2023

Relational Database
Management
I System

P

Dr. Babasaheb Ambedkar Open University

Relational Database Management System

Course Writer

Dr. Amit Bardhan

Dr. Badal Kothari

Dr. Vinod Desai

Content Reviewer

Prof. (Dr.) Amit Ganatra

Content Editor

Prof. (Dr.) Nilesh K. Modi

Assistant Professor,

Computer Science Department,

Som Lalit Education and Research Foundation,
Ahmedabad

Assistant Professor,

Department of Computer Science,
Hemchandracharya North Gujarat University,
Patan

Assistant Professor,

Guijarat Vidhyapith,

Ahmedabad

Dean, Faculty of Technology and Engineering
School of Computer Science,

Charotar University of Science and Technology,
Changa

Professor & Director,
School of Computer Science,
Dr. Babasaheb Ambedkar Open University

Copyright © Dr. Babasaheb Ambedkar Open University — Ahmedabad.

ISBN-

Printed and published by: Dr. Babasaheb A mbedkar O pen U niversity, Ahmedabad
While all efforts have been made by editors to check accuracy of the content, the
representation of facts, principles, descriptions and methods are that of the
respective module writers. Views expressed in the publication are that of the authors,
and do not necessarily reflect the views of Dr. Babasaheb Ambedkar Open
University. A Il products and se rvices mentioned ar e ow ned b y t heir r espective
copyrights holders, and mere pr esentationi nt he publication does n ot m ean
endorsement by Dr. Babasaheb Ambedkar O pen U niversity. E very effort has been
made to acknowledge and attribute all sources of information used in preparation of
this learning material. Readers are requested to kindly notify missing attribution, if

any.

apE2les

Dr. Babasaheb MCA-102

E.ﬁfﬂo”n Ambedkar Open

Mo A University

Relational Database Management System

Block-1: Fundamental of Database Management

System
UNIT-1
Basic Concepts of DBMS 07
UNIT-2
Architecture of DBMS 17
UNIT-3
Data Models 26
UNIT-4
40

Database Design
Block-2: Relational Data Model and Introduction to
Oracle Server

UNIT-1
Functional Dependency and Normalization 64
UNIT-2
Oracle Database Architecture 90
UNIT-3
Distributed Database Architecture 116
139

UNIT-4
Database Backup

iv

Block-3: Oracle Server and SQL

UNIT-1

Structured Query Language 160
UNIT-2

Stored Procedures and Functions 193
UNIT-3

Package and Trigger 212
UNIT-4

Managing User Privileges & Roles and User Profile 239
Block-4: Introduction to PL/SQL

UNIT-1

Introduction to PL/SQL 260
UNIT-2

Cursor 276
UNIT-3

Locking 293
UNIT-4

Exception Handling 301

Block-1
Fundamental of Database

Management System

1

Unit 1. Basic Concepts of DBMS

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Basic Concepts

1.4. Data

1.5. Database

1.6. Database systems

1.7. Database management system

1.8. Purpose and advantages of database management system
1.9. DBMS Functions

1.10. Disadvantages of database systems

1.11. Check Your Progress

1.1 LEARNING OBJECTIVE

By the end of this unit you should be able to:
e Differentiate between data and information.

¢ Understand the importance of database and DBMS.

1.2 INTRODUCTION

In today’s c ompetitive e nvironment d ata a nd its pr oficient adm inistrationis t he
most s ignificant bus iness objective of anyfirm. T he factiswe are in an eraw here
people ar e bom barded w ith h uge amount of i nformation e xplosion.D uetot hisit
becomes difficult to f etch c orrect information at right time to m ake d ecisions properly.
Therefore success of every business is highly dependent on how the data is collected,
stored and processed for timely decision making.

Any information system like online shopping websites, inventory management systems,
clinic m anagement s oftware, onl ine trading app lications et c. needs database to s tore
and r etrieve the d ata at regular intervals. DBMS acts as b ackend for all the different
web bas ed an d d esktop bas ed ap plications. W e cannot imagine a s ingle s ector w ere
DBMS is no t bei ng us ed. F or e xample banking, e -governance, | ogistics, universities,
airlines ag encies, t icket booking, accounting & filing and every other kind of h uman
endeavor. T he m anagement of datainallthese s ystemsisdone by themeans of a
general purpose software package called a database management system.
A dat abase m anagement s ystemis at oolt o m anage t he data an d per form v arious
activities that include:

v Creating different databases.
Craft required table structures.
Inserting records in the tables.
Retrieving information from the different tables based on criteria.
Deleting the records based on various conditions.

Updating the records wherever and whenever necessary.

AN N NN N

Changing the table structure if required. Etc.

Apartfrom t he above m entioned b asic f unctionalities of t he d atabase m anagement
system, there are plenty of other functionality like creating users and assigning roles to
them, security management, transaction management, managing system catalog, data
dictionary m anagement, dat a bac kup and r ecovery et ¢ w hich ar e bei ng m anaged by
DBMS.

The role of the DBMS is to act as an intermediary between the users and the database.
The DBMS interprets and pr ocesses c lient’s requests to fetch the required information
from a dat abase. Its erves as an interfacei ns everal forms|ikeitc an be directly
accessed from a terminal or using some high level language programs for individual or
batch dat a processing. The request from D BMS t o perform various actions is givenin
terms of SQL (Structure Query Language), which you will be learning in the upcoming
units. DBMS s hields the da tabase us ers from the c omplexity of t edious programming
they would have to do to organize data for storage, or to gain access to it once it was
stored. H erear eg oingt ol earnabo utR elational D atabase Management S ystem
(RDBMS) that stores data in the form of associated tables. Most common examples of
RDMS include MySQL, Oracle, PostgreSQL, Microsoft SQL Server etc.

1.3 BASIC CONCEPTS

Storing d ata, processing it as per r equirement and r etrieving t he r equired information
has be en a nec essity in each and e very or ganization today. Theterm datacan be
explained in terms of “A set of isolated an unrelated raw fact with an implicit meaning”.
In simpler terms data is ar aw fact. ltcanbe anythingsuch as a name of aperson,
designationo fa n employee, an a udio, video, des ignation of a person et c. After
performing a s eries of actionont he dataw hatw e g etis an m eaningful i nformation.
Thus i nformation ¢ an defined as dat aw iths ome f ixed an d de finite m eaning. F or
example, “The cost of the book for programming in python is 750 Rs” is an example of
information.

Generally data is what goes into a data processing system and information is the
processed data that comes out of the data processing unit.

Limitations of the File based Systems:

e Separation and isolation of data

e Duplication of data

e Structural and data dependence

e Extreme programming effort

e Cannot execute ad hoc queries

e Security features are likely to be insufficient

e System management is complex and complicated

1.4 DATA

Data is not hing but a raw fact from w hich i nformation is gener ated. D ata alone
does not have any meaning unless it is organized or arranged in some logical manner.
A user must ensure that only valid and significant data must go into the system else the
information obtained may not be that trustworthy for the purpose of decision making.
The s mallest pi ece of datathat ac omputer understands is a single c haracter, for an
example letter ‘S’, or a number ‘6’ or a special character ‘$’. A single character requires
one byte of storage.

A character or a group of character that has some specific meaning is called a field. A
field name uniquely identifies each field.

A logically related set of one or more fields that describe an entity or real world object is
called a record. For example the fields that constitute bank account record are account
number, name, address, pincode, account type, opening date, mode of operation etc.

A collection of related records is called a table. An example of department table is given

below:
Dept_no Dept_name Location
10 Finance Ahmedabad |«4+———
20 Purchase Rajkot B E— Records
30 Marketing Bhavnagar -+
40 EDP Baroda <
Fields

Figure 1: Department Table
10

1.5 DATABASE

A database is a collection of well organized data in the computer’s storage systems that
can be used by the application software for some given enterprise. The stored data can
be accessed, processed and presented by DBMS to serve a specific purpose. The term
enterprise can thought in terms of any individual or large body like a u niversity, bank,
logistics company, warehouse etc.
In general database is a shared, collective system construction that stores a collection
of:

e Enduser data. i.e. the raw facts

e Metadata or data about the data.

Here the metadata provides a detailed explanation of the data, its distinctiveness and
set of associations or relationships that links the data. Given the uniqueness of

metadata, database can be described as a “collection of self-describing data.”

1.6 DATABASE SYSTEMS

Ad atabase s ystem i s principally an automated r ecord m aintenance s ystem w hose
overallr easonistos torei nformation an dt o per mit t he us erst o m anipulate t he
information as per requirement. Here we are using the term data torefertowhatisin
point of fact stored in the database and information to refer to the meaning of data as

understood by the client.
Database s ystem i s obt ainableona It he m achines t hatr ange f rom t he s mallest

handheld devices to PC’s to large main frame computers.

1.7 DATABASE MANAGEMENT SYSTEM

A d atabase management s ystem (DBMS) is a ¢ ompilation o f programs that manages
the dat abase s tructure a nd c ontrols ac cess to the data stored in the d atabase. D BMS
serves as a mediator be tween the c lient a nd dat abase b y hiding al | t he c omplexities

from the end user.

1.8PURPOSE AND ADVANTAGES OF DATABASE
MANAGEMENT SYSTEM

The D BMS r eceives the en tire ap plications r equest an dt ranslatest hemintot he
complex op erations that are required to fulfill those requests. It also hides the internal
complexity from the application programs and users. The applications programs can be

written in any language like Python, Java, C++ etc.

Application
:.z: Request
ﬁg Database Structure
End Users T Data
,'Q(WO - . Single -E
< »l ﬁ ,-_-_—'1 | Customers |
ﬁ &) J < > \‘—_-_-—_—-“"/
DBMS 4 | Invoices |
http:// End Users Integrated
Data | T | Products |
°0°
Ll N\ | Application

== Request

End Users

Figure-2 DBMS managing the functions between the clientand the database
DBMS also allows the data to be shared among the multiple applications or clients and

helps in merging m any d ifferent views of datainto single d ata repository. In particular
DBMS provides the following advantages over the files system:
e Better data sharing capabilities: The D BMS he Ipst ogen erate an
environment in which the end users locally or globally can have access to

the data for quick decision making.
e Enhanced data security: DBMS provides a s tructure to implement da ta

privacy and security policies. Different categories of roles can be created

for special users and rights can be given accordingly.

12

e Superior data integration facilities: Wider admittance to well managed data
promotes a n incorporated view of t he or ganizations op erations a nd a

apparent view of the complex picture.

e Reduced data inconsistency: It e xists w hen di fferent v ersions of s ame
data ap pear in di verse locations. F or e xample data i nconsistency exits
when the name in your bank account and the name on your cheque book

differ. This possibility can be reduced by properly designing the database.

e Faster data access: When deal ingw ith hu ge am ounto fdat aD BMS
makes it possible to produce quick answers to any queries by using SQL.
Example qu eries c an be how p eople have d eposited notes of 5 00

denominations at the time demonetization in ABC branch.

e Improved decision making: If the data is managed properly and faster data
access i sdonei tm akes pr obable to produce en hanced s uperiority

information, based on which better decisions can be taken.

e Improved end user productivity: The ease of use of data, shared with the
tools that alter data into usable information, allow end users to make rapid,

knowledgeable decisions.

1.9 DBMS FUNCTIONS

ADBMS performs quite al ot of significant functions that pr omises the reliability

and u niformity of t heda tai nt hed atabase. F ew o ft hei mportant f unctions ar e
mentioned below:

v' Data transformation and presentation: The D BMS converts the e ntered datato

confirm with the required data structures; therefore it relieves you from the task

of m aking distinction between | ogical and t he ph ysical format. F or e xample the

13

date the formatin INDIA is DD/MM/YYYY, butin MySQLis YYYY-MM-DD, so

transformation in to the required format can be easily made.

Multiuser access control: To provide data steadiness DBMS uses classy
algorithms to make sure that multiple users can access the database in parallel

without compromising the integrity of the database.

Security Management: DBMS enforces us er s ecurity at d ifferent levels in order
to pr ovide w hich d ata operations agr oupo fus ers or ap articular us erc an

perform. DBMS assigns access privileges for various database components.

Data dictionary management: DBMS s tores def initions of da ta el ements and
their m etadata. It us es data dictionaryto come acrossupt he nec essary data

constituent structures and its associations.

Data storage management: Amodern D BMS pr ovides storage notonly for the
facts but also for associated data entry forms, report definitions, data validation
regulations, formations to handle audio and video formats and so on. It actually

stores the database in multiple physical data files.

Backup and recovery management: To provide data s afety and i ntegrity D BMS
provides backup and recovery control. It basically deals with the recovery of bad

sector in the disk and also data recovery at the time power failures.

Data integrity management: DBMS supports and implement integrity regulations,

thus minimizing data repetition and increasing consistency.
Database access languages and API: DBMS m ake av ailable dat a ac cess

through a query language called SQL. Structured Query Language (SQL) is a de
facto q uery language s upported by m ajority of the DBMS vendors. Apart from

14

that DBMS also provides application programming interfaces to main

programming languages like Python, C#, Java, Magento, PHP etc.

v/ Database communication interface: DBMS provides admittance to the database

via command line terminals, via web browsers (GUI) etc.

1.10 Disadvantages of Database System

DBMS do carry significant disadvantages as mentioned below:

Increased cost: Database s ystem nee ds s ophisticated hardware a nd s oftware
and e xtremely c apable e xpert to m anage it. T hus t he c ost of m anagingt he
people, s oftware an d h ardware a nd providing training, licensing add an extra

overhead to cost.

Management Complexity: Database s ystem boun daryw ithm anydi verse
technologies and ar e c an bec ome m ore and m ore c omplexin orderto h andle
day to day transactions.

Maintaining currency: To make the mostofthe database it is required to keep
your systems current. That leads to frequent upgrades and increased in training
cost.

Vendor Dependence: The end us ers ar e he avily v endor dep endent s ince t hey
are s toring eac h an d ev ery i nformation i nto t he dat abase. O nthe c ontrary t he

vendors are less likely to offer pricing point reward to the existing clients.

Frequent Upgrade cycle: DBMS vendor repeatedly advance their products by

incrementing new functionalities. And many a times those software upgrades requires

new hardware resources.

1.11 Check your progress

1.

Define the following terms:

a. Data

15

o > DN

b. Information

c. Field

d. Record

List and explain the limitations of file based systems.
Discuss the purpose and advantages if DBMS.

List and explain DBMS functions in detail.

Explain the potential cost of implementing a database system.

16

2

Unit 2: Architecture Of DBMS

Unit Structure

2.1. Learning Objectives

2.2. Architecture of DBMS

2.3. Various components of DBMS

2.4. Check your Progress

17

2.1 LEARNING OBJECTIVE

By the end of this unit you should be able to:
e Understand the basic architecture

e Understand basics components of DBMS

2.2 INTRODUCTION

DBMS is very s ophisticated s oftware a pplication that pr ovides reliable m anagement of
large amounts of data. To understand all-purpose database concepts and the structure
and c apabilities of aD BMS b etter, t he s tructural des ign of at ypical D BMS m ust be

known.

2.3 ARCHITECTURE OF DBMS

The DBMS architecture describes how the data in the database is viewed by the
different users. This architecture provides the data at different levels of the abstraction
to the users by hiding the complexities of its internal management activities.
In this architecture the overall database description can be defined at three levels:

e Internal

e Conceptual

e External levels

For this reason many a times it's known as three-level DBMS architecture. The
architecture is proposed by ANSI/SPARC (American National Standard Institute/

Standards Planning and Requirement committee).

18

External Schema

User 1 User 2 User n
External Level (Defined
by user or application] .]
program : View 1 View 2 View n

Conceptual Level (Defined Conceptual Schema
by DBA)
A
l h 4
Internal Level (Defined by [Internal Schema J
DBA)

.I

Database

A-External / Conceptual Mapping (Logical Data Independence)
B-Conceptual / Internal Mapping (Physical Data Independence)

Figure-3 Three Level DBMS Architecture
External Level:

ltis the highestlevel of abs traction t hat de als w ith t he us er’s view o f dat abase a nd
therefore i t's also k nown as view | evel. T he ex ternal level describes the par t of the
database to a specific group of users or to an individual user.

Each view available to the user is customized to their requirements. It may be possible
that same data may be visible to different users through different interfaces. In this way
it also provides a powerful and flexible security mechanism by hiding certain data from
certain users. T he dat a des cribed at this level is independent o f bot h har dware a nd
software. Generally entity relationship diagram is used to represent the external view as
the data is modeled.

Conceptual Level:

This level of a bstraction d eals with | ogical s tructure of the entire database andi s also
known as logical view. The view describes the structure and the type of the data that is
stored in the database along with the relationships among the data.

It des cribes a Il the r equirements of t he users w ithoutt he description o f ph ysical

implementation. Itis the overall view of the dat abase k eeping i n the c onsideration t he

19

DBMS s oftware that is going to be us ed. This view is thus depe ndent on t he s oftware
but independent of the hardware.

Internal Level:

This level des cribes dat a at t he | owest | evel of abs traction t hat dea Is w ith phy sical
representation of the database on the computer and is also known as physical level. It
describes how the data is stored and is organized on the physical storage medium.

At th is I evel v arious as pects ar e ¢ onsidered t o ac hieve o ptimal r untime per formance
and s torage s pace utilization. T his level is depen dent on t he s oftware (mostly the O S)
as well as hardware.

To understand the three-level database architecture consider the example of Employee
database as shown in the figure 1.4. In this figure two views (View 1 and View 2) of the
Employee d atabase are defined at an external level. Hence differentus ers cansee
different external views that they queried. The details about the data type and the size
of the fields are hidden from the users at the external level.

At the conceptual level the employee records are described along with their data types.
The application programmers and the DBA generally work at this level of abstraction. At
the i nternal level t he em ployee r ecords ar ed escribed asab locko fc onsecutive
locations s uchas w ordsor b ytes. T he database usersand t he ap plications
programmers are not aware of these details; however the DBA may be aware of certain
details of the physical organization of the data.

When a us er s pecifies ar equestt o g enerate anew externalview, the D BMS m ust
transform the request s pecified at the external level into a r equest at conceptual | evel
followed into a request at physical level. If the user requests for data retrieval, the data
extracted from the database must be presented according to the need of the user. This
process of transformingt he r equests an dr esults b etween v arious | evels o f D BMS

architecture is known as mapping.

20

View 1 WView 2

Employee_MNo

Employes_No JD'E_'ng—d ate External
Name Basic level
Birth_date HEA

Address DA

Income_TAX

4 L

Employee_no Number{4)
Mame Varchar2{20)
Birth_date Date

Address Varchar2(30)
Joining_date Date

Basic Number(10.2) '30:;35'“3'
HRA Mumber (7.2)
DA Mumber (7,2)
Income_Tax Mumber(7,2)
Employee Length=86
Employse_no Type=Byt=(4)
Mame Type=Byte(20) Internal
Birth_date Type=Byie(8) level
Address Type=Byte(30)
Joining_date Type=Byte(8)
Basic Type=Byte(4)
HRA Type=Byte(4)
DA Type=Byte(4)
Income_Tax Type=Byte(4)

Figure-4 Three levels of Employee Database
The main merit of three-level DBMS architecture is that it provides data independence.

