection: Forward selection starts with a blank set of features and is an 

iterative process. It continues to add features after each iteration and assesses 

performance to determine whether or not it is improving performance. Until adding 

a new variable or feature does not enhance the model's performance, the process 

is repeated. 

● Backward elimination: The reverse of forward selection, backward elimination is 

also an iterative process. This method starts by taking into account every aspect 

and eliminates the least important one. Until deleting the characteristics does not 

enhance the model's performance, this elimination step is repeated. 

● Exhaustive Feature Selection: One of the greatest feature selection techniques 

is exhaustive feature selection, which uses a brute-force evaluation of every 

feature set. It indicates that this approach returns the feature set with the best 

performance after trying and creating every feasible feature combination. 
● Recursive Feature Elimination: Recursive feature elimination is a recursive 

greedy optimization technique in which a decreasing subset of features is 

iteratively taken in order to pick features. Each set of features is then used to train 

an estimator, and the significance of each feature is ascertained using either 

feature_importances_attribute or coef_attribute. 

Having seen the three methods let us have a comparative study of advantages and 

disadvantages of these methods as shown in table 4.1. 

Method Advantages Disadvantages 

Filter • Works faster than wrapper methods 

• Scalable 

• Classifier independent 

• Lower computational complexity 

compared to wrapper 

• Better generalizability 

• Neglects interaction 

between classifiers 

• Ignores feature 

dependency 



222 

Embedded • Interacts with the classifier 

• Better computational complexity than 

wrapper 

• Higher accuracy than filter 

• Less prone to overfitting than wrapper 

• Considers feature dependency 

• Classifier-specific 

Wrapper • Interacts with the classifier 

• Considers dependence among 

features 

• Higher performance accuracy than 

filter 

• Prone to overfitting 

• Classifier-specific 

• Requires expensive 

computation 

Table 4.1 Comparison of Filter, Embedded and Wrapper Methods 
 

4.5 FEATURE EXTRACTION 
 
"Feature extraction" is the process of minimizing the resources required to describe a 

significant volume of data. Many variables need to be monitored, which is one of the 

primary issues with complex data analysis. A classification method that has a lot of 

variables may overfit to training examples and not generalize to new samples, which 

also uses a lot of memory and processing power. A general name for many 

approaches to combining variables to circumvent these issues while maintaining an 

accurate representation of the data is feature extraction.  

 

Many people who work in machine learning believe that the secret to creating effective 

models is to extract features as best as possible. The features of the data must display 

the information in a manner that satisfies the requirements of the algorithm that will be 

applied to solve the issue. While it is possible to extract certain "inherent" features 

directly from the raw data, most of the time we must use these "inherent" features to 

identify "relevant" aspects that we may utilize to address the issue. 

In simple terms "feature extraction." can be described as a technique for defining a set 

of features, or visual qualities, that best show the information. 
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Common examples in machine learning include feature extraction techniques like 

PCA, ICA, LDA, LLE, t-SNE, and AE. 

 

Check Your Progress-1 

a. Which of the following is a technique for dimensionality reduction? 

a) Decision Trees 

b) Principal Component Analysis (PCA) 

c) k-Nearest Neighbors (k-NN) 

d) Logistic Regression 

b. What is the main purpose of dimensionality reduction? 

a) To increase the number of features in the dataset 

b) To generate synthetic data points 

c) To ensure data follows a Gaussian distribution 

d) To improve interpretability and reduce computational complexity 

c. Feature extraction is best described as: 

a) Selecting a subset of relevant features from the original dataset 

b) Removing irrelevant data points 

c) Transforming raw data into a set of derived features 

d) Clustering features into groups 

d. What is the key difference between feature selection and feature extraction? 

a) Feature selection creates new features, while feature extraction removes 

features 

b) Feature selection retains original features, while feature extraction 

generates derived features 

c) Feature selection is used for classification tasks, while feature extraction 

is used for clustering tasks 

d) Feature selection is computationally more complex than feature 

extraction 

e. What is the main advantage of using filter methods for feature selection? 

a) They have low computational time and avoid overfitting 

b) They ensure high accuracy 

c) They work directly with the learning algorithm 

d) They test all possible feature combinations 
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f. What is the main drawback of wrapper methods? 

a) They ignore statistical criteria 

b) They are computationally expensive and prone to overfitting 

c) They cannot handle high-dimensional datasets 

d) They do not use learning algorithms for feature selection 

 

4.6 PRINCIPAL COMPONENT ANALYSIS 
 

Principal Component Analysis (PCA), originally developed by Karl Pearson, is a 

method used to reduce the number of dimensions in a dataset. It does this by mapping 

the data to a lower-dimensional space that captures the maximum variance. 

Essentially, PCA identifies the main components that represent the data's most 

important patterns, focusing on the directions with the greatest spread. This technique 

is especially valuable when dealing with datasets with three or more dimensions. 

The PCA computation process is summarized in the steps below, showing that how 

the principal components are calculated and how they relate to the original data: 

1. Standardize the Data: Since PCA requires the data to be on a comparable scale, 

the first step is to standardize it. This involves adjusting each variable so that it has 

a mean of 0 and a standard deviation of 1. 

2. Compute the Covariance Matrix: Next, calculate the covariance matrix for the 

standardized data. This matrix indicates how each variable in the dataset 

correlates with the others. 

3. Determine Eigenvectors and Eigenvalues: After obtaining the covariance 

matrix, calculate its eigenvectors and eigenvalues. Eigenvectors reveal the primary 

directions of data variation, while eigenvalues show the magnitude of variation 

along these directions. 

4. Select Principal Components: The principal components are chosen based on 

the eigenvectors with the largest eigenvalues, as they capture the most significant 

data variance. These components define the new, reduced-dimensional space. 

5. Project the Data: Finally, map the original data into the lower-dimensional space 

formed by the selected principal components. This transformation reduces 

dimensionality while preserving the most important patterns in the data. 
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Why Choose PCA? 

Principal Component Analysis (PCA) is a popular method for feature extraction, 

primarily because it is straightforward, requires minimal hyperparameter tuning, and is 

easy to implement. PCA simplifies data by identifying eigenvectors and eigenvalues 

of the covariance matrix, making it accessible and widely understood due to its strong 

theoretical underpinnings. 

PCA is computationally efficient, making it ideal for large datasets. It also works well 

across a range of data types, including continuous, categorical, and binary. 

Additionally, PCA provides easily interpretable results, as principal components are 

ranked by the variance they explain, allowing users to quickly determine which 

features hold the most significance in representing data variation. 

PCA’s simplicity, efficiency, and versatility make it a favored choice for dimensionality 

reduction. However, alternative techniques may better serve specific tasks, depending 

on data type and analysis objectives. For instance, Linear Discriminant Analysis (LDA) 

often outperforms PCA in classification, as it focuses on maximizing the separation 

between classes rather than variance. LDA includes the target variable, enhancing its 

effectiveness for categorically labeled data in classification tasks. 

 

Considerations When Choosing a Dimension-Reduction Technique 
1. Combined Approaches: Combining feature selection with feature extraction can 

further improve machine learning model performance. 
2. Type of Data: Each technique suits different data types. PCA is particularly 

effective for continuous data, while LDA is more suitable for categorical data. 
3. Purpose of Analysis: The aim of the analysis is crucial; PCA is designed to 

maximize data variance, while LDA focuses on distinguishing between different 

classes. 
4. Data Dimensionality: Some techniques excel at visualizing high-dimensional 

data, like t-SNE, whereas PCA is better suited for reducing the dimensions of large 

datasets. 
5. Complexity of the Data: The complexity of each method varies; for example, PCA 

is simpler to implement, whereas techniques like Independent Component 
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Analysis (ICA) are more complex and may require additional expertise. Choosing 

the right technique based on data complexity can enhance analysis quality. 

Let us have a look at a working example. 
 
Example 
Step - 1 Collect the data 
Assume that the following data points or features are given. Let us start with 4 data 

points; 

Feature E1 E2 E3 E4 

X1 2 3 4 5 

X2 4 6 8 10 

 

𝑋 1 =
2 + 3 + 4 + 5

4
=

14

4
= 3.5 

 

𝑋2 =
4 + 6 + 8 + 10

4
=

28

4
= 7 

 
Step - 2 Covariance Matrix Computation 
 

𝑆 = [  𝑐𝑜𝑣(𝑋1, 𝑋1) 𝑐𝑜𝑣(𝑋1, 𝑋2)    𝑐𝑜𝑣(𝑋2, 𝑋1) 𝑐𝑜𝑣(𝑋2, 𝑋2)  ]  

𝑐𝑜𝑣(𝑋1, 𝑋1) =
1

𝑁 − 1
∑

𝑁

𝑘=1

(𝑋1𝑘 − 𝑋1)(𝑋1𝑘 − 𝑋1 )  

 

=
1

𝑁 − 1
∑

𝑁

𝑘=1

(𝑋1𝑘 − 𝑋1)
2
 

 

=
1

3
[(2 − 3.5)2 + (3 − 3.5)2 + (4 − 3.5)2 + (5 − 3.5)2] 

 

 =
1

3
(2.25 + 0.25 + 0.25 + 2.25) =

1

3
∗ 5.5 = 1.83 

 
 

𝑐𝑜𝑣(𝑋1, 𝑋2) =
1

𝑁 − 1
∑

𝑁

𝑘=1

(𝑋1𝑘 − 𝑋1)(𝑋2𝑘 − 𝑋2 )  
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=
1

3
[(2 − 3.5)(4 − 7) + (3 − 3.5)(6 − 7) + (4 − 3.5)(8 − 7) + (5 − 3.5)(10 − 7)] 

  

=
1

3
[ −1.5 ∗ −3 + 0.5 ∗ −1 + 0.5 ∗ 1 + 1.5 ∗ 3] 

 

=
1

3
[ 4.5 + 0.5 + 0.5 + 4.5] 

=
1

3
∗ 10 = 3.33 

 
 

𝑐𝑜𝑣(𝑋2, 𝑋1) = 3.33 
 

𝑐𝑜𝑣(𝑋2, 𝑋2) =
1

𝑁 − 1
∑

𝑁

𝑘=1

(𝑋2𝑘 − 𝑋2)(𝑋2𝑘 − 𝑋2 )  

 

=
1

𝑁 − 1
∑

𝑁

𝑘=1

(𝑋2𝑘 − 𝑋2)
2

 

 

=
1

3
[(4 − 7)2 + (6 − 7)2 + (8 − 7)2 + (10 − 7)2] 

 

=
1

3
(9 + 1 + 1 + 9) =

20

3
= 6.67 

 

The final covariance matrix is the following 

𝐶𝑂𝑉 𝑚𝑎𝑡𝑟𝑖𝑥 = [  1.83     3.33    3.33     6.67  ] 

Step - 3 Eigen values and Eigen vector Computation 

Next, we will compute the eigen values of this covariance matrix. The characteristic 

equation of the covariance matrix is the following. 

0 =𝑑𝑒𝑡 𝑑𝑒𝑡 (𝑆 − 𝜆 𝐼)  

=|  1.83 − 𝜆 3.33    3.33 6.67 − 𝜆 | 

= (1.83 − 𝜆)(6.67 − 𝜆) − 3.33 ∗ 3.33 
= 1.83 ∗ 6.67 − 1.83𝜆 − 6.67𝜆 + 𝜆2 − 11.09 

= 12.21 − 8.5𝜆 + 𝜆2 − 11.09 

= 𝜆2 − 8.5𝜆 + 1.12 



228 

To find the roots of the quadratic equation we can apply the formula as mentioned: 

 

Quadratic Formula 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

 

By applying the formula, we will get two roots and these are the eigen values. 

𝑅𝑜𝑜𝑡𝑠 =
8.5 ± √8.52 − 4 ∗ 1 ∗ 1.12

2
 

=
8.5 ± √72.25 − 4.48 

2
 

=
8.5 ± √67.77

2
 

=
8.5 + 8.23

2
 ,

8.5 − 8.23

2
 

= 8.37,0.14  
 

Next step is to calculate eigen vectors. To calculate this the initial step is to calculate 

the Characteristic Equation: 

 

The characteristic equation for finding eigenvalues (λ) of a matrix C is given by: 

det(S — λI) = 0 

Where: 

-S is the covariance matrix. 

-λ (lambda) represents the eigenvalues. 

-I is the identity matrix of the same dimensions as C. 

𝑈 = [𝑢1 𝑢2 ] 
[  0  0 ] = (𝑠 − 𝜆𝐼)𝑈 

= [1.83 − 𝜆1  3.33  3.33  6.67 − 𝜆1 ][𝑢1 𝑢2 ] 
= [(1.83 − 𝜆1)𝑢1 + 3.33𝑢2 3.33𝑢1 + (6.67 − 𝜆1)𝑢2  ] 

 

Equating the above to vector 0, we will get the following 
(1.83 − 𝜆1)𝑢1 + 3.33𝑢2 = 0 
3.33𝑢1 + (6.67 − 𝜆1)𝑢2 = 0 

Taking the first equation into consideration 
𝑢1

−3.33 
=

𝑢2

1.83 − 𝜆1
= 𝑡 

𝑢1 = −3.33𝑡, 𝑢2 = (1.83 − 𝜆1)𝑡 
Consider the value of t as 1, the U vector or eigenvector will become 

𝑈 = [−3.33 1.83 − 𝜆1 ] 
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Step - 4 Sort Eigen Values 
Whenever we want to calculate the principal components, we have to consider the 

largest eigen value. Here it is 8.37. To calculate the unit eigen vector, we have to 

calculate the length of U1.To obtain unit eigenvectors (eigenvectors with a magnitude 

of 1), we normalize the eigenvectors. To normalize a vector, divide each component 

by its magnitude (Euclidean norm). 

‖𝑢1‖ = √−3.332 + (1.83 − 8.37)2 = √11.09 + 42.77 = √53.86 = 7.34   

𝑒1 = [
−3.33

7.34
 
1.83 − 8.37

7.34
 ] = [−0.45 − 0.89 ] 

The below represents the eigenvector corresponding to Principal component 2, if we 

are calculating PC2 we can consider the below eigenvector. 

