

Relational Database
Management
System

2023

Dr. Babasaheb Ambedkar Open University

Relational Database Management System

Course Writer

Dr. Amit Bardhan

Assistant Professor,
Computer Science Department,
Som Lalit Education and Research Foundation,
Ahmedabad

Dr. Badal Kothari

Assistant Professor,
Department of Computer Science,
Hemchandracharya North Gujarat University,
Patan

Dr. Vinod Desai

Assistant Professor,
Gujarat Vidhyapith,
Ahmedabad

Content Reviewer

Prof. (Dr.) Amit Ganatra Dean, Faculty of Technology and Engineering
School of Computer Science,
Charotar University of Science and Technology,
Changa

Content Editor

Prof. (Dr.) Nilesh K. Modi Professor & Director,
School of Computer Science,
Dr. Babasaheb Ambedkar Open University

Copyright © Dr. Babasaheb Ambedkar Open University – Ahmedabad.

ISBN-

Printed a nd pu blished b y: D r. B abasaheb A mbedkar O pen U niversity, A hmedabad
While al l ef forts have been made b y editors to ch eck accu racy of t he co ntent, t he
representation of facts, principles, descriptions and methods are that of the
respective module writers. Views expressed in the publication are that of the authors,
and do not necessarily reflect the views of Dr. Babasaheb Ambedkar Open
University. A ll products and se rvices mentioned ar e ow ned b y t heir r espective
copyrights holders, and mere pr esentation i n t he publication does n ot m ean
endorsement by Dr. Babasaheb A mbedkar Open University. Every ef fort has been
made to acknowledge and attribute all sources of information used in preparation of
this learning material. Readers are requested to kindly notify missing attribution, if
any.

iv

Dr. Babasaheb
Ambedkar Open
University

MCA-102

Relational Database Management System
Block-1: Fundamental of Database Management
 System

UNIT-1
Basic Concepts of DBMS 07

UNIT-2
Architecture of DBMS 17

UNIT-3
Data Models 26

UNIT-4
Database Design 40

Block-2: Relational Data Model and Introduction to
 Oracle Server

UNIT-1
Functional Dependency and Normalization 64

UNIT-2
Oracle Database Architecture 90

UNIT-3
Distributed Database Architecture 116

UNIT-4
Database Backup 139

v

Block-3: Oracle Server and SQL

UNIT-1
Structured Query Language 160

UNIT-2
Stored Procedures and Functions 193

UNIT-3
Package and Trigger 212

UNIT-4
Managing User Privileges & Roles and User Profile 239

Block-4: Introduction to PL/SQL

UNIT-1
Introduction to PL/SQL 260

UNIT-2
Cursor 276

UNIT-3
Locking 293

UNIT-4
Exception Handling 301

 6

 Block-1

Fundamental of Database

Management System

 7

Unit 1: Basic Concepts of DBMS

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Basic Concepts

1.4. Data

1.5. Database

1.6. Database systems

1.7. Database management system

1.8. Purpose and advantages of database management system

1.9. DBMS Functions

1.10. Disadvantages of database systems

1.11. Check Your Progress

1

 8

1.1 LEARNING OBJECTIVE

By the end of this unit you should be able to:

• Differentiate between data and information.

• Understand the importance of database and DBMS.

1.2 INTRODUCTION

In t oday’s c ompetitive e nvironment d ata a nd i ts pr oficient adm inistration i s t he

most s ignificant bus iness objective of any f irm. T he fact i s w e are in an era w here

people ar e bom barded w ith h uge amount of i nformation e xplosion. D ue t o t his i t

becomes di fficult t o f etch c orrect information at r ight time to m ake d ecisions pr operly.

Therefore success of every business is highly dependent on how the data is collected,

stored and processed for timely decision making.

Any information system like online shopping websites, inventory management systems,
clinic m anagement s oftware, onl ine t rading app lications et c. needs database t o s tore

and r etrieve t he d ata at r egular intervals. D BMS ac ts as b ackend f or a ll t he di fferent

web bas ed an d d esktop bas ed ap plications. W e c annot imagine a s ingle s ector w ere

DBMS i s no t bei ng us ed. F or e xample banking, e -governance, l ogistics, universities,

airlines ag encies, t icket booking, accounting & f iling and every other k ind of h uman

endeavor. T he m anagement of da ta i n al l t hese s ystems i s done by t he m eans of a

general purpose software package called a database management system.

A dat abase m anagement s ystem i s a t ool t o m anage t he data an d per form v arious
activities that include:

 Creating different databases.

 Craft required table structures.

 Inserting records in the tables.

 Retrieving information from the different tables based on criteria.

 Deleting the records based on various conditions.

 Updating the records wherever and whenever necessary.

 Changing the table structure if required. Etc.

 9

Apart f rom t he above m entioned b asic f unctionalities of t he d atabase m anagement

system, there are plenty of other functionality like creating users and assigning roles to

them, security management, transaction management, managing system catalog, data

dictionary m anagement, dat a bac kup and r ecovery et c w hich ar e bei ng m anaged by
DBMS.

The role of the DBMS is to act as an intermediary between the users and the database.

The D BMS interprets and pr ocesses c lient’s r equests t o f etch t he r equired information

from a dat abase. It s erves as an interface i n s everal forms l ike i t c an be directly

accessed from a terminal or using some high level language programs for individual or

batch dat a pr ocessing. The r equest f rom D BMS t o per form various ac tions i s given in

terms of SQL (Structure Query Language), which you will be learning in the upcoming

units. D BMS s hields t he da tabase us ers f rom the c omplexity of t edious pr ogramming
they would have to do to organize data for storage, or to gain access to it once it was

stored. H ere ar e g oing t o l earn abo ut R elational D atabase Management S ystem

(RDBMS) that stores data in the form of associated tables. Most common examples of

RDMS include MySQL, Oracle, PostgreSQL, Microsoft SQL Server etc.

1.3 BASIC CONCEPTS

Storing d ata, pr ocessing it as per r equirement a nd r etrieving t he r equired information

has be en a nec essity i n each and e very or ganization t oday. T he t erm dat a c an be

explained in terms of “A set of isolated an unrelated raw fact with an implicit meaning”.
In s impler t erms dat a is a r aw fact. It c an b e a nything s uch as a name of a p erson,

designation o f a n employee, an a udio, video, des ignation of a person et c. After

performing a s eries of ac tion on t he dat a w hat w e g et i s an m eaningful i nformation.

Thus i nformation c an defined as dat a w ith s ome f ixed an d de finite m eaning. F or

example, “The cost of the book for programming in python is 750 Rs” is an example of

information.

Generally data is what goes into a data processing system and information is the

processed data that comes out of the data processing unit.
Limitations of the File based Systems:

 10

• Separation and isolation of data

• Duplication of data

• Structural and data dependence

• Extreme programming effort

• Cannot execute ad hoc queries

• Security features are likely to be insufficient

• System management is complex and complicated

1.4 DATA

 Data is not hing but a raw fact from w hich i nformation is gener ated. D ata alone

does not have any meaning unless it is organized or arranged in some logical manner.

A user must ensure that only valid and significant data must go into the system else the

information obtained may not be that trustworthy for the purpose of decision making.
The s mallest pi ece of dat a t hat a c omputer u nderstands i s a s ingle c haracter, for an

example letter ‘S’, or a number ‘6’ or a special character ‘$’. A single character requires

one byte of storage.

A character or a group of character that has some specific meaning is called a field. A

field name uniquely identifies each field.

A logically related set of one or more fields that describe an entity or real world object is

called a record. For example the fields that constitute bank account record are account

number, name, address, pincode, account type, opening date, mode of operation etc.
A collection of related records is called a table. An example of department table is given

below:

Figure 1: Department Table

 11

1.5 DATABASE

A database is a collection of well organized data in the computer’s storage systems that

can be used by the application software for some given enterprise. The stored data can

be accessed, processed and presented by DBMS to serve a specific purpose. The term

enterprise c an thought in t erms of an y individual or l arge body l ike a u niversity, bank,
logistics company, warehouse etc.

In general database is a shared, collective system construction that stores a collection

of:

• End user data. i.e. the raw facts

• Metadata or data about the data.

Here the metadata provides a detailed explanation of the data, its distinctiveness and

set of associations or relationships that links the data. Given the uniqueness of

metadata, database can be described as a “collection of self-describing data.”

1.6 DATABASE SYSTEMS

A d atabase s ystem i s pr incipally an automated r ecord m aintenance s ystem w hose

overall r eason i s t o s tore i nformation an d t o per mit t he us ers t o m anipulate t he

information as per r equirement. H ere w e ar e us ing the t erm data to r efer t o w hat i s in

point of f act s tored in t he da tabase and information to r efer t o t he m eaning of dat a as

understood by the client.
Database s ystem i s obt ainable on a ll t he m achines t hat r ange f rom t he s mallest

handheld devices to PC’s to large main frame computers.

1.7 DATABASE MANAGEMENT SYSTEM

A d atabase m anagement s ystem (DBMS) i s a c ompilation o f pr ograms that m anages
the dat abase s tructure a nd c ontrols ac cess t o t he data s tored in t he d atabase. D BMS

serves as a mediator be tween the c lient a nd dat abase b y hi ding al l t he c omplexities

from the end user.

 12

1.8PURPOSE AND ADVANTAGES OF DATABASE
MANAGEMENT SYSTEM

The D BMS r eceives the en tire ap plications r equest an d t ranslates t hem i nto t he

complex op erations t hat are r equired t o fulfill t hose r equests. I t also hi des t he internal

complexity from the application programs and users. The applications programs can be

written in any language like Python, Java, C++ etc.

Figure-2 DBMS managing the functions between the client and the database

DBMS also allows the data to be shared among the multiple applications or clients and

helps in m erging m any d ifferent v iews of da ta into s ingle d ata r epository. In particular

DBMS provides the following advantages over the files system:

• Better data sharing capabilities: The D BMS he lps t o gen erate an
environment in which the end users locally or globally can have access to

the data for quick decision making.

• Enhanced data security: DBMS pr ovides a s tructure t o implement da ta

privacy and security policies. Different categories of roles can be created

for special users and rights can be given accordingly.

 13

• Superior data integration facilities: Wider admittance to well managed data

promotes a n incorporated view of t he or ganizations op erations a nd a

apparent view of the complex picture.

• Reduced data inconsistency: It e xists w hen di fferent v ersions of s ame
data ap pear i n di verse locations. F or e xample data i nconsistency exits

when the name in your bank account and the name on your cheque book

differ. This possibility can be reduced by properly designing the database.

• Faster data access: When deal ing w ith hu ge am ount o f dat a D BMS

makes it possible to produce quick answers to any queries by using SQL.

Example qu eries c an be how p eople have d eposited notes of 5 00

denominations at the time demonetization in ABC branch.

• Improved decision making: If the data is managed properly and faster data

access i s done i t m akes pr obable to produce en hanced s uperiority

information, based on which better decisions can be taken.

• Improved end user productivity: The ease of use of data, shared with the

tools that alter data into usable information, allow end users to make rapid,

knowledgeable decisions.

1.9 DBMS FUNCTIONS

 A D BMS per forms qui te a l ot of s ignificant functions t hat pr omises t he r eliability

and u niformity of t he da ta i n t he d atabase. F ew o f t he i mportant f unctions ar e

mentioned below:

 Data transformation and presentation: The D BMS c onverts t he e ntered da ta t o

confirm with the required data structures; therefore it relieves you from the task
of m aking distinction between l ogical and t he ph ysical f ormat. For e xample t he

 14

date t he f ormat in INDIA is D D/MM/YYYY, but i n MySQL is YYYY-MM-DD, s o

transformation in to the required format can be easily made.

 Multiuser access control: To provide data steadiness DBMS uses classy
algorithms to make sure that multiple users can access the database in parallel

without compromising the integrity of the database.

 Security Management: DBMS enforces us er s ecurity at d ifferent levels in or der

to pr ovide w hich d ata operations a gr oup o f us ers or a p articular us er c an

perform. DBMS assigns access privileges for various database components.

 Data dictionary management: DBMS s tores def initions of da ta el ements and
their m etadata. It us es dat a di ctionary t o c ome ac ross up t he nec essary dat a

constituent structures and its associations.

 Data storage management: A m odern D BMS pr ovides s torage no t onl y f or the

facts but also for associated data entry forms, report definitions, data validation

regulations, formations to handle audio and video formats and so on. It actually

stores the database in multiple physical data files.

 Backup and recovery management: To pr ovide data s afety and i ntegrity D BMS

provides backup and recovery control. It basically deals with the recovery of bad

sector in the disk and also data recovery at the time power failures.

 Data integrity management: DBMS supports and implement integrity regulations,

thus minimizing data repetition and increasing consistency.

 Database access languages and API: DBMS m ake av ailable dat a ac cess
through a query language called SQL. Structured Query Language (SQL) is a de

facto q uery language s upported b y m ajority of the D BMS vendors. Apart f rom

 15

that DBMS also provides application programming interfaces to main

programming languages like Python, C#, Java, Magento, PHP etc.

 Database communication interface: DBMS provides admittance to the database
via command line terminals, via web browsers (GUI) etc.

1.10 Disadvantages of Database System

DBMS do carry significant disadvantages as mentioned below:

• Increased cost: Database s ystem nee ds s ophisticated hardware a nd s oftware

and e xtremely c apable e xpert to m anage it. T hus t he c ost of m anaging t he
people, s oftware an d h ardware a nd providing t raining, licensing add an ex tra

overhead to cost.

• Management Complexity: Database s ystem boun dary w ith m any di verse

technologies and ar e c an bec ome m ore and m ore c omplex i n or der t o h andle

day to day transactions.

• Maintaining currency: To m ake the m ost o f t he d atabase i t i s r equired t o keep

your systems current. That leads to frequent upgrades and increased in training
cost.

• Vendor Dependence: The end us ers ar e he avily v endor dep endent s ince t hey

are s toring eac h an d ev ery i nformation i nto t he dat abase. O n t he c ontrary t he

vendors are less likely to offer pricing point reward to the existing clients.

Frequent Upgrade cycle: DBMS vendor repeatedly advance their products by

incrementing new functionalities. And many a times those software upgrades requires
new hardware resources.

1.11 Check your progress

1. Define the following terms:

a. Data

 16

b. Information

c. Field

d. Record

2. List and explain the limitations of file based systems.
3. Discuss the purpose and advantages if DBMS.

4. List and explain DBMS functions in detail.

5. Explain the potential cost of implementing a database system.

 17

Unit 2: Architecture Of DBMS

Unit Structure

2.1. Learning Objectives

2.2. Architecture of DBMS

2.3. Various components of DBMS

2.4. Check your Progress

2

 18

2.1 LEARNING OBJECTIVE

By the end of this unit you should be able to:

• Understand the basic architecture

• Understand basics components of DBMS

2.2 INTRODUCTION

DBMS is very s ophisticated s oftware a pplication t hat pr ovides r eliable m anagement of

large amounts of data. To understand all-purpose database concepts and the structure

and c apabilities of a D BMS b etter, t he s tructural des ign of a t ypical D BMS m ust be

known.

2.3 ARCHITECTURE OF DBMS

The DBMS architecture describes how the data in the database is viewed by the

different users. This architecture provides the data at different levels of the abstraction

to the users by hiding the complexities of its internal management activities.

In this architecture the overall database description can be defined at three levels:

• Internal

• Conceptual

• External levels

For this reason many a times it’s known as three-level DBMS architecture. The
architecture is proposed by ANSI/SPARC (American National Standard Institute/

Standards Planning and Requirement committee).

 19

Figure-3 Three Level DBMS Architecture

External Level:

It i s t he hi ghest l evel of abs traction t hat de als w ith t he us er’s v iew o f dat abase a nd

therefore i t’s also k nown as v iew l evel. T he ex ternal level describes the par t of the

database to a specific group of users or to an individual user.
Each view available to the user is customized to their requirements. It may be possible

that same data may be visible to different users through different interfaces. In this way

it also provides a powerful and flexible security mechanism by hiding certain data from

certain users. T he dat a des cribed at t his l evel i s i ndependent o f bot h har dware a nd

software. Generally entity relationship diagram is used to represent the external view as

the data is modeled.
Conceptual Level:

This level of a bstraction d eals w ith l ogical s tructure of t he ent ire dat abase and i s also
known as logical view. The view describes the structure and the type of the data that is

stored in the database along with the relationships among the data.

It des cribes a ll the r equirements of t he users w ithout t he description o f ph ysical

implementation. It i s t he o verall v iew of t he dat abase k eeping i n t he c onsideration t he

 20

DBMS s oftware t hat i s goi ng t o be us ed. This v iew is t hus depe ndent on t he s oftware

but independent of the hardware.
Internal Level:

This level des cribes dat a at t he l owest l evel of abs traction t hat dea ls w ith phy sical
representation of the database on the computer and is also known as physical level. It

describes how the data is stored and is organized on the physical storage medium.

At th is l evel v arious as pects ar e c onsidered t o ac hieve o ptimal r untime per formance

and s torage s pace ut ilization. T his level i s depen dent on t he s oftware (mostly t he O S)

as well as hardware.

To understand the three-level database architecture consider the example of Employee

database as shown in the figure 1.4. In this figure two views (View 1 and View 2) of the

Employee d atabase ar e defined at an external l evel. Hence different us ers c an s ee
different external views that they queried. The details about the data type and the size

of the fields are hidden from the users at the external level.

At the conceptual level the employee records are described along with their data types.

The application programmers and the DBA generally work at this level of abstraction. At

the i nternal level t he em ployee r ecords ar e d escribed as a b lock o f c onsecutive

locations s uch as w ords or b ytes. T he database users and t he ap plications

programmers are not aware of these details; however the DBA may be aware of certain

details of the physical organization of the data.
When a us er s pecifies a r equest t o g enerate a new external v iew, t he D BMS m ust

transform the r equest s pecified at t he ex ternal level into a r equest at c onceptual l evel

followed into a request at physical level. If the user requests for data retrieval, the data

extracted from the database must be presented according to the need of the user. This

process of t ransforming t he r equests an d r esults b etween v arious l evels o f D BMS

architecture is known as mapping.

 21

Figure-4 Three levels of Employee Database

The main merit of three-level DBMS architecture is that it provides data independence.

Data i ndependence i s t he ability t o c hange the s chema at one level o f t he database
system w ithout c hanging t he s chema at t he other levels. D ata independence i s of two

types:
Logical Data Independence:

The ability to adapt the conceptual level without altering the external level or application

program i s k nown as l ogical dat a i ndependence. T he c onceptual s chema c an be

changed due to the change in constraints or addition of new features. This change will

have no ef fect on t he ex ternal l evel s chema t hat i s al ready t here. Lo gical da ta

independence is difficult to achieve as the application programs are always dependent
on the logical structure of the database. Therefore changes in the logical structure of the

database may require change in the application program.
Physical Data Independence:

 22

The ability to change the internal level without changing the conceptual level is known

as physical dat a independence. The t ransform in t he da ta s torage s tructure or ac cess

strategy or i ndexing t echnique w ill hav e no ef fect on t he c onceptual s chema. T his i s

because the mapping between the conceptual schema and the internal level is provided
mostly by DBMS and changes are taken care of by mapping. Hence the physical data

independence is easy to achieve.

2.4 VARIOUS COMPONENTS OF DBMS
The database system is composed of five major components, that is:

• Hardware

• Software

• People

• Procedures and

• Data

Let’s take an individual look at the five components:

Figure-5 Database system environment

 23

• Hardware: It r efers t o al l t he s ystem’s phy sical de vices t hat c an be s torage

devices, net work d evices, pr inters, s ervers, w orkstations, c omputer et c. T he

computer m ay r ange from per sonal c omputers t o a m ain f rame and i t m ay

include one powerful server depending upon the organizations requirements and

the size of the database.

A g ood database s ystem r equires a d atabase s erver w ith a f ast pr ocessor and

significantly l arge amount of m ain m emory. It also i ncludes di fferent k ind of

peripheral devices to handle various kinds of data. The advancement in
computer har dware t echnology and de velopment of pow erful c omputers has

resulted into increased database technology development and its application.

• Software: There are basically three types of software needed:

◦ Operating System: I t m anages al l the hardware c omponents an d m akes i t
possible f or t he s oftware t o r un on t he c omputer. Most c ommonly us ed

operating systems are LINUX, WINDOWS, MAC etc.

◦ DBMS: DBMS s oftware m anages the data i n t he d atabase. S ome examples

of commonly used DBMS software include- MySQL, Oracle, DB2, MSAccess
etc.

◦ Application programs and utility software: It is used to access and manipulate

data in the DBMS. Applications programs are used to provide an interface to

accept dat a f rom t he us er. T hey ar e also us ed t o access dat a f rom t he
database in order to provide reports, tabulations and other logical information

to the user. Utility software is used to help manage some DBMS components.

• People: It i ncludes al l t he us ers w ho i nteract w ith an y c omponent o f th e

database system environment. List of all the users are listed below:

o Database Administrator: DBA is one of t he m ain us er r esponsible for

managing t he D BMS and c ontrolling t he dat abase of t he D BMS. D BA is

mainly responsible for setting up procedures and standards and ensuring

that they are implemented properly.

 24

o System Administrator: System administrator is the one who takes care of

all t he c omputers i n t he n etwork, and t he da tabase s ystems gener al

operations.

o Database Designer: They are also called data base architects. They along

with the database administrator design the structure of the database. If the

database des ign i s poor o ther a l c omponents of t he d atabase s ystem

environment become helpless.

o System Analyst and Programmers: They des ign a nd implement t he

application pr ograms. T hey ar e r esponsible f or des igning t he f orms and

reports. T hey m ay also s et up pr ocedures t hrough w hich e nd users
access and manipulate the data in the database.

o End User: They ar e t hose us ers w ho us e t he app lication pr ograms t o

manage the da y-to-day o perations of t he bus iness. E nd us ers include a ll

employees of the organization starting from the data entry operators to the

decision makers. Some of them enter raw data and some of them process

the raw data and generate information.

• Procedure:Procedures are instructionsand rules that govern the design and use

of t he d atabase s ystem. P rocedures h elp t o m aintain c ertain l evel of s tandards

and ensure that the data entering the system and information generated from the

system are all in well organized manner.

• Data:Data is nothing but raw facts from which the information is generated. Data

actually i ncludes t he en tire c ollection of data t hat go es into the database. O nly

valid and s ignificant data m ust go i nto t he s ystem else t he information obt ained

may not be reliable for the purpose of decision making.

 25

2.5 Check your progress

1. Explain the 3-level database architecture in detail.

2. What is data independence? Explain in brief logical data independence and

physical data independence.

3. Write a short note on database system environment.

 26

Unit 3: Data Models

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. Data modelling

3.4. The hierarchical data model

3.5. Network data model

3.6. Relational data model

3.7. Entity Relationship data model

3.8. Object oriented data model

3.9. Comparison between data model

3.10. Check your Progress

3

 27

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Evaluate different data model and its mapping.

3.2 INTRODUCTION

One of t he m ain objectives o f t he database s ystems i s dat a abstraction t hat i s t o

highlight on ly t he es sential f eatures and t o hide t he s torage and data organization

details from the user. A model is an abstraction process that concentrates on essential

and intrinsic features of the application while ignoring the details that are not important.

A d atabase m odel provides t he n ecessary m eans to ac hieve data abstraction. A da ta

model allows the conceptualization of the association between entities and its attributes.

A data model is a simple demonstration, generally graphical, of more complex real word

data structures. It consists of a set of data structures and conceptual tools that is used

to describe the structure (Data types, relationships and constraints) of a database.

A d ata m odel n ot on ly describes t he arrangement of t he dat a, i t also d efines a s et of

operations that can be performed on the data. A data model generally consists of data

model t heory, w hich i s a f ormal d escription of h ow dat a m ay b e s tructured and us ed,

and d ata m odel i nstance, w hich i s pr actical data m odel d esigned f or a particular

application. The process of applying data model theory to create a data model instance
is known as data modeling.

3.3 DATA MODELING

A data m odel c an b e very useful c ommunication t ool t hat pr ovides a m eans of

interaction between the databases designer, application programmer and the end user.

There are different types of data model that are explained in the next section.

 28

3.4 THE HIERARCHICAL DATA MODEL

The hierarchical model was the first proper model developed. Its basic logical structure

is represented by an upside down tree.

Figure-6 Hierarchical Data Model

The hierarchical structure contains levels or segments. A segment is equivalent to a file

system record type. With the hierarchy the top most level or segment is known as a root
node or the parent node. The root node or the parent node is assigned the level – 0 as

shown i n t he F igure-6. Again w ithin t he hierarchy eac h s egment i s per ceived as a

parent of the segment below it.

In other words, each record is perceived as a parent record of the segment or the child

record below it. As shown in the Figure-6 the segment at level-0 i.e. the root node is the

parent node for the segments at level-1. Similarly the records at level-1 are also parent

records for those records at level-2.

The h ierarchical d ata m odel i s bes t s uitable t o r epresent on e-to-many r elationship as
shown in f igure 1.6. In t his m odel each par ent r ecord c an h ave m ultiple c hild r ecords

related to i t. The l imitation of t his m odel i s on e c hild r ecord c an h ave onl y on e par ent

record. Hence it is difficult to represent many-to-many relationship using this model.

 29

Figure-7 Hierarchical data model relationship

Figure-7 s hows a h ierarchical d ata m odel of a university t ree t ype c onsisting of t hree

levels. A s ingle c ollege r ecord a t t he r oot l evel r epresents one i nstance of t he

department record type. Multiple instances of a given record are used at lower level to
show that a d epartment m ay c onsist of m any c ourses and one c ourse m ay c onsist of

many subjects.

Merits of Hierarchical Model:
 Simplicity: It is simple and easy to understand and implement as the

relationship between the various layers is logical and always 1:M

 Data Integrity: The parent/child relationship is always there between the layers.

The m odel pr omotes dat a i ntegrity as t he c hild s egments ar e aut omatically

referenced to its parent segment.

 30

 Efficiency: It is very efficient when the database contains large amount of data

in 1: M r elationships an d w hen l arge number o f t ransaction ar e r equired us ing

data, having relationship fixed over time.

 Data Sharing: Data s haring bec omes pr actical as al l t he dat a ar e he ld i n a

common place.

Demerits of Hierarchical Model:
 Implementation complexity: It i s qui et c omplex t o i mplement as t he D BMS

requires t he k nowledge o f phy sical l evel of d ata s torage a nd t he dat abase

designers s hould ha ve a v ery good k nowledge of t he physical dat a s torage

characteristics.

 Implementation limitation: The m odel do es not allow o ne c hild r ecord t o be

related to multiple parent record types. This poses great difficulty in representing

many-to-many relationship.

 Inflexibility: The c hanges i n t he new r elation or s egments of ten y ield v ery

complex m anagement t ask. T he de letion of one s egment w ill c ause all ot her

segments below it to be deleted.

 Database Management problems: If any changes are made to the database

structure, it becomes essential to change all the application programs that

access the database.

 No standards: There are no laid down set standards on how to implement the

model.

 31

3.5 NETWORK DATA MODEL

The network model was created to represent complex data relationship more effectively

then t he hi erarchical m odel, t o i mprove d atabase p erformance, an d t o i mpose a

database standard.

The n etwork m odel i s s imilar t o t he hierarchical data m odel e xcept t hat a r ecord c an
have m ultiple par ents. T his m odel h as t hree bas ic c omponents s uch as r ecord t ype,

data items and links.

A relationship is called a set in which each set is composed of at least two record types-

owner record (same as parent record) and member record (same as child record). The

connection between an owner and a member is identified by a link to which a set name

is assigned.

The set name is used to retrieve and manipulate data. The link between the owners and

their m embers i ndicate access pat hs i n t he network m odel a nd ar e t ypically
implemented w ith p ointers. In network data m odel, m ember c an ap pear in m ore t han

one s et an d t hus m ay ha ve s everal ow ners, and h ence i t f acilitates m any-to-many

relationship. A s et r epresents a on e-to-many r elationship between the ow ner an d t he

member.

Figure-8 Network Data Model

In the above diagram a sample network data model is represented. As shown the

member ‘B’ has only one owner ‘A’, whereas member ‘E’ has two owners ‘B’ and ‘C’.

 32

The figure-9 it demonstrates a distinctive network model representation for sales

process. The model represents five record types namely- Sales_person, Customer,

Item, Sales_order, Billing and Order_detail. Here the entity Sales_order has two owners

Sales_person and Client. Similarly Order_detail has two owners Item and Sales_order.
In this model eack link between two record types represents a one-to-many relationship

between them.

Figure-9 Network Model for Sales Process

Merits of Network Model:
 Simplicity: Same as hierarchical model network model is also simple and easy

to understand.

 Facilitating more relationship types: The network m odel i s abl e t o h andle

many-to-many relationship as a member can have multiple owners. This helps in

modeling real life situations in a much better way.

 Superior Data Access: An app lication c an ac cess an ow ner r ecord and al l t he

member record within the set. Hence the data access and flexibility found in this

model are much better as compared to the hierarchical model.

 Database Integrity: It e nforces integrity a nd d oes not allow a m ember t o exist

without an owner.

 33

 Support for DBMS: It i ncludes D ata D efinition L anguage (DDL) a nd D ata

Manipulation Language (DML) in DBMS.

 Database Standards: It i s bas ed o n u niversal s tandards f ormulated b y D BTG

(Database task group) / CODASYL (Conference on data system languages) and

improved by ANSI/SPARC.

Demerits of Network Model:
 System Complexity: Network m odels a re di fficult t o des ign and us e pr operly.

The n avigational access m echanism ac cesses onl y one r ecord at a time a nd

hence m akes t he s ystem i mplementation v ery c omplex. K nowledge of t he

internal data structure is required to take the advantage of this model.

 Absence of Structural Independence: If c hanges ar e m ade t o database

structure, all subschema descriptions have to be updated before any application

program can access the data.

3.6 RELATIONAL DATABASE MODEL

The r elational da ta m odel w as or iginally c ommenced by D r. E .F. C odd. I t i s

implemented t hrough a v ery s ophisticated r elational dat abase m anagement s ystem

(RDBMS). IT n ot on ly per forms the s ame bas ic f unctions t hat ar e t here i n hierarchical

and network model but also provides the ability to hide the complexities of the relational

model from the end user. Table is a matrix consisting of series row/column intersections
related t o e ach ot her t hrough s haring a c ommon ent ity c haracteristic. R elational

diagram i s a r epresentation of r elational database’s ent ities, at tributes w ithin t hose

entities, and r elationship between t hose ent ities. R elational t able s tores a c ollection of

related e ntities an d r esembles a f ile. R elational table i s p urely a logical s tructure a nd

how da ta ar e p hysically s tored in t he database i s of n o c oncern to t he user or t he

designer.

 34

In relational data model, tables are related to each other through the sharing of common

attribute. F or ex ample t he S ubject t able i n t he gi ven F igure 1. 10 c ontains F aculty_id

field and the same filed also exists in the Faculty table.

Figure-10 Relational Data Model

The common field between Faulty and the Subject tables allows a subject to match with
the details of the faculty who is teaching it. Here although the tables are independent of

each ot her, the dat a b etween the two tables c an be easily as sociated. T he r elational

database provides the least amount of redundancy.

Merits of Relational Data Model:

 Conceptual Simplicity: The t abular view of s toring and m anaging t he d ata

improves c onceptual s implicity, t hereby e ncouraging e asier database blueprint,
implementation, administration and usage.

 Structural Independence: The r elational dat a m odel do es not dep end o n t he

navigational da ta ac cess and henc e t he c hanges i n t he t able s tructure d o not

affect the data access.

 35

 Flexible and powerful query capability: It provides very powerful, flexible and

easy t o us e q uerying f acilities. IT has S QL t o ex ecute t he r equired da ta

operations and manipulations.

 RDBMS support: The availability of powerful RDBMS isolates the end user from

the physical-level details and improves execution and administration ease.

Demerits of Relational Data Model:

 Hardware Overhead: This m odel r equires a f ast processor al ong w ith a large

capacity an d hi gh s peed s econdary s torage d evices t o per form t he as signed

tasks. N ow-a-days t his i s n ot t hat big disadvantage as t he c omputing s peed is
getting doubles e very e ighteen m onths a nd the c ost of s torage devices ar e

getting reduced to a great extent.

 Poor Design by untrained professionals: Because of e ase of us e m any a

times it is managed by untrained professional to develop the required queries. So

queries and r eports w ritten w ithout pr oper logical t hinking r esults i n s lower

system and performance degradation.

3.7 ENTITY RELATIONSHIP DATA MODEL (ER MODELS)

The E ntity r elationship m odel w as i nitially pr ojected by P eter C hen i n 197 6. I t i s a

graphical r epresentation o f d atabase s tructure using entities a nd r elationship am ong

entities. The E R Model m atched t he r elational dat a m odel v ery s atisfactorily. T he

combination provides a very good database design.

The ER model is has following components mentioned below:
Entity Set: It is a real world object for which data are collected and stored. It is just one

instance of an entity s et. The term ent ity and entity s et ar e different but c an be used

interchangeably. An entity s et i s r epresented b y a r ectangle i n an E R d iagram. T he

 36

name of t he en tity i s gener ally nou n and s ingular. E xamples of en tity ar e D epartment,

Course, Student etc.
Attributes: The c haracteristics of an e ntity i s c alled an attribute. O ne en tity c an ha ve

multiple a ttributes l ike a n e ntity C ourse c an ha ve C ourse_id, C ourse_name, D uration
etc are the attributes.
Relationships: It describes an connection between two entities. There are three types

of possible relationships between the entities , they are one-to-one (1:1), one-to-many

(1:M) and many-to-many(M:N).

Figure-11 Sample ER Diagram using Crow’s Foot Notation

 The above figure illustrates 1: M relationship between the entities Country, State,

City an d Area. T he i dCountry at tribute f rom t he C ountry t able is r eferenced i n S tate
table. Therefore it represents one-to-many (1:M) relationship between the entity Country

and S tate, w hich m eans one c ountry c an h ave m any s tates. S imilarly t here i s on e-to-

many relationship between State entity and City, and 1:M relationship between City and

Area entity.

 37

Merits of ER Model:

 The ER model is a graphical demonstration of entities which results in complete

clarity and simplicity in understanding.
 ER model also goes in combination with the relational model data model and with

help of some tools like MySQL Workbench conversion.

Demerit of ER Model:

 Depending upon different logical perceptions many a times it’s not possible to
specify most of the constraints.

3.8 OBJECT ORIENTED DATA MODEL (OODM)

The object oriented data model is a logical data model that is based on the concept of

object or iented pr ogramming. It h as c ome i nto ex istence t o m eet t he i ncreasingly

complex r eal w orld app lications w hich ar e not bei ng eas ily s olved by ot her m odel. A
class r epresents bot h ob ject at tributes as w ell as t he beh avior of t he ent ity. T he

instance of the class- object contains both data as well as their relationship. An object

includes information about the relationship between the facts within the object as well as

information about relationship with other objects. Objects also contain all operations that

can be performed on it.

The object-oriented data model is differently proposed by different researchers and has

no s ingle c ommon database s tructure l ike t he ot her data m odels. O ODM forms t he

basis f or t he o bject-oriented d atabase m anagement system (O ODBMS). T hey are
mainly used in engineering and design, financial services, telecommunications etc. This

model is represented by UML (Unified Modeling Language) class diagrams.

The main advantage of OODM is that it is closer to the real word and hence is able to

deal w ith m ore c omplex pr oblems v ery e asily. T he m ain dem erit of O ODM i s no

established standards and hence is not that much widespread accepted.

 38

3.9 COMPARISON BETWEEN DATA MODEL

We hav e d iscussed al l t he e ntire dat a m odels and based on s ome s pecialized

characteristics and s ome m erits and dem erits w e c ompare al l t he m odels. T he t able

given below shows the comparison:

Data Model
Characteri

stics
Organizati

on
Identi

fy

Access
Langua

ge

Data
Independe

nce

Structural
Independe

nce

Hierarchical Best

suitable for

1:M

relationshi

p

File,

Records

Recor

d

based

Procedu

ral

Yes No

Network Ability to

handle all

types of

relationshi

p, including

M:N

File,

Records

Recor

d

based

Procedu

ral

Yes No

Relational Conceptual

Simplicity,

easier

database

design.

Tables Value

based

Non-

Procedu

ral

Yes Yes

Entity

Relationship

Visual

representat

ion makes

it very easy

to
understand

Entity

Sets/

Objects

Value

based

Non-

Procedu

ral

Yes Yes

 39

Object
Oriented

No
standardiz

ed method

available to

represent

the model.

Objects Recor
d

based

Procedu
ral

Yes Yes

Table-1 Comparison between data model

3.10Check your progress

1. Explain the importance data model.
2. Define entity, attributes and relationships.
3. Discuss hierarchical model in detail.
4. Explain in detail the network model.
5. Write a short note on ER model.

 40

Unit 4: Database Design

Unit Structure

4.1. Learning Objectives

4.2. Introduction

4.3. Characteristics of a table

4.4. Keys

4.5. Integrity policies

4.6. Relational set operators

4.7. Attributes

4.8. Relationships contained in relational database

4.9. Connectivity and cardinality

4.10. Relationship Strength

4.11. Relationship degree

4.12. Database design process

4.13. Anomalies in database

4.14. Check your progress

4

 41

4.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

• decide an entity and its attributes.

• understand database design process and the commonly occurred anomalies in it.

4.2 INTRODUCTION

A table is viewed as a two dimensional organization consisting of rows and columns. A

table m any a t imes i s al so c alled a relation because t he r elational m odel ar chitect

composed of r ows and c olumns. A t able c onsists of a c ollection of as sociated ent ity
occurrences that is an entity set. For example a DESIGNATION table contains the entity

occurrences, each representing a separate designation of an employee.

With the help of table view of data it makes it easy for a database designer to design the

database.

4.3 CHARACTERISTICS OF A RELATIONAL TABLE

The eight characteristics of a relational table are mentioned below:

1. A table is perceived as a two-dimensional arrangement structure of rows and

columns.

2. Tuple corresponds to a single entity event contained in the entity set.

3. Every relational table column represents an attribute, which should have a

distinct name.

4. The intersection of a row and column represents a single value in the table.

5. Every value in the column must correspond to the same data type and format.
6. Each column can have a definite range of values know as attribute domain.

7. The sequence of rows and columns is irrelevant in DBMS.

8. Every table must have an attribute or its combination that can distinctively

identify a tuple.

 42

Table: DESIGNATION

Desig_id Desig_name

1 CEO

2 Manager

3 Supervisor

4 Technician

5 Officer

Desig_id= Designation ID, Desig_name= Designation name

Table-2 DESIGNATION table attribute values

i. The D ESIGNATION t able i s v iewed as a t wo d imensional ar rangement
consisting of two columns and five rows.

ii. Each row in the DESIGNATION table illustrates a single entity occurrence within

the en tity s et. F or example as s hown i n the f igure-12 her e any Desig_id=4,

represents t he other c haracteristics t hat’s d esignation name i n t he g iven t able,

the designation name in this case is Technician which denotes a record.

iii. Here each column is viewed as an attribute and should have unique name.

iv. As s hown in t he gi ven f igure t he ent ire at tribute in a gi ven c olumn m ust have a

same data type. Like designation name field has a data type as character.
v. Here the designation ID has a range of possible values that are between 1 to 5,

which is known as range of domain values.

vi. The series of rows and columns is irrelevant in DBMS.

vii. Each table in RDBMS must have a column/attribute which contains set of unique

values and t hat a ttribute c an be as signed as a P rimary K ey (PK). Assigning a

PK attribute to a field, does not allow the field to remain either empty or repeated.

 43

4.4 KEYS

Keys in R DMS ar e s ignificant as t hey ar e used to ens ure t hat e ach tuple in a t able is
uniquely i dentifiable. A key c onsists of one or m ore a ttributes t hat det ermine ot her

attributes. For example an Designation ID identifies all the field in the designation table.

A primary key plays an important role in the relational environment, where the key’s role

is bas ed on t he c oncept of det ermination. E ach t able m ust hav e a at tribute t hat i s

unique and is able to identify the unique records of the table.

Similarly the foreign key contains either matching values (primary key of another table)

or nul ls. T he t able t hat m akes us e of t hat f oreign k ey i s s aid t o e xhibit referential

integrity. In s imple w ords r eferential i ntegrity m eans that i f t he f oreign k ey c ontains a
value, that value should refer to an existing valid record in another relation.

In t he c ontext of dat abase t able, t he s tatement “ A de termines B ”, indicates t hat i f y ou

know t he value of at tribute A , y ou c an l ook u p i nto t he v alue of B . F or e xample t he

knowing the S tudent_ID i n t he S TUDENT table w e ar e ab le t o l ook up his/her nam e,

score, mobile number etc. Therefore attributes of the student table can be represented

by t he s tatement “ Student_ID d etermines nam e, s core, s em, m obile”. T his s tatement

can be simply denoted by:

Student_ID -> Name, Score, Sem, Mobile_num
The c oncept of de termination i s i mportant as i t us ed in t he definition of a c entral

relational database concept known as functional dependency. The functional

dependency can be defined most easily this way: “The attribute A determines B if all the

rows in the table that agree in the value for attribute A also agree in value for attribute

B”.

Also “ If an a ttribute B is f unctionally d ependent o n a c omposite key A but not on a ny

subset of that composite key, the attribute B is fully functionally dependent on A”.

Composite key is a combination of 2 more attributes that is used to uniquely identify a
record in a given table. Within the broad key classification special keys can be defined

as given the figure 1.14

Key Type Definition

Super key An attribute that uniquely identifies each row in a table

 44

Candidate
key

A minimal (irreducible) superkey.

Primary key A c andidate k ey t hat is s elected t o uni quely i dentify al l ot her

attributes in a column and does not contain a null value

Secondary

key

An attribute used strictly for data retrieval purposes.

Foreign key An attribute in one table whose value must match the primary key

in another table.
Table-3 Relational Database Keys

4.5 INTEGRITY POLICIES

For a good relational database design integrity rules are very significant and they must

be f ollowed. S everal R DMS i mplement i ntegrity r ules w ithout h uman i ntervention b ut

care s hould be t aken t hat a ny ap plication des ign m ust m atch t he r eferential i ntegrity

rules which are summarized in the figure 1.15:
Entity
Integrity

Description

Requirement

Purpose

All primary keys are unique and cannot be null

Each r ow w ill ha ve a unique identity an d the f oreign k ey c an r eference
primary k ey values. E .g. N o S tudent ID c an be duplicated as w ell as i t

cannot be null.

Referential
Integrity

Description

Requirement

Purpose

A foreign must match with the primary key value in a table to which it is

related, or sometimes may have a null entry.

It m ay b e pos sible f or an at tribute NOT to ha ve a c orresponding value,

but an invalid entry is not possible. E.g. An AGENT has yet not assigned

any CUSTOMER.
Table-4 Integrity rules

 45

As shown in the Table-5, the STUDENT table does not contain a repeated Student_ID

as well as does not contain null which represents entity integrity.
Student_ID Name Sem Score MOB

S001 Amit I 75 9898989898

S002 Neha II 83 9090909090

S003 Hem I 87 7878568923
Table-5Sample STUDENT table

Similarly the tables AGENT and CUSTOMER are shown in the Table-6, where the

agent Ramesh and Joy has yet not assigned any customer, and Agent_ID attribute in

the Customer table is null for the customer named sumit and harsh.
Agent_ID A_name MOB

1 Nilanshu 7539518526

2 Shyam 4567891236

3 Ramesh 3216549875

4 Joy 3578529631

Customer_ID C_Fname C_Lname City Agent_id

1 Sumit Verma Ahmedabad

2 Nancy Joseph Surat 1

3 Jenny Shah Rajkot 2

4 Harsh Modi Surat
Table-6 Sample AGENT and CUSTOMER table

4.6 RELATIONAL SET OPERATORS

The data in the RDBMS are of limited worth until we can manipulate to generate useful

information. In t his s ection w e w ill be describing ab out eight r elational s et op erators
populated by relational algebra to implement various operations. The operators that we

are g oing to discuss are: UNION, INTERSECT, D IFFERENCE, PRODUCT, SELECT,

PROJECT, JOIN and DIVIDE.

 46

UNION: This operation combines all the rows from two tables, excluding the rows which

are ha ving dup licate r ecords. Here b oth t he t able m ust have t he s ame f ields and al so

share same number of columns. The example of union operation is shown in the figure-

12:
Pro_i
d

P_nam
e

Pric
e

1 P1 250

2 P2 300

3 P3 350

UNION

Pro_id P_name Price

4 P4 400

5 P5 450

1 P1 250

Figure 12 (a) Figure 12 (b)
Pro_id P_name Price

1 P1 250

2 P2 300

3 P3 350

4 P4 400

5 P5 450
Figure 12 UNION operation

INTERSECT: This oper ation displays onl y t he r ecords t hat are c ommon on bot h t he

tables. The result of the intersection operation is given below:
FNAME

Tarun

Ravi

INTERSECT

FNAME

Tarun

Sam

OUTPUT

FNAME

Tarun

Figure-13Intersect operation

DIFFERENCE: It displays al l t he r ecords i n one table t hat ar e n ot f ound in a nother

table. The result of the difference operation is shown below:

 47

Product

Pen

Pencil

Ruler

DIFFERENCE

OUTPUT

Figure-14DIFFERENCE operation

PRODUCT: The pr oduct op eration r esults in al l t he pos sible p air of r ows f rom the two

tables. This operation is also known as Cartesian product operation. For example if one

table has 3 records and an other t able has 2 r ecords t he pr oduct oper ation w ill yield 6

records. The ou tput of pr oduct o peration i s s hown b elow, w here pr oduct operation is

performed between Product table and Supplier table:
Pro_i
d

P_nam
e

Pric
e

P1 A 250

P2 B 300

P3 C 350

PRODUCT

Pro_id P_name Price SUP_id S_Name CITY

P1 A 250 S1 RKT AHM

P1 A 250 S2 MBD AHM

P2 B 300 S1 RKT AHM

P2 B 300 S2 MBD AHM

P3 C 350 S1 RKT AHM

P3 C 350 S2 MBD AHM
Figure -15The result of PRODUCT operation

SELECT: This oper ations displays al l t he r ecords f rom the gi ven table t hat s atisfies a

given c riteria. T his o peration i s a lso k nown as R ESTRICT op eration. F or example

suppose w e w ant t o list al l t he records f rom t he above t able w here t he pr ice of t he
product is greater than 350, then the output of select operation is shown in the figure

17.