Data independence is the abilityto change the schema at one level ofthe database
system without c hanging the s chema at the other levels. D ata independence is of two
types:

Logical Data Independence:

The ability to adapt the conceptual level without altering the external level or application
program i s k nown as | ogical dat ai ndependence. T he ¢ onceptual s chema c an be
changed due to the change in constraints or addition of new features. This change will
have no ef fectont heex ternall evels chemat hati s al readyt here. Lo gicalda ta
independence is difficult to achieve as the application programs are always dependent
on the logical structure of the database. Therefore changes in the logical structure of the
database may require change in the application program.

Physical Data Independence:

21

The ability to change the internal level without changing the conceptual level is known
as physical data independence. T he transform in the da ta s torage s tructure or ac cess
strategy or indexing technique will hav e no ef fectont he c onceptual s chema. T hisis
because the mapping between the conceptual schema and the internal level is provided
mostly by DBMS and changes are taken care of by mapping. Hence the physical data

independence is easy to achieve.

2.4 VARIOUS COMPONENTS OF DBMS

The database system is composed of five major components, that is:

e Hardware

e Software

e People

e Procedures and
e Data

Let’s take an individual look at the five components:

] | Writes and |
I Enforces ~ -
- _ Supervises y
Procedures and f] - u
Standards \ ‘ Database Administrator System Administrator
I
= = Database Desginer
OO 9 Manages
L.
S
. Analyst & Programmers | W
End sers 4 Designs ’:
Application >t =
Programs
Write Hardware
DBMS Utilities
DBMS
Access N ———

Figure-5 Database system environment

22

e Hardware: ltreferstoallt hes ystem’s phy sical de vices t hatc an be s torage
devices, net work d evices, pr inters, s ervers, w orkstations, c omputeret c. T he
computer m ay r ange from per sonal c omputerst oa m ain frame and it m ay
include one powerful server depending upon the organizations requirements and

the size of the database.

A good database s ystem requires a d atabase s erver with a f ast processor and
significantly arge amount of m ainm emory. It alsoi ncludes di fferent k ind of
peripheral devices to handle various kinds of data. The advancement in
computer har dware t echnology and de velopment of pow erful c omputers has
resulted into increased database technology development and its application.

e Software: There are basically three types of software needed:

> QOperating System: |t m anages all the hardware c omponents an d m akes it
possible f ort he s oftwaret or unont he c omputer. Mostc ommonly us ed
operating systems are LINUX, WINDOWS, MAC etc.

DBMS: DBMS s oftware m anages the datain the d atabase. Some examples
of commonly used DBMS software include- MySQL, Oracle, DB2, MSAccess

etc.

> Application programs and utility software: It is used to access and manipulate
data in the DBMS. Applications programs are used to provide an interface to
acceptdat afromtheuser. T heyare alsous edto accessdatafromthe
database in order to provide reports, tabulations and other logical information

to the user. Utility software is used to help manage some DBMS components.

e People: Iti ncludes al It heus ersw hoi nteractw ithan yc omponento fth e

database system environment. List of all the users are listed below:

o Database Administrator: DBA is one of t he m ain us er r esponsible for
managing the DBMS and controlling the dat abase of the DBMS. DBA is
mainly responsible for setting up procedures and standards and ensuring

that they are implemented properly.
23

o0 System Administrator: System administrator is the one who takes care of
allt he c omputers i nt he n etwork, andt he da tabase s ystems gener al

operations.

o Database Designer: They are also called data base architects. They along
with the database administrator design the structure of the database. If the
database des igni s poor o ther a | c omponents of t he d atabase s ystem

environment become helpless.

o0 System Analyst and Programmers: They des igna nd implementt he
application programs. T hey ar e r esponsible f or des igning t he forms and
reports. T hey m ay alsos et up pr ocedures t hrough w hiche nd users

access and manipulate the data in the database.

0 End User: Theyar et hose us ers w ho us et he app lication pr ograms t o
manage the da y-to-day o perations of the business. End us ers include all
employees of the organization starting from the data entry operators to the
decision makers. Some of them enter raw data and some of them process

the raw data and generate information.

Procedure:Procedures are instructionsand rules that govern the design and use
of the d atabase s ystem. P rocedures h elp t o m aintain c ertain | evel of standards
and ensure that the data entering the system and information generated from the

system are all in well organized manner.

Data:Data is nothing but raw facts from which the information is generated. Data
actually i ncludes the entire collection of datathat goes into the database. Only
valid and s ignificant data must go i nto the s ystem else the information obt ained

may not be reliable for the purpose of decision making.

24

2.5 Check your progress

1. Explain the 3-level database architecture in detail.

2. What is data independence? Explain in brief logical data independence and
physical data independence.

3. Write a short note on database system environment.

25

Unit 3: Data Models

Unit Structure

3.1.

3.2.

3.3.

34.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

Learning Objectives

Introduction

Data modelling

The hierarchical data model
Network data model

Relational data model

Entity Relationship data model
Object oriented data model
Comparison between data model

Check your Progress

3

26

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e Evaluate different data model and its mapping.

3.2 INTRODUCTION

One of the m ain objectives o ft he database s ystemsis data abstractionthatisto
highlight on Iy t he es sential f eatures andt o hidet he s torage and data organization
details from the user. A model is an abstraction process that concentrates on essential
and intrinsic features of the application while ignoring the details that are not important.
Ad atabase model provides the necessary means to ac hieve data abstraction. Adata

model allows the conceptualization of the association between entities and its attributes.

A data model is a simple demonstration, generally graphical, of more complex real word
data structures. It consists of a set of data structures and conceptual tools that is used
to describe the structure (Data types, relationships and constraints) of a database.

Adatamodel notonly describes the arrangement of the data, it also d efines a s et of
operations that can be performed on the data. A data model generally consists of data
model theory, which is a f ormal d escription of h ow data may b e structured and us ed,
and d atam odel i nstance, w hichi s pr actical datam odel d esigned f ora particular
application. The process of applying data model theory to create a data model instance

is known as data modeling.

3.3 DATA MODELING

A datam odelc anb e very useful c ommunication t ool t hat pr ovides am eans of
interaction between the databases designer, application programmer and the end user.

There are different types of data model that are explained in the next section.

27

3.4 THE HIERARCHICAL DATA MODEL

The hierarchical model was the first proper model developed. Its basic logical structure

is represented by an upside down tree.

Level-0: Root / Parent Node h
A
A
p
Level-1: Segment
{(Root Children) B c
L

Level-2: Segment
(Level-1
Children) D E

Figure-6 Hierarchical Data Model

The hierarchical structure contains levels or segments. A segment is equivalent to a file
system record type. With the hierarchy the top most level or segment is known as a root
node or the parent node. The root node or the parent node is assigned the level — 0 as
shownintheF igure-6. Again w ithinthe hierarchy eac h's egmentis per ceived as a
parent of the segment below it.

In other words, each record is perceived as a parent record of the segment or the child
record below it. As shown in the Figure-6 the segment at level-0 i.e. the root node is the
parent node for the segments at level-1. Similarly the records at level-1 are also parent
records for those records at level-2.

The hierarchical d ata model is best s uitable t o represent on e-to-many r elationship as
shown infigure 1.6. Inthis model each par ent r ecord can h ave m ultiple c hild records
related toit. The limitation of t his modelis on e child record can h ave only on e parent

record. Hence it is difficult to represent many-to-many relationship using this model.

28

University University

Y
M Level-0: Root Node Department
Department (Depa.rtment is a PK Dept_id
parent of Course FK1 Dept_name
Address
4
L Level-1: Root Segment Course
Course (Course is a child of PK Course_id
Department and parent FK1 Course name
of Course _
Y
Subject
o ;’ I Level-2: Root Segment PK Sub_id
oubjec (Subject is a child of FK1 Subject_name
Course

Figure-7 Hierarchical data model relationship
Figure-7 s hows a h ierarchical d ata model of a university tree t ype c onsisting of three
levels. A s ingle c olleger ecorda tt her ootl evelr epresents onei nstance of t he
department record type. Multiple instances of a given record are used at lower level to
show that a d epartment m ay c onsist of many courses and one c ourse m ay c onsist of

many subjects.

Merits of Hierarchical Model:
v Simplicity: It is simple and easy to understand and implement as the

relationship between the various layers is logical and always 1:M

v Data Integrity: The parent/child relationship is always there between the layers.
The m odel pr omotes dat ai ntegrity as t he ¢ hild s egments ar e aut omatically

referenced to its parent segment.

29

v Efficiency: ltis very efficient when the database contains large amount of data
in 1: Mr elationships an d w hen | arge number o f t ransaction ar e r equired us ing

data, having relationship fixed over time.

v' Data Sharing: Data s haring bec omes pr acticalas allthedataareheldina

common place.

Demerits of Hierarchical Model:
v Implementation complexity: Itis quietc omplextoimplementas the D BMS
requires t he k nowledge o f phy sicall evel of d atas torage a ndt he dat abase
designers s hould ha ve av ery good k nowledge of t he physical dat a s torage

characteristics.

v' Implementation limitation: The m odel do es not allow o ne c hild recordto be
related to multiple parent record types. This poses great difficulty in representing

many-to-many relationship.

v Inflexibility: The c hangesint henew r elation or s egments of teny ield v ery
complex m anagement t ask. T he de letion of one s egment will c ause all ot her

segments below it to be deleted.

v' Database Management problems: If any changes are made to the database
structure, it becomes essential to change all the application programs that

access the database.

v" No standards: There are no laid down set standards on how to implement the

model.

30

3.5 NETWORK DATA MODEL

The network model was created to represent complex data relationship more effectively
then t he hi erarchical m odel, t oi mprove d atabase p erformance, an dt oi mpose a
database standard.

The network model is similar to the hierarchical data model e xceptthat arecord can
have m ultiple par ents. T his m odel h as t hree bas ic c omponents s uch as record t ype,
data items and links.

Arelationship is called a set in which each set is composed of at least two record types-
owner record (same as parent record) and member record (same as child record). The
connection between an owner and a member is identified by a link to which a set name
is assigned.

The set name is used to retrieve and manipulate data. The link between the owners and
theirm embers i ndicate access pat hsi nt he networkm odela ndar et ypically
implemented with p ointers. In network data model, member can ap pear in more than
one s etan d t hus m ay ha ve s everal ow ners, and h ence itf acilitates m any-to-many
relationship. A setrepresents a on e-to-many r elationship between the owner and the

member.

Level 0: Owner

Level 1:
Owner/Member B C

Level 3:

Member D E F

Figure-8 Network Data Model
In the above diagram a sample network data model is represented. As shown the

member ‘B’ has only one owner ‘A’, whereas member ‘E’ has two owners ‘B’ and ‘C’.

31

The figure-9 it demonstrates a distinctive network model representation for sales
process. The model represents five record types namely- Sales_person, Customer,
ltem, Sales_order, Billing and Order_detail. Here the entity Sales_order has two owners
Sales_person and Client. Similarly Order_detail has two owners ltem and Sales_order.
In this model eack link between two record types represents a one-to-many relationship

between them.

Sales_person Client
1:M ¢ ‘L 1:M | 1M
Item Sales_Order Bllling
1:M | 1:M
v
Order_detail

Figure-9 Network Model for Sales Process
Merits of Network Model:

v' Simplicity: Same as hierarchical model network model is also simple and easy

to understand.

v Facilitating more relationship types: The network m odelis abl etoh andle
many-to-many relationship as a member can have multiple owners. This helps in

modeling real life situations in a much better way.

v' Superior Data Access: An app lication can ac cess an ow ner record and al | the
member record within the set. Hence the data access and flexibility found in this

model are much better as compared to the hierarchical model.

v Database Integrity: It e nforces integrity and d oes not allow a m ember to exist

without an owner.
32

v' Support for DBMS: Iti ncludes D ata D efinition L anguage (DDL) a nd D ata
Manipulation Language (DML) in DBMS.

v Database Standards: It is basedon universal standards formulatedby DBTG
(Database task group) / CODASYL (Conference on data system languages) and
improved by ANSI/SPARC.

Demerits of Network Model:
v' System Complexity: Network models are difficult to design and us e properly.
The n avigational access m echanism ac cesses only one record ata time a nd
hence m akes t he s ystem i mplementation v ery ¢ omplex. K nowledge of t he

internal data structure is required to take the advantage of this model.

v Absence of Structural Independence: Ifc hangesar em adet o database
structure, all subschema descriptions have to be updated before any application

program can access the data.

3.6 RELATIONAL DATABASE MODEL

The r elationalda tam odelw as or iginallyc ommencedby D r.E .F.C odd.| ti s
implemented t hrough a v ery s ophisticated r elational dat abase m anagement s ystem
(RDBMS). IT notonly per forms the s ame bas ic functions that are t here i n hierarchical
and network model but also provides the ability to hide the complexities of the relational
model from the end user. Table is a matrix consisting of series row/column intersections
relatedt o e ach ot hert hrough s haringac ommon ent ity ¢ haracteristic. R elational
diagram i s ar epresentation of r elational database’s ent ities, at tributes w ithin t hose
entities, and r elationship between t hose entities. Relational table s tores a c ollection of
related e ntities an d resembles a file. R elational table is p urely alogical s tructure and
how da ta ar e p hysically s tored int he databaseis of noconcern tothe useror the

designer.

33

In relational data model, tables are related to each other through the sharing of common
attribute. F or example the S ubject table int he gi ven F igure 1. 10 c ontains F aculty_id

field and the same filed also exists in the Faculty table.

Faculty

FOOo1 Dr. Nilesh Modi Computer Science

FOO2 Prof. Ramesh Kataria Mathematics

FoO03 Prof. Kamesh Rawval Computer Science

FOO4 Dr. Amit Ganatra Computer Science

Subject

S001 Computer Network FOO1
S002 Discrete Maths FOO02
S003 Database FOO4
S004 .Net FOO03

Figure-10 Relational Data Model
The common field between Faulty and the Subject tables allows a subject to match with
the details of the faculty who is teaching it. Here although the tables are independent of
each ot her, the data b etween the two tables can be easily as sociated. T he relational

database provides the least amount of redundancy.

Merits of Relational Data Model:

v' Conceptual Simplicity: Thet abular view of s toring and m anaging the d ata

improves c onceptual s implicity, thereby e ncouraging e asier database blueprint,
implementation, administration and usage.

v' Structural Independence: The relational dat a m odel do es not dep end o nthe

navigational da ta ac cess and henc e the c hanges in the table s tructure d o not

affect the data access.

34

v' Flexible and powerful query capability: It provides very powerful, flexible and
easyt ous eq ueryingf acilities. IT has S QLt oex ecutet he r equired da ta

operations and manipulations.

v RDBMS support: The availability of powerful RDBMS isolates the end user from

the physical-level details and improves execution and administration ease.

Demerits of Relational Data Model:

v' Hardware Overhead: This model requires a fast processor al ong with a large
capacity an d hi gh s peed s econdary s torage d evices t o per form t he as signed
tasks. Now-a-days this is not that big disadvantage as the computing s peed is
getting doubles e very e ighteen m onths a nd the c ost of s torage devices ar e

getting reduced to a great extent.

v' Poor Design by untrained professionals: Because of e ase of usemany a
times it is managed by untrained professional to develop the required queries. So
queries and r eports w ritten w ithout pr oper logical t hinking r esults i ns lower

system and performance degradation.

3.7 ENTITY RELATIONSHIP DATA MODEL (ER MODELS)

The E ntity r elationship m odel w as i nitially pr ojected by P eter Chenin197 6.1tis a
graphical r epresentation o f d atabase s tructure using entities a nd r elationship am ong
entities. The E R Model m atched t her elational dat a m odel v ery s atisfactorily. T he
combination provides a very good database design.

The ER model is has following components mentioned below:
Entity Set: It is a real world object for which data are collected and stored. It is just one

instance of an entity set. The term entity and entity s et are different but can be used

interchangeably. An entitysetis representedbyar ectanglein anER diagram. T he

35

name of the entity is generally noun and s ingular. E xamples of en tity are D epartment,

Course, Student etc.
Attributes: The c haracteristics of an e ntity is called an attribute. O ne entity can ha ve

multiple a ttributes |l ike a n e ntity C ourse can ha ve Course_id, Course_name, D uration
etc are the attributes.
Relationships: It describes an connection between two entities. There are three types
of possible relationships between the entities , they are one-to-one (1:1), one-to-many
(1:M) and many-to-many(M:N).

| country v

idCountry INT

Country_name ¥V ARCHAR(45)
|

_| state v

idState INT
- State_name YV ARCHAR{45)

@ Country_idCountry INT

—_—— — -

ke
T ~ city v
|
|

iddty INT
______ —} City_name VARCHAR(45)

@ State_idState INT

[TI—

>

|

|

| _| Area ¥

I id&rea INT

I_ —1 Area_name VARCHAR(45)
& City_jdCity INT

>

Figure-11 Sample ER Diagram using Crow’s Foot Notation
The above figure illustrates 1: M relationship between the entities Country, State,
Cityand Area. T he i dCountry at tribute from the C ountry table is r eferencedin S tate
table. Therefore it represents one-to-many (1:M) relationship between the entity Country
and State, which m eans one c ountry can h ave many s tates. Similarly there is on e-to-
many relationship between State entity and City, and 1:M relationship between City and

Area entity.

36

Merits of ER Model:
v" The ER model is a graphical demonstration of entities which results in complete
clarity and simplicity in understanding.
v ER model also goes in combination with the relational model data model and with

help of some tools like MySQL Workbench conversion.

Demerit of ER Model:

v Depending upon different logical perceptions many a times it's not possible to
specify most of the constraints.

3.8 OBJECT ORIENTED DATA MODEL (OODM)

The object oriented data model is a logical data model that is based on the concept of
object or iented pr ogramming. Ith as c omei nto ex istencet o m eett he i ncreasingly
complex r eal w orld app lications w hich ar e not bei ng eas ily s olved by ot her m odel. A
class r epresents bot h ob ject at tributes as w ellas t he beh avior of t heent ity. T he
instance of the class- object contains both data as well as their relationship. An object
includes information about the relationship between the facts within the object as well as
information about relationship with other objects. Objects also contain all operations that
can be performed on it.

The object-oriented data model is differently proposed by different researchers and has
no s ingle c ommon database s tructure | ike t he ot her data m odels. O ODM forms t he
basis f or t he o bject-oriented d atabase m anagement system (O ODBMS). T hey are
mainly used in engineering and design, financial services, telecommunications etc. This
model is represented by UML (Unified Modeling Language) class diagrams.

The main advantage of OODM s that it is closer to the real word and hence is able to
deal w ith m ore ¢ omplex pr oblems v ery e asily. T he m ain dem erit of O ODMi s no

established standards and hence is not that much widespread accepted.