𝑢2 = [−3.33 1.83 − 𝜆2 ] 
 

‖𝑢2‖ = √(−3.33)
2

+ (1.83 − 0.14)2 = √11.09 + 2.86 = 3.73 

 

𝑒2 = [
−3.33

3.73
 
1.83 − 0.14

3.73
 ] = [−0.89 0.45 ] 

Step - 5 Select First Principal Component 

The equation to calculate the principal component is as follows. 

𝑒1
𝑇 = [𝑋1𝑘 −  𝑋1 𝑋2𝑘 −  𝑋2 ] 

Applying the above equation on the first eigen vector we will get the following. 

[−0.45  − 0.89][𝑋1𝑘 − 𝑋
1

 𝑋2𝑘 − 𝑋
2

 ] 
 

= −0.45(𝑋1𝑘 −  𝑋1) − 0.89(𝑋2𝑘 −  𝑋2) 

Step — 6 Projection onto Principal Components 

Applying the equation on each data point. 

(2,4) = −0.45(2 − 3.5) − 0.89(4 − 7) = 0.68 + 2.67 = 3.35 
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(3,6) = −0.45(3 − 3.5) − 0.89(6 − 7) = 0.23 + 0.89 = 1.12 

(4,8) = −0.45(4 − 3.5) − 0.89(8 − 7) = −0.23 − 0.89 = −1.12 

(5,10) = −0.45(5 − 3.5) − 0.89(10 − 7) = −0.68 − 2.67 = −3.35 

The final answer, 

𝑋1 2 3 4 5 

𝑋2 4 6 8 10 

𝑃𝐶1 3.35 1.12 -1.12 -3.35 

 

The final result can be visualized approximately as shown in figure 4.6. 

 

Figure 4.6: Projection onto Principal Components 

Blue points are the data points, the red point is the average point, the yellow circle is 

the eigen vector point (-0.45,-0.89) and the green line is the first principal component. 

Advantages and Disadvantages  

Principal Component Analysis (PCA) is a widely used technique for dimensionality 

reduction and feature extraction, with its own set of strengths and limitations. 

Advantages 

● Dimensionality Reduction: PCA reduces the number of features while 

retaining most of the variance in the data, simplifying analysis and visualization. 
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● Elimination of Multicollinearity: It transforms correlated features into a set of 

uncorrelated principal components. 

● Improved Model Performance: By removing noise and redundancy, PCA can 

enhance the performance of machine learning models. 

● Versatility: PCA can be applied to a wide range of domains, from image 

processing to financial modeling. 

● Efficiency in Large Datasets: PCA handles high-dimensional data effectively, 

reducing computational complexity. 

Disadvantages 

● Loss of Interpretability: The transformed features (principal components) lack 

direct interpretability as they are linear combinations of the original features. 

● Sensitivity to Scaling: PCA is sensitive to the scale of the data, requiring 

standardization or normalization before application. 

● Assumption of Linearity: It assumes linear relationships among features, making 

it less suitable for non-linear datasets. 

● Impact of Noise: PCA can capture noise as part of the principal components, 

especially if the noise has significant variance. 

● Dependence on Variance: PCA prioritizes components with the highest variance, 

which may not always align with the most relevant features for the specific problem. 

Applications  
PCA is extensively used across industries to simplify data and uncover hidden 

patterns. Here are some key applications: 

● Image Compression and Processing: PCA reduces the dimensionality of image 

data while retaining essential features, making it useful for compressing and 

denoising images. 

● Genomics and Bioinformatics: In biological studies, PCA is employed to analyze 

high-dimensional genomic data, identifying patterns and relationships among 

genes or individuals. 

● Stock Market Analysis: PCA is used in finance to identify principal components 

in stock price movements, helping to uncover underlying trends and reduce noise. 

● Customer Behavior Analysis: In marketing, PCA helps group customers based 

on behavioral data, facilitating targeted campaigns and strategic planning. 
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● Speech and Audio Signal Processing: PCA simplifies audio data for tasks like 

speaker identification and audio classification. 

● Fault Detection in Manufacturing: PCA analyzes sensor data to identify 

anomalies, enabling the early detection of equipment malfunctions. 

● Healthcare Analytics: PCA helps process medical imaging data or clinical 

datasets to extract meaningful features for diagnostics and prediction. 

By reducing data complexity while preserving essential patterns, PCA serves as a 

powerful tool in both exploratory data analysis and predictive modeling. 

 

Check Your Progress-2 
a. In PCA, why is data standardization necessary before applying the technique? 

a) To increase the number of dimensions 

b) To make the data non-linear 

c) To ensure variables are on a comparable scale 

d) To decrease the computational time 

b. The covariance matrix in PCA represent the correlations between variables. 

(True/False) 

c. _______________defines the primary directions of data variation in PCA? 

d. The smallest eigenvalues determine the selection of principal components in 

PCA. (True/False) 

e. In PCA, the principal components are linear combinations of __________. 

f. Why is PCA sensitive to scaling of data? 

a) It relies on the variance of features, which depends on their scale 

b) It assumes data points are scaled to integers 

c) It is designed to work with binary data 

d) Scaling increases computational complexity 

g. Which equation is used to calculate eigenvalues in PCA? 

a) A×B=C 

b) det(S−λI)=0 

c) XT X=Y 

d) P2=X+Y 
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4.7 LINEAR DISCRIMINANT ANALYSIS 
 
Linear Discriminant Analysis (LDA) is a supervised learning technique used for 

classification tasks. It helps distinguish between different classes by projecting data 

points onto a lower-dimensional space, maximizing the separation between those 

classes. 

LDA performs two key roles: 

1. Classification: It finds a linear combination of features that best separates 

multiple classes. 

2. Dimensionality Reduction: It reduces the number of input features while 

preserving the information necessary for classification. 
 

LDA is very similar to Principal Component Analysis (PCA), but there are some 

important differences. PCA is an unsupervised algorithm, meaning it doesn't need 

class labels y . PCA's goal is to find the principal components that maximize the 

variance in a dataset. LDA, on the other hand, is a supervised algorithm, which uses 

both the input data x and the class labels y to find linear discriminants that maximize 

the separation between multiple classes. 

 

Key Assumptions of Linear Discriminant Analysis (LDA) 
1. Gaussian Distribution: LDA presumes that the features within each class are 

distributed normally (i.e., follow a Gaussian distribution). 

2. Equal Covariance Matrices: It assumes uniformity in the variance (spread) of data 

points across all classes. 

3. Linearity: The method assumes a linear relationship between the features and the 

target variable. 

4. Feature Independence: LDA operates under the assumption that the features are 

ideally independent of one another. 

 
Limitations Stemming from These Assumptions 
1. Sensitivity to Data Distribution: LDA’s performance can decline if the features 

deviate significantly from a Gaussian distribution or if the class covariances differ 

substantially. 
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2. Effect of Multicollinearity: Highly correlated input features can negatively impact 

LDA’s effectiveness. 

3. Challenges with Complex Data: Datasets with intricate, non-linear relationships 

may not be well-suited for LDA, resulting in lower classification accuracy. 

 
Preparing for Linear Discriminant Analysis Implementation 
To achieve reliable results, proper data preparation is crucial before implementing 

LDA. Below are the key steps for effective preparation: 
Steps for Data Preparation 

1. Data Cleaning: Identify and eliminate any missing, inaccurate, or inconsistent 

data points that could skew the results. 

2. Feature Selection: Select features relevant to the classification problem to 

avoid unnecessary model complexity. 

3. Addressing Multicollinearity: For highly correlated features, either remove 

redundant ones or combine them to enhance model performance. 

4. Feature Scaling: While LDA is relatively robust to variations in feature scale, 

standardizing features (mean=0, variance=1) is beneficial when their ranges 

differ significantly. 

By carefully preparing the data, LDA can better identify and represent the relationships 

between the features and class labels, leading to improved classification outcomes. 

How Does LDA Work? 

Linear Discriminant Analysis (LDA) aims to identify a new axis or subspace that 

effectively separates different classes by maximizing inter-class differences and 

minimizing intra-class variation. It achieves this while reducing the data's 

dimensionality and preserving class-discriminative features. 

Key Concepts 

● Maximizing Between-Class Variance: LDA focuses on maximizing the 

distance between the mean vectors of different classes, ensuring they are as 

distinct as possible. 



235 

● Minimizing Within-Class Variance: It minimizes the variance within each 

class, keeping data points of the same class close together. 

● Projection to a Lower-Dimensional Space: LDA projects the original dataset 

onto a new axis or subspace. For instance, in a problem involving three classes, 

it can reduce the dimensionality to two or even one dimension while retaining 

information critical to class separation. 

Working Mechanism 

LDA involves the following steps: 

1. Compute Mean Vector: Calculate the mean vector for each class in the 

dataset. 

𝑚𝑖 =
1

𝑛𝑖
∑

𝑛𝑖

𝑖=1

𝑥𝑖 

 

2. Calculate Scatter Matrices: Determine the within-class scatter matrix 

(representing the variance within each class) and the between-class scatter 

matrix (representing the variance between class means). 
           Within-class scatter matrix SW 

𝑆𝑊 = ∑

𝑐

𝑖=1

𝑆𝑖 

 
where  Si is the scatter matrix for a specific class 

𝑆𝑖 = ∑

𝑛

𝑥𝜖𝐷𝑖

(𝑥 − 𝑚𝑖)(𝑥 − 𝑚𝑖)
𝑇 

and mi is the mean vector for that class 

𝑚𝑖 =
1

𝑛𝑖
∑

𝑛𝑖

𝑖=1

𝑥𝑖  
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Alternatively, the class-covariance matrices can be used by adding the 
scaling factor 1/N-1 to the within-class scatter matrix. 

∑

𝑖

1 =
1

𝑁𝑖 − 1
∑

𝑛

𝑥𝜖𝐷𝑖

(𝑥 − 𝑚𝑖)(𝑥 − 𝑚𝑖)𝑇 

 

𝑆𝑊 = ∑

𝑐

𝑖=1

(𝑁𝑖 − 1) ∑

𝑖

1 

               

Between-class scatter matrix SB 

𝑆𝐵 = ∑

𝑐

𝑖=1

𝑁𝑖(𝑚𝑖 − 𝑚)(𝑚𝑖 − 𝑚)𝑇 

 
   Where  

m  is the overall mean,  
mi  is the mean of the respective class, and  
Ni  is the sample size of that class. 

 

3. Find Eigenvectors and Eigenvalues: Solve 𝑆𝑤
−1 𝑆𝑏

𝑉 = 𝜆𝑉  to find eigenvalues 

and eigenvectors. The eigenvector with the largest eigenvalue provides the 

direction of maximum separability. 
4. Select Top Eigenvectors: Rank the eigenvectors by their eigenvalues in 

descending order and select the top k eigenvectors that capture the most 

significant variance. 

5. Transform Data: Use the selected eigenvectors to project the original data onto 

the new subspace, resulting in a lower-dimensional representation optimized 

for class separation. After selecting the k eigenvectors, we can use the resulting 

d * k-dimensional eigenvector matrix W to transform data onto the new 

subspace via the following equation: 

𝑌 = 𝑋 ∗ 𝑊 
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Example:  
Compute the Linear Discriminant projection for the following two-dimensional dataset 

X1=(x1,x2)={(4,1),(2,4),(2,3),(3,6),(4,4)} & X2=(x1 x2)={(9,10),(6,8),(9,5),(8,7),(10,8)} 

 
Solution: 
Step 1: Compute Mean Vectors 
1. Mean Vector for class 𝑿𝟏(𝝁𝟏) 

𝜇1 =
1

5
∑

5

𝑖=1

(𝑥𝑖1, 𝑥𝑖2)  

 

=
1

5
[(4 + 2 + 2 + 3 + 4)], (1 + 4 + 3 + 6 + 4)] 

 

= (
15

5
,
18

5
) 

 
= (3 , 3.6) 

 
2. Mean Vector for class X2(𝝁𝟐) 

𝜇2 =
1

5
∑

5

𝑖=1

(𝑥𝑖1, 𝑥𝑖2)  

 

=
1

5
[(9 + 6 + 9 + 8 + 10)], (10 + 8 + 5 + 7 + 8)] 

 

= (
42

5
,
38

5
) 

 
= (8.4 , 7.6) 

 
Step 2: Compute Scatter Matrices 

Within-Class Scatter Matrix (Sw): 

𝑆𝑊 = ∑

𝑖𝜖𝑋1

(𝑥𝑖 − 𝜇1 )(𝑥𝑖 − 𝜇1)𝑇  +  ∑

𝑖𝜖𝑋2

(𝑥𝑖 − 𝜇2 )(𝑥𝑖 − 𝜇2)𝑇    
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Now for class 𝑿𝟏: Compute each term (𝑥𝑖 − 𝜇1 )(𝑥𝑖 − 𝜇1)𝑇 

For (4, 1): 

𝑥𝑖 − 𝜇1 = [4 −  3 1 − 3.6 ] = [1 − 2.6 ]  , (𝑥𝑖 − 𝜇1 )(𝑥𝑖 − 𝜇1)𝑇 

= [1 − 2.6 ][1 − 2.6] =  [1    − 2.6 − 2.6   6.76 ]    -------eq.1 

For (2, 4): [1    − 0.4 0.4   0.16 ]   -----------------------eq.2 

For (2, 3): [1    0.6 0.6   0.36 ]         -----------------------eq.3 

For (3, 6): [1    0   0   5.76 ]              -----------------------eq.4 

For (4, 4): [1    0 0.4   0.16 ]             -----------------------eq.5 

 Now adding eq. 1, 2, 3, 4, 5 and taking average we get covariance matrix S1 

  𝑆1 = [0.8   − 0.4 − 0.4      2.6 ] 

Similarly, for class 𝑋2: Compute each term (𝑥𝑖 − 𝜇2 )(𝑥𝑖 − 𝜇2)𝑇 for each point in 𝑋2 

and sum 

𝑆2 = [1.84   − 0.04 − 0.4       2.64 ] 
 

𝑺𝒘 = 𝑺𝟏 + 𝑺𝟐 

 
𝑆𝑊 = [2.64   − 0.44 − 0.44       5.28 ] 

 
Between-Class Scatter Matrix (SB): 
 
[−𝟓. 𝟒 − 𝟒 ][−𝟓. 𝟒 − 𝟒] =  [𝟐𝟗. 𝟏𝟔   𝟐𝟏. 𝟔 𝟐𝟏. 𝟔    𝟏𝟔. 𝟎 ]     
 

 
Step 3: Find the best LDA Projection Vector. 
 