Product

Pen

Pencil

Product

Ruler

SUP_id S_Name CITY

S1 RKT AHM

S2 MBD AHM

 48

Pro_i
d

P_nam
e

Pric
e

P1 A 250

P2 B 300

P3 C 350

P4 D 400

P5 E 450

SELECT ALL(Price>350)

Pro_id P_name Price
P4 D 400

P5 E 450

Figure -16SELECT operation
PROJECT: This o peration y ields al l t he values f or t he s elected attributes, w hich is a

vertical subset of a given table. The result of PROJECT operation is shown in the figure

17:

Pro_i
d

P_nam
e

Pric
e

P1 A 250

P2 B 300

P3 C 350

P4 D 400

P5 E 450

PROJECT Price Yields

Price
250
300
350
400
450

Figure -17PROJECT operation

JOIN: Join a llows i nformation t o b e combined f rom t wo or m ore t ables. T here ar e

several forms of join that are explained below.

 A natural join links the tables by selecting only those rows with the common values in

their c ommon at tribute, w hich i s a t hree s tep process. F irst a P RODUCT op eration i s

implemented am ong t he t ables included in t he join. S econdly a S ELECT operation is

performed on the output t o get t he r ows for w hich f oreign k ey i s pr esent. And f inally

PROJECT operation is performed on the results of second operation to get the selected

attributes a nd eliminate the du plicate t uples. T he ultimate o utcome of the nat ural join
produces a s et of a r ecord t hat d oes not i nclude m atchless pai rs and o ffer o nly t he

copies of t he m atches. E xample o f natural join an d i ts oper ations ar e explained i n t he

figures given below:

 49

CUSTOMER TABLE
CUST_ID NAME PINCODE A_ID

C001 Sanjay 382330 A001

C002 Rahul 382421 A002

C003 Pankti 358965 A003

C004 Prachi 365898 A001

AGENT TABLE
A_ID A_NAME

A001 Hari

A002 Jay

A003 Om

Table-7 Sample tables considered for join illustrations

CUST_ID NAME PINCODE CUSTOMER.A_ID AGENT. A_ID A_NAME

C001 Sanjay 382330 A001 A001 Hari

C001 Sanjay 382330 A001 A002 Jay

C001 Sanjay 382330 A001 A003 Om

C002 Rahul 382421 A002 A001 Hari

C002 Rahul 382421 A002 A002 Jay

C002 Rahul 382421 A002 A003 Om

C003 Pankti 358965 A003 A001 Hari

C003 Pankti 358965 A003 A002 Jay

C003 Pankti 358965 A003 A003 Om

C004 Prachi 365898 A001 A001 Hari

C004 Prachi 365898 A001 A002 Jay

C004 Prachi 365898 A001 A003 Om

Table-8Natural Join, Step 1: PRODUCT

The next operation performed in the natural join is a SELECT operation that is shown in

the Table-9
CUST_ID NAME PINCODE CUSTOMER.A_ID AGENT. A_ID A_NAME

C001 Sanjay 382330 A001 A001 Hari

C002 Rahul 382421 A002 A002 Jay

C003 Pankti 358965 A003 A003 Om

C004 Prachi 365898 A001 A001 Hari
Table-9 Natural Join, Step 2: SELECT

 50

Finally the last operation implemented in natural join is PROJECT that is shown in the

Table-10
CUST_ID NAME PINCODE AGENT. A_ID A_NAME

C001 Sanjay 382330 A001 Hari

C002 Rahul 382421 A002 Jay

C003 Pankti 358965 A003 Om

C004 Prachi 365898 A001 Hari
Table-10 Natural Join, Step 2: PROJECT

Another form of join is known as equijoin that links the tables on the basics of equality

condition t hat c ompares s pecific at tributes of eac h t able. Here t he out put d oes not

eliminate t he du plicate c olumn values. The eq uijoin t akes t he nam e f rom the o perator

that it uses, if any other comparison operator is used, the join is called a theta join.

Lastly the outer join, in which the matched pairs would be retained and any unmatched

values in the other table would be left null.
DIVIDE: This oper ation us es one s ingle-column t able as t he di visor and o ne t wo

attribute table as the dividend. The tables used in this operation must have an attribute
in common.

Key Location
A 34
B 45
C 25
C 36
D 25
D 72
C 12

DIVIDE

Key
C
D

 51

Location
25

Figure 18 Location Table is the outcome of the DIVIDE operations

Here the first table is divided by second table, where both the tables share a common

attribute “KEY” and does not share LOCATION. The output yields only the value that is

associated with both “C” and “D”.

4.7 ATTRIBUTES

Attributes ar e considered t o be the c haracteristics of t he entities. F or ex ample t he

CUSTOMER entity consists of many attributes like CUST_ID, NAME, PINCODE, EMAIL
etc. Here in t his s ection w e w ill discuss about various p oints t o b e k ept i n m ind w hile

deciding the attributes in a given entity.
Required and Optional attributes: A r equired at tribute i s an f iled t hat m ust hav e a

value or w hich c annot be l eft nul l. F or e xample C UST_ID a nd N AME ar e r equired

attributes in the CUSTOMER table. On the contrary a customer may have an email or

may not so the field EMAIL in the CUSTOMER table is an optional attribute as it can be

left null.
Domains: All t he attributes h ave their d omain, w hich m eans a s et of possible values

that can be accepted by that particular filed. For example minimum and maximum value

for s emesters in t he MSc(IT) c ourse c an be b etween one and four. S o the domain of

possible values for the field semester is either 1/2/3/4.
Primary key: Primary k ey i s t he i dentifier t hat i s us ed to identify eac h r ecord or t uple

uniquely. Also it c annot be n ull. For example C UST_ID in t he C USTOMER t able i s a

primary key that uniquely identifies each customer’s record and which cannot be null.
Composite keys: When w e us e m ore t han one i dentifier or pr imary k ey t o u niquely

identify a record in a table, it is known as a composite key. For example CUST_ID and
ACCOUNT_NUM can be combined to create a composite key as a customer may have

different types of account in a bank,

 52

Composite and simple attributes: A c omposite at tribute i s not b e baffled w ith

composite k ey. It i s an attribute t hat c an be f urther s ub divided t o yield ad ditional

attributes. F or ex ample an attribute F ULL_NAME c an be f urther s ub d ivided i nto

FIRST_NAME, MID_NAME and LAST_NAME. A simple attribute cannot be further sub
divided. For example gender, age etc.
Single-valued attributes: An a ttribute that c an have o nly s ingle value is k nown as

single valued attribute. For example AADHAR number of any Indian citizen is

considered to be a single-valued attribute.
Multivalued attributes: Those at tributes t hat c an have m ultiple values f or example

color of a c ar, de gree of a s tudent, ar ea o f i nterest of a c andidate, h obbies et c ar e

considered to be the multivalued attributes.
Derived attributes: An at tributes value t hat c an be c alculated f rom ot her attributes

value is known as derived attribute. For example the attribute AGE can be derived from

the date of birth field. Similarly amount of GST to be paid, percentage of a student etc

are the examples of derived attributes.

4.8 RELATIONSHIPS CONTAINED IN RELATIONAL
DATABASE
Relationships that are defined in relational database are of three types:

• One-to-many (1:M)

• One-to-one (1:1)

• Many-to-many (M:N)

The 1:M relationship: The 1:M relationship is the relational database standard. To this

how this relationship is modeled and implement let us consider a simple example of

COUNTRY and STATE entity.

 53

Figure-19:M relationship between Country and State table

As shown the figure 19 the one COUNTRY can have many STATES, so there is a one-

to-many relationship between two tables.

The 1:1 relationship: This relationship represents that one entity can be related to only

one another entity and vice versa. For example one department chair-a professor-can
chair only one department and one department can have only one department chair.

Figure-20 1:1 relationships between Professor and Department

The M:N relationship: A M:N r elationship is not di rectly s upported in t he r elational

database environment. A s ample e xample of M:N r elationship c an b e c onsidered

between MOBILE and FEATURES tables. Here one MOBILE can have many features,

also the same feature can be there in many MOBILES.

The way to implement M:N relationship in relational database environment is to change

the M:N r elationship t o two 1:M r elationship. This c an be do ne by ad ding a t hird
associative en tity or a br idge t able bet ween t wo t ables. F igure 1. 31 r epresents t he

solution t o t he gi ven pr oblem. H ere t he br idge t able i s “ Mobile_has_feature”, w hich

specifies which mobile has which features.

 54

Figure-21 Changing the M:N relationship to two 1:M relationship

4.9 CONNECTIVITY AND CARDINALITY
Cardinality s ignifies t he m inimum and t he m aximum num ber of en tity oc currences

associated with one occurrence of the related entity. In entity relationship modeling it is

represented b y us ing t he f ormat (n,m), w here the f irst par ameter r epresents m inimum
number of linked entities and the second parameter represents the maximum number of

entity occurrences. The below figure shows the example of PROFESSOR and CLASS

entity.

Figure-22 Connectivity and Cardinality

4.10 RELATIONSHIP STRENGTH

The notion of relationship strength is based on how the primary key of a related entity is

defined. T here are b asically two t ypes of r elationship s trength w eak and strong

relationships which are discussed below:

 55

Weak Relationships: It i s al so k nown as N on-identifying r elationship. I t ex ists w hen

primary key of a related entity does not contain a primary key component of the parent

entity. B y de fault r elationships ar e r ecognized by h aving t he pr imary k ey of t he par ent

entity a ppear as a f oreign key on the r elated entity. F or example, s uppose t hat t he
COURSE and CLASS entities are defined as:
COURSE (CRS_CODE, DEPT_CODE, CRS_DESC, CRS_CREDIT)

CLASS (CLASS_CODE, CRS_CODE, CLASS_SECTION, PROF_ID,CLASS_TIME)

In t his c ase a w eak r elationship e xists bet ween the above t wo en tities bec ause t he

CRS_CODE in CLASS entity is only an foreign key.
Strong Relationships: A strong relationship is also known as identifying relationship. It

exists w hen t he primary k ey of a r elated entity c ontains pr imary key c omponent of a

parent entity. For example if we consider the COURSE and CLASS entities as:
COURSE (CRS_CODE, DEPT_CODE, CRS_DESC, CRS_CREDIT)

CLASS (CRS_CODE, CLASS_SECTION, PROF_ID, CLASS_TIME)

This indicates a s trong r elationship e xists between the entities C OURSE an d C LASS,

because t he C LASS e ntity c ontains a c omposite pr imary k ey of C RS_CODE and

CLASS_SECTION.

4.11 RELATIONSHIP DEGREE
A r elationship de gree s pecifies t he num ber of e ntities t hat ar e associated w ith a

relationship. T hey ar e of s everal types l ike un ary, binary, t ernary an d hi gher degree

relationship that are discussed below:
Unary relationships: An example of the unary relationship is shown in the figure 1.33,

where an E mployee ent ity i s a s upervisor f or on e or m ore w orkers w ho ar e aga in
employees w ithin t hat en tity. S uch a r elationship i s al so known as r ecursive

relationships. Recursive relationships exits between the occurrences of the same entity

set.

 56

Figure-23 Unary relationship

Binary relationships: A binary relationship exists when there are two entities that are

related with each other as shown in the figure 1.34. It is the most frequent relationship

that exists in the relational database. A basic example of two Entities CITY and AREA

table is shown below that are having one-to-many relationship.

Figure-24 Binary relationship

Ternary and Higher degree relationships: A ternary relationship involves relationship

among t hree di fferent e ntities. L et’s t ake an e xample of t hree e ntities D OCTOR,

PATIENT an d MEDICINE. Here t he d octor g ives one or m ore prescriptions t o t he

patients. P atients c an visit one or m ore d octors and get d ifferent prescriptions. O ne

medicine can be there in one or more prescriptions that are given by doctor to patients.

An example of ternary relationship is as shown in figure 1.35

 57

Figure-25 Ternary relationship

4.12 DATABASE DESIGN PROCESS

Database d esign i s a pr ocedure of creating a c omplete d ata m odel of a database

consisting of a ll t he l ogical a nd p hysical design alternatives and p hysical s torage

considerations nee ded t o c reate a des ign of a dat abase. It s hould al ways r eflect t he

information s ystem and s hould u ndergo ev aluation an d r evision w ithin a f ramework

known as Database life cycle. There are two methods of database design:
 Top-down vs. Bottom-up design

Figure-26 Top-down vs. Bottom-up design

 58

In top dow n appr oach we identify t he dat aset and define t he dat a el ements. In

bottom-up approach we identify the data elements first and then we group them

into datasets.

 Centralized vs. Decentralized design

Figure-27 A centralized design approach

 In centralized database design is conducted by a single person or a small team

as s hown i n t he f igure 1. 37 o n t he c ontrary i n dec entralized database design l arge

number of relationship and complex relations exits and are spread across multiple sites

as shown in the figure 1.38

Figure-28 A decentralized design approach

 59

DATABASE LIFE CYCLE (DBLC):
Phase 1: Database Initial Study: In t he i nitial s tudy w e an alyze t he or ganization

structure and its oper ating e nvironment. W e def ine t he pr oblem a nd l ist al l t he

constraints. W e nee d to also s tate t he m ain ob jectives of t he pr oposed s ystem along
with its scope and boundaries.

Figure-29 Phases in DBLC

Phase 2: Database Design: It is the most critical phase where the DBA has to focus on

data r equirements c reate a c onceptual d esign, S elect t he D BMS s oftware, c reate a

logical design and create a physical design.
Conceptual Design: In c onceptual des ign w e m ap t he d atabase w ith the r eal w orld

entities. H ere w e per form dat a an alysis an d r equirements, de velop an d E R and

normalize to its required forms and lastly we verify the data model that is developed.

DBMS Software selection: The f actors t hat m ust b e c onsidered at t he t ime of D BMS

software selection are:

 Underlying model of database

 DBMS features and tools

 60

 DBMS hardware requirements

 Portability of the DBMS

 COST

Logical Design: The logical design translates the conceptual design into internal model.

Here t he logical m odel des ign c omponents ar e Tables, Indexes, Views, T ransactions

etc.

Physical Design: In ph ysical design w e need t o s pecify the da ta s torage a nd access

characteristics because this becomes very difficult in case of distributed systems.
Phase 3: Implementation and coding: This phase includes creation of special storage

constructs for the end user tables. It also gives solution to other issues like

performance, security, backup and recovery, maintaining industry standards and

managing concurrency controls.
Phase 4: Testing and evaluation: In this phase the database is tested and fine tuned

for per formance, i ntegrity, c oncurrent ac cess and s ecurity c onstraints. T his phas e is

implemented in par allel w ith ap plication pr ogramming. If t he t esting f ails t hen following

actions are taken:
 Fine tuning based on reference models

 Alterations in the logical design

 Updating in the physical design

 Modernize or change the DBMS software or hardware in which its implemented

Phase 5: Operation: In this p hase d atabase i s c onsidered t o b e op erational a nd t he

process of s ystem e valuation begins. D uring t his ph ase s ome u nforeseen problems

may occur and demand for a change.
Phase 6: Maintenance and Evaluation: In this phase we implement different

maintenance techniques like preventive maintenance, corrective maintenance, adaptive

maintenance, as signment of access per mission, pr oducing database s tatistics f or

monitoring p erformance, c onducting s ecurity a udits bas ed o n s ystem-generated

statistics.

 61

4.13 ANOMALIES IN DATABASE

Anomalies ar e i n f act t roubles t hat c an ar ise in poorly designed, no n-normalized
databases. Non-normalized databases are those databases which don’t follow database

standard r ules i n or der t o des ign and d evelop i t. There ar e s everal c ategories of

anomalies that can exist while referencing attributes in the related tables. Suppose we

consider h ere t wo entities as S TUDENT a nd C OURSE an d t he s ample r ecords ar e

shown below:

STUDENT_ID NAME EMAIL AGE

S001 Vivek v@gmail.com 25

S002 Abhi ab@ymail.com 27

S003 Aniket an@yahoo.com 32
Figure 1.40 Student table

COURSE_ID NAME STUDENT_ID

C1 Python Programming S001

C2 Networking S003

C3 Java Programming S001

Figure 1.41 Course table
Insertion anomaly: If a r ecord i s i nserted i n a r eferenced at tribute and t he

corresponding foreign key is not present in the primary table (STUDENT), it will result in

insertion anomaly. For example if we try to insert S005 in the COURSE table, it will not
permit.
Deletion and updation anomaly: If a r ecord i s del eted or ed ited from r eferenced

relation and referenced field value is used by referencing attribute in associated relation,

it will not permit deleting the record from referenced association. For example if we try

to delete t he r ecord f rom the S TUDENT table w here S TUDENT_ID is S 003, i t w ill n ot

permit t o delete t he r ecord. In order to a void s uch a s ituation w e c an use C ASCADE

UPDATE and CASCADE DELETE while query processing.

4.14Check your progress

 62

1. Define table and explain its characteristics by giving examples.

2. List and explain the importance of integrity policies in relational DBMS.

3. Discuss relational set operators in detail.

4. What are the points to be kept in mind while deciding the attributes for a given
entity?

5. Write a short note on relationship degree.

6. Discuss the database design process.

7. List and explain the anomalies faced in the database.

 63

 Block-2

Relational Data Model

 and

Introduction to Oracle

 Server

 64

Unit 1: Functional Dependency
and Normalization

Unit Structure

2.1. Learning Objectives & Outcomes

2.2. Introduction

2.3. Functional Dependency

2.4. Decomposition

2.5. Closer Set of Functional Dependencies

2.6. Normalizations

2.7. Let Us Sum Up

2.8. Check your progress:Possible Answers

2.9. Assignments

2.10. Further Reading

1

 65

1.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
• To learn and understand Dependencies and how to define it.

• To understand the Armstrong’s Axioms of FDs.

• To understand the decomposition process of database relation.

• To learn normalization process and different normal forms.

Outcome:

At the end of this unit,

• S tudents w ill be c ompletely aware w ith process of D ependencies an d i ts d ifferent
types like F unction D ependencies, F ully Functional D ependencies, M ultivalued

Dependencies,Join Dependencies etc.

• Students will come to know the decomposition process and its types.

• Students will come to know normalization and different normal forms.

1.2 INTRODUCTION

Functional dependencies (FDs) pl ay a k ey r ole i n differentiating good dat abase

designs from database design. A functional dependency is a type of constraint that is

a generalization of the notion a key Functional dependencies. FD's are constraints on

well-formed r elations and r epresent f ormalism on t he i nfrastructure of r elation. T he

determination of functional dependencies is an important part of designing databases

in t he r elational m odel, an d i n dat abase nor malization an d de nor malization. T he

functional d ependencies, al ong w ith t he at tribute d omains, ar e s elected s o as t o

generate c onstraints t hat w ould e xclude as m uch d ata inappropriate t o t he us er
domain from the system as possible.

Normalization (NF) i s a s ystematic w ay o f ens uring that a d atabase s tructure is

suitable f or g eneral-purpose q uerying and f ree of c ertain u ndesirable c haracteristics

like i nsertion, u pdate, and de letion an omalies; that c ould l ead t o a l oss of d ata

 66

integrity. T he nor mal f orms of r elational da tabase t heory pr ovide c riteria f or

determining a table's degree of vulnerability to logical inconsistencies and anomalies.

The normal forms are applicable to individual tables; to say that an entire database is

in normal form n is to say that all of its tables are in normal form n.

1.3 FUNCTIONAL DEPENDENCY

A functional dependency (FD) i s a r elationship bet ween two at tributes, t ypically

between t he P K an d ot her n on-key attributes w ithin a t able. F or an y r elation R ,

attribute Y is functionally dependent on attribute X, if for every valid instance of X, that

value o f X uniquely determines t he v alue o f Y. T his r elationship i s i ndicated by the
representation below:

X Y Or X à Y

The left side of the above FD diagram is called the Determinant (X), and the right side

is the Dependent (Y).

X Y X Y

1 1 1 1

2 4 2 4

3 9 3 9

4 16 4 16

2 4 2 10

7 9 7 9

Table: A Table: B

Above Table: A i llustrates t hat X Y, s ince f or eac h value of X t here i s as sociated

one a nd o nly one value o f Y. W hile T able: B i llustrates t hat X d oes not f unctionally

determine Y, since for X = 2 there is associated more than one value of Y (4, 10).

Example: Consider the database having following tables.

 67

SNo SName Status City

S1 Nilesh 20 Ahmedabad

S2 Vinod 10 Patan

S3 Rahul 20 Ahmedabad

S4 Jayesh 20 Surat

Table: Supplier

Here, if we know the value of SNo, We can obtain value of SName, Status and City.

So, we can say that SName, Status and City are functionally depends on SNo. FD is
represented as: SNo { SName,Status,City}

SNo PNo Qty

S1 P1 270

S1 P2 300

S1 P3 700

S2 P1 270

S2 P2 450

S3 P2 280

Table: Shipment

In this case Qty is FD on combination of SNo and PNo, because each combination of
SNo and PNo results only one Qty. FD is represented as: {SNo, PNo} Qty

1.3.1. FULLY FUNCTIONAL DEPENDENCY (FFD)

Fully Functional Dependence (FFD) is defined, as Attribute Y is FFD on attribute X, if

it is FD on X and not FD on any proper subset of X. For example, in relation Supplier,

different c ities m ay ha ve t he s ame s tatus. It m ay b e pos sible t hat c ities l ike

Ahmedabad, S urat m ay ha ve the s ame s tatus 20. S o, t he C ity i s not FD on S tatus.

 68

But, t he c ombination of S No, S tatus c an give onl y on e c orresponding C ity, bec ause

SNo is unique. Thus,
{SNo, Status} City

It m eans c ity i s F D on c omposite at tribute (SNo, Status) how ever C ity i s no t f ully

functional dependent on this composite attribute, which is explained below:
{SNo , Status} City

 X Y

Here Y is FD on X, but X has two proper subsets SNo and Status; city is FD on one
proper subset of X. SNo City

According t o FFD def inition Y m ust not b e FD .on an y pr oper s ubset of X, but here

City is FD in one subset of X i.e. SNo, so City is not FFD on (SNo, Status)

1.3.2. ARMSTRONG’S AXIOMS OF FUNCTIONAL DEPENDENCIES
(INFERENCE RULES)

A s et of r ules t hat m ay be us ed t o i nfer additional de pendencies w as pr oposed
by William W. Armstrong in 1974. These rules (or axioms) are a complete set of rules

in· that all possible functional dependencies may be derived from them. Below given

are the three most important rules for FD:

• Reflexive Rule: If X i s a s et of at tributes an d Y i s s ubset of X , t hen X
holds a value of Y.

• Augmentation
Rule:

When x y holds, and c i s at tribute s et, t hen ac bc

also holds. That is adding attributes which do not change

the basic dependencies.

• Transitivity Rule: This r ule i s v ery m uch s imilar t o t he t ransitive r ule i n

algebra. if x y holds and y z holds, then x z

also holds.

 69

Further ax ioms m ay b e derived from t he a bove a lthough t he a bove t hree a xioms

are sound and complete in that they do not generate any incorrect functional

dependencies (soundness) an d t hey do ge nerate all pos sible f unctional
dependencies that can be inferred from F (completeness). The most important

additional axioms are:

a. Union Rule: If X Y and X Z hold, then X YZ holds.

b. Decomposition Rule: If X YZ holds, then so do X Y and X Z.

A. Trivial Functional Dependency

The T rivial d ependency i s a s et of at tributes w hich ar e c alled a t rivial i f t he s et of

attributes are included in that attribute. So, X Y is a trivial functional dependency if

Y is a subset of X.

Example: Consider a Employee table

EmpId EmpName EmpContact

1001 Jayesh

Patel

8625610860

1002 Viral Vyas 7300456780

1003 Chirag

Prajapati

6625674610

Table: Employee

{EmpId,EmpName} EmpName is a trivial functional dependency as a EmpName is

a subset of {EmpId,EmpName}. If we knows the value of EmpId and EmpName then

the value of E mpId c an be uni quely d etermined. Also, E mpId EmpId & E mpName

 EmpName are trivial dependencies too.

B. Non-Trivial Functional Dependency

 70

If a f unctional de pendency X Y ho lds t rue w here Y i s not a s ubset of X t hen this

dependency is called Non-Trivial functional dependency.

Example: Consider a E mployee table. Following functional d ependencies ar e Non-

trivial.
EmpId EmpName (EmpName is not a subset of EmpId)
EmpId EmpContact (EmpContact is not a subset of EmpId)

If a functional dependency X Y holds true where X intersection Y is null then this
dependency is called completely Non-Trivial FD.

C. Transitive Functional Dependency

Transitive F unctional D ependency h appens w hen it is i ndirectly f ormed by t wo

functional dependencies. This dependency can only occur in a relation with minimum

three attributes.

Example: Consider a Employee table

EmpId EmpName (If we know EmpId, we know its Name)
EmpName EmpContact (If we know EmpName, we know its Contact)

Therefor as per r ule of t ransitive dependency; EmpId EmpContact should ho ld,

that make sense if we know the EmpId, we can know his Contact.

1.4 DECOMPOSITION

A f unctional decomposition is t he pr ocess of br eaking d own t he f unctions of an

organization i nto pr ogressively greater l evels of det ail. The dec omposition of a

relation s cheme R c onsists of r eplacing t he r elation s chema by two or m ore r elation

schemas that e ach c ontain a s ubset of the at tributes of R a nd together i nclude all

 71

attributes i n R . D ecomposition h elps i n eliminating s ome of t he problems of bad

design such as redundancy, inconsistencies and anomalies.

Lossy D ecomposition: The decomposition of relation R into R1 and R2
is lossy

Lossless J oin D ecomposition: The decomposition of relation R into R1 and R2
is lossless when the join of R1 and R2 yield the same relation as in R. A
relational table is decomposed into two or more smaller tables, in such a way
that the designer can capture the precise content of the original table by joining
the decomposed parts. This is called lossless-join (or non-additive join)
decomposition. Spurious tuples are not generated when a natural joined is

applied to the relations in the decomposition.

 when the join of R1 and R2 does not yield the same relation as in R. One
of the disadvantages of decomposition into two or more relational schemes (or
tables) is that some information is lost during retrieval of original relation or
table. Spurious rows are generated when a natural join is applied to the

relations in the decomposition.

Dependency-Preserving Decomposition: The dependency pr eservation

decomposition is a nother property of decomposed r elational dat abase s chema D in

which eac h functional d ependency X -> Y s pecified i n F either a ppeared di rectly in

one of t he r elation s chemas R i in t he decomposed D or c ould b e i nferred f rom the
dependencies that appear in some Ri.

Decomposition D = { R 1 , R 2, R 3,,.., ,Rm} of R i s s aid t o be dep endency-preserving

with respect to F if the union of the projections of F on each Ri , in D is equivalent to

F. T he dependencies ar e pr eserved bec ause each d ependency i n F r epresents a

constraint on t he d atabase. If decomposition is no t d ependency-preserving, s ome

dependency is lost in the decomposition.

 72

1.5 CLOSURE SET OF FUNCTIONAL DEPENDENCIES

A Closure is a set of FDs is a set of all possible FDs that can be derived from a given
set of FDs. It is also referred as a complete set of FDs. If F is used to donate the set

of FDs for r elation R , t hen a c losure of a s et of FDs implied by F i s den oted by F +.

Let's consider the set F of functional dependencies given below:

F = {A -> B, B -> C, C -> D}

from F, it is possible to derive following dependencies.

A -> A ...By using Rule-4, Self-Determination.
A -> B ...Already given in F.

A -> C ...By using rule-3, Transitivity.

A -> D ...By using rule-3, Transitivity.

Now, b y app lying Union R ule, i t i s pos sible t o der ive A + -> ABCD and i t c an be

denoted us ing A -> ABCD. All s uch t ype of FDs der ived f rom eac h FD of F f orm a

closure of F.

Steps to determine F+

• Determine each set of attributes

:
 X

• Determine the set

 that appears as a left hand side of some FD

in F.
X+ of all attributes that are dependent on X

•

.

X+ represents a s et of at tributes t hat ar e f unctionally d etermined b y X based

on F. And, X+ is called the

• All such sets of

Closure of X under F.
X+

Find Candidate Keys

, in combine, Form a closure of F.

A s uper key i s a s et of at tributes w hose c losure is t he s et o f al l at tributes. In o ther

words, a s uper key i s a s et of at tributes you c an s tart f rom, and f ollowing functional

dependencies, will lead you to a set containing each and every attribute. A candidate

 73

key is a minimal super key. The first step to finding a candidate keys, is to find all the

super keys.

Example: Given the R elation R w ith attributes ABCDE. Y ou ar e gi ven t he f ollowing

dependencies: A -> B, BC -> E, and ED -> A.

Since we have the functional dependencies: A -> B, BC -> E, and ED -> A, we have

the following super keys:

• ABCDE (All attributes is always a super key)

• BCED (We can get attribute A through ED -> A)

• ACDE (Just add B through A -> B)

• ABCD (Just add E through BC -> E)

• ACD (We can get B through A -> B, and then we can get E through BC -> E)

• BCD (We can get E through BC -> E, and then A from ED -> A)

• CDE (We can get A through ED -> A and then B from A -> B)

We can see that only the last three are candidate keys. Since the first four can all be

trimmed down. But we cannot take any attributes away from the last three super keys
and s till have t hem r emain a s uper k ey. Thus the c andidate keys are: ACD, BCD,
and CDE.

1.6 NORMALIZATIONS

Database Normalization is a t echnique t hat helps i n designing t he s chema of the

database in an o ptimal m anner s o as t o e nsure t he ab ove points. The c ore idea of

database n ormalization i s t o d ivide the t ables i nto s maller s ub t ables and s tore

pointers to data rather than replicating it.

 74

Normalization results in decomposition of the original relation. It should be noted that

decomposition of relation has to be always based on principles, such as functional

dependence, that ensure that the original relation may be reconstructed from the

decomposed relations if and when necessary. Careless decomposition of a relation
can result in loss of information.

1.6.1 THE FIRST NORMAL FORM (1NF)

Definition: A relation (table) is in 1NF if

1. There are no duplicate rows or tuples in the relation.

2. Each data value stored in the relation is single-valued

3. Entries in a column (attribute) are of the same kind (type).

In a 1 NF r elation t he order of t he t uples and attributes d oes not m atter. T he f irst
requirement above means that the relation must have a key. The key may be single

attribute or c omposite k ey. The first nor mal form def ines o nly the basic s tructure of
the relation and does not resolve the anomalies.

The relation STUDENT is in 1NF. The primary key of the relation is (Sno+Cno).

STUDENT

Sno Sname Address Cno Cname Instructor
Offic

e

101 Viral
Ahmedab

ad

MCIT–

101

OOPS w ith

Java

Amit

Kumar

10

2

101 Viral
Ahmedaba

d

MCIT–

102
RDBMS

Bhavesh

Patel

10

5

101 Viral
Ahmedaba
d

MCIT-
104

Networking
Jignesh
Patel

10
3

102
Dashrat

h

Ahmedab

ad

MCIT-

104
Networking

Jignesh

Patel

10

3

 75

1.6.2 THE SECOND NORMAL FORM (2NF)

Definition: A r elation is in 2NF if it is in 1 NF and e very n on-key attribute i s f ully

dependent on each candidate key of the relation.

Some of the points that should be noted here are:

• A relation having a single attribute key has to be in 2NF.

• In case of composite key, partial dependency on key that is par t of t he key i s

not allowed.

• 2NF tries to ensure that information in one relation is about one thing

• Non-key attributes are those that are not part of any candidate key.

These FDs of relation STUDENT can also be written as:

Sno

Cno

Instructor

Sname, Address

Cname, I nstructor

Office

(1)

(2)

(3)

For the 2NF decomposition, we are concerned with the FDs (1) and (2) as above as

they r elate t o par tial de pendence on t he key t hat i s (Sno + C no). To c onvert the

relation i nto 2 NF, l et us us e F Ds. As per F D (1) t he S tudent n umber uni quely

determines student name and address, so one relation should be:

STUDENT1 (Sno, Sname, Address)

Sno Sname Address

101 Viral
Ahmedab

ad

102 Dashrat Ahmedab

 76

h ad

We f ind i n F D (2) t hat C ourse c ode at tribute uniquely det ermines t he nam e of

instructor (refer t o F D 2(a)). Also t he F D (3) m eans t hat name of t he i nstructor

uniquely determines office number. This can be written as:

 Cno Instructor (2 (a)) (without Cname)

 Instructor Office (3)

 Cno Office (This is transitive dependency)

Thus, FD (2) now can be rewritten as:

 Cno Cname, Instructor, Office (2’)

This FD, now gives us the second decomposed relation:

COU_INST (Cno, Cname, Instruction, Office)

Cno Cname Instructor Office

MCIT–

101

OOPS w ith

Java

Amit

Kumar
102

MCIT–
102

RDBMS
Bhavesh
Patel

105

MCIT-

104
Networking

Jignesh

Patel
103

We hav e s uper F Ds as , bec ause (Sno + C no) i s t he pr imary k ey of t he r elation

STUDENT:

 Sno, Cno ALL ATTRIBUTES

 77

All t he attributes except for t he key attributes t hat are S no and C no, however, ar e

covered o n t he r ight s ide of t he F Ds (1) (2) an d (3), t hus, m aking t he F D as

redundant. But in any case we have to have a relation that joins the two decomposed

relations. T his r elation w ould cover any a ttributes of S uper F D t hat hav e not b een
covered b y t he d ecomposition and t he k ey at tributes. T hus, w e need t o c reate a

joining r elation as:

COURSE_STUDENT (Sno, Cno)

Sno Cno

101
MCIT–

101

101
MCIT–

102

101
MCIT-

104

102
MCIT-

104

So, the r elation S TUDENT i n 2 NF f orm w ould b e, S TUDENT1, C OU_INST AND

COURSE_STUDENT.

1.6.3 THE THIRD NORMAL FORM (3NF)

Definition: A relation is in third normal form, if it is in 2NF and every non-key attribute

of the relation is non-transitively dependent on each candidate key of the relation.

Let us reconsider the relation 2NF (b)

COU_INST (Cno, Cname, Instruction, Office)

 78

Assume that Cname is not unique and therefore Cno is the only candidate key. The

following functional dependencies exists

 Cno Instructor (2 (a)) (without Cname)
 Instructor Office (3)

 Cno Office (This is transitive dependency)

The relation is however not in 3NF since the attribute ‘Office’ is not directly dependent

on a ttribute ‘ Cno’ but i s t ransitively dependent on it an d s hould, t herefore, be

decomposed as it has all the anomalies. We need to decompose the relation 2NF(b)

into the following two relations:

COURSE:

Cno Cname
Instructo
r

MCIT–101
OOPS with

Java
Amit Kumar

MCIT–102 RDBMS
Bhavesh

Patel

MCIT-104 Networking
Jignesh

Patel

INST:

Instructor Office

Amit Kumar 102

Bhavesh

Patel
105

Jignesh

Patel
103

 79

Two r elations and 2 NF (a) an d 2N F (c) ar e al ready i n 3 NF. T hus, t he r elation

STUDENT in 3 NF would be:

STUDENT1 (Sno, Sname, Address)
COURSE (Cno, Cname, Instructor)
INST (Instructor, Office)
COURSE_STUDENT (Sno, Cno)

The 3 NF is us ually quite a dequate f or m ost r elational database d esigns. T here ar e

however s ome s ituations w here a r elation m ay b e in 3 N F, but h ave t he an omalies.

For ex ample, c onsider t he r elation NEWSTUDENT (Sno, S name, C no, C name)

having the set of FDs:

 Sno Sname

 Sname Sno

 Cno Cname

 Cname Cno

The relation is in 3NF. All the attributes of this relation are part of candidate keys, but

have dep endency b etween the n on-overlapping por tions of o verlapping c andidate
keys. T hus, t he 3 NF m ay not e liminate all t he r edundancies an d inconsistencies.

Thus, there is a need of further Normalization using the BCNF.

1.6.4 BOYCE-CODD NORMAL FORM (BCNF)

The r elation NEWSTUDENT (Sno, S name, C no, C name) has al l at tributes

participating in c andidate k eys s ince all t he at tributes ar e as sumed t o b e u nique.

Since the relation has no non-key attributes, the relation is in 2NF and also in 3NF.

Definition: A r elation is i n B CNF, if it i s i n 3NF a nd i f ev ery de terminant i s a

candidate key.

 80

• A determinant is the left side of an FD

• Most relations that are in 3NF are also in BCNF. A 3NF relation is not in BCNF

if all the following conditions apply.

1. The candidate keys in the relation are composite keys.

2. There is m ore t han one o verlapping c andidate k eys i n t he r elation, an d
some attributes in the keys are overlapping and some are not overlapping.

3. There is a FD from the non-overlapping attribute(s) of one candidate key to

non-overlapping attribute(s) of other candidate key.

NEWSTUDENT (Sno, Sname, Cno, Cname) Set of FDs:

 Sno Sname (1)
 Sname Sno (2)

 Cno Cname (3)

 Cname Cno (4)

The relation although in 3NF, but is not in BCNF and can be decomposed on any one

of the FDs in (1) & (2); and any one of the FDs in (3) & (4) as:

STUD1 (Sno, S name)
COUR1 (Cno, C name)

The third relation that will join the two relation will be: ST_CO(Sno, Cno)

1.6.5 MULTIVALUED DEPENDENCIES AND 4TH NORMAL FORM

A. Multivalued Dependencies:

If two or more independent relation are kept in a single relation or we can say multivalue

dependency occurs w hen t he pr esence of one or m ore r ows i n a t able i mplies t he

presence of one or more other rows in that same table. Put another way, two attributes

 81

(or c olumns) i n a t able ar e independent of o ne an other, bu t bot h dep end on a t hird

attribute. A multivalued dependency always requires at least three attributes because it

consists of at least two attributes that are dependent on a third. A functional

dependency is a special case of multivalued dependency. In a functional dependency X
 Y, every x determines exactly one y, never more than one.

For a dependency A B, if for a single value of A, multiple value of B exists, then the

table m ay have m ulti-valued dependency. The table s hould h ave at least 3 attributes

and B and C should be independent for A B multivalued dependency. For example,

 Person Mobile Food_Likes

Viral Vyas 989898009 Burger

Amit Patel 756427523 Pizza

Person mobile, Person food_likes

B. Fourth normal form (4NF):

Fourth normal form (4NF) is a level of database normalization where there are no non-
trivial m ultivalued d ependencies other t han a c andidate key. It bui lds on t he f irst t hree

normal f orms (1NF, 2 NF and 3 NF) a nd the B CNF. It s tates t hat, i n a ddition t o a

database m eeting t he r equirements of B CNF; it m ust not c ontain m ore t han o ne

multivalued dependency.

Properties:

A relation R is in 4NF if and only if the following conditions are satisfied:
1. It should be in the Boyce-Codd Normal Form (BCNF).

2. the table should not have any Multi-valued Dependency.

A t able w ith a m ultivalued dep endency v iolates t he normalization s tandard of F ourth

Normal F orm bec ause i t c reates un necessary r edundancies and c an c ontribute t o

 82

inconsistent data. To bring this up to 4NF, it is necessary to break this information into

two tables.

Example:

Consider the database table:

Student (Sno,Sname):

Sno Sname

101 Viral Vyas

102 Amit Patel

Course (Cno,Cname)

Cno Cname

2001 MCA

2002 M.Sc.(IT)

When t here c ross pr oduct (Student X C ourse) is do ne it r esulted i n m ultivalued

dependencies:

Sno Sname Cno Cname

101 Viral Vyas 2001 MCA

101 Viral Vyas 2002 M.Sc.(IT)

102 Amit Patel 2001 MCA

102 Amit Patel 2002 M.Sc.(IT)

Multivalued dependencies (MVD) are:

SID CID; SID CNAME; SNAME CNAME

 83

1.6.6 JOIN DEPENDENCIES AND 5NF / PJNF

The f ifth n ormal f orm de als w ith join-dependencies, w hich i s a ge neralisation of the

MVD. The aim of f ifth nor mal form is t o h ave r elations t hat c annot be decomposed

further. A relation in 5NF cannot be constructed from several smaller relations.

A relation R satisfies join dependency *(R1, R2, ..., Rn) if and only if R is equal to the
join of R1, R2, ..., Rn where Ri are subsets of the set of attributes of R.

A relation R is in 5NF if for all join dependencies at least one of the following holds:

a) (R1, R2, ..., Rn) is a trivial join-dependency.

b) Every Ri is a candidate key for R.

An example o f 5 NF c an be pr ovided by the r elation em ployee t hat de als w ith

emp_name, Projects and Programming languages.

emp_name projects languages

VIRAL Proj_A C

AMIT Proj_A Java

VIRAL Proj_B C

AMIT Proj_B C++

The relation above assumes that any employee can work on any project and knows

any of t he t hree l anguages. The r elation also s ays t hat any employee c an w ork on

projects Proj_A, Proj_B, Proj_C and may be using a different programming languages

in t heir pr ojects. N o em ployee t akes al l t he projects and no pr oject us es al l the

programming languages and t herefore a ll t hree f ields ar e n eeded t o r epresent t he

information. Thus, all the three attributes are independent of each other.

The relation above does not have any FDs and MVDs since the attributes

emp_name, project an d l anguages ar e i ndependent; t hey ar e r elated t o each o ther

 84

only by the pairings that have significant information in them. For example, VIRAL is

working on Project A using C languague. Thus, the key to the relation is (emp_name,

projects, l anguages). T he r elation i s i n 4 NF, b ut s till s uffers f rom t he i nsertion,

deletion, and update anomalies. However, the relation therefore cannot be
decomposed in two relations.

(emp_name, project) and (emp_name, language)

The decomposition mentioned above will create tables as given below:

emp_project

emp_name Projects

VIRAL Proj_A

AMIT Proj_A

VIRAL Proj_B

AMIT Proj_B

emp_language
emp_name Languages

VIRAL C

AMIT Java

AMIT C++

On taking join of these relations on emp_name it will produce the following result:

emp_name projects languages

VIRAL Proj_A C

AMIT Proj_A Java

AMIT Proj_A C++

VIRAL Proj_B C

 85

AMIT Proj_B Java

AMIT Proj_B C++

Since the joined table does not m atch t he ac tual t able, w e c an s ay t hat i t i s a l ossy

decomposition. Thus, t he ex pected j oin de pendency e xpression; * ((emp_name,

project), (emp_name, l anguage)) do es not s atisfy t he c onditions o f l ossless

decomposition. H ence, the dec omposed tables are losing some important

information.

1.6.7 PROJECT-JOIN NORMAL FORM

PJNFis def ined us ing t he c oncept of t he j oin dependencies. A r elation s chema R

having a set F of functional, multivalued, and join dependencies, is in PJNF (5 NF), if

for all the join dependencies in the closure of F (referred to as F+) that are of the form

*(R1, R2, . . .,Rn), where each Ri ⊆R and R = R1 ∪R2 ∪. . . ∪Rn, at least one of the

following holds:

• *(R1, R2, . . .,Rn) is a trivial join dependency.

• Every Riis a superkey for R.

PJNF i s al so r eferred t o as t he F ifth Normal F orm (5NF). L et us f irst def ine t he

concept of PJNF from the viewpoint of the decomposition and then refine it later to a

standard form.

Definition 1: A JD * [R1, R 2, . . . , R n] o ver a relation R is tr ivial i f i t is s atisfied by

every r elation r (R). The t rivial JDs ov er R ar e JDs of t he f orm * [R1, R 2, . . . , R n]
where for some i the Ri = R.

Definition 2: A JD *[R1, R2 , . . . , R n] ap plies t o a r elation s cheme R i f R = R 1 R 2

…Rn.

 86

Definition 3: Let R be a relation scheme having F as the set of FDs and JDs over R.

R will be in project-join normal form (PJNF) if for every JD *[R1, R2, . . ., Rn] which

can be derived by F that applies to R, the following holds:

• The JD is trivial, or

• Every Ri is a super key for R.

For a d atabase s cheme t o b e i n pr oject-join n ormal f orm, e very r elation R in t his

database s cheme s hould b e i n project-join nor mal f orm w ith r espect t o F. Th e

definition of PJNF as gi ven abo ve i s a w eaker t han t he or iginal def inition of PJNF

given b y F agin. T he or iginal d efinition e nsures enf orceability of d ependencies by

satisfying keys, in addition to elimination of redundancy.

Definition 4: Let R be a relation scheme having F as the set of FDs and JDs over R.

R will be in project-join normal form (PJNF) if for every JD *[R1, R2, . . ., Rn] which

can be derived by F that applies to R, is implied by the key FDs of R.

The following example demonstrates this definition.

Example: Consider a relation scheme R = A B C having the set of dependencies as F

= {A B C, C A B, *[A B, B C] }. Please note that the R is not in PJNF, although
since A B and B C are the super keys of R, R satisfies the earlier definition of PJNF.

But R does not satisfy the revised definition as given above.

Please note t hat s ince every m ultivalued de pendency i s a lso a join d ependency,

every P JNF s chema is also in 4NF. D ecomposing a r elation s cheme us ing t he JDs

that c ause P JNF violations c reates t he P JNF s cheme. P JNF m ay al so be not

dependency preserving.

 Check Your Progress

1. Define Fully Functional Dependency.

 87

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

2. What is Transitivity Rule of Armstrong’s Axioms?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
3. What do you mean by Lossless Join Decomposition?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
4. Define Complete Set of FD?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
5. Explain Merits and Demerits of Normalization.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

1.7LET US SUM UP

In this chapter, we have discussed about dependencies and normalization process of

database. W e hav e e xplored process of f unctional dependency w ith al l t ypes. W e

have c ome t o know ab out Inferences R ules of F Ds. W e h ave al so s ummarized

Normalization P rocess in detail w ith di fferent N ormal Forms. After c ompletion of t his

chapter student can able to normalize the database into proper forms.

1.8CHECK YOUR PROGRESS:POSSIBLE ANSWERS

 88

1. Fully Functional Dependence (FFD) is def ined, as Attribute Y i s FFD on at tribute

X, if it i s F D on X a nd not FD on an y proper s ubset of X. According t o F FD

definition Y must not be FD .on any proper subset of X.

2. Transitivity Axioms is similar to the transitivity rule in algebra. If X Y holds and
Y Z, then X Z holds.

3. A r elation i s dec omposed i nto two or m ore s maller r elations, i n a w ay b y w hich

we c an obt ain t he or iginal r elation b y j oining t he dec omposed p artition o f

relation.

4. A c omplete s et or c losure s et of F Ds i s a s et of al l pos sible F Ds t hat c an b e

derived from a given set of FDs. If F is used to donate the set of FDs for relation

R, then a closure of a set of FDs implied by F is denoted by F+

5. Merits of Normalization:
.

• More effic ient data structure.

• Avoid redundant fields or columns.

• More flexible data structure.

• Better understanding of data.

• Ensures that distinct tables exist when necessary.

• Easier to maintain data structure.

• Minimizes data duplication.
Demerits of Normalization:

• You cannot start building the database before you know what the user needs.