37

3.9 COMPARISON BETWEEN DATA MODEL

We hav ed iscussed al It he e ntire dat am odels and basedons omes pecialized

characteristics and s ome m erits and dem erits w e c ompare all the m odels. T he table

given below shows the comparison:

) o | Access Data Structural
Data Model Char.acterl Organizati| ldent Langua | Independe | Independe
stics on fy
ge nce nce

Hierarchical | Best File, Recor | Procedu | Yes No

suitable for | Records d ral

1:M based

relationshi

Y
Network Ability to File, Recor | Procedu | Yes No

handle all Records d ral

types of based

relationshi

p, including

M:N
Relational Conceptual | Tables Value | Non- Yes Yes

Simplicity, based | Procedu

easier ral

database

design.
Entity Visual Entity Value | Non- Yes Yes
Relationship | representat | Sets/ based | Procedu

ion makes | Objects ral

it very easy

to

understand

38

Object
Oriented

No
standardiz

ed method

available to

represent

the model.

Objects

Recor

based

Procedu

ral

Yes

Yes

Table-1 Comparison between data model

3.10Check your progress

akrowbdeE

Explain the importance data model.
Define entity, attributes and relationships.
Discuss hierarchical model in detail.
Explain in detail the network model.
Write a short note on ER model.

39

Unit 4: Database Design

Unit Structure

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

Learning Objectives
Introduction

Characteristics of a table
Keys

Integrity policies

Relational set operators
Attributes

Relationships contained in relational database
Connectivity and cardinality
Relationship Strength
Relationship degree
Database design process
Anomalies in database

Check your progress

40

4.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

e decide an entity and its attributes.

e understand database design process and the commonly occurred anomalies in it.

4.2 INTRODUCTION

A table is viewed as a two dimensional organization consisting of rows and columns. A
tablemanyat imesisalsocalleda relation becauset he r elational m odel ar chitect
composed of rows and ¢ olumns. A table c onsists of a c ollection of as sociated ent ity
occurrences that is an entity set. For example a DESIGNATION table contains the entity
occurrences, each representing a separate designation of an employee.

With the help of table view of data it makes it easy for a database designer to design the

database.

4.3 CHARACTERISTICS OF A RELATIONAL TABLE

The eight characteristics of a relational table are mentioned below:
1. Atableis perceived as a two-dimensional arrangement structure of rows and
columns.

2. Tuple corresponds to a single entity event contained in the entity set.

w

Every relational table column represents an attribute, which should have a
distinct name.

The intersection of a row and column represents a single value in the table.
Every value in the column must correspond to the same data type and format.
Each column can have a definite range of values know as attribute domain.

The sequence of rows and columns is irrelevant in DBMS.

©® N o g &

Every table must have an attribute or its combination that can distinctively

identify a tuple.

41

Vi.

Vil.

Table: DESIGNATION

Desig_id | Desig_name
1 CEO
2 Manager
3 Supervisor
4 Technician
5 Officer

Desig_id= Designation ID, Desig_name= Designation hame

Table-2 DESIGNATION table attribute values

The D ESIGNATIONt ablei sv iewed asat wod imensional ar rangement
consisting of two columns and five rows.

Each row in the DESIGNATION table illustrates a single entity occurrence within
the en tity s et. F or example as s hownin thef igure-12 her e any Desig_id=4,
represents t he other c haracteristics that’s d esignation name inthe given table,
the designation name in this case is Technician which denotes a record.

Here each column is viewed as an attribute and should have unique name.

As shown in the given figure t he entire attribute in a gi ven column must have a
same data type. Like designation name field has a data type as character.

Here the designation ID has a range of possible values that are between 1 to 5,
which is known as range of domain values.

The series of rows and columns is irrelevant in DBMS.

Each table in RDBMS must have a column/attribute which contains set of unique
values and t hat a ttribute can be as signed as a P rimary Key (PK). Assigning a

PK attribute to afield, does not allow the field to remain either empty or repeated.

42

4.4 KEYS

Keys in RDMS are significant as they are used to ensure thateach tupleinat able is
uniquely i dentifiable. A key c onsists of one or m ore a ttributes t hat det ermine ot her
attributes. For example an Designation ID identifies all the field in the designation table.
A primary key plays an important role in the relational environment, where the key’s role
is bas edont he c oncept of det ermination. E ach t able m usthaveaat tributethatis
unique and is able to identify the unique records of the table.

Similarly the foreign key contains either matching values (primary key of another table)
ornul Is. T hetablet hat m akes us e of thatforeignk eyis s aidto e xhibit referential
integrity. In simple w ords referential integrity means thatif the foreign key contains a
value, that value should refer to an existing valid record in another relation.

In the context of dat abase table, the statement “ Ade termines B”, indicates thatif y ou
know the value of attribute A,youcanlookupintothevalueof B.F ore xamplethe
knowing the Student_ID inthe S TUDENT tablewe are able tolook up his/her name,
score, mobile number etc. Therefore attributes of the student table can be represented
by t he s tatement “ Student_ID d etermines nam e, s core, s em, m obile”. T his s tatement
can be simply denoted by:

Student_ID -> Name, Score, Sem, Mobile_num

The ¢ oncept of de terminationis i mportant as itus ed int he definition of ac entral
relational database concept known as functional dependency. The functional
dependency can be defined most easily this way: “The attribute A determines B if all the
rows in the table that agree in the value for attribute A also agree in value for attribute
B”.

Also “ If an attribute B is functionally d ependent o n a c omposite key Abut not on any
subset of that composite key, the attribute B is fully functionally dependent on A"
Composite key is a combination of 2 more attributes that is used to uniquely identify a
record in a given table. Within the broad key classification special keys can be defined

as given the figure 1.14

Key Type Definition

Super key An attribute that uniquely identifies each row in a table

43

key

Candidate

A minimal (irreducible) superkey.

Primary key | Ac andidate k eyt hat is s electedt o uni quelyi dentify al | ot her

attributes in a column and does not contain a null value

key

Secondary

An attribute used strictly for data retrieval purposes.

Foreign key | An attribute in one table whose value must match the primary key

in another table.

Table-3 Relational Database Keys

4.5 INTEGRITY POLICIES

For a good relational database design integrity rules are very significant and they must

be followed. S everal R DMS i mplement i ntegrity r ules w ithout h uman i ntervention b ut

care s hould be t aken t hat a ny ap plication des ign m ust m atch t he r eferential i ntegrity

rules which are summarized in the figure 1.15:

Entity
Integrity

Description

Requirement

All primary keys are unique and cannot be null

Purpose Eachrow will have a unique identity and the foreign key can r eference
primary key values. E.g. No Student ID can be duplicated as well as it
cannot be null.

Referential | Description

Integrity

Requirement

Purpose

A foreign must match with the primary key value in a table to which it is
related, or sometimes may have a null entry.

It may b e pos sible for an at tribute NOT to ha ve a ¢ orresponding value,
but an invalid entry is not possible. E.g. An AGENT has yet not assigned
any CUSTOMER.

Table-4 Integrity rules

44

As shown in the Table-5, the STUDENT table does not contain a repeated Student_ID
as well as does not contain null which represents entity integrity.

Student_ID | Name | Sem | Score | MOB

S001 Amit | | 75 9898989898
S002 Neha | I 83 9090909090
S003 Hem || 87 7878568923

Table-5Sample STUDENT table
Similarly the tables AGENT and CUSTOMER are shown in the Table-6, where the

agent Ramesh and Joy has yet not assigned any customer, and Agent_ID attribute in

the Customer table is null for the customer named sumit and harsh.

Agent_ID [A_name | MOB
1 Nilanshu | 7539518526
2 Shyam | 4567891236
3 Ramesh | 3216549875
4 Joy 3578529631
Customer_ID | C_Fname | C_Lname | City Agent_id
1 Sumit Verma Ahmedabad
2 Nancy Joseph Surat 1
3 Jenny Shah Rajkot 2
4 Harsh Modi Surat

Table-6 Sample AGENT and CUSTOMER table

4.6 RELATIONAL SET OPERATORS

The data in the RDBMS are of limited worth until we can manipulate to generate useful
information. Inthis s ectionwe will be describing ab out eight r elational s et op erators
populated by relational algebra to implement various operations. The operators that we
are going to discuss are: UNION, INTERSECT, D IFFERENCE, PRODUCT, SELECT,
PROJECT, JOIN and DIVIDE.

45

UNION: This operation combines all the rows from two tables, excluding the rows which

are ha ving dup licate records. Here b oth the table must have t he same fields and al so

share same number of columns. The example of union operation is shown in the figure-

12:
Pro_i |P_nam | Pric 4 P4 400
d e e UNION 5 P5 450
1 P1 250 P1 250
2 P2 300
3 P3 350 Pro_id | P_name | Price
Figure 12 (a) Figure 12 (b)

Pro_id | P_name | Price

1 P1 250

2 P2 300

3 P3 350

4 P4 400

5 P5 450

Figure 12 UNION operation
INTERSECT: This oper ation displays only t he records that are c ommon on bot ht he

tables. The result of the intersection operation is given below:

FNAME

Tarun

Ravi

INTERSECT

FNAME

Tarun

Sam

OUTPUT

Figure-13Intersect operation

FNAME

Tarun

DIFFERENCE: It displays allthe records in one tablethatar en otfound ina nother

table. The result of the difference operation is shown below:

46

Product

Pen

Pencil

Ruler

DIFFERENCE

Product

Pen

Pencil

OuUTPUT

Figure-14DIFFERENCE operation

Product

Ruler

PRODUCT: The product op eration results in al | the pos sible p air of rows from the two

tables. This operation is also known as Cartesian product operation. For example if one

table has 3 records and an other table has 2 r ecords the product oper ation will yield 6

records. T he ou tput of product o perationis s hown b elow, where product operation is

performed between Product table and Supplier table:

Pro_1I |[P_nam | Pric PRODUCT SUP_id [S_Name | CITY
d e e S1 RKT AHM
P1 A 250 S2 MBD AHM
P2 B 300
P3 C 350

Pro_id | P_name | Price | SUP_id [S Name | CITY

P1 A 250 | S1 RKT AHM

P1 A 250 | S2 MBD AHM

P2 B 300 | S1 RKT AHM

P2 B 300 | S2 MBD AHM

P3 C 350 | S1 RKT AHM

P3 C 350 | S2 MBD AHM

Figure -15The result of PRODUCT operation
SELECT: This operations displays all the records from the given table that s atisfies a

given c riteria. T his o perationis a Iso k nown as R ESTRICT op eration. F or example

supposewewantto listallthe records from the above table w here the price of t he

product is greater than 350, then the output of select operation is shown in the figure

17.

47

Pro_i |P_nam | Pric P5 E 450

d e e

P1 A 250 : :
Pro_id | P_name | Price

P2 B 300 P4 D 400

P3 C 350 SELECT ALL (Price>350) P5 E 450

P4 D 400

Figure -16SELECT operation
PROJECT: This o peration yields all the values for the s elected attributes, which is a

vertical subset of a given table. The result of PROJECT operation is shown in the figure
17:

BPro 1 [P _nam | Pric Price

; . . 250
300

o = 555 350
400

P2 B 300 450

P3 C 350

P4 D 400 PROJECT Price Yields

PE E 450

Figure -17PROJECT operation
JOIN: Join a llows i nformationtob e combined f romtwoor m oret ables. T here ar e

several forms of join that are explained below.

A natural join links the tables by selecting only those rows with the common values in
their common attribute, whichis at hree step process. Firsta P RODUCT op erationis
implemented among t he tables included in the join. S econdly a SELECT operation is
performed on the outputto get the rows for which foreign key is present. And finally
PROJECT operation is performed on the results of second operation to get the selected
attributes a nd eliminate the du plicate tuples. T he ultimate o utcome of the natural join
produces as et of ar ecordt hatd oes not i nclude m atchless pairs and o fferonly t he
copies of the m atches. E xample o f natural join and its operations are explainedin the

figures given below:

48

CUSTOMER TABLE AGENT TABLE

CUST_ID | NAME PINCODE | A_ID A_ID A_NAME

CO001 Sanjay 382330 A001 A001 Hari

C002 Rahul 382421 A002 A002 Jay

C003 Pankti 358965 A003 A003 Om

C004 Prachi 365898 A001

Table-7 Sample tables considered for join illustrations

CUST_ID | NAME | PINCODE | CUSTOMER.A_ID | AGENT. A ID | A_NAME
CO001 Sanjay | 382330 A001 A001 Hari
CO001 Sanjay | 382330 A001 A002 Jay
CO001 Sanjay | 382330 A001 A003 Om
C002 Rahul | 382421 A002 A001 Hari
C002 Rahul | 382421 A002 A002 Jay
C002 Rahul | 382421 A002 A003 Om
C003 Pankti | 358965 A003 A001 Hari
C003 Pankti | 358965 A003 A002 Jay
C003 Pankti | 358965 A003 A003 Om
C004 Prachi | 365898 A001 A001 Hari
C004 Prachi | 365898 A001 A002 Jay
C004 Prachi | 365898 A001 A003 Om

Table-8Natural Join, Step 1: PRODUCT
The next operation performed in the natural join is a SELECT operation that is shown in
the Table-9

CUST_ID | NAME | PINCODE | CUSTOMER.A_ID | AGENT. A ID | A_NAME
C001 Sanjay | 382330 A001 A001 Hari
C002 Rahul | 382421 A002 A002 Jay
C003 Pankti | 358965 A003 A003 Om
C004 Prachi | 365898 A0O01 A0O01 Hari

Table-9 Natural Join, Step 2: SELECT

49

Finally the last operation implemented in natural join is PROJECT that is shown in the
Table-10

CUST_ID | NAME | PINCODE | AGENT. A ID | A_NAME
C001 Sanjay | 382330 A001 Hari
C002 Rahul | 382421 A002 Jay
C003 Pankti | 358965 A003 Om
C004 Prachi | 365898 A001 Hari

Table-10 Natural Join, Step 2: PROJECT
Another form of join is known as equijoin that links the tables on the basics of equality

condition t hat c ompares s pecific at tributes of eac htable. Heret he out put d oes not
eliminate the du plicate column values. T he eq uijoin t akes the nam e from the o perator
that it uses, if any other comparison operator is used, the join is called a theta join.
Lastly the outer join, in which the matched pairs would be retained and any unmatched
values in the other table would be left null.

DIVIDE: This oper ation us es one s ingle-columnt able as t hedi visorando net wo

attribute table as the dividend. The tables used in this operation must have an attribute

in common.
Key | Location
A 34

B 45

C 25

C 36

D 25

D 72

C 12
DIVIDE
Key

C

D

50

Location
25

Figure 18 Location Table is the outcome of the DIVIDE operations

Here the first table is divided by second table, where both the tables share a common
attribute “KEY” and does not share LOCATION. The output yields only the value that is
associated with both “C” and “D”.

4.7 ATTRIBUTES

Attributes ar e consideredt o be the c haracteristics of t he entities. F or ex ample t he
CUSTOMER entity consists of many attributes like CUST_ID, NAME, PINCODE, EMAIL
etc. Here in this s ection we will discuss about various p oints to b e keptin mind w hile
deciding the attributes in a given entity.

Required and Optional attributes: Arequired attributeis anfiledthatmusthave a
value or w hich c annotbe | eft nul I. F or e xample C UST_ID a nd N AME ar e r equired
attributes in the CUSTOMER table. On the contrary a customer may have an email or
may not so the field EMAIL in the CUSTOMER table is an optional attribute as it can be
left null.

Domains: Allthe attributes have their d omain, which means a s et of possible values
that can be accepted by that particular filed. For example minimum and maximum value
for semesters inthe MSc(IT) course can be b etween one and four. S o the domain of
possible values for the field semester is either 1/2/3/4.

Primary key: Primary key is the i dentifier thatis us ed to identify eac h record or tuple
uniquely. Also it cannot be null. For example CUST_ID inthe CUSTOMER tableis a
primary key that uniquely identifies each customer’s record and which cannot be null.
Composite keys: When w e us e more than one i dentifier or primary k ey t o u niquely
identify a record in a table, it is known as a composite key. For example CUST_ID and
ACCOUNT_NUM can be combined to create a composite key as a customer may have

different types of account in a bank,

51

Composite and simple attributes: Ac omposite at tributei s not b e baffledw ith
composite k ey. Itisan attributet hatc an be f urther s ub dividedto yield ad ditional
attributes. F or ex ample an attribute F ULL_NAME c an be f urther s ub d ivided i nto
FIRST_NAME, MID_NAME and LAST_NAME. A simple attribute cannot be further sub
divided. For example gender, age etc.

Single-valued attributes: An attribute thatcan have o nly single value is known as
single valued attribute. For example AADHAR number of any Indian citizen is
considered to be a single-valued attribute.

Multivalued attributes: Those at tributes t hat c an have m ultiple values f or example
color of ac ar, de gree ofas tudent, ar ea o finterest of ac andidate, h obbies etc are
considered to be the multivalued attributes.

Derived attributes: An at tributes value t hat c an be c alculated from ot her attributes
value is known as derived attribute. For example the attribute AGE can be derived from
the date of birth field. Similarly amount of GST to be paid, percentage of a student etc

are the examples of derived attributes.

4.8 RELATIONSHIPS CONTAINED IN RELATIONAL
DATABASE

Relationships that are defined in relational database are of three types:
e One-to-many (1:M)
e One-to-one (1:1)

e Many-to-many (M:N)

The 1:M relationship: The 1:Mrelationship is the relational database standard. To this
how this relationship is modeled and implement let us consider a simple example of
COUNTRY and STATE entity.

52

:l Counftry b
idCountry INT }4

Country_name V ARCHAR(45)
>
_| state v

idState INT
N State_name YV ARCHAR{45)

@ Country_idCountry INT
>

Figure-19:M relationship between Country and State table
As shown the figure 19 the one COUNTRY can have many STATES, so there is a one-

to-many relationship between two tables.

The 1:1relationship: This relationship represents that one entity can be related to only
one another entity and vice versa. For example one department chair-a professor-can
chair only one department and one department can have only one department chair.

:l Professor ¥ :l DEPEI"II'IEIT‘ L)
idProf INT idDepartment INT
Prof_nam e VARCHAR(45) Department_name VARCHAR(45)

= Professor_jdProf INT

Figure-20 1:1 relationships between Professor and Department
The M:N relationship: A M:N relationship is not directly s upported int he r elational

database environment. As ample e xample of M:Nr elationshipc anb e c onsidered
between MOBILE and FEATURES tables. Here one MOBILE can have many features,
also the same feature can be there in many MOBILES.

The way to implement M:N relationship in relational database environment is to change
the M:Nr elationshipt o two 1:Mr elationship. This c an be do ne by ad dinga t hird
associative en tity or a br idge t able bet ween t wo t ables. F igure 1. 31 r epresents t he
solutiontot he gi ven pr oblem. Here t he bridge t able i s “ Mobile_has_feature”, w hich

specifies which mobile has which features.