We find this using Eigen vectors having largest Eigen value. We calculate this using 

formula: 

𝑆𝑤
−1 𝑆𝑏

𝑉 = 𝜆𝑉 

 
𝑖. 𝑒 |𝑆𝑊

−1  𝑆𝑏 − 𝜆 𝐼| = 0 
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|11.89 − 𝜆          8.81 5.08             3.76 − 𝜆 | = 0 

 
(11.89 − 𝜆)(3.76 − 𝜆) − 5.08 ∗ 8.81 = 0 

 
44.7 − 11.89𝜆 − 3.76𝜆 + 𝜆2 − 44.7 = 0 

 
𝜆2 − 15.65𝜆 = 0 

 
𝜆 (𝜆 − 15.65) = 0 

 
𝜆 = 0 𝑜𝑟 𝜆 = 15.65 

  

Two eigen values we get. Now we take biggest value to reduce dimension 
[11.89  8.81 5.08      3.76 ][𝑉1   𝑉2  ] = 15.65 [𝑉1   𝑉2  ] 

 
𝑊𝑒 𝑔𝑒𝑡 [𝑉1   𝑉2  ] = [0.91   0.39  ] 

 
Step 4 : Dimension reduction  
 

𝑦 = 𝑊𝑇 𝑋 
 

𝑦 = [0.91 0.39][4   2  2  3  4 1   2  3  6  4 ]` = [4.03 3.38 2.99 5.07 5.2]  

Here we can see 2d data sample is changed to 1D data samples 

 
Advantages and Disadvantages 
While LDA is a robust method for classification and dimensionality reduction, it has 

both strengths and limitations. 

Advantages 

● Ease of Use: LDA is straightforward to implement and understand, making it 

ideal for those new to machine learning techniques. 

● Interpretability: It provides clear insights into how features contribute to the 

classification process. 

● Efficiency: LDA is computationally efficient, making it suitable for handling 

large datasets. 

● Effective for Linearly Separable Data: It performs well when classes are 

linearly separable. 
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Disadvantages 

● Reliance on Assumptions: LDA assumes a Gaussian distribution of features, 

which may not always be realistic. 

● Challenges with Non-linearity: It struggles to handle datasets with complex, 

non-linear relationships. 

● Sensitivity to Class Imbalance: When class distributions are imbalanced, 

LDA may favor the majority class, leading to biased results. 

● Impact of Outliers: The presence of outliers can adversely affect its 

performance. 

Applications  

LDA finds applications in various fields due to its ability to effectively classify data. 

Below are some prominent use cases: 

● Face Recognition: LDA is utilized to extract key features from facial images 

and classify them based on individuals. This is often employed in biometric 

systems for user identification or verification. 

● Medical Diagnostics: In healthcare, LDA helps analyze medical data to 

classify diseases. For instance, it is used to differentiate between cancer stages 

or predict heart disease. 

● Customer Segmentation in Marketing: By grouping customers based on their 

profiles, LDA supports targeted marketing campaigns and personalized service 

strategies. 

● Credit Risk Analysis: Financial institutions apply LDA to predict 

creditworthiness by analyzing customer data, helping to assess the likelihood 

of loan defaults. 

● Quality Assurance in Manufacturing: LDA is used to analyze sensor data 

and detect defects in products, enabling early identification of issues in the 

production process. 

● Marketing Campaign Optimization: It aids in evaluating customer interactions 

to identify the most effective marketing strategies and improve campaign 

outcomes. 
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Check Your Progress-3 

a. How does LDA differ from Principal Component Analysis (PCA)? 

a) LDA maximizes class separation, while PCA maximizes variance 

b) PCA uses class labels, while LDA does not 

c) LDA handles unsupervised data, while PCA handles supervised data 

d) Both use the same mathematical approach 

b. _______________ measures the variance within each class in LDA. 

c. LDA aims to project data onto a new axis or subspace by maximizing 

__________ variance and minimizing __________ variance. 

d. LDA assumes that the features in each class follow a __________ distribution. 

e. One key limitation of LDA is its sensitivity to __________, which can negatively 

affect its performance. 

 

4.8 LET US SUM UP 

In this unit, we have discussed various techniques for dimensionality reduction, feature 

selection, and feature extraction. We explored the curse of dimensionality and its 

challenges. We  delved into Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA), understanding their principles and performing practical 

examples to illustrate how PCA and LDA can be applied to real-world data for 

improving model performance. 

4.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 

1-a Principal Component Analysis (PCA) 

1-b To improve interpretability and reduce computational complexity 

1-c Transforming raw data into a set of derived features 

1-d  Feature selection retains original features, while feature extraction generates 

derived features 

1-e  They have low computational time and avoid overfitting 

1-f   They are computationally expensive and prone to overfitting 

2-a to ensure variables are on a comparable scale 

2-b True 
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2-c Eigenvectors 

2-d False 

2-e the original features 

2-f It relies on the variance of features, which depends on their scale 

2-g det(S−λI)=0  

3-a LDA maximizes class separation, while PCA maximizes variance 

3-b Within-class scatter matrix 

3-c between-class, within-class 

3-d Gaussian 

3-e outliers 

 
 

4.10 ASSIGNMENTS 
 
● Define the term feature selection. 

● What is the purpose of feature extraction in machine learning? 

● Expand the following terms : PCA,LDA 

● Name components of dimensionality reduction. 
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Block-4 
Clustering and Association Rules 
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Unit-1:  Introduction to 
Clustering  

 
Unit Structure 
 
1.0. Learning Objectives 

 
1.1. Introduction 

 
1.2. What is Clustering 

 
1.3. Clustering Approaches 

 
1.4. Clustering Techniques 

 
1.5. Let us sum up 

 
1.6. Check your Progress: Possible Answers 

 
1.7. Assignments 

 
 

  

1 
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1.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

● Understand the concept of clustering in machine learning. 

● Identify the need for clustering in various real-world applications. 

● Learn about different approaches of clustering. 

● Understand the concepts of Partition-Based, Hierarchical-Based, Density-

Based Clustering and Distribution-Based Clustering. 

 
1.1 INTRODUCTION 
 
The machine learning algorithms are frequently used in various real life applications 

like market segmentation where companies try to group customers based on their 

purchasing behaviour. Document classification wherein one tries to organize similar 

documents together. Image segmentation wherein one tries to identify distinct parts in 

an image. Anomaly detection wherein one tries to identify rare events or outliers. Many 

more examples of use cases are there. 

To support such decision making the machine learning domain uses a concept known 

as Clustering. In this chapter we will learn what is clustering, need of clustering and 

different types of clustering mechanisms. 

 

1.2 WHAT IS CLUSTERING 
 
Clustering is a technique used to arrange similar or dissimilar data points into distinct 

groups known as clusters based on some specific criteria. In clusters, data points 

within the same cluster share common features. It is possible that two clusters formed 

after clustering may have significantly different characteristics. The primary goal of 

clustering is to uncover or discover concealed knowledge underlying large data sets 

without predefined labels. The process of clustering involves dividing large data sets 

into smaller more informative data sets based on some specific criteria. Figure 1.1 

shows an example of basic clustering. 
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Figure 1.1: Example of Basic Clustering 

Depending on the need of an application the grouping can lead to different outcomes 

such as partitioning of data, re-organization of data, compression of data or data 

summarisation. Let us have a look at the simple forms of these outcomes. 

 

Partitioning of Data 

Assume that for an E-Commerce application we have a table named ORDERS that 

contains the information about orders placed by customers. Let the table contain 

50000 fixed length records. If we want to evenly distribute the orders in the group of 

months then we will need 12 distinct values of MONTH each representing the unique 

month of the year.  

 

If the data within the table is clustered by MONTH then to access all the orders for the 

month of February ( MONTH = "February") will require log2(12) + 4167 accesses. Here 

the first term log2(12), involves accessing the index table that is constructed using 

MONTH. This could be achieved by applying a binary search. The second term, 4167 

(or 50000/12), involves fetching the 4167 records from the clustered ORDERS table. 
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Without clustering, accessing 4167 orders for a particular month would require, on an 

average, 4167  50000/12 accesses as the records are randomly distributed.  

As can be observed here the proper partitioning of the dataset improves the efficiency 

of query execution. Large datasets can be managed more efficiently by storing each 

partition separately. Since each partition is independent, database systems can 

process partitions in parallel also. 

 

Re-organization of Data 

Assume that we have data pertaining to orders as shown in Table 1.1.  The table 

contains data of 10 customers. It has features like age and order total. Let us try to 

divide the given data set into three clusters. The first cluster will be called "Young and 

High Spending", wherein the age of the customer would be below 40 years and the 

order total would be greater than 20000. The second cluster will be called "Middle-

Aged and Low Spending", wherein the age of the customer would be between 40 to 

59 years and the order total would be less than 20000. The third cluster will be called 

"Senior", wherein the age of the customer would be 60 years and above regardless of 

the spending. 

Table 1.1: Sample data of order 

Order ID Customer ID Age Order Total 

1 101 22 12000 

2 102 29 25000 

3 103 35 7500 

4 104 42 18000 

5 105 52 50000 

6 106 30 12000 

7 107 60 30000 

8 108 40 22000 

9 109 25 15000 

10 110 50 35000 
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When the process of clustering begins the data will be divided into clusters as shown 

in Table 1.2, 1.3 and 1.4 respectively. 

Table 1.2: Data of Cluster 1 - Young and High Spending 

Order ID Customer ID Age Order Total 

2 102 29 25000 

8 108 40 22000 

 

Table 1.3: Data of Cluster 2 - Young and High Spending 

Order ID Customer ID Age Order Total 

1 101 22 12000 

3 103 35 7500 

4 104 42 18000 

6 106 30 12000 

9 109 25 15000 

 

Table 1.4: Data of Cluster 3 – Senior 

Order ID Customer ID Age Order Total 

7 107 60 30000 

 

Observe that by creating the three clusters we have gained valuable insights into the 

customer behaviour. For example we can now target the young and high spending 

customers with premium products and exclusive offers. The middle aged and low 

spending customers may benefit from value based marketing or discounts to 

encourage them for higher spending. The senior customers may be interested in 

products that focus on long term comfort and lifestyle.  

Such a segmentation thus allows businesses to customize their marketing strategies 

and product offerings, ensuring that each group receives the most relevant promotions 

and services. 
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Data Compression 

The goal of data compression is to reduce the size of the dataset while still preserving 

its key information. This can be done by removing redundancy, representing data more 

efficiently, or consolidating information. It is possible to use simple techniques for 

compression, such as categorical encoding which allows us to reduce the size of the 

text field by encoding it with numerical values. Proper feature selection allows us to 

reduce the dataset by only keeping the most relevant features. 

 
Data Summarization 
 
Data summarization allows us to create a small but better representation of a large 

dataset. The goal of data summarization is to highlight key trends, patterns, and 

relationships in the data. For example we can summarize the data of Table 1.1 as 

shown in Table 1.5 so as to contain summarized data like Count of Orders, Average 

Order Total, Min Order Total and Max Order Total. 

 
Table 1.5: Summary of data by Age group 

Age Group 
Count of 

Orders 

Average Order 

Total 

Min Order 

Total 

Max Order 

Total 

Young (Under 30) 5 15500 7500 25000 

Middle-Aged (30-59) 4 27500 12000 50000 

Senior (60 and above) 1 30000 30000 30000 

 

From the data of Table 1.5 it can be concluded that the spending is lesser among 

young customers as compared to middle-aged customers, while senior customers 

have a single high order. 
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Check Your Progress-1 

a) The primary goal of clustering is to conceal the knowledge underlying large data 

sets without predefined labels. (True/False) 
b) Proper partitioning of the dataset can improve the efficiency of query execution. 

(True/False) 
c) Re-organization of data can help businesses improve their service strategies. 

(True/False) 
d) The goal of data compression is to increase the size of the dataset while still 

preserving its key information. (True/False) 
e) Data summarization allows us to create a small but better representation of a 

large dataset. (True/False) 

 

 
1.3 CLUSTERING APPROACHES 
 
Clustering as mentioned earlier is used to group similar data points together. There 

are two primary approaches to clustering based on the way data points are assigned 

to clusters: Hard Clustering and Soft Clustering.  

 

Hard Clustering 
The clustering approach in which each data point is assigned to exactly one and only 

one cluster is known as hard clustering. In this technique a data point either belongs 

to a cluster or it does not. Assume that we have five data points { (x1,y1), (x2,y2), 

….,(x5,y5) }. We want to segregate them into three clusters, say C1, C2 and C3. Here 

if we apply a hard clustering approach then the data points based on some similarity 

may be assigned to clusters as shown in Table 1.6. 