• On N ormalizing the r elations t o h igher n ormal f orms i .e. 4 NF, 5 NF t he
performance degrades.

• It i s v ery time c onsuming an d d ifficult pr ocess i n n ormalizing r elations o f
higher degree.

• Careless dec omposition m ay l eads t o bad d esign of d atabase w hich m ay
leads to serious problems.

1.9 Assignments

1. Explain Armstrong’s Axioms of FDs. How can we find Candidate Key using it?
Explain with example.

 89

2. What is Decomposition? Explain different types of decomposition.

3. Describe Multivalued Dependencies and Join Dependencies with proper

Example.

4. Explain Project Join Normal Form With Example.

1.10 Further Reading

1. Database Management S ystems, Raghu R amakrishnan and Johannes G ehrke,

McGraw

 Hill Publication.

2. Database System Concepts, 6th Edition, Abraham Silberschatz, Henry F. Korth, S.

 Sudarshan, McGraw Hill.

 90

Unit 2: Oracle Database
Architecture

Unit Structure

2.1. Learning Objectives & Outcomes

2.2. Introduction

2.3. Database Structures

2.4. Oracle Memory Structures

2.5. Process Structure

2.6. Storage Structure

2.7. Schema and Schema Objects

2.8. Let Us Sum Up

2.9. Check your progress:Possible Answers

2.10. Assignments

2.11. Further Reading

2

 91

2.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
• To learn and understand Oracle Server and Instance Architecture

• To understand the Oracle Processes

• To understand the memory structure of oracle database.

• To learn different storage structures.

• To learn schema and schema objects.

Outcome:

At the end of this unit,
• Students will be completely aware with Architecture of Oracle Database in detail.

• Students will come to know the background process and its role.

• Students will be able to simplify the different storage structures available in oracle.

• Students will be able to simplify the different schema objects available in oracle.

2.2 INTRODUCTION

Oracle S erver i s a database m anagement s ystem t hat pr ovides and op en,

comprehensive an d integrated a pproach to information m anagement. In ge neral, an

Oracle server must reliably manage a large amount of data in multi user environment

so t hat m any users c an c oncurrently ac cess t he s ame da ta. All t his m ust be

accomplished while delivering high performance. An Oracle Server must also prevent

unauthorized ac cess and pr ovide ef ficient s olution f or f ailure r ecovery. T he

architecture i ncludes physical c omponents, m emory c omponents, processes, and

logical structures.

 92

Figure 6.1: Complete Oracle Architecture

A. Oracle Server: An O racle s erver i ncludes an O racle Instance a nd a n O racle

database. You'll notice that the database includes several different types of files:
data files, control files, redo log files and archive redo log files. The Oracle server

also ac cess par ameter f iles and password f iles. T his s et o f f iles has s everal

purposes as follows:

• One is to enable system users to process SQL statements.

• Another is to improve system performance.

• Still another i s t o ensure t he d atabase c an b e r ecovered if t here i s a

software/hardware failure.

B. Oracle Instance: An O racle Instance c onsists of t wo di fferent s ets of

components. T he f irst c omponent s et i s t he s et of bac kground pr ocesses l ikes

SMON, P MON, D BW0/DBWR, R ECO, LG WR, C KPT, D 000 and ot hers et c.

Basically e ach bac kground process i s a computer pr ogram. T hese processes

perform input/output and monitor other Oracle processes to provide good

performance and database reliability.

 93

The s econd c omponent s et includes t he m emory s tructures t hat c omprise t he

Oracle i nstance. W hen a n instance s tarts up, a m emory s tructure c alled t he

System Global Area (SGA) i s al located. At t his point t he b ackground processes

also s tart. T he O racle Instance provides ac cess t o an O racle dat abase. An
Oracle Instance opens one and only one database.

C. Oracle Database: An O racle dat abase c onsists of f ile s ometimes t hese ar e

referred t o as op erating s ystem f iles, b ut t hey ar e ac tually da tabase f iles t hat

store t he d atabase i nformation that a firm or organization ne eds i n or der t o

operate.

When a us er c onnects t o an O racle s erver, t his i s t ermed a s ession. T he s ession
starts w hen the O racle s erver validates t he user f or c onnection. T he s ession en ds

when t he us er logs ou t (disconnects) or i f t he c onnection t erminates a bnormally

(network failure or client computer failure). A user can typically have more than one

concurrent s ession. The l imit o f c oncurrent s ession c onnections i s c ontrolled by the

DBA. T his c onnection e nables us ers t o ex ecute S QL s tatements. A on e-to-one

correspondence bet ween t he U ser a nd S erver P rocesses i s c alled a D edicated

Server c onnection. An a lternative c onfiguration i s t o use a S hared S erver w here

more than one User Process shares a Server Process.

2.3 DATABASE STRUCTURES

Each r unning O racle d atabase i s as sociated w ith a n O racle Instance. W hen a

database is started on a database server, the Oracle allocated a shred memory area

called the System Global Area (SGA) and starts several Background processes. This

combination of SGA and Oracle Processes is called an Oracle Instance.

 94

Figure 6.2: Basic Structure of Database

After S tarting an i nstance, t he O racle associates t he i nstance w ith a s pecific

database. T his i s c alled m ounting t he database. The da tabase i s t hen r eady to be

opened, w hich m akes i t ac cessible t o au thorized us ers. Multiple instances c an
execute c oncurrently o n t he s ame c omputer, eac h ac cessing i ts ow n p hysical

database.

2.4 ORACLE MEMORY STRUCTURES

The basic m emory s tructures as sociated w ith an O racle Instance include the

following:

• System Global Area (SGA): Shared by a ll t he s erver and bac kground

processes.

• Program Global Area (PGA): Private t o each server and bac kground

processes. There is one PGA for each process.

 95

Figure 6.3: Memory Structure

2.4.1 SYSTEM GLOBAL AREA (SGA)

The S ystem G lobal Area (SGA) i s a m emory ar ea t hat c ontains dat a a nd c ontrol

information f or t he instance. T his information includes both or ganizational data and

control information used by the Oracle Server. The size of the SGA is established by

the parameter SGA_MAX_SIZE in the parameter file. The SGA is allocated when an
Oracle instance is started up based on values specified in the initialization parameter

file.

The SGA has the following mandatory memory structures:

 Shared Pool (Includes two Components)

• Library Catch

• Data Dictionary Cache

 Database Buffer Cache

 Redo Log Buffer
 Other structures (for example, lock and latch management, statistical data)

Additional optional memory structures in the SGA include:

 Large Pool

 Java Pool

 96

 Streams Pool

Earlier v ersions o f t he O racle S erver us ed a S tatic S GA. T his m eant t hat i f

modifications t o m emory m anagement w ere r equired, the database h ad t o be
shutdown, m odifications w ere m ade t o the init.ora parameter f ile, a nd t hen the

database had t o be r estarted. A fter or acle 9i i ts us e a D ynamic S GA. Memory

configurations f or t he s ystem gl obal ar ea c an be m ade w ithout s hutting down the

database instance.

Several initialization parameters ar e s et t hat affect t he am ount of r andom ac cess

memory dedicated to the SGA of an Oracle Instance as follows:

• SGA_MAX_SIZE: This sets a limit on the amount of virtual memory allocated to

the S GA – a t ypical s etting m ight be 1GB; how ever, if t he value f or

SGA_MAX_SIZE in the initialization parameter file or server parameter file is less

than t he s um t he m emory al located f or al l c omponents, ei ther explicitly i n t he

parameter f ile or b y def ault, at t he t ime t he i nstance i s i nitialized, t hen t he

database ignores the setting for SGA_MAX_SIZE.

• DB_CACHE_SIZE: This is t he s ize of the D atabase B uffer C ache in s tandard

database blocks. Block sizes vary among operating systems. We use 8KB block
sizes. T he total blocks in the c ache d efaults t o 4 8 MB o n L INUX/UNIX a nd 5 2

MB on Windows operating systems.

• LOG_BUFFER: This is the number of bytes allocated for the Redo Log Buffer.

• SHARED_POOL_SIZE: This i s t he num ber of b ytes of m emory al located t o

shared SQL and PL/SQL. The default is 16 MB. If the operating system is based

on a 64 bit configuration, then the default size is 64 MB.

• LARGE_POOL_SIZE: Since this i s an o ptional m emory o bject, the s ize o f t he

Large Pool defaults to zero. If the init.ora parameter
PARALLEL_AUTOMATIC_TUNING i s s et t o T RUE, t hen t he default s ize i s

automatically calculated.

 97

• JAVA_POOL_SIZE: This is another optional memory object. The default is 24

MB of memory.

The s ize of t he S GA c annot ex ceed t he p arameter S GA_MAX_SIZE m inus t he

combination of t he s ize of t he add itional par ameters, D B_CACHE_SIZE,
LOG_BUFFER, S HARED_POOL_SIZE, L ARGE_POOL_SIZE, and

JAVA_POOL_SIZE.

A. Shared Pool

The Shared Pool is a memory structure that is shared by all system users. It consists

of bot h f ixed and variable s tructures. T he v ariable c omponent gr ows an d s hrinks
depending on the demands placed on memory size by system users and application

programs. It Includes Library Cache and Data Dictionary Cache.

Memory i s al located t o t he S hared P ool by t he par ameter S HARED_POOL_SIZE in

the parameter f ile. You c an a lter t he s ize o f t he s hared po ol dynamically w ith the

ALTER S YSTEM S ET c ommand. You m ust k eep in m ind that t he t otal m emory

allocated to the SGA is set by the SGA_MAX_SIZE parameter and since the Shared

Pool is part of the SGA, you cannot exceed the maximum size of the SGA.

The S hared P ool s tores t he m ost r ecently e xecuted S QL s tatements and us ed d ata

definitions. This is because some system users and application programs will tend to

execute the same SQL statements often.

I. Library Cache

Memory is allocated to the Library Cache whenever an SQL statement is parsed or a
program u nit is c alled. T his e nables s torage of the m ost r ecently used S QL and

PL/SQL statements. If the Library Cache is too small, the Library Cache must purge

statement definitions in order to have space to load new SQL and PL/SQL

 98

statements. Actual m anagement of t his m emory s tructure is t hrough a Least-

Recently-Used (LRU) algorithm. T his m eans that the S QL and P L/SQL s tatements

that ar e ol dest and least r ecently used ar e purged w hen m ore s torage s pace i s

needed.

The Library Cache is composed of two memory subcomponents:
 Shared SQL: This s tores/shares t he execution plan an d par se t ree f or S QL

statements. If a s ystem user e xecutes a n i dentical s tatement, t hen the

statement does not have to be parsed again in order to execute the statement.
 Shared PL/SQL: Procedures an d P ackages: T his s tores/shares t he m ost

recently used PL/SQL statements such as functions, packages, and triggers.

II. Data Dictionary Cache

The D ata D ictionary C ache i s a m emory s tructure t hat c aches dat a di ctionary

information that has been recently used. This includes user account information, data

file names, table descriptions, user privileges, and other information.

The da tabase s erver m anages the size of t he D ata D ictionary C ache internally and

the size depends on the size of the Shared Pool in which the Data Dictionary Cache
resides. If t he s ize i s t oo s mall, then the da ta d ictionary tables t hat r eside on disk

must be queried often for information and this will slow down performance.

B. Database Buffer Cache

The Database Buffer Cache is a fairly large memory object that stores the actual data

blocks that are retrieved from data files by system queries and other data

manipulation language commands. A query causes a Server Process to first look in
the D atabase Buffer C ache t o de termine i f t he r equested i nformation ha ppens t o

already be l ocated i n m emory – thus t he information w ould not ne ed to be r etrieved

from di sk an d t his w ould s peed u p performance. If the i nformation is n ot i n the

 99

Database B uffer C ache, t he Server P rocess r etrieves t he information f rom disk and

stores it to the cache.

Keep in mind that information read from disk is read a block at a time, not a row at a
time, bec ause a d atabase bl ock i s t he s mallest ad dressable s torage s pace o n disk.

Database blocks are kept i n t he D atabase B uffer C ache ac cording t o a Least

Recently Used (LRU) algorithm and are aged out of memory if a buffer cache block is

not used in order to provide space for the insertion of newly needed database blocks.

The buffers in the cache are organized in two lists:

 Write List: The write list holds dirty buffers – these are buffers that hold that

data that has been modified, but the blocks have not been written back to disk.

 Least Recently Used (LRU) List: The LR U l ist ho lds free buf fers, pi nned

buffers, and dirty buffers that have not yet been moved to the write list. Free

buffers do not c ontain a ny us eful d ata a nd ar e available f or us e. P inned

buffers are currently being accessed.

When an Oracle process accesses a buffer, the process moves the buffer to the most
recently used (MRU) end of the LRU list – this causes dirty buffers to age toward the

LRU end of the LRU list.

When an O racle us er pr ocess needs a dat a r ow, i t s earches f or t he dat a i n t he

database buffer cache because memory can be searched more quickly than hard disk

can be ac cessed. I f t he data r ow is al ready in t he c ache (a c ache hi t), t he pr ocess

reads the data from memory; otherwise a cache miss occurs and data must be read

from hard disk into the database buffer cache.

Before r eading a dat a b lock into t he c ache, t he pr ocess m ust f irst f ind a f ree buf fer.

The pr ocess s earches the LR U list, s tarting at t he LR U end of t he list. T he s earch

 100

continues until a free buffer is found or until the search reaches the threshold limit of

buffers.

Each time the user process finds a dirty buffer as it searches the LRU, that buffer is
moved to the write list and the search for a free buffer continues. When the process

finds a f ree b uffer, i t r eads t he da ta block f rom d isk i nto t he bu ffer and m oves the

buffer to the MRU end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without finding a free

buffer, t he pr ocess s tops s earching t he LR U l ist an d s ignals t he D BW0 bac kground

process to write some of the dirty buffers to disk. This frees up some buffers.

The block size for a database is set when a database is created and is determined by

the i nit.ora p arameter f ile parameter nam ed D B_BLOCK_SIZE. Typical b lock s izes

are 2K , 4K , 8K , 1 6K, and 3 2K. T he s ize of bl ocks i n t he D atabase B uffer C ache

matches the block size for the database.

C. Redo Log Buffer

The Redo Log Buffer memory object stores images of all changes made to database
blocks. As you know, database blocks typically store several table rows of

organizational data. This means that if a single column value from one row in a block

is c hanged, t he i mage i s s tored. C hanges i nclude INSERT, UPDATE, D ELETE,

CREATE, ALTER, or DROP.

Think of the Redo Log Buffer as a circular buffer that is reused over and over. As the

buffer fills up, copies of the images are stored to the Redo Log Files that are covered

in more detail in a later module.

D. Large Pool

 101

The L arge P ool i s a n o ptional m emory s tructure t hat pr imarily r elieves t he m emory

burden placed on the Shared Pool. The Large Pool size is set with the

LARGE_POOL_SIZE par ameter – this i s not a dy namic par ameter. It does not us e

an LRU list to manage memory.

E. Java Pool

The Java P ool i s a n o ptional m emory object, b ut is r equired i f t he d atabase h as

Oracle J ava i nstalled and in us e for O racle JVM. T he s ize i s s et w ith the

JAVA_POOL_SIZE parameter t hat defaults t o 2 4MB. T he J ava P ool i s us ed f or

memory allocation to parse Java commands. Storing Java code and data in the Java

Pool is analogous to SQL and PL/SQL code cached in the Shared Pool.

F. Streams Pool

It i s s ized w ith t he p arameter S TREAMS_POOL_SIZE. This p ool s tores da ta and

control structures to support the Oracle Streams. Oracle Steams manages sharing of

data and events in a distributed environment.

2.4.2 PROGRAM GLOBAL AREA (PGA)

The P rogram Global Area (PGA) i s a lso t ermed the P rocess Global Area (PGA)

and is a part of memory allocated that is outside of the Oracle Instance. The PGA

stores dat a and c ontrol i nformation f or a s ingle S erver P rocess or a single

Background Process. It is allocated when a process is created and the memory is

scavenged by the operating system when the process terminates. This is NOT a

shared part of memory – one PGA to each process only.

The content of the PGA varies, but generally includes the following:

 102

 Private SQL Area: Data for binding variables and runtime memory allocations.

A us er s ession i ssuing S QL s tatements has a P rivate S QL Area that m ay be

associated w ith a S hared S QL Area if the s ame S QL s tatement i s be ing

executed b y m ore t han o ne s ystem us er. T his o ften ha ppens i n O LTP
environments where many users are executing and using the same application

program.

• Dedicated Server environment: the P rivate S QL Area is l ocated in t he

Program Global Area.

• Shared Server environment: the P rivate S QL Area i s located i n t he

System Global Area.
 Session Memory: Memory t hat ho lds s ession v ariables an d ot her s ession

information.
 Software Code Area: Software c ode ar eas s tore O racle executable f iles

running as par t of t he O racle instance. These c ode ar eas ar e s tatic in n ature

and are located i n pr ivileged m emory t hat i s s eparate from ot her user

programs. The code can be installed sharable when multiple Oracle instances

execute on the same server with the same software release level.

2.5 PROCESS STRUCTURE

When y ou invoke an application pr ogram or a n O racle t ool, s uch as E nterprise

Manager, t he O racle s erver c reates a s erver pr ocess t o ex ecute t he c ommands

issued b y t he application. T he O racle s erver a lso c reates a s et of bac kground

processes f or an i nstance hat i nteract w ith each other a nd w ith t he op erating

system to manage the memory structures asynchronously perform I/O to write data

to disk, and perform other required tasks. Which background processes a

represent depends on the features that are being used in the database.

 103

Figure 6.4: Process Structure

Process Structure includes mainly three processes as follows:
 User Process: When a database user requests a connection to the Oracle

Server it’s started.
 Server Process: When user established a session and connects with oracle

instance it will be started.
 Background Process: When O racle Instance i s s tated t hen bac kground

process will started.

A. User Process

In or der t o us e O racle, you m ust ob viously c onnect to t he database. T his m ust

occur whether you're using SQL*Plus, an Oracle tool such as Designer or Forms,

or an application program.

This gen erates a U ser P rocess t hat ge nerates pr ogrammatic c alls t hrough y our

user i nterface t hat c reates a s ession and c auses t he gen eration of a S erver

Process that is either dedicated or shared.
B. Server Process

The Server Process is the go-between for a User Process and the Oracle Instance.

In a Dedicated Server environment, there is a single Server Process to serve each

User P rocess. I n a S hared S erver e nvironment, a S erver P rocess c an s erve

several User Processes, although with some performance reduction.
C. Background Processes

 104

As i s s hown h ere, t here ar e both m andatory and op tional background pr ocesses

that ar e s tarted w henever a n O racle Instance s tarts u p. T hese bac kground

processes serve all system users. We will cover mandatory process in detail.

Figure 6.5: Oracle Background Process

a. Database Writer (DBWn / DBWR): The D atabase W riter w rites m odified

blocks from the database buffer cache to the datafiles. Although one database

writer process (DBW0) is sufficient for most systems, you can configure up to

20 DBWn processes (DBW0 through DBW9 and DBWa through DBWj) in order

to i mprove w rite per formance f or a s ystem t hat m odifies dat a h eavily. T he

initialization par ameter D B_WRITER_PROCESSES s pecifies t he n umber of

DBWn processes.

The purpose of DBWn is to improve system performance by caching writes of

database blocks from the Database Buffer Cache back to datafiles. Blocks that

have been modified and that need to be written back to disk are termed "dirty

blocks." T he D BWn al so ens ures t hat t here are en ough f ree buf fers i n t he

Database Buffer Cache to service Server Processes that may be reading data
from datafiles into the Database Buffer Cache. Performance improves

because by delaying w riting c hanged d atabase bl ocks bac k t o disk, a S erver

Process m ay f ind the data t hat i s n eeded to m eet a User P rocess r equest

already residing in memory.
b. Log Writer (LGWR): The Lo g W riter (LGWR) w rites c ontents f rom the R edo

Log B uffer t o t he R edo Log F ile that i s i n us e. T hese are s equential w rites

since t he R edo Log Files r ecord d atabase m odifications bas ed on the actual

 105

time that the modification takes place. LGWR actually writes before the DBWn

writes and on ly c onfirms that a C OMMIT op eration has s ucceeded w hen the

Redo Log Buffer contents are successfully written to disk. LGWR can also call

the DBWn to write contents of the Database Buffer Cache to disk.

c. System Monitor (SMON): The S ystem Monitor (SMON) is r esponsible f or

instance r ecovery by ap plying e ntries i n t he o nline r edo l og f iles t o t he

datafiles.

If an Oracle Instance fails, all information in memory not written to disk is lost.

SMON is responsible for recovering the instance when the database is started

up again. It does the following:

• Rolls forward to recover data that was recorded in a Redo Log File, but that

had not yet be en r ecorded to a dat afile by D BWn. S MON r eads the R edo
Log F iles a nd a pplies t he c hanges t o t he da ta b locks. T his r ecovers al l

transactions t hat w ere c ommitted because t hese w ere w ritten t o t he R edo

Log Files prior to system failure.

• Opens the database to allow system users to logon.

• Rolls back uncommitted transactions.

SMON al so do es l imited s pace m anagement. I t c ombines ad jacent ar eas of

free s pace i n t he d atabase's dat afiles f or t ablespaces t hat ar e d ictionary
managed. It also de-allocates temporary segments to create free space in t he

data files.
d. Process Monitor (PMON): The Process Monitor (PMON) is a cleanup type of

process t hat c leans u p af ter f ailed processes s uch as t he dr opping of a user

connection due to a network failure or the abend of a user application program.

e. Checkpoint (CKPT): The Checkpoint (CPT) process writes information to the

database c ontrol f iles t hat i dentifies t he po int i n t ime w ith r egard t o t he R edo

Log Files where instance recovery is to begin should it be necessary. This is

done at a minimum, once every three seconds.

 106

Think of a c heckpoint r ecord as a s tarting po int f or r ecovery. D BWn w ill have

completed writing all buffers from the Database Buffer Cache to disk prior to the

checkpoint, thus those record will not require recovery. This does the following:

• Ensures m odified d ata b locks i n m emory ar e r egularly w ritten t o di sk –

CKPT can call the DBWn process in order to ensure this and does so when
writing a checkpoint record.

• Reduces Instance Recovery time by minimizing the amount of work needed

for re covery s ince only R edo Lo g F ile ent ries pr ocessed s ince t he last

checkpoint require recovery.

• Causes al l c ommitted d ata t o be w ritten t o dat afiles dur ing d atabase

shutdown.

If a Redo Log File fills up and a switch is made to a new Redo Log File (this is
covered in m ore detail in a later m odule), t he C KPT pr ocess al so w rites

checkpoint information into the headers of the datafiles.

Checkpoint i nformation w ritten to c ontrol f iles i ncludes t he s ystem c hange

number (the SCN is a number stored in the control file and in the headers of the

database files that are used to ensure that all files in the system are

synchronized), location of which Redo Log File is to be used for recovery, and

other i nformation. C KPT d oes not w rite dat a blocks or r edo bl ocks t o disk – it
calls DBWn and LGWR as necessary.

Optional Background Process:
f. Archiver (ARCn): We cover the Archiver (ARCn) optional background process

in more detail because it is almost always used for production systems storing

mission critical information. The ARCn process must be used to recover from

loss of a physical disk drive for systems that are "busy" with lots of transactions

being completed.

When a Redo Log File fills up, Oracle switches to the next Redo Log File. The

DBA creates several of these and the details of creating them are covered in a

later module. If all Redo Log Files fill up, then Oracle switches back to the first

 107

one and us es t hem i n a r ound-robin f ashion by overwriting ones that have

already be en used – it s hould be o bvious t hat the information s tored on the

files, once overwritten, is lost forever. If ARCn is in what is termed

ARCHIVELOG m ode, t hen as t he R edo Lo g F iles f ill u p, t hey ar e i ndividually
written to Archived Redo Log Files and LGWR does not overwrite a Redo Log

File until archiving has completed. Thus, committed data is not lost forever and

can be recovered in the event of a disk failure. Only the contents of the SGA

will be lost if an Instance fails.

In N OARCHIVELOG m ode, t he R edo Log F iles ar e o verwritten a nd not

archived. R ecovery c an onl y be m ade to t he last f ull bac kup of t he da tabase

files.

When r unning in ARCHIVELOG m ode, t he D BA is r esponsible t o e nsure t hat
the Archived Redo Log Files do not consume all available disk space! Usually

after two c omplete b ackups ar e m ade, an y Archived R edo Lo g F iles f or pr ior

backups are deleted.
g. Coordinator Job Queue (CJQ0): Coordinator J ob Q ueue – This i s t he

coordinator of job queue processes for an instance. It monitors the JOB$ table

(table of j obs i n t he j ob q ueue) and s tarts j ob q ueue pr ocesses (Jnnn) as

needed to e xecute jobs The Jnnn pr ocesses execute job r equests c reated by

the DBMS_JOBS package.

h. Dispatcher Process (Dnnn): Dispatcher nu mber "nnn", f or e xample, D 000

would be t he f irst dispatcher pr ocess – Dispatchers ar e optional b ackground

processes, present only when the shared server configuration is used.

i. Recovery (RECO): The Recovery process is used to resolve distributed

transactions t hat ar e pe nding du e to a net work or s ystem failure i n a di stributed

database. At t imed i ntervals, t he l ocal R ECO at tempts t o c onnect t o r emote

databases and automatically complete the commit or rollback of the local portion

of any pending distributed transactions.

 108

2.6 STORAGE STRUCTURE

An O racle d atabase c onsists of f ile s ometimes these ar e r eferred t o as op erating
system files, but they are actually database files that store the database

information t hat a f irm or or ganization ne eds i n or der t o operate. D atabase

Storage Structures divided into two parts as follows:

• Physical Structure

• Logical Structure

2.6.1 PHYSICAL DATABASE STRUCTURE

An Oracle database consists of physical files shown as below figure.

Figure 6.6: Physhical Storage Structure

The files that constitute an Oracle Database are organized into the following:
A. Control Files: Contains data about the database itself. These files are critical

to dat abase. W ithout i t, c annot ope n dat a f iles t o ac cess dat a w ithin t he

database. It is used to synchronize all database activities.

B. Data Files: Contain the actual data for the database.

C. Redo Log Files: Contain a record of changes made to the database, and allow

recovery w hen a d atabase failure oc curs. I f t he database c rashes a nd d oes

not lose any d ata f iles, t hen the instance c an r ecover t he database w ith t he

information in these files.

 109

Other key files as noted above include:
 Parameter file: It used to define how the instance is configured when its start

up. There are two types of parameter files.

• The init.ora file (also called the PFILE): is a s tatic par ameter f ile. I t

contains parameters that specify how the database instance is to start up.

For example, some parameters will specify how to allocate memory to the

various parts of the system global area.

• The spfile.ora: is a dynamic parameter file. It also stores parameters to

specify h ow t o s tartup a da tabase; how ever, i ts p arameters c an be
modified while the database is running.

 Password file: Specifies which special users are authenticated to startup/shut

down a n O racle Instance. Also a llows us er t o c onnect r emotely t o t he
database.

 Archived redo log files: Contain a n ong oing hi story of t he dat a c hange

generated by instance. We can say that, it is copy of the redo log files and are

necessary for recovery in an online, transaction-processing environment in the

event of a disk failure.
 Backup files: Are used for database recovery. Typically restore a backup files

when a media failure or user error has damaged or deleted the original file.
 Trace Files: Each server and background process can write to an associated

trace file. When an internal error is detected by a process, the process dumps

information a bout t he er ror t o i ts t race f ile. S ome of t he i nformation w ritten t o

trace file is intended for the database administrator.
 Alert Log Files: There ar e s pecial t race files. They are also k nown as al ert

logs. The alert log of a database is a chronological log of messages and errors.

2.6.2 LOGICAL STRUCTURE
It is helpful to understand how an Oracle database is organized in terms of a logical

structure that is used to organize physical objects.

 110

Figure 6.7: Logical Storage Structure

 Tablespace: An O racle 10 g dat abase m ust al ways c onsist of at l east t wo

tablespaces (SYSTEM an d S YSAUX), al though a t ypical O racle dat abase w ill

multiple tablespaces tablespaces. A tablespace is a logical storage facility (a

logical c ontainer) f or s toring ob jects s uch as t ables, i ndexes, s equences,

clusters, and other database objects.

Each t ablespace has at l east one physical datafile t hat actually s tores t he

tablespace at the operating system level. A large tablespace may have more

than o ne da tafile a llocated f or s toring o bjects as signed t o t hat t ablespace. A

tablespace be longs to o nly on e da tabase. Tablespace c an be brought online
and t aken offline f or pur poses of bac kup and m anagement, ex cept f or t he

SYSTEM tablespace that must always be online. Tablespaces can be in either

read-only or read-write status.
 Datafile: Tablespaces ar e s tored i n da tafiles w hich ar e physical disk ob jects.

A datafile can only store objects for a single tablespace, but a tablespace may

have m ore t han on e dat afile – this hap pens w hen a d isk dr ive d evice f ills up

and a t ablespace ne eds t o be ex panded, t hen i t i s ex panded t o a new di sk

drive. T he D BA c an c hange t he s ize of a dat afile t o m ake i t s maller or l ater.
The file can also grow in size dynamically as the tablespace grows.

 Segment: When l ogical s torage ob jects ar e c reated w ithin a t ablespace, for

example, an employee table, a segment is allocated to the object. Obviously a

 111

tablespace typically has many segments. A segment cannot span tablespaces

but can span datafiles that belong to a single tablespace.

 Extent: Each object has one segment which is a physical collection of extents.

Extents ar e s imply c ollections of c ontiguous di sk s torage b locks. A l ogical

storage object such as a table or index always consists of at least one extent –

ideally t he initial ex tent al located t o a n obj ect w ill be large enou gh to s tore al l

data that i s initially l oaded. As a t able or index grows, ad ditional extents ar e

added to t he s egment. A D BA c an add e xtents t o s egments in or der t o t une
performance of the system. An extent cannot span a datafile.

 Data Block: The Oracle Server manages data at the smallest unit in what is

termed a block or data block. Data are actually stored in blocks.

Figure 6.8: Structure of Data Block

A ph ysical bl ock i s t he s mallest ad dressable l ocation on a disk dr ive f or

read/write operations. An O racle da ta b lock c onsists of on e or m ore physical

blocks (operating system blocks) so the data block, if larger than an operating

system block, s hould b e an e ven m ultiple of t he oper ating s ystem block s ize,
e.g., if the UNIX operating system block size is 2K or 4K, then the Oracle data

block should be 2K, 4K, 8K, 12K, 16K, etc in size. This optimizes I/O.

The da ta bl ock s ize i s s et at t he t ime the d atabase i s c reated a nd c annot be

changed. It is set with the DB_BLOCK_SIZE parameter. The maximum data

block size depends on the operating system.

 112

2.7 SCHEMA AND SCHEMA OBJECTS

A schema is a c ollection of da tabase objects. A s chema is ow ned by a dat abase us er

and has the same name as that user. A schema is a collection of schema objects.

Schema objects are logical data storage structures. Schema objects do not have a one-
to-one c orrespondence to physical f iles on disk t hat s tore t heir i nformation. H owever,

Oracle stores a schema object logically within a tablespace of the database. The data of

each obj ect i s phy sically c ontained i n o ne or m ore of t he t ablespace's dat afiles. F or

some obj ects s uch as t ables, i ndexes, an d c lusters, y ou c an s pecify h ow m uch di sk

space Oracle allocates for the object within the tablespace's datafiles.

Different types of objects contained in a user's schema. It includes:

• Tables: Tables are t he basic un it o f d ata s torage in an O racle database. D ata i s

stored in rows and columns.
• Views:A view is a tailored presentation of the data contained in one or more tables.

A view takes the output of a query and treats it as a table; therefore, also known as

virtual table.
• Synonyms:A s ynonym i s an alias f or a ny t able, view, s napshot, s equence,

procedure, function, or package. Because a synonym is simply an alias, it requires

no storage.
• Indexes:Indexes ar e opt ional s tructures as sociated w ith t ables and c lusters. It i s

used to speed SQL statement execution on a table.
• Clusters: A c luster i s a gr oup of t ables t hat s hare t he s ame dat a blocks bec ause

they share common columns and are often used together.
• Hash Clusters:A hash cluster stores related rows together in the same data blocks.

Rows in a hash cluster are stored together based on their hash value.

 Check Your Progress

1. List Components of Oracle Instance?

 113

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

2. Which Parameter is used to define size of SGA? Maximum size of SGA

Is?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
3. Which Background Process is Responsible for Instance Recovery?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
4. Explain Archived Redo Log File?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
5. Is there more than One Data files in a single Tablespace?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………

2.8 LET US SUM UP

In this chapter, we have discussed about oracle architecture and instance. We have

also ex plored m emory s tructure of O racle D atabase. W e ha ve c ome to k now v ital

processes, which is executes during database execution. We have also summarized
storage s tructures a nd s upported f iles an d ar chitectures. After c ompletion of t his

chapter we came to know about schemas and various schema objects.

 114

2.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Oracle Instance c onsists of T wo c omponents n amely Memory S tructure and
Background Processes.

2. SGA_MAX_SIZE parameter of Initialization Parameter file is used to define size

of S GA. The s ize of t he S GA c annot e xceed t he par ameter S GA_MAX_SIZE

minus t he c ombination of t he s ize of t he a dditional par ameters,

DB_CACHE_SIZE, LOG_BUFFER, SHARED_POOL_SIZE,

LARGE_POOL_SIZE, and JAVA_POOL_SIZE.

3. System Monitor (SMON) is responsible for instance recovery by applying entries

in the online redo log files to the datafiles.
4. Archived Redo Log File is the copy of redo log files and necessary for recovery

in the event of disk failure.

5. Yes, A Large tablespace may have more than one datafiles.

2.10 ASSIGNMENTS

1. Explain SGA in detail.
2. What is Database Buffer Cache? Explain in detail with parameters.

3. Describe all Background Processes.

4. Explain Logical Database Storage Structures.

5. Define Schema and Schema Objects in detail.

2.11 FURTHER READING

1. Expert O racle D atabase Architecture, T hird E dition, D arl K uhn & T homas K yte,

Apress

 Publishing.

2. Oracle Database 10g The Complete Reference, Kevin Loney, Oracle Press.

3. A dvanced R DBMS U sing O racle, H imanshu D abir & D ipali Mehar, Vision

Publication.

 115

Unit 3: Distributed Database
Architecture

Unit Structure

4.1. Learning Objectives & Outcomes

4.2. Introduction

4.3. Homogenous Distributed Database Systems

4.4. Heterogeneous Distributed Database Systems

4.5. Client/Server Database Architecture

4.6. Database Links

4.7. Distributed Database Security

4.8. Transaction Processing in a Distributed System

4.9. Distributed Database Application Development

4.10. Let Us Sum Up

4.11. Check your progress: Possible Answers

4.12. Assignments

4.13. Further Reading

3

 116

3.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is,
• To learn and understand Different Distributed Database Architectures

• To understand the Client/Server Database Architecture.

• To understand Database Links and Users.

• To learn security aspects into the Distributed Database Environment.

• To learn Distributed Database Application Development

Outcome:

At the end of this unit,
• S tudents w ill be c ompletely aw are w ith Homogenous a nd H eterogeneous

Distributed Architectures.

• Students will come to know about different types of Database Links and Restrictions

of Database Links.

• Students will be able to simplify the Remote Procedure Call (RPC) Mechanism.

• Students will be able to simplify Query Optimization in Distributed Environments.

3.2 INTRODUCTION

A distributed d atabase s ystem allows appl ications t o ac cess dat a f rom l ocal and

remote dat abases. In a homogenous distributed database s ystem, eac h database i s

an Oracle Database. In a heterogeneous distributed database system, at least one of

the databases is not an Oracle Database. Distributed databases use

client/server architecture t o pr ocess i nformation r equests. In t his c hapter w ill l earn

different concepts as follows:

 Homogenous Distributed Database Systems

 Heterogeneous Distributed Database Systems

 Client/Server Database Architecture

 Database Links

https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007551�
https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007606�
https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007639�

 117

 Database Security Aspects

 Distributed Query Optimization

3.3 Homogenous Distributed Database Systems

A homogenous distributed dat abase s ystem i s a n etwork of t wo or m ore O racle

Databases t hat r eside on o ne or m ore s ystems. An a pplication c an s imultaneously

access or modify the data in several databases in a single distributed environment.

You can also create synonyms for remote objects in the distributed system so that users

can access them with the same syntax as local objects. In this way, a distributed system

gives the appearance of native data access. Users on mfg do not have to know that the

data they access resides on remote databases.

Figure 7.1: Homogenous Distributed Database Systems

An Oracle Database distributed database system can incorporate Oracle Databases of
different v ersions. All s upported r eleases of O racle D atabase c an par ticipate in a

distributed d atabase s ystem. N evertheless, t he app lications t hat w ork w ith t he

distributed database must understand the functionality that is available at each node in

the s ystem. A d istributed d atabase a pplication c annot e xpect an O racle7 da tabase to

understand the SQL extensions that are only available with Oracle Database.

I. Distributed Databases Vs Distributed Processing

 118

The terms distributed dat abase and distributed processing are closely related, yet have

distinct meanings. There definitions are as follows:

• Distributed database: A s et o f d atabases i n a di stributed s ystem t hat c an

appear to applications as a single data source.

• Distributed processing: the operation that occurs when an application

distributes i ts t asks am ong di fferent c omputers i n a n etwork. F or ex ample, a

database app lication t ypically di stributes front-end pr esentation t asks t o c lient

computers and allows a back-end database server to manage shared access to
a database. Consequently, a distributed database application processing system

is more commonly referred to as a client/server database application system.

Distributed dat abase s ystems em ploy a d istributed pr ocessing ar chitecture. F or

example, an O racle D atabase s erver ac ts as a c lient w hen i t r equests dat a t hat

another Oracle Database server manages.

3.4 Heterogeneous Distributed Database System

In a heterogeneous distributed database system, at least one of the databases is a non-

Oracle D atabase s ystem. T o t he appl ication, t he h eterogeneous di stributed dat abase
system appears as a single, local, Oracle Database. The local Oracle Database server

hides the distribution and heterogeneity of the data.

The O racle D atabase s erver ac cesses the non-Oracle D atabase s ystem us ing O racle

Heterogeneous S ervices w ith an agent. If y ou access t he non -Oracle D atabase da ta
store us ing an O racle T ransparent Gateway, t hen t he a gent i s a s ystem-specific

application. For example, i f y ou include a S ybase dat abase i n a n O racle D atabase

distributed system, then you must obtain a Sybase-specific transparent gateway so that

the Oracle Database in the system can communicate with it.

 119

Alternatively, y ou c an use generic c onnectivity to ac cess non -Oracle D atabase da ta

stores s o l ong as t he n on-Oracle D atabase s ystem s upports t he O DBC or O LE D B

protocols.

A. Heterogeneous Services

Heterogeneous S ervices (HS) i s an i ntegrated c omponent w ithin t he O racle D atabase

server and the enabling technology for the current suite of Oracle Transparent Gateway

products. H S pr ovides t he c ommon ar chitecture a nd adm inistration m echanisms f or

Oracle D atabase gateway pr oducts and other heterogeneous ac cess f acilities. A lso, i t

provides upw ardly c ompatible f unctionality f or us ers of m ost of t he earlier O racle

Transparent Gateway releases.

B. Transparent Gateway Agents

For eac h n on-Oracle D atabase s ystem that y ou ac cess, Heterogeneous S ervices c an
use a t ransparent g ateway a gent t o interface w ith t he s pecified non-Oracle D atabase

system. T he agent is s pecific t o t he non-Oracle D atabase s ystem, s o eac h t ype of

system requires a different agent.

The t ransparent g ateway ag ent f acilitates c ommunication bet ween O racle D atabase
and non-Oracle Database systems and uses the Heterogeneous Services component in

the Oracle Database server. The agent executes SQL and transactional requests at the

non-Oracle Database system on behalf of the Oracle Database server.

C. Generic Connectivity

Generic c onnectivity en ables y ou t o c onnect t o non-Oracle D atabase dat a s tores by

using either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE

DB agent. Both are included with your Oracle product as a standard feature. Any data

source c ompatible w ith t he O DBC or O LE DB standards c an be ac cessed us ing a
generic connectivity agent.

 120

The a dvantage to generic c onnectivity is t hat i t m ay n ot be r equired for you t o

purchase and configure a separate system-specific agent. You use an ODBC or OLE

DB driver that can interface with the agent. However, some data access features are

only available with transparent gateway agents.

3.5 CLIENT/SERVER DATABASE ARCHITECTURE

A database s erver is t he O racle s oftware m anaging a database, an d a c lient i s an
application t hat r equests information f rom a s erver. E ach c omputer in a network is a

node that can host one or more databases. Each node in a distributed database system

can act as a client, a server, or both, depending on the situation.

In Figure 7 -2, t he hos t f or the hq database i s ac ting as a dat abase s erver w hen a

statement i s issued against i ts local da ta (for ex ample, the s econd s tatement in each

transaction issues a s tatement against t he l ocal dept table), bu t i s ac ting as a c lient

when it issues a statement against remote data (for example, the first statement in each

transaction is issued against the remote table emp in the sales database).

Figure 7.2: An Oracle Database Distributed Database System

https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007648�

 121

A c lient c an c onnect directly or indirectly to a d atabase s erver. A d irect c onnection

occurs w hen a c lient c onnects t o a server an d ac cesses information f rom a dat abase

contained on that server.

3.6 DATABASE LINKS

The central concept in distributed database systems is a database link. A database link
is a c onnection b etween two p hysical database s ervers t hat allows a c lient to ac cess

them as one logical database.

A database link is a pointer that defines a one-way communication path from an Oracle

Database server to another database server. The link pointer is actually defined as an

entry in a data dictionary table. To access the link, you must be connected to the local

database that contains the data dictionary entry.

A d atabase l ink c onnection i s one -way i n t he s ense t hat a c lient c onnected t o l ocal

database A c an us e a link s tored in database A t o ac cess i nformation in r emote

database B , bu t us ers c onnected to dat abase B c annot us e t he s ame link to access

data i n database A. If l ocal users on dat abase B w ant t o ac cess data on dat abase A,

then they must define a link that is stored in the data dictionary of database B.

A database link connection allows local users to access data on a remote database. For

this c onnection t o oc cur, e ach dat abase i n t he distributed s ystem m ust hav e a

unique global d atabase nam e in t he ne twork d omain. T he g lobal d atabase nam e

uniquely identifies a database server in a distributed system.

Database l inks ar e ei ther pr ivate or p ublic. I f t hey ar e private, t hen only t he us er w ho

created the l ink has access; i f t hey ar e public, t hen al l d atabase us ers have ac cess.

One principal di fference am ong dat abase links is the way that connections to a remote

database occur. Users access a remote database through the following types of links:

Type of Link Description

 122

Type of Link Description

Connected user link Users c onnect as t hemselves, w hich m eans t hat t hey m ust

have an account on the remote database with the same user

name and password as their account on the local database.

Fixed user link Users c onnect us ing the user nam e an d pas sword

referenced in the link.

Current user link A us er c onnects as a gl obal us er. A local us er c an c onnect

as a global user in the context of a stored procedure, without

storing the global user's password in a link definition.

Create dat abase l inks us ing t he CREATE D ATABASE L INK statement. After a l ink i s
created, you can use it to specify schema objects in SQL statements.

3.6.1 SHARED DATABASE LINKS

A s hared d atabase l ink i s a l ink b etween a l ocal s erver pr ocess and t he r emote

database. The l ink i s s hared bec ause m ultiple c lient pr ocesses c an us e the same l ink

simultaneously.

When a l ocal da tabase i s c onnected t o a r emote dat abase t hrough a d atabase l ink,

either dat abase c an r un i n d edicated or s hared s erver m ode. T he f ollowing t able

illustrates the possibilities:

Local Database Mode Remote Database Mode

Dedicated Dedicated

Dedicated Shared server

Shared server Dedicated

Shared server Shared server

 123

A shared database link can exist in any of these four configurations. Shared links differ
from standard database links in the following ways:

• Different us ers ac cessing t he s ame s chema object t hrough a dat abase l ink c an

share a network connection.

• When a us er m ust es tablish a c onnection t o a r emote s erver from a particular

server pr ocess, t he pr ocess c an r euse c onnections al ready es tablished t o t he

remote s erver. The r euse of t he c onnection c an oc cur i f t he c onnection w as

established on the same server process with the same database link, possibly in
a di fferent s ession. I n a non -shared da tabase l ink, a c onnection i s not s hared

across multiple sessions.

• When you use a shared database link in a shared server configuration, a network

connection i s es tablished directly o ut o f t he s hared s erver process in t he l ocal

server. For a non-shared database link on a local shared server, this connection

would h ave be en es tablished t hrough t he l ocal d ispatcher, r equiring c ontext

switches for the local dispatcher, and requiring data to go through the dispatcher.

The great advantage of database links is that they allow users to access another user's

objects in a remote database so that they are bounded by the privilege set of the object

owner. In other w ords, a l ocal us er c an ac cess a l ink t o a r emote d atabase w ithout

having to be a user on the remote database.

3.6.2. TYPES OF DATABASE LINKS

Oracle Database lets you create private, public, and global database links. These basic

link types differ according to which users are allowed access to the remote database:

Type Owner Description

Private User w ho c reated t he l ink. View

ownership data through:

• DBA_DB_LINKS

Creates l ink i n a s pecific s chema of t he

local database. Only the owner of a private

database l ink or P L/SQL s ubprograms i n

 124

Type Owner Description

• ALL_DB_LINKS

• USER_DB_LINKS

the s chema c an us e t his l ink t o ac cess

database objects i n t he c orresponding

remote database.

Public User c alled P UBLIC. V iew

ownership d ata t hrough v iews

shown for private database links.

Creates a database-wide link. All users and

PL/SQL s ubprograms i n t he database c an

use the link t o ac cess database objects in

the corresponding remote database.

Global User c alled P UBLIC. V iew

ownership d ata t hrough v iews

shown for private database links.

Creates a net work-wide l ink. W hen a n

Oracle network uses a directory server, the

directory s erver au tomatically c reate an d

manages global database links (as net

service nam es) f or every O racle D atabase

in the network. Users and PL/SQL
subprograms i n an y da tabase c an us e a

global l ink t o ac cess obj ects i n t he

corresponding remote database.

Note: In earlier releases of Oracle

Database, a gl obal d atabase link r eferred

to a database l ink t hat w as r egistered w ith

an O racle Names s erver. T he us e of a n

Oracle N ames s erver h as bee n
deprecated. In this document, global

database links refer to the use of net

service names from the directory server.