53

—| Mobile ¥ _| Feature ¥
‘ idMobile TNT ‘ idFeature INT

Maobile_nam e VARCH AR (45) Feature_name VARCHAR(45)
> »

-

" | Mobile_has_Feature ¥
Mobile_idMobile INT
Feature_idFeature INT

>

Figure-21 Changing the M:N relationship to two 1:M relationship

4.9 CONNECTIVITY AND CARDINALITY

Cardinality s ignifies t he m inimum andt he m aximum num ber of en tity oc currences

associated with one occurrence of the related entity. In entity relationship modeling it is
represented by using the format (n,m), where the first parameter represents minimum
number of linked entities and the second parameter represents the maximum number of

entity occurrences. The below figure shows the example of PROFESSOR and CLASS

entity.
Connectivity m v
ass
‘ iddass INT
~| Professor v] Class_Floor INT

s | |
idProfessor INT ieaches Professor_idProfessor 1 INT
+ >

Professor_Name VARCHAR(4S) | (1)
Cardinalities

Figure-22 Connectivity and Cardinality

4.10 RELATIONSHIP STRENGTH

The notion of relationship strength is based on how the primary key of a related entity is
defined. T here areb asically twot ypes of r elationship s trengthw eak and strong

relationships which are discussed below:

54

Weak Relationships: Itis alsoknown as Non-identifying r elationship. | t exists w hen
primary key of a related entity does not contain a primary key component of the parent
entity. By de fault relationships are recognized by h aving the primary k ey of t he parent
entity a ppear as af oreign keyon ther elated entity. F or example, s uppose t hatt he
COURSE and CLASS entities are defined as:

COURSE (CRS_CODE, DEPT_CODE, CRS_DESC, CRS_CREDIT)

CLASS (CLASS_CODE, CRS_CODE, CLASS_SECTION, PROF_ID,CLASS_TIME)
Inthis case aw eakr elationship e xists bet ween the above two en tities bec ause t he
CRS_CODE in CLASS entity is only an foreign key.

Strong Relationships: A strong relationship is also known as identifying relationship. It
exists when the primary key of arelated entity contains primary key component of a

parent entity. For example if we consider the COURSE and CLASS entities as:
COURSE (CRS_CODE, DEPT_CODE, CRS_DESC, CRS_CREDIT)

CLASS (CRS_CODE, CLASS_SECTION, PROF_ID, CLASS_TIME)

This indicates a s trong relationship e xists between the entities C OURSE and C LASS,
because t he C LASS e ntity ¢ ontains ac omposite pr imary k ey of C RS_CODE and
CLASS_SECTION.

4.11 RELATIONSHIP DEGREE

Ar elationship de gree s pecifies t he num ber of e ntities t hatar e associated w ith a

relationship. T hey ar e of s everal types |ike un ary, binary, t ernary an d hi gher degree
relationship that are discussed below:

Unary relationships: An example of the unary relationship is shown in the figure 1.33,
where an E mployee ent ityis as upervisor f or on e or m ore w orkers w ho ar e aga in
employees w ithint haten tity. S uchar elationshipi sal so known asr ecursive
relationships. Recursive relationships exits between the occurrences of the same entity

set.

55

_| Employee v
idEmployes INT

I
Employee_DOB DATE |
i

Employee_name VARCHAR(45)

Employes_idEmployee INT

Figure-23 Unary relationship
Binary relationships: A binary relationship exists when there are two entities that are

related with each other as shown in the figure 1.34. It is the most frequent relationship
that exists in the relational database. A basic example of two Entities CITY and AREA
table is shown below that are having one-to-many relationship.

_l city v
idaty INT }"'___I _| Area v
City_name VARCHAR(45) | idArea INT

>
_ — Area_name YARCHAR(45)

@ City_idCity INT

Figure-24 Binary relationship
Ternary and Higher degree relationships: A ternary relationship involves relationship

among t hree di fferent e ntities. L et's t ake an e xample of t hree e ntities D OCTOR,
PATIENT an d MEDICINE. Heret he d octor g ives one or m ore prescriptionstot he
patients. P atients c an visit one or m ore d octors and get d ifferent prescriptions. O ne
medicine can be there in one or more prescriptions that are given by doctor to patients.

An example of ternary relationship is as shown in figure 1.35

56

~] patient v

—| Doctor L idPatient INT
idDoctor INT —-H Fatient_name WV ARCHAR.(45)
= ipti Patient_age INT
Doctor_name VARCHAR(45) 1 _ Prescription v atient_age
> idPrescription INT >

Prescription_date DATE
Prescription_detzils VARCHAR({500)
@ Doctor_jidDoctor INT

[—————
L

@ Patient_idPatient INT

@ Medicne_idMedicine INT

—| Medicine ¥
idMedicine INT

Medicine_nam e VARCH AR (45)
=

Figure-25 Ternary relationship

4.12 DATABASE DESIGN PROCESS

Database d esignis a pr ocedure of creatingac omplete d atam odel of a database
consisting of a llt hel ogical a nd p hysical design alternatives and p hysical s torage
considerations nee ded to c reate a des ign of a dat abase. Its hould al ways r eflect t he
information s ystem and s hould u ndergo ev aluation an d r evision w ithin af ramework
known as Database life cycle. There are two methods of database design:

v' Top-down vs. Bottom-up design

rS
Conceptual Modeal
Top
Bottom Down
up
Entity Entity

[Attribute } [Attribute } [Altribute J [Altribute J
¥

Figure-26 Top-down vs. Bottom-up design

57

In top dow n appr oach we identify t he dat aset and define t he dat a el ements. In
bottom-up approach we identify the data elements first and then we group them

into datasets.

v Centralized vs. Decentralized design

Y

Conceptual Model

|

Conceptual Model Verification

User Views System Processes Data Constraints

A 4

Data Dictionary

Figure-27 A centralized design approach

In centralized database design is conducted by a single person or a small team
as shownin thefigure 1. 37 ont he c ontrary i n dec entralized database design large
number of relationship and complex relations exits and are spread across multiple sites

as shown in the figure 1.38

Data Component

v 5 v

Sales Purchase Manufacturing

! ! !

View Processes View Processes View Processes
Constraints Constraints Constraints

v

Aggregation

¥

Conceptual Model

v

Data Dictionary

Figure-28 A decentralized design approach

58

DATABASE LIFE CYCLE (DBLC):

Phase 1. Database Initial Study: Intheinitial s tudy w e an alyze t he or ganization
structure and its oper ating e nvironment. W e def inet he pr oblema ndl istal It he
constraints. W e nee d to also state the main ob jectives of t he proposed s ystem along

with its scope and boundaries.

Phases

v

Database Initial
Study

v

— Database Design

v

Implementation and
coding

l

Testing and
evaluation

v

— Operation

l

Maintenance and
Evaluation

|
Figure-29 Phases in DBLC

Phase 2: Database Design: Itis the most critical phase where the DBA has to focus on

data r equirements c reate a c onceptual d esign, S electthe D BMS s oftware, c reate a
logical design and create a physical design.
Conceptual Design: In c onceptual designw e m ap the d atabase with the real w orld
entities. H ere w e per form dat a an alysis an d r equirements, de velopan d E R and
normalize to its required forms and lastly we verify the data model that is developed.
DBMS Software selection: The factors that must b e considered at the time of DBMS
software selection are:

v Underlying model of database

v' DBMS features and tools

59

v' DBMS hardware requirements
v Portability of the DBMS
v COST

Logical Design: The logical design translates the conceptual design into internal model.
Here the logical m odel design components are Tables, Indexes, Views, Transactions
etc.
Physical Design: In physical design we needto s pecify the data storage and access
characteristics because this becomes very difficult in case of distributed systems.
Phase 3: Implementation and coding: This phase includes creation of special storage
constructs for the end user tables. It also gives solution to other issues like
performance, security, backup and recovery, maintaining industry standards and
managing concurrency controls.
Phase 4: Testing and evaluation: In this phase the database is tested and fine tuned
for per formance, i ntegrity, c oncurrent ac cess and s ecurity ¢ onstraints. T his phas e is
implemented in par allel with ap plication pr ogramming. If the testing fails then following
actions are taken:

v Fine tuning based on reference models

v Alterations in the logical design
v" Updating in the physical design
v

Modernize or change the DBMS software or hardware in which its implemented

Phase 5: Operation: In this p hase d atabase is considered to b e op erational and t he
process of s ystem e valuation begins. D uring t his ph ase s ome u nforeseen problems
may occur and demand for a change.

Phase 6: Maintenance and Evaluation: In this phase we implement different
maintenance techniques like preventive maintenance, corrective maintenance, adaptive
maintenance, as signment of access per mission, pr oducing database s tatistics f or
monitoring p erformance, ¢ onducting s ecurity a udits bas edo ns ystem-generated

statistics.

60

4.13 ANOMALIES IN DATABASE

Anomalies ar ei nf actt roubles t hatc an ar ise in poorly designed, no n-normalized
databases. Non-normalized databases are those databases which don'’t follow database
standardr ulesinor dert odes ignandd evelopit. Therear e s everal c ategories of
anomalies that can exist while referencing attributes in the related tables. Suppose we
consider h ere two entities as S TUDENT and C OURSE andthe s ample r ecords are

shown below:

STUDENT_ID | NAME | EMAIL AGE
S001 Vivek | v@gmail.com 25
S002 Abhi | ab@ymail.com |27
S003 Aniket | an@yahoo.com | 32
Figure 1.40 Student table
COURSE_ID | NAME STUDENT_ID
C1 Python Programming | S001
C2 Networking S003
C3 Java Programming S001

Figure 1.41 Course table

Insertion anomaly: Kfar ecordi si nsertedi nar eferencedat tributeandt he
corresponding foreign key is not present in the primary table (STUDENT), it will result in
insertion anomaly. For example if we try to insert S005 in the COURSE table, it will not
permit.

Deletion and updation anomaly: Ifar ecordis del eted ored ited from r eferenced
relation and referenced field value is used by referencing attribute in associated relation,
it will not permit deleting the record from referenced association. For example if we try
to delete the record from the STUDENT table where STUDENT _IDis S003, itwill not
permitto delete the record. In order to avoid such a s ituation we can use CASCADE
UPDATE and CASCADE DELETE while query processing.

4.14Check your progress

61

B w0 bd =

Define table and explain its characteristics by giving examples.

List and explain the importance of integrity policies in relational DBMS.
Discuss relational set operators in detail.

What are the points to be kept in mind while deciding the attributes for a given

entity?

5. Write a short note on relationship degree.

6. Discuss the database design process.

7. List and explain the anomalies faced in the database.

62

Block-2
Relational Data Model
and
Introduction to Oracle

Server

63

Unit 1. Functional Dependency 1
and Normalization

Unit Structure

2.1. Learning Objectives & Outcomes

2.2. Introduction

2.3. Functional Dependency

2.4. Decomposition

2.5. Closer Set of Functional Dependencies
2.6. Normalizations

2.7. Let Us Sum Up

2.8. Check your progress:Possible Answers
2.9. Assignments

2.10. Further Reading

64

1.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,

* To learn and understand Dependencies and how to define it.

* To understand the Armstrong’s Axioms of FDs.

* To understand the decomposition process of database relation.

* To learn normalization process and different normal forms.

Outcome:

At the end of this unit,

» Students will be completely aware w ith process of D ependencies and its d ifferent
types like F unction D ependencies, F ully Functional D ependencies, M ultivalued
Dependencies, Join Dependencies etc.

» Students will come to know the decomposition process and its types.

» Students will come to know normalization and different normal forms.

1.2 INTRODUCTION

Functional dependencies (FDs) pl ay ak eyr olei n differentiating good dat abase
designs from database design. A functional dependency is a type of constraint that is
a generalization of the notion a key Functional dependencies. FD's are constraints on
well-formed r elations and r epresent formalism on t he i nfrastructure of relation. T he
determination of functional dependencies is an important part of designing databases
int he r elational m odel, an d i n dat abase nor malization an d de nor malization. T he
functional d ependencies, al ong w ith t he at tribute d omains, are s electeds oas to
generate c onstraints t hat w ould e xclude as m uch d ata inappropriatet ot he us er

domain from the system as possible.

Normalization (NF)is as ystematic way o fens uring that ad atabase s tructure is
suitable for g eneral-purpose q uerying and free of c ertain u ndesirable c haracteristics

like i nsertion, u pdate, and de letion an omalies; thatc ouldl eadto al oss of d ata

65

integrity. T he nor malf orms of r elational da tabaset heory pr ovide c riteriaf or
determining a table's degree of vulnerability to logical inconsistencies and anomalies.
The normal forms are applicable to individual tables; to say that an entire database is

in normal form n is to say that all of its tables are in normal form n.

1.3 FUNCTIONAL DEPENDENCY

Afunctional dependency (FD)i s ar elationship bet ween two at tributes, t ypically
betweenthe P Kan d ot her n on-key attributes w ithin atable. F oran yrelation R,
attribute Y is functionally dependent on attribute X, if for every valid instance of X, that
value of X uniquely determines the value of Y. T his relationship is i ndicated by the
representation below:

X=2Y Or XayY

The left side of the above FD diagram is called the Determinant (X), and the right side
is the Dependent (Y).

X Y X Y
1 1 1 1
2 4 2 4
3 9 3 9
4 16 4 16
2 4 2 10
7 9 7 9
Table: A Table: B

Above Table: A illustrates that X 2 Y, since for each value of Xthereis as sociated
oneandonly one valueof Y. While T able: B illustrates that X d oes not functionally

determine Y, since for X = 2 there is associated more than one value of Y (4, 10).

Example: Consider the database having following tables.

66

SNo SName Status City

S1 Nilesh 20 Ahmedabad
S2 Vinod 10 Patan

S3 Rahul 20 Ahmedabad
S4 Jayesh 20 Surat

Table: Supplier

Here, if we know the value of SNo, We can obtain value of SName, Status and City.
So, we can say that SName, Status and City are functionally depends on SNo. FD is
represented as: SNo ->{ SName,Status,City}

SNo PNo Qty

S1 P1 270
S1 P2 300
S1 P3 700

S2 P1 270
S2 P2 450
S3 P2 280

Table: Shipment

In this case Qty is FD on combination of SNo and PNo, because each combination of
SNo and PNo results only one Qty. FD is represented as: {SNo, PNo} -2 Qty

1.3.1. FULLY FUNCTIONAL DEPENDENCY (FFD)

Fully Functional Dependence (FFD) is defined, as Attribute Y is FFD on attribute X, if
itis FD on X and not FD on any proper subset of X. For example, in relation Supplier,
different c itiesm ayha vet hes ames tatus. tm ayb e pos siblet hatc ities | ike

Ahmedabad, Surat may ha ve the same status 20. So, the Cityis not FD on S tatus.

67

But, the c ombination of SNo, Status can give only on e c orresponding City, bec ause
SNo is unique. Thus,
{SNo, Status} -> City

ltmeans cityis FD onc omposite at tribute (SNo, Status) how ever Cityis notfully
functional dependent on this composite attribute, which is explained below:
{SNo , Status} > City
X Y

Here Y is FD on X, but X has two proper subsets SNo and Status; city is FD on one
proper subset of X. SNo - City

According to FFD definition Y mustnot be FD .on any proper s ubset of X, but here
City is FD in one subset of X i.e. SNo, so City is not FFD on (SNo, Status)

1.3.2. ARMSTRONG’S AXIOMS OF FUNCTIONAL DEPENDENCIES
(INFERENCE RULES)

As et ofrulesthatm ay beus edtoinfer additional de pendencies w as pr oposed
by William W. Armstrong in 1974. These rules (or axioms) are a complete set of rules
in- that all possible functional dependencies may be derived from them. Below given

are the three most important rules for FD:

e Reflexive Rule: If Xisas etof attributesandY is s ubsetof X, thenX
holds a value of Y.
e Augmentation When x - yholds, and ¢ is attribute set, thenac = bc
Rule: also holds. That is adding attributes which do not change
the basic dependencies.
e Transitivity Rule: Thisruleisverymuchs imilartothetransitiverulein
algebra. if x> y holds and y - z holds, then x 2> z

also holds.

68

Further ax ioms m ay b e derived from the a bove a lthough the a bove t hree a xioms
are sound and completein that they do not generate any incorrect functional
dependencies (soundness)an dt heydo ge nerate all pos siblef unctional
dependencies that can be inferred from F (completeness). The most important

additional axioms are:

a. Union Rule: If X-=> Yand X-> Z hold, then X > YZ holds.
b. Decomposition Rule: If X-=> YZholds, thensodo X=> Yand X> Z

A. Trivial Functional Dependency
The Trivial d ependencyis as etof attributes whichare calledat rivialifthe s et of
attributes are included in that attribute. So, X = Y is a trivial functional dependency if

Y is a subset of X.

Example: Consider a Employee table

Empld EmpName EmpContact

1001 Jayesh 8625610860
Patel

1002 Viral Vyas 7300456780

1003 Chirag 6625674610
Prajapati

Table: Employee

{Empld,EmpName} - EmpName is a trivial functional dependency as a EmpName is
a subset of {Empld,EmpName}. If we knows the value of Empld and EmpName then
the value of Empld can be uni quely d etermined. Also, Empld >Empld & E mpName

- EmpName are trivial dependencies too.

B. Non-Trivial Functional Dependency

69

If a f unctional de pendency X - Y holds true where Yis not as ubset of X then this

dependency is called Non-Trivial functional dependency.

Example: Consider a Employee table. F ollowing functional d ependencies are Non-
trivial.

Empld = EmpName (EmpName is not a subset of Empld)

Empld = EmpContact (EmpContact is not a subset of Emplid)

If a functional dependency X = Y holds true where X intersection Y is null then this

dependency is called completely Non-Trivial FD.

C. Transitive Functional Dependency

Transitive F unctional D ependency h appens w hen it is i ndirectly f ormed by t wo
functional dependencies. This dependency can only occur in a relation with minimum
three attributes.

Example: Consider a Employee table

Empld = EmpName (If we know Empld, we know its Name)
EmpName - EmpContact (If we know EmpName, we know its Contact)

Therefor as per rule of transitive dependency; Empld = EmpContact should hold,

that make sense if we know the Empld, we can know his Contact.

1.4 DECOMPOSITION

Af unctional decomposition is t he pr ocess of br eaking d own t he f unctions of an
organization i nto pr ogressively greater| evels of det ail. The dec omposition of a
relation scheme R consists of replacing the relation s chema by two or m ore relation

schemas that e ach contain a subset of the attributes of R and togetherinclude all

70

attributes i n R . D ecomposition h elps i n eliminating s ome of t he problems of bad

design such as redundancy, inconsistencies and anomalies.

Lossy D ecomposition: The decomposition of relation R into R1 and R2
is lossy when the join of R1 and R2 does not yield the same relation as in R. One
of the disadvantages of decomposition into two or more relational schemes (or
tables) is that some information is lost during retrieval of original relation or
table. Spurious rows are generated when a natural join is applied to the

relations in the decomposition.

Lossless J oin D ecomposition: The decomposition of relation R into R1 and R2
is lossless when the join of R1 and R2yield the same relation as in R. A
relational table is decomposed into two or more smaller tables, in such a way
that the designer can capture the precise content of the original table by joining
the decomposed parts. This is called lossless-join (or non-additive join)
decomposition. Spurious tuples are not generated when a natural joined is

applied to the relations in the decomposition.