 

The clustering techniques that use a hard clustering approach are easy to understand 

and interpret. It provides a clear separation of clusters such that we get well defined, 

disjoint clusters that are easy to evaluate. Generally such techniques are faster and 

computationally less expensive. At times though as each point belongs to only one 

cluster it may not reflect the true nature of the data, especially in cases of clusters 

where data might be overlapping. 
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Table 1.6: Hard Clustering of data points 

Cluster Data Points 

C1 (x1,y1) 

C2 (x2,y2) 

C3 (x3,y3) 

C1 (x4,y4) 

C2 (x5,y5) 

 

Soft Clustering 
The clustering approach in which each data point  can belong to more than one cluster, 

but with different degrees of membership is known as soft clustering. It is also known 

as fuzzy clustering due to the property that the assignment of data points to clusters 

is probabilistic or fuzzy. It means that the data point has a certain likelihood of 

belonging to one or another cluster. If we consider the data of Table 1.6 and apply a 

soft clustering approach then we need to evaluate the probability of data points 

belonging to cluster C1, C2 and C3. The said probability needs to be calculated for 

every data point in the data set. A sample probability calculation is shown in Table 1.7 

as an example. 

Table 1.7: Soft Clustering of data points 

Data Points Probability of C1 Probability of C2 Probability of C3 

(x1,y1) 0.90 0.06 0.04 

(x2,y2) 0.20 0.70 0.10 

(x3,y3) 0 0 1 

(x4,y4) 0.85 0.10 0.05 

(x5,y5) 0.05 0.95 0 

 

Soft clustering is a good option where data points belong to multiple clusters or are 

near the boundary between multiple clusters. It provides more clear insights, such as 

the degree of membership of a point in each cluster. At times though results of soft 

clustering approach are harder to interpret as each data point has a degree of 

membership for multiple clusters. The technique often requires more computations 

and can be slower when working with large datasets. 
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1.4 CLUSTERING TECHNIQUES 
 

Machine learning datasets can have millions of data points. Clustering is an 

unsupervised machine learning technique that is used to group data points together 

into clusters or subsets. The data points within a cluster are more similar to each other 

than to those in other clusters. There are several types of clustering techniques each 

with its own approach and application. The most commonly used clustering methods 

are: Partition based clustering, Hierarchical based clustering, Density based clustering 

and Distribution based clustering 

 

Partition Based Clustering 

The Partition-based clustering technique divides the dataset into a set of clusters 

where each data point belongs to one particular cluster. The technique aims to 

minimize a predefined cost function such as the sum of squared distances between 

data points and the cluster centre. The partition based clustering organizes the data 

into non-hierarchical clusters. These techniques are efficient but sensitive to initial 

conditions and outliers. This technique is also known as centroid based clustering 

because the identification and the assignment of data points to a cluster is driven by 

the centroid of a central point. These central point’s represent the cluster, and the 

technique works by iteratively adjusting the centres to best fit the data. Figure 1.2 

shows an example of partition-based clustering. 

 

Figure 1.2: Example of partition based clustering 



253 

Advantages 
● The technique is simple and easy to implement. 

● The technique is efficient for large datasets. 

 

Disadvantages 
● Knowledge of the number of clusters ‘K’ is required in advance. 

● The technique is sensitive to initial centroid or central point selection. 

● The technique struggles if the clusters are non-spherical in shape or clusters 

vary in size and density. 

 

Hierarchical Based Clustering 
Hierarchical based clustering technique builds a tree like structure of the data set. The 

clusters at times here are nested inside other clusters. This method does not require 

the number of clusters to be predefined. It creates a dendrogram, a tree diagram that 

shows the arrangement of the clusters. Any number of clusters can be chosen by 

cutting the tree at the right level. There are two categories of hierarchical clustering,  

Agglomerative also known as bottom-up and Divisive also known as top-down. 

 

Agglomerative hierarchical clustering 
The agglomerative method starts with considering an individual data point as a cluster 

and then iteratively tries and merges the closest clusters until all points belong to a 

single cluster.  

 

Divisive hierarchical clustering 
The divisive method on the other hand starts with the consideration that the entire 

dataset is a single cluster. It then recursively tries and splits the single cluster into 

smaller clusters. Figure 1.3 shows an example of hierarchical based clustering. 
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Figure 1.3: Example of hierarchical based clustering 

 
Advantages 

● Knowledge of the number of clusters ‘K’ is not required in advance. 

● The use of a dendrogram makes visualisation very easy. 

● The technique is more flexible and better for smaller datasets. 

 

Disadvantages 
● The technique is computationally expensive if the dataset is large. 

● The technique can suffer from scalability issues at times. 

● The results are sensitive to the linkage criteria (single, complete, or average 

linkage). 

 
Density Based Clustering 
Density based clustering techniques group together the data points that are closely 

packed. It marks all the data points that lie in low density regions as outliers. The 

outliers are not assigned to any clusters. This technique allows the discovery of any 

number of clusters irrespective of its shape. Figure 1.4 shows an example of density 

based clustering. 
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Figure 1.4: Example of density based clustering 

Advantages 

● This technique can be used to find clusters of arbitrary shapes. 

● In this technique it is possible to identify outliers  points or noise present in the 

dataset. 

● Knowledge of the number of clusters ‘K’ is not required in advance. 

 

Disadvantages 

● The technique depends on two parameters; the radius of the neighbourhood 

known as epsilon (ε) and the minimum number of points to form a cluster. 

● If the clusters have varying density then the technique struggles to generate 

proper clusters. 

 
Distribution Based Clustering 
The distribution model based clustering method divides the data based on the 

probability of how a dataset belongs to a particular distribution. The distribution is done 

by assuming some distributions (commonly Gaussian Distribution). Figure 1.5 shows 

an example of distribution based clustering. 
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Figure 1.5: Example of distribution based clustering 

Advantages 

● The technique can be used to model clusters with elliptical shapes. 

● A point can belong to more than one cluster with different probabilities. 

● The technique can be used to handle overlapping clusters better. 

Disadvantages 

● The technique is computationally expensive. 

● The technique assumes that the data follows a Gaussian distribution, which 

may not always be the case. 

● The technique is sensitive to initialization. 

Check Your Progress-2 
a) In a hard clustering approach each data point  can belong to more than one 

cluster. (True/False) 
b) In partition based clustering the knowledge of the number of clusters ‘K’ is 

required in advance. (True/False) 
c) Partition based clustering creates a dendrogram. (True/False) 
d) The agglomerative method starts with consideration that the entire dataset is 

a single cluster. (True/False) 
e) In density based clustering techniques all the data points that lie in low 

density regions are marked as outliers. (True/False) 
f) The distribution based clustering technique can be used to model clusters 

with elliptical shapes. (True/False) 
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1.5 LET US SUM UP 
 
In this unit we have discussed the concept of clustering and its approaches. Clustering 

is a process of dividing a data set into groups. As learnt we can apply two approaches 

for clustering hard and soft. You also got a detailed understanding of different 

techniques used for clustering like partition based clustering, hierarchical based 

clustering, density based clustering and distribution based clustering.  

 

1.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
 
1-a False 

1-b True 

1-c True 

1-d False 

1-e True 

2-a False 

2-b True 

2-c False 

2-d False 

2-e True 

2-f True 

 
 
1.7 ASSIGNMENTS 
 
● What is the advantage of using clustering? 

● Explain the concept of data summarization with examples. 

● Differentiate between hard and soft clustering approaches. 

● Explain different types of hierarchical clustering approaches. 

● Differentiate between density-based clustering and distribution-based clustering. 
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Unit-2:  Clustering Algorithms  
 

Unit Structure 
 
2.0. Learning Objectives 

 
2.1. Introduction 

 
2.2. K-Means Clustering Technique 

 
2.3. K-Medoids Clustering Technique 

 
2.4. DBSCAN Clustering Technique 

 
2.5. Let us sum up 

 
2.6. Check your Progress: Possible Answers 

 
2.7. Assignments 

 
 

  

2 
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2.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

● Understand how to perform clustering in machine learning. 

● Understand the working of K-Means clustering technique. 

● Understand the working of K-Medoids clustering technique. 

● Understand the working of DBSCAN clustering technique. 

● Implement the K-Means, K-Medoids and DBSCAN algorithms.  

 
2.1 INTRODUCTION 
 
In the previous chapter we learnt that clustering is a technique used to arrange similar 

or dissimilar data points into distinct groups known as clusters based on some specific 

criteria. We also looked at different techniques that can be applied for clustering.  

 

In this chapter we will learn about different clustering algorithms that are used under 

various techniques. We will see how the clustering is performed using these algorithms 

and will also look at the implementation of these algorithms. 

 
2.2 K-MEANS CLUSTERING TECHNIQUE 
 
K-Means clustering technique is a popular unsupervised machine learning algorithm 

used for clustering. It follows the partitioning approach for creating clusters. The goal 

of the K-Means clustering algorithm is to group similar data points together. The 

algorithm partitions a set of 'n' data points into 'K' clusters. Here 'K' defines the number 

of predefined clusters that need to be created. If K=2, then there will be two clusters, 

and for K=3, there will be three clusters, and so on.  

 

It is an iterative algorithm that divides the unlabelled dataset into k different clusters. 

Each data point belongs to the cluster with the nearest mean. It is also known as a 

centroid-based algorithm, where each cluster is associated with a centroid. The main 

aim of the algorithm is to maximize the homogeneity within the clusters and thus to 

maximize the differences between the clusters. The homogeneity and differences are 

measured in terms of the distance between the objects or points in the data set. Thus 

the K-Means clustering algorithm helps users to organize data into groups where the 
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points in each group are more similar to each other than to those in other groups. It’s 

often used in tasks like customer segmentation, document clustering, image 

compression and many more. The generic K-Means algorithm is as mentioned: 

 

Generic K-Means algorithm 
Step 1: Select ‘k’ points from the data points and mark them as initial centroids.  

Step 2: Assign each data point to the nearest centroid to form ‘k’ clusters by 

measuring the distance of each point in the cluster from the centroid.  

The distance between each data point and the centroids is typically calculated using 

the Euclidean distance formula: 

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 
 

Here (x1,y1) is a data point and (x2,y2) is centroid. 

Step 3: Identify the new centroid of each cluster on the basis of distance between 

points. The value is calculated by taking the mean of all the data points assigned 

within the cluster. 

Step 4: Repeat Steps 2 and 3 to refine the clusters till centroids do not change. 

 

Example:  
Let us have a look at an example that uses the K-Means algorithm to form clusters. 

Assume that we have details of 10 customers along with features like Age and Order 

Total (The dataset has been kept small only for the purpose of demonstrating the 

working of the example). Our goal is to group these customers into 2 groups i.e. k=2 

based on the two features. The data pertaining to the features for each customer is  

as shown in Table 2.1. 

Table 2.1 Sample Order Data 

Order ID Age (x) Order Total (y) 

1 22 12000 

2 29 25000 

3 35 7500 

4 42 18000 

5 52 50000 

6 60 30000 
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Order ID Age (x) Order Total (y) 

7 30 12000 

8 40 22000 

9 25 15000 

10 50 35000 

 

Figure 2.1 shows the X-Y scatter plot of the data points for visualization purposes. 

 

Figure 2.1: X-Y scatter plot of the data points in Table 2.1 

Step-1: Initialize centroids: 

The first step in the K-means clustering algorithm is to initialize the centroids. In the 

problem definition we have mentioned that k = 2, thus we need to randomly select two 

points as initial centroids. Assume that the centroids are as mentioned: 

Centroid 1 (C1) is (22, 12000) and Centroid 2 (C2) is (52, 50000) 

These centroids will be the starting point for our algorithm. 

Step 2: Assign each data point to the nearest centroid by calculating the 
distance: 
Now we will assign each data point to the nearest centroid by calculating the Euclidean 

distance between the data point and the centroid. Table 2.2 shows the distance 

calculation and cluster allocation. 
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Table 2.2 Distance calculation 
Data Point (29, 25000) 

Distance to C1 
(22, 12000) 

Distance to C2 
(52, 50000) 

Closer 
to 

Cluster 

= √(29 − 22)2 + (25000 − 12000)2 

= √(7)2 + (13000)2 

≅ 12987 

= √(29 − 52)2 + (25000 − 50000)2 

 
= √(−23)2 + (−25000)2 

 
≅ 25001 

C1 

 
 
Data Point (35, 7500) 

Distance to C1 
(22, 12000) 

Distance to C2 
(52, 50000) 

Closer 
to 

Cluster 

= √(35 − 22)2 + (7500 − 12000)2 

 

= √(13)2 + (−4500)2 

 

≅ 7124 

= √(35 − 52)2 + (7500 − 50000)2 

 
= √(−17)2 + (−42500)2 

 
≅ 43315 

C1 

 
Data Point (42, 18000) 

Distance to C1 
(22, 12000) 

Distance to C2 
(52, 50000) 

Closer 
to 

Cluster 
= √(42 − 22)2 + (18000 − 12000)2 

 

= √(20)2 + (6000)2 

 

≅ 6000 

= √(42 − 52)2 + (18000 − 50000)2 

 
= √(−10)2 + (−32000)2 

 
≅ 32344 

C1 

 
Data Point (60, 30000) 

Distance to C1 
(22, 12000) 

Distance to C2 
(52, 50000) 

Closer 
to 

Cluster 
= √(60 − 22)2 + (30000 − 12000)2 

= √(38)2 + (18000)2 

≅ 18000 

= √(60 − 52)2 + (30000 − 50000)2 

 
= √(8)2 + (−20000)2 

C1 
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Data Point (60, 30000) 

Distance to C1 
(22, 12000) 

Distance to C2 
(52, 50000) 

Closer 
to 

Cluster 
 

≅ 20000 

 
Data Point (30, 12000) 

Distance to C1 
(22, 12000) 

Distance to C2 
(52, 50000) 

Closer 
to 

Cluster 
= √(30 − 22)2 + (12000 − 12000)2 

 

= √(8)2 + (0)2 

 

= 8 

= √(30 − 52)2 + (12000 − 50000)2 

 
= √(−22)2 + (−38000)2 

 
≅ 38000 

C1 

 
Data Point (40, 22000) 

Distance to C1 
(22, 12000) 

Distance to C2 
(52, 50000) 

Closer 
to 

Cluster 
= √(40 − 22)2 + (22000 − 12000)2 

 

= √(18)2 + (10000)2 

 

≅ 10000 

= √(40 − 52)2 + (22000 − 50000)2 

 
= √(−12)2 + (−28000)2 

 
≅ 28000 

C1 

 
Data Point (25, 15000) 

Distance to C1 
(22, 12000) 

Distance to C2 
(52, 50000) 

Closer 
to 

Cluster 
= √(25 − 22)2 + (15000 − 12000)2 

 

= √(3)2 + (3000)2 

 

≅ 3000 

= √(25 − 52)2 + (15000 − 50000)2 

 
= √(−27)2 + (−35000)2 

 
≅ 35000 

C1 
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Data Point (50, 35000) 

Distance to C1 
(22, 12000) 

Distance to C2 
(52, 50000) 

Closer 
to 

Cluster 
= √(50 − 22)2 + (35000 − 12000)2 

 

= √(28)2 + (23000)2 

 

≅ 23000 

= √(50 − 52)2 + (35000 − 50000)2 

 
= √(−2)2 + (−15000)2 

 
≅ 15000 

C2 

 

The two clusters thus have following data points as per the distance calculation: 

Cluster 1 = { (22, 12000), (29,25000), (35,7500), (42,18000), (60,30000), (30,12000), 

(40,22000), (25,15000) }  

Cluster 2 = { (50,35000), (52,50000) } 

 

Step 3: Update the Centroids: 
We will now compute the new centroids based on the mean of the points assigned to 

each centroid in the above step. The centroid C1 is assigned data points (29,25000), 

(35,7500), (42,18000), (60,30000), (30,12000), (40,22000) and (25,15000), thus new 

centroid will be calculated as follows: 

𝑁𝑒𝑤 𝑥 =  
22 +  29 +  35 +  42 +  60 +  30 +  40 +  25 

8
=  

213

8
=  26.62 ≅ 27 

Similarly  

𝑁𝑒𝑤 𝑦 =  
12000 +  25000 +  7500 +  18000 +  30000 +  12000 +  22000 +  15000

8

=  
141500

8
≅  17688 

 

Thus the value of the new centroid C1 is (27, 17688).  
 