Determining the type of database links to employ in a distributed database depends on
the specific requirements of the applications using the system. Consider these features

when making your choice:

 125

Type of Link Features

Private database link This l ink i s m ore s ecure t han a pu blic or global l ink, bec ause

only t he owner o f t he private link, or s ubprograms w ithin t he

same schema, can use the link to access the remote database.

Public database link When m any us ers r equire an access path t o a r emote O racle

Database, you c an c reate a single public da tabase l ink for a ll

users in a database.

Global database link When an Oracle network uses a directory server, an

administrator c an c onveniently m anage gl obal d atabase l inks

for al l databases in t he s ystem. D atabase l ink m anagement is

centralized and simple.

3.6.3. USERS OF DATABASE LINKS

When c reating t he l ink, y ou d etermine w hich user s hould c onnect t o t he r emote

database t o ac cess t he data. T he following table explains t he d ifferences am ong t he
categories of users involved in database links:

User Type Description

Connected user A local user accessing a database link in which no fixed

username an d p assword hav e be en s pecified.

If SYSTEM accesses a public link in a query, then the connected
user i s SYSTEM, and t he da tabase c onnects t o

the SYSTEM schema in the remote database.

Note: A c onnected us er do es no t h ave t o b e t he user w ho

created the link, but is any user who is accessing the link.

Current user A global user i n a CURRENT_USER database link. T he gl obal

user m ust be authenticated by an X.509 c ertificate (an S SL-

authenticated enterprise user) or a password (a password-

 126

User Type Description

authenticated enterprise user), and be a user on both databases

involved in the link. Current user links are an aspect of the Oracle

Advanced Security option.

See Oracle D atabase Advanced S ecurity Administrator's

Guide for information about global security

Fixed user A user whose username/password is part of the link definition. If

a l ink includes a f ixed us er, t he f ixed us er's us ername and

password are used to connect to the remote database.

3.6.4. DATABASE LINK RESTRICTIONS

You cannot perform the following operations using database links:

 Grant privileges on remote objects

 Execute DESCRIBE operations on s ome r emote ob jects. T he f ollowing r emote

objects, however, do support DESCRIBE operations:
• Tables

• Views

• Procedures

• Functions

 Analyze remote objects

 Define or enforce referential integrity

 Grant roles to users in a remote database

 Obtain non-default roles on a remote database.
 Execute hash query joins that use shared server connections

3.7 DISTRIBUTED DATABASE SECURITY

The da tabase s upports al l of t he s ecurity f eatures t hat ar e available w ith a n on-
distributed database environment for distributed database systems, including:

 127

• Password authentication for users and roles

• Some t ypes of e xternal authentication f or us ers and r oles i ncluding K erberos

version 5 for connected user links.

• Login packet encryption for client-to-server and server-to-server connections

Some important concepts to consider when configuring an Oracle Database distributed

database system:

• Authentication Through Database Links

• Authentication Without Passwords

• Supporting User Accounts and Roles

• Centralized User and Privilege Management

• Database Encryption

A. Authentication Through Database Links

Database links ar e e ither private or pu blic, authenticated or non-authenticated. Y ou
create p ublic l inks b y s pecifying the PUBLIC keyword i n t he link c reation s tatement.

You c reate a uthenticated l inks b y s pecifying t he CONNECT

TO clause, AUTHENTICATED BY

B. Authentication Without Passwords

 clause, or both clauses together in the database link

creation statement. For example, you can issue:

When us ing a c onnected user or current user dat abase l ink, y ou c an us e a n ex ternal

authentication s ource s uch as K erberos t o o btain end-to-end s ecurity

C. Supporting User Accounts and Roles

. I n end -to-end
authentication, c redentials ar e p assed f rom s erver t o s erver a nd c an be a uthenticated

by a database server belonging to the same domain.

In a di stributed d atabase s ystem, you m ust c arefully p lan t he us er ac counts and r oles
that are necessary to support applications using the system. Note that:

https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008338�
https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008383�
https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008387�
https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008405�

 128

• The us er ac counts nec essary t o es tablish server-to-server c onnections m ust be

available in all databases of the distributed database system.

• The r oles nec essary t o m ake a vailable a pplication pr ivileges t o di stributed

database app lication us ers m ust be pr esent i n al l dat abases of t he di stributed
database system.

As y ou c reate t he database links f or t he nodes i n a d istributed database s ystem,

determine w hich us er ac counts a nd r oles eac h s ite m ust s upport s erver-to-server

connections that use the links.

In a di stributed en vironment, us ers t ypically r equire access t o many network s ervices.

When y ou m ust c onfigure s eparate a uthentications f or eac h us er t o ac cess eac h

network s ervice, s ecurity administration c an bec ome unw ieldy, es pecially f or l arge

systems.

D. Centralized User and Privilege Management

The database pr ovides di fferent w ays f or you t o m anage t he us ers and pr ivileges
involved in a distributed system. For example, you have these options:

• Enterprise user management: You c an c reate gl obal us ers w ho are

authenticated through SSL or by using passwords, then manage these users and

their privileges in a directory through an independent enterprise directory service.
• Network authentication service: This c ommon t echnique s implifies s ecurity

management f or distributed e nvironments. You c an use t he O racle Advanced

Security option t o en hance O racle Net an d the s ecurity of a n O racle D atabase

distributed database system. Windows NT native authentication is an example of

a non-Oracle authentication solution.

E. Database Encryption

The Oracle Advanced Security option also enables Oracle Net and related products to
use network data encryption and check-summing so that data cannot be read or altered.

 129

It protects data from unauthorized viewing by using the RSA Data Security RC4 or the

Data Encryption Standard (DES) encryption algorithm.

To ens ure t hat d ata has not be en m odified, d eleted, or r eplayed dur ing t ransmission,

the security services of the Oracle Advanced Security option can generate a

cryptographically s ecure m essage di gest a nd include i t w ith eac h packet s ent ac ross

the network.

3.8 TRANSACTION PROCESSING IN A DISTRIBUTED
SYSTEM

A t ransaction i s a l ogical uni t of w ork c onstituted b y one or m ore S QL s tatements

executed by a s ingle us er. A t ransaction beg ins w ith t he us er's f irst executable S QL

statement and ends when it is committed or rolled back by that user.

A remote t ransaction contains onl y s tatements t hat ac cess a s ingle r emote nod e.

A distributed transaction contains statements that access multiple nodes.

The following sections define important concepts in transaction processing and explain

how transactions access data in a distributed database:

• Remote SQL Statements
• Distributed SQL Statements

• Shared SQL for Remote and Distributed Statements

• Remote Transactions

• Distributed Transactions

• Two-Phase Commit Mechanism

• Database Link Name Resolution

• Schema Object Name Resolution

https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008641�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008661�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008684�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008698�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008710�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008726�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008747�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008848�

 130

A. Remote SQL Statements

A remote quer y statement is a query that selects information from one or more remote
tables, al l of w hich r eside at t he s ame r emote n ode. A remote u pdate

B. Distributed SQL Statements

 statement i s an

update t hat m odifies dat a in one or m ore tables, al l of w hich are l ocated a t t he s ame

remote node.

A distributed q uery statement r etrieves i nformation f rom t wo or m ore nodes .

A distributed upd ate

C. Shared SQL for Remote and Distributed Statements

 statement m odifies da ta o n t wo or m ore n odes. A di stributed
update is possible using a PL/SQL subprogram unit such as a procedure or trigger that

includes two or more remote updates that access data on different nodes.

The m echanics of a r emote or distributed s tatement us ing shared S QL ar e es sentially
the same as those of a local statement. The SQL text must match, and the referenced

objects m ust m atch. I f av ailable, s hared S QL ar eas c an be us ed f or t he l ocal a nd

remote handling of any statement or decomposed query.

D. Remote Transactions

A remote transaction contains one or more remote statements, all of which reference a
single remote node.

E. Distributed Transactions

A d istributed t ransaction i s a t ransaction that i ncludes on e or m ore s tatements t hat,
individually or as a group, update d ata o n two or m ore d istinct no des of a distributed

database.

 131

F. Two-Phase Commit Mechanism

A database m ust gu arantee t hat all s tatements i n a transaction, distributed or n on-
distributed, either c ommit or r oll b ack as a uni t. The effects of an ongoing transaction

should be invisible to all other transactions at all nodes; this transparency should be true

for transactions that include any type of operation, including queries, updates, or remote

procedure calls.

The g eneral m echanisms of t ransaction c ontrol i n a no n-distributed dat abase ar e

discussed i n t he Oracle D atabase C oncepts C oncepts

The d atabase

. I n a di stributed da tabase, t he

database m ust c oordinate t ransaction c ontrol w ith t he s ame c haracteristics ov er a

network and maintain data consistency, even if a network or system failure occurs.

two-phase c ommit mechanism guar antees t hat all

G. Database Link Name Resolution

 database s ervers

participating in a distributed transaction either all commit or all roll back the statements

in the transaction. A two-phase commit mechanism also protects implicit DML

operations performed by integrity constraints, remote procedure calls, and triggers.

A global object nam e

• Object name

 is a n ob ject s pecified us ing a database link. T he es sential
components of a global object name are:

• Database name

• Domain

Whenever a SQL statement includes a reference to a global object name, the database

searches for a database link with a name that matches the database name specified in

the global object name.

The d atabase per forms t his op eration t o d etermine t he pat h t o t he s pecified r emote

database.

 132

The database always searches for matching database links in the following order:

1. Private database links in the schema of the user who issued the SQL statement.

2. Public database links in the local database.

3. Global database links (only if a directory server is available).

H. Schema Object Name Resolution

After the local Oracle Database connects to the specified remote database on behalf of

the l ocal user t hat i ssued t he S QL s tatement, ob ject r esolution c ontinues as i f t he

remote user had issued the associated SQL statement. The first match determines the
remote schema according to the following rules:

Type of Link Specified Location of Object Resolution

A fixed user database link Schema specified in the link creation statement

A connected user database link Connected user's remote schema

A current user database link Current user's schema

If t he da tabase c annot f ind t he ob ject, t hen i t c hecks pub lic obj ects of t he r emote

database. If it cannot resolve the object, then the established remote session remains

but the SQL statement cannot execute and returns an error.

3.9 DISTRIBUTED DATABASE APPLICATION
DEVELOPMENT

Application development in a distributed system raises issues that are not applicable in

a n on-distributed s ystem. T his s ection c ontains t he f ollowing t opics r elevant for

distributed application development:

• Transparency in a Distributed Database System

• Remote Procedure Calls (RPCs)

https://docs.oracle.com/html/E25494_01/ds_concepts005.htm#i1009082�
https://docs.oracle.com/html/E25494_01/ds_concepts005.htm#i1009129�

 133

• Distributed Query Optimization

3.9.1 TRANSPARENCY IN A DISTRIBUTED DATABASE SYSTEM

With m inimal ef fort, y ou c an d evelop app lications t hat m ake a n O racle D atabase

distributed database system transparent to users that work with the system. The goal of

transparency i s t o m ake a di stributed dat abase s ystem appear as t hough i t i s a s ingle

Oracle D atabase. C onsequently, t he s ystem does not bur den d evelopers and us ers of

the s ystem w ith c omplexities t hat w ould o therwise m ake di stributed database
application development challenging and detract from user productivity.

The f ollowing s ections ex plain m ore about t ransparency i n a distributed database

system.

A. Location Transparency: An O racle D atabase distributed dat abase s ystem has

features that allow application developers and administrators to hide the physical

location of dat abase o bjects f rom appl ications an d us ers. Location

transparency exists when a user can universally refer to a database object such

as a t able, r egardless of t he nod e t o w hich a n ap plication c onnects. Loc ation
transparency has several benefits, including:

• Access t o r emote dat a i s s imple, b ecause da tabase us ers do no t ne ed t o

know the physical location of database objects.

• Administrators c an m ove d atabase obj ects w ith no i mpact on en d-users or
existing database applications.

Typically, adm inistrators and d evelopers us e s ynonyms t o es tablish l ocation

transparency for the tables and supporting objects in an application schema.

B. SQL and COMMIT Transparency: The O racle D atabase di stributed dat abase

architecture al so provides quer y, update, an d t ransaction transparency. F or

example, standard SQL statements such as SELECT, INSERT, UPDATE,

and DELETE work j ust as t hey do i n a n on-distributed dat abase env ironment.

https://docs.oracle.com/html/E25494_01/ds_concepts005.htm#i1009144�

 134

Additionally, app lications c ontrol t ransactions us ing t he s tandard S QL

statements COMMIT, SAVEPOINT, and ROLLBACK.

C. Replication Transparency: The database also provide many features to

transparently r eplicate d ata am ong t he nod es of t he s ystem. F or m ore

information about O racle D atabase r eplication f eatures, s ee Oracle D atabase

Advanced Replication.

3.9.2. REMOTE PROCEDURE CALLS (RPCS)

Developers c an c ode P L/SQL pac kages an d pr ocedures t o s upport a pplications t hat

work w ith a d istributed database. Applications c an m ake l ocal pr ocedure c alls t o

perform work at the local database and remote procedure calls (RPCs) to perform work

at a remote database.

When a program c alls a r emote pr ocedure, t he l ocal s erver p asses al l procedure

parameters to the remote server in the call.

In order for the RPC to succeed, the called procedure must exist at the remote site, and
the user being connected to must have the proper privileges to execute the procedure.

When developing packages and procedures for distributed database systems,

developers m ust c ode w ith an un derstanding of w hat pr ogram u nits should do at

remote locations, and how to return the results to a calling application.

3.9.3 DISTRIBUTED QUERY OPTIMIZATION

Distributed query optimization is an Oracle Database feature that reduces the amount of

data t ransfer r equired between s ites w hen a t ransaction r etrieves data f rom r emote

tables referenced in a distributed SQL statement.

Distributed query o ptimization us es cost-based optimization t o f ind or generate S QL

expressions that extract only the necessary data from remote tables, process that data

 135

at a remote site or sometimes at the local site, and send the results to the local site for

final pr ocessing. T his o peration r educes t he amount of r equired d ata t ransfer w hen

compared t o t he t ime it t akes t o t ransfer al l t he t able da ta t o t he l ocal site f or

processing.

Using various cost-based optimizer hints such as DRIVING_SITE, NO_MERGE, and

INDEX, you c an c ontrol w here O racle D atabase processes t he data an d h ow i t

accesses the data.

 Check Your Progress

6. Define Distributed Database and Distributed Processing?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

7. What is Generic Connectivity in Heterogeneous Distributed Database?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
8. What is Database Links? Explain different types of Database Links.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
9. Explain Distributed Query Optimization.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

 136

3.10LET US SUM UP

In this chapter, we have discussed about oracle architecture and instance. We have

also explored m emory s tructure of O racle D atabase. W e ha ve c ome t o k now v ital

processes, which is executes during database execution. We have also summarized

storage s tructures a nd s upported f iles an d ar chitectures. After c ompletion of t his

chapter we came to know about schemas and various schema objects.

3.11CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Distributed d atabase i s a s et of databases i n a d istributed s ystem t hat c an

appear to a pplications as a s ingle d ata s ource. W hile distributed pr ocessing i s

the operation that occurs when an application distributes its tasks among different

computers in a network.

2. Generic connectivity enables you to connect to non-Oracle Database data stores

by us ing e ither a Heterogeneous S ervices O DBC agent or a Heterogeneous

Services OLE DB agent. The advantage to generic connectivity is that it may not

be required for you to purchase and configure a separate system-specific agent.
You use an ODBC or OLE DB driver that can interface with the agent.

3. A d atabase l ink i s a c onnection be tween t wo ph ysical da tabase s ervers t hat

allows a c lient t o ac cess t hem as one logical database. These bas ic l ink t ypes

differ according to which users are allowed access to the remote database:

Type Description

Private Creates l ink i n a s pecific schema of t he l ocal dat abase. O nly t he

owner of a private da tabase l ink or P L/SQL s ubprograms i n t he

schema c an us e t his l ink t o ac cess dat abase o bjects i n t he

corresponding remote database.

Public Creates a d atabase-wide l ink. All us ers an d P L/SQL s ubprograms

in the database can use the link to access database objects in the

 137

Type Description

corresponding remote database.

Global Creates a network-wide l ink. W hen an O racle ne twork uses a

directory server, the directory server automatically create and

manages g lobal database l inks (as net s ervice n ames) f or e very

Oracle Database in the network. Users and PL/SQL subprograms in

any d atabase c an us e a gl obal link t o ac cess obj ects i n t he

corresponding remote database.

4. Distributed quer y opt imization is an O racle D atabase f eature t hat r educes t he

amount of data transfer required between sites when a transaction retrieves data

from remote tables referenced in a distributed SQL statement.

3.12ASSIGNMENTS

1. Explain Homogenous and Heterogeneous Distributed Database.
2. Explain Transaction Processing in Distributed Database.

3. Describe Security Aspects in Distributed Database.

4. What is Database Links? Describe different users of Database Links in details.

3.13 Further Reading

1. Expert O racle D atabase Architecture, T hird E dition, D arl K uhn & T homas K yte,

Apress Publishing.

2. Oracle Database 10g The Complete Reference, Kevin Loney, Oracle Press.

 138

Unit 4: Database Backup

Unit Structure

4.1. Learning Objectives & Outcomes

4.2. Introduction

4.3. Logical Database Backup

4.4. Physical Database Backup

4.5. Let Us Sum Up

4.6. Check your progress: Possible Answers

4.7. Assignments

4.8. Further Reading

4

 139

4.1 LEARNING OBJECTIVES & OUTCOMES

 The objective of this chapter is to make the students,

• To understand Types of Oracle Backups

• To understand the Logical Backup Plan (Export/Import)

• To understand the Physical Backup & Recovery

Outcome:

At the end of this unit,

• S tudents w ill b e completely aw are w ith Logical an d P hysical Backup S trategies of

Oracle database.

• Students will able to Perform Export/Import with its different parameter.

• Students will be aware with different mode of Online and Offline Backup.

• S tudents w ill be a ware w ith how t o m ake database r eady f or physical database

backup.

4.2 INTRODUCTION

A bac kup i s a r epresentative c opy of d ata. T his c opy c an include important par ts of a
database such as the control file, redo logs, and datafiles. A backup protects data from

application error and acts as a safeguard against unexpected data loss, by providing a

way to restore original data.

Backups ar e di vided i nto p hysical bac kups and l ogical bac kups. P hysical bac kups ar e

copies of ph ysical d atabase f iles. The phrase " backup an d r ecovery" us ually r efers t o

the t ransfer of c opied f iles from o ne location t o an other, a long w ith t he v arious

operations performed on these files.

In c ontrast, l ogical bac kups c ontain dat a t hat i s ex ported us ing S QL c ommands and

stored in a binary file. Oracle records both committed and uncommitted changes in redo

log buffers. Logical backups are used to supplement physical backups.

 140

Restoring a physical backup m eans r econstructing it and m aking i t available t o t he

Oracle server. To recover a restored backup, data is updated using redo records from

the transaction log. The transaction log records changes made to the database after the

backup was taken.

1. Multiplex the online redo logs

Elements of a Backup And Recovery Strategy

Although backup and recovery operations can be intricate and vary from one business

to another, the basic principles follow these four simple steps:

2. Run t he database i n A RCHIVELOG m ode and archive r edo logs t o m ultiple

locations
3. Maintain multiple concurrent backups of the control file

4. Take f requent b ackups of ph ysical da tafiles and s tore t hem i n a s afe p lace,

making multiple copies if possible

As long as users have backups of the database and archive redo logs in safe storage,

the original database can be recreated.

4.3 LOGICAL DATABASE BACKUP

Oracle ut ility Import/Export ar e used t o p erform Log ical D atabase O peration, w hich

allow us t o make e xports & imports o f t he da ta objects, and t ransfer the data ac ross

databases t hat r eside on d ifferent har dware pl atforms on di fferent O racle
versions.Export (exp) an d i mport (imp) ut ilities ar e us ed t o p erform l ogical database

backup a nd r ecovery. W hen ex porting, database obj ects ar e dum ped t o a bi nary f ile

which can then be imported into another Oracle database.

From Oracle 10g, users can choose between using the old imp/exp utilities, or the newly

introduced Data pum p utilities, c alled e xpdp an d i mpdp. T hese new ut ilities i ntroduce

much needed performance improvements, network based exports and imports, etc.

http://www.orafaq.com/wiki/Oracle_10g�

 141

Various par ameters ar e available t o c ontrol w hat o bjects ar e ex ported or imported. To

get a list of available parameters, r un t he exp or imp utilities w ith

the help=yes parameter.

The export/import utilities are commonly used to perform the following tasks:

• Backup and recovery (small databases only)

• Move data between Oracle databases on different platforms.

• Reorganization o f d ata/ eliminate dat abase f ragmentation (export, dr op an d r e-

import tables)

• Upgrade databases from extremely old versions of Oracle

• Detect database corruption. Ensure that all the data can be read

• Transporting tablespaces between databases

A. Different Modes of Export/Import Utility

1. Full Export: The EXP_FULL_DATABASE and IMP_FULL_DATABASE,

respectively, are ne eded to p erform a f ull e xport. Use the full export par ameter

for a full export.
2. Tablespace: Use the tablespaces export parameter for a tablespace export.

3. User: This m ode c an b e us ed to export an d import all objects that belong t o a

user. Use the owner export parameter and the fromuser import parameter for a

user (owner) export-import.
4. Table: Specific tables (and partitions) can be exported/imported with table export

mode. Use the tables export parameter for a table export.

4.3.1 EXPORT UTILITY
This utility can be used to transfer data objects between oracle databases. The objects

and the data in Oracle dat abase can be moved to other Oracle database running ev en

on a different hardware and software configurations.

http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#exp_full_database�
http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#imp_full_database�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_full#exp_full�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_tablespaces#exp_tablespaces�
http://www.adp-gmbh.ch/ora/admin/objects.html�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_owner#exp_owner�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_tables#exp_tables�
javascript:void(0)�
javascript:void(0)�
javascript:void(0)�

 142

The export utility copies database definitions and actual data into an operating system

file (export file). The export file is an Oracle binary-format dump file (with .dmp), which is

normally created on disk or tape. Before exporting we must ensure that there is enough

space available on the disk or tape used.

Exported dum p f iles c an be r ead o nly by us ing t he Import ut ility of O racle. W e c annot

use ear lier v ersions of i mport ut ility f or importing t he da ta ex ported us ing c urrent

version.

EXP command can be used to invoke export utility interactively without any parameters.

Parameters also can be specified in a file called parameter file. We can use more than

one parameter file at a time with exp command.

General Parameters are used with exp command are as:

• Full: Use this parameter to specify full export mode.

• Tablespaces: Use this parameter to specify tablespace export mode.

• Owner: Use this parameter to specify user export mode.

• Tables: Use this parameter to specify table export mode.

• Query: Restricts t he e xported r ows by m eans of a w here c lause. T he query

parameter can only be used for table export mode. For obvious reasons, it must

be appliable to all exported tables.
• Parfile: Specifies a parfile. Parameter file is a simple text files creating using any

text editor.

There are basically 3 types of exports like Full, Owner, and Table. Full export exports

all the objects, structures and data within the database for all schemas. Owner export
exports onl y t he o bjects ow ned by s pecific us er ac count. Table export exports on ly

tables owned by a specific user account.

To ex port a t able w e c an r un E XP ut ility ei ther i nteractively or by p utting al l the

parameters f or t he e xport on t he c ommand l ine. I n i nteractive m ode j ust t ype E XP

http://www.adp-gmbh.ch/ora/admin/imp_exp.html#full_export_mode#full_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#tablespace_export_mode#tablespace_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#user_export_mode#user_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#table_export_mode#table_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#table_export_mode#table_export_mode�

 143

before t he c ommand pr ompt an d ans wer t he qu estions w hen pr ompted, otherwise t he

parameters can be typed on the command line as shown below.

Examples:

1. We w ant t o ex port EMP table f rom s cott/tiger (username and password

respectively) users and exported data will be stored into dump file namely emp as a

command line parameter.

2. We w ant t o ex port E MP table f rom s cott/tiger (username and password
respectively) us ers an d ex ported dat a w ill be s tored into dump f ile nam ely em p in

interactive mode.

EXP scott/tiger file=emp.dmp tables=(EMP)

Figure 8.1: Exporting single table in interactively mode.

 144

3. We want to export emp table with deptno=10 in non-interactive mode.

Figure 8.2: Exporting conditional rows in non-interactively mode.

4.3.2 IMPORT UTILITY

IMP command can be used to invoke import utility interactively without any parameters.

Import utility is used to extract objects from export dump file created using export utility.

We c an us e m ore t han o ne par ameter f ile at a time w ith exp c ommand. Various

parameters of Import Utility are described as follow:

 145

• FFER:The integer specified for BUFFER

• COMMIT:Specifies whether Import should commit after each array insert. By
default, Import commits only after loading each table, and Import performs a
rollback when an error occurs, before continuing with the next object.

 is the size, in bytes, of the buffer
through which data rows are transferred.

• CONSTRAINTS: Specifies whether or not table constraints are to be imported.
The default is to import constraints. If you do not want constraints to be
imported, you must set the parameter value to

• FILE:Specifies the names of the export files to import. The default extension is
.

n.

dmp

• FROMUSER:The parameter enables you to import a subset of schemas from
an export file containing multiple schemas.

, because Export supports multiple export files, you may need to specify
multiple filenames to be imported.

• FULL: Specifies whether to import the entire export dump file.

• GRANTS:Specifies whether to import object grants.

• PARFILE:Specifies a filename for a file that contains a list of Import
parameters. For more information about using a parameter file, see Parameter
Files.

• ROWS:Specifies whether or not to import the rows of table data.

• TABLES:Specifies that the import is a table-mode import and lists the table
names and partition and sub partition names to import. Table-mode import
lets you import entire partitioned or non-partitioned tables.

• TOUSER: Specifies a list of user names whose schemas will be targets for
Import. The user names must exist prior to the import operation; otherwise an
error is returned. The IMP_FULL_DATABASE role is required to use this
parameter. To import to a different schema than the one that originally
contained the object, specify

• USERID: Specifies the

TOUSER.

username/password

 (and optional connect string) of
the user performing the import.

http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/exp_imp.htm#i1021490#i1021490�
http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/exp_imp.htm#i1021490#i1021490�
http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/exp_imp.htm#i1021490#i1021490�

 146

Figure 8.3: Example of Import Utility in Interactive mode.

It is possible to import dump created using an earlier (version 8.1.7 utility) version can

be imported using the later version utility (Version 9.0.1 utility). We should not use later

version u tilities t o e xport dat a f rom ear lier dat abase v ersions. B ut a n ear lier ut ility c an

be us ed t o e xport l ater versions of da tabase. F or e xample you c an export data f rom

Oracle9i us ing 8 .1.7 ut ility a nd c an i mport t hat e xported file into or acle 8i dat abase

using import utility 8.1.7.

4.4 PHYSICAL DATABASE BACKUP

4.4.1 BACKUP
Backups can be combined in a variety of ways. For example, we can take weekly whole

database backups, to ensure a relatively current copy of original database information,

but take daily backups of the most accessed tablespaces. The DBA can also multiplex
the all important control file and archived redo log as an additional safeguard.
A. Online Database Backup: An online backup or also known as an open backup is a

backup i n w hich all r ead-write da tafiles a nd c ontrol f iles ha ve not be en c heck

pointed with respect to the same SCN. If the database must be up and running 24

hours a day, 7 days a week, then you have no choice but to perform online backups

of a whole database which is in ARCHIVELOG mode.

 147

B. Offline Database Backup

: In t his bac kup, al l d atafiles an d c ontrol f iles ar e

consistent to the same point in time - consistent with respect to the same SCN. This

type of backup allows the user to open the set of files created by the backup without
applying r edo logs, s ince t he d ata is al ready c onsistent. The on ly w ay t o per form

this type of backup is to shut down the database cleanly and make the backup while

the dat abase i s closed. A consistent whole dat abase bac kup is t he o nly v alid

backup option for databases running in NOARCHIVELOG mode.

Whole Database Backup: The m ost c ommon t ype o f bac kup, a w hole da tabase

backup c ontains t he c ontrol f ile al ong w ith al l dat abase f iles t hat bel ong t o a

database. If op erating i n ARCHIVELOG m ode, t he D BA al so h as t he opt ion of
backing up different parts of the database over a period of time, thereby

constructing a whole database backup piece by piece.

Tablespace Backups: A t ablespace bac kup i s a s ubset of t he dat abase.

Tablespace backups are on ly valid i f t he database is op erating i n ARCHIVELOG

mode. T he only t ime a t ablespace bac kup i s v alid f or a database r unning i n

NOARCHIVELOG mode is when that tablespace is read-only or offline-normal.

Datafile Backups: A datafile b ackup i s a backup of a s ingle da tafile. D atafile

backups, which are not as common as tablespace backups and are only valid if the

database is run in ARCHIVELOG mode. The only time a datafile backup is valid for

a database running in NOARCHIVELOG mode is if that datafile is the only file in a

tablespace.

Control File Backups: A control file backup is a backup of a database's control file.

If a database i s ope n, t he user c an c reate a v alid backup by i ssuing t he f ollowing
SQL statement: ALTER DATABASE BACKUP CONTROLFILE to 'location'; or use

Recovery Manager (RMAN).

 148

Archived Redo Log Backups: Archived redo logs are the key to successful media

recovery. D epending o n t he disk s pace a vailable an d t he number of t ransactions

executed on the database, you want to keep as many days of archive logs on disk

and you want to back them up regularly to ensure a more complete recovery.

Configuration Files:

There are basically two types of Backup we can take for Oracle Database.

Configuration f iles m ay c onsist of spfile or init.ora, pas sword

file, tnsnames.ora, and sqlnet.ora. Since these files do not change often, then they

require a l ess f requent b ackup s chedule. If y ou l ost a c onfiguration f ile i t c an be

easily r ecreated m anually. W hen r estore t ime i s a pr emium, i t w ill b e f aster t o

restore a backup of the configuration file then manually creating a file with a specific

format.

4.4.1.1 Types of Backup

I.

When dat abase i s D OWN, no ac tivity r unning on database, no one accessing t he

database, that time taken database backup called OFFLINE BACKUP. It is also known
as offline or consistent database bac kup.

OFFLINE Backup

Database do esn't r equire ARCHIVELOG

mode for COLD backup.

II.

 To take offline backup we must need to SHUTDOWN Oracle

Database and stop Database service.

When dat abase i s ope n, us er ac cessing t he d atabase t hat t ime w e t aken b ackup is

called o nline, ho t or inconsistent b ackup.

ONLINE Backup

Database m ust r equire ARCHIVELOG m ode
for HOT backup.

 149

Making User-Managed Backups of Online Tablespaces and Datafiles

You can back up all or only specific datafiles of an online tablespace while the database

is open. The procedure differs depending on whether the online tablespace is read/write

or read-only. You should not back up temporary tablespaces.

Making User-Managed Backups of Online Read/Write Tablespaces

You m ust put a r ead/write t ablespace in bac kup m ode to m ake us er-managed dat afile

backups w hen t he t ablespace is online and t he dat abase i s open. The
ALTERTABLESPACE ... BEGINBACKUP statement places a t ablespace i n bac kup

mode. In backup mode, the database copies whole changed data blocks into the redo

stream. After you take the tablespace out of backup mode with the
ALTERTABLESPACE...ENDBACKUP or ALTERDATABASEENDBACKUP

When restoring a datafile backed up in this way, the database asks for the appropriate

set of r edo log files to apply if recovery be needed. The redo logs contain all changes

required to recover the datafiles and make them consistent.

statement, the database advances the datafile header to the current database

checkpoint.

1. Before be ginning a bac kup of a t ablespace, i dentify al l of t he d atafiles i n t he

tablespace with the

To back up online read/write tablespaces in an open database:

DBA_DATA_FILES

2. Mark the beginning of t he o nline t ablespace b ackup. F or e xample, t he f ollowing

statement marks the start of an online backup for the tablespace

 data dictionary view.

users
ALTER TABLESPACE users BEGIN BACKUP;

:

3. Back up t he on line dat afiles of t he onl ine tablespace w ith oper ating s ystem

commands.
4. After bac king u p t he d atafiles of t he onl ine t ablespace, r un t he S QL s tatement

ALTERTABLESPACE with the ENDBACKUP
ALTER TABLESPACE users END BACKUP;

 option.

 150

5. Archive t he u n-archived r edo l ogs s o t hat the r edo r equired t o r ecover t he

tablespace backup is archived.
ALTER SYSTEM ARCHIVE LOG CURRENT;

Making User-Managed Backups of the Control File

Back up t he c ontrol f ile of a d atabase a fter m aking a s tructural m odification t o a

database op erating i n ARCHIVELOG mode. T o bac k u p a d atabase's c ontrol f ile, y ou

must have the ALTERDATABASE

Backing Up the Control File to a Binary File

 system privilege.

The pr imary m ethod f or backing up the c ontrol f ile is t o us e a S QL statement to

generate a bi nary file. A bi nary bac kup i s pr eferable t o a t race f ile backup bec ause i t
contains add itional information s uch as t he ar chived log history, of fline r ange for r ead-

only and offline tablespaces, and backup sets and copies (if you use RMAN). Note that

binary control file backups do not include tempfile entries.

• Back up the database's control file, specifying a filename for the output binary file.

To back up the control file after a structural change:

ALTER DATABASE BACKUP CONTROLFILE TO '/disk1/backup/cf.bak' REUSE;
Specify t he REUSE

Making User-Managed Backups of Archived Redo Logs

 option t o m ake the new c ontrol f ile overwrite one that c urrently

exists.

To s ave d isk s pace in your pr imary archiving l ocation, you m ay w ant to back up

archived l ogs t o t ape or t o an al ternative di sk l ocation. If y ou ar chive t o m ultiple

locations, then only back up one copy of each log sequence number.

4.4.2 RECOVERY

Basic recovery involves two parts: restoring a physical backup and then updating it with

the changes made to the database since the last backup. The most important aspect of

 151

recovery i s m aking s ure al l dat a f iles ar e c onsistent w ith r espect t o t he s ame p oint in

time. Oracle has integrity checks that prevent the user from opening the database until

all data files are consistent with one another.

A.

In every type of recovery, Oracle sequentially applies redo data to data blocks. Oracle

uses information in the control file and datafile headers to ascertain whether recovery is

necessary. Recovery has two parts: rolling forward and rolling back. When Oracle rolls

forward, it applies redo records to the corresponding data blocks. Oracle systematically

goes t hrough t he r edo l og t o det ermine w hich c hanges i t ne eds t o ap ply t o w hich

blocks, and then changes the blocks. For example, if a user adds a row to a table, but
the s erver c rashes bef ore it c an s ave t he c hange to d isk, O racle c an us e t he r edo

record for this transaction to update the data block to reflect the new row.

Once O racle has c ompleted t he r olling f orward s tage, t he O racle d atabase c an be

opened. The rollback phase begins after the database is open. The rollback information

is s tored i n t ransaction t ables. O racle s earches t hrough t he t able for u ncommitted

transactions, un doing an y t hat i t f inds. F or ex ample, i f t he us er nev er c ommitted t he

SQL s tatement t hat ad ded t he r ow, t hen O racle w ill d iscover t his f act i n a t ransaction
table and undo the change.

RECOVERY PROCESS

• Responding to the Loss of a Subset of the Current Control Files

Use the f ollowing pr ocedures t o r ecover a d atabase i f a permanent m edia f ailure h as

damaged on e or m ore c ontrol f iles of a d atabase an d at least o ne c urrent c ontrol f ile

has not

 been damaged by the media failure.

• Copying a Multiplexed Control File to a Default Location

If the disk and file system containing the lost control file are intact, then you can simply
copy one of the intact control files to the location of the missing control file. In this case,

you do not have to edit the CONTROL_FILES

 initialization parameter.

 152

• To replace a damaged control file by copying a multiplexed control file:

If the instance is still running, then shut it down:
SQL> SHUTDOWN ABORT

Correct t he har dware problem that c aused the m edia f ailure. If y ou c annot r epair t he

hardware problem quickly, then proceed with database recovery by restoring damaged

control files to an alternative storage device.

Use a n i ntact m ultiplexed c opy o f t he d atabase's c urrent c ontrol f ile t o c opy o ver t he

damaged control files.

Start a new instance and mount and open the database.
SQL> STARTUP

• Determining Which Datafiles Require Recovery

You c an us e t he dy namic per formance v iew V$RECOVER_FILE

The following query displays the file ID numbers of datafiles that require media recovery

as w ell as t he r eason f or r ecovery (if k nown) and t he S CN a nd t ime w hen r ecovery

needs to begin:

 to d etermine w hich

files to restore in preparation for media recovery. This view lists all files that need to be

recovered, and explains why they need to be recovered.

SELECT * FROM V$RECOVER_FILE;

Query V$DATAFILE and V$TABLESPACE to o btain f ilenames and t ablespace n ames

for datafiles requiring recovery.

 153

• Restoring Datafiles

If a media failure permanently damages one or more datafiles of a database, then you

must restore bac kups of t hese dat afiles be fore you c an r ecover t he dam aged f iles. If

you c annot r estore a dam aged datafile t o i ts original l ocation (for e xample, y ou m ust

replace a disk, so you restore the files to an alternate disk), then you must indicate the
new locations of these files to the control file.

If y ou are r estoring a n O racle file o n a r aw d isk or par tition, t hen t he procedure is

basically the same as when restoring to a file on a file system. However, you must be

aware of the naming conventions for files on raw devices (which differ depending on the

operating system), and use an operating system utility that supports raw devices.

1. Determine which datafiles to recover by using the techniques described in

To restore backup datafiles to their default location:

"Determining Which Datafiles Require Recovery".

2. If the database is ope n, t hen take t he t ablespaces c ontaining t he i naccessible

datafiles offline.
ALTER TABLESPACE users OFFLINE IMMEDIATE;

3. Copy backups of t he d amaged da tafiles t o their de fault l ocation us ing o perating

system commands.

4. Recover the affected tablespace. For example, enter:
RECOVER TABLESPACE users

5. Bring the recovered tablespace online. For example, enter:
ALTER TABLESPACE users ONLINE;

http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96572/osrestore.htm#26852�
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96572/osrestore.htm#26852�
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96572/osrestore.htm#26852�

 154

Recovering After the Loss of Archived Redo Log Files:

If the database is operating in ARCHIVELOG

 mode, and if the only copy of an archived

redo log file is damaged, then the damaged file does not affect the present operation of

the database. The following situations can arise, however, depending on when the redo
log was written and when you backed up the datafile.

 Check Your Progress

10. Describe Basic Principles for Backup Strategy?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

11. Which role has to grant for Full Database Export/Import?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
12. Which Parameter of Import Utility is used to Prevent rollback when error

occurs ?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
13. What do you mean by Inconsistent Backup?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
14. How to find File names and Tablespace names for datafile requiring

recovery?

……………………………………………………………………………………………

 155

……………………………………………………………………………………………

 ……………………………………………………………………………………………

4.5 LET US SUM UP

In t his c hapter, w e h ave di scussed about di fferent t ypes or D atabase B ackup

Strategies like Logical Backup and Physical Backup. In which conditions we have to
perform l ogical bac kup. W e hav e al so l earnt d ifferent par ameters f or Import/Export

utility of O racle. Also w e ha ve d ifferent t ypes of ph ysical bac kup l ike hot a nd c old

backup and try to describe all the possible aspects of both types of physical backups

and recovery strategies.

4.6 CHECK YOUR PROGRESS: POSSIBLEANSWERS

1. Basic principles follow these four simple steps:

• Multiplex the online redo logs

• Run t he database i n A RCHIVELOG m ode and archive r edo logs t o m ultiple

locations

• Maintain multiple concurrent backups of the control file

• Take f requent bac kups of phy sical dat afiles and s tore t hem i n a s afe pl ace,

making multiple copies if possible

2. The EXP_FULL_DATABASE and IMP_FULL_DATABASE, r espectively, ar e

needed to perform a full export.

3. COMMIT specifies whether Import should commit after successfully execution of

Import.

4. Inconsistent B ackup m eans a b ackup t aken w hen database i s open and

database m ust r equire ARCHIVELOG m ode f or i t. It i s al so known as H OT
Backup.

5. V$DATAFILE and V$TABLESPACE data dictionary i s used t o o btain filenames

and tablespace names for datafiles requiring recovery

http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#exp_full_database�
http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#imp_full_database�

 156

4.7 ASSIGNMENTS

1. Explain Different Command line Parameters for EXPORT with example.

2. Explain Different Command line Parameters for IMPORT with example.

3. Define Online Backup? How can we Backup Read/Write Tablespace?

4. Explain Recovery Process in detail.

4.8 Further Reading

1. Oracle D atabase 11g : B ackup and R ecovery U ser’s G uide , Lanc e Ashdown,

Oracle Press.
2. Oracle Database 10g The Complete Reference, Kevin Loney, Oracle Press.

 157

 Block-3

Oracle Server and SQL

 158

Unit 1: Structured Query
Language

Unit Structure

1.1. Learning Objectives & Outcomes

1.2. Introduction

1.3. Basic Data Types of SQL

1.4. SQL Statements

1.5. Data Definition Statements

1.6. Constraints

1.7. Data Manipulation Statements

1.8. SQL Operators

1.9. Oracle Built-in Functions

1.10. SQL Joins

1.11. Sub Queries

1.12. Sub Views

1.13. SQL Indexes

1.14. SQL Sequence

1.15. Let Us Sum Up

1.16. Check your progress: Possible Answers

1.17. Assignments

1.18. Further Reading

1

 159

1.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
• To understand SQL and its Process Architecture

• To learn various types of SQL Statements

• To understand SQL Operators & Functions.

• To learn Joins and Sub Queries in SQL.

• To Understand Views, Index and Sequence.

Outcome:

At the end of this unit,
• Students will be completely aware with Architecture of SQL.

• Students will come to know the SQL statements in detail.

• Students will be able to write queries to retrieve data from tables as per organization

 requirements.

• Students will be able to create different SQL objects like Tables, Views, Indexes etc.

1.2 INTRODUCTION

SQL is an ANSI standard computer language, which is used for storing, manipulating

and r etrieving data s tored in r elational dat abase. S QL is t he s tandard language for

Relational Database System.

SQL Process
When ex ecuting a n S QL c ommands, s ystem f irst d etermines t he bes t w ay t o c arry

out SQL query request and SQL engine figure out how to interpret the task. There are

various c omponents i ncluded i n t he pr ocess w hich i s k nown as Q uery D ispatcher,

Optimization Engines, Classic Query Engine and SQL Query Engine etc.

 160

Above f igure s hows t hat w hen S QL Q uery w ill f ire f irst Q uery L anguage P rocess

parses and o ptimize S QL qu ery an d pass t he opt imized version i nto t he D atabase

engine.

1.3 BASIC DATA TYPES OF SQL

Oracle Database pr ovides f ollowing b asic dat a t ypes f or attributes d efined w ith

CREATE TABLE clause of database.

Data Types Description

Char (N) Fixed Len gth C haracter D ata. Maximum
size is 2000 bytes. Default or Minimum

Size 1 Byte.

Varchar (N) Variable Le ngth Character D ata. Maximum
up to 2000 characters.

Varchar2 (N) Variable Le ngth C haracter D ata. Maximum

SQL Query

Query Language

Processor

Database Engine

Parser + Optimization

File Manager

+
Transaction Manager

Physical Database

Figure-9.1 Simple diagram of SQL

 161

up to 4000 characters.

Nvarchar2 (N) Variable-length U nicode c haracter s tring

having m aximum s ize is determined b y t he

national c haracter s et d efinition, w ith a n
upper limit of 4000 bytes.

Number (P,S) Numeric dat a t ype f or i ntegers and R eal
Numbers. P = Overall number of Digits.
Maximum values 38. S = Number of
digits to the right of the decimal point.

FLOAT (p) A subtype of t he NUMBER data t ype.
A FLOAT value r equires f rom 1 to 22
bytes.

LONG Variable Length Character Data (Up to
2GB)

Date Date data type for storing date and time.
The size is fixed at 7 bytes.

BINARY_FLOAT 32-bit floating point number.

BINARY_DOUBLE 64-bit floating point number.

RAW & LONG RAW RAW Binary Data
RAW: Maximum size is 2000 bytes.

LONG RAW: Maximum up to 2GB

CLOB Character Data (Up to 4GB)

NCLOB Character D ata c ontaining Unicod
characters. (Up to 4GB)

BLOB Binary Data (Up to 4GB)

BFILE Binary D ata s tored into ex ternal f ile (Up to
4GB)

ROWID A base-64 number system representing

the unique address of a raw in its table.

UROWID A base-64 number system representing

 162

the logical ad dress of a r aw of an indexed
organized table.

DATETIME Data Types

TIMESTAMP Date with Fractional Seconds

INTERVAL YEAR TO MONTH Stored as an interval of years and months.

INTERVAL DAY TO SECOND Stored as a n i nterval of days, h ours,

minutes and seconds.

1.4 SQL STATEMENTS

SQL s tatement includes dat a insert, qu ery, up date and de lete, s chema c reation and

modification a nd data access c ontrol. B ased u pon that S QL s tatements ar e di vided

into different categories as described below:
Data Manipulation Language (DML)

SELECT Retrieve certain record from one or more tables or views.

INSERT Create new record into the table.

UPDATE Modify existing record(s).

DELETE Delete existing record(s).

MERGE Conditionally i nsert or u pdate d ata de pending o n i ts

presence, also known as UPSERT.

Data Definition Language (DDL)

CREATE Create New O bjects i n D atabase l ike T able, View Index,

etc.

ALTER Modify the existing object.

DROP Destroying an existing object.

RENAME Change the name of existing object.

TRUNCATE Deleting an existing object. (Drop and Re-Create)

COMMENT Provides Single line or multi line comment(s).

 163

Data Control Language (DCL)

GRANT Gives different Privileges to the user.

REVOKE Tack back privileges which is previously granted from user.

Transaction Control Language (TCL)

COMMITE Make permanent all changes performed in the transaction.

ROLLBACK Undo all uncommitted works done by the transaction(s).

SAVEPOINT Identify a p oint in a t ransaction t o which y ou c an later r oll

back.

1.5 DATA DEFINITION STATEMENTS

Data D efinition S tatements o f t he S QL is us ed t o c reate d ifferent dat abase ob jects

and manage that objects.

1.5.1. CREATE TABLE

Create Table clause is used to create a new database objects like table, view, index etc.

Syntax:
CREATE TABLE <TABLE NAME>
(
<Column 1><Data type><Size> [not null] [unique] [<column constraint>],
<Column 2><Data type><Size> [not null] [unique] [<column constraint>],

<Column N><Data type><Size> [not null] [unique] [<column constraint>],
 [Table Constraint(s)]
);

 164

For eac h c olumn, a nam e a nd a da ta t ype m ust be s pecified and t he c olumn nam e

must be unique within table definition. Columns are separated by colons.