Dependency-Preserving Decomposition: The dependency pr eservation
decomposition is a nother property of decomposed r elational database schemaD in
which each functional d ependency X -> Y s pecifiedin F either a ppeared directly in
one of the relation schemas Riinthe decomposed D orcould b e inferred from the
dependencies that appear in some Ri.

DecompositionD = { R, R2,R3,,.., ,Rn}of R is said to be dep endency-preserving
with respect to F if the union of the projections of F on each R; , in D is equivalent to
F. T he dependencies ar e preserved bec ause each d ependencyin F represents a
constraint on the d atabase. If decomposition is no t d ependency-preserving, s ome

dependency is lost in the decomposition.

71

1.5 CLOSURE SET OF FUNCTIONAL DEPENDENCIES

A Closure is a set of FDs is a set of all possible FDs that can be derived from a given
set of FDs. It is also referred as a complete set of FDs. If F is used to donate the set
of FDs for relation R, then a ¢ losure of a s et of FDs implied by F is denoted by F ™.

Let's consider the set F of functional dependencies given below:
F={A->B,B->C,C->D}

from F, it is possible to derive following dependencies.
A-> A ..Byusing Rule-4, Self-Determination.

A->B ..AreadygiveninF.

A->C ..By using rule-3, Transitivity.

A->D ..By using rule-3, Transitivity.

Now, b y app lying UnionR ule, itis pos sibletoderive A" -> ABCD andi tc anbe
denoted us ing A -> ABCD. Allsuchtype of FDs derived from each FD of F form a

closure of F.

Steps to determine F*:
o Determine each set of attributes X that appears as a left hand side of some FD
inF.
« Determine the set X" of all attributes that are dependent on X.
« X' represents as et of attributes that are functionally d etermined by X based
on F. And, X" is called the Closure of X under F.

e All such sets of X*, in combine, Form a closure of F.
Find Candidate Keys

Asuperkeyis as et of attributes whose closure is the set of all attributes. In o ther
words, a s uper keyis as et of attributes you can s tart from, and f ollowing functional

dependencies, will lead you to a set containing each and every attribute. A candidate

72

key is a minimal super key. The first step to finding a candidate keys, is to find all the

super keys.

Example: Given the Relation R with attributes ABCDE. Y ou ar e gi ven t he following
dependencies: A-> B, BC ->E, and ED -> A.

Since we have the functional dependencies: A -> B, BC -> E, and ED -> A we have
the following super keys:

o ABCDE (All attributes is always a super key)

e BCED (We can get attribute A through ED -> A)

e ACDE (Just add B through A-> B)

e ABCD (Just add E through BC -> E)

e ACD (We can get B through A -> B, and then we can get E through BC -> E)

e BCD (We can get E through BC -> E, and then A from ED -> A)

e CDE (We can get Athrough ED -> A and then B from A -> B)

We can see that only the last three are candidate keys. Since the first four can all be
trimmed down. But we cannot take any attributes away from the last three super keys
and still have them remain a super key. Thus the candidate keys are: ACD, BCD,
and CDE.

1.6 NORMALIZATIONS

Database Normalization is at echnique t hat helps in designingthe s chema of the
database in an o ptimal manner so as to e nsure the ab ove points. The core idea of
database n ormalization is t o d ivide the t ables i nto s maller s ubt ables and s tore

pointers to data rather than replicating it.

73

Normalization results in decomposition of the original relation. It should be noted that
decomposition of relation has to be always based on principles, such as functional
dependence, that ensure that the original relation may be reconstructed from the
decomposed relations if and when necessary. Careless decomposition of a relation

can result in loss of information.
1.6.1 THE FIRST NORMAL FORM (lNF)

Definition: Arelation (table) is in 1NF if
1. There are no duplicate rows or tuples in the relation.
2. Each data value stored in the relation is single-valued

3. Entries in a column (attribute) are of the same kind (type).

Ina1 NF relationthe order of t hetuples and attributes d oes not m atter. T he first
requirement above means that the relation must have a key. The key may be single

attribute or composite key. The first normal form defines only the basic s tructure of
the relation and does not resolve the anomalies.

The relation STUDENT is in 1NF. The primary key of the relation is (Sno+Cno).

STUDENT
Offic
Sno | Sname | Address Cno Cname Instructor
e
Ahmedab | MCIT- OOPS w ithl Amit 10
101 | Viral
ad 101 Java Kumar 2
Ahmedaba | MCIT- Bhavesh 10
101 | Viral RDBMS
d 102 Patel 5
, Ahmedaba | MCIT- , Jignesh 10
101 | Viral Networking
d 104 Patel 3
Dashrat | Ahmedab | MCIT- Jignesh 10
102 Networking
h ad 104 Patel 3

74

1.6.2 THE SECOND NORMAL FORM (2NF)

Definition: Arelationis in 2NF if itis in 1 NF and e very n on-key attribute is fully

dependent on each candidate key of the relation.

Some of the points that should be noted here are:

Arelation having a single attribute key has to be in 2NF.

e In case of composite key, partial dependency on key that is part of the keyis
not allowed.

e 2NF tries to ensure that information in one relation is about one thing

¢ Non-key attributes are those that are not part of any candidate key.

These FDs of relation STUDENT can also be written as:

Sno - Sname, Address (1)
Cno - Cname, | nstructor (2)
Instructor > Office (3)

For the 2NF decomposition, we are concerned with the FDs (1) and (2) as above as
they r elate t o par tial de pendence ont he keythatis (Sno+ Cno). Toconvert the
relationi nto2 NF, | etus us eF Ds. Asper F D (1)t he S tudent n umber uni quely

determines student name and address, so one relation should be:

STUDENT1 (Sno, Sname, Address)

Sno | Sname | Address
Ahmedab
ad

102 | Dashrat | Ahmedab

101 | Viral

75

h ad

WefindinF D (2)thatC ourse c ode at tribute uniquely det ermines t he nam e of
instructor (refertoF D 2(a)). Alsothe F D (3) m eans t hat name of t he i nstructor

uniquely determines office number. This can be written as:

Cno > Instructor (2 (a)) (without Cname)
Instructor > Office (3)
Cno > Office (This is transitive dependency)

Thus, FD (2) now can be rewritten as:

Cno > Cname, Instructor, Office (2')

This FD, now gives us the second decomposed relation:

COU_INST (Cno, Cname, Instruction, Office)

Cno Cname Instructor Office
MCIT- OOPS w ith Amit 102
101 Java Kumar
MCIT- Bhavesh

RDBMS 105
102 Patel
MCIT- Jignesh

Networking 103
104 Patel

We hav e s uper F Ds as , bec ause (Sno+ C no)istheprimarykeyof therelation
STUDENT:

Sno, Cno 2> ALL ATTRIBUTES

76

All the attributes except for the key attributes that are Sno and Cno, however, are
coveredo nt herights ideof theF Ds(1)(2)an d(3),thus, makingt he F D as
redundant. But in any case we have to have a relation that joins the two decomposed
relations. T his r elation w ould cover any a ttributes of S uper F D that hav e not b een
covered b ythe d ecomposition and the k ey at tributes. T hus, we needto create a

joining r elation as:

COURSE_STUDENT (Sno, Cno)

Sno | Cno
MCIT-
101
101
MCIT-
101
102
MCIT-
101
104
MCIT-
102
104

So, therelation S TUDENT in2 NF form would b e, S TUDENT1, C OU_INST AND
COURSE_STUDENT.

1.6.3 THE THIRD NORMAL FORM (3NF)

Definition: Arelation is in third normal form, ifit is in 2NF and every non-key attribute

of the relation is non-transitively dependent on each candidate key of the relation.

Let us reconsider the relation 2NF (b)
COU_INST (Cno, Cname, Instruction, Office)

77

Assume that Cname is not unique and therefore Cno is the only candidate key. The

following functional dependencies exists

Cno > Instructor (2 (a)) (without Cname)
Instructor > Office (3)
Cno > Office (This is transitive dependency)

The relation is however not in 3NF since the attribute ‘Office’ is not directly dependent
on a ttribute * Cno’ buti st ransitively dependent on itan ds hould, t herefore, be
decomposed as it has all the anomalies. We need to decompose the relation 2NF(b)

into the following two relations:

COURSE:
Instructo
Cno Cname
r
OOPS with
MCIT-101 Amit Kumar
Java
Bhavesh
MCIT-102 RDBMS
Patel
Jignesh
MCIT-104 Networking
Patel
INST:

Instructor Office
Amit Kumar | 102

Bhavesh
105
Patel
Jignesh
9 103
Patel

78

Twor elationsand2 NF (a)an d2N F(c)arealreadyin3 NF. T hus, t her elation
STUDENT in 3 NF would be:

STUDENT1 (Sno, Sname, Address)
COURSE (Cno, Cname, Instructor)
INST (Instructor, Office)
COURSE_STUDENT (Sno, Cno)

The 3 NF is us ually quite adequate for most relational database d esigns. T here are
however s ome s ituations where ar elation maybein 3N F, but h ave t he an omalies.
For ex ample, ¢ onsider t he r elation NEWSTUDENT (Sno, S name, C no, C name)
having the set of FDs:

Sno = Sname
Sname > Sno
Cno = Cname

Cname > Cno

The relation is in 3NF. All the attributes of this relation are part of candidate keys, but
have dep endency b etween the n on-overlapping por tions of o verlapping ¢ andidate
keys. T hus, the 3 NF m ay not e liminate all the r edundancies an d inconsistencies.

Thus, there is a need of further Normalization using the BCNF.

1.6.4 BOYCE-CODD NORMAL FORM (BCNF)

Ther elation NEWSTUDENT (Sno, S name, C no,C name)has al |at tributes
participating in c andidate k eys s ince all the attributes ar e as sumed t o b e u nique.

Since the relation has no non-key attributes, the relation is in 2NF and also in 3NF.

Definition: Arelationis inB CNF,if itisin 3NFandifeverydeterminantisa

candidate key.

79

e A determinant is the left side of an FD
e Most relations that are in 3NF are also in BCNF. A 3NF relation is not in BCNF
if all the following conditions apply.
1. The candidate keys in the relation are composite keys.
2. There is more than one o verlapping c andidate k eys i nthe r elation, an d
some attributes in the keys are overlapping and some are not overlapping.
3. There is a FD from the non-overlapping attribute(s) of one candidate key to

non-overlapping attribute(s) of other candidate key.
NEWSTUDENT (Sno, Sname, Cno, Cname) Set of FDs:
Sno - Sname (1)
Sname > Sno (2)
Cno - Cname (3)

Cname > Cno (4)

The relation although in 3NF, but is not in BCNF and can be decomposed on any one
of the FDs in (1) & (2); and any one of the FDs in (3) & (4) as:

STUD1 (Sno, S name)
COUR1 (Cno, C name)

The third relation that will join the two relation will be: ST_CO(Sno, Cno)

1.6.5 MULTIVALUED DEPENDENCIES AND 4TH NORMAL FORM

A. Multivalued Dependencies:

If two or more independent relation are kept in a single relation or we can say multivalue
dependency occurs w hen t he pr esence of oneor morerowsinat ablei mpliesthe

presence of one or more other rows in that same table. Put another way, two attributes

80

(orcolumns)inat able are independent of o ne an other, bu t bot hdep end onat hird
attribute. A multivalued dependency always requires at least three attributes because it
consists of at least two attributes that are dependent on a third. A functional
dependency is a special case of multivalued dependency. In a functional dependency X
-2 Y, every x determines exactly one y, never more than one.

For a dependency A - B, if for a single value of A, multiple value of B exists, then the
table may have multi-valued dependency. The table should have at least 3 attributes

and B and C should be independent for A > - B multivalued dependency. For example,

Person Mobile Food_Likes
Viral Vyas 989898009 Burger
Amit Patel 756427523 Pizza

Person - mobile, Person 2 - food_likes

B. Fourth normal form (4NF):

Fourth normal form (4NF) is a level of database normalization where there are no non-
trivial m ultivalued d ependencies other than a ¢ andidate key. It builds ont he first three
normal f orms (INF, 2 NF and 3 NF)a nd the B CNF. Its tatesthat,i na dditonto a
database m eeting t he r equirements of B CNF; itm ustnot ¢ ontainm oret hano ne

multivalued dependency.

Properties:

Arelation R is in 4NF if and only if the following conditions are satisfied:
1. It should be in the Boyce-Codd Normal Form (BCNF).

2. the table should not have any Multi-valued Dependency.

Atable with am ultivalued dep endency v iolates t he normalization s tandard of F ourth

Normal F orm bec ause i t ¢ reates un necessary r edundancies and ¢ an c ontribute t o

81

inconsistent data. To bring this up to 4NF, it is necessary to break this information into

two tables.

Example:

Consider the database table:

Student (Sno,Sname):
Sno Sname
101 Viral Vyas
102 Amit Patel
Course (Cno,Cname)
Cno Cname
2001 MCA

2002 | M.Sc.(IT)

Whent here ¢ ross pr oduct (Student X C ourse) is do ne itr esultedi n m ultivalued

dependencies:

Sno Sname Cno Cname
101 Viral Vyas | 2001 MCA

101 Viral Vyas | 2002 M.Sc.(IT)
102 Amit Patel | 2001 MCA

102 Amit Patel | 2002 M.Sc.(IT)

Multivalued dependencies (MVD) are:

SID == CID; SID - CNAME; SNAME 2= CNAME

1.6.6 JOIN DEPENDENCIES AND 5NF / PINF

The fifth n ormal form de als with join-dependencies, which is a ge neralisation of the
MVD. The aim of fifth normal form is to h ave relations that cannot be decomposed

further. Arelation in 5NF cannot be constructed from several smaller relations.

A relation R satisfies join dependency *(R1, R2, ..., Rn) if and only if R is equal to the
join of R1, R2, ..., Rn where Ri are subsets of the set of attributes of R.

Arelation R is in 5NF if for all join dependencies at least one of the following holds:
a) (R1,R2, ..., Rn) is a trivial join-dependency.
b) Every Riis a candidate key for R.

An example o f5 NF c an be pr ovided by the r elation em ployeet hat de als w ith

emp_name, Projects and Programming languages.

emp_name projects languages
VIRAL Proj_A C

AMIT Proj_A Java
VIRAL Proj_B C

AMIT Proj B C++

The relation above assumes that any employee can work on any project and knows
any of the three languages. T he r elation also says that any employee can work on
projects Proj_A, Proj_B, Proj_C and may be using a different programming languages
int heir pr ojects. N o em ployee t akes al It he projects and no pr ojectus es all the
programming languages andt herefore allthree fields are n eeded to represent t he

information. Thus, all the three attributes are independent of each other.

The relation above does not have any FDs and MVDs since the attributes

emp_name, project andlanguages are independent; t hey are related to each o ther

83

only by the pairings that have significant information in them. For example, VIRAL is
working on Project A using C languague. Thus, the key to the relation is (emp_name,
projects, | anguages). T her elationisin4 NF, b uts till s uffers f rom t he i nsertion,
deletion, and update anomalies. However, the relation therefore cannot be

decomposed in two relations.

(emp_name, project) and (emp_name, language)

The decomposition mentioned above will create tables as given below:

emp_project

emp_name Projects
VIRAL Proj_A
AMIT Proj_A
VIRAL Proj_B
AMIT Proj_B
emp_language

emp_name Languages

VIRAL C

AMIT Java

AMIT C++

On taking join of these relations on emp_name it will produce the following result:

emp_name projects languages
VIRAL Proj A C

AMIT Proj_A Java

AMIT Proj_A C++
VIRAL Proj_B C

84

AMIT Proj_B Java
AMIT Proj B C++

Since the joined table does not match the actual table, we cansaythatitis al ossy
decomposition. Thus, t he ex pectedj oin de pendency e xpression; * ((emp_name,
project), (emp_name, | anguage)) do es not s atisfyt he c onditions o fl ossless
decomposition. H ence, thedec omposed tables are losing some important

information.

1.6.7 PROJECT-JOIN NORMAL FORM

PJUNFis def ined us ing t he c oncept of the join dependencies. Ar elation s chema R
having a set F of functional, multivalued, and join dependencies, is in PJNF (5 NF), if
for all the join dependencies in the closure of F (referred to as F+) that are of the form
*(R1, R2, .. .,Rn), where each Ri €R and R = R1 UR2 U. . . URn, at least one of the

following holds:

¢ *(R1,R2,...Rn)is atrivial join dependency.
e Every Riis a superkey for R.

PJNF is al soreferredt oas theF ifth Normal F orm (5NF). L etus firstdefinethe
concept of PJNF from the viewpoint of the decomposition and then refine it later to a

standard form.

Definition 1: A JD *[R1,R2,...,R n]overa relation R is trivial ifitis satisfied by
every relation r(R). The trivial JDs overR are JDs of theform *[R1,R2,. .. ,Rn]

where for some i the Ri=R.

Definition 2: AJD *[R1,R2,. ..,Rn]appliestoarelationschemeR ifR = R1R2
...Rn.

85

Definition 3: Let R be a relation scheme having F as the set of FDs and JDs over R.
R will be in project-join normal form (PJNF) if for every JD *[R1, R2, . . ., Rn] which
can be derived by F that applies to R, the following holds:

e The JD is trivial, or

e Every Riis asuper key for R.

Forad atabase s chemetob ein project-join n ormal form, e veryrelation R inthis
database s cheme s hould b ei n project-join nor malf orm w ithr espectt o F. Th e
definition of PJINF as given abo veis aw eakert hanthe original definition of PINF
given b y F agin. T he or iginal d efinition e nsures enf orceability of d ependencies by

satisfying keys, in addition to elimination of redundancy.

Definition 4: Let R be a relation scheme having F as the set of FDs and JDs over R.
R will be in project-join normal form (PJNF) if for every JD *[R1, R2, . . ., Rn] which
can be derived by F that applies to R, is implied by the key FDs of R.

The following example demonstrates this definition.

Example: Consider arelation scheme R = A B C having the set of dependencies as F
={A> B C, C > AB, *[AB, B C] }. Please note that the R is not in PINF, although
since A B and B C are the super keys of R, R satisfies the earlier definition of PINF.

But R does not satisfy the revised definition as given above.

Please note that since every m ultivalued de pendency is alsoa joind ependency,
every PJNF schemais alsoin 4NF. D ecomposing a r elation s cheme using the JDs
that c ause P JNF violations c reates t he P JNF s cheme. P JNF m ay al sobe not

dependency preserving.

» Check Your Progress

1. Define Fully Functional Dependency.

1.7LET US SUM UP

In this chapter, we have discussed about dependencies and normalization process of
database. W e hav e e xplored process of functional dependency withal ltypes. W e
have c omet o know ab out Inferences R ules of F Ds. W e h ave al so s ummarized
Normalization P rocess in detail with di fferent Normal F orms. After c ompletion of this

chapter student can able to normalize the database into proper forms.