Similarly new centroid C2 will be calculated as follows: 

𝑁𝑒𝑤 𝑥 =  
50 +  52 

2
=  

102

2
=  51 

And 

𝑁𝑒𝑤 𝑦 =  
35000 +  50000

2
=  

85000

2
≅  42500 

 

Thus the value of the new centroid C2 is (52, 42500). 
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Step 4: Repeat Step 2 – Iteration 2 
Table 2.3 shows the distance calculation with new centroids and cluster allocation. 

The detailed calculation and intermediate steps have been omitted. The reader can 

evaluate it further for the purpose of better understanding. 

 

Table 2.3 Distance calculation 

Data 
Point 
No. 

Age (x) 
Order Total 

(y) 
Distance to C1 

(27, 17688) 

Distance to C2 
(52, 42500) 

Closer to 
Cluster 

1 22 12000 5688 30500 C1 

2 29 25000 7312 17500 C1 

3 35 7500 10188 35000 C1 

4 42 18000 312 24500 C1 

5 52 50000 32312 7500 C2 

6 60 30000 12312 12500 C1 

7 30 12000 5688 30500 C1 

8 40 22000 4312 20500 C1 

9 25 15000 2688 27500 C1 

10 50 35000 17312 7500 C2 

 

The two clusters thus have following data points as per the distance calculation: 

Cluster 1 = { (22, 12000), (29,25000), (35,7500), (42,18000), (60,30000), (30,12000), 

(40,22000), (25,15000) }  

Cluster 2 = { (50,35000), (52,50000) } 

 

As can be seen from the output of Table 2.2 and 2.3 the data points in both clusters 

have remained unchanged between the two iterations. Thus the final cluster 

assignment would be done as mentioned: 

 

Cluster 1 = { (22, 12000), (29,25000), (35,7500), (42,18000), (60,30000), (30,12000), 

(40,22000), (25,15000) }  

Cluster 2 = { (50,35000), (52,50000) } 
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Figure 2.2 shows the X-Y scatter plot along with the distribution of the data points in 

two clusters. 

 
Figure 2.2: X-Y scatter plot of the data points in two clusters 

Check Your Progress-1 

a) K-means is an unsupervised machine learning algorithm. (True/False) 
b) The value of K in the K-Means algorithm is by default 2. (True/False) 
c) In the K-Means algorithm each data point belongs to the cluster with the nearest 

mean. (True/False) 
d) Each cluster in K-Means algorithm is associated with a medoid. (True/False) 
e) There are multiple ways to calculate distance between centroid and data points. 

(True/False) 

 

 
2.3 K-MEDIODS CLUSTERING TECHNIQUE 
 
K-Medoids clustering technique is another popular unsupervised machine learning 

algorithm used for clustering. The goal of K-Medoids clustering algorithm is to group 

similar data points together such that a single data point can belong to only one cluster 

and each cluster has a minimum one data point. The method is also known as 

partitioning around medoids (PAM). Similar to the K-Means clustering technique here 

also 'K' defines the number of predefined clusters that need to be created.  
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Here the term medoid refers to a data point in the cluster within a dataset from which 

the sum of distances to other data points is minimal. It is the data point in a cluster 

characterized by the lowest dissimilarity with other data points.. The generic K-

Medoids algorithm is as mentioned: 

 

Generic K-Medoids algorithm 
Step 1: Select ‘k’ random points from the data points and mark them as initial 

medoids.  

Step 2: Calculate the distance between the initial medoids and other data points 

(non-medoid) and assign the non-medoid points to the cluster to which its distance 

to the medoid point is minimum. 

 

The distance between the data point and the medoids is typically calculated using 

metrics like Euclidean distance, or Manhattan distance or any other distance metric. 

Here we are will use the Manhattan distance, the formula of the same is: 

 

d = |x2 – x1| + |y2 – y1| 

 

Here (x1,y1) is a data point and (x2,y2) is medoid. 

Step 3: Calculate the total cost as the sum of distances from other data points to 

the medoid point within a cluster. 

Step 4: Select a new non-medoid data point (q) and swap it with the initial medoids 

(p).  

Step 5: Repeat the steps from 2 to 4 if costq < costp . If costq >= costp then revert to 

previous medoids and finalize the cluster.  

 

Example:  
Let us have a look at an example that uses the K-Medoids algorithm to form clusters. 

Assume that we have details of 10 students along with features like Height and Weight. 

Our goal is to group these students into 2 groups i.e. K = 2 based on the given two 

features. The data pertaining to the features for each person is  as shown in Table 2.4. 
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Table 2.4 Sample Data of students 

Sr. No. Height in foot (x) Weight in KG (y) 

1 5.4 85 

2 4.7 70 

3 6 75 

4 5.7 65 

5 4.3 50 

6 3 35 

7 5.2 70 

8 3.5 40 

9 4.5 45 

10 3.7 50 

 

Figure 2.3 shows the X-Y scatter plot of the data points for visualization purposes. 

 

Figure 2.3: X-Y scatter plot of the data points in Table 2.4 
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Step-1: Initialize medoids 
The first step in K-medoids clustering algorithm is to initialize random medoids. In the 

problem definition we have mentioned that k = 2, thus we need to randomly select two 

data points as initial medoids. Assume that the medoids are as mentioned: 

Medoid 1 (M1) is (5.4, 85) and Medoid 2 (M2) is (4.3, 50) 
These medoids will be the starting point for our algorithm. 

 
Step 2: Calculate the distance between the initial medoids and other data points: 

Now we will assign each data point to the nearest medoid by calculating the Manhattan 

distance between the data point and the medoid. Table 2.5 shows the distance 

calculation. 

 

Table 2.5 Distance calculation 

Data 
Point 
No. 

Height in 
foot (x) 

Weight 
in KG (y) 

Distance to M1 
(5.4, 85) 

Distance to M2 
(4.3, 50) 

1 5.4 85 - - 

2 4.7 70 = |5.4 – 4.7| + |85 – 70| 

= |0.7| + |15| 

= 15.7 

= |4.3 – 4.7| + |50 – 70| 

= |-0.4| + |-20| 

= 20.4 

3 6 75 = |5.4 – 6| + |85 – 75| 

= |-0.6| + |10| 

= 10.6 

= |4.3 – 6| + |50 – 75| 

= |-1.7| + |-25| 

= 26.7 

4 5.7 65 = |5.4 – 5.7| + |85 – 65| 

= |-0.3| + |20| 

= 20.3 

= |4.3 – 5.7| + |50 – 65| 

= |-1.4| + |-15| 

= 16.4 

5 4.3 50 - - 
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Data 
Point 
No. 

Height in 
foot (x) 

Weight 
in KG (y) 

Distance to M1 
(5.4, 85) 

Distance to M2 
(4.3, 50) 

6 3 35 = |5.4 – 3| + |85 – 35| 

= |2.4| + |50| 

= 52.4 

= |4.3 – 3| + |50 – 35| 

= |1.3| + |15| 

= 16.3 

7 5.2 70 = |5.4 – 5.2| + |85 – 70| 

= |0.2| + |15| 

= 15.2 

= |4.3 – 5.2| + |50 – 70| 

= |-0.9| + |-20| 

= 20.9 

8 3.5 40 = |5.4 – 3.5| + |85 – 40| 

= |1.9| + |45| 

= 46.9 

= |4.3 – 3.5| + |50 – 40| 

= |0.8| + |10| 

= 10.8 

9 4.5 45 = |5.4 – 4.5| + |85 – 45| 

= |0.9| + |40| 

= 40.9 

= |4.3 – 4.5| + |50 – 45| 

= |-0.2| + |15| 

= 5.2 

10 3.7 50 = |5.4 – 3.7| + |85 – 50| 

= |1.7| + |35| 

= 36.7 

= |4.3 – 3.7| + |50 – 50| 

= |0.6| + |0| 

= 0.6 

 

Thus as per the distance calculation data points 2, 3 and 7  are assigned to cluster C1 

with medoid (5.4, 85), while data points 4, 6, 8, 9 and 10 are assigned to cluster C2 

with medoid (4.3, 50) 

 

Step 3: Calculate the total cost 
The total cost Co1 after the first iteration is as mentioned: 

Co1 = (15.7 + 10.6 + 15.2) + (16.5 + 16.3 + 10.8 + 5.2 + 0.6) = 90.8 
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Step 4: Select a new non-medoid data points (q)  
Let us now randomly select another initial medoids and swap it with the current ones. 

Assume that the new medoids are as mentioned: 

Medoid 1 (M1) is (6, 75) and Medoid 2 (M2) is (3.5, 40) 
 
Step 5: Repeat Step 2 - Iteration 2 
Table 2.6 shows the distance calculation with new medoids. The detailed calculation 

and intermediate steps have been omitted. The reader can evaluate it further for the 

purpose of better understanding. 

 

Table 2.6 Distance calculation 

Data 
Point No. 

Height in foot 
(x) 

Weight 
in KG (y) 

Distance to M1 
(6, 75) 

Distance to M2 
(3.5, 40) 

1 5.4 85 10.6 46.9 

2 4.7 70 6.3 31.2 

3 6 75 - - 

4 5.7 65 10.3 27.2 

5 4.3 50 26.7 10.8 
6 3 35 43 5.5 

7 5.2 70 5.8 31.7 

8 3.5 40 - - 

9 4.5 45 31.5 6 

10 3.7 50 27.3 10.2 

 

Thus as per the distance calculation data points 1, 2, 4 and 7 are assigned to cluster 

C1 with medoid (6, 75), while data points 5, 6, 9 and 10 are assigned to cluster C2 

with medoid (3.5, 40) 

 

Step 5: Repeat Step 3 - Iteration 2 
The total cost Co2 after the second iteration is as mentioned: 

Co2 = (10.6 + 6.3 + 10.3 + 5.8) + (10.8 + 5.5 + 6 + 10.2) = 65.5 
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As the total cost in iteration 2 is less than the total cost of iteration 1, we will randomly 

select the new medoids. 

 

Step 5: Repeat Step 4 - Iteration 2 
Let us now randomly select another initial medoids and swap it with the current ones. 

Assume that the new medoids are as mentioned: 

Medoid 1 (M1) is (5.7, 65) and Medoid 2 (M2) is (3.7, 50) 
 
Step 6: Repeat Step 2 - Iteration 3 
The Table 2.7 shows the distance calculation with new medoids. The detailed 

calculation and intermediate steps have been omitted in the calculation made  

 

Table 2.7 Distance calculation 

Data 
Point No. 

Height in foot 
(x) 

Weight 
in KG (y) 

Distance to M1 
(5.7, 65) 

Distance to M2 
(3.7, 50) 

1 5.4 85 20.3 36.7 

2 4.7 70 6 21 

3 6 75 10.3 27.3 

4 5.7 65 - - 

5 4.3 50 16.4 0.6 
6 3 35 32.7 15.7 

7 5.2 70 5.5 21.5 

8 3.5 40 27.2 10.2 

9 4.5 45 21.2 5.8 

10 3.7 50 - - 

Thus as per the distance calculation data points 1, 2, 3 and 7 are assigned to cluster 

C1 with medoid (5.7, 65), while data points 5, 6, 8 and 9 are assigned to cluster C2 

with medoid (3.7, 50) 

 

Step 6: Repeat Step 3 - Iteration 3 
The total cost Co3 after the third iteration is as mentioned: 

Co3 = (20.3 + 6 + 10.3 + 5.5) + (0.6 + 15.7 + 10.2 + 5.8) = 74.4 
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As the total cost in iteration 3 is greater than the total cost of iteration 2 the process 

converges. The final clusters thus will be formed with medoids (6, 75) and (3.5, 40).  

 

Thus the final cluster assignment would be done as mentioned: 

Cluster 1 = { (5.4,85), (4.7,70), (6,75), (5.7,65), (5.2,70) } and Cluster C2 = { (4.3,50), 

(3,35), (3.5,40), (4.5,45), (3.7,50) }. 

 

Figure 2.4 shows the X-Y scatter plot along with the distribution of the data points in 

two clusters. 