1.5.2. ALTER TABLE

ALTER T ABLEcommand i s us ed t o a dd, de lete or m odify c olumns i n a n existing

table. You w ould a lso us e ALTER T ABLE c ommand to add a nd drop v arious
constraints on an existing table.

Syntax:

ALTER TABLE <TABLE NAME> ADD/MODIFY/DROP column [datatype];

1.5.3. DROP TABLE

It is used to delete remove entire table with structure from the database.

Syntax:

DROP TABLE <TABLE NAME> ;

1.5.4. TRUNCATE TABLE

The TRUNCATE TABLE command is used to delete complete data from an existing

table.

Syntax:

TRUNCATE TABLE <TABLE NAME> ;

Example:
1. Create Salesman Table with Salesman No as a Primary Key and Salesman Name

as a mandatory field.

 165

CREATE TABLE SALESMAN

(

 SNUM NUMBER (4) PRIMARY KEY,

 SNAME VARCHAR2(30) NOT NULL,
CITY VARCHAR2(30),

 COMM NUMBER(4,2)

);

2. Add New Column Mobile No into Salesman Table.

ALTER TABLE SALESMAN ADD (MOBILE NUMBER (10));

3. Remove Customer Table.
DROP TABLE CUSTOMER.

1.6 CONSTRAINTS

Constraints are the rules enforced on data columns on table. These are used to limit

the t ypes of d ata that c an go into t he t able. C onstraint c ould be applied a t c olumn
level or table level. Column level constraints are applied only one column whereas

Table level constraints are applied to the whole table. There are two types of data

constraints that can be applied to data being inserted into the tables.

1.6.1. I/O CONSTRAINTS
This data constraint determines the speed at which data can be inserted or extracted

from a table.
A. PRIMARY KEY
Primary key is a filed in a table which is uniquely identifies each row (or record) in a

database t able. P rimary key f ield m ust be m andatory m eans c an’t ha ve n ull v alues

and m ust be uni que v alues. A t able c an h ave o nly one pr imary k ey, w hich m ay

consist o f s ingle or m ultiple f ields. W hen P rimary k ey c reated on s ingle f ield i t is

 166

known as Single Field Primary Key and when Primary key created on multiple fields

it is known as Composite Primary Key.
Examples:
1. Single Field Primary Key at Column Level:

Below ex ample s hows the S alesman table w ith S NUM as P rimary key c reated at

column level.

CREATE TABLE SALESMAN

(
SNUM NUMBER (4) PRIMARY KEY,

SNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),

COMM NUMBER(4,2)
);

2. Composite Primary Key at Table Level:

Below example shows the Salesman table with SNUM and BCODE as Composite

Primary key.

CREATE TABLE SALESMAN

(

SNUM NUMBER (4),

BCODE NUMBER (4),
SNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),

COMM NUMBER(4,2),
PRIMARY KEY (SNUM,BCODE)

);

B. FOREIGN KEY / REFERENCE KEY

Foreign key (or reference key) is a column or a combination of columns whose values
match a Primary key in a different table. The relationship between tables matches the

primary key in one of the tables with foreign key in other tables. The referencing table

is called the child table, and the referenced table is called the parent table.

 167

Examples:
1. Reference Key at Column Level:

CREATE TABLE CUSTOMER

(
 CNUM NUMBER (4) PRIMARY KEY,

 CNAME VARCHAR2(30) NOT NULL,

 CITY VARCHAR2(30),

 RATTING NUMBER(3),
 SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES SALESMAN

);

In t his ex ample, t he c olumn S NUM of C USTOMER t able (Child T able) b uilds t he
foreign key nam ely FK_SNUM a nd r eferences the P rimary key o f S ALESMAN table

(Parent Table).

2. Reference Key at Table Level:

CREATE TABLE CUSTOMER

(

 CNUM NUMBER (4) PRIMARY KEY,

 CNAME VARCHAR2(30) NOT NULL,
 CITY VARCHAR2(30),

 RATTING NUMBER(3),

 SNUM NUMBER (4),
 CONSTRAINT FK_SNUM FOREIGN KEY (SNUM) REFERENCES SALESMAN
(SNUM)

);

1.6.2. BUSINESS RULE CONSTRAINTS
Business R ule c onstraints al low ap plication of bus iness r ules t o t able c olumns. These

rules are applied to data, prior the data is being inserted into the table columns.

 168

A. UNIQUE

The U NIQUE c onstraint pr events du plicate v alues i n t he c olumn. B ut i t p ermits

multiple NULL values i n t he c olumn. S ame as pr imary k ey unique c onstraint al so

create unique index on the field.

Examples:
Unique Key at Column Level:

CREATE TABLE CUSTOMER

(

 CNUM NUMBER (4) PRIMARY KEY,

 CNAME VARCHAR2(30) NOT NULL,

 CITY VARCHAR2(30),
 EMAIL VARCHAR2(30) CONSTRAINT CUST_EMAIL_UK UNIQUE,

 RATTING NUMBER(3),

 SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES

SALESMAN
);

B. NOT NULL

In or acle, by d efault c olumn c an hold N ULL v alues. If you do n ot w ant a c olumn to
have a N ULL values, then you need to def ine NOT N ULL constraint on t hat column.

NOT NULL constraints only implemented at column level.

Examples:

CREATE TABLE CUSTOMER

(

CNUM NUMBER (4) PRIMARY KEY,
CNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),
EMAIL VARCHAR2(30) C ONSTRAINT C UST_EMAIL_UK

UNIQUE,
RATTING NUMBER(3) NOT NULL,

 169

 SNUM NUMBER (4) C ONSTRAINT F K_SNUM R EFERENCES

SALESMAN
);

C. CHECK CONSTRAINT

Business Rule validations can be applied to a table column by using check constraint.

Check c onstraint m ust b e s pecified as a logical e xpression t hat evaluates e ither t o

TRUE or FALSE.

Examples:
Check constraint at Table Level:

 CREATE TABLE CUSTOMER
 (

CNUM NUMBER (4) PRIMARY KEY,

CNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),

RATTING NUMBER(3),

SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES

SALESMAN,
CONSTRAINT CUST_NAME_CHK CHECK (CNAME = UPPER (CNAME)),
CONSTRAINT CUST_RATTING_CHK CHECK (RATING >= 100)

);

Above example create CUSTOMER table, where Name of customer must be consist

of upper case letters only and minimum ratting of customer is 100.

D. DEFAULT VALUE

The D EFAULT c onstraint pr ovides a def ault v alue t o a c olumn w hen a r ecord i s
loaded into the table, and the column is left empty.

Examples:

 170

 CREATE TABLE CUSTOMER

 (

CNUM NUMBER (4) PRIMARY KEY,

CNAME VARCHAR2(30) NOT NULL,
CITY VARCHAR2(30),
RATTING NUMBER(3) DEFAULT 100,

SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES

SALESMAN
);

Above example create CUSTOMER table with RATTING field is set to 100 by default.

1.7 DATA MANIPULATION STATEMENTS

1.7.1. INSERT INTO STATEMENT

Insert I nto statement i s us ed t o insert r ecords into t he d atabase table. T he G eneral

syntax of INSERT INTO clause as given below:

INSERT INTO <TABLE NAME> [(Column1, Column2 ..., ColumnN)]
VALUES (Value1, Value2..., ValueN)

Here, column1, column2 ..., columnN are the names of the columns in the table into

which you want to insert data. You may not need to specify the column(s) name in the

SQL query if you are adding values for all the columns of the table.

Example:

1. INSERT INTO SALESMAN VALUES (1001, 'BADAL', 'PATAN', 0.12);

2. INSERT INTO SALESMAN (SNUM, SNAME, COMM) VALUES (1002, 'VIRAL',

0.09);

 171

1.7.2. UPDATE STATEMENT

The UPDATE Query i s us ed t o m odify t he existing r ecords in a t able. You c an us e

WHERE clause with UPDATE query to update selected rows, otherwise all the rows

would be affected. General Syntax of Update Clause as:

UPDATE <TABLE_NAME> SET column1 = value1, column2 = value2....
WHERE [condition];

Example:

1. UPDATE SALESMAN SET CITY = ‘PATAN’ WHERE SNUM = 1002;

1.7.3. DELETE STATEMENT

The DELETE Query is us ed t o del ete t he ex isting r ecords f rom a t able. S yntax of

Delete Statement as given below:

DELETE FROM <TABLE_NAME> WHERE [condition];

Example:

1. DELETE FROM SALESMAN WHERE SNUM = 1002;

1.7.4. SELECT STATEMENT

SQL S ELECT S tatement is us ed t o f etch r ecord(s) f rom e xisting d atabase t able(s),

which returns the result data in form of table. When we will display selected columns
from the table then it is known as Projection operations.

Syntax:
SELECT [DISTINCT] column1, column2 ... FROM <FROM_CLAUSE>

 172

[WHERE <CONDITION>]
[GROUP BY <EXPRESSION >]
[HAVING <CONDITION>]
[ORDER BY <COLUMN> [ASC|DESC]]

Example:

1. Display all the information of salesman’s in the sequence of City, Name and comm.

SELECT CITY, SNAME, COMM FROM SALESMAN;

1.7.5. WHERE CALUSE IN SQL

WHERE c lause i n q uery r epresents t he c ondition f or f etching r ecords f rom t he
table(s), known as SELECTION operation.

Example:
1. Display Num and Name of all customers with salesman number 1001.

 SELECT CNUM, CNAME, SNUM FROM CUSTOMER WHERE SNUM = 1001;

1.7.6. ORDER BY CLAUSE
The S QL Order By

1. List all Salesmen with commission above 10% and result should be in ascending
order of City and reverse order of commission.

Clause i s us ed i n S ELECT s tatement t o s ort t he dat a ei ther i n

ascending or d escending or der, bas ed o n one or m ore c olumns. Oracle s orts quer y

results in ascending order by default. If you want to sort the data in descending order,

you must explicitly specify using DESC Keyword follow the column name.
Example

SELECT SNUM,SNAME,CITY,COMM FROM SALESMAN WHERE COMM >
0.10 ORDER BY CITY, COMM DESC;

 173

1.7.7. GROUP BY CLAUSE
The SQL GROUP BY clause establishes data groups based on columns and

aggregates t he information w ithin a gr oup o nly. The grouping c riterion i s def ined by

the c olumns s pecified in GROUP B Y c lause. GROUP B Y c lause c an o nly be us ed

with aggr egate f unctions.

A. Arithmetic Operator: Arithmetic operators manipulate numeric operands. Below

Tables shows the list of Arithmetic Operators.

The gr oup by c lause s hould c ontain a ll t he c olumns in t he

select list expect those used along with the group functions.

Example
1. Display total orders for each salesman.

 SELECT SNUM, SUM (AMOUNT) FROM ORDERS GROUP BY SNUM;

1.7.8. HAVING CLAUSE

The H aving Clause ena bles y ou to s pecify c onditions t hat f ilter w hich gr oup r esults

appear in the final results. HAVING clause places conditions on groups created by the

GROUP BY clause. The HAVING clause must follow the GROUP BY clause in a query

and must also precede the ORDER BY clause if used.
Example
1. Display total orders of each salesman having more than single order.

SELECT SNUM, COUNT (ONUM) FROM ORDERS GROUP BY S NUM HAVING

COUNT(SNUM) > 1;

1.8 SQL OPERATORS

An op erator i s a r eserved w ord us ed pr imarily i n S QL S tatement’s t o per form

operation(s). An operator manipulates individual data items and returns a result. The
data items are called operands or arguments.

 174

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

B. Character Operator: Character operators are used in expressions to manipulate

character strings. Below Tables shows the list of Character Operators.

Operator Description

|| Concatenates character strings

C. Comparison Operator: Comparison operators are used in conditions that

compare one value or expression with another. The result of a comparison can be
TRUE or FALSE.

Operator Description

= Equality test.

!=, =̂, <> Inequality test.

> Greater than test.

< Less than test.

>= Greater than or equal to test.

<= Less than or equal to test.

IN "Equivalent t o a ny m ember of " test. Equivalent to

"= ANY".

ANY/ SOME Compares a v alue t o eac h v alue i n a list or

returned by a q uery. E valuates t o F ALSE if t he

query returns no rows.

NOT IN Equivalent to "!= ANY". Evaluates to FALSE if any

member of the set is NULL.

ALL Compares a v alue w ith ev ery v alue i n a l ist or

 175

returned by a query. Must be preceded by =, !=, >,
<, < =, or > =. E valuates t o T RUE if t he quer y

returns no rows.

EXISTS TRUE if a sub-query returns at least one row.

IS [NOT] NULL Tests f or nul ls. T his i s the onl y oper ator t hat

should be used to test for nulls.

D. Range Searching Operator: In order t o s elect d ata t hat i s w ithin a r ange o f

values, the range searching operator is used.

Operator Description

[Not]

BETWEEN x AND y

[Not] gr eater t han or eq ual t o x and l ess t han or

equal to y.

E. Pattern Matching Operator: Pattern m atching oper ator al lows c omparison of

one string value with another string value, which is not identical. This is achieved
by using wildcard characters.

Operator Description

LIKE X The c haracter " %" m atches a ny s tring of z ero or

more c haracters ex cept nul l. T he c haracter " _"

matches any single character.

F. Logical Operator: Logical operators manipulate the results of conditions.

Operator Description

NOT Returns TRUE if the following condition is FALSE.
Returns FALSE if it is TRUE.

AND Returns T RUE if bot h c omponent c onditions ar e

TRUE. Returns FALSE if either is FALSE.

OR Returns T RUE i f ei ther c omponent c ondition i s

TRUE. Returns FALSE if both are FALSE.

 176

G. Set Operator: Set o perators c ombine t he r esults of t wo qu eries into a s ingle

result.
Operator Description

UNION Returns all distinct rows selected by either query.

UNION ALL Returns all rows selected by either query,

including all duplicates.

INTERSECT Returns all distinct rows selected by both queries.

MINUS Returns all distinct rows selected by the first query

but not the second.

Example
1. Display all customers not located in LONDON.

SELECT * FROM CUSTOMER WHERE CITY <> 'LONDON';

2. List all salesmen with commission between 11% and 15%.
SELECT * FROM SALESMAN WHERE COMM BETWEEN 0.11 AND 0.15;

3. List all salesmen whose names begin with letter ‘B’.

SELECT * FROM SALESMAN WHERE SNAME LIKE 'B%';

1.9 ORACLE SQL BUILT-IN FUNCTIONS

Oracle SQL Built-in Functions serve the pur pose o f m anipulating data i tems and

returning a result. We can assign a value in form of variable or constants, such values

are known as Arguments of functions. Oracle Functions can be divided into main two

categories as described below:

 177

Function

1.9.1. GROUP FUNCTIONS (AGGREGATE FUNCTIONS)
These functions gr oup t he r ows of dat a bas ed o n the v alues r eturned by t he qu ery.

The gr oup f unctions ar e us ed t o c alculate aggr egate v alues, w hich r eturn j ust one

value after processing a group of rows.

Value Returned

SUM (Values|Column) Returns Sum of given Values.

AVG (Values|Column) Return the Average Value.

COUNT (Values|Column) Return Number of r ows w here t he v alue of

the column is not NULL

COUNT (*) Return Number of r ows including d uplicates

and NULLs

MAX (Values|Column) Returns Maximum Value.

MIN (Values|Column) Returns Minimum Value.

MEDIAN (Values|Column) Returns Median (Middle) v alue in t he s orted
column, interpolating if necessary

STDDEV (Values|Column) Returns S tandard d eviation o f t he c olumn

ignoring NULL values

VARIANCE (Values|Column) Returns Variance of the column ignoring

NULL values

CORR (Column-1,Column-2) Returns C orrelation c oefficient be tween t he

two columns after eliminating nulls.

Example

1. Count the no. of salesmen currently having orders.

SELECT COUNT(DISTINCT (SNUM)) FROM ORDERS;

 178

1.9.2. SINGLE ROW FUNCTIONS (SCALAR FUNCTION)

Single r ow or S calar f unctions r eturn a v alue f or ev ery r ow t hat i s pr ocessed i n a

query. There are four types of single row functions.

A. Numeric Functions: These ar e functions t hat accept num eric i nput an d r eturn

numeric values.
Function

Value Returned

ABS (m) Absolute value of m

MOD (m, n) Remainder of m divided by n

POWER (m, n) m raised to the nth power

ROUND (m , n) m rounded to the nth decimal place

TRUNC (m, n) m truncated to the nth decimal place

CEIL (n) smallest integer greater than or equal to n

FLOOR (n) greatest integer smaller than or equal to n

SQRT (n) positive square root of n

EXP (n) e raised to the power n

LN (n) natural logarithm of n

LOG (n2, n1) logarithm of n1, base n2

SIN (n) sine (n)

COS (n) cosine (n)

TAN (n) tan (n)

B. String Functions:

Function

These are functions that accept character input and can return

both character and number values.
Value Returned

LOWER (s) All letters are changed to lowercase.

UPPER (s) All letters are changed to uppercase.

INITCAP (s)
First letter of each word is changed to uppercase
and all other letters are in lower case.

 179

CONCAT (s1, s2)
Concatenation of s 1 and s 2. Equivalent t o s1 ||

s2

LPAD (s1, n , s2)
Returns s 1 r ight justified and p added l eft w ith n

characters from s2; s2 defaults to space.

RPAD (s1, n, s2)
Returns s 1 left justified a nd p added r ight w ith n

characters from s2; s2 defaults to space.

LTRIM (s,set)
Returns s with characters removed up to the first

character not in set; defaults to space

RTRIM (s, set)
Returns s with final characters removed after the

last character not in set; defaults to space

REPLACE (s, s earch_s,

replace_s)

Returns s with every occurrence of search_s in s

replaced by replace_s; default removes

search_s

SUBSTR (s, m, n)

Returns a substring from s, beginning in position

m and n c haracters long; de fault r eturns t o e nd
of s.

LENGTH (s) Returns the number of characters in s.

INSTR (s1, s2, m, n)

Returns t he pos ition of t he nth oc currence of s 2

in s 1, b eginning at p osition m , bot h m an d n

default to 1.

C. Date Functions:

Function

These ar e f unctions that take values that ar e of datatype DATE

as input and return values of datatype DATE.

Value Returned

SYSDATE Current date

LAST_DAY (Date)
Date of the last day of the

month containing date

NEXT_DAY (Date, day)
Date of the first day of the week

after date

ADD_MONTHS (Date, No. of Month) Add No. of Months in Date

 180

MONTHS_BETWEEN (Date-1, Date-2)
Returns D ifference i n Month
between two dates.

GREATEST (Date-1, Date-2, ..., Date-N) Latest of the given dates

LEAST (Date-1, Date-2, ..., Date-N) Earliest of the given dates

NEW_TIME

(Date,Current_Timezone,New_TimeZone)

Display D ate an d T ime in N ew

TimeZone Format

D. Conversion Functions:

Function

These are functions that help us to convert a value in one

form to another form.

Value Returned

TO_NUMBER (String, Format)
Character S tring c onverted t o a N umber

as Specified by Format.

TO_CHAR(Value, Format)
Convert Number or D ate i nto C haracter

string as specified by Format.

TO_DATE (String, Format)
String Value c onverted i n a D ate as

specified by given Format.

ROUND (Date, Format) Date Rounded as specified by the Format.

TRUNC (Date, Format)
Date t runcated as S pecified by t he

Format.

1.10 SQL Joins

Sometimes it is required to retrieve information from multiple tables; at that time Join

condition i s r equired. R ows i n on e t able c an be joined t o r ows i n another t able

according t o c ommon v alues ex isting i n c orresponding c olumns. W e m ust hav e t o

keep in mind some principle as follows:

• When W riting a S ELECT s tatement t hat joins t ables, pr ecede t he c olumn

name with the table name for clarify and to enhance the database access.

 181

• If t he s ame c olumn nam e a ppears in m ore t han one t able, t he c olumn nam e

must be prefixed with the table name.

• To join N tables together, you need a minimum of N-1 join conditions.

1.10.1. TYPES OF ORACLE JOINS
• Inner Join

• Outer Join
• Self Join

A. INNER Join (Equi Join OR Simple Join)

It i s a s imple S QL j oin c ondition w hich uses t he equal s ign as t he c omparison

operator. The query compares each row of table1 with each row of table2 to find all

pairs of rows which satisfy the join-predicate.

Figure-9.2 Inner Join Diagram

The SQL INNER JOIN would return the records where table1 and table2 intersect.

B. Outer Join

An Outer Join is used to identify situations where rows in one table do not match rows
in a s econd t able, ev en t hough t he t wo t ables are r elated. T he S QL outer j oin

operator in Oracle is (+) and is used on one side of the join condition only.

There are two types of outer joins:

• LEFT OUTER JOIN

 182

• RIGHT OUTER JOIN

I. LEFT OUTER JOIN

A LE FT O UTER J OIN ad ds bac k al l t he r ows t hat ar e dr opped f rom t he f irst (left)
table in the join condition, and output columns from the second (right) table are set to

NULL.

Figure-9.3 Left Outer Join Diagram

The SQL LEFT OUTER JOIN would return the all records from table1 and only those

records from table2 that intersect with table1

.

II. RIGHT OUTER JOIN

A R IGHT O UTER J OIN adds bac k a ll t he r ows t hat ar e dr opped f rom t he s econd

(right) table in the join condition, and output columns from the first (left) table are set

to NULL.

Figure-9.4 Right Outer Join Diagram

 183

The S QL R IGHT O UTER JOIN w ould r eturn t he a ll r ecords f rom table2 and on ly

those records from table1 that intersect with table2

.

C. Self Join
Sometimes you need to join a table to itself only. When a table is joined to itself, the

join is known as Self Join. It is necessary to ensure that the join statement defines as

alias for both copies of the table to avoid column ambiguity.

Example
1. Show the name of all customers with their relational salesman's name.

SELECT C UST.CNAME, S MAN.SNAME F ROM C USTOMER C UST, S ALESMAN

SMAN WHERE SMAN.SNUM = CUST.SNUM;

2. Find all pairs of customers having the same city without duplication.

SELECT C U.CNAME, C U.CITY, C UST.CNAME, C UST.CITY FR OM C USTOMER

CU, CUSTOMER CUST WHERE CU.CITY = CUST.CITY AND CU.CNUM >

CUST.CNUM;

1.11 SUB QUERIES

A query within another query is known as Sub query or Inner Query or Nested query.

It is em bedded w ithin t he W HERE c lause. S ub q ueries m ust be enc losed w ithin
parentheses. A sub query is used to return data that will be used in the main query as

a c ondition t o f urther r estrict t he dat a t o be r etrieved. S ub qu eries c an be us ed w ith

the SELECT, INSERT, UPDATE, and DELETE statements along with the operators.

There are a few rules that sub queries must follow:

• A s ub qu ery c an ha ve only one c olumn i n t he S ELECT clause, unless m ultiple
columns are in the main query for the sub query to compare its selected columns.

 184

• An ORDER BY cannot be used in a sub query, although the main query can use

an ORDER BY. The GROUP BY can be used to perform the same function as the

ORDER BY in a sub query.

• Sub queries that return more than one row can only be used with multiple value

operators, such as the IN operator.

• The B ETWEEN operator c annot be us ed w ith a s ub q uery; how ever, t he

BETWEEN operator can be used within the sub query.

Example

1. Following e xample up dates S ALARY b y 0. 25 t imes in C USTOMERS t able f or all

the customers whose AGE is greater than or equal to 27:

UPDATE CUSTOMERS SET SALARY = SALARY * 0.25 WHERE AGE IN (SELECT
AGE FROM CUSTOMERS_BKP WHERE AGE >= 27);

1.12 SQL VIEWS

A view is nothing more than a SQL statement that is stored in the database with an

associated nam e. A v iew i s ac tually a c omposition of a t able i n t he f orm of a

predefined SQL query. A view can contain all rows of a table or select rows from a

table. A v iew c an be c reated f rom one or m any tables w hich d epend o n the w ritten

SQL query to create a view.

Views, which are kind of virtual tables, allow users to do the following:

• Structure data in a way that users or classes of users find natural or intuitive.

• Restrict ac cess t o t he dat a s uch t hat a us er c an s ee a nd (sometimes) m odify

exactly what they need and no more.

• Summarize data from various tables which can be used to generate reports.

 185

Database views ar e c reated us ing t he CREATE VIEW statement. Views c an be

created from a single table, multiple tables, or another view.

CREATE VIEW <VIEW NAME> AS SELECT COLUMN1, COLUMN2..... FROM
<TABLE NAME> WHERE [CONDITION];

Obviously, where you have a view, you need a way to drop the view if it is no longer

needed. The syntax is very simple as given below:

DROP VIEW <VIEW NAME>;

1.13 SQL INDEXES

Indexes are special lookup tables that the database search engine can use to speed

up data retrieval. An index helps speed up SELECT queries and WHERE clauses, but
it slows down data input, with UPDATE and INSERT statements.

Creating an index involves the CREATE INDEX statement, which allows you to name

the index, to specify the table and which column or columns to index, and to indicate

whether the index is in ascending or descending order.

Indexes can also be unique, in that the index prevents duplicate entries in the column

or combination of columns on which there's an index.

Syntax:

CREATE INDEX <INDEX_NAME> ON <TABLE_NAME>;

There are three types of index as follows:

• Single-Column Indexes: A single-column index is one that is created based on

only one table column.

 186

• Unique Indexes: Unique indexes are used not only for performance, but also for

data integrity. A unique index does not al low any dup licate values to be i nserted

into the table.

• Composite Indexes: A composite index is an index on two or more columns of a

table.

An i ndex c an be dr opped us ing S QL DROP command. C are s hould be t aken w hen

dropping an index because performance may be slowed or improved.
Syntax:

DROP INDEX <INDEX_NAME>;

1.14 SQL SEQUENCE

Sequence i s an or acle object w hich i s us ed to ge nerate un ique integers, w hich c an

help t o generate pr imary k eys au tomatically. A new primary k ey value c an be

obtained by selecting the most produced value and incrementing it. It required a lock
during the transaction and causes other users to wait for next value of primary key it
is k nown as serialization. T o c reate a s equence us ers m ust obt ain C REATE

SEQUENCE system privileges.

Syntax:

CREATE SEQUENCE <SEQUENCE_NAME>

 STARTWITH INITIAL-VALUE

 INCREMENT BY INCREMENT-VALUE
 MAXVALUE MAXIMUM-VALUE

 CYCLE |NOCYCLE

CACHE | NOCACHE;

Where,
START WITH: Specifies the starting value for the Sequence.

INCREMENT BY: Specifies the value by which sequence will be incremented.

 187

MAXVALUE: specifies t he up per l imit or t he maximum value up t o w hich s equence

will increment itself.
CYCLE: Specifies t hat if t he m aximum v alue e xceeds t he s et limit, s equence w ill

restart its cycle from the beginning.
CACHE: Pre-allocates a set of sequence number and keep them into memory so the

sequence number can be accessed faster.

Example

1. Let's start by creating a sequence, which will start from 1001, increment by 1 with

a maximum value of 9999.

CREATE SEQUENCE ST_SEQ
STARTWITH1001

INCREMENT BY1

MAXVALUE 9999

CYCLE;

To insert Sequence Value in SNUM of Salesman table, query will be

INSERTINTO SALESMAN VALUE (ST_SEQ.nextval

 Check Your Progress

,‘AMIT’, ’PATAN’, 0.15);

15. Explain difference between varchar2 & nvarchar2 data types.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

16. Explain difference between TRUNCATE and DROP Table.

……………………………………………………………………………………………

 188

……………………………………………………………………………………………

 ……………………………………………………………………………………………
17. What is Primary Key? Describe composite Primary Key with Example.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
18. What is Operator in SQL? List the different operators used in SQL.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
19. Define Aggregate and Scalar Function?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
20. What is Views in SQL?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

1.15 LET US SUM UP

In t his c hapter, w e ha ve di scussed about S QL A rchitecture a nd di fferent S QL

Statements. W e hav e also e xplored data t ypes available i n S QL. W e have c ome to

know vital processes like Selection, Projection Grouping, Joins and Sub Queries. We
have also described different operators and functions available in SQL. We have tried

to e xplore different c onstraints. W e h ave des cribed s ome S QL O bjects l ike View,

Indexes, and Sequences etc.

1.16CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 189

1. Varchar2 r epresents variable l ength c haracter data u p t o 4 000 c haracters.

While n varchar2 r epresents Unicode c haracter s tring ha ving m aximum s ize

determined by the National Character Set with an upper limit of 4000 Bytes.
2. TRUNCATE clause is used to delete all records from existing tables.

Definition of t able r emains as i t i s. W hile D ROP r emoves en tire de finition of

table means delete all records including the table structure.

3. Primary K ey is us ed t o u niquely identify e ach r ecord i n a d atabase t able.

When Primary key is created on multiple fields of the table than it is known as

Composite Primary Key. Composite Primary Key created at table level.

Example:

CREATE TABLE Employee
(

EmployeeId NUMBER (4),

BranchCode NUMBER (4),

EmployeeNAME VARCHAR2(30) NOT NULL,

EmployeeCity VARCHAR2(30),

 EmployeeJoinDate DATE,
PRIMARY KEY (EmployeeId,BranchCode)

);
Above Q uery i s us ed to C reate E mployee Table w ith C omposite P rimary K ey

namely (EmployeeId,BranchCode).

4. An operator is used to perform different operation and return result set. In SQL

operators have different types as follows:

A. Arithmetic Operators

B. Character Operators

C. Comparison Operators

D. Range Searching Operator
E. Pattern Matching Operator

F. Logical Operator

G. Set Operator

 190

At the end of this unit,

• Students will be able to write simple procedure and execute it

• Students will write stored procedure for various operations to be applied on database

table
• Students will be able to simple function and call it

2.2 INTRODUCTION

A pr ocedure or f unction i s a nam ed o bject of P L/SQL b lock. T here ar e t wo t ypes of

subprograms i n P L/SQL nam ely P rocedures and F unctions. E very s ubprogram w ill

contain dec laration block, an execution block or body, and an exception handling block

being an optional part.
When us er ex ecutes a pr ocedure or f unction, t he e xecution t akes p lace at the s erver

side. T his o bviously r educes net work t raffic. T he s ubprograms ar e t he c ompiled

programs a nd s tored in t he or acle database an d c an b e i nvoked w henever r equired.

Whenever t he s ub programs ar e c alled, t hey only need to e xecute bec ause they are

stored in compiled form. So, they save time required for compilation of the sub program.

2.3 STORED PROCEDURE BASICS

A procedure m ay t ake on e or m ore arguments. If a procedure t akes ar guments t hen

these ar guments ar e t o be s upplied at t he t ime of c alling t he pr ocedure. A pr ocedure

contains two p arts s pecification a nd the bo dy. P rocedure specification be gins w ith

Create and ends with procedure name or parameters list. Procedures without

parameters are written without a parenthesis. The body of the procedure starts after the

keyword IS or AS and ends with keyword End.
Syntax:

CREATE [OR REPLACE] PROCEDURE [schema.] procedure_name

[(parameter_1 [IN] [OUT] parameter_data_type_1,

parameter_2 [IN] [OUT] parameter_data_type_2,…

parameter_N [IN] [OUT] parameter_data_type_N)]

[AUTHID DEFINER | CURRENT_USER]

 191

IS
— declaration_statements

BEGIN

— executable_statements

return {return_data_type};

[EXCEPTION

— the exception-handling statements]

END [procedure_name];

Where,

Create or Replace means the procedure is created if the procedure with the same name

doesn’t exist or the existing procedure is replaced with the new code.
IS represents t he beginning of t he body of t he pr ocedure and is s imilar t o D eclare in

anonymous P L/SQL B locks. The c ode between IS a nd B EGIN m akes the D eclaration

section.
The syntax within the brackets [] indicate optional fields. The optional parameter list will

contain n ame, m ode and t ypes of t he p arameters. IN r epresents t he v alue t hat w ill be

passed f rom ou tside and O UT r epresents t he parameter t hat w ill b e us ed to r eturn a

value outside of the procedure.

EXCEPTION is again an optional part. It is used to handle run-time errors.

2.3.1 COMPONENTS OF PROCEDURE
To understand procedure easily we will divide the Procedure in two parts:
I. Procedure Head

All the code before the “IS” keyword is called the Procedure head or signature. Various

parts of PL/SQL Procedure Head are:
A. Schema

This is an optional parameter and defines the schema name in which the procedure will

be created. The default schema is the current user. If we specify a different user then,

the other user must have the privileges to create a procedure in his/her schema.
B. Name

 192

The NAME p arameter d efines t he n ame o f t he procedure. The nam e of a procedure

should be more meaningful and readable.
C. Parameters

The parameters are optional. These will be required to pass and receive values from a
PLSQL procedure. There are 3 styles of passing parameters.

• IN: This is the default style of parameter in PLSQL procedure. We use the IN mode

whenever we want the parameter to be read only i.e. we cannot change the value of

the parameter in the PLSQL procedure.

• OUT: The OUT parameter returns the values to the calling subprogram

orsubroutines. A default value cannot be assigned to OUT parameter so we cannot

make i t o ptional. W e have t o as sign a value t o O UT par ameter b efore w e ex it t he

procedure or t he value of the O UT p arameter w ill b e NULL. W hile c alling a
procedure with O UT par ameters, w e hav e to m ake s ure t hat w e pas s variables f or

the corresponding OUT parameters.

• IN OUT: In this mode the actual parameter is passed to the PLSQL procedure with

initial values and then within the PLSQL procedure the value of the parameter may

get changed or reassigned. The IN OUT parameter is finally returned to the calling

subroutine.
D. Authid

This i s al so an opt ional par ameter and i t d efines w hether t he pr ocedure w ill ex ecute
with t he pr ivileges of the C reator / D efiner of t he procedure or w ith t hat of t he

Current_User privileges.
II. Procedure’s Body

Everything after the “IS” keyword is called the body of the procedure. The procedure’s

body c ontains t he d eclaration of v ariables i n t he d eclaration s ection, t he c ode t o be

executed in the executable statements part and the code to handle any exception in the

exception handling part.

The d eclaration an d e xception handling p arts ar e optional in P LSQL pr ocedure body.
We must have at least one executable statement in the executable statement part. The

execution p art i s t he on e w here w e ha ve t o w rite t he b usiness l ogic. T he R eturn

 193

statement i n pr ocedure i s us ed t o di scontinue t he ex ecution o f t he pr ocedure f urther

and return the control to the calling subroutine.

To create a stored procedure, user must have Create Procedure system privilege. User

must al so hav e r equired ob ject pr ivileges on t he ob jects t hat are r eferred in t he
procedure in order to successfully compile the procedure.

2.3.2 TYPES OF PARAMETERS
There are two types of parameters of a procedure.

1. Formal parameters

2. Actual Parameters
 Formal Parameters

The parameters declared in the definition of procedure are known as formal parameters.

They receive the values sent while calling the procedure. For example,

• procedure Welcome (message varchar2, name varchar2)

In the above code message, name parameters are called as formal parameters.
 Actual Parameters

The values g iven w ithin p arentheses w hile c alling t he pr ocedure ar e c alled as ac tual

parameters.

• Welcome (‘Welcome Mr.’, ‘Himanshu’);

‘Welcome Mr.’ and ‘ Himanshu’ ar e ac tual parameters. These values ar e c opied t o t he

corresponding formal parameters message and name.

2.4 CREATING STORED PROCEDURES

After di scussing t he di fferent par t of t he pr ocedure, i ts t ime t o c reate procedure.

Suppose we have a table named ‘employee’ as shown below:

Create table employee

 (Employee_id number(5),

 Employee_name varchar2(10),

 Employee_salary number(6,2),

 194

 Employee_department varchar2(10),
 Employee_commission number(8,2));

After creating ‘employee’ table insert few records in it.

Now, w e w ill c reate a P rocedure in w hich w e w ill pas s t he ‘employee_id’ and ‘ salary’.

The P rocedure w ill u pdate t he r ecord o f t he em ployee ha ving t he s ame ‘employee_id’

using Oracle SQL Update statement.
Example:

Create or R eplace P rocedure up date_employee_salary (emp_id_in IN N umber,

salary_in IN Number)

IS

Begin
 Update employee

 Set employee_salary = salary_in

 Where employee_id = emp_id_in;

dbms_output.put_line(‘Procedure executed successfully’);

End update_employee_salary;

/

In t he ab ove c ode, w e hav e c reated a pr ocedure nam ed ‘ update_employee_salary’

which w ill t ake two p arameters ‘employee_id’ and ‘ salary’ a nd up date t he ‘employee’

table.
 Calling PL/SQL Procedure

After c reating procedure, it c an be c alled us ing t he E XEC or E XECUTE S tatement.

Syntax to call a Procedure using EXEC or EXECUTE statement is:
Syntax:

EXEC procedure_name(parameters);

or

EXECUTE procedure_name(parameters);

http://techhoney.com/tag/UPDATEPLSQL/�

 195

Suppose, we want to update the salary of ‘employee_id = 101’ from 1000 to 1500 using

update_employee_salary procedure. So, call update_employee_salary procedure using

EXEC statement as shown below.

• Exec update_employee_salary(101,1500);

The procedure will successfully update the salary of employee having id ‘101’ from 1000
to 1500 using PL/SQL Procedure.
 IN Parameter

Here w e w ill c reate a s tored pr ocedure t o ac cept a s ingle p arameter and pr int ou t t he

message with parameter passed via DBMS_OUTPUT.
Example:

Create or Replace Procedure INParameter(var in varchar2)

IS

Begin

 dbms_output.put_line(‘Welcome: The argument passed is: ‘ || var);

End;

/

To Run the procedure pass following command with argument as stated in below:

• Exec INParameter(‘BAOU’);
Output:

• Welcome: The argument passed is: BAOU

 OUT Parameter

A stored procedure to demonstrate the OUT Parameter.
Example:

Create or Replace Procedure OUTParameter(outvar out varchar2)

IS

Begin

outvar:= ‘Welcome to Hindustan’;

End;

/

 196

Now execute the above procedure. It will create the procedure.

Now t o e xecute t he pr ocedure w e w ill w rite a f ollowing bl ock of c ode and c all t he

Procedure from the body of the block.
Example:

Declare

outvar varchar2(100);

Begin

outparameter(outvar);

dbms_output.put_line(outvar);
End;

/

The executed code is shown below.
Output:

• Welcome to Hindustan
 INOUT Parameter

A s tored pr ocedure t o ac cept a INOUT p arameter (Param), c onstruct t he output

message and assign back to the same parameter name(Param) again.
Example:

Create or replace procedure inoutparameter(param IN OUT varchar2)

IS

Begin

param := ‘Welcome to India ‘ || param;

End;

/

The executed code will create the procedure.

To e xecute t he pr ocedure w e w ill c reate a following block of c ode a nd c all t he

Procedure from the body of the block.
Example:

 197

Declare
param varchar2(100) := ‘veddesai’;

Begin

inoutparameter(param);

dbms_output.put_line(param);

End;

/

The above code produces following output.
Output:

• Welcome to India veddesai

2.4.1 STORED PROCEDURE WITH DML STATEMENTS
I. INSERT Statement

First of all we will create User_data table in Oracle database as shown below.

Create Table User_data(

 User_id number (5) not null, username varchar2 (20) not null,

 created_by varchar2 (20) not null, created_date date not null,

 primary key (user_id));

Once the table is created, we will create a stored procedure. The procedure will accept

4 IN parameters and insert it into table “User_data”.
Example:

Create OR Replace Procedure insertUSERDATA(
 userid IN USER_data.USER_ID%TYPE,

 username IN USER_data.USERNAME%TYPE,

 createdby IN USER_data.CREATED_BY%TYPE,

 pdate IN USER_data.CREATED_DATE%TYPE)

IS

Begin

 198

 Insert INTO U SER_data (“User_Id”, “ Username”, “ Created_By”,
“Created_Date”)

 Values (userid, username,createdby,pdate);

 Commit;

End;

/

Once the procedure insertUSERdata created, we will execute it from PL/SQL block as

shown below.
Example:

Begin
 insertUSERdata(201,’Het’,’scott’,SYSDATE);

End;

/

Execute the above PL/SQL block and check the table records.
II. UPDATE Statement

We w ill c ontinue w ith t he pr eviously c reated us er_data t able. W e w ill create a s tored

procedure which will accept 2 IN parameters and update the username field based on

the provided userId.
Example:

Create or Replace Procedure updateUSERdata(

 userid IN USER_data.USER_ID%TYPE,

 newusername IN USER_data.USERNAME%TYPE)

IS

Begin

 Update USER_data S ET Username = n ewusername w here USER_ID =

userid;

 Commit;
End;

 199

/

Once the procedure updateUSERdata created, we will execute it from PL/SQL block as

shown below.
Example:

Begin

 updateUSERdata(201,'Mansi');

End;

/

Execute the above PL/SQL block and check the table records.
III. DELETE Statement

We w ill c ontinue w ith t he pr eviously c reated us er_data t able. W e w ill c reate a s tored

procedure which will delete the record based on the provided userId.
Example:

Create or Replace P rocedure de leteUSERdata(userid IN

USER_data.USER_ID%TYPE)

IS

Begin

 Delete USER_data where USER_ID = userid;

 Commit;
End;

/

Once the procedure deleteUSERdata created, we will execute it from PL/SQL block as

shown below.
Example:

Begin

 deleteUSERdata(201);

End;

 200

/

Execute the above PL/SQL block and check the table records.

2.4.2 DELETING A STORED PROCEDURE
To delete a stored procedure we have to fire following command.
Example:

• Drop procedure updateUSERdata;

Above code deletes the procedure updateUSERdata.

2.5 FUNCTION BASICS
A stored function is same as a procedure, except that it returns a value. Create Function

command is used to create a stored function.
Syntax:

Create [OR Replace] Function function_name

[(parameter_1 [IN] [OUT] parameter_data_type_1,

parameter_2 [IN] [OUT] parameter_data_type_2,…

parameter_N [IN] [OUT] parameter_data_type_N)]
RETURN return_datatype

IS | AS

— declaration_statements

BEGIN

— executable_statements

return {return_data_type};

[EXCEPTION

— the exception-handling statements]
END [function_name];

Where,

1. The function_name is the name given to the PLSQL function.

 201

2. T he parameter_name is t he nam e of t he par ameter t hat w e ar e p assing t o t he

function.

3. Th e parameter_data_type is t he dat a t ype of the parameter t hat w e ar e pas sing to

the PLSQL function.
4. E very O racle P L/SQL function must ha ve a R eturn s tatement in t he c ode e xecution

part.

The R ETURN s pecified in t he he ader p art of t he or acle P L/SQL function s pecifies t he

data-type of the value returned by the function.

2.5.1 PARAMETER PASSING TO A FUNCTION
There are 3 ways of passing parameters to PLSQL Function:

a. IN

b. OUT and

c. IN OUT

• IN: This is the default style of parameter in PLSQL function. This provides same

functionality as of Stored Procedure.

• OUT: The O UT par ameter r eturns t he values t o t he c alling s ubprogram or

subroutines. This provides same functionality as of Stored Procedure.

• IN OUT: In this mode the actual parameter is passed to the PL/SQL function with

initial values and then within the PL/SQL function the value of the parameter may

get c hanged or r eassigned. T he I N O UT par ameter i s f inally r eturned t o t he

calling subroutine. This provides same functionality as of Stored Procedure.

The b lock s tructure of a P L/SQL function i s s ame as t hose of a P L/SQL Anonymous
Block. A nonymous B lock does n’t ha ve C reate or R eplace F unction, t he par ameters

section of code and the Return Clause.

To und erstand f unctions w e w ill us e t he pr eviously c reated t able nam ed ‘ employee’.

Now s uppose w e w ant t o c reate a f unction t hat s hows us t he n ame of a n em ployee

whenever we pass employee_id as parameter.
Example:

Create or Replace Function get_employee_name (emp_no IN number)

 202

RETURN varchar2
 IS

 emp_name varchar2(100);

Begin

 Select employee_name into emp_name

 From employee

 Where employee_id = emp_no;

Return emp_name;

End get_employee_name;
/

Once the get _employee_name function c reated, w e w ill execute i t f rom P L/SQL b lock

as shown below.
 Calling Function

We can call an Oracle PL/SQL Function two ways.
I. Using Oracle SQL SELECT statement

We can call the above PL/SQL function using an SQL SELECT statement shown below

and check the output.

• Select get_employee_name (101) from dual;

Now, suppose if we change the employee_id passed to the function then we will get the

name of another employee.

II. Using Oracle Anonymous Block

Second w ay to c all function i s t o c reate an Anonymous block. Here w e w ill c reate an

anonymous block to call the get_employee_name PLSQL function.
Example:

Declare

 First_Name varchar2(30);

 203

 Second_Name varchar2(30);
 Third_Name varchar2(30);

Begin

 First_Name := get_employee_name(101);

 Second_Name := get_employee_name(102);

 Third_Name := get_employee_name(103);

 dbms_output.put_line(First_Name);

 dbms_output.put_line(Second_Name);
 dbms_output.put_line(Third_Name);

End;

When we execute the above Oracle SQL Anonymous Block we will get three names as

the output.

2.5.2 DELETING FUNCTION
To delete a function we have to use drop function command.
Syntax:

• Drop function <function-name>;
Example:

• Drop function get_employee_name;

Above code has deleted the function get_employee_name.
 Check Your Progress

1) What is procedure and function in PLSQL?

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
2) Where the Pre_defined_functions are stored?
 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
3) Write the code for calling functions and procedures in a PLSQL block.

 204

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
4) Write any five inbuilt String function.
 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
5) State the similarities between Procedure and Function.
 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
6) Differentiate between Procedure and Function.

……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

2.6LET US SUM UP

In t his c hapter, w e h ave l earned P L/SQL s ubprograms. W e ha ve l earned t o c reate

Procedure a nd di fferent w ays of c alling i t. W e have a lso discussed to c reate Function

and w ays of c alling it. W e al so learnt parameter p assing an d r eturning values f rom

subprograms. In P LSQL s tored procedure an d function pl ays a v ery important r ole f or

passing and manipulating data records very efficiently and effectively.

2.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS
1. A Procedure is a subprogram block consists of a group of PL/SQL statements while

function is an independent PL/SQL subprogram.

2. Pre_defined_functions are s tored i n t he s tandard package c alled “Functions,

Procedures

and Packages”.

 205

3. Function is called as a part of an expression:

Example: squr:=count_sqr(‘10’);

 Procedure is called as a statement in PL/SQL:
Example: count_salary(‘201’);

4. Following are the five inbuilt String function:
I.INSTR(maintext, string, start, occurance): It gives the position of particular

text in the given string.

Where,

maintext is main string,

string is text that need to be searched,
start indicates starting position of the search (optional),

accordance indicates the occurrence of the searched string (optional).