1.8CHECK YOUR PROGRESS:POSSIBLE ANSWERS

87

. Fully Functional Dependence (FFD) is defined, as Attribute Y is FFD on at tribute
X, if itisFDon Xand not FDon any propers ubset of X. Accordingto FFD
definition Y must not be FD .on any proper subset of X.

. Transitivity Axioms is similar to the transitivity rule in algebra. If X - Y holds and
Y > Z then X 2> Z holds.

. Arelationis decomposed into two or more s maller r elations, inaw ay by w hich
we c anobt aint he or iginal r elationb yj oiningt he dec omposed p artition o f
relation.

. Acompletesetor closuresetof FDsisas etof allpossible FDsthatcanbe
derived from a given set of FDs. If F is used to donate the set of FDs for relation
R, then a closure of a set of FDs implied by F is denoted by F".

. Merits of Normalization:

o More efficient data structure.

Avoid redundant fields or columns.

e More flexible data structure.

e Better understanding of data.

e Ensures that distinct tables exist when necessary.

e Easier to maintain data structure.

¢ Minimizes data duplication.

Demerits of Normalization:

e You cannot start building the database before you know what the user needs.

e OnN ormalizing ther elationst oh igher n ormal f orms i .e. 4 NF,5 NF t he
performance degrades.

e |Itisvery timec onsumingan dd ifficult pr ocess i n n ormalizing r elations o f
higher degree.

e Careless dec ompositionm ay | eads t o bad d esign of d atabase w hich m ay
leads to serious problems.

1.9 Assignments

1. Explain Armstrong’s Axioms of FDs. How can we find Candidate Key using it?
Explain with example.

88

2. What is Decomposition? Explain different types of decomposition.
3. Describe Multivalued Dependencies and Join Dependencies with proper
Example.

4. Explain Project Join Normal Form With Example.

1.10 Further Reading

1. Database Management S ystems, Raghu R amakrishnan and Johannes G ehrke,
McGraw
Hill Publication.
2. Database System Concepts, 6th Edition, Abraham Silberschatz, Henry F. Korth, S.
Sudarshan, McGraw Hill.

89

Unit 2: Oracle Database 2
Architecture

Unit Structure

2.1. Learning Objectives & Outcomes
2.2. Introduction

2.3. Database Structures

2.4. Oracle Memory Structures

2.5. Process Structure

2.6. Storage Structure

2.7. Schema and Schema Objects
2.8. LetUs Sum Up

2.9. Check your progress:Possible Answers
2.10. Assignments

2.11. Further Reading

90

2.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,

* Tolearn and understand Oracle Server and Instance Architecture
* To understand the Oracle Processes

» To understand the memory structure of oracle database.

* To learn different storage structures.

* To learn schema and schema objects.

Outcome:

At the end of this unit,

« Students will be completely aware with Architecture of Oracle Database in detail.

« Students will come to know the background process and its role.

« Students will be able to simplify the different storage structures available in oracle.

« Students will be able to simplify the different schema objects available in oracle.

2.2 INTRODUCTION

Oracle S erveri sa database m anagements ystemt hat pr ovides and op en,
comprehensive an d integrated a pproach to information m anagement. In ge neral, an
Oracle server must reliably manage a large amount of data in multi user environment
sot hat m any users ¢ an c oncurrently ac cess t he s ame da ta. All t his m ust be
accomplished while delivering high performance. An Oracle Server must also prevent
unauthorized ac cess and pr ovide ef ficients olutionf orf ailurer ecovery. T he
architecture i ncludes physical c omponents, m emory ¢ omponents, processes, and

logical structures.

91

System Global Area (SGA)

{default s

Database Buffer Cache

ize)

{additional

Database Buffer Cache

size nK)

KEEFP Buffer

RECYCLE

Pool

EBuffer Pool

Large Pool

Java Pool

Streams

Pool

Redo Log Buffer Cache |

Reserved Pool

Library Cache

SMON

Data Shared
Dictionary SOL Area
Cache

PLISOL
Procedures

ol & Packages
Structures
Fixed SGA

RECO

Shared
—— Server
Process

Dedicated

— Server Dooo

Process

| F—

Usen User
Process Process I

Reido
Loy Files

| CKPT | Control Files

Figure 6.1: Complete Oracle Architecture

A. Oracle Server: An Oracle s erverincludes an O racle Instance andan O racle
database. You'll notice that the database includes several different types of files:
data files, control files, redo log files and archive redo log files. The Oracle server

also ac cess par ameter files and password files. T his seto ffiles has s everal

purposes as follows:

e Oneis to enable system users to process SQL statements.

e Anotheris to improve system performance.

e Still anotheri st o ensuret hed atabasec anb er ecovered

software/hardware failure.

B. Oracle Instance: An O racle

components. T he first c omponent s etis the s et of bac kground pr ocesses | ikes
SMON, P MON, D BWO/DBWR, R ECO, LG WR, C KPT, D 000 and ot hers et c.
Basically e ach bac kground process is a computer pr ogram. T hese processes

perform input/output and monitor other Oracle processes to provide good

Instance ¢ onsists of t wodi fferents ets of

performance and database reliability.

ift herei s a

92

The s econd c omponent s et includes the m emory s tructures t hat c omprise t he
Oracle instance. W hen an instance s tarts up, a m emory s tructure c alled the
System Global Area (SGA)is allocated. Atthis pointthe b ackground processes
also s tart. T he O racle Instance provides ac cess toan O racle dat abase. An

Oracle Instance opens one and only one database.

C. Oracle Database: An O racle dat abase c onsists of file s ometimes t hese ar e
referredto as op erating s ystem files, b utt hey ar e ac tually da tabase files t hat
store t he d atabase i nformation that a firm or organization ne edsin orderto

operate.

When a us er connects to an Oracle server, this is termed asession. T he session
starts when the Oracle s erver validates the user for connection. T he session ends
when t he us er logs ou t (disconnects) or ift he c onnection t erminates a bnormally
(network failure or client computer failure). A user can typically have more than one
concurrent s ession. The limit o f concurrent s ession c onnections is controlled by the
DBA. T his c onnection e nables us erst o ex ecute S QL s tatements. Aon e-to-one
correspondence bet weent he U sera nd S erver P rocesses i s c alledaD edicated
Server c onnection. An a lternative c onfiguration isto useaS hared S erver w here

more than one User Process shares a Server Process.

2.3 DATABASE STRUCTURES

Each r unning O racle d atabase i s as sociated w itha n O racle Instance. W hen a
database is started on a database server, the Oracle allocated a shred memory area
called the System Global Area (SGA) and starts several Background processes. This

combination of SGA and Oracle Processes is called an Oracle Instance.

93

Memory structures Instance

l System Global Area (SGA) ‘

Process structures
Background processes
P

-

Storage structures Database files

Figure 6.2: Basic Structure of Database

After S tarting an i nstance, t he O racle associatest he i nstancew ith as pecific
database. T his is called mounting the database. The databaseis then ready to be
opened, w hichm akes i t ac cessible t 0 au thorized us ers. Multiple instances c an
execute ¢ oncurrentlyo nt hes ame ¢ omputer, eac h ac cessingi ts ow np hysical

database.

2.4 ORACLE MEMORY STRUCTURES

The basic m emory s tructures as sociated w ith an O racle Instance include the
following:
e System Global Area (SGA): Shared bya It hes erver andbac kground
processes.
e Program Global Area (PGA): Privatet o each serverandbac kground

processes. There is one PGAfor each process.

94

Server Server
Background :
pru:uss] PGA prn;ass —| PGA pmﬂ;; PGA
4 SGA)
- Streams pool Large pool
Database Redo log
buffer cache buffer
- e/

Figure 6.3: Memory Structure

2.4.1 SYSTEM GLOBAL AREA (SGA)

The S ystem Global Area (SGA)is am emory ar eat hat c ontains dat a a nd c ontrol
information for t he instance. T his information includes both or ganizational data and
control information used by the Oracle Server. The size of the SGA is established by
the parameter SGA_MAX SIZE in the parameter file. The SGA is allocated when an
Oracle instance is started up based on values specified in the initialization parameter
file.
The SGA has the following mandatory memory structures:
» Shared Pool (Includes two Components)
e Library Catch
e Data Dictionary Cache
» Database Buffer Cache
» Redo Log Buffer

» Other structures (for example, lock and latch management, statistical data)
Additional optional memory structures in the SGA include:

» Large Pool

> Java Pool

95

> Streams Pool

Earlier v ersions o ft he O racle S erverus eda S taticS GA. T hism eantt hati f

modifications t o m emory m anagementw ere r equired, the databaseh adt obe

shutdown, m odifications w ere m adet o the init.ora parameterfile,a ndt hen the

database hadt o be r estarted. A fteroracle 9i itsuseaD ynamic S GA. Memory

configurations for t he s ystem gl obal ar ea c an be m ade w ithout s hutting down the

database instance.

Several initialization parameters are s ett hat affect the am ount of r andom ac cess

memory dedicated to the SGA of an Oracle Instance as follows:

SGA MAX_SIZE: This sets a limit on the amount of virtual memory allocated to
theS GA - at ypicals ettingm ight be 1GB; how ever, ift he valuef or
SGA_MAX_ SIZE in the initialization parameter file or server parameter file is less
than t he s um the m emory al located f or al | c omponents, either explicitlyinthe
parameter f ile or b y def ault, at t hetimet hei nstancei s i nitialized, t hent he
database ignores the setting for SGA_MAX_SIZE.

DB_CACHE_SIZE: This is the size of the D atabase B uffer Cache in standard
database blocks. Block sizes vary among operating systems. We use 8KB block
sizes. T he total blocks in the cache d efaults to48 MB on L INUX/UNIXand 52
MB on Windows operating systems.

LOG_BUFFER: This is the number of bytes allocated for the Redo Log Buffer.
SHARED_POOL_SIZE: Thisisthe num ber of b ytes of m emory al locatedt o
shared SQL and PL/SQL. The defaultis 16 MB. If the operating system is based
on a 64 bit configuration, then the default size is 64 MB.

LARGE_POOL_SIZE: Sincethisis an o ptional memory o bject, the size ofthe
Large Pool defaults to zero. If the init.ora parameter
PARALLEL AUTOMATIC TUNINGiss ettoT RUE, thent he defaults izeis

automatically calculated.

96

e JAVA POOL_SIZE: This is another optional memory object. The default is 24

MB of memory.

The s ize of t he S GAc annotex ceedt he p arameter S GA_MAX_SIZE m inus t he
combinationof t hes izeof t headd itional par ameters, D B_CACHE_SIZE,
LOG _BUFFER, S HARED _POOL_SIZE, L ARGE_POOL_SIZE, and
JAVA POOL_SIZE.

A. Shared Pool

The Shared Pool is a memory structure that is shared by all system users. It consists
of bot h fixed and variable s tructures. T he v ariable c omponent gr ows an d s hrinks
depending on the demands placed on memory size by system users and application

programs. It Includes Library Cache and Data Dictionary Cache.

Memory is allocated t o the Shared P ool by t he par ameter SHARED POOL_SIZE in
the parameter file. Youcanalter the size ofthe shared po ol dynamically with the
ALTER S YSTEM S ET command. You mustkeep in mind thatthet otal m emory
allocated to the SGA is set by the SGA MAX_SIZE parameter and since the Shared

Pool is part of the SGA, you cannot exceed the maximum size of the SGA.

The Shared P ool s tores the most recently e xecuted S QL s tatements and us ed d ata
definitions. This is because some system users and application programs will tend to

execute the same SQL statements often.

I. Library Cache

Memory is allocated to the Library Cache whenever an SQL statement is parsed or a
program u nit is c alled. T his e nables s torage of the m ost recently used SQL and
PL/SQL statements. If the Library Cache is too small, the Library Cache must purge

statement definitions in order to have space to load new SQL and PL/SQL

97

statements. Actual m anagement oft his m emory s tructure ist hrough a Least-
Recently-Used (LRU) algorithm. T his means that the SQL and P L/SQL s tatements
thatar e ol destand leastr ecently used are purgedw henm ore s torage s paceis

needed.

The Library Cache is composed of two memory subcomponents:

» Shared SQL: This stores/shares the execution planand parse tree for SQL
statements. Ifas ystem usere xecutes a ni dentical s tatement, t hen the
statement does not have to be parsed again in order to execute the statement.

» Shared PL/SQL: Procedures an d P ackages: T his s tores/shares t he m ost

recently used PL/SQL statements such as functions, packages, and triggers.

II. Data Dictionary Cache

The D ata D ictionary C achei sam emorys tructuret hatc aches dat a di ctionary
information that has been recently used. This includes user account information, data

file names, table descriptions, user privileges, and other information.

The da tabase s erver manages the size of the D ata Dictionary C ache internally and
the size depends on the size of the Shared Pool in which the Data Dictionary Cache
resides. Ifthesizeistoosmall, thenthe datadictionary tables that reside on disk

must be queried often for information and this will slow down performance.

B. Database Buffer Cache

The Database Buffer Cache is a fairly large memory object that stores the actual data
blocks that are retrieved from data files by system queries and other data
manipulation language commands. A query causes a Server Process to first look in
the D atabase Buffer C ache t o de terminei ft he r equested i nformation ha ppens t o
already be | ocated in memory — thus the information would not ne ed to be r etrieved

from disk an d t his would s peed u p performance. [f the information isnotin the

98

Database B uffer C ache, the Server Process retrieves the information from disk and

stores it to the cache.

Keep in mind that information read from disk is read a block at a time, not a row at a
time, bec ause a d atabase bl ock is the s mallest ad dressable s torage s pace o n disk.
Database blocks are keptinthe D atabase B uffer C ache ac cordingt oa Least
Recently Used (LRU) algorithm and are aged out of memory if a buffer cache block is

not used in order to provide space for the insertion of newly needed database blocks.

The buffers in the cache are organized in two lists:

» Write List: The write list holds dirty buffers — these are buffers that hold that

data that has been modified, but the blocks have not been written back to disk.

» Least Recently Used (LRU) List: The LR Ulist ho Ids free buf fers, pi nned
buffers, and dirty buffers that have not yet been moved to the write list. Free
buffers do not ¢ ontain a ny us eful d ataa nd ar e available f orus e. P inned

buffers are currently being accessed.

When an Oracle process accesses a buffer, the process moves the buffer to the most
recently used (MRU) end of the LRU list — this causes dirty buffers to age toward the
LRU end of the LRU list.

When an O racle us er pr ocess needs adat arow,its earchesforthedatainthe
database buffer cache because memory can be searched more quickly than hard disk
can be ac cessed. Ifthedatarow is already inthe cache (acache hit), the process
reads the data from memory; otherwise a cache miss occurs and data must be read

from hard disk into the database buffer cache.

Before reading a dat a b lock into the cache, the process must first find a f ree buffer.

The process s earches the LRU list, starting at the LR U end of the list. T he search

99

continues until a free buffer is found or until the search reaches the threshold limit of

buffers.

Each time the user process finds a dirty buffer as it searches the LRU, that buffer is
moved to the write list and the search for a free buffer continues. When the process
finds a free b uffer, it reads the data block from diskinto the bu ffer and moves the
buffer to the MRU end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without finding a free
buffer, the pr ocess stops s earching the LR U list and signals the D BWO bac kground

process to write some of the dirty buffers to disk. This frees up some buffers.

The block size for a database is set when a database is created and is determined by
the init.ora p arameter file parameter named DB_BLOCK_SIZE. Typical block sizes
are 2K, 4K, 8K, 16K, and 3 2K. T he s ize of blocks inthe D atabase B uffer C ache

matches the block size for the database.

C. Redo Log Buffer

The Redo Log Buffer memory object stores images of all changes made to database
blocks. As you know, database blocks typically store several table rows of
organizational data. This means that if a single column value from one row in a block
is c hanged, t heimageis s tored. C hanges include INSERT, UPDATE, D ELETE,
CREATE, ALTER, or DROP.

Think of the Redo Log Buffer as a circular buffer that is reused over and over. As the
buffer fills up, copies of the images are stored to the Redo Log Files that are covered

in more detail in a later module.

D. Large Pool

100

The L arge Poolis an o ptional memory s tructure that primarily relieves the memory
burden placed on the Shared Pool. The Large Pool size is set with the
LARGE_POOL_SIZE parameter — this is not a dy namic parameter. Itdoes not use

an LR U list to manage memory.

E. Java Pool

The Java P ool is a no ptional m emory object, b ut is required if the d atabase h as
Oracle J avai nstalled and inus e forO racle JVM. T hes izeiss etw ith the
JAVA POOL_SIZE parametert hat defaultst o2 4MB. T he Java P oolis us ed for
memory allocation to parse Java commands. Storing Java code and data in the Java
Pool is analogous to SQL and PL/SQL code cached in the Shared Pool.

F. Streams Pool

ltissizedwiththe p arameter STREAMS _POOL_SIZE. This p ool s tores da ta and
control structures to support the Oracle Streams. Oracle Steams manages sharing of

data and events in a distributed environment.

2.4.2 PROGRAM GLOBAL AREA (PGA)

The Program Global Area (PGA) is alsotermedthe Process Global Area (PGA)
and is a part of memory allocated that is outside of the Oracle Instance. The PGA
stores dat aand ¢ ontroli nformationf oras ingleS erver P rocess or a single
Background Process. It is allocated when a process is created and the memory is
scavenged by the operating system when the process terminates. This is NOT a
shared part of memory — one PGA to each process only.

The content of the PGA varies, but generally includes the following:

101

» Private SQL Area: Data for binding variables and runtime memory allocations.
Ausersessionissuing S QL statements has a P rivate SQL Area that may be
associated w ith a S hared S QL Area if the s ame S QL s tatement i s be ing
executedb ym ore t hano nes ystemus er. T his o ften ha ppensinO LTP
environments where many users are executing and using the same application
program.

e Dedicated Server environment: the Private SQL Area is |located inthe
Program Global Area.

e Shared Server environment: the P rivate S QL Areais locatedi nt he
System Global Area.

» Session Memory: Memory t hat ho Ids s ession v ariables an d ot her s ession
information.

» Software Code Area: Software c ode ar eas s tore O racle executable f iles
running as part of the Oracle instance. These code ar eas are s tatic in n ature
and are locatedi npr ivileged m emoryt hati s s eparate from ot her user
programs. The code can be installed sharable when multiple Oracle instances

execute on the same server with the same software release level.

2.5 PROCESS STRUCTURE

When you invoke an application pr ogram or a n O racle tool, s uch as E nterprise
Manager, the O racle s erver c reates a s erver process t o ex ecute t he c ommands
issued b y t he application. T he O racle s erver also c reates as et of bac kground
processes for an instance hatinteractwith each other a nd with t he op erating
system to manage the memory structures asynchronously perform I/O to write data
to disk, and perform other required tasks. Which background processes a

represent depends on the features that are being used in the database.

102

Instance

SGA
User process Server
process

Background
processes

Figure 6.4: Process Structure
Process Structure includes mainly three processes as follows:
» User Process: When a database user requests a connection to the Oracle
Server it’s started.
» Server Process: When user established a session and connects with oracle

instance it will be started.
» Background Process: When Oracle Instanceis s tated t hen bac kground

process will started.