 
Figure 2.4: X-Y scatter plot of the data points in two clusters 
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Check Your Progress-2 

a) In K-Medoids algorithm a data point of a cluster can belong to two clusters. 

(True/False) 
b) The value of K in the K-Medoids algorithm is to be predefined by the user. 

(True/False) 
c) Each cluster formed by the K-Medoid algorithm is associated with a medoid. 

(True/False) 
d) The K-Medoids algorithm is not good at identifying outliers as compared to K-

Means algorithm because it uses the mean of the data points in a cluster as the 

center. (True/False) 
e) K-Medoids algorithm may not converge to a global optimum due to the initial 

choice of medoids. (True/False) 

 

2.4 DBSCAN CLUSTERING TECHNIQUE 
 

Density-Based Spatial Clustering of Applications with Noise usually abbreviated as 

DBSCAN as the name suggests is a density based clustering algorithm. The DBSCAN 

algorithm works on the principle of density of data points in a region. The algorithm 

thus groups data points that are closely packed together in data space. It works by 

defining clusters as dense regions separated by regions of lower density. Using this 

approach the DBSCAN algorithm can be used to discover clusters of arbitrary shapes. 

It is also an excellent algorithm when it comes to identifying outliers as noise in a data 

set. There is no need to predefine the number of clusters when using the DBSCAN 

algorithm. 

 

The two main parameters used in the DBSCAN algorithm are ε (epsilon) and MinPts. 

The term ε (epsilon) refers to the maximum distance between two data points for them 

to be considered as neighbours. MinPts refers to the minimum number of points that 

are required to form a dense region or a cluster. 

 

The data points when using the DBSCAN algorithm are classified as core, border or 

noise points. The core points are data points that have at least a minimum number of 
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other points (MinPts) within a specified distance (ε or epsilon). The border points are 

points that are within the ε distance of a core point but don't have MinPts neighbours 

themselves.  The noise points are points that are neither core points nor border points. 

These data points are not close enough to any of the clusters that are formed and 

hence cannot be included in them. Figure 2.5 gives the idea of the concepts 

mentioned. 

 

 
Figure 2.5: Basic Concepts of DBSCAN 

 
Generic DBSCAN algorithm 

Step 1: Select parameters ε (epsilon) and  MinPts. 

Step 2: Select random data point as start point. 

Step 3: Examine the neighbourhood by calculating the distance matrix of all data 

points.  

● Retrieve all points within the ε distance of the starting point.  

● If the number of neighbouring points is less than MinPts, the point is labelled 

as noise (for now).  

● If there are at least MinPts points within ε distance, the data point is marked 

as a core point, and a new cluster is formed. 

Step 4: Expand the Cluster, all the neighbours of the core point are added to the 

cluster. For each of these neighbours: 
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● If it's a core point, its neighbours are added to the cluster recursively. 

● If it's not a core point, it's marked as a border point, and the expansion 

stops. 

Step 5: Repeat steps 3 and 4 until all data points have been visited. 

Step 6: Finalize the clusters, if all data points have been visited.  Points initially 

labelled as noise might now be border points if they're within ε distance of a core 

point. 

Step 7: Handle Noise, any data points if it does not belong to a cluster is classified 

as noise.  

 

Example: 

Assume that we have a data set that consists of 10 points { (1, 2), (2, 2), (2, 3), (4,7), 

(5,6), (5,8), (6,7), (8, 7), (8, 8), (25, 20) }. We need to partition them into multiple 

clusters using the DBSCAN algorithm. Let the value of ε (epsilon) be 2 and MinPts be 

3. Figure 2.6 shows the scatter plot of the same. 

 

Figure 2.6: X-Y Scatter plot of data 

Step 1: Given ε = 2 and MinPts = 3 

Step 2: Let us start with the data point (1,2) 
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Step 3: Calculate pairwise distance 

We will use the Manhattan distance formula to calculate the distance between any two 

points i.e. d = |x2 – x1| + |y2 – y1| 

The calculation of pairwise distance from the first data point (1,2) is shown for the 

reference in Table 2.8. 

Table 2.8 Distance calculation 

Data 
Point 

Distance to 
(1, 2) 

Less than 
ε = 2 

(2, 2) = |1 – 2| + |2 – 2| = |-1| + | 0 |  = 1 Y 

(2, 3)  = |1 – 2| + |2 – 3| = |-1| + | -1 | = 2 Y 

(4,7)  = |1 – 4| + |2 – 7| = |-3| + | -5 | = 8 N 

(5,6) = |1 – 5| + |2 – 6| = |-4| + | -4 | = 8 N 

(5,8)  = |1 – 5| + |2 – 8| = |-4| + | -6 | = 10 N 

(6,7)  = |1 – 6| + |2 – 7| = |-5| + | -5 | = 10 N 

(8, 7)  = |1 – 8| + |2 – 7| = |-7| + |-5| = 12 N 

(8, 8)  = |1 – 8| + |2 – 8| = |-7| + |-6| = 13 N 

(25, 20) = |1 – 25| + |2 – 20| = |-24| + |-18| = 42 N 

 

Table 2.9 shows the distance matrix for all the data points calculated using Manhattan 

distance formula. 

Table 2.9 Distance Matrix of all data points 

  1,2 2,2 2,3 4,7 5,6 5,8 6,7 8,7 8,8 25,20 
1,2 0 1 2 8 8 10 10 12 13 42 

2,2 1 0 1 7 7 9 9 11 12 41 

2,3 2 1 0 6 6 8 8 10 11 40 

4,7 8 7 6 0 2 2 2 4 5 34 

5,6 8 7 6 2 0 2 2 4 5 34 

5,8 10 9 8 2 2 0 2 4 3 32 

6,7 10 9 8 2 2 2 0 2 3 32 

8,7 12 11 10 4 4 4 2 0 1 30 

8,8 13 12 11 5 5 3 3 1 0 29 

25,20 42 41 40 34 34 32 32 30 29 0 
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The observation of the distance calculation in Table 2.9 leads us to the outcome given 

in Table 2.10.  

Table 2.10 Deciding Core Points 

Data 
Point 

Data Points having 
ε = 2 

No. of 
Neighbours 

Core Point 

(1, 2) (2,2) (2,3) 2 N 

(2, 2) (1,2) (2,3) 2 N 

(2, 3)  (1,2) (2,2) 2 N 

(4,7)  (5,6) (5,8) (6,7)  3 Y 

(5,6) (4,7) (5,8) (6,7) 3 Y 

(5,8)  (4,7) (5,6) (6,7)  3 Y 

(6,7)  (4,7) (5,6) (5,8) (8,7) 4 Y 

(8, 7)  (6,7) (8,8) 2 N 

(8, 8)  (8,7) 1 N 

(25, 20) - 0 N 

 

From Table 2.10 we can say that only four data points (4,7), (5,6), (5,8) and (6,7) have 

a number of neighbours greater than or equal to Minpts, thus these four data points 

become our core points. 

As the core points have been identified we can start forming clusters by checking the 

neighborhood of core points. The clusters are expanded by including the data points 

that can be directly reached i.e. data points within ε distance. The non-core points that 

are within ε distance of any core point are added to the cluster, but non-core points 

that are not reachable are marked as noise. 

Let the formation of Cluster 1 start with data point (4,7), we now add core points (5,6), 

(5,8) and (6,7) to Cluster 1. Thus data points that represent Cluster 1 are {(4, 7), (5, 

6), (5, 8), (6, 7)}. As data points (1, 2), (2, 2), (2, 3), (8, 7), (8, 8), and (25, 20) are not 

core points and are not reachable by any core points within ε = 2 they are considered 

as noise. 

As all data points have been taken into consideration we get the final result as 

mentioned: 
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Final Clustering Result: 

Cluster 1: {(4, 7), (5, 6), (5, 8), (6, 7)} 

Noise: {(1, 2), (2, 2), (2, 3), (8, 7), (8, 8), (25, 20)} 

Figure 2.7 shows the outcome of the DBSCAN algorithm. 

 

Figure 2.7: Outcome of the DBSCAN algorithm 

Check Your Progress-3 

a) There is no need to specify the number of clusters in advance when using 

the DBSCAN algorithm. (True/False) 
b) The DBSCAN algorithm cannot be used to identify clusters of arbitrary 

shapes. (True/False) 
c) The DBSCAN algorithm is sensitive to the choice of the ε that defines the 

maximum distance between two points to be considered neighbours. 

(True/False) 
d) The data points classified as noise in the DBSCAN algorithm are assigned to 

its nearest cluster. (True/False) 
e) The DBSCAN algorithm is computationally expensive when working with 

large datasets and high-dimensional data. (True/False) 
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2.5 LET US SUM UP 
 
In this unit we have discussed the three algorithms used for clustering. We understood 

the generic algorithms of K-Means, K-Medoid and DBSCAN clustering algorithms. We 

also looked at an example and performed mathematical calculation of each of these 

methods.  

 

2.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
 
1-a True 

1-b False 

1-c True 

1-d False 

1-e True 

2-a False 

2-b True 

2-c True 

2-d False 

2-e True 

3-a True 

3-b False 

3-c True 

3-d False 

3-e True 

 
 
2.7 ASSIGNMENTS 
 
● Explain the general steps involved in the K-Means algorithm. 

● What is the primary difference between K-Means and K-Medoids algorithm? 

● What is the significance of the ε (epsilon) and MinPts parameters in the DBSCAN 

algorithm? 

● Explain the concept of core points, border points, and noise. 
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Unit Structure 
 
3.0. Learning Objectives 
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3.2. Key Components of Association Rules 

3.3. Rule Evaluation Metrics 

3.4. How Does Association Rule Learning Work? 

3.5. Types of Association Rule Learning 

3.6. Applications of Association Rules 

3.7. Example of Association Rules 

3.8. Let us sum up 
 

3.9. Check your Progress: Possible Answers 
 

3.10. Assignments 
 
 

  

3 
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3.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

● Understand the concept of Association Rule Learning. 

● Understand the purpose of pattern search. 

● Explore real-world applications of Association Rule Learning. 

 
3.1 INTRODUCTION 
 
Association rule mining or learning is a method to identify patterns in large data sets, 

which determines the correlations between variables in the data and uses those 

correlations to predict or make a decision. Association rule mining identifies patterns 

that interpret the relationships among different pieces of data collection. 

For instance, an associated data set containing transactions based on grocery stores 

may be used to identify relationships between those products which are often bought 

together through association rule mining. An association rule that could be extracted 

from this data set is "if a customer buys bread, they are also likely to buy milk." We 

may use these rules to aid our decisions on marketing strategies, store design, and 

product placement. 

3.2 KEY COMPONENTS OF ASSOCIATION RULES 
 
Association rules focus on identifying strong associations between different items or 

variables in the data. It presents these associations in the form of if-then rules. An 

association rule consists of an antecedent (if part) and a consequent (then part). The 

dataset contains an antecedent, and we derive a consequent by using the antecedent. 

Antecedent: The “if” part of the rule, representing the condition. 

Example:  a customer buys bread and butter 

Consequent: The “then” part of the rule, representing the outcome. 

Example: The customer also  buy milk 

As can be seen a typical association rule in a market basket analysis might state that 

if a customer buys bread and butter (X), they are likely to also buy milk (Y). 
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3.3 RULE EVALUATION METRICS 
Association rules are evaluated using key metrics that determine their relevance, 

strength, and reliability. These metrics include support, confidence, and lift, which 

quantify the frequency and strength of relationships between data items. 

Support: It refers to the frequency of a data set (one or more items) that appears in 

all the considered transactions. Generally it looks for how often the given data or 

combination appears in the given data set. Mathematically, support of an item ‘X’ is 

defined as: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

If we obtain a high value for support it indicates that an item or itemset is common in 

the dataset, while low support value indicates that it is rare. 

Confidence: Confidence is defined as the likelihood of obtaining item ‘y’ along with an 

item ‘x’. Mathematically, it is defined as the ratio of frequency of transactions 

containing items ‘x’ and ‘y’ to the frequency of transactions that contained item x. 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋 𝑎𝑛𝑑 𝑌

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋
 

 

In terms of support, confidence can be described as:   

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡( 𝑋 ∪  𝑌 )

𝑠𝑢𝑝𝑝𝑜𝑟𝑡  𝑋
 

If the value of confidence is high, it indicates that the presence of the first item is a 

strong predictor of the presence of the second item. 

Lift: Lift is a measure of the strength of the association between two items, taking into 

account the frequency of both items in the dataset.  

It is calculated as the confidence of the association divided by the support of the 

second item. Lift is used to compare the strength of the association between two items 

to the expected strength of the association if the items were independent. 

𝐿𝑖𝑓𝑡(𝑋 → 𝑌) =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋
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A lift value greater than 1 indicates that the association between two items is stronger 

than expected based on the frequency of the individual items. This suggests that the 

association may be meaningful and worth further investigation. A lift value less than 1 

indicates that the association is weaker than expected and may be less reliable or less 

significant. 

 

Check Your Progress-1 
a) An itemset whose support is greater than or equal to a minimum support 

threshold is ____________. 
b) Support (A) means Total number of transactions containing A. (True/False) 

c) Frequency of occurrence of an itemset is called as _________. 

d) An association rule consists of an ________(if part) and a _________(then part). 

e) High confidence indicates that the presence of the first item is a _________of 

the presence of the second item. 

f)  A lift value less than 1 indicates that the association is weaker than expected 

and may be less reliable or less significant. (True/False) 

 

3.4 HOW DOES ASSOCIATION RULE LEARNING WORK? 
Association rule learning is a multi-step process designed to identify meaningful 

patterns and relationships in large datasets. It involves the steps as shown in figure 

3.1: 

 
Figure 3.1: Steps to learn association rule 

 

Let us have a look at each of these steps in brief. 

Data Collection: The process starts with gathering a dataset that contains a list of 

transactions. Each transaction includes a set of items. 

Pre-processing: Data is cleaned and transformed into a suitable format for analysis. 