Example:

Select INSTR(‘Gujarat,’a’,2,1) from dual;

Output: 4
II. UPPER (string): It returns the uppercase of the provided string.

Example:Select upper(‘baou’) from dual;

Output: BAOU
III. LOWER (string): It returns the lowercase of the provided string.

Example:Select upper(‘BAOU’) from dual;

Output: baou
IV. INITCAP (string): It returns the given string with the starting letter in upper

case.

Example:Select (‘gujarat vidyapith’) from dual;

Output: Gujarat Vidyapith
V. LENGTH (text) Returns the length of the given string.

Example:Select LENGTH (‘BAOU’) from dual;

Output: 4

 206

5. Both can be called from other PL/SQL blocks.

If the exception raised in the subprogram is not handled in the subprogram exception

handling section, then it will propagate to the calling block.

Both can have as many parameters as required.
Both are treated as database objects in PL/SQL.

6. Following table shows the difference between Procedure and Function:

Procedure Function

It is used to a execute certain process It i s used m ainly t o a e xecute c ertain

calculations

It can’t be called in Select statement A Function without DML statements can

be called in Select statement

It uses Out parameter to return the value It uses Return to return the value

It i s n ot mandatory t o r eturn t he v alue

from procedure

It i s m andatory t o r eturn t he value f rom

function

Return will exit the control from

subprogram.

Return will exit the control from

subprogram al ong w ith r eturning t he
value

Return d atatype i s n ot r equired t o be

specified at the time of procedure

creation

Return da tatype i s m andatory t o s pecify

at the time of function creation

2.8 ASSIGNMENTS
1. Define stored Procedure. Explain the characteristics of stored Procedure.

2. Define function. Explain the characteristics of functions.

3. Explain various Parameters of PLSQL subprograms.

4. C reate a pr ocedure t hat t akes t he pnum , p name as i nput and insert i t t o t he

‘tblPerson’ table of the database.

 207

5. Create a function that takes the number as input and returns the cube as output.

2.9 Further Reading

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

 208

Unit 3:Package and Trigger

Unit Structure

3.1. Learning Objectives & Outcomes

3.2. Introduction

3.3. Package Component

3.4. Package Implementation

3.5. Trigger

3.6. Levels of Trigger

3.7. User

3.8. Let Us Sum Up

3.9. Check your progress: Possible Answers

3.10. Assignments

3.11. Further Reading

3

 209

3.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
• To learn and understand trigger and Package concepts

• To define, declare and initialize trigger on various kind of events

• To learn and initialize package and use it

• To learn the concept of Users and their roles
Outcome:

At the end of this unit,

• S tudents w ill b e able t o d eclare, i nitialize an d w rite t rigger bas ed o n various k inds of

events
• Students will be able to define package and access that package

• Students will be able to create and remove user, grant and revoke privileges

3.2 INTRODUCTION
A Package is collection of objects. It contains procedures, functions, variables and SQL

statements c reated as a s ingle un it. A package c onsists of t wo par ts, P ackage

Specification or package header and Package Body.
Package S pecification w orks as a n i nterface t o t he package. D eclaration of t ypes,

variables, constants, exceptions, cursors and subprograms is made in Package

specifications. P ackage s pecification does not allow any c ode s tatements. P ackage

body is the platform to provide implementation for the subprograms.

Package delivers various Advantages like,

 It a llows us er t o gr oup t ogether r elated ob jects, t ypes and s ubprograms as a

PL/SQL module.

 If package contains a procedure and when a procedure is called first time, entire
package i s loaded. This i s expensive w ith r espect t o r esources. B ut i t t akes less

response time for queries for subsequent calls.

 Package a llows us t o c reate t ypes, v ariable a nd s ubprograms that ar e pr ivate or

public

 210

Items dec lared w ithin package body ar e known as pr ivate. T hey ar e o nly ac cessed

within t he p ackage. W hile items dec lared w ithin p ackage s pecification i s public a nd

available outside the package.

3.3 PACKAGE COMPONENT

Package component consists of two parts.

3.3.1 PACKAGE SPECIFICATION
The syntax for the package specification is as follows.
Syntax:

CREATE [OR REPLACE] PACKAGE package_name
[AUTHID { CURRENT_USER | DEFINER }]

{ IS | AS }

 [Definitions of public TYPES

 ,Declarations of public variables, types, and objects

 ,Declarations of Exceptions

 ,Pragmas

 ,Declarations of Cursors, Procedures, and Functions

 ,Headers of Procedures and Functions]
END [package_name];

3.3.2 PACKAGE BODY
The syntax for the package body is as follows:
Syntax:

CREATE [OR REPLACE] PACKAGE BODY package_name

{ IS | AS }

 [Definitions of private TYPEs

 ,Declarations of private variables, types, and objects

 ,full definitions of Cursors

 ,full definitions of Procedures and Functions]

 211

[BEGIN
 sequence_of_statements

[EXCEPTION

 Exception_handlers]]

 END [package_name];

Package body is not required if the package specification contains only types,

constants, variables, exceptions. This type of packages on ly c ontains g lobal v ariables

that will be used by subprograms or cursors.

3.4 Package Implementation

Now we will discuss the implementation of package. First of all, we will start with simple

example as follows:
Example 1: In t he be low code, f irst w e ar e c reating a pac kage s pecification w ith two

stored procedure one to find the maximum number and another to find the cube of the

given number.
Package Specification:

Create or Replace Package PackageTest as

 procedure findMaximum(num1 IN number, num2 IN number);

 procedure findCube (num IN number);

end PackageTest;
/

Once w e ex ecute a bove c ode i t w ill c reate a pac kage s pecification n amed

‘PackageTest’ (the body is not created yet).

Package Body:

Now consider the following code:

Create or Replace Package body PackageTest as

 212

 procedure findMaximum(num1 IN number, num2 IN number) is
 begin

if (num1 > num2) then

dbms_output.put_line (num1|| ‘ is greater than ‘|| num2);

else

dbms_output.put_line (num2|| ‘ is greater than ‘|| num1);

end if;

 end;

 procedure findCube(num IN number) is
 begin

 dbms_output.put_line (‘Cube of the number ‘|| num || ‘ is ’|| (num * num *

num));

 end;

end PackageTest;

/

When w e ex ecute t he ab ove c ode i t w ill c reate t he p ackage bo dy for t he pr eviously

created package specification. All the members in the package body must match with all

the d eclarations w ithin t he package s pecification. We ha ve t o m ake s ure t hat bo th

package specification and package body gets stored in the database.

To execute package we have to use the command ‘execute’ followed by

the “packagename.sub-programname”. To e xecute t he a bove c reated p ackage f rom
SQL prompt the following command will be used.

• Execute PackageTest.findcube(15);

• Execute PackageTest.findMaximum(15,25);

Both of the above execution will return the respective output.
Example 2:

Now we will create a package to interact with a database. Before creating a package we

will c reate tables n amed E mployee and D epartment t o b e ac cessed i n p ackage as

shown below.

 213

• Create t able em ployee(eno n umber(3) pr imary k ey,ename

varchar2(15),salary number(7,2), deptno number(3) references department);

• Create table department(deptno number(3) primary key, deptname

varchar2(15));

After creating both the tables insert few records in both the tables.

After inserting records into the tables we will create package to access both the tables
in it.
Package Specification:

Create or Replace Package PackageDBAccess as

 procedure dispEmprecord;
 procedure dispDeptrecord;

end PackageDBAccess;

/
Package Body:

Create or Replace Package body PackageDBAccess AS

 Procedure dispEmprecord as

 Cursor cursor_emprec is

 select ename, salary from employee;

 Begin

 dbms_output.put_line (‘Name’ || ‘ ’ || ‘Salary’);
for record_emp in cursor_emprec

loop

 dbms_output.put_line (record_emp.ename || ‘ ’ ||

record_emp.salary);

end loop;

 End;

 Procedure dispDeptrecord as

 Cursor cursor_deptrec is
 select deptno,deptname from department;

 214

 Begin
 dbms_output.put_line (‘DeptNo’ || ‘ ’ || ‘DeptName’);

 for record_dept in cursor_deptrec

 loop

 dbms_output.put_line (record_dept.deptno || ‘ ’ ||

 record_dept.deptname);

 end loop;

 End;

End PackageDBAccess;
/

Above block of code will successfully create a package body.
Package Execution
To execute each of these procedures separately, we can use the following command as

shown below.

• Execute PackageDBAccess. dispemprecord;

• Execute PackageDBAccess. dispdeptrecord;

When we execute both the above statements it will display both table records.

3.4.1 ALTERING PACKAGE
Sometime we need to modify the package code. So, after updating the code we have to

just recompile the package body.

Package Alter Syntax is:

• Alter Package <package_name> Compile Body;

3.4.2 DELETING PACKAGE
To delete the package we have to use package Drop command.

Package Drop Syntax is:

• Drop Package <package_name>;

 215

3.5 TRIGGERS

A database t rigger i s a s tored procedure associated w ith a dat abase t able, view or

event. The t rigger c an be i nvoked onc e, when s ome event oc curs. It m ay oc cur m any

times, once for each row affected by an Insert, Update or Delete statement. The trigger

can be invoked before the event to prevent unexpected operations. The executable part

of a t rigger c an c ontain pr ocedural s tatements and S QL s tatements. T he s tored
procedure an d f unctions have t o be c alled e xplicitly w hile t he database t riggers ar e

executed or called implicitly whenever the table is affected by any DML operations.

We c an w rite t riggers t hat w ill b e i nvoked w henever one of t he f ollowing o perations

occurs:

• DML commands (Insert, Update, Delete) on a particular table or view issued by

any user.

• DDL commands (Create or Alter primarily) issued either by a particular

schema/user or by any schema/user in the database.

• Database e vents s uch as logon/logoff, er rors or s tartup/shutdown, i ssued ei ther

by a particular schema/user or by any schema/user in the database

 Uses of Triggers

1. Trigger a llows e nforcing b usiness r ules t hat c an’t be defined b y using integrity

constants.

2. Trigger enables us to gain strong control over the security.

3. Using trigger we can also collect statistical information on the table access.

4. Using triggers we can prevent invalid transaction.

3.5.1 TYPES OF TRIGGERS
Trigger t ype d epends on t he t ype of triggering o peration and b y t he level at w hich t he

trigger is executed. Triggers are of Two Types.
3.5.1.1 Row Level Triggers

A r ow t rigger i s t riggered e ach t ime a r ow i n t he t able is af fected by the triggering

statement. For example, if an update statement updates multiple rows of a table, a row

trigger is triggered once for each row affected by the update statement. If the triggering

 216

statement af fects no r ows, t he t rigger i s not executed. R ow t riggers s hould b e us ed

when some processing is required whenever a triggering statement affects a single row

in a table. Row level triggers are created using the “For Each Row” Clause in the Create

Trigger statement.
3.5.1.2 Statement Level Triggers

A s tatement l evel t rigger i s t riggered o nce on be half of t he t riggering s tatement,

independent of the number of rows the triggering statement affects (even if no rows are

affected). Statement triggers should be used when a triggering statement affects rows in

a t able but the pr ocessing r equired i s c ompletely independent of the number of r ows

affected. S tatement l evel t riggers ar e t he def ault t rigger c reated v ia C reate T rigger

statement.
Syntax:

CREATE [OR REPLACE] TRIGGER Trigger_Name

 {BEFORE | AFTER | INSTEAD OF }

 {INSERT [OR] | UPDATE [OR] | DELETE}

 [OF col_name]

 ON table_name
 [REFERENCING OLD AS o NEW AS n]

 [FOR EACH ROW]

 WHEN (condition)

BEGIN

 --- SQL statements

 END;

Explanation:

• CREATE [OR REPLACE] TRIGGER t rigger_name : This c reates a t rigger w ith

the given name or overwrites an existing trigger with the same name.

• {BEFORE | AFTER | INSTEAD O F} : This s pecifies at w hat t ime the t rigger g et

fired. i .e bef ore or af ter u pdating a table. B efore m eans b efore c ompiling t he

statement t he t rigger w ill b e f ired, after m eans af ter t he c ompilation the trigger

 217

will be fired. INSTEAD OF is used to create a trigger on a view. Before and after

cannot be used to create a trigger on a view.

• {INSERT [OR] | UPDATE [OR] | DELETE} : This determines the triggering event.

There are more than one triggering events that can be used together separated
by OR keyword. The trigger gets fired at all the specified triggering event.

• [OF c ol_name] : This c lause i s us ed w ith upd ate t riggers. T his c lause i s us ed

when we want the trigger to fire only when a specific column is updated.

• [ON table_name] : This c lause s pecifies t he nam e of t he t able or v iew to w hich

the trigger is associated.

• [REFERENCING OLD AS o NEW AS n] : This clause is used to reference the old

and new values of the data being changed. By default, we reference the values

as : old.column_name or : new.column_name. W e c annot r eference o ld v alues
when inserting a record, or new values when deleting a record because they do

not exist.

• [FOR EACH ROW] : This clause is used to determine whether a trigger must fire

when e ach r ow gets a ffected (i.e. a R ow L evel T rigger) or just once w hen t he

entire SQL statement is executed (i.e. statement level Trigger).

• WHEN (condition) : This clause is valid only for row level triggers. The trigger is

fired only for rows that satisfy the specified condition.
3.5.1.3 INSTEAD OF Trigger
This t ype of trigger enables us t o s top a nd r edirect t he p erformance of a D ML

statement. This type of trigger helps us in managing the way we write to non-updatable

views. S ometimes, t he INSTEAD O F t riggers ar e al so s een i nserting, up dating or

deleting rows in designated tables that are otherwise unrelated to the view.
3.5.1.4 Compound Triggers

These ar e m ulti-tasking t riggers t hat w ork as bot h s tatement as w ell as r ow-level

triggers when the data is inserted, updated or deleted from a relation.

3.5.2 DML TRIGGERS
These triggers are executed before or after we perform any DML operations on a table.
When w e c reate a t rigger, t he t rigger def inition i s s tored i n t he da tabase, w hich i s

 218

identified with the trigger name. The code in the trigger is processed when we apply any

command on the database or table.

Example 1:
Statement Level Triggers:

Create or replace trigger instrigger before insert on Employee

Begin

dbms_output.put_line(‘one record inserted successfully.....’);

End;
/

Create a Trigger, which displays a message whenever we insert a new row

in to Employee table.

Example 2.Create a T rigger, W hich di splays a m essage w henever w e updat e an

existing row in the tableEmployee

Create or replace trigger updtrigger before update on Employee

Begin

dbms_output.put_line(‘one record updated successfully.....’);

End;

/

.

Example 3.Create a Trigger, which displays a message whenever we delete a row from

the table Employee.

Create or replace trigger deltrigger before delete on Employee

Begin

dbms_output.put_line(‘record(s) deleted successfully.....’);

End;

/

Example 1.
Row Level Triggers:

Create a Trigger, which displays a message whenever we insert a new row

into a tableEmployee.

 219

Create or replace trigger instrigger before insert on Employee
for each row

Begin

dbms_output.put_line(:new.id||’ record inserted successfully.....’);

End;

/

Example 2.Create a t rigger, w hich displays a m essage w henever w e up date a r ow in

the table Employee.

Create or replace trigger updtrigger before update on Employee

for each row
Begin

dbms_output.put_line(:old.id||’ record updated to ‘||:new.id);

End;

/

Example 3.Create a Trigger, which displays a message whenever we delete a row from

the table Employee.

Create or replace trigger deltrigger after delete on Employee

for each row

Begin
dbms_output.put_line(:old.id||’ record deleted successfully.....’);

End;

/

3.5.3 DDL TRIGGERS
Example 1.Create a T rigger, w hich displays an error m essage whenever w e c reate a

new table.

Create or replace trigger restrict_CreateTable

 220

 before create on schema
begin

 raise_application_error(-20001,’CREATE Table not Permitted’);

end;

/

As w e c an s ee that t he abo ve c ode c reates a t rigger restrict_CreateTable. N ow w hen

we try to create a table named test it will not allow us to do so.
Example 2.Create a Trigger, w hich w ill d isplay an error m essage w henever w e t ry t o

drop any table. Now create one table named Test as shown below.

• Create table Test(tno number(3),tname varchar2(20));

Create or replace trigger restrict_DropTable

before drop on schema

begin

 raise_application_error(-20001,’DROP Table not permitted’);

end;

/

After t he a bove block o f c ode gets ex ecuted i t w ill c reate a trigger r estrict_DropTable.

Now try to drop the previously created table Test and check the output.
Example 3.Create a Trigger, w hich w ill d isplay an error m essage w henever w e t ry t o

alter any table.

Create or replace trigger restrict_AlterTable

before alter on schema

begin

 raise_application_error(-20001,’ALTER Table not permitted’);

end;

 /

 221

After t he a bove b lock of c ode gets ex ecuted it w ill c reate a t rigger r estrict_AlterTable.

Now try to alter the previously created table Test and check the output.
Example 4.Create a T rigger, w hich di splays an er ror m essage w henever w e t ry t o

truncate any table.

Create or replace trigger restrict_TruncateTable

before truncate on schema

begin

 raise_application_error(-20001,’TRUNCATE table not Permitted’);
end;

/

After the above block of code gets executed it will create a trigger

restrict_TruncateTable. Now try to truncate the previously created table Test and check
the output.

3.6 LEVELS OF TRIGGER

Level of trigger can be categorized as follows.

3.6.1 BEFORE INSERT TRIGGER
A Before Insert t rigger means t he t rigger w ill be f ired before t he insert op eration is

executed.
Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name

BEFORE INSERT
 ON table_name

 [FOR EACH ROW]

DECLARE

 -- variable declarations

BEGIN

 222

 -- trigger code
EXCEPTION

 WHEN ...

 -- exception handling

END;

Suppose we have a table named Customer_Order created as follows:

Create Table Customer_Order

(Custorder_id number(5), Ordquantity number(4),

cost_per_Orditem number(6,2), total_Ordcost number(8,2),

 ord_date date, Ordcreated_by varchar2(10));

After c reating t he t able, w e c an then us e t he C reate Trigger s tatement t o c reate a

Before Insert Trigger as follows:
Example:

Create or Replace Trigger Before_InsertData

Before Insert ON Customer_Order

For Each Row

Declare

u_name varchar2(10);
Begin

 Select user INTO u_name from dual;

 -- Update ord_date field with current system date

 :new.ord_date := sysdate;

-- Update O rdcreated_by field t o t he us ername of t he per son per forming t he

Insert

 :new.Ordcreated_by := u_name;

dbms_output.put_line(‘The Trigger Executed Successfully’);
End;

 223

/

Once the t rigger i s c reated insert f ollowing r ecords into t he t able. W hen w e insert t he

records the trigger will be invoked implicitly.

• insert into Customer_Order values(1,12,5,60,’28-march-19’,’vinod’);

• insert into Customer_Order values(2,5,15,75,’28-march-19’,’mukesh’);

By observing the above execution, we can say that when we have inserted the records

with d ate an d us er ‘ 28-march-19’,’vinod’ & ‘ 28-march-19’,’mukesh’ r espectively; t he
created trigger will fire implicitly on Customer_Order table and replace the date and user

values as per the trigger body.
Note: The values in Ord_Date and OrdCreated_By columns may be different for you as

they depend on system date and user logged in.

3.6.2 AFTER INSERT TRIGGER
An After Insert T rigger means t hat t he t rigger w ill b e f ired after the insert operation is

executed.
Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name

AFTER INSERT

 ON table_name

 [FOR EACH ROW]

DECLARE

 -- variable declarations

BEGIN

 -- trigger code

EXCEPTION

 WHEN ...

 224

 -- exception handling

END;

/

Example:
Suppose we have a table named Customer as follows:

Create Table Customer

(emp_id num ber(4), em p_name v archar2(30), c reation_date d ate, c reated_by

varchar2(30));

We will also create a duplicate table of ‘Customer’ table as ‘Duplicate_Customer’ using

the code below:

Create Table Duplicate_Customer As (select * from Customer);

At this moment we have not inserted any data in ‘Customer’ and ‘Duplicate_Customer’
tables. N ow, c reate a t rigger on ‘Customer’ t able s o t hat w henever w e w ill enter a ny

customer record in the ‘Customer’ table the same record also gets stored in ‘Duplicate_

Customer’ table.
Trigger:

Create or Replace Trigger After_InsertData_trigger
After Insert

ON Customer

For each row

Declare

 creator_name varchar2(30);

 creation_date date;

Begin

 225

--Getting the name of the current logged in User
 Select User INTO creator_name From dual;

--setting system date in creation_date

 creation_date := sysdate;

--Inserting data into the Duplicate_Customer table

 Insert into Duplicate_Customer

 Values (:new.emp_id , :new.emp_name , c reation_date ,

creator_name);

End;
/

Here w e ha ve c reated a P L/SQL After Insert T rigger named ‘After_InsertData_trigger’

which will insert a record in the ‘Duplicate_Customer’ table as soon as insert operation

is performed on ‘Customer’ table.
Let’s insert a row in ‘Customer’ table as:

• Insert Into Customer Values (1, ‘himanshu’,sysdate,’vinod’);

After executing above Insert statement, we can query on both the tables and check the

output.

Here using the PL/SQL After Insert Trigger we can see that in the ‘Duplicate_Customer’

table a record got inserted as soon as we inserted a record in ‘Customer’ table.

We c an al so create t rigger f or bef ore upd ate, af ter upd ate, b efore d elete and af ter

delete operations.

3.6.3 DROP TRIGGER
After c reating a t rigger i n O racle, w e m ight f ind t hat w e need t o r emove i t f rom t he

database. We can do this with the Drop Trigger statement.
Syntax:

• Drop Trigger Trigger-Name;
Example:

• Drop trigger After_InsertData_trigger;

 226

3.6.4 ENABLE-DISABLE TRIGGER
Whenever w e ne ed t o di sable the trigger, we c an do this w ith t he Alter Trigger

statement.
Example:

• ALTER Trigger Before_Insert_Trigger DISABLE;

Above s tatement us es t he Alter T rigger s tatement t o di sable t he t rigger

called Before_Insert_Trigger.
 Disable all Triggers on a Table

We c an di sable al l t riggers as sociated w ith a t able at t he s ame t ime us ing t he Alter

Table statement with the Disable All Triggers option. For example, to disable all triggers

defined for the Customer_Order table, we can write the following command.
Syntax:

• Alter table table_name Disable All Triggers;

 Enable a Trigger

Sometimes w e w ant t o en able t rigger o n a t able w hich i s disabled ear lier. W e c an do

this with the help of Alter Trigger statement.
Syntax:

• ALTER TRIGGER trigger_name ENABLE;
Example:

• ALTER TRIGGER orders_before_insert ENABLE;

This ex ample us es t he Alter Trigger s tatement t o enable the t rigger c alled

orders_before_insert.
 Enable all Triggers on a Table

We c an enabl e all t riggers as sociated w ith a t able at t he s ame t ime us ing t he Alter

Table statement w ith t he E nable All T riggers opt ion. To en able al l t riggers def ined for

the Customer_Order table, enter the following command.
Syntax:

• Alter Table table_name Enable All Triggers;

 227

Example:

• Alter Table Customer_Order Enable All Triggers;

3.7 USER
To create a user, simply issue the Create User command to generate a new account.

3.7.1 CREATING A USER
Example:

• Create User Ved Identified By rdbms;

Here w e ha ve s imply c reated a Ved ac count t hat i s identified or a uthenticated by t he

rdbms password.
 Privileges and Roles

Privilegesdefines the access rights provided to a user on a database objects. There are

two types of privileges:

I. System Privileges: This privilege allows user to create, alter, or drop database

elements.

II. Object Privileges: This privilege allows user to execute, select, insert, or delete

data from database objects to which the privileges apply.

Roles ar e t he c ollection o f pr ivileges or ac cess r ights. I n c ase of m any us ers i n a

database it becomes complex to grant or revoke privileges to the users. So, if we define
roles we can automatically grant/revoke privileges.

Data C ontrol Language (DCL) c ommands ar e used to en force d atabase s ecurity in a

multiple da tabase en vironment. T wo types of D CL c ommands us ed ar e Grant a nd

Revoke. D atabase Administrator's or owner’s of t he database object c an provide or

remove privileges on a database object.

3.7.2 GRANT COMMAND
SQL Grant command is used to provide access or privileges on the database objects to
the users. The syntax for the GRANT command is:

• GRANT pr ivilege_name O N o bject_name T O { user_name | P UBLIC |

 228

role_name} [with GRANT option];

Where,

• privilege_name is the access right or privilege granted to the user.

• object_name is the name of the database object like table, view etc.

• user_name is the name of the user to whom an access right is being granted.

• Public is used to grant rights to all the users.

• With Grant option allows users to grant access rights to other users.

In c reate us er s ection, w e have Ved ac count c reated, w e c an now s tart a dding

privileges to the account using the GRANT statement. GRANT is a very important and
powerful c ommand w ith m any possible o ptions. G enerally, w e f irst w ant t o as sign

privileges to the user through connecting the account to various roles.
Syntax:

• GRANT<privilege> to <user>
Example:

• Grant Connect to Ved;

To al low y our user t o login, w e need to gi ve it t he c reate s ession pr ivilege as s hown
below:

• Grant create session to Ved;

We c an gi ve m any s ystem pr ivileges i n one c ommand also. Grant t hese to V ed by

chaining them together as shown below:

• Grant create table, create view, create procedure, create sequence to Ved;

In newer versions of oracle it is not necessary but some older version may require that

we m anually as sign t he ac cess r ights t o t he new us er t o a s pecific schema and
database tables.

 229

For ex ample, i f w e w ant our Ved us er t o hav e t he ab ility t o per form S elect, U pdate,

Insert and D elete operation on t he s tudent t able, w e m ight e xecute t he f ollowing

GRANT statement:

• Grant select, insert, update, delete on schema.student to Ved;

This ensures that Ved can perform the four basic operation for the student table that is
part of the database schema.

3.7.3 REVOKE COMMAND
The revoke command removes user access rights or privileges to the database objects.

The syntax for the REVOKE command is:

• REVOKE pr ivilege_name O N object_name F ROM { User_name | P UBLIC |

Role_name}

For e xample t o r evoke s elect, up date, i nsert pr ivilege gr anted t o Ved t hen give t he
following statement.

• revoke select, update, insert on employee from Ved;

To r evoke up date s tatement on em ployee gr anted t o pu blic t hen gi ve t he f ollowing

command.

• revoke update on employee from public;

 Revoking System Privileges and Roles:

We c an r evoke s ystem pr ivileges or r oles us ing the SQL c ommand r evoke. Any us er
with t he adm in c apacity for a s ystem pr ivilege or r ole c an r evoke the pr ivilege or r ole

from any other database user. The grantor does not have to be the user that originally

granted the pr ivilege or r ole. The following s tatement r evokes the c reate t able S ystem

Privilege from Ved:

• Revoke create table from Ved;

 230

 Revoking Object Privileges and Roles:

We can revoke object privileges using the SQL command revoke. To revoke an object

privilege, the revoker must be the original grantor of the object privilege being revoked.

For ex ample, assuming y ou ar e t he original gr antor, t o r evoke t he s elect and insert
privileges on the employee table from the users Ved and Shrey, you have to issue the

following command:

• Revoke select, insert on employee from Ved, Shrey;

 Revoking Column Selective Object Privileges:

Users can grant specific column level insert, update and references privileges for tables

and v iews. B ut t hey c annot r evoke c olumn s pecific pr ivileges w ith a s imilar r evoke

statement. For that, the grantor must first revoke the object privilege for all columns of a
table or view, and then regrant the column specific privileges.

For e xample, assume that r ole C omputer_Science i s granted the up date pr ivilege on

the deptId and dname columns of the table dept. To revoke the update privilege on just

the deptId column, we have to issue the following two commands:

• Revoke update on dept from Computer_Science;

• Grant update (dname) on dept to Computer_Science;

The revoke statement revokes update privilege on all columns of the dept table from the

role C omputer_Science. T he grant s tatement r egrants u pdate pr ivilege on t he d name

column to the role Computer_Science.

3.7.4 DROP USER
The D ROP USER c ommand is us ed t o r emove a us er f rom t he or acle d atabase a nd

remove all objects owned by that user.
Syntax:

• DROP USER user_name [CASCADE];

Where:

user_name: It specifies the name of the user to remove from the Oracle database.

 231

CASCADE: It is optional. It specifies that if user_name owns any objects (i.e. tables or

views in its schema), we must specify CASCADE to drop all of these objects.
Example:

If the user does not own any objects in its schema, we can execute the following DROP
USER statement:

• DROP USER Ved;

Above code will drop the user called Ved. This DROP USER command will only run if

Ved does not own any objects in its schema.
If Ved did ow n objects in its s chema, w e w ill ne ed to r un t he f ollowing D ROP USER

command:

• DROP USER Ved CASCADE;

This DROP USER statement will remove the user Ved, drop all objects (i.e. tables and
views) owned by Ved, and all referential integrity constraints on Ved's objects will also

be dropped.
 Check Your Progress

1) What is Trigger?

…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

2) When do we use triggers?
…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

3) What is INSTEAD OF triggers?

…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

4) Differentiate between execution of triggers and stored procedures.

 232

…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

5) Write the objects that PL/SQL package may contain.
 …………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….
6) What is PL/SQL packages? State two different parts of the PL/SQL packages.

…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

7) What do you mean by privileges and Grants?
 …………………………………………………………………………………………….

 …………………………………………………………………………………………….

 …………………………………………………………………………………………….

3.8 LET US SUM UP
In this unit we have discussed package and trigger. Package allows us to bundle all the

objects like function, procedure within it and later we can execute them either directly or

from other s ubprograms. W e also learnt t hat t he t rigger c an be invoked w henever an

event occurs. Event may be an Insert, Update or Delete statement. Throughout Trigger

discussion we observed that it helps us in enforcing business rules that can’t be defined

by us ing i ntegrity c onstants. W e can gener ate s tatistical da ta us ing t rigger a bout t he

table ac cess. T hrough t rigger w e c an pr event i nvalid t ransaction f rom ex ecution. S o,
both package and trigger objects of PLSQL allows programmer a wide scope in writing

sub programs. At last we have learnt the creation of user, granting roles and privileges

to users and removing the users.

 233

3.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS
1. Trigger is a database object, executes automatically in response to some events on

the t ables or v iews. It i s us ed t o m aintain t he i ntegrity constraint t o t he da tabase

objects.

2. The word ‘Trigger’ means to activate. Triggers are mainly required for the following

goals:

• To maintain complex integrity constraints on the database tables

• To audit table information by recording the changes

• To signal other program actions when changes are made to database table

• To enforce complex business rules

• To preventing invalid transactions

3. T he INSTEAD O F t riggers ar e w ritten es pecially f or updating v iews, w hich is not

possible to modify directly through SQL DML statements.

4. S tored pr ocedure i s ex ecuted e xplicitly by i ssuing pr ocedure c all s tatement f rom

another block while trigger is executed implicitly whenever any triggering event like any

DML operation happens.

5. A PL/SQL package contains;

• PL/SQL table and record TYPE statements

• Procedures and Functions

• Cursors

• Variables and constants

• Exception and pragmas for associating an error number with an exception

6. PL/SQL package is a schema that groups functions, cursors, stored procedures and

variables in one place. PL/SQL packages have the following two parts:

 234

I. Specification part: This part specifies the part where the interface to the application is

defined.

II. Body part: Body part specifies the implementation of the specification is defined.

7. P rivileges are t he r ights t o execute S QL c ommands. G rants ar e as signed t o t he
object s o t hat ob jects c an be ac cessed ac cordingly. Grants c an b e as signed by t he

owner or creator of an object.

3.10 ASSIGNMENTS
1. Explain the uses of database trigger?

2. Explain 3 basic parts of a trigger.

3. What are the benefits of PL/SQL packages?

4. Explain the difference between Triggers and Constraints?

5. Explain types of triggers supported by PL/SQL with example.

6. Write a trigger that may execute after deleting a record from the table.

7. Define User, role and privileges.
8. Explain Grant and Revoke command with proper example.

3.11 Further Reading

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgramming Language of ORACLE,BPB Publication by Ivan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

4. http://beginner-sql-tutorial.com/sql-grant-revoke-privileges-roles.htm

 235

Unit 4:Managing User Privileges
& Roles and User Profile

Unit Structure

4.1. Learning Objectives & Outcomes

4.2. Introduction

4.3. User Role

4.4. Privileges

4.5. Managing User Role and Privileges

4.6. User Profile

4.7. Let Us Sum Up

4.8. Check your progress: Possible Answers

4.9. Assignments

4.10. Further Reading

4

 236

4.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
• To understand User Role

• To learn about Privileges

• To understand User Profile.

Outcome:

At the end of this unit,

• Students will be able to understand User Role and Privileges.

• Students will be able to create User Defined Role and assign it to the Users.
• S tudents w ill u nderstand difference between S ystem P rivileges a nd S chema

Objects

 Privileges.

• Students will be able to create User Profile.

4.2 INTRODUCTION

Roles, on the other hand, are created by users (usually administrators) and are used to
group together privileges or other roles. They are a means of facilitating the granting of

multiple pr ivileges or r oles t o us ers. A user privilege

A user's security domain includes privileges on all schema objects in the corresponding

schema, t he pr ivileges gr anted to t he us er, and the pr ivileges of r oles granted to t he

user that are

 is a r ight t o ex ecute a particular

type of SQL statement, or a right to access another user's object.

Each r ole a nd user has its ow n un ique s ecurity d omain. A r ole's s ecurity dom ain

includes the privileges granted to the role plus those privileges granted to any roles that

are granted to the role.

currently enabled. A role can be simultaneously enabled for one user and

disabled f or a nother. A us er's s ecurity dom ain al so i ncludes t he pr ivileges an d r oles

 237

granted to the user group PUBLIC. The SESSION_ROLES view shows all roles that are

currently enabled.

In s ome en vironments, y ou c an administer database security us ing t he oper ating
system. The op erating s ystem c an be used to m anage the gr anting (and r evoking) of

database r oles and t o m anage t heir pas sword au thentication. T his c apability i s not

available on all operating systems.

This chapter describes management of different SQL concepts as follows:

• User Roles

• Privileges

• User Profiles.

4.3 User Role

Oracle provides for easy and controlled privilege management through roles. Roles

These properties of roles allow for easier privilege management within a database:

 are

named gr oups of r elated privileges t hat you gr ant t o users or ot her r oles. R oles ar e

designed to eas e the adm inistration of en d-user s ystem and s chema object pr ivileges.

However, r oles ar e not m eant t o b e us ed f or application developers, because t he

privileges to access schema objects within stored programmatic constructs need to be

granted directly.

Reduced pr ivilege

administration

Rather than gr anting the s ame s et of p rivileges e xplicitly t o

several users, you can grant the privileges for a group of related

users t o a r ole, an d t hen onl y t he r ole n eeds t o be gr anted t o

each member of the group.

Dynamic privilege

management

If the privileges of a group must change, only the privileges of the

role n eed t o be m odified. T he s ecurity d omains of al l us ers

granted the gr oup's r ole aut omatically r eflect t he c hanges m ade

to the role.

Selective You can selectively enable or disable the roles granted to a user.

 238

availability of
privileges

This al lows s pecific c ontrol of a us er's pr ivileges i n an y given
situation.

Application

awareness

The data dictionary records which roles exist, so you can design

applications t o quer y t he dictionary and a utomatically ena ble (or

disable) s elective r oles w hen a user at tempts t o ex ecute the

application by way of a given username.

Application-

specific security

You c an pr otect r ole use w ith a p assword. Applications c an be

created s pecifically t o enable a r ole w hen s upplied t he c orrect

password. Users c annot en able t he r ole i f t hey do not k now the

password.

 In general, you create a role to serve one of two purposes: to manage the privileges for

a database application or to manage the privileges for a user group.

 239

Application Roles: You grant an application role all privileges necessary to run a given

database ap plication. Then, y ou gr ant the application r ole t o other r oles or t o s pecific

users. A n ap plication c an hav e s everal di fferent r oles, w ith eac h r ole as signed a

different s et of pr ivileges t hat a llow f or m ore or l ess da ta access w hile us ing t he
application.

User Roles: You c reate a user r ole f or a group of dat abase us ers w ith c ommon

privilege r equirements. You m anage user pr ivileges b y gr anting ap plication roles and

privileges to the user role and then granting the user role to appropriate users.

Database roles have the following functionality:

• A role can be granted system or schema object privileges.

• A role can be granted to other roles. However, a role cannot be granted to itself

and cannot be granted circularly.

• Any role can be granted to any database user.

• Each role granted to a user is, at a given time, either enabled or disabled.

• An indirectly granted r ole (a r ole gr anted to a r ole) c an be explicitly ena bled or

disabled f or a us er. H owever, b y e nabling a r ole t hat c ontains ot her r oles, y ou

implicitly enable all indirectly granted roles of the directly granted role.

Granting and Revoking Roles

You grant or revoke roles from users or other roles using the following options:

• The Grant S ystem P rivileges/Roles di alog bo x a nd R evoke S ystem

Privileges/Roles dialog box of Oracle Enterprise Manager

• The SQL commands GRANT and REVOKE

Roles c an also be gr anted to an d r evoked f rom us ers us ing t he oper ating s ystem that

executes Oracle, or through network services.

 240

Any us er w ith t he G RANT ANY R OLE s ystem pr ivilege c an gr ant or r evoke any

Predefined Roles

 role

(except a global role) to or from other users or roles of the database. Any user granted a

role w ith t he ADMIN OPTION c an gr ant or r evoke t hat r ole t o or f rom other us ers or

roles of the database.

The r oles C ONNECT, R ESOURCE, D BA, E XP_FULL_DATABASE, and

IMP_FULL_DATABASE are defined automatically for Oracle databases. These roles

are pr ovided for backward c ompatibility t o e arlier v ersions of O racle an d c an be

modified in the same manner as any other role in an Oracle database.

4.4 Privileges

A privilege

• connect to the database (create a session)

 is a right to execute a particular type of SQL statement or to access another

user's object. Some examples of privileges include the right to

• create a table

• select rows from another user's table

• execute another user's stored procedure

You grant privileges to users so these users can accomplish tasks required for their job.

Excessive gr anting of unn ecessary pr ivileges c an c ompromise s ecurity. A us er c an

receive a privilege in two different ways:

• You can grant privileges to users explicitly.

• You c an also gr ant pr ivileges t o a r ole (a nam ed gr oup of pr ivileges), a nd then

grant the role to one or more users.

There are two distinct categories of privileges:

• System privileges
• Schema object privileges

 241

 A. System Privileges

A system privilege is the right to perform a particular action, or to perform an action on
any s chema obj ects of a par ticular t ype. F or example, t he pr ivileges t o c reate

tablespaces and to d elete t he r ows of an y t able in a d atabase ar e s ystem pr ivileges.

There are o ver 100 distinct s ystem pr ivileges. E ach s ystem pr ivilege a llows a user t o

perform a particular database operation or class of database operations.

You c an gr ant or r evoke s ystem pr ivileges t o us ers and r oles. I f you gr ant s ystem

privileges to roles, you can use the roles to manage system privileges System privileges

are granted to or revoked from users and roles using either of the following:

• The Grant S ystem P rivileges/Roles di alog bo x a nd R evoke S ystem

Privileges/Roles dialog box of Oracle Enterprise Manager

• The SQL commands GRANT and REVOKE

Only users who have been granted a specific system privilege with the ADMIN OPTION

or users with the GRANT ANY PRIVILEGE system privilege can grant or revoke system

privileges to other users.

Because system privileges are so powerful, Oracle recommends that you configure your
database t o pr event r egular (non-DBA) us ers ex ercising ANY system pr ivileges (such

as UPDATE ANY TABLE) on the data dictionary. In order to secure the data dictionary,

ensure t hat the O7_DICTIONARY_ACCESSIBILITY initialization p arameter i s s et
to FALSE

B. Schema Object Privileges

. This feature is called the dictionary protection mechanism.

A s chema object pr ivilege i s a privilege or r ight t o p erform a par ticular ac tion on

a specific

table, view, s equence, pr ocedure, f unction, or pac kage. D ifferent o bject

privileges are available for different types of schema objects.

 242

Some s chema objects (such as c lusters, indexes, t riggers, and da tabase l inks) do not

have as sociated ob ject pr ivileges; t heir use i s c ontrolled w ith s ystem pr ivileges. F or

example, t o a lter a c luster, a us er m ust ow n t he c luster or h ave t he ALTER A NY

CLUSTER system privilege.

A schema object and its synonym are equivalent with respect to privileges; that is, the

object pr ivileges gr anted for a t able, v iew, s equence, procedure, f unction, or package

apply whether referencing the base object by name or using a synonym.

Schema object privileges can be granted to and revoked from users and roles. If you

grant ob ject privileges t o r oles, y ou c an m ake t he privileges s electively a vailable.

Object pr ivileges f or us ers an d r oles c an b e gr anted or r evoked us ing t he S QL
commands G RANT and R EVOKE, r espectively, or t he Add P rivilege t o R ole/User

dialog b ox a nd R evoke P rivilege from R ole/User di alog box of O racle E nterprise

Manger.

4.5 Managing User Role and Privileges

4.5.1. CREATE ROLE

You m ay w ish t o c reate a r ole s o t hat you c an logically gr oup the us ers' per missions.

Please note that to create a role, you must have CREATE ROLE system privileges.

You must give each role you create a unique name among existing user names and role

names of t he d atabase. R oles ar e not c ontained i n t he s chema of a ny user. In a

database that uses a multibyte character set, Oracle recommends that each role name

contain at l east o ne s ingle-byte c haracter. If a r ole nam e c ontains on ly m ultibyte

characters, t hen t he enc rypted r ole nam e a nd pas sword c ombination i s c onsiderably

less secure.

Syntax

 243

CREATE ROLE <ROLE_NAME>
[NOT IDENTIFIED | IDENTIFIED {BY password | USING [schema.] package |
EXTERNALLY | GLOBALLY }] ;

Where,
ROLE_NAME: The n ame of t he n ew r ole that y ou ar e c reating. This is how you w ill

refer to the grouping of privileges.
NOT IDENTIFIED: It m eans t hat t he role is i mmediately en abled. No pas sword is

required to enable the role.
IDENTIFIED: It means that a user must be authorized by a specified method before the

role is enabled.
BY password: It means that a user must supply a password to enable the role.
USING package: It m eans t hat y ou ar e c reating an application r ole - a r ole t hat is

enabled only by applications using an authorized package.
EXTERNALLY: It m eans t hat a us er m ust be aut horized by a n ex ternal s ervice t o

enable the role. An external service can be an operating system or third-party service.
GLOBALLY: It m eans t hat a user m ust b e authorized b y t he enterprise directory

service to enable the role.

If b oth NOT IDENTIFIED and IDENTIFIED

 are om itted i n t he C REATE R OLE
statement, the role will be created as a NOT IDENTIFIED role.

Example
CREATE ROLE DEMO_ROLE;

It will create New Role called DEMO_ROLE;

A. Grant TABLE Privileges to Role

Once you ha ve c reated the r ole i n O racle, your ne xt s tep i s t o gr ant pr ivileges t o t hat

role.

 244

Just as you granted privileges to users, you can grant privileges to a role. Let's start with

granting table privileges to a role. Table privileges can be any combination of SELECT,

INSERT, UPDATE, DELETE, REFERENCES, ALTER, INDEX, or ALL.

Syntax
GRANT <PRIVILEGES> ON <OBJECT> TO <ROLE_NAME>;
Where,
Privileges: The privileges to assign to the role. It can be any of the following values:

Privilege Description

SELECT Ability to perform SELECT statements on the table.

INSERT Ability to perform INSERT statements on the table.

UPDATE Ability to perform UPDATE statements on the table.

DELETE Ability to perform DELETE statements on the table.

REFERENCES Ability to create a constraint that refers to the table.

ALTER Ability to perform ALTER TABLE statements to change the table
definition.

INDEX Ability t o c reate a n i ndex on t he t able w ith t he c reate i ndex

statement.

ALL All privileges on table.

Object: The nam e of t he dat abase obj ect t hat y ou ar e granting pr ivileges f or. I n t he

case of granting privileges on a table, this would be the table name.
Role_Name: The name of the role that will be granted these privileges.

Example

1. I f you w anted t o gr ant S ELECT, I NSERT, UPDATE, an d D ELETE pr ivileges on a

table c alled salesman to a r ole nam ed DEMO_ROLE

, you w ould r un t he f ollowing

GRANT statement:
GRANT select, insert, update, delete ON salesman TO DEMO_ROLE;

https://www.techonthenet.com/oracle/grant_revoke.php�

 245

2. You c an a lso us e the ALL k eyword t o indicate that y ou w ish all permissions t o be
granted. GRANT all ON salesman TO DEMO_ROLE;

B. Revoke Table Privileges from Role
Once you have granted table privileges to a role, you may need to revoke some or all of

these privileges. To do this, you can execute a revoke command. You can revoke any

combination of SE LECT, INSERT, U PDATE, D ELETE, R EFERENCES, AL TER,

INDEX, or ALL.

Syntax
REVOKE <PRIVILEGES> ON <OBJECT> FROM <ROLE_NAME>;

Where,
Privileges: The privileges to revoke from the role. It can be any of the following values:

Privilege Description

SELECT Ability to perform SELECT statements on the table.

INSERT Ability to perform INSERT statements on the table.

UPDATE Ability to perform UPDATE statements on the table.

DELETE Ability to perform DELETE statements on the table.

REFERENCES Ability to create a constraint that refers to the table.

ALTER Ability t o per form ALTER T ABLE s tatements t o c hange t he t able

definition.

INDEX Ability t o c reate a n i ndex o n t he t able w ith t he c reate i ndex

statement.

ALL All privileges on table.
Object: The name o f the d atabase object t hat y ou are r evoking pr ivileges f or. In t he

case of revoking privileges on a table, this would be the table name.
Role_Name: The name of the role that will have these privileges revoked.

 246

Example

1. If you w anted to r evoke D ELETE privileges on a t able c alled salesman from a r ole

named DEMO_ROLE, you would run the following REVOKE statement:
REVOKE delete ON salesman FROM DEMO_ROLE;

2. If y ou w anted t o r evoke ALL pr ivileges on the t able c alled Salesman from a r ole

named DEMO_ROLE

, you could use the ALL keyword.
REVOKE all ON salesman FROM DEMO_ROLE;

4.5.2. GRANT ROLE TO USER

Now, that you've created the role and assigned the privileges to the role, you'll need to

grant the role to specific users.

Syntax
GRANT <ROLE_NAME> TO <USER_NAME>;

Where,
Role_Name: The name of the role that you wish to grant.

User_Name: The name of the user that will be granted the role.