A. User Process

Inordertouse Oracle, you must ob viously connect tothe database. T his must
occur whether you're using SQL*Plus, an Oracle tool such as Designer or Forms,
or an application program.

This gen erates a U ser P rocess t hat ge nerates pr ogrammatic c alls t hrough y our
useri nterfacet hatc reates as essionand c ausest he gen erationof aS erver
Process that is either dedicated or shared.

B. Server Process

The Server Process is the go-between for a User Process and the Oracle Instance.
In a Dedicated Server environment, there is a single Server Process to serve each
User P rocess. | n a S hared S erver e nvironment, aS erver P rocess c an s erve
several User Processes, although with some performance reduction.

C. Background Processes

103

As is shown here, t here are both mandatory and op tional background processes

that ar e s tarted w henever a n O racle Instance s tarts u p. T hese bac kground

processes serve all system users. We will cover mandatory process in detail.
Mandatory background processes:

- DBWn PMON CKPT
- LGWR SMON

Optional background processes:
— ARCn LMDn RECO

- CJQo LMON Snnn

- Dnnn Pnnn

— LCKn GIMNnN

Figure 6.5: Oracle Background Process
a. Database Writer (DBWn / DBWR): The D atabase W riter w rites m odified
blocks from the database buffer cache to the datafiles. Although one database
writer process (DBWO) is sufficient for most systems, you can configure up to
20 DBWn processes (DBWO0 through DBW9 and DBWa through DBWj) in order
to i mprove w rite per formance for as ystem t hat m odifies dat a h eavily. T he
initialization par ameter D B_WRITER_PROCESSES s pecifies t he n umber of

DBWn processes.

The purpose of DBWn is to improve system performance by caching writes of
database blocks from the Database Buffer Cache back to datafiles. Blocks that
have been modified and that need to be written back to disk are termed "dirty
blocks." T he D BWn also ens ures thatt here are en ough free buffersinthe
Database Buffer Cache to service Server Processes that may be reading data
from datafiles into the Database Buffer Cache. Performance improves
because by delaying writing c hanged d atabase bl ocks back to disk, a S erver
Process may find the datathatis needed tomeeta User Process request
already residing in memory.

b. Log Writer (LGWR): The Lo g W riter (LGWR) writes c ontents from the Redo
Log B uffer to the Redo Log File thatisinuse. T hese are sequential writes

since the Redo Log Files record d atabase m odifications bas ed on the actual

104

time that the modification takes place. LGWR actually writes before the DBWn
writes and on ly confirms that a C OMMIT op eration has s ucceeded when the
Redo Log Buffer contents are successfully written to disk. LGWR can also call

the DBWn to write contents of the Database Buffer Cache to disk.

c. System Monitor (SMON): The S ystem Monitor (SMON) is r esponsible f or
instance r ecovery by ap plyinge ntriesintheo nlineredol ogfilestothe

datafiles.

If an Oracle Instance fails, all information in memory not written to disk is lost.

SMON is responsible for recovering the instance when the database is started

up again. It does the following:

¢ Rolls forward to recover data that was recorded in a Redo Log File, but that
had not yet be en recorded to a dat afile by DBWn. S MON reads the Redo
Log F iles a nd a pplies the c hanges tothe datab locks. T his recovers al |
transactions t hat w ere committed because t hese were writtento the Redo
Log Files prior to system failure.

e Opens the database to allow system users to logon.

e Rolls back uncommitted transactions.

SMON al so do es | imited s pace m anagement. | t c ombines ad jacent ar eas of
free s pacei nt hed atabase's dat afiles f ort ablespaces t hatar e d ictionary
managed. It also de-allocates temporary segments to create free space inthe
data files.

d. Process Monitor (PMON): The Process Monitor (PMON) is a cleanup type of
process that cleans u p after failed processes such as the dropping of a user

connection due to a network failure or the abend of a user application program.

e. Checkpoint (CKPT): The Checkpoint (CPT) process writes information to the
database control files that i dentifies the pointin time with regard to the Redo
Log Files where instance recovery is to begin should it be necessary. This is

done at a minimum, once every three seconds.

105

Think of a ¢ heckpoint record as a s tarting po int for recovery. D BWn will have

completed writing all buffers from the Database Buffer Cache to disk prior to the

checkpoint, thus those record will not require recovery. This does the following:

e Ensures m odified d atab locks i nm emory ar e r egularly w rittent o di sk —
CKPT can call the DBWn process in order to ensure this and does so when
writing a checkpoint record.

¢ Reduces Instance Recovery time by minimizing the amount of work needed
for re covery s ince only R edo Lo g F ile ent ries pr ocessed s incet he last
checkpoint require recovery.

e (Causes al Ic ommittedd atat obew rittent o dat afiles dur ingd atabase

shutdown.

If a Redo Log File fills up and a switch is made to a new Redo Log File (this is
covered inm ore detail ina laterm odule),t he C KPT pr ocess al sow rites
checkpoint information into the headers of the datafiles.

Checkpoint i nformation w ritten to ¢ ontrol f iles i ncludes t he s ystem ¢ hange
number (the SCN is a number stored in the control file and in the headers of the
database files that are used to ensure that all files in the system are
synchronized), location of which Redo Log File is to be used for recovery, and
other i nformation. C KPT d oes not write dat a blocks or redo bl ocks to disk — it
calls DBWn and LGWR as necessary.

Optional Background Process:

f.

Archiver (ARCn): We cover the Archiver (ARCn) optional background process
in more detail because it is almost always used for production systems storing
mission critical information. The ARCn process must be used to recover from
loss of a physical disk drive for systems that are "busy" with lots of transactions

being completed.

When a Redo Log File fills up, Oracle switches to the next Redo Log File. The
DBA creates several of these and the details of creating them are covered in a

later module. If all Redo Log Files fill up, then Oracle switches back to the first

106

one and us es them in around-robin f ashion by overwriting ones that have
already be en used — it should be o bvious that the information stored on the
fles, once overwritten, is lost forever. If ARCn is in what is termed
ARCHIVELOG mode, then as the Redo Lo g Files fill u p, they are i ndividually
written to Archived Redo Log Files and LGWR does not overwrite a Redo Log
File until archiving has completed. Thus, committed data is not lost forever and
can be recovered in the event of a disk failure. Only the contents of the SGA
will be lost if an Instance fails.

InN OARCHIVELOG m ode,t he R edo Log F iles ar e o verwritten a nd not

archived. R ecovery canonly be m ade to the last full bac kup of the database
files.

When runningin ARCHIVELOG mode, the DBAis responsible to e nsure that
the Archived Redo Log Files do not consume all available disk space! Usually
after two c omplete b ackups are made, any Archived Redo Log Files for prior
backups are deleted.

. Coordinator Job Queue (CJQO): CoordinatorJ ob Q ueue — Thisisthe
coordinator of job queue processes for an instance. It monitors the JOB$ table
(table of jobsinthejobq ueue)ands tarts job q ueue pr ocesses (Jnnn) as

needed to e xecute jobs T he Jnnn processes execute job requests created by
the DBMS_JOBS package.

. Dispatcher Process (Dnnn): Dispatcher number "nnn", for e xample, D 000
would be the first dispatcher process — Dispatchers ar e optional b ackground

processes, present only when the shared server configuration is used.

Recovery (RECO): The Recovery process is used to resolve distributed
transactions that are pe nding du e to a net work or s ystem failure i n a di stributed
database. Attimed intervals, the local RECO attempts to c onnectto remote

databases and automatically complete the commit or rollback of the local portion

of any pending distributed transactions.

107

2.6 STORAGE STRUCTURE

An Oracle d atabase consists of file sometimes these are referred to as op erating
system files, but they are actually database files that store the database
informationt hataf irm or or ganizationne edsinor dert o operate. D atabase
Storage Structures divided into two parts as follows:

e Physical Structure

e Logical Structure

2.6.1 PHYSICAL DATABASE STRUCTURE

An Oracle database consists of physical files shown as below figure.

Header

Datafiles
{includes
Data
Dictionary)

Online
Redo Log
files

Figure 6.6: Physhical Storage Structure
The files that constitute an Oracle Database are organized into the following:
A. Control Files: Contains data about the database itself. These files are critical

to dat abase. W ithouti t, c annotope ndat af ilest oac cess dat aw ithint he

database. It is used to synchronize all database activities.
B. Data Files: Contain the actual data for the database.

C. Redo Log Files: Contain a record of changes made to the database, and allow
recovery when a d atabase failure occurs. |f the database crashes and d oes
not lose any d ata files, then the instance can recover the database with the

information in these files.

108

Other key files as noted above include:
» Parameter file: It used to define how the instance is configured when its start

up. There are two types of parameter files.

e The init.ora file (also called the PFILE): is as tatic par ameter file. | t
contains parameters that specify how the database instance is to start up.
For example, some parameters will specify how to allocate memory to the
various parts of the system global area.

e The spfile.ora: is a dynamic parameter file. It also stores parameters to
specify h owt os tartup ada tabase; how ever, i ts p arameters ¢ an be

modified while the database is running.

» Password file: Specifies which special users are authenticated to startup/shut
downa n O racle Instance. Alsoa llows us ert oc onnectr emotelyt ot he
database.

» Archived redo log files: Containa nong oing hi story of t he dat a c hange
generated by instance. We can say that, it is copy of the redo log files and are
necessary for recovery in an online, transaction-processing environment in the
event of a disk failure.

» Backup files: Are used for database recovery. Typically restore a backup files
when a media failure or user error has damaged or deleted the original file.

» Trace Files: Each server and background process can write to an associated
trace file. When an internal error is detected by a process, the process dumps
information about the errortoits trace file. Some of the i nformation written to
trace file is intended for the database administrator.

» Alert Log Files: There are s pecial trace files. They are also known as al ert

logs. The alert log of a database is a chronological log of messages and errors.

2.6.2 LOGICAL STRUCTURE

It is helpful to understand how an Oracle database is organized in terms of a logical

structure that is used to organize physical objects.

109

oo oolbooo)l [Eoo

Extent 16K E;‘:(B"t Extent 16K Extent 12K
Department Table Employee Emp_Index
Segment Table Segment Segment

Indexes

Tables Tablespace Tablespace

T
Database

Figure 6.7: Logical Storage Structure
» Tablespace: An O racle 10 g dat abase m ust al ways c onsist of at | easttwo
tablespaces (SYSTEMand S YSAUX), al though at ypical O racle dat abase will
multiple tablespaces tablespaces. A tablespace is a logical storage facility (a
logical ¢ ontainer) f or s toring ob jects s uch as t ables, i ndexes, s equences,

clusters, and other database objects.

Each t ablespace has at | eastone physical datafilet hat actually s tores t he
tablespace at the operating system level. A large tablespace may have more
than o ne da tafile a llocated for s toring o bjects as signed t o that t ablespace. A
tablespace be longs to only on e database. Tablespace can be brought online
and t aken offline f or pur poses of bac kup and m anagement, ex ceptfort he
SYSTEM tablespace that must always be online. Tablespaces can be in either
read-only or read-write status.

» Datafile: Tablespaces are stored i n datafiles w hich are physical disk ob jects.
A datafile can only store objects for a single tablespace, but a tablespace may
have m ore than on e dat afile — this hap pens when a d isk drive d evice fills up
and at ablespace ne eds to be ex panded,thenitis expandedtoanew disk
drive. T he DBA can change the size of a dat afileto make it s maller or | ater.

The file can also grow in size dynamically as the tablespace grows.

» Segment: When | ogical s torage ob jects ar e c reated w ithin at ablespace, for

example, an employee table, a segment is allocated to the object. Obviously a

110

tablespace typically has many segments. A segment cannot span tablespaces

but can span datafiles that belong to a single tablespace.

Extent: Each object has one segment which is a physical collection of extents.
Extents ar e s imply c ollections of ¢ ontiguous disk s torage b locks. Al ogical
storage object such as a table or index always consists of at least one extent —
ideally the initial extent allocated to a n object will be large enou gh to store all
data that is initially loaded. As at able or index grows, ad ditional extents are
added tothe segment. A DBAcan add e xtents to segments inorderto tune
performance of the system. An extent cannot span a datafile.

Data Block: The Oracle Server manages data at the smallest unit in what is

termed a block or data block. Data are actually stored in blocks.

. Grows
Common and Variable it
Header
Table Directory \l’
Row Directory

Free Space

Row Data

/]\

Data Loads
fram
Bottorn Up

Figure 6.8: Structure of Data Block

Aph ysical bl ocki st he s mallest ad dressable | ocationona diskdr ivef or
read/write operations. An Oracle data block c onsists of one or more physical
blocks (operating system blocks) so the data block, if larger than an operating
system block, s hould b e an e ven multiple of the oper ating s ystem block s ize,
e.g., if the UNIX operating system block size is 2K or 4K, then the Oracle data
block should be 2K, 4K, 8K, 12K, 16K, etc in size. This optimizes l/O.

The datablock sizeis setat the time the d atabase is created a nd cannot be
changed. Itis set with the DB_BLOCK_SIZE parameter. The maximum data

block size depends on the operating system.

111

2.7 SCHEMA AND SCHEMA OBJECTS

A schemais a c ollection of database objects. A schemais owned by a dat abase us er

and has the same name as that user. A schema is a collection of schema objects.

Schema objects are logical data storage structures. Schema objects do not have a one-
to-one correspondence to physical files on disk that s tore their i nformation. However,
Oracle stores a schema object logically within a tablespace of the database. The data of
each obj ect i s phy sically c ontained in o ne or m ore of t he t ablespace's dat afiles. F or
some obj ects s uch as tables, indexes, an d c lusters, y ou ¢ an s pecify h ow m uch di sk

space Oracle allocates for the object within the tablespace's datafiles.
Different types of objects contained in a user's schema. It includes:

e Tables: Tables are the basic unitofdata storage in an Oracle database. Data is
stored in rows and columns.

e Views:A view is a tailored presentation of the data contained in one or more tables.
A view takes the output of a query and treats it as a table; therefore, also known as
virtual table.

e Synonyms:As ynonymisan aliasfora nyt able, view,s napshot, s equence,
procedure, function, or package. Because a synonym is simply an alias, it requires

no storage.
e Indexes:Indexes ar e opt ional s tructures as sociated w ith tables and c lusters. ltis

used to speed SQL statement execution on a table.

e Clusters: Aclusteris agroup of tables that s hare the same dat a blocks bec ause

they share common columns and are often used together.
o Hash Clusters:A hash cluster stores related rows together in the same data blocks.

Rows in a hash cluster are stored together based on their hash value.

» Check Your Progress

1. List Components of Oracle Instance?

112

2. Which Parameter is used to define size of SGA? Maximum size of SGA

Is?

2.8 LET US SUM UP

In this chapter, we have discussed about oracle architecture and instance. We have
also ex plored m emory s tructure of O racle D atabase. W e ha ve c ome to k now v ital
processes, which is executes during database execution. We have also summarized
storage s tructures a nd s upported files an d ar chitectures. After c ompletion oft his

chapter we came to know about schemas and various schema objects.

113

2.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Oracle Instance c onsists of T wo c omponents n amely Memory S tructure and
Background Processes.

2. SGA_MAX_SIZE parameter of Initialization Parameter file is used to define size
of S GA. Thesize of the S GA c annot e xceed the par ameter S GA_MAX_SIZE
minust hec ombination oft hes ize oft hea dditional par ameters,
DB_CACHE_SIZE, LOG_BUFFER, SHARED_POOL_SIZE,
LARGE_POOL_SIZE, and JAVA POOL_SIZE.

3. System Monitor (SMON) is responsible for instance recovery by applying entries
in the online redo log files to the datafiles.

4. Archived Redo Log File is the copy of redo log files and necessary for recovery
in the event of disk failure.

5. Yes, A Large tablespace may have more than one datafiles.

2.10 ASSIGNMENTS

Explain SGA in detail.
What is Database Buffer Cache? Explain in detail with parameters.
Describe all Background Processes.

Explain Logical Database Storage Structures.

o > o bh -

Define Schema and Schema Objects in detail.

2.11 FURTHER READING

1. Expert O racle D atabase Architecture, T hird E dition, D arl Kuhn & T homas K yte,

Apress
Publishing.
2. Oracle Database 10g The Complete Reference, Kevin Loney, Oracle Press.
3. A dvanced R DBMS U sing O racle, H imanshu D abir & D ipali Mehar, Vision
Publication.

114

Unit 3: Distributed Database
Architecture

Unit Structure

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

Learning Objectives & Outcomes

Introduction

Homogenous Distributed Database Systems
Heterogeneous Distributed Database Systems
Client/Server Database Architecture

Database Links

Distributed Database Security

Transaction Processing in a Distributed System
Distributed Database Application Development
Let Us Sum Up

Check your progress: Possible Answers
Assignments

Further Reading

115

3.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is,

* To learn and understand Different Distributed Database Architectures
* To understand the Client/Server Database Architecture.

* To understand Database Links and Users.

* To learn security aspects into the Distributed Database Environment.

* To learn Distributed Database Application Development

Outcome:

At the end of this unit,

*S tudents w ill be ¢ ompletelyaw arew ith Homogenous a nd H eterogeneous
Distributed Architectures.

» Students will come to know about different types of Database Links and Restrictions
of Database Links.

+ Students will be able to simplify the Remote Procedure Call (RPC) Mechanism.

« Students will be able to simplify Query Optimization in Distributed E nvironments.

3.2 INTRODUCTION

A distributed d atabase s ystem allows appl ications t o ac cess dat af rom | ocal and

remote dat abases. In a homogenous distributed database s ystem, eac h databaseis
an Oracle Database. In a heterogeneous distributed database system, at least one of
the databases is not an Oracle Database. Distributed databases use
client/server architecture to process i nformation r equests. In this c hapter will | earn

different concepts as follows:

» Homogenous Distributed Database Systems
» Heterogeneous Distributed Database Systems
» Client/Server Database Architecture

» Database Links

116

https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007551�
https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007606�
https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007639�

» Database Security Aspects
» Distributed Query Optimization

3.3 Homogenous Distributed Database Systems

A homogenous distributed dat abase s ystemisan etwork of t woor m ore O racle
Databases t hat reside on o ne or more s ystems. An a pplication c an s imultaneously

access or modify the data in several databases in a single distributed environment.

You can also create synonyms for remote objects in the distributed system so that users
can access them with the same syntax as local objects. In this way, a distributed system
gives the appearance of native data access. Users on mfg do not have to know that the

data they access resides on remote databases.

Distributed Datsbase

I e
|
~
_s
o]

= = =

Figure 7.1: Homogenous Distributed Database Systems

An Oracle Database distributed database system can incorporate Oracle Databases of
different v ersions. All s upportedr eleases of O racle D atabase ¢ an par ticipate in a
distributed d atabase s ystem. N evertheless,t he app licationst hatw orkw itht he
distributed database must understand the functionality that is available at each node in
the system. Adistributed d atabase a pplication c annot e xpect an Oracle7 database to

understand the SQL extensions that are only available with Oracle Database.