This may involve removing missing values, duplicates, or irrelevant data. 
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Generating Frequent Itemset: The next step is to find combinations of items that 

frequently occur together. This is done using algorithms like Apriori, FP-Growth, or 

Eclat. 

 
Creating Rules: Once frequent itemset are identified, rules are generated. Each rule 

is in the form of “If A, then B” (A → B), indicating that if item A appears, item B is likely 

to appear as well. 

 

Evaluating Rules: The generated rules are evaluated based on support, confidence, 

and lift to find the most meaningful associations. 

 

3.5 TYPES OF ASSOCIATION RULE LEARNING 
 

Association rule learning can be classified into different types based on the nature of 

the rules and the data being analysed. 

Multi-relational Association Rules 

Multi-relational association rules involve finding patterns across multiple related 

datasets or tables. Unlike traditional association rules that work with a single dataset, 

these rules integrate data from different sources to uncover more complex 

relationships. 

Example:  
In a university setting, a rule might link students’ academic performance (grades) with 

extracurricular involvement (clubs) and demographic data (age group), revealing 

patterns across different types of information. 

 

Generalised Association Rules 

Generalised association rules aim to identify patterns at different levels of a data 

hierarchy. This type of rule takes into account relationships not just at a specific item 

level but also across broader categories or groups. 

Example: 
In retail, a generalised rule might be “If a customer buys dairy products, then they also 

tend to buy baked goods.” This rule covers broader categories (dairy and baked 

goods) rather than specific products (milk and bread). 
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Quantitative Association Rules 

Quantitative association rules focus on numerical attributes and analyse patterns 

based on the quantity or range of values, rather than just the presence or absence of 

items. These rules can capture more detailed relationships in the data. 

Example:  
A rule such as “If a customer buys more than 5 items, then they are likely to spend 

over Rs. 500” is a quantitative association. This helps in identifying trends based on 

quantities rather than item pairs. 

 

Interval Information Association Rules 

Interval information association rules take into account the data that falls within specific 

ranges. These rules help identify patterns where the relationships depend on certain 

intervals or thresholds.  

Example:  
In healthcare, an interval rule might state, “If a patient’s blood pressure is between 120 

and 140, then there is a higher likelihood of prescribing medication A.” The rule works 

with ranges rather than specific values, making it suitable for continuous data. 

 

These different types of association rule learning expand the scope of pattern 

discovery, enabling more nuanced and actionable insights from data. 

 

3.6 APPLICATIONS OF ASSOCIATION RULES 
Association rule mining is commonly used in a variety of applications, some common 

application areas are as mentioned: 

 
Market Basket Analysis 
One of the most well-known applications of association rule mining is in market basket 

analysis. This involves analyzing the items customers purchase together to 

understand their purchasing habits and preferences.  

Example:  
A supermarket discovers that customers who buy bread often purchase butter and 

jam, leading to strategic placement of these items together. 
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Recommendation systems 
Association rule mining can be used to suggest items that a customer might be 

interested in based on their past purchases or browsing history. 

Example:  
A music streaming service might use association rule mining to recommend new 

artists or albums to a user based on their listening history. Another example is if a user 

watches several sci-fi movies, the system may recommend other sci-fi titles. 

 
Fraud Detection 
Association rule mining can be used to detect fraudulent activity in the finance sector.  

Example: 
A credit card company might use association rule mining to identify patterns of 

fraudulent transactions, such as multiple purchases from the same merchant within a 

short period of time.  

 

Healthcare 
In healthcare, association rules help discover co-occurrence patterns in symptoms, 

aiding in diagnostic processes and treatment plans. 

Example:  
Identifying that patients with high blood pressure often have a higher risk of developing 

diabetes can guide preventative care strategies. 

 
Social network analysis 
Various companies use association rule mining to identify patterns in social media 

data that can inform the analysis of social networks.  

Example:  
an analysis of social media data like Twitter might reveal that users who tweet about 

a particular topic are also likely to tweet about other related topics, which could inform 

the identification of groups or communities within the network. 
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Inventory Management 
Association rule mining improves inventory control by predicting which products are 

often purchased together. It helps in managing stock levels and reducing overstock or 

shortages. 

Example:  
If customers frequently buy batteries for electronic gadgets, an extra stock of batteries 

can be maintained. 

 

3.7 EXAMPLE OF ASSOCIATION RULES 
 

Consider a small transaction dataset of a grocery store where customers purchase 

items like bread, butter, and milk as shown in table 3.1. 

Transaction ID Items Purchased 

1 Bread, Butter 

2 Bread, Milk 

3 Bread, Butter, Milk 

4 Milk 

5 Bread, Butter 
Table 3.1: Example Dataset of grocery store 

 

The rule discovery process can be then be shown as mentioned: 

Rule Discovery Process: 
Rule Example: “If bread is purchased, then butter is likely to be purchased.” 

1. Support Calculation: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑 → 𝐵𝑢𝑡𝑡𝑒𝑟) =
𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑏𝑟𝑒𝑎𝑑 𝑎𝑛𝑑 𝑏𝑢𝑡𝑡𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

Observe that in table 3.1 we have total 5 transaction. Also note the 3 of these 

transaction contains both bread and butter. Hence the calculation of support is: 

 Support (Bread → Butter) = 3/5 = 0.6 (60%) 

2. Confidence Calculation: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐵𝑟𝑒𝑎𝑑 → 𝐵𝑢𝑡𝑡𝑒𝑟) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡( 𝑏𝑟𝑒𝑎𝑑 ∪  𝑏𝑢𝑡𝑡𝑒𝑟)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑏𝑟𝑒𝑎𝑑)
 

 Confidence = 3/4 = 0.75 (75%) 
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3. Lift Calculation: 

𝐿𝑖𝑓𝑡(𝐵𝑟𝑒𝑎𝑑 → 𝐵𝑢𝑡𝑡𝑒𝑟) =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑏𝑢𝑡𝑡𝑒𝑟)
 

Confidence = 0.75 / 0.6 = 1.25 

 

A lift value is greater than 1, it indicates a positive association between bread and 

butter. 

 

This example demonstrates how association rules are derived and evaluated, 

providing actionable insights from transactional data. 

 

Check Your Progress-2 
a) A lift value greater than 1 indicates a ________ association between X and 

Y. 
b) Quantitative association rules focus on numerical attributes and analyse 

patterns based on the quantity or range of values. (True/False) 

c) ____________ association rules involve finding patterns across multiple 

related datasets or tables.  

d) A music streaming service might use association rule mining to recommend 

new artists or albums to a user based on their _________ history. 

e) _____________ analysis involves looking for the items customers purchase 

together to understand their purchasing habits and preferences.  

 

3.8 LET US SUM UP 
 

In this unit we have discussed the basics of association rule mining. Association Rules 

are one of the most important tools in data mining. As learnt we can use association 

rule mining in multiple contexts to extract insights and understand the underlying 

structure of data. Applications of Association Rules can be found in retail, healthcare, 

finance, and other industries that can drive smarter decision-making processes. 
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3.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
1-a Frequent Itemset 

1-b False 

1-c Support Count 

1-d antecedent, consequent 

1-e strong predictor  

1-f True 

2-a  positive  

2-b True 

2-c Multi-relational 

2-d listening 

2-e Market Basket 

 
 
3.10 ASSIGNMENTS 
 
● Explain the concept of Association Rule Mining and describe its significance in 

data analysis. 

● What are the key components of an association rule? 

● Explain various types of association rule mining. 

● Define support, confidence, and lift with suitable examples. 

● Identify applications areas other than the ones mentioned in the chapter where 

association rule mining can be applied.  
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Unit-4: Association Rule 
Algorithms  

 
Unit Structure 
 
4.0. Learning Objectives 

 
4.1. Introduction 

4.2. Apriori Algorithm  

4.3. FP-Growth Algorithm 

4.4. Comparison of FP Growth and Apriori 

4.5. Let us sum up 
 

4.6. Check your Progress: Possible Answers 
 

4.7. Assignments 
 
 

  

4 
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4.0 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

● Understand the fundamental concepts of Association Rule Learning 

Algorithms. 

● Analyse and Explore working of Apriori and FP Growth Algorithms. 

● Compare the Apriori and FP-Growth algorithm. 

 
4.1 INTRODUCTION 
 
The topic of association rule learning is wide and varied, with several algorithms 

developed to manage the complexities of massive amounts of data and identify 

important patterns and correlations. Examining the various types of association rule 

learning algorithms helps to clarify their unique characteristics and guides the selection 

process for certain data mining projects. 

 

Algorithms like Apriori, FP-Growth, and ECLAT use a different techniques to extract 

relevant rules from massive amounts of data. Apriori uses an iterative approach to 

generate frequent itemsets, it includes only those itemsets that satisfied the minimal 

support requirement. To increase efficiency, FP-Growth simply builds a tree structure 

to prevent the creation of candidates. ECLAT uses a depth-first search approach, 

which has been shown to produce better rule extraction outcomes, particularly for 

dense data sets.  

 

Each algorithm's capabilities allow it to be specifically tailored to particular dataset 

properties, such as transaction volume, dimensionality, or sparsity. Support, 

confidence, lift, and other metrics that assess the importance of the rules extracted 

determine how well association rule learning algorithms perform. 

 

These regulations are then used in recommendation systems, cyber security, retail, 

and healthcare decision support systems. Comprehending the subtleties of various 

algorithms guarantees the choice of the best method for certain data mining tasks, 

maximizing knowledge extraction and pattern recognition.  
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4.2 APRIORI ALGORITHM 
 
Apriori algorithm was the first algorithm that was proposed for frequent itemset mining. 

It was later improved by R Agarwal and R Srikant and came to be known as Apriori. 

This algorithm uses two steps “join” and “prune” to reduce the search space. It is an 

iterative approach to discover the most frequent itemsets. 

 

Frequent Itemsets Generation: 

Consider an itemset I = {P,Q,R,S} with four items. The total number of potential 

combinations is 2n-1 = 24 – 1 = 16 – 1 = 15. Thus the possible subsets of I are: 

{{P}, {Q}, {R},{ S}, {P,Q}, {P,R}, {P,S}, {Q,R}, {Q,S}, {R,S}, {P,Q,R}, {P,Q,S}, {P,R,S}, 

{Q,R,S}, {P,Q,R,S}} 

A lattice diagram shown in figure 4.1 illustrates the relationship among these itemsets, 

where each level represents itemsets of increasing size: 

 

Figure 4.1: A lattice diagram to illustrate the relationships among itemsets 
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The itemsets at each level are shown as mentioned: 

Level 1: Single-item sets → {P}, {Q}, {R}, {S} 

Level 2: Two-item sets → {P, Q}, {P, R}, {P, S}, {Q, R}, {Q, S}, {R, S} 

Level 3: Three-item sets → {P, Q, R}, {P, Q, S}, {P, R, S}, {Q, R, S} 

Level 4: Full itemset → {P, Q, R, S} 

 
Apriori states following two properties: 

1. Apriori Property: If an itemset is frequent, then all of its subsets must be frequent. 

Example: Since {P, Q, R} is a frequent itemset, the subsets {P, Q}, {P, R}, {Q, R}, 

{P}, {Q}, and {R} formed by the combination of elements of {P, Q, R} will also be 

termed frequent itemsets. This is because if a transaction contains the itemset {P, 

Q, R} it will also contain all its subsets. 

Conversely, an itemset like {Q, S} is not a frequent itemset. Therefore, all supersets 

that contain them, i.e., {P, Q, S}, {Q, R, S}, and {P, Q, R, S}, will also not be frequent 

itemsets. This holds because if an itemset X is thought of as non-frequent, any 

other itemset that contains X shall also be deemed non-frequent. Restating the 

definition, an itemset will only be termed frequent if its support is greater than or 

equal to minimum support threshold. 

2. Antimonotone Property: If an itemset set has value less than minimum support 

then all of its supersets will also fall below minimum support, and thus can be 

ignored. This property is called the Antimonotone property. This property further 

helps in reducing the search space. 

 
The steps followed in Apriori Algorithm of data mining include: 

● Join Step: In this step, (K+1) itemsets are generated by joining K-itemsets by itself. 

● Prune Step: In this step, the counts of the candidate items are scanned from the 

database. If an item does not meet minimum support, it is supposed to be 

infrequent and hence removed. This is done with the intent to reduce the size of 

candidate itemsets. 
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Let us have a look at the steps of an Apriori Algorithm: 
 
1. Define minimum support threshold -  This is the minimum number of times an 

item set must appear in the dataset to be considered as frequent.  

2. Generate a list of frequent 1-itemsets - Count support for each item and 

eliminate those with lower support than the prescribed minimal support. 

3. Generate candidate itemsets - a list of candidate itemsets of length k+1 will be 

generated from all frequent k-itemsets identified in the previous step. 

4. Count the support of each candidate itemset - Scan the dataset and count the 

number of appearances of each candidate itemset in the dataset. 

5. Prune the candidate itemsets - Remove the item sets that do not meet the 

minimum support threshold. 

6. Repeat steps 3-5 until no more frequent item sets can be generated. 

7. Generate association rules - Once the frequent item sets have been identified, 

the algorithm generates association rules from them. Association rules are rules of 

form AB, where A and B are item sets. The rule indicates that if a transaction 

contains A, it is also likely to contain B. 

8. Evaluate the association rules - Finally, the association rules are evaluated 

based on metrics such as confidence and lift. 
 

The pseudo-code for Apriori algorithm is given in table 4.1: 

Input: T: a set of transactions; msup: minimum support threshold 

Output: Lk: set of k-frequent itemsets (result) 

   L1 ← {large 1 - itemsets}  

   for   k ← 2 and  Lk−1 is not empty do  

          Pk← Apriori_gen( Lk−1, k) 

          for transactions t in T do 

                     Dt ← {c in Pk : c ⊆ t}  

          for candidates c in Dt do 

                         count[c] ++ 

               Lk ← {c in Pk: count[c] ≥ msup}  

               k ← k + 1  

           return Union( Lk)  
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 Apriori_gen(L, k) 

 for all X ⊆ L, Y ⊆ L where X1 = Y1, X2 = Y2, ..., Xk-2 = Yk-2 and  Xk-1,   

                   c = X ∪ {Yk-1} 

 if u ⊆ c for all u in C  

      result ←append (result, c)  

 return result 

 

Table 4.1: Pseudo-code for Apriori algorithm 

Having seen the algorithm and the pseudocode of Apriori algorithm, let us now look at 

an example of an Apriori Algorithm. Let’s consider the transaction dataset of a retail 

store as shown in the table 4.2. Assume minimum support threshold to be 2. 