Example
1. GRANT DEMO_ROLE TO SCOTT;
This example would grant the role called DEMO_ROLE to the user named SCOTT

.

A. Enable/Disable Role (Set Role Statement)

To enable or disable a role for a current session, you can use the SET ROLE statement.

When a us er logs into O racle, al l default

 roles ar e enab led, but no n-default r oles m ust

be enabled with the SET ROLE statement.

 247

Syntax
SET ROLE (ROLE_NAME [IDENTIFIED BY PASSWORD] | ALL [EXCEPT ROLE1,
ROLE2, ...] | NONE);
Role_Name: The name of the role that you wish to enable.
IDENTIFIED BY password: The password for the role to enable it. If the role does not

have a password, this phrase can be omitted.
ALL: It m eans t hat all r oles s hould b e en abled for t his c urrent s ession, e xcept t hose

listed in EXCEPT

.
NONE: Disables all roles for the current session (including all default roles).

Example
SET ROLE DEMO_ROLE IDENTIFIED BY demo123;
This enable the role called DEMO_ROLE with a password of demo123.

B. Set role as DEFAULT Role

A default role means that the role is always enabled for the current session at logon. It

is not necessary to issue the SET ROLE statement. To set a role as a DEFAULT ROLE,

you need to issue the ALTER USER statement.

Syntax
ALTER USER <USER_NAME> DEFAULT ROLE (<ROLE_NAME> | ALL [EXCEPT
ROLE1, ROLE2, ...] | NONE);

Where,
USER_NAME: The name of the user whose role you are setting as DEFAULT.

ROLE_NAME: The name of the role that you wish to set as DEFAULT.

ALL: It m eans t hat all r oles s hould be enabled as D EFAULT, e xcept t hose l isted

in EXCEPT

.
NONE: Disables all roles as DEFAULT.

Example

 248

ALTER USER scott DEFAULT ROLE DEMO_ROLE;

It would set the role called DEMO_ROLE as a DEFAULT role for the user named scott

.

4.5.3. DROP ROLE

In s ome c ases, i t m ay be ap propriate t o dr op a r ole f rom the d atabase. The s ecurity
domains of all users and roles granted a dropped role is immediately changed to reflect

the a bsence of t he dropped r ole privileges. All i ndirectly gr anted r oles of t he dr opped

role ar e also r emoved f rom af fected s ecurity domains. D ropping a r ole aut omatically

removes the role from all user default role lists.

Because the c reation of ob jects i s not depen dent on t he pr ivileges r eceived through a

role, tables and other objects are not dropped when a role is dropped.

Syntax
DROP ROLE <ROLE_NAME>;

Example
DROP ROLE DEMO_ROLE;

It will drop the role called DEMO_ROLE that we defined earlier.

4.6 USER PROFILE

Profile

• To create a profile, you must have the CREATE PROFILE system privilege.

is a set of limits on database resources. If you assign the profile to a user, then

that us er c annot exceed t hese l imits. Use pr ofiles to l imit t he dat abase r esources

available to a user for a single call or a single session.

Prerequisites

• To specify resource limits for a user, you must:

 249

• Enable r esource l imits dynamically w ith t he ALTER SYSTEM statement or w ith t he

initialization parameter RESOURCE_LIMIT. This parameter does not apply to

password resources. Password resources are always enabled.

• Create a profile that defines the limits using the CREATE PROFILE statement

• Assign the profile to the user using the CREATE USER or ALTER USER statement

Oracle Database enforces resource limits in the following ways:

• If a us er ex ceeds t he CONNECT_TIME or IDLE_TIME session r esource l imit,

then the database rolls back the current transaction and ends the session. When

the user process next issues a call, the database returns an error.

• If a user attempts to perform an operation that exceeds the limit for other session

resources, t hen t he da tabase ab orts t he op eration, r olls back t he c urrent

statement, and immediately r eturns a n er ror. T he user c an t hen c ommit or r oll

back the current transaction, and must then end the session.

• If a user attempts to perform an operation that exceeds the limit for a single call,

then t he d atabase a borts t he operation, r olls bac k the c urrent s tatement, a nd

returns an error, leaving the current transaction intact.

4.6.1. CREATE PROFILE

Syntax

CREATE PROFILE <PROFILE_NAME> LIMIT [Resource Parameter | Password
Parameter] ;

 250

UNLIMITED

When s pecified w ith a r esource par ameter, UNLIMITED indicates t hat a us er as signed

this pr ofile c an us e an u nlimited am ount of t his r esource. W hen s pecified w ith a

password parameter, UNLIMITED indicates that no limit has been set for the
parameter.

DEFAULT

Specify DEFAULT if y ou w ant t o om it a l imit f or t his r esource i n t his pr ofile. A us er

assigned t his profile i s subject t o the l imit f or t his resource specified i n

the DEFAULT profile. T he DEFAULT profile initially defines u nlimited r esources. Y ou

can change those limits with the ALTER PROFILE statement.

Any us er w ho i s n ot ex plicitly as signed a profile i s s ubject t o t he limits def ined in

the DEFAULT profile. Also, if the profile that is explicitly assigned to a user omits limits

for s ome r esources or s pecifies DEFAULT for s ome l imits, t hen the user i s s ubject t o

the limits on those resources defined by the DEFAULT profile.

RESOURCE_PARAMETERS

• SESSIONS_PER_USER: Specify the number of concurrent sessions to which you

want to limit the user.

• CPU_PER_SESSION: Specify the C PU t ime l imit f or a s ession, ex pressed i n

hundredth of seconds.

• CPU_PER_CALL: Specify the CPU time limit for a call (a parse, execute, or fetch),

expressed in hundredths of seconds.

• CONNECT_TIME: Specify t he t otal e lapsed t ime l imit f or a session, ex pressed in

minutes.

• IDLE_TIME: Specify t he permitted p eriods of c ontinuous inactive time d uring a

session, expressed in m inutes. Lon g-running quer ies and ot her op erations ar e not

subject to this limit.

 251

• LOGICAL_READS_PER_SESSION: Specify t he per mitted num ber of dat a b locks

read in a session, including blocks read from memory and disk.

• LOGICAL_READS_PER_CALL: Specify the permitted number of data blocks read

for a call to process a SQL statement (a parse, execute, or fetch).

• PRIVATE_SGA: Specify the amount of private space a session can allocate in the

shared pool o f t he s ystem g lobal ar ea (SGA). P lease r efer t o size_clause for

information on that clause.

PASSWORD_PARAMETERS

Use the f ollowing c lauses t o s et pas sword par ameters. P arameters t hat s et lengths of

time ar e interpreted in n umber of d ays. For t esting purposes you c an s pecify m inutes

(n/1440) or even seconds (n/86400).

• FAILED_LOGIN_ATTEMPTS: Specify the num ber of failed at tempts to l og i n to

the user account before the account is locked.

• PASSWORD_LIFE_TIME: Specify the number of days the same password can be

used for authentication. If you also set a value for PASSWORD_GRACE_TIME, the

password expires if it is not changed within the grace period, and further

connections are rejected. If you do not set a value for PASSWORD_GRACE_TIME,

its default of UNLIMITED will cause the database to issue a warning but let the user

continue to connect indefinitely.
• PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX: These t wo

parameters must be set in conjunction with each

other. PASSWORD_REUSE_TIME specifies t he num ber of days b efore w hich a

password c annot be r eused. PASSWORD_REUSE_MAX specifies t he n umber of

password changes required before the current password can be reused. For these

parameter to have any effect, you must specify an integer for both of them.

• If you s pecify an i nteger f or b oth o f t hese p arameters, t hen the us er c annot

reuse a password unt il t he p assword has been c hanged t he pas sword t he
number of times specified for PASSWORD_REUSE_MAX during the number

of days specified for PASSWORD_REUSE_TIME.

https://docs.oracle.com/cd/B19306_01/server.102/b14200/clauses008.htm#CHDEIJBC�

 252

• If you specify an integer for either of these parameters and

specify UNLIMITED for the other, then the user can never reuse a password.

• If you specify DEFAULT for either parameter, then Oracle Database uses the

value def ined i n t he DEFAULT profile. B y de fault, al l par ameters ar e s et
to UNLIMITED in t he DEFAULT profile. If y ou ha ve not c hanged t he def ault

setting of UNLIMITED in t he DEFAULT profile, t hen t he dat abase t reats t he

value for that parameter as UNLIMITED.

• If you set both of these parameters to UNLIMITED, then the database ignores

both of them.
• PASSWORD_LOCK_TIME: Specify t he num ber of da ys an ac count w ill be l ocked

after the specified number of consecutive failed login attempts.
• PASSWORD_GRACE_TIME: Specify t he n umber of d ays after t he gr ace per iod

begins during which a warning is issued and login is allowed. If the password is not

changed during the grace period, the password expires.
• PASSWORD_VERIFY_FUNCTION: The PASSWORD_VERIFY_FUNCTION claus

e lets a PL/SQL password complexity verification script be passed as an argument

to the CREATEPROFILE statement.

Examples

The following statement creates the profile named NEW_USER_PROFILE:
CREATE PROFILE NEW_USER_PROFILE LIMIT
PASSWORD_REUSE_MAX 10
PASSWORD_REUSE_TIME 30;

 Check Your Progress

21. How can any user Grant/Revoke a granted role to/from other users?

……………………………………………………………………………………………
……………………………………………………………………………………………

 ……………………………………………………………………………………………

 253

22. How can user receive a Privileges?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
23. Explain Set Role Statement of SQL.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
24. What is User Profile?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

4.7 LET US SUM UP

In t his c hapter, w e h ave learnt a bout R ole and P rivileges. W e have also c oncluded
the s ystem and obj ect pr ivileges. W e have also e xplored di fferent o peration of User

Role like Create, Grant and Revoke Role and Drop. We have come to know how can

we set limits on resources for any user using profiles.

4.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

5. Any user Granted a r ole w ith ADMIN O PTION c an Grant/Revoke that r ole

to/from any other users.
6. A user can receive Privileges in two different ways.

a. Grant Privileges to Users explicitly

b. Grant P rivileges t o a R ole an d t hen Grant t hat R ole t o on e or m ore

users.

7. Set R ole S tatement i s us ed t o E nable or D isable a r ole f or t he c urrent

session.

 254

8. User Profile is a set of limits on database resources and user cannot exceed

these limits.

4.9 ASSIGNMENTS

1. Explain P rivileges. Also describe difference bet ween S ystem P rivileges and

Object Privileges.
2. What is User Role? Describe with all options.

3. Explain User Profile in detail with all parameters.

4.10 Further Reading

1. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

2. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

 255

 Block-4

Introduction to PL/SQL

 256

Unit 1: Introduction to PL/SQL

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. PL/SQL Environment

1.4. Advantages of PL/SQL

1.5. Fundamentals of PL/SQL

1.6. Data types and Variables

1.7. Let Us Sum Up

1.8. Check Your Progress: Possible Answers

1.9. Assignments

1.10. Further Reading

1

 257

1.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
• To learn, understand basics of PL/SQL and its Block structure

• To learn, declare and initialize identifiers in PL/SQL block

• To learn, understand and access local and global variables

Outcome:

At the end of this unit,

• Students will be able to declare, initialize and access local and global variables

• Students will be able to write a PL/SQL block and execute it
• Students will be able to print the message or value from the PL/SQL block

1.2 INTRODUCTION

PL/SQL i s O racle's pr ocedural l anguage e xtension t o S QL, a r elational database

language. PL/SQL thoroughly integrates modern software engineering features such as

data encapsulation, information hiding, overloading, exception handling. We don’t have

a separate place or prompt for executing our PL/SQL programs. PL/SQL technology is
like a n e ngine t hat e xecutes P L/SQL bl ocks and s ubprograms. D ue t o t he s trong

integration of SQL and PL/SQL, PL/SQL is very effective in data manipulation.

SQL* Plus is an interactive and batch query tool that will be installed with every Oracle

installation. W e c an f ound i t at S tart -> P rograms -> O racle-OraHomeName ->

Application D evelopment -> S QL P lus. It h as al so a c ommand line us er interface,

Windows G UI, a nd w eb-based us er interface. It a llows t he us er t o c onnect t o t he

database and execute PL/SQL commands.

1.3 PL/SQL ENVIRONMENT

With P L/SQL, w e c an us e S QL s tatements t o m anipulate O RACLE da ta an d f low of

control s tatements t o pr ocess t he d ata. Moreover, w e c an also d eclare c onstants,

variables, def ine s ubprograms (procedures and f unctions) and ha ndle r untime er rors.

 258

Thus, PL/SQL combines the data manipulating power of SQL with the data processing

power of procedural languages.

Figure 1 PL/SQL Environment

PL/SQL eng ine executes pr ocedural s tatements and s ends S QL par t o f s tatements t o

SQL statement processor in the Oracle server. PL/SQL combines the data manipulating

power of SQL with the data processing power of procedural languages.

1.3.1 PL/SQL BLOCK STRUCTURE
PL/SQL is a block-structured language. i.e. Programs of PL/SQL contain logical blocks.

 259

Figure 2 PL/SQL Block Structure

As shown in the Figure 2 a PL/SQL block has three parts;
1. Declaration: Necessary v ariables ar e declared in t his s ection. It i s opt ional. T his is

an optional section of the code block. It contains the name of the local objects that will

be used in the code block. These include variables, cursor definitions, and exceptions.

This section begins with the keyword Declare.
2. Begin: This section contains executable statements of SQL and PL/SQL. This is the

only mandatory section. It contains the statements that will be executed. These consist

of S QL s tatements, D ML s tatements, pr ocedures (PL/SQL c ode bl ocks), f unctions
(PL/SQL code blocks that return a value), and built-in subprograms. This section starts

with the keyword Begin.
3. Exception: Any er ror oc curred w hile e xecuting t he s tatements in be gin p art c an be

handled in this p art. T his i s an opt ional s ection. It i s us ed to “ handle” any er rors that

occur during the execution of the statements and commands in the executable section.

This section begins with the keyword Exception.

The c ode bl ock i s t erminated b y t he E nd keyword. This i s t he only k eyword w ithin t he

construct t hat i s f ollowed b y a s emi-colon (;). T he o nly r equired s ection is t he

 260

executable section. This means the code block must have the Begin and End keywords.

The code block is executed by the slash (/) symbol.
13.2.2 PL/SQL Block Types

There are three PL/SQL Block types as shown in figure 3.

Figure 3 Pl/SQL Block types

PL/SQL is a block-structured language. The named blocks are called subprograms and
unnamed blocks are called anonymous blocks. Subprograms can be referred as either

functions or pr ocedures. T he difference bet ween functions an d pr ocedures i s t hat a

function c an be us ed in an expression and i t r eturns a value t o t hat e xpression. A

procedure i s i nvoked as a s tandalone s tatement an d p asses v alues t o t he c alling

program only through parameters. Subprograms can be nested within one another and

can be grouped in larger units called packages. The basic units (procedures, functions,

and anonymous blocks) that make up a PL/SQL program are logical blocks, which can

contain any number of nested sub-blocks. Typically, each logical block corresponds to a
problem or sub-problem to be solved. Anonymous block don’t have the name.

1.4 ADVANTAGES OF PL/SQL

There are various advantages of using PL/SQL. They are,

 261

1. It is a portable and easy language.

2. We can declare identifiers.

3. We can program with procedural language control structures.

4. It c an ha ndle er rors and pr events pr ogram f rom abnor mal t ermination us ing t he
exception handling mechanism.

5. It m odularizes pr ogram de velopment t hrough various P L/SQL b locks s uch as

Procedure and functions.

6. It integrates with Oracle server and shared library.

7. It improves performance through better communication with underlying DBMSs.

1.5 FUNDAMENTALS OF PL/SQL

Lexical Units

PL/SQL is not case-sensitive language, so lower-case letters are equivalent to

corresponding up per-case l etters ex cept w ithin s tring an d c haracter l iterals. A l ine of

PL/SQL t ext c ontains gr oups of c haracters k nown as l exical u nits, w hich c an be

classified as follows:
I. Delimiters (Simple and Compound Symbols)

A delimiter is a simple or compound symbol that has a special meaning to PL/SQL. For
example, we can use delimiters to represent arithmetic operations such as addition and

subtraction.
II. Identifiers (include Reserved Words)

We c an us e i dentifiers t o n ame P L/SQL program obj ects and u nits, w hich i nclude

constants, variables, exceptions, cursors, subprograms and packages. Some identifiers

called Reserved Words, have a special syntactic meaning to PL/SQL and so cannot be

redefined. F or f lexibility, P L/SQL lets us t o enc lose i dentifiers w ithin double qu otes.

Quoted identifiers are seldom needed, but occasionally they can be useful.
III. Literals

A literal is an explicit numeric, character, string, or Boolean value not represented by an

identifier. Two kinds of numeric literals can be used in arithmetic expressions: integers

and reals.

 262

•String literal i s a s equence of z ero or m ore c haracters enc losed b y s ingle quo tes. A ll

string literals except the null string (`') belong to type CHAR. PL/SQL is case-sensitive

within string literals.

•Boolean literals are the predefined values TRUE and FALSE and the non-value NULL
(which s tands for a m issing, unknown, or i napplicable value). B oolean l iterals ar e n ot

strings.
IV. Comments

The P L/SQL c ompiler i gnores c omments. Adding c omments t o our pr ogram enha nces

readability and guides the user in understanding the code. PL/SQL supports two types

of comment styles, single-line and multiline.

• Single-line comments begin with a double hyphen (--) anywhere on a line and extend

to the end of the line.
• Multiline comments begin with a slash asterisk (/*), end with an asterisk-slash (*/), and

can span multiple lines. We cannot nest comments.
Example: In this code, we are going to print ‘Welcome to GVP’ and we are also going to

check how the commented lines behave in the code.

BEGIN
 --This is a single line comment

dbms output.put line (‘Welcome to GVP’);

/*Multi line comments starts

Multi line comment ends */

END;

/

1.6 DATATYPES AND VARIABLES

Every constant and variable has a datatype, which specifies a storage format,

constraints and valid range of values.

PL/SQL provides a variety of predefined scalar and composite datatypes. A scalar type
has no i nternal c omponents. A c omposite t ype h as i nternal c omponents t hat c an be

manipulated individually. PL/SQL mostly used datatypes are discussed below.

 263

• NUMBER

We us e the NUMBER dat atype to s tore f ixed or f loating po int num bers of v irtually a ny

size. W e c an s pecify pr ecision, w hich i s t he total number o f di gits an d s cale, w hich

determines where rounding occurs.
NUMBER[(precision, scale)]

We c annot us e c onstants or variables t o s pecify pr ecision an d s cale; w e m ust us e an

integer literals.
• CHAR

We us e the C HAR d atatype to s tore f ixed-length c haracter da ta. T he C HAR dat atype

takes an optional parameter that lets us to specify a maximum length up to 32767 bytes.

CHAR[(maximum_length)]

We cannot use a constant or variable to specify the maximum length; we must use an
integer literal. If we do not specify the maximum length, it defaults to 1.
• VARCHAR2

We use the VARCHAR2 datatype to store variable-length character data. The

VARCHAR2 dat atype t akes a r equired par ameter t hat l ets us t o s pecify a m aximum

length up to 32767 bytes.

VARCHAR2(maximum_length)

We cannot use a constant or variable to specify the maximum length; we must use an

integer literal.
• BOOLEAN

We us e the B OOLEAN datatype t o s tore the values TRUE and F ALSE an d the n on-

value NULL. NULL stands for a missing, unknown, or inapplicable value. The

BOOLEAN datatype takes no parameters.
• DATE

We use the DATE datatype to store fixed-length date values. The DATE datatype takes

no par ameters. Valid dates f or D ATE v ariables i nclude January 1, 4712 B C t o

December 31, 4712 AD. When stored in the database column, date values will include
the time of day in seconds since midnight. The default date portion is the first day of the

current month and the default time portion is the midnight.
Defining Variables

 264

Variables are defined in the declaration section of the program. The syntax is:

• Variable_name datatype(precision);

The d efinition m ust e nd w ith a s emi-colon. T he def inition s tatement b egins w ith t he

variable name and contains the data type. A value may also be assigned to the variable

during the definition statement. The variable may also be constrained.
Variables are used to store results. Forward references are not allowed. So we have to

first declare the variable and then use it. Variables can have any SQL datatype, such as

CHAR, D ATE, NUMBER et c or any P L/SQL datatype l ike B OOLEAN,

BINARY_INTEGER etc.

We have to initialize variables designated as NOT NULL and CONSTANT. We have to

initialize i dentifiers b y us ing t he as signment op erator (:=) or t he D EFAULT r eserved

word.
Declaring Variables

Variables are declared in DECLARE section of PL/SQL.

DECLARE

Stu_No number (3);

Stu_Name varchar2 (15);

_ _ _

BEGIN
Variable Initialization
Variables and constants are initialized every time a block or subprogram is entered. By

default, variables are initialized to NULL. So, unless you explicitly initialize a variable, its

value i s undef ined. S calar v ariable dec laration an d i nitialization ex amples ar e as

follows.

var_job VARCHAR2(9);

var _count BINARY_INTEGER := 0;

var _total_sal NUMBER(9,2) := 0;

var _orderdate DATE := SYSDATE + 3;
var _tax_rate CONSTANT NUMBER(3,2) := 8.25;

var _valid BOOLEAN NOT NULL := TRUE;
Constraints Definitions

 265

Constraints can be placed on the variables defined in the code block. A constraint is a

condition that is placed on the variable. Two common constraints are:
• Constant: This constraint will cause Oracle to ensure the value is not changed after a

value i s i nitially as signed t o t he v ariable. If a s tatement t ries t o c hange t he v ariable
value, a n er ror w ill oc cur. T he f ollowing i s t he e xample of c onstrained variable

definitions:

PI constant number(9,8) := 3.14159265;
• Not Null: This c onstraint w ill c ause O racle t o ens ure t he variable always c ontains a

value. If a statement attempts to assign a null value to the variable, an error will occur.

The following is the example of constrained variable definitions:

Date_of_Birth not null date := ‘26-March-2019’;

Declaration and usage of variables:

Here we are going to print the ‘Welcome to BAOU, Ahmedabad’ using the variables and

execute it.

 Set Serveroutput on;

DECLARE
msg VARCHAR2(50);

BEGIN

msg:= ‘Welcome to BAOU,Ahmedabad’;

dbms_output.put_line (msg);

END:

/
Output:

Welcome to BAOU,Ahmedabad

SET SERVEROUTPUT ON

It is a command used to access results from Oracle Server. A PL/SQL program always

followed by a slash (“/“) on a line by itself. It sends the information to the compiler that

the en d of t he bl ock i s r eached. W ithout ‘ /’, t he c ompiler w ill not c onsider t he block i s

 266

completed, and it will not execute it. DBMS_OUTPUT is a package and PUT_LINE is a

function in it.

Scope of Variables
A variable in PL/SQL block is as local to that block and global to all its Sub-blocks. If we

redeclare an i dentifier in a s ub-block, w e c annot r eference the global i dentifier e xcept

we use a qualified name.
Example:

In the given example declaration two variables named num1 and num2 are in the outer

block (i.e. G lobal v ariable) a nd third v ariable named n um_sum dec lared i nto t he inner

block (i.e. local variable). Variable ‘num_sum’ is declared in inner block so can't access

in the outer block. But no1 and no2 can be accessed anywhere in the block.

DECLARE

 no1 number := 25;

 no2 number := 15;

BEGIN

 DECLARE
num_sum number;

 BEGIN

num_sum := no1 + no2;

 dbms_output.put_line(‘Sum is: ‘ || num_sum);

 END;

END;

/
Output:
Sum is: 40

We can use OUTER keyword to access outer block variable inside the inner block. It is

called global qualifier name space.
Example:

 267

DECLARE
 no number := 25;

BEGIN

 DECLARE

 no number := 15;

 BEGIN

 IF no > OUTER.no THEN

 DBMS_OUTPUT.PUT_LINE(‘Inner variable is greater than outer variable’);

 ELSE
 DBMS_OUTPUT.PUT_LINE(‘Inner variable is smaller than outer variable’);

 END IF;

 END;

END;

/
Output:

Inner variable is smaller than outer variable

 Check Your Progress

1) What is the use of Dbms_output.put_line()?

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

. ……………………………………………………………………………………

…………..

2) How do we get input from user in PL/SQL?

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

 268

. …………………………… ………………………………………………………………...

…………………………………………………………………………………… ………….

3) While doing comparisons which rules to be applied to NULLs?

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

. ……………………………………………………………………………………

…………..

4) Write a PL/SQL program to add two numbers?

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

. ……………………………………………………………………………………

…………..

5) T he P L/SQL e ngine e xecutes t he pr ocedural c ommands and passes t he S QL
commands to the Oracle server to process. State True or False.

 ………………………………………………………………………………………………..

.
6) Explain types of PL/SQL blocks.

 ………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..
.……………………………………………………………………………………

1.7LET US SUM UP

 269

In t his u nit, w e h ave discussed ab out P L/SQL b lock, its ben efit along w ith t he use of

SQL* Plus tool. We have also discussed about how to write the simple PL/SQL program

and how t o d eclare a nd us e a v ariable i n t hem. W e hav e al so us ed on e pac kage

DBMS_OUTPUT to print the message.

1.8CHECK YOUR PROGRESS : POSSIBLE ANSWERS

 Check Your Progress

1. Dbms_output.put_line() s tatement t akes a par ameter w hich c an b e pr inted on to

the console screen. When we start the SQL Command Prompt or Terminal, first

we have to type:
 Set serveroutput on;

This statement activates the working of print statement on the console screen.

2. We can get input from the user using the ‘&’ sign. For example, to get input in to

variable num,

num:=#

This statement will assign the value that the user enters for the variable.

3. While Comparison we need to keep in mind that,

I. NULL will never be TRUE or FALSE

II. NULL cannot be equal or unequal to other values

III. When a value in an expression is NULL, then the expression itself

evaluates to NULL except for concatenation operator (||)

4. Declare
no1 integer;

no2 integer;

sum integer;

Begin

no1:=& no1;

no2:=& no2;

sum:= no1 + no2;

 270

dbms_output.put_line(sum);

End;

/

5. True
6. PL/SQL blocks are of two types:

 1. Anonymous blocks: A PL/SQL blocks without header are known as anonymous

blocks.

 These blocks do not form the body of a procedure, function or triggers.
 Example:

DECLARE

digit NUMBER(2);

sqr NUMBER(3);
BEGIN

digit:= &Number1;

sqr:= digit * digit;

DBMS_OUTPUT.PUT_LINE(‘Square:’ || sqr);

END;

2. N amed bl ocks: P L/SQL bl ocks with hea der or l abels ar e k nown as N amed

blocks. Named b locks m ay e ither b e s ubprograms (procedures, f unctions,

packages) or Triggers.
Example:

FUNCTION squar (digit IN NUMBER)

RETURN NUMBER is sqr NUMBER(2);

BEGIN

sqr:= digit * digit;

RETURN sqr;

END;

1.9ASSIGNMENT
1. Define PL/SQL.

2. Discuss PL/SQL environment and block structure.

3. What is local and global variable access in PL/SQL block?

 271

4. Discuss various advantages of PL/SQL.

5. Write a PLSQL code to check whether a number is prime or not.

1.10 FURTHER READING
1. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

2. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

3. https://way2tutorial.com/plsql/

4. https://www.guru99.com/pl-sql-first-program-helloworld.html

https://way2tutorial.com/plsql/�
https://www.guru99.com/pl-sql-first-program-helloworld.html�

 272

Unit 2: Cursor

Unit Structure

2.1. Learning Objectives

2.2. Introduction

2.3. Cursor Execution Cycle

2.4. Types of Cursor

2.5. Cursor for Loop

2.6. Parameterized Cursor

2.7. Let Us Sum Up

2.8. Check Your Progress: Possible Answers

2.9. Assignments

2.10. Further Reading

2

 273

2.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
• To learn and understand Cursor and its execution cycle

• To define, declare and initialize Cursor to access data

• To learn and understand different types of Cursor

• To learn accessing Cursor through for loop

Outcome:

At the end of this unit,

• Students will be able to declare, initialize and access Cursor
• Students will be able to declare Cursor and write a PL/SQL block to access Cursor

data

• Students will be able to write implicit, explicit and parameterized Cursor

14.2 INTRODUCTION

A cursor is a pointer to an area of memory, called a context area. The context area is

allocated by oracle in order to process a SQL statement. The cursor allows PL/SQL to
control what happens to the context area when a statement is processed. It can be used

by user to process the output of a select statement that returns more than one row.

Oracle uses a work area to execute SQL commands and store processing information.

PL/SQL allows us to access this area through a name using a Cursor. For the execution

of every S QL s tatement c ertain ar ea in m emory i s al located. This pr ivate S QL ar ea is

called c ontext ar ea or C ursor. A c ursor w orks as a ha ndle or pointer into t he c ontext
area.

When w e d eclare a c ursor, w e ge t a po inter v ariable, w hich initially do esn’t point

anywhere. When the cursor is opened, memory is allocated and the cursor structure is

created. The c ursor variable w ill now poi nts t he c ursor. W hen the c ursor i s c losed the

memory al located f or t he c ursor i s r eleased. C ursors al low the pr ogrammer t o r etrieve

data from a table and perform actions on that data one row at a time.

 274

2.3 CURSOR EXECUTION CYCLE

The important s teps in the c ursor execution c ycle ar e O PEN, FETCH an d C LOSE. A
cursor ex ecution c ycle r efers t o t he s tages w hich a c ursor f ollows t o process and

execute the query. The phases of cursor execution cycle are listed below:

Figure 1: Cursor Execution Cycle

The activity carried out by the server in the key phases is:
1. OPEN Phase

In t his ph ase,PGA m emory i s al located f or c ursor pr ocessing, S ELECT s tatement is

parsed, Variable bi nding t akes place, S ELECT Q uery ex ecutes and f inally p ointer

moves to the first record.
2. FETCH Phase

In this phase, the record to which the record pointer points, is retrieved from the result
set. The record pointer will move only in the forward direction. The FETCH phase lives

until the last record is reached.
3. CLOSE Phase

After the last record of the result set is reached, cursor is closed and allocated memory

will b e g arbage c ollected an d r eturned b ack t o S GA. If a n o pen c ursor i s not c losed,

oracle automatically closes it after the execution of its parent block.

2.4 Types of Cursor
There are two types of cursors.

• Implicit cursor

• Explicit cursor

 275

2.4.1 IMPLICIT CURSORS
PL/SQL declares an implicit cursor for every DML command, queries it, which will return

a single r ow. The n ame of t he implicit c ursor i s S QL. W e c an di rectly us e t his c ursor

without any declaration.

For S QL quer ies w hich r eturns s ingle r ow, P L/SQL d eclares i mplicit c ursors. Implicit

cursors are simple SELECT statements and are written in the BEGIN block (executable

phase) of t he P L/SQL. Implicit c ursors r etrieve exactly one r ow. The m ost c ommonly
raised exceptions are NO_DATA_FOUND or TOO_MANY_ROWS.

For Example:

• Select sname, ssalary into sna, ssa from salesman where sno = 542;
Note: sname and ssalary are columns of the table salesman and sna and ssa are the

variables

used to store sname and ssalary fetched by the query.

Oracle implicitly opens a cursor to process each SQL statement not associated with an

explicitly declared cursor. We can refer to this cursor using the name SQL.
We c annot us e the O PEN, FETCH, an d C LOSE s tatements w ith S QL c ursor. B ut, w e

can us e c ursor at tributes t o get i nformation ab out t he m ost r ecently ex ecuted S QL

statement.

The following c ode s hows how to us e implicit c ursor t o know w hether t he m ost r ecent

UPDATE has updated any rows or not.

DECLARE

BEGIN

update . . .

if SQL%NOTFOUND then

statements;

end if;

END;

NOTFOUND is an at tribute of implicit c ursor t hat w ill r eturns t rue i f pr evious UPDATE

command has not affected any row.

 276

 Implicit Cursor Attributes

Cursor attributes do not have the similar meaning for both explicit and implicit cursors.

The following are the attributes of implicit cursor.

1. NOTFOUND: It returns true, if previous DML operation didn’t affect any row.
2. FOUND: It returns true, if previous DML operation affected any row.

3. ROWCOUNT: It r eturns num ber of r ows af fected b y t he m ost r ecent D ML

operation.

The following code shows how to use ROWCOUNT attribute with implicit cursor to know

how many rows were updated with most recent UPDATE command.

BEGIN

update salesman set scity = “Ahmedabad” where ssalary > 45;

/* if more than 3 rows are effected then rollback updation */

if SQL%ROWCOUNT > 3 then

rollback;

else

commit;
end if;

END;

2.4.2. EXPLICIT CURSOR
PL/SQL’s implicit c ursor c an handle o nly s ingle-row q ueries. B ut, i f you n eed to s elect

more t han o ne r ow us ing s elect t hen you ha ve to use explicit c ursor. The s et o f r ows

fetched b y a query i s c alled ac tive s et. Select c ommand in P L/SQL block w ill r etrieve

only on e r ow. If s elect c ommand r etrieves no r ow t hen NO_DATA_FOUND e xception

will be raised. If select retrieves more than one row then TOO_MANY_ROWS exception

occurs.
A s elect c ommand w ill s ucceed o nly w hen i t r etrieves a s ingle r ow. S elect c ommand

copies t he values of c olumns t hat i t r etrieved i nto v ariables. If m ultiple r ows ar e

 277

retrieved then m ultiple values f or each c olumn w ill be c opied t o a s ingle variable a nd

that will create the problem.
Example:

DECLARE

ssid varchar2(5);

snam varchar2(5);

sdpt varchar2(5);

BEGIN

select scode, sname, sdept into ssid, snam, sdpt
from salesman where ssalary > 45;

END;

Select c ommand i n t he ab ove c ode w ill r aise T OO_MANY_ROWS ex ception i f m ore

than one salesman is having salary more than 45.
An e xplicit c ursor i s the s olution t o t he pr oblem. A c ursor c an s tore a c ollection of

records retrieved by a query. Then it allows us to fetch one record from cursor at a time

and thereby enabling to process all the records in the cursor.
 Handling Explicit Cursor

Explicit c ursor i s a nam e us ed t o r efer t o a n ar ea w here you c an p lace m ultiple r ows

retrieved b y s elect. W e m ust us e an ex plicit c ursor w henever w e h ave t o us e a m ulti-

row query in PL/SQL.

The following are the steps required to create and use an explicit cursor:
1. Declare the cursor in Declare section

2. Open the cursor using open statement in Executable part

3. Fetch one row at a time using fetch statement.

4. Close the cursor after all the records in the cursor are fetched and processed by

using close.

Processing m ultiple r ows i s s ame as f ile handl ing. In f ile pr ocessing w e n eed t o op en

the f ile, pr ocess r ecords an d then c lose t he f ile. S imilarly user-defined e xplicit c ursor

needs t o b e ope ned, f etch an d r ead t he r ows, af ter w hich i t i s c losed. Li ke how f ile

 278

pointer marks current position in file processing, cursor marks the current position in the

active set.
 Declaring a Cursor

A c ursor i s dec lared in D eclare s ection using c ursor s tatement. At t he t ime of
declaration the

name of the cursor and the associated select statement are mentioned.
Syntax:

CURSOR cursor_name [(parameter[, parameter]...)]

IS select_statement
[FOR UPDATE [OF column,column, . . .];

The following code shows how to declare a cursor.

DECLARE

cursor sales_data is

select scode, sname, sdept

from salesman;

BEGIN

…………..

END;

sales_data is the name of the cursor, which will be populated with the rows retrieved by

the

given select at the time of opening the cursor.
 Opening a Cursor

OPEN statement is used to execute the select command associated with the cursor and

place

the rows retrieved by the query into cursor.

OPEN cursor_name [(input_arguments)];

Cursor_name is the name of the cursor that is to be opened.

Input_arguments are the values to be passed to the parameters of the cursor.

The following statement opens the cursor sales_data and places the rows retrieved by
the

 279

query into the cursor.

DECLARE

cursor sales_data is

select scode, sname, sdept

from salesman;

BEGIN

open sales_data;

END;
 Fetching Rows

Once c ursor i s opened us ing op en s tatement, c ursor has a s et of r ows, w hich c an be

fetched using fetch statement. Fetch statement takes the data of the current row in the

cursor and copies the values of the columns into variables given after INTO keyword.

 FETCH cursor_name INTO variable-1, variable-2, . . .;

For each column in the cursor there should be a corresponding variable in FETCH
statement. We also need to make sure that the data types of variables and

corresponding columns are matching.

The following code demonstrates how to fetch and copy data from current row of the

cursor to variables given after INTO keyword.

DECLARE
Cursor sales_data is

select scode, sname, sdept

from salesman;

v_scode salesman.scode%type;

v_sname salesman.sname%type;

v_dept salesman.sdept%type;

BEGIN

open sales_data;
loop

fetch sales_data into v_scode, v_sname, v_dept;

. . .

 280

end loop;
END;

FETCH statement is used inside the loop to repeatedly fetch rows from the cursor. The

process of fetching will stop when all the rows of the cursor are fetched (reached end of

cursor). T he f ollowing c ode s hows h ow t o exit c ursor w hen c ursor is c ompletely
processed.

Loop

fetch sales_data into v_scode, v_sname, v_sdept;

exit when sales_data%notfound;

end loop;

NOTFOUND attribute of the c ursor r eturns T RUE when previous F ETCH do esn’t

successfully

read a row from cursor.
 Closing a Cursor

Close statement is used to close cursor after the cursor is processed. Closing a cursor

will release the resources associated with cursor.

CLOSE cursor_name;

The following code closes sales_data cursor:

DECLARE
BEGIN

open ..

loop

...

end loop;

close sales_data;

END;

 Explicit Cursor Attributes

 281

Cursor at tributes al low us er t o r etrieve i nformation r egarding c ursor. For e xample, w e

can get t he num ber of r ows fetched s o f ar from a c ursor us ing R OWCOUNT at tribute.

We can also determine whether a row is fetched or not using FOUND attribute.

The following syntax is used to access cursor attributes:
cursor_name%Attribute

Every cursor defined by the user has 4 attributes. When appended to the cursor name

these attributes allows the user to access important information about the execution of a

multirow query.

The attributes are:

1. %NOTFOUND: It is a B oolean attribute, w hich r eturns t rue, i f t he last f etch i s
failed. i.e. when there are no rows left in the cursor to fetch.

2. %FOUND: Boolean variable, which returns true if the last fetch is succeeded.

3. %ROWCOUNT: It’s a numeric attribute, which returns number of rows fetched by

the cursor so far.

4. %ISOPEN: A B oolean variable, w hich r eturns t rue i f t he c ursor i s ope ned

otherwise returns false.

The following c ode s hows c ursor at tributes w ith explicit c ursors. Attribute NOTFOUND

returns true if previous FETCH statement couldn’t fetch any row.

LOOP

fetch sales_data into s_scode, s_dept;
/* exit loop if previous FETCH failed */

exit when sales_data%NOTFOUND;

/* process the record fetched */

END LOOP;

In t he above c ode E XIT i s ex ecuted w hen NOTFOUND attribute of c ursor s ales_data

returns TRUE.
 Using Cursor with LOOP

LOOP can be used to access the cursor values as shown in the following code.

 282

Example:

DECLARE

Lname varchar2(10);

Sal number(8,2);

CURSOR C1 IS Select Last_Name, Salary from Employee;

BEGIN

Open C1;

dbms_output.put_line(‘Last_Name’||’ ‘||’Salary’);

If C1%isopen then
LOOP

Fetch C1 into Lname, Sal;

dbms_output.put_line(Lname||’ ‘||Sal);

END LOOP;

END IF;

END;

/

Fetch i s us ed t wice i n the below e xample us ing W hile Loop t o m ake %FOUND

available.
Example:

DECLARE

Cursor C1 is

SELECT ID, Last_Name, city FROM Employee;

Num Employee.ID%type;

Nam Employee.Last_Name%type;

Town Employee.city%type;

Begin
Open C1;

 Fetch C1 into Num, Nam, Town;

while C1%found loop

 283

dbms_output.put_line('Row Number ' ||C1%rowcount || ' is: '|| Num||' '||Nam||'
'||Town);

Fetch C1 into Num, Nam, Town;

End loop;

Close C1;

End;

/

The above code will display the cursor C1 records with Employee Id, Name and city.

2.5 CURSOR FOR LOOP
The c ursor f or Loop c an b e us ed to process m ultiple r ecords. There are two benefits

with cursor for Loop.

1. It implicitly declares a %ROWTYPE variable.

2. Cursor f or loop itself op ens a c ursor, r ead r ecords a nd then c loses t he c ursor

automatically. S o, O pen, F etch a nd C lose s tatements ar e not n ecessary i n i t.

To pr ocess a c ursor, w e c an use c ursor F OR l oop to a utomate t he f ollowing
steps.

• Opening cursor

• Fetching rows from the cursor

• Terminating loop when all rows in the cursor are fetched

• Closing cursor

The f ollowing i s t he s yntax of c ursor f or loop. T his f or l oop is s pecifically m eant to

process cursors.

FOR rowtype_variable IN cursor_name

LOOP

Statements;

END LOOP;

 284

rowtype_variable is automatically declared by cursor for loop. It is of ROWTYPE of the

cursor. I t h as c olumns of t he c ursor as f ields. T hese f ields c an be accessed us ing

rowtype_variable.fieldname.
Example:

DECLARE

CURSOR C1 IS Select Last_Name, Salary from Employee;

BEGIN

For EMP_REC in C1

LOOP
dbms_output.put_line(EMP_REC.Last_name||’

‘||EMP_REC.Salary);

END LOOP;

END;

/

The above code will display the cursor C1 records with Employee Last Name and their

salary. emp_rec i s au tomatically c reated variable of %ROWTYPE. W e h ave not used

Open, Fetch an d C lose in t he ab ove example as c ursor f or loop does i t automatically.

Using Implicit for Loop the above example can be rewritten as shown below:
Example:

BEGIN

For EMP_REC in (Select Last_Name, Salary from Employee)

LOOP

dbms_output.put_line(EMP_REC.Last_name||’

‘||EMP_REC.Salary);

END LOOP;

END;
/

__

 285

2.6 Parameterized Cursor

Parameterized Cursor passes the parameters into a cursor and uses them in the query.

PL/SQL parameterized cursor define only datatype of parameter and doesn’t require to

define i t's length. A c ursor FOR loop aut omatically ope ns the c ursor t o w hich i t r efers,

so our program doesn’t require opening that cursor inside the loop.
Syntax:

CURSOR cursor_name (parameter_list)

IS

 SELECT_statement;

The syntax for a cursor with parameters in PL/SQL is:

Example:

DECLARE

 Cursor C1(num number) is select * from Employee
 where ID = num;

 emp Employee%rowtype;

BEGIN

If C1%Isopen Then

Close C1;

End If;

 -- Open C1(5);

 FOR emp IN C1(5) LOOP
 dbms_output.put_line('EMP_NUM: ' ||emp.ID);

 dbms_output.put_line('First_Name: ' ||emp.First_Name);

 dbms_output.put_line('Last_Name: '||emp.Last_Name);

 dbms_output.put_line('EMP_Salary:'||emp.Salary);

 END Loop;

-- CLOSE C1;

END;

/

 286

 Check Your Progress

1) What is a cursor? Why Cursor is required?

………………………………………………………………………………………………
…………………….…………………………………………………………………………

………….……………………………………………………………………………………

…………………………………………….…………………………………………………

2) Write the PL/SQL Statements used in cursor processing.

………………………………..………………………………………………………………
………………………………………………………..………………………………………

……………………………………………………………………..…………………………

3) Write the cursor attributes used in PL/SQL.

…………………………………………………………………………………..……………

………………………………………………………………………………………………..
………………………………………………………………………………………………..

4) Check following code and tell what will happen after commit statement?

Cursor C1 is

 Select empno,
 ename from emp;

Begin

 open C1;

loop

 Fetch C1 into

eno. ename;

 Exit When

 C1 %notfound;-----
 commit;

end loop;

end;

 287

5) What is the use of WHERE CURRENT OF clause in cursors?

……………………………………………………………………………………………..

……………………………………………………………………………………………..
…………………………………………………………………………………………..…

2.7SUMMARY

In this unit we have learnt that the major task of a cursor is to fetch data, one row at a

time, f rom the r esult s et. C ursors ar e us ed w henever t he us er w ants t o m anipulate or

update r ecords in a s ingleton f ashion or i n a r ow by r ow m anner, in a d atabase table.

The information stored in the Cursor is known as Active Data Set. Cursors are opened

in pr edefined ar ea of O racle’s D BMS i n t he m ain m emory s et, w here t he c ursors ar e

opened. W e have a lso discussed c ursor w ith f or loop and p arameter. C ursor pl ays an

important role in accessing data one row at a time unlike sql commands.

2.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 Check Your Progress

1. Cursor is a named private SQL area from where we can access information. Cursors

needs to process rows individually for queries returning multiple rows.

2. DECLARE CURSOR cursor name, OPEN cursor name, FETCH cursor name INTO

or Record types, CLOSE cursor name.

3. Cursor attributes are;

I. %ISOPEN : It is used to check whether cursor is open or not.

II. % ROWCOUNT : It returns the number of rows fetched / updated / deleted.

III. % FOUND : It is used to check whether cursor has fetched any row. Returns
true if rows are fetched.

IV. % NOT FOUND : It i s used t o c heck w hether c ursor h as f etched a ny r ow.

Returns true if no rows are fetched.

 288

These attributes are processed with SQL for Implicit Cursors and with Cursor name for

Explicit Cursors.

4. In the above code the cursor is having query SELECT, so does not get closed even

after Commit / Rollback.
If, t he c ursor i s having q uery as S ELECT FOR UPDATE t hen i t get s c losed af ter

Commit / Rollback.

5. In cursor, WHERE CURRENT OF clause in an Update, Delete statement refers to the

latest row retrieved from a cursor.

2.9 ASSIGNMENTS
1. Define Cursor. Explain Cursor Cycle.

2. Discuss the types of cursor with proper syntax.

3. How do we use While Loop and For Loop in Cursor? Discuss with example.

4. Explain parameterized Cursor with example.
5. Differentiate Cursor declared in a procedure and Cursor declared in a package
specification.

6. What are PL/SQL cursor exceptions?

2. 10 FURTHER READING

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

 289

Unit 3: Locking

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. Locking Strategy

3.4. Types of Lock

3.5. Lock Table

3.6. Let Us Sum Up

3.7. Check Your Progress: Possible Answers

3.8. Assignments

3.9. Further Reading

3

 290

3.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,

• To learn and understand database lock

• To learn the benefits of locking any database objects

• To learn and understand different modes of locks

• To learn and understand different types of locks

Outcome:

At the end of this unit,

• Students will be able to define database lock

• Students will be able to lock table with different locking mode

3.2 INTRODUCTION

Oracle D atabase provides da ta concurrency, c onsistency a nd i ntegrity am ong

transactions through a locking mechanism. The locks are performed automatically and

require no user interaction. It is directly associated with a session. Database Locks are
mechanisms t hat pr event des tructive interaction b etween transactions accessing t he

shared r esource or o bjects. T hese r esources c an be t ables, dat a r ows, dat a blocks,

cached items, connections and entire systems.

There ar e m any types of l ocks t hat c an oc cur s uch s hared l ocks, e xclusive l ocks,

transaction l ocks, D ML l ocks, and bac kup-recovery l ocks. O racle database

automatically obt ains r equired l ocks w hen p erforming S QL t ransactions. For e xample,

before a session is per mitted t o u pdate dat a, t he s ession m ust f irst lock t he data. T he

lock empowers the session exclusive control over the data so that no other transaction
can update the locked data until the lock is released.

https://gerardnico.com/db/oracle/transaction�
https://gerardnico.com/db/oracle/session�

 291

3.3 Locking Strategy

The d atabase m aintains di fferent t ypes o f l ocks bas ed on the operation t hat ho ld t he

lock. Loc ks h ave direct i mpact o n t he i nteraction of r ead a nd w rite op eration. T he

following r ules summarize t he l ocking be haviour of or acle d atabase f or r eads a nd

writes:

• A r ow i s l ocked w henever m odified by a w rite op eration. W hen a t ransaction
updates one row, the transaction acquires a lock for this row only. The contention

can be minimized by locking table data at the row level.

• When one t ransaction i s up dating a r ow, t hen a r ow l ock prevents a di fferent

transaction from updating the same row concurrently.

• A read operation never blocks a write operation. A reading of a row does not lock

that row, a write operation can update this row. The only exception is a SELECT

... FOR UPDATE statement that will lock the row being read.

• A w rite o peration nev er blocks a r ead oper ation. W hen a r ow is being c hanged

by a write transaction, the database applies undo data to provide readers with a
consistent view of the row data.

3.3.1. LOCK MODES
Following table describe various types of locking mode with their meaning.

Lock Mode Meaning

EXCLUSIVE It a llows a SELECT query o n t he l ocked t able, al l other

operations (i.e. Update, Delete etc.) are prohibited to other

transactions.

SHARE It allows concurrent queries, but updates are prohibited for

all transactions.

 292

Lock Mode Meaning

ROW SHARE It allows concurrent access to the table, but no other users

can acquire an exclusive lock on the table.

ROW EXCLUSIVE It i s es sentially t he s ame as ROW SHARE but a lso

prevents locking in SHARE mode.

SHARE ROW

EXCLUSIVE

It locks t he entire t able; queries ar e al lowed but no other

transaction can acquire any lock on the table.

3.4 Types of Lock

Oracle s erver implicitly acquires a lock s ituation i f a t ransaction i s do ne on t he s ame

table in different sessions. This default locking technique is

called implicit or automatic locking.

In Explicit Locking, a table or partition can be locked using the LOCK TABLE statement

in on e of t he earlier s pecified m odes. It i s bet ter t o ac quire an E xplicit L ocking r ather
than relying on the implicit locking done by default by the Oracle server.

Generally, the database uses two types of locks:

3.4.1 EXCLUSIVE LOCKS
In Exclusive locks only one lock can be obtained on an object such as a row or a table.

This locking m ode pr events t he as sociated r esource f rom bei ng shared. A t ransaction

acquires an exclusive lock when it updates data. The first transaction who had acquired

a lock to resource exclusively is the only transaction that can modify the resource until

the exclusive lock is released.
15.3.2. Shared locks

In Shared l ocks m any s hare l ocks c an be obtained o n a s ingle ob ject. T his l ocking

mode al lows the as sociated r esource t o be s hared based on the op erations involved.

 293

Multiple users reading data can share the same data, acquiring share locks to prevent

simultaneous access by a write transaction looking for an exclusive lock.

Oracle database does not allow a field level locking. It gives the Row level, Page level

and Table level locking mechanism.
I. Row Level locking

In row-level locking, any specific row or rows in a table can be locked (unlocked

rows w ill be av ailable f or upd ates or del etes). The l ocked r ows c an be updat ed

only by the process that initiated the locking.

II. Page Level locking

A page level locking is used when the Where clause evaluates to a set of data.

III. Table Level locking

In table-level locking, the whole table is locked against any kind of DML actions
from

another transaction. Once a given transaction has locked a table, that transaction

is the

only one that can change rows in the table.

3.5 LOCK TABLE
To lock any database table following syntax can be used.
Syntax:

• LOCK TABLE tables IN lock_mode MODE [WAIT [, integer] | NOWAIT];

Where,

• Tables is a A comma-delimited list of tables,

• lock_mode is a previously discussed any lock mode,

• WAIT s pecifies t hat t he da tabase w ill w ait f or a s pecific n umber of s econds as
mentioned by integer to acquire a DML lock.

• NOWAIT indicates that the database should not wait for a lock to be released.

Example

Let's look at below code of how to use the LOCK TABLE statement.

 294

For example:

• LOCK TABLE Student IN SHARE MODE NOWAIT;

This c ode w ill l ock t he S tudent table in S HARE MODE a nd not w ait f or a lock to be

released.

• Lock table Student IN Exclusive Mode NOWAIT;

Above code will lock the Student table in EXCLUSIVE MODE and not wait for a lock to

be released.

 Check Your Progress

1) What are LOCKS?

………………………………………………………………………………………………..

.
………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

.

2) Write two important database goals of Locking.

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..
.

3) Write different types of locks available in database.

………………………………………………………………………………………………..

.

 295

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

.
4)What will happen if another session tries to update the locked data?

………………………………………………………………………………………………

………………………………………………………………………………………………

…......……………………………………………………………………………………….

.

3.6LET US SUM UP
Locking i s a m echanism t o ens ure dat a c onsistency, c oncurrency a nd i ntegrity w hile

allowing maximum simultaneous access to objects. It is used to implement concurrency

control w hen m ultiple us ers t ry t o m anipulate t able d ata at t he s ame t ime. B y learning

locking we can say that it helps in avoiding deadlock conditions and also avoids clashes

in ac quiring t he d atabase r esources. G enerally a us er does not nee d t o w orry abo ut
locking, as R DBMS aut omatically s elects t he m ost appr opriate lock f or a particular

transaction.

3.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 Check Your Progress

1. Locks ar e t echniques us ed t o pr event destructive interaction b etween users

accessing database objects. ORACLE uses locks to control concurrent access to

data.

2. I. C onsistency: It ens ures t hat t he data o bjects a us er i s r eading or c hanging i s

not changed (by other users) until the user is finished with the data.

II. Integrity: It e nsures t hat t he da tabase's data object an d s tructures r eflect a ll
changes made to them in the correct order.

3. a. Data Locks (DML)

b. Dictionary Locks (DDL)

c. Internal Locks and Latches

 296

d. Distributed Locks

e. Parallel Cache Management Locks

 4. Suppose database session A tries to update some data that is already locked by

database
session B. Here, session A will remain in lock wait state, and session A will be stopped

from making any progress with any SQL transaction that it’s executing. We can say that

session A will be blocked until session B releases the lock on that data.

3.8ASSIGNMENTS
1. Define Lock. Explain Locking benefits.

2. Discuss different types of locking with example.

3. Explain various modes of lock.

3.9FURTHER READING

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

 297

Unit 4: Exception Handling

Unit Structure

4.1. Learning Objectives

4.2. Introduction

4.3. User-defined Exceptions

4.4. Predefined (Named) Exceptions

4.5. SQLCODE and SQLERRM

4.6. PRAGMA Exception

4.7. Let Us Sum Up

4.8. Check Your Progress: Possible Answers

4.9. Assignments

4.10. Further Reading

4

 298

4.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
• To learn and understand Exception

• To define and understand different types of Exception

• To learn and understand Exception handling

Outcome:

At the end of this unit,

• Students will be able to write exception handling block

• Students will be able to declare user defined exception
• Students will be able to use pre-defined exception for different types of errors

• Students will be able to write pragma exception

4.2INTRODUCTION

An E xception i s an er ror s ituation or abnormal c ondition, w hich ar ises dur ing pr ogram

execution. When an error takes place exception is raised, normal execution is stopped

and control transfers to exception handling block. Exception handlers are block of codes
written t o han dle the e xception. The e xceptions c an be s ystem-defined or pr e-defined

and User-defined exception. When PL/SQL raises a predefined exception, the program

is t erminated by d isplaying er ror m essage. B ut i f t he pr ogram is s upposed t o h andle

exception raised by PL/SQL then we have to use Exception Handling part of the block.

Control i s t ransferred t o e xception handling part w henever an exception oc curs. After

the e xception h andler c ompletes ex ecution, c ontrol i s t ransferred to n ext s tatement in

the enc losing bl ock. If t here i s no enclosing bl ock t hen c ontrol r eturns t o H ost (from

where we ran the PL/SQL block).
Syntax of exception handling is:

WHEN exception-1 [or exception -2] ... THEN

statements;

[WHEN exception-3 [or exception-4] ... THEN

 299

statements;] ...
[WHEN OTHERS THEN

statements;]

exception-1, exception-2 ar e exceptions t hat ar e t o be h andled. These e xceptions ar e

either pr e-defined exceptions or us er-defined exceptions. If an exception i s r aised b ut
not han dled by e xception ha ndling p art t hen P L/SQL block i s terminated b y displaying

an error message related to the exception.

The biggest advantage of exception handling is that it improves readability and reliability

of the code. Errors from many statements of code can be handles with a single handler.

Instead of checking for an error at every point we can just add an exception handler to

handle the exception when raised.

4.3 USER-DEFINED EXCEPTIONS
A U ser-defined e xception i s an ex ception def ined b y t he pr ogrammer. U ser-defined

exceptions ar e dec lared i n t he d eclaration s ection w ith t heir t ype as ex ception. T hey

must be r aised explicitly us ing R AISE C ommand, w hile pr e-defined ex ceptions ar e

raised implicitly. R AISE s tatement c an a lso be us ed t o r aise internal exceptions. We
can map exception names with specific Oracle errors using the

EXCEPTION_INIT Pragma. W e c an a lso as sign a n umber a nd description t o t he

exception using RAISE_APPLICATION_ERROR

DECLARE
 myexception EXCEPTION;

BEGIN

 Raising Exception:

BEGIN

 RAISE myexception;
Handling Exception:

BEGIN

 EXCEPTION

.
Declaring Exception:

 300

 WHEN myexception THEN
 Statements;

END;

Note:

 An Exception cannot be declared twice in the same block.
 Exceptions declared in a block are considered as local to that block and global to

its sub-

blocks.

 An enclosing block cannot access Exceptions declared in its sub-block. While it is

possible for a sub-block to refer its enclosing Exceptions.

The f ollowing example d emonstrates t he us e of User-defined E xception us ing
Procedure:

Create or Replace Procedure Raise_Exception (Input NUMBER) IS

 Evenno_Exception EXCEPTION;

 Oddno_Exception EXCEPTION;

Begin

 IF MOD(Input, 2) = 1 THEN

 RAISE Oddno_Exception;
 ELSE

 RAISE Evenno_Exception;

 END IF;

EXCEPTION

 WHEN Evenno_Exception THEN

 dbms_output.put_line(TO_CHAR(Input) || ' is Even Number ');

 WHEN Oddno_Exception THEN

 dbms_output.put_line(TO_CHAR(Input) || ' is Odd Number');
End Raise_Exception;

/

 301

Now execute the procedure with following command and check out the output as shown

below.

• exec Raise_Exception(5);

5 is odd Number

4.3.1 RERAISING AN EXCEPTION
When we want an exception to be handled in the current block as well in its enclosing

block t hen w e ne ed t o use R AISE s tatement w ithout a n ex ception nam e. RAISE
command c an al so be us ed t o r eraise a n ex ception s o t hat t he c urrent e xception is

propagated to outer block. Current exception will be raised again if a sub block executes

RAISE statement without specifying exception name in exception handler. In the below

example, the exception ZERO_DIVIDE is logged into a table before it is re-raised to the

user or to the application.
Note: RAISE statement without exception name is valid only in exception handler.

DECLARE

 num NUMBER;

 BEGIN

 num := 5/0;

 EXCEPTION

 WHEN zero_divide THEN

 INSERT INTO log_details VALUES (log_seq.nextval, SQLCODE ||’ ‘||
sqlerrm);

 RAISE;

 END;

 /

4.3.2 RAISE APPLICATION ERROR
To di splay our own er ror m essages w e c an use t he bu ilt in

RAISE_APPLICATION_ERROR. It w ill d isplay the er ror m essage in t he s ame w ay as

Oracle er rors. W e s hould us e a n egative n umber between –20000 to –20999 f or t he

error_number and the error message should not exceed 512 characters.

 302

Syntax:

RAISE_APPLICATION_ERROR(<error_number>, <error_message>, <TRUE |

FALSE>);

Where,

error_number -20000 to -20999

error_message Varchar2(2048)

TRUE add to error stack

FALSE replace error stack (the default)

Let’s try to understand with following example.

CREATE OR REPLACE PROCEDURE Raise_application_Exception (Input NUMBER)

IS

 evenno_exception EXCEPTION;

 oddno_exception EXCEPTION;

BEGIN

 IF MOD(Input, 2) = 1 THEN

 RAISE oddno_exception;

 ELSE
 RAISE evenno_exception;

 END IF;

EXCEPTION

 WHEN evenno_exception THEN

 RAISE_APPLICATION_ERROR(-20001, 'Even Number Entered');

 WHEN oddno_exception THEN

 RAISE_APPLICATION_ERROR(-20999, 'Odd Number Entered');

END Raise_application_Exception;
/

Execute the above procedure with following command and check the output. It will

display error message with error number.

• Exec Raise_application_Exception(5);

 303

4.4 Predefined (Named) Exceptions
Predefined e xception i s r aised a utomatically w henever t here is a v iolation o f O racle

coding r ules. P L/SQL has de fined c ertain c ommon errors and gi ven names t o t hese
errors, which are called as predefined exceptions. Each exception has a corresponding

Oracle er ror c ode. P redefined exceptions ex amples ar e t hose l ike ZERO_DIVIDE,

which i s r aised aut omatically w hen w e t ry t o di vide a num ber by z ero. O ther bu ilt-in

exceptions ar e gi ven b elow. W e c an handl e une xpected O racle er rors us ing O THERS

handler. It can handle all raised exceptions that are not handled by any other handler. It

must al ways be w ritten as t he l ast han dler in e xception b lock. P redefined e xception

handlers are declared globally in package Standard. We don’t need to define them.
Structure of Error Handling:

CREATE OR REPLACE PROCEDURE <procedure_name> IS

BEGIN

 NULL;

EXCEPTION

 WHEN <named_exception> THEN
 -- handle identified exception

 WHEN <named_exception> THEN

 -- handle identified exception

 WHEN OTHERS THEN

 -- handle any exceptions not previously handled

END;

/

Example of ZERO_DIVIDE Exception:

Declare

 num number := 50;

 div number := 0;

 result number;

 304

begin
 result := num / div;

 dbms_output.put_line(‘result: ‘||result);

exception

 when zero_divide then

 dbms_output.put_line(‘DIVIDE by ZERO: ’||sqlerrm);

end;

/

Example of NO_DATA_FOUND Exception:

The below program will show the name and address of a salesman as result whose ID

is matches. But there is no salesman with ID 10 in our record, so the program raises the

run-time exception NO_DATA_FOUND, which is captured in EXCEPTION block.

DECLARE

 s_id salesman.id%type := 10;

 s_name salesman.name%type;

 s_addr salesman.address%type;

BEGIN

 SELECT name, address INTO s_name, s_addr
 FROM salesman

 WHERE id = s_id;

DBMS_OUTPUT.PUT_LINE (‘Name: ‘|| s_name);

 DBMS_OUTPUT.PUT_LINE (‘Address: ‘ || s_addr);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line(‘No such Salesman exists!’);

 WHEN others THEN
 dbms_output.put_line(‘There is problem’');

END;

/

 305

The DUP_VAL_ON_INDEX exception is raised when a SQL statement tries to create a

duplicate v alue i n a c olumn on w hich pr imary k ey or uni que c onstraints ar e def ined.

Following example demonstrates the use of DUP_VAL_ON_INDEX exception.

BEGIN

 Insert into salesman (id) values(1);

 EXCEPTION

 When dup_val_on_index then

 dbms_output.put_line('Duplicate value on an index');

END;
 /

More than one Exception can be written in a single handler as shown below.

EXCEPTION

When NO_DATA_FOUND or TOO_MANY_ROWS then

Statements;

END;

Invalid Cursor Exception

Here we will try to check the exception associated with Cursor access. Let’s examine

the below example.

CREATE OR REPLACE PROCEDURE InvalidCursor_exception IS

 CURSOR CurExcp is

 SELECT * FROM salesman;

 Cur_Record CurExcp%rowtype;

BEGIN

 LOOP

 -- note the cursor was not opened before the FETCH

 FETCH CurExcp INTO Cur_Record;
 EXIT WHEN CurExcp%notfound;

 306

 NULL;
 END LOOP;

EXCEPTION

 WHEN INVALID_CURSOR THEN

 dbms_output.put_line('Invalid Cursor State exception Raised');

 WHEN OTHERS THEN

 dbms_output.put_line('Some Other Problem');

END InvalidCursor_exception;

/

Execute the above procedure and check the output.

The following table shows some important predefined exception with their meaning and

error code.

Exception Name Error Description

CASE_NOT_FOUND
ORA-

06592

None of the choices in the WHEN clauses

of a CASE statement is selected and there
is no ELSE clause.

CURSOR_ALREADY_OPEN
ORA-

06511

Raised when tried to open a cursor that was

already open

DUP_VAL_ON_INDEX
ORA-

00001

Raised when an attempt to insert or update

a record in violation of a primary key or

unique constraint is made

INVALID_CURSOR
ORA-

01001

Raised when the cursor is not open, or not

valid in the context in which it is being

called.

INVALID_NUMBER
ORA-

01722

Raised when it isn’t a number

LOGIN_DENIED
ORA-
01017

Invalid name and/or password for the
instance.

http://psoug.org/oraerror/ORA-06592.htm�
http://psoug.org/oraerror/ORA-06592.htm�
http://psoug.org/definition/WHEN.htm�
http://psoug.org/definition/ELSE.htm�
http://psoug.org/oraerror/ORA-06511.htm�
http://psoug.org/oraerror/ORA-06511.htm�
http://psoug.org/oraerror/ORA-00001.htm�
http://psoug.org/oraerror/ORA-00001.htm�
http://psoug.org/oraerror/ORA-01001.htm�
http://psoug.org/oraerror/ORA-01001.htm�
http://psoug.org/oraerror/ORA-01722.htm�
http://psoug.org/oraerror/ORA-01722.htm�
http://psoug.org/oraerror/ORA-01017.htm�
http://psoug.org/oraerror/ORA-01017.htm�

 307

NO_DATA_FOUND
ORA-

01403

Raised when the SELECT statement

returned no rows or referenced a deleted

element in a nested table or referenced an

initialized element in an Index-By table.

NOT_LOGGED_ON
ORA-

01012

Raised when database connection lost.

PROGRAM_ERROR
ORA-

06501

Raised when internal PL/SQL error.

ROWTYPE_MISMATCH
ORA-

06504

Raised when the rowtype does not match

the values being fetched or assigned to it.

STORAGE_ERROR
ORA-

06500

Raised when a hardware problem either

RAM or disk drive occurs.

SUBSCRIPT_BEYOND_COUNT
ORA-

06533

Raised when reference to a nested table or

varray index higher than the number of

elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT
ORA-

06532

Raised when reference to a nested table or

varray index outside the declared range

(such as -1).

TIMEOUT_ON_RESOURCE
ORA-

00051

Raised when the activity took too long and

timed out.

TOO_MANY_ROWS
ORA-
01422

Raised when the SQL INTO statement

brought back more than one value or row
(only one is allowed).

ZERO_DIVIDE
ORA-

01476

Raised when an attempt is made to divide a

number by zero.

http://psoug.org/oraerror/ORA-01403.htm�
http://psoug.org/oraerror/ORA-01403.htm�
http://psoug.org/definition/SELECT.htm�
http://psoug.org/oraerror/ORA-01012.htm�
http://psoug.org/oraerror/ORA-01012.htm�
http://psoug.org/oraerror/ORA-06501.htm�
http://psoug.org/oraerror/ORA-06501.htm�
http://psoug.org/oraerror/ORA-06504.htm�
http://psoug.org/oraerror/ORA-06504.htm�
http://psoug.org/oraerror/ORA-06500.htm�
http://psoug.org/oraerror/ORA-06500.htm�
http://psoug.org/oraerror/ORA-06533.htm�
http://psoug.org/oraerror/ORA-06533.htm�
http://psoug.org/oraerror/ORA-06532.htm�
http://psoug.org/oraerror/ORA-06532.htm�
http://psoug.org/oraerror/ORA-00051.htm�
http://psoug.org/oraerror/ORA-00051.htm�
http://psoug.org/oraerror/ORA-01422.htm�
http://psoug.org/oraerror/ORA-01422.htm�
http://psoug.org/definition/INTO.htm�
http://psoug.org/oraerror/ORA-01476.htm�
http://psoug.org/oraerror/ORA-01476.htm�

 308

4.5 SQLCODE AND SQLERRM
In W HEN O THERS par t of exception h andler, w e c an us e S QLCODE and S QLERRM

functions t o r etrieve t he er ror num ber an d er ror m essage r espectively. T here i s no

predefined exception for every oracle errors.

By using these two functions we can get the error code and error message of the most

recently oc curred er ror. T he f ollowing ex ample d emonstrates how t o us e S QLCODE

and S QLERRM functions. To un derstand this w e w ill c reate a t able nam ed s ubject as
follows.

• Create t able s ubject(subcode v archar2(2) pr imary k ey no t nul l, s ubname

varchar2(20));

After creating Table insert few records as shown below. Here we have to define subject

code primary key and not null.

• Insert into subject values(‘A’,’Java’);

• Insert into subject values(‘B’,’DBMS’);

• Insert into subject values(‘C’,’RDBMS’);

• Insert into subject values(‘D’,’C++’);

Now write and execute following code and check the output.
Example:

Declare

newscode varchar2(5) := null;
begin

update subject set subcode = newscode where subcode = 'C';

exception

when dup_val_on_index then

dbms_output.put_line('Duplicate subject code');

when others then

dbms_output.put_line(sqlerrm);
end;

/

 309

If you run the above program, it will show cannot update (‘SYSTEM’,’Subject’,’subcode’)

to null with error code ORA-01407.

The above output is generated when others part of exception handling block executes.

SQLERRM r eturns t he er ror m essage o f t he m ost r ecent er ror occurred. As w e ar e
trying t o s et S CODE, w hich i s a no t nu ll c olumn t o N ULL value, P L/SQL r aises an

exception. B ut as t he er ror (-01407) i s n ot as sociated w ith a ny predefined exception,

WHEN OTHERS part of exception handling part is executed.

4.6 PRAGMA EXCEPTION
PRAGMA EXCEPTION_INIT allows user to map ORA- error and it can be raised in

PL/SQL code. The SQL Error number passed in “EXCEPTION_INIT” is the same as
error code except for “NO_DATA_FOUND” ORA-01403 which is 100.
Example:

Declare

no_rows_found exception;

pragma exception_init(no_rows_found, 100);
Begin

raise no_rows_found;

End;

/

Execute above code and check the output.
Example with too many rows:

Declare

too_many_rows exception;

Pragma exception_init(too_many_rows, -1422);
Begin

raise too_many_rows;

End;

/

 310

Execute above code and check the output.

Whenever O racle er ror -1407 oc curs, N ULL_VALUE_ERROR ex ception is r aised by
PL/SQL. The following example will illustrate important points related to associating an

Oracle error with a user-defined exception.

Here w e w ill c onsider t he pr eviously c reated S ubject t able and s ame upda te quer y f or

assigning null value to a not null column.
Example:

Declare

null_value_error Exception;

Pragma Exception_init(null_value_error, -1407);

newscode varchar2(5) := null;

begin

update subject set subcode = newscode where subcode = 'C';

Exception

When null_value_error Then
dbms_output.put_line(‘User is trying to set null value to a not null column’);

end;

/

Execute above code and check the output.

 Check Your Progress

1) What is an Exception? State the types of Exception.

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

2) What do you mean by PRAGMA keyword?

…………………………………………………………………………………………….…

………….……………………………………………………………………………………
.………………………………………………………………………………………………

 311

3) What is Raise_application_error?

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………
4) What is the benefit of OTHERS exception handler?

…………………………………………………………………………………………….

……….……………………………………………………………………………………

……………………………………………………………………………………………

5) What is PRAGMA EXECPTION_INIT? Explain its use?

………………………………………………………………………………………………

………….…………………………………………………………………………………

……………………………………………………………………………………………

4.7 LET US SUM UP
A P L/SQL block i s s uccessful i f i t e xits w ithout r aising an y exceptions or r aises an

exception b ut t he ex ception i s han dled i n t he bl ock’s ex ception han dling p art. S ame

way, A PL/SQL block is unsuccessful if it exits with an unhandled exception means the

executable par t r aises a n e xception (either pr edefined or us er-defined) and it i s n ot

handled in the block’s exception handler. In this unit we have discussed the exception

and e xception handling m echanism us ing predefined and user de fined e xception. W e

have al so di scussed R AISE_APPLICATION_ERROR pr ocedure t o g enerate a us er-

defined error.

4.8CHECK YOUR PROGRESS:POSSIBLE ANSWERS
 Check Your Progress

1. E xception is an er ror a nd E xception ha ndling i s t he er ror h andling part of P L/SQL

block. The t ypes of E xception ar e P redefined and user_defined. S ome o f P redefined

exceptions are:

• CURSOR_ALREADY_OPEN

 312

• DUP_VAL_ON_INDEX

• NO_DATA_FOUND

• TOO_MANY_ROWS

• INVALID_CURSOR

• INVALID_NUMBER

• LOGON_DENIED

• NOT_LOGGED_ON

• PROGRAM-ERROR

• STORAGE_ERROR

• TIMEOUT_ON_RESOURCE

• VALUE_ERROR

• ZERO_DIVIDE

• OTHERS.
2. The PRAGMA keyword specifies that the statement is a compiler directive, which is

not pr ocessed w hen the P L/SQL bl ock i s e xecuted. It i s a ps eudo-code that t ells t he

compiler t o i nterpret al l t he oc currences of ex ception name w ithin t he b lock w ith t he

associated oracle server number.

3. R aise_application_error i s a pr ocedure of pac kage D BMS_STANDARD. I t al lows

issuing an user_defined error messages from stored sub-program or database trigger.

4. The OTHERS exception handler makes sure that no exception goes unhandled and

the program terminates successfully.
5. The PRAGMA EXECPTION_INIT informs the complier to associate an exception with

an oracle error to get an error message of a specific oracle error.

For example, PRAGMA EXCEPTION_INIT (exception name, oracle error number)

4.9ASSIGNMENT
1. What is Exception? How do we handle Exception in PL/SQL?

2. Explain User defined exception in PL/SQL.

3. Write a PL/SQL code to explain any four predefined exception.

4. Discuss PRAGMA Exception.

5. Discuss the SQLCODE and SQLERRM functions.

 313

6. Is it possible for a PL/SQL block to process more than one exception at a time?

4.10FURTHER READING

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

	3.3 DATA MODELING
	3.4 THE HIERARCHICAL DATA MODEL
	1.3.1. FULLY FUNCTIONAL DEPENDENCY (FFD)
	1.3.2. ARMSTRONG’S AXIOMS OF FUNCTIONAL DEPENDENCIES (INFERENCE RULES)
	A set of rules that may be used to infer additional dependencies was proposed by William W. Armstrong in 1974. These rules (or axioms) are a complete set of rules in that all possible functional dependencies may be derived from them. Below given are ...
	Lossy Decomposition: The decomposition of relation R into R1 and R2 is 148Tlossy148T when the join of R1 and R2 does not yield the same relation as in R. One of the disadvantages of decomposition into two or more relational schemes (or tables) is that...
	Lossless Join Decomposition: The decomposition of relation R into R1 and R2 is lossless when the join of R1 and R2 yield the same relation as in R. A relational table is decomposed into two or more smaller tables, in such a way that the designer can c...

	Dependency-Preserving Decomposition: The dependency preservation decomposition is another property of decomposed relational database schema D in which each functional dependency X -> Y specified in F either appeared directly in one of the relation sch...
	B. Fourth normal form (4NF):
	Fully Functional Dependence (FFD) is defined, as Attribute Y is FFD on attribute X, if it is FD on X and not FD on any proper subset of X. According to FFD definition Y must not be FD .on any proper subset of X.
	Transitivity Axioms is similar to the transitivity rule in algebra. If X (Y holds and Y (Z, then X (Z holds.
	A relation is decomposed into two or more smaller relations, in a way by which we can obtain the original relation by joining the decomposed partition of relation.
	A complete set or closure set of FDs is a set of all possible FDs that can be derived from a given set of FDs. If F is used to donate the set of FDs for relation R, then a closure of a set of FDs implied by F is denoted by FP+P.
	Merits of Normalization:
	More efficient data structure.
	Avoid redundant fields or columns.
	More flexible data structure.
	Better understanding of data.
	Ensures that distinct tables exist when necessary.
	Easier to maintain data structure.
	Minimizes data duplication.
	Demerits of Normalization:
	You cannot start building the database before you know what the user needs.
	On Normalizing the relations to higher normal forms i.e. 4NF, 5NF the performance degrades.
	It is very time consuming and difficult process in normalizing relations of higher degree.
	Careless decomposition may leads to bad design of database which may leads to serious problems.
	Oracle Instance consists of Two components namely Memory Structure and Background Processes.
	SGA_MAX_SIZE parameter of Initialization Parameter file is used to define size of SGA. The size of the SGA cannot exceed the parameter SGA_MAX_SIZE minus the combination of the size of the additional parameters, DB_CACHE_SIZE, LOG_BUFFER, SHARED_POOL_...
	System Monitor (SMON) is responsible for instance recovery by applying entries in the online redo log files to the datafiles.
	Archived Redo Log File is the copy of redo log files and necessary for recovery in the event of disk failure.
	Yes, A Large tablespace may have more than one datafiles.
	Distributed Databases Vs Distributed Processing
	Heterogeneous Services
	Transparent Gateway Agents
	Generic Connectivity
	3.6.2. TYPES OF DATABASE LINKS
	3.6.3. USERS OF DATABASE LINKS
	3.6.4. DATABASE LINK RESTRICTIONS
	Authentication Through Database Links
	Authentication Without Passwords
	Supporting User Accounts and Roles
	Centralized User and Privilege Management
	Database Encryption

	Remote SQL Statements
	Distributed SQL Statements
	Shared SQL for Remote and Distributed Statements
	Remote Transactions
	Distributed Transactions
	Two-Phase Commit Mechanism
	Database Link Name Resolution
	Schema Object Name Resolution
	If the database cannot find the object, then it checks public objects of the remote database. If it cannot resolve the object, then the established remote session remains but the SQL statement cannot execute and returns an error.

	TRANSPARENCY IN A DISTRIBUTED DATABASE SYSTEM
	Location Transparency: An Oracle Database distributed database system has features that allow application developers and administrators to hide the physical location of database objects from applications and users. Location transparency exists when a ...
	SQL and COMMIT Transparency: The Oracle Database distributed database architecture also provides query, update, and transaction transparency. For example, standard SQL statements such as SELECT, INSERT, UPDATE, and DELETE work just as they do in a non...
	Replication Transparency: The database also provide many features to transparently replicate data among the nodes of the system. For more information about Oracle Database replication features, see Oracle Database Advanced Replication.

	3.9.2. REMOTE PROCEDURE CALLS (RPCS)
	Distributed database is a set of databases in a distributed system that can appear to applications as a single data source. While distributed processing is the operation that occurs when an application distributes its tasks among different computers i...
	Generic connectivity enables you to connect to non-Oracle Database data stores by using either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE DB agent. The advantage to generic connectivity is that it may not be required for you t...
	A database link is a connection between two physical database servers that allows a client to access them as one logical database. These basic link types differ according to which users are allowed access to the remote database:
	Distributed query optimization is an Oracle Database feature that reduces the amount of data transfer required between sites when a transaction retrieves data from remote tables referenced in a distributed SQL statement.
	Full Export: The EXP_FULL_DATABASE and IMP_FULL_DATABASE, respectively, are needed to perform a full export. Use the full export parameter for a full export.
	Tablespace: Use the tablespaces export parameter for a tablespace export.
	User: This mode can be used to export and import all objects that belong to a user. Use the owner export parameter and the fromuser import parameter for a user (owner) export-import.
	Table: Specific tables (and partitions) can be exported/imported with table export mode. Use the tables export parameter for a table export.
	4.3.1 EXPORT UTILITY

	General Parameters are used with exp command are as:
	Full: Use this parameter to specify 19Tfull export mode19T.
	Tablespaces: Use this parameter to specify 19Ttablespace export mode19T.
	Owner: Use this parameter to specify 19Tuser export mode19T.
	Tables: Use this parameter to specify 19Ttable export mode19T.
	Query: Restricts the exported rows by means of a where clause. The query parameter can only be used for 19Ttable export mode19T. For obvious reasons, it must be appliable to all exported tables.
	Parfile: Specifies a parfile. Parameter file is a simple text files creating using any text editor.
	4.3.2 IMPORT UTILITY

	FFER:The integer specified for 18TBUFFER18T is the size, in bytes, of the buffer through which data rows are transferred.
	COMMIT:Specifies whether Import should commit after each array insert. By default, Import commits only after loading each table, and Import performs a rollback when an error occurs, before continuing with the next object.
	CONSTRAINTS: Specifies whether or not table constraints are to be imported. The default is to import constraints. If you do not want constraints to be imported, you must set the parameter value to 18Tn.
	FILE:Specifies the names of the export files to import. The default extension is .18Tdmp18T, because Export supports multiple export files, you may need to specify multiple filenames to be imported.
	FROMUSER:The parameter enables you to import a subset of schemas from an export file containing multiple schemas.
	FULL: Specifies whether to import the entire export dump file.
	GRANTS:Specifies whether to import object grants.
	PARFILE:Specifies a filename for a file that contains a list of Import parameters. For more information about using a parameter file, see 19TParameter Files19T.
	ROWS:Specifies whether or not to import the rows of table data.
	TABLES:Specifies that the import is a table-mode import and lists the table names and partition and sub partition names to import. Table-mode import lets you import entire partitioned or non-partitioned tables.
	TOUSER: Specifies a list of user names whose schemas will be targets for Import. The user names must exist prior to the import operation; otherwise an error is returned. The 18TIMP_FULL_DATABASE18T role is required to use this parameter. To import to ...
	USERID: Specifies the 5Tusername5T18T/5T18Tpassword5T (and optional connect string) of the user performing the import.
	/

	Making User-Managed Backups of Online Tablespaces and Datafiles
	Making User-Managed Backups of Online Read/Write Tablespaces

	Making User-Managed Backups of the Control File
	Backing Up the Control File to a Binary File

	Making User-Managed Backups of Archived Redo Logs
	4.4.2 RECOVERY

	Responding to the Loss of a Subset of the Current Control Files
	Copying a Multiplexed Control File to a Default Location

	Determining Which Datafiles Require Recovery
	Restoring Datafiles
	Recovering After the Loss of Archived Redo Log Files:
	Take frequent backups of physical datafiles and store them in a safe place, making multiple copies if possible
	The EXP_FULL_DATABASE and IMP_FULL_DATABASE, respectively, are needed to perform a full export.
	COMMIT specifies whether Import should commit after successfully execution of Import.
	Inconsistent Backup means a backup taken when database is open and database must require ARCHIVELOG mode for it. It is also known as HOT Backup.
	18TV$DATAFILE18T and 18TV$TABLESPACE18T data dictionary is used to obtain filenames and tablespace names for datafiles requiring recovery
	SQL Process

	Oracle Database provides following basic data types for attributes defined with CREATE TABLE clause of database.
	1.5.1. CREATE TABLE
	Syntax:
	Example:
	A. PRIMARY KEY

	Examples:
	1. Single Field Primary Key at Column Level:
	2. Composite Primary Key at Table Level:
	B. FOREIGN KEY / REFERENCE KEY
	Examples:

	1. Reference Key at Column Level:
	2. Reference Key at Table Level:
	UNIQUE
	Examples:

	Unique Key at Column Level:
	B. NOT NULL
	Examples:
	Examples:

	Check constraint at Table Level:
	Examples:

	Arithmetic Operator: Arithmetic operators manipulate numeric operands. Below Tables shows the list of Arithmetic Operators.
	Character Operator: Character operators are used in expressions to manipulate character strings. Below Tables shows the list of Character Operators.
	Comparison Operator: Comparison operators are used in conditions that compare one value or expression with another. The result of a comparison can be TRUE or FALSE.
	Range Searching Operator: In order to select data that is within a range of values, the range searching operator is used.
	Pattern Matching Operator: Pattern matching operator allows comparison of one string value with another string value, which is not identical. This is achieved by using wildcard characters.
	Logical Operator: Logical operators manipulate the results of conditions.
	Set Operator: Set operators combine the results of two queries into a single result.
	Example
	Display all customers not located in LONDON.
	SELECT * FROM CUSTOMER WHERE CITY <> 'LONDON';
	List all salesmen with commission between 11% and 15%.
	SELECT * FROM SALESMAN WHERE COMM BETWEEN 0.11 AND 0.15;
	List all salesmen whose names begin with letter ‘B’.
	SELECT * FROM SALESMAN WHERE SNAME LIKE 'B%';
	Example
	Count the no. of salesmen currently having orders.
	SELECT COUNT(DISTINCT (SNUM)) FROM ORDERS;
	Sometimes it is required to retrieve information from multiple tables; at that time Join condition is required. Rows in one table can be joined to rows in another table according to common values existing in corresponding columns. We must have to keep...
	When Writing a SELECT statement that joins tables, precede the column name with the table name for clarify and to enhance the database access.
	If the same column name appears in more than one table, the column name must be prefixed with the table name.
	To join N tables together, you need a minimum of N-1 join conditions.
	Example
	In this chapter, we have discussed about SQL Architecture and different SQL Statements. We have also explored data types available in SQL. We have come to know vital processes like Selection, Projection Grouping, Joins and Sub Queries. We have also de...
	Varchar2 represents variable length character data up to 4000 characters. While nvarchar2 represents Unicode character string having maximum size determined by the National Character Set with an upper limit of 4000 Bytes.
	TRUNCATE clause is used to delete all records from existing tables. Definition of table remains as it is. While DROP removes entire definition of table means delete all records including the table structure.
	Primary Key is used to uniquely identify each record in a database table. When Primary key is created on multiple fields of the table than it is known as Composite Primary Key. Composite Primary Key created at table level.
	Example:
);
	Above Query is used to Create Employee Table with Composite Primary Key namely (EmployeeId,BranchCode).
	An operator is used to perform different operation and return result set. In SQL operators have different types as follows:
	Arithmetic Operators
	Character Operators
	Comparison Operators
	Range Searching Operator
	Pattern Matching Operator
	Logical Operator
	Set Operator

	II. Procedure’s Body
	I. INSERT Statement

	Data Manipulation Language (DML)
	Data Definition Language (DDL)
	Data Control Language (DCL)
	Transaction Control Language (TCL)
	II. UPDATE Statement
	III. DELETE Statement
	We will continue with the previously created user_data table. We will create a stored procedure which will delete the record based on the provided userId.
	Example:
	2.5 FUNCTION BASICS
	2.5.1 PARAMETER PASSING TO A FUNCTION
	1. A Procedure is a subprogram block consists of a group of PL/SQL statements while
	function is an independent PL/SQL subprogram.
	2. Pre_defined_functions are stored in the standard package called “Functions, Procedures
	and Packages”.
	3. Function is called as a part of an expression:
	Example: squr:=count_sqr(‘10’);
	Procedure is called as a statement in PL/SQL:
	Example: count_salary(‘201’);
	4. Following are the five inbuilt String function:
	I.INSTR(maintext, string, start, occurance): It gives the position of particular text in the given string.
	Where,
	maintext is main string,
	string is text that need to be searched,
	start indicates starting position of the search (optional),
	accordance indicates the occurrence of the searched string (optional).
	Example:
	Select INSTR(‘Gujarat,’a’,2,1) from dual;
	Output: 4
	II. UPPER (string): It returns the uppercase of the provided string.
	Example:Select upper(‘baou’) from dual;
	Output: BAOU
	III. LOWER (string): It returns the lowercase of the provided string.
	Example:Select upper(‘BAOU’) from dual;
	Output: baou
	IV. INITCAP (string): It returns the given string with the starting letter in upper
	case.
	Example:Select (‘gujarat vidyapith’) from dual;
	Output: Gujarat Vidyapith
	V. LENGTH (text) Returns the length of the given string.
	Example:Select LENGTH (‘BAOU’) from dual;
	Output: 4
	5. Both can be called from other PL/SQL blocks.
	If the exception raised in the subprogram is not handled in the subprogram exception handling section, then it will propagate to the calling block.
	Both can have as many parameters as required.
	Both are treated as database objects in PL/SQL.
	6. Following table shows the difference between Procedure and Function:
	2. Define function. Explain the characteristics of functions.

	Items declared within package body are known as private. They are only accessed within the package. While items declared within package specification is public and available outside the package.
	The syntax for the package specification is as follows.
	Syntax:
	The syntax for the package body is as follows:
	Syntax:
	Package body is not required if the package specification contains only types, constants, variables, exceptions. This type of packages only contains global variables that will be used by subprograms or cursors.
	Uses of Triggers
	3.5.1.3 INSTEAD OF Trigger
	3.5.1.4 Compound Triggers
	3.5.3 DDL TRIGGERS

	3.6.1 BEFORE INSERT TRIGGER
	By observing the above execution, we can say that when we have inserted the records with date and user ‘28-march-19’,’vinod’ & ‘28-march-19’,’mukesh’ respectively; the created trigger will fire implicitly on Customer_Order table and replace the date a...
	Note: The values in Ord_Date and OrdCreated_By columns may be different for you as they depend on system date and user logged in.
	3.6.2 AFTER INSERT TRIGGER
	An After Insert Trigger means that the trigger will be fired after the insert operation is executed.
	Syntax:
	Example:
	Suppose we have a table named Customer as follows:
	We will also create a duplicate table of ‘Customer’ table as ‘Duplicate_Customer’ using the code below:
	Trigger:
	We can also create trigger for before update, after update, before delete and after delete operations.
	3.6.3 DROP TRIGGER
	3.6.4 ENABLE-DISABLE TRIGGER
	Example:
	Above statement uses the Alter Trigger statement to disable the trigger called Before_Insert_Trigger.

	To create a user, simply issue the Create User command to generate a new account.
	3.7.1 CREATING A USER
	Example:
	Create User Ved Identified By rdbms;
	Here we have simply created a Ved account that is identified or authenticated by the rdbms password.
	Privileges and Roles
	Privilegesdefines the access rights provided to a user on a database objects. There are two types of privileges:
	I. System Privileges: This privilege allows user to create, alter, or drop database
	elements.
	II. Object Privileges: This privilege allows user to execute, select, insert, or delete
	data from database objects to which the privileges apply.
	Roles are the collection of privileges or access rights. In case of many users in a database it becomes complex to grant or revoke privileges to the users. So, if we define roles we can automatically grant/revoke privileges.
	3.7.2 GRANT COMMAND
	Syntax:
	GRANT<privilege> to <user>
	Example:
	Grant Connect to Ved;
	3.7.3 REVOKE COMMAND
	3.7.4 DROP USER
	1. Trigger is a database object, executes automatically in response to some events on the tables or views. It is used to maintain the integrity constraint to the database objects.
	2. The word ‘Trigger’ means to activate. Triggers are mainly required for the following goals:
	To maintain complex integrity constraints on the database tables
	To audit table information by recording the changes
	To signal other program actions when changes are made to database table
	To enforce complex business rules
	To preventing invalid transactions
	Application Roles: You grant an application role all privileges necessary to run a given database application. Then, you grant the application role to other roles or to specific users. An application can have several different roles, with each role as...
	User Roles: You create a user role for a group of database users with common privilege requirements. You manage user privileges by granting application roles and privileges to the user role and then granting the user role to appropriate users.

	Granting and Revoking Roles
	Predefined Roles
	A. System Privileges
	B. Schema Object Privileges
	4.5.1. CREATE ROLE
	Syntax
	Example

	A. Grant TABLE Privileges to Role
	Syntax
	Example

	B. Revoke Table Privileges from Role
	Syntax
	Example

	4.5.2. GRANT ROLE TO USER
	Syntax
	Example

	A. Enable/Disable Role (Set Role Statement)
	Syntax
	Example

	B. Set role as DEFAULT Role
	Syntax
	Example

	4.5.3. DROP ROLE
	Syntax
	Example

	4.6.1. CREATE PROFILE
	In this chapter, we have learnt about Role and Privileges. We have also concluded the system and object privileges. We have also explored different operation of User Role like Create, Grant and Revoke Role and Drop. We have come to know how can we set...
	Any user Granted a role with ADMIN OPTION can Grant/Revoke that role to/from any other users.
	A user can receive Privileges in two different ways.
	Grant Privileges to Users explicitly
	Grant Privileges to a Role and then Grant that Role to one or more users.
	Set Role Statement is used to Enable or Disable a role for the current session.
	User Profile is a set of limits on database resources and user cannot exceed these limits.
	4. Explain parameterized Cursor with example.
	3. Explain various modes of lock.
	1. Exception is an error and Exception handling is the error handling part of PL/SQL block. The types of Exception are Predefined and user_defined. Some of Predefined exceptions are:
	CURSOR_ALREADY_OPEN
	DUP_VAL_ON_INDEX
	NO_DATA_FOUND
	TOO_MANY_ROWS
	INVALID_CURSOR
	INVALID_NUMBER
	LOGON_DENIED
	NOT_LOGGED_ON
	PROGRAM-ERROR
	STORAGE_ERROR
	TIMEOUT_ON_RESOURCE
	VALUE_ERROR
	ZERO_DIVIDE
	OTHERS.
	3. Write a PL/SQL code to explain any four predefined exception.
	4. Discuss PRAGMA Exception.

	MSIT 102.pdf
	Page 2

	MSIT BACK SIDE.pdf
	Page 6

	MSCIT - 102 BOOKS COVER Design.pdf
	Page 3

	MSCIT - 102 back side.pdf
	Page 4

	MSCIT 102.pdf
	Page 3

	MSCIT 102 - BACK PAGE.pdf
	Page 4