 
TID ITEMS 

T1  Milk, Sugar, Bread  

T2 Milk, Bread, Cookies, Butter  

T3 Milk, Sugar, Bread, Butter 

T4   Sugar, Bread, Butter 
 

Table 4.2: dataset of a retail store 
 
Step 1: Create a table as shown in table 4.3 which has a support count of all the items 

present in the transaction database. 

 
ITEMS Support Count 

Bread 4 

Butter 3 

Cookies 1 

Milk  3 

Sugar 3 
 

Table 4.3: Count of items 
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Step 2: Prune the items whose support score is less than the minimum support 

threshold 2 as sown in table 4.4. 

ITEMS Support Count 

Bread 4 

Butter 3 

Milk  3 

Sugar 3 
 

Table 4.4: Pruned dataset 
 
Step 3: Find all the superset with 2 items of all the items present in the last step as 

shown in table 4.5. 

ITEMS Support Count 

Bread, Butter 3 

Bread, Milk 3 

Bread, Sugar 3 

Butter, Milk 2 

Butter, Sugar 2 

Milk, Sugar 2 
 

Table 4.5: Superset with 2 items 
 
As the support score of each itemset is at least 2, hence, none of the itemset is pruned. 
 
Step 4: Find superset with 3 items in each set present in the last transaction dataset 
as shown table 4.6. 

ITEMS Support Count 

Bread, Butter, Milk 2 

Bread, Butter, Sugar 2 

Bread,Milk, Sugar 2 

Butter, Milk, Sugar 1 
 

Table 4.6: Superset with 3 items 
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Step 5: Prune the items whose support score is less than the minimum support 

threshold as shown in table 4.7. 

ITEMS Support Count 

Bread, Butter, Milk 2 

Bread, Butter, Sugar 2 

Bread, Milk, Sugar 2 
 

Table 4.7: Pruned dataset with 3 items 
 
Step 6: Find a superset with 4 items in each set present in the last transaction dataset 

as shown in table 4.8. 

ITEMS Support Count 

Milk, Sugar, Bread, Butter 1 
 

Table 4.8: Superset with 4 items 
 
As the only itemset in table has support count 1, so it is pruned and FK =Ø. As we 

have discovered all the frequent itemset. We will generate strong association rules. 

 
Step 7: Generating Association Rules using Frequent Itemset. 

Once frequent itemsets F(k) are obtained from the transaction set T, the next step 

involves generating strong association rules from them. The  strong association rules 

must satisfy both minimum support and minimum confidence. 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋 𝑎𝑛𝑑 𝑌

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋
 

 

One of the frequent itemset is: {Bread, Butter, Milk} hence all the possible association 

rules can be: 

{{Bread}, {Butter}, {Milk}, {Bread, Butter}, {Bread, Milk}, {Butter, Milk}} 

 

The generated association rules with their confidence scores are stated in table 4.9: 
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Rule Confidence 

{Bread, Butter} → {Milk} 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑, 𝐵𝑢𝑡𝑡𝑒𝑟, 𝑀𝑖𝑙𝑘)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑, 𝐵𝑢𝑡𝑡𝑒𝑟)
=
2

3

= 66.67% 

{Bread, Milk} → {Butter} 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑, 𝐵𝑢𝑡𝑡𝑒𝑟, 𝑀𝑖𝑙𝑘)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑, 𝑀𝑖𝑙𝑘)
=
2

3

= 66.67% 

{Butter, Milk} → {Bread} 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑, 𝐵𝑢𝑡𝑡𝑒𝑟, 𝑀𝑖𝑙𝑘)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑢𝑡𝑡𝑒𝑟, 𝑀𝑖𝑙𝑘)
=
2

2
= 100% 

{Bread} → {Butter, Milk} 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑, 𝐵𝑢𝑡𝑡𝑒𝑟, 𝑀𝑖𝑙𝑘)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑)
=
2

4
= 50% 

{Butter} → {Bread, Milk} 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑, 𝐵𝑢𝑡𝑡𝑒𝑟, 𝑀𝑖𝑙𝑘)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡( 𝐵𝑢𝑡𝑡𝑒𝑟)
=
2

3

= 66.67% 

{Milk} → {Bread, Butter} 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵𝑟𝑒𝑎𝑑, 𝐵𝑢𝑡𝑡𝑒𝑟, 𝑀𝑖𝑙𝑘)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑀𝑖𝑙𝑘)
=
2

3

= 66.67% 
 

Table 4.9: Rules and associated confidence score calculation 
 
Depending on the minimum confidence scores, the obtained association rules are 

preserved, and rest are pruned. 

Check Your Progress-1 

a) What is the relation between a candidate and frequent itemsets? 

1. A candidate itemset is always a frequent itemset 

2. A frequent itemset must be a candidate itemset 

3. No relation between these two 

4. Strong relation with transactions 

b) The ________________ is not suitable for handling large datasets because 

it generates a large number of candidates. 

c) Steps in Apriori algorithm are ______________ and _____________. 

d) In the Apriori algorithm, if its support is greater than or equal to the minimum 

support threshold an itemset is called ________. 
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4.3 FREQUENT PATTERN GROWTH ALGORITHM 
 

In spite of a considerable shrinking of the set of candidate itemsets, the Apriori 

algorithm can be slow due to the scanning of the entire transaction set in every 

iteration. That is why Frequent Pattern growth, also called FP growth method, adopts 

a divide and conquer scheme to discover frequent itemsets. The FP-growth (Frequent 

Pattern Growth) algorithm is currently one of the fastest approaches to frequent 

itemset mining. 

 
Working of FP Growth: 
FP-Growth algorithm mines frequent itemsets using  divide-and-conquer strategy. The 

working process can be summarized as follows: 

 

1. FP-tree construction: 

● Make a single scan of the transactional database to collect frequent 

items and count their support. 

● Sort the frequent items in the descending order of their support. 

● Build the initial FP-tree by inserting transactions into the tree according 

to item order and their supports. 

2. Generation of Conditional FP-trees: 

● For each frequent item in order of decreasing support, construct a 

Conditional Pattern Base by pulling the suffixes from the FP-tree 

corresponding to that item. 

● Construct a conditional FP-tree from the Conditional Pattern Base by 

compressing the suffixes. 

3. Mining Frequent Itemsets: 

Recursively mine the conditional FP-trees for frequent itemsets until no more 

frequent itemsets are detectable.  

 

Let us have a look at an example of FP Growth Algorithm. Let’s consider the 

transaction dataset of a retail store used for Apriori algorithm as shown in the table. 
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TID ITEMS 

T1  Milk, Sugar, Bread  

T2 Milk, Bread, Cookies, Butter  

T3 Milk, Sugar, Bread, Butter 

T4   Sugar, Bread, Butter 
 
 
Step 1: Create a table which computes the frequency of each item present in the 

transaction database as shown in table 4.10.  

Items Frequency 

Bread 4 

Butter 3 

Cookies 1 

Milk  3 

Sugar 3 
 

Table 4.10: Frequency table 

 
Step 2: Provided minimum support as 2. After removing all the items below minimum 

support in the table 4.10, we would remain with the items as shown in table 4.11.  

Items Frequency 

Bread 4 

Butter 3 

Milk  3 

Sugar 3 
 

Table 4.11: Items above minimum support 
 
Step 3: Let’s re-order the transaction database based on the items above minimum 

support. In this step, in each transaction, we will remove infrequent items and re-order 

them in the descending order of their frequency, as shown in the table 4.12. 
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Tid Items Ordered Itemset 

T1  Milk, Sugar, Bread  Bread, Milk, Sugar 

T2 Milk, Bread, Cookies, Butter  Bread, Butter ,Milk 

T3 Milk, Sugar, Bread, Butter Bread, Butter ,Milk ,Sugar 

 T4   Sugar, Bread, Butter Bread, Butter ,Sugar 
 

Table 4.12: Reordered transaction dataset 
Now we will use the ordered itemset in each transaction to build the FP tree. Each 

transaction will be inserted individually to build the FP tree, as shown below - 

 
Step 4: First Transaction T1: {Bread, Milk, Sugar}: 

In this transaction, all items are simply linked, and their support count is initialized 

as 1 as can be seen in figure 4.2. 

 
Figure 4.2: FP tree for Transaction T1 

 
Step 5: Second Transaction T2: {Bread, Butter, Milk}: 

In this transaction, we will increase the support count of bread in the tree to 2. As no 

direct link is available from Butter to Milk, we will insert a new path for Butter and 

Milk and initialize their support count as 1 as shown in figure 4.3. 
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Figure 4.3: FP tree for Transaction T2 

 

Step 6: Now examine the transaction T3 and T4, and further expand the FP tree as 

shown in figure 4.4. 

 
Figure 4.3: FP tree for Transaction T3 and T4 
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Step 7: Now, obtain the conditional FP tree for all the items by scanning the path 

from the lowest leaf node as shown in table 4.13. 

 
Items Conditional Pattern Base  

Sugar {Bread, Milk}:1, {Bread, Butter ,Milk}:1, {Bread, Butter}:1 

Milk {Bread}:1, {Bread, Butter}:3 

Butter {Bread}:1 

Bread  
Table 4.13: Conditional FP Tree 

 
Step 8: Now for each item, we will build a conditional frequent pattern tree. It is 

computed by identifying the set of elements common in all the paths in the conditional 

pattern base of a given frequent item and computing its support count by summing the 

support counts of all the paths in the conditional pattern base. The conditional frequent 

pattern tree will look like the one shown in table 4.14. 

 
Items Conditional Pattern Base  Conditional FP Tree  

Sugar {Bread, Milk}:1, {Bread, Butter ,Milk}:1, 
{Bread, Butter}:1 

{Bread}:3 

Milk {Bread}:1, {Bread, Butter}:3 {Bread}:4 

Butter {Bread}:1 {Bread}:1 

Bread   
Table 4.13: Conditional Pattern Base 

 
Step 9: From the above conditional FP tree, we will generate the frequent itemsets 

as shown in table 4.14. 

Items Frequent Patterns  

Sugar {Bread, Sugar}:3 

Milk {Bread, Milk}:4 

Butter {Bread, Butter}:1 
 

Table 4.14: Frequent itemsets 
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4.4 FP GROWTH VS. APRIORI  
Apriori and FP Growth are the most common algorithms for mining frequent itemsets. 

Each algorithm will carry out its own design of discovering or identifying the frequent 

patterns. Table 4.15 provides a comaprison between the two algorithms based upon 

various factors like working process, number of scans, use of memory, speed, and 

scalability. 

Factor FP Growth Apriori 

Working 

Process 

The FP-growth algorithm mines 

frequent itemsets through the use of 

the FP-tree. 

Apriori algorithm mines 

frequent items in an iterative 

manner - 1-itemsets, 2-

itemsets, 3-itemsets, etc.  

Candidate 

Generation 

Frequent itemsets are generated 

from FP-tree construction with 

recursive generation of the 

conditional pattern bases. 

Candidates are generated 

through join-and-prune. 

Database 

Scanning 

The database is scanned only twice 

to construct the FP-Tree and 

generate conditional pattern bases. 

The database is scanned 

several times in frequent 

itemset mining. 

 Memory Takes up less memory than Apriori 

to run because it constructs the FP-

Tree, which compresses the 

database. 

Requires considerable 

memory to store candidate 

itemsets. 

 

Speed Faster due to effective data 

compression and generation of 

frequent itemsets. 

Slower because of candidate 

generation and multiple 

database scans. 

    

Scalability 

Performs well on large datasets 

owing to efficient data compression 

and generation of frequent itemsets. 

Performs poorly on large 

datasets due to excessive 

candidate itemsets. 

 
Table 4.15: Comparison between the FP Growth and the Apriori 
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Check Your Progress-2 
a) FP growth algorithm mines all frequent patterns by constructing a FP tree. 

(True/False) 
b) FP growth algorithms expand the original database to build FP trees. 

(True/False) 
c) The FP-tree (Frequent Pattern tree) is a data structure used in the FP Growth 

algorithm that stores the ______________ and _____________________. 
d) Unlike Apriori, the FP-Growth algorithm avoids generating __________, 

making it more efficient. 
  

 

4.5 LET US SUM UP 
 

In this unit we have discussed two classical algorithms: Apriori and FP-Growth, with 

their working. In Apriori, it has been found that for all candidate sets of items; at each 

level, one should discover all subsets; hence the lengths of the frequent sets are 

greater and so is the number of candidate generations. To rectify this problem, the FP-

Growth algorithm was used here, which performs efficiently while being memory 

consuming due to the tree method. 

 

4.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
 
1-a  (1) A frequent itemset must be a candidate itemset 

1-b  Apriori algorithm 

1-c  Join, Prune  

1-d  Frequent 

2-a  True 

2-b  False 

2-c  Frequent item sets and their support counts 

2-d Candidate itemsets 
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4.7 ASSIGNMENTS 
 
● Explain the basic requirements of Aprioiri algorithm. 

● What is the FP Growth algorithm in machine learning used for? 

● Differentiate Apriori algorithm and the FP Growth algorithm. 

● Find the frequent itemset using FP Tree, from the given set of Transaction Dataset 

with minimum support score as 3. 

Transaction ID Items 

T1 {M, N, O, E, K, Y} 

T2 {D, O, E, N, Y, K} 

T3 {K, A, M, E} 

T4 {M, C, U, Y, K} 

T5 {C, O, K, O, E, I} 
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