I. Distributed Databases Vs Distributed Processing

117

The terms distributed dat abase and distributed processing are closely related, yet have

distinct meanings. There definitions are as follows:

e Distributed database: As eto fd atabasesin a distributed s ystem t hat c an

appear to applications as a single data source.

e Distributed processing: the operation that occurs when an application
distributes i ts t asks am ong di fferent c omputers i na n etwork. F or ex ample, a
database app lication t ypically di stributes front-end pr esentation tasks t o c lient
computers and allows a back-end database server to manage shared access to
a database. Consequently, a distributed database application processing system

is more commonly referred to as a client/server database application system.

Distributed dat abase s ystems em ployad istributed pr ocessing ar chitecture. F or
example, an O racle D atabase s erverac ts as ac lientw henitrequests datat hat

another Oracle Database server manages.

3.4 Heterogeneous Distributed Database System

In a heterogeneous distributed database system, at least one of the databases is a non-
Oracle D atabase s ystem. T o t he appl ication, t he h eterogeneous di stributed dat abase
system appears as a single, local, Oracle Database. The local Oracle Database server

hides the distribution and heterogeneity of the data.

The Oracle D atabase s erver ac cesses the non-Oracle D atabase s ystem using O racle
Heterogeneous S ervices with an agent. Ify ou access t he non-Oracle D atabase da ta
storeus ing an O racle T ransparent Gateway, t hent hea genti sas ystem-specific
application. For example, if you include a S ybase dat abaseinan O racle D atabase
distributed system, then you must obtain a Sybase-specific transparent gateway so that

the Oracle Database in the system can communicate with it.

118

Alternatively, y ou c an use generic ¢ onnectivity to ac cess non -Oracle D atabase da ta
stores solong as t he n on-Oracle D atabase s ystem s upports the ODBC or OLEDB

protocols.

A. Heterogeneous Services

Heterogeneous Services (HS) is an i ntegrated c omponent within t he O racle D atabase
server and the enabling technology for the current suite of Oracle Transparent Gateway
products. H S pr ovides t he c ommon ar chitecture a nd adm inistration m echanisms f or
Oracle D atabase gateway pr oducts and other heterogeneous ac cess facilities. Also, it
provides upw ardly c ompatible f unctionality f or us ers of m ostof t he earlier O racle

Transparent Gateway releases.

B. Transparent Gateway Agents

For eac h non-Oracle D atabase s ystem that y ou ac cess, Heterogeneous S ervices can
use a t ransparent g ateway agent to interface with the s pecified non-Oracle D atabase
system. T he agent is s pecific to the non-Oracle D atabase s ystem, s 0o eac h type of

system requires a different agent.

The t ransparent g ateway ag ent f acilitates c ommunication bet ween O racle D atabase
and non-Oracle Database systems and uses the Heterogeneous Services component in
the Oracle Database server. The agent executes SQL and transactional requests at the

non-Oracle Database system on behalf of the Oracle Database server.

C. Generic Connectivity

Generic ¢ onnectivity en ables you t o c onnectto non-Oracle D atabase dat a s tores by
using either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE
DB agent. Both are included with your Oracle product as a standard feature. Any data
source ¢ ompatible w ith t he O DBC or O LE DB standards c an be ac cessed us ing a

generic connectivity agent.

119

The a dvantage to generic ¢ onnectivity isthatitm ayn ot berequired for you to
purchase and configure a separate system-specific agent. You use an ODBC or OLE
DB driver that can interface with the agent. However, some data access features are

only available with transparent gateway agents.

3.5 CLIENT/SERVER DATABASE ARCHITECTURE

A database s erver is the O racle s oftware m anaging a database, anda clientis an
application t hat requests information from a s erver. Each computer in a network is a
node that can host one or more databases. Each node in a distributed database system

can act as a client, a server, or both, depending on the situation.

In Figure 7 -2, t he hos tf or the hq databaseis ac tingas adat abase s erverw hena
statement is issued againstits local data (for example, the s econd statementin each
transaction issues a s tatement againstthe | ocal dept table), butis actingas ac lient
when it issues a statement against remote data (for example, the first statement in each

transaction is issued against the remote table emp in the sales database).

Server Server

L

= 1 | =
Database Link
CONP:I-E-C-:I' TO...

IDENTIFIED BY ...

EMP Table | ~

—I—’,

DEPT Table|

T f

Application

TRANSACTION

INSERT INTO EMPESALES..;
DELETE FROM DEPT..;

SELECT. ..
FROM EMP@SRLES -3

COMMIT;

Figure 7.2: An Oracle Database Distributed Database System

120

https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007648�

Ac lient c an c onnect directly or indirectly toad atabases erver. Ad irect c onnection
occurs when a c lient connects to a server and ac cesses information from a dat abase

contained on that server.

3.6 DATABASE LINKS

The central concept in distributed database systems is a database link. A database link
is a ¢ onnection b etween two p hysical database s ervers that allows a c lient to ac cess

them as one logical database.

A database link is a pointer that defines a one-way communication path from an Oracle
Database server to another database server. The link pointer is actually defined as an
entry in a data dictionary table. To access the link, you must be connected to the local

database that contains the data dictionary entry.

Ad atabase link c onnectionis one-wayinthe s ensethat aclient connectedtol ocal
database Acanusea links tored in database Ato ac cessinformation inr emote
database B, but us ers connected to dat abase B cannot use the same link to access
datain database A. Iflocal users on dat abase B wantto access data on dat abase A,

then they must define a link that is stored in the data dictionary of database B.

A database link connection allows local users to access data on a remote database. For
this ¢ onnectiont o oc cur, e ach dat abasei nt he distributeds ystem m usthav ea
unique global d atabase nam e int he ne tworkd omain. T he g lobald atabase nam e

uniquely identifies a database server in a distributed system.

Database links are either private or p ublic. Ifthey are private, then only the us er who
created the link has access; ifthey are public, then all d atabase us ers have ac cess.
One principal difference am ong dat abase links is the way that connections to a remote

database occur. Users access a remote database through the following types of links:

Type of Link Description

121

Type of Link Description

Connected user link Users c onnect as themselves, w hich m eans t hat t hey m ust
have an account on the remote database with the same user

name and password as their account on the local database.

Fixed user link Users ¢ onnectus ing the wusernam ean dpas sword

referenced in the link.

Current user link Auserconnects as a gl obaluser. A local us er can connect
as a global user in the context of a stored procedure, without

storing the global user's password in a link definition.

Create dat abase | inks us ingthe CREATE D ATABASE L INK statement. Afteral inkis

created, you can use it to specify schema objects in SQL statements.

3.6.1 SHARED DATABASE LINKS

As hared d atabasel inkisal inkb etweenal ocals erverpr ocess andt her emote
database. Thelinkis s hared bec ause m ultiple client processes can us e the same link

simultaneously.

When a | ocal da tabase is c onnectedto ar emote dat abase t hrough ad atabase link,
either dat abase c anr uni nd edicated or s hareds erver m ode. T he f ollowing t able

illustrates the possibilities:

Local Database Mode Remote Database Mode
Dedicated Dedicated

Dedicated Shared server

Shared server Dedicated

Shared server Shared server

122

A shared database link can exist in any of these four configurations. Shared links differ

from standard database links in the following ways:

o Different us ers ac cessing the s ame s chema object through a dat abase link can
share a network connection.

e When a us er must establish a c onnectionto a remote server from a particular
server process, t he process ¢ an r euse c onnections al ready es tablishedtot he
remote s erver. The reuse of the c onnection c an oc curifthe connectionw as
established on the same server process with the same database link, possibly in
a different s ession. I n a non -shared da tabase link, a ¢ onnectionis not s hared
across multiple sessions.

o When you use a shared database link in a shared server configuration, a network
connection is established directly outofthe shared server process inthelocal
server. For a non-shared database link on a local shared server, this connection
would h ave be en es tablished t hrough t he | ocal d ispatcher, r equiring ¢ ontext

switches for the local dispatcher, and requiring data to go through the dispatcher.

The great advantage of database links is that they allow users to access another user's
objects in a remote database so that they are bounded by the privilege set of the object
owner. In otherwords, al ocalusercanaccess al inkto aremote d atabase w ithout

having to be a user on the remote database.

3.6.2. TYPES OF DATABASE LINKS

Oracle Database lets you create private, public, and global database links. These basic

link types differ according to which users are allowed access to the remote database:

Type |Owner Description

Private (Userw ho c reated t he |l ink. View Creates | inki nas pecifics chema of t he
ownership data through: local database. Only the owner of a private
« DBA DB _LINKS database | ink or P L/SQL s ubprograms i n

123

Type

Public

Global

Owner

« ALL DB_LINKS
« USER_DB_LINKS

Userc alledP UBLIC.V iew
ownershipd atat hroughv iews

shown for private database links.

Userc alledP UBLIC.V iew
ownershipd atat hroughv iews

shown for private database links.

Description

thes chemac anus et hislinkt oac cess
database objectsi nt he c orresponding

remote database.

Creates a database-wide link. All users and
PL/SQL s ubprograms in the database can
use the linkto ac cess database objects in

the corresponding remote database.

Creates anet work-widel ink. W hena n
Oracle network uses a directory server, the
directory s erver au tomatically c reate an d
manages global database links (as net
service names) for every Oracle D atabase
in the network. Users and PL/SQL
subprograms inan yda tabasecanus e a
globall inkt oac cessobj ectsi nt he
corresponding remote database.

Note: In earlier releases of Oracle
Database, a gl obal d atabase link r eferred
to a database link t hat was registered with
an O racle Names s erver. Theuse ofan
OracleN amess erverh asbee n
deprecated. In this document, global
database links refer to the use of net

service names from the directory server.

Determining the type of database links to employ in a distributed database depends on

the specific requirements of the applications using the system. Consider these features

when making your choice:

124

Type of Link

Private database link

Public database link

Global database link

Features

This link is more s ecure than a pu blic or global link, bec ause
only the owner o fthe private link, or s ubprograms w ithint he

same schema, can use the link to access the remote database.

When m any us ers require an access pathto ar emote Oracle
Database, you can create a single public database link for all

users in a database.

When an Oracle network uses a directory server, an
administrator ¢ an c onveniently m anage gl obal d atabase | inks
for all databases inthe system. D atabase link management is

centralized and simple.

3.6.3. USERS OF DATABASE LINKS

When c reatingt hel ink, y oud etermine w hich user s hould c onnectt ot her emote

database to access the data. T he following table explains the d ifferences amongthe

categories of users involved in database links:

User Type

Connected user

Current user

Description

A local user accessing a database link in which no fixed
username an dp asswordhav ebe ens pecified.
If SYSTEM accesses a public link in a query, then the connected
useri s SYSTEM, andt heda tabasec onnectst o
the SYSTEM schema in the remote database.

Note: Ac onnectedus erdo esno th avetob et he userw ho

created the link, but is any user who is accessing the link.

A global userin a CURRENT_USER database link. T he gl obal
user m ust be authenticated by an X.509 c ertificate (an S SL-

authenticated enterprise user) or a password (a password-

125

User Type Description

authenticated enterprise user), and be a user on both databases
involved in the link. Current user links are an aspect of the Oracle
Advanced Security option.

See Oracle D atabase AdvancedS ecurity Administrator's

Guide for information about global security

Fixed user A user whose username/password is part of the link definition. If
alink includes af ixedus er, t hefixed us er's us ername and

password are used to connect to the remote database.

3.6.4. DATABASE LINK RESTRICTIONS

You cannot perform the following operations using database links:

Grant privileges on remote objects
Execute DESCRIBE operations ons ome r emote ob jects. T he f ollowing r emote
objects, however, do support DESCRIBE operations:
o Tables
o Views
e Procedures
e Functions
Analyze remote objects
Define or enforce referential integrity
Grant roles to users in a remote database

Obtain non-default roles on a remote database.

vV V V VYV V

Execute hash query joins that use shared server connections

3.7 DISTRIBUTED DATABASE SECURITY

The da tabase s upports al 1 of t he s ecurity f eatures t hat ar e available w ithan on-

distributed database environment for distributed database systems, including:

126

o Password authentication for users and roles
e Sometypes of e xternal authentication f or us ers and roles i ncluding K erberos
version 5 for connected user links.

e Login packet encryption for client-to-server and server-to-server connections

Some important concepts to consider when configuring an Oracle Database distributed

database system:

o Authentication Through Database Links

¢ Authentication Without Passwords

e Supporting User Accounts and Roles

e Centralized User and Privilege Management

o Database Encryption

A. Authentication Through Database Links

Database links ar e e ither private or pu blic, authenticated or non-authenticated. Y ou
create p ublic links b y s pecifying the PUBLIC keyword i nt he link c reation s tatement.
You c reate a uthenticated | inks b ys pecifying t he CONNECT
TO clause, AUTHENTICATED BY clause, or both clauses together in the database link

creation statement. For example, you can issue:

B. Authentication Without Passwords

When using a c onnected user or current user database | ink, you can us e an external
authentication s ource s uch as Kerberos t o o btain end-to-end s ecurity. | n end -to-end
authentication, credentials are p assed from s erver to s erver and c an be a uthenticated

by a database server belonging to the same domain.

C. Supporting User Accounts and Roles

In a di stributed d atabase s ystem, you must c arefully p lan the us er ac counts and r oles
that are necessary to support applications using the system. Note that:

127

https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008338�
https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008383�
https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008387�
https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008405�

The us er ac counts nec essary to es tablish server-to-server c onnections m ust be
available in all databases of the distributed database system.

Ther oles nec essaryt o m ake a vailable a pplication pr ivileges t o di stributed
database app lication us ers m ust be pr esentin all dat abases of t he di stributed
database system.

As y ou c reatet he database links fort he nodesin ad istributed database s ystem,

determine w hich us er ac counts a ndr oles eac h s ite m usts upport s erver-to-server

connections that use the links.

In a di stributed en vironment, us ers typically require access to many network s ervices.

Wheny ou m ust ¢ onfigure s eparate a uthentications f oreac hus ert oac cess eac h

network s ervice, s ecurity administration ¢ an bec ome unw ieldy, es pecially f or | arge

systems.

D. Centralized User and Privilege Management

The database pr ovides di fferentw ays f or you t o m anage t he us ers and pr ivileges

involved in a distributed system. For example, you have these options:

Enterprise user management: Youc anc reategl obalus ersw ho are
authenticated through SSL or by using passwords, then manage these users and
their privileges in a directory through an independent enterprise directory service.
Network authentication service: This c ommon t echnique s implifies s ecurity
management for distributed e nvironments. You c an use the O racle Advanced
Security option to en hance Oracle Net andthe security of an Oracle D atabase
distributed database system. Windows NT native authentication is an example of

a non-Oracle authentication solution.

E. Database Encryption

The Oracle Advanced Security option also enables Oracle Net and related products to

use network data encryption and check-summing so that data cannot be read or altered.

128

It protects data from unauthorized viewing by using the RSA Data Security RC4 or the
Data Encryption Standard (DES) encryption algorithm.

To ensure that data has not be en m odified, d eleted, or replayed during transmission,
the security services of the Oracle Advanced Security option can generate a
cryptographically s ecure m essage digestand include it with each packet s ent across
the network.

3.8 TRANSACTION PROCESSING IN A DISTRIBUTED
SYSTEM

Atransactionis al ogical uni tof w ork c onstituted b yone or m ore S QL s tatements
executed by as ingle us er. Atransaction beg ins with t he us er's first executable S QL

statement and ends when it is committed or rolled back by that user.

Aremote t ransaction contains onl y s tatements t hatac cessas ingler emote nod e.

A distributed transaction contains statements that access multiple nodes.

The following sections define important concepts in transaction processing and explain

how transactions access data in a distributed database:

e Remote SQL Statements
o Distributed SQL Statements
o Shared SQL for Remote and Distributed Statements

o Remote Transactions

¢ Distributed Transactions

¢ Two-Phase Commit Mechanism

o Database Link Name Resolution

e Schema Object Name Resolution

129

https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008641�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008661�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008684�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008698�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008710�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008726�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008747�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008848�

A. Remote SQL Statements

Aremote query statement is a query that selects information from one or more remote
tables, all of which reside at the same remote node. Aremote u pdate statementis an
update that m odifies datain one or more tables, all of which are |l ocated atthe same

remote node.

B. Distributed SQL Statements

A distributed q uery statementr etrievesi nformationf romt woor m ore nodes
A distributed upd ate statement m odifies da tao nt woor m ore n odes. Adi stributed
update is possible using a PL/SQL subprogram unit such as a procedure or trigger that

includes two or more remote updates that access data on different nodes.

C. Shared SQL for Remote and Distributed Statements

The m echanics of ar emote or distributed s tatement using shared S QL are es sentially
the same as those of a local statement. The SQL text must match, and the referenced
objects m ust m atch. | f av ailable, s hared S QL ar eas c anbe us edforthelocala nd

remote handling of any statement or decomposed query.

D. Remote Transactions

A remote transaction contains one or more remote statements, all of which reference a

single remote node.

E. Distributed Transactions

Ad istributed transactionis at ransaction thatincludes on e or m ore s tatements t hat,
individually or as a group, update d ataontwo or more distinct nodes of a distributed

database.

130

F. Two-Phase Commit Mechanism

A database m ust gu arantee that all s tatements in a transaction, distributed or n on-
distributed, either commit or roll back as a uni t. The effects of an ongoing transaction
should be invisible to all other transactions at all nodes; this transparency should be true
for transactions that include any type of operation, including queries, updates, or remote

procedure calls.

The g eneral m echanisms of t ransaction c ontrol i n a no n-distributed dat abase ar e
discussed inthe Oracle D atabase C oncepts C oncepts. | n a di stributed da tabase, the
database m ust ¢ oordinate t ransaction ¢ ontrol w ith t he s ame ¢ haracteristics ov er a

network and maintain data consistency, even if a network or system failure occurs.

The d atabase two-phase ¢ ommit mechanism guar antees t hat all database s ervers
participating in a distributed transaction either all commit or all roll back the statements
in the transaction. A two-phase commit mechanism also protects implicit DML

operations performed by integrity constraints, remote procedure calls, and triggers.

G. Database Link Name Resolution

A global objectnam eis a nob jects pecifiedus inga database link. T he es sential
components of a global object name are:

e Object name
o Database name

¢ Domain

Whenever a SQL statement includes a reference to a global object name, the database
searches for a database link with a name that matches the database name specified in

the global object name.

The d atabase per forms t his op eration to d etermine the pat htot he s pecified r emote

database.

131

The database always searches for matching database links in the following order:

1. Private database links in the schema of the user who issued the SQL statement.
2. Public database links in the local database.

3. Global database links (only if a directory server is available).

H. Schema Object Name Resolution

After the local Oracle Database connects to the specified remote database on behalf of
the | ocal userthatissuedt he S QL s tatement, ob ject r esolution ¢ ontinues as ift he
remote user had issued the associated SQL statement. The first match determines the
remote schema according to the following rules:

Type of Link Specified Location of Object Resolution
Afixed user database link Schema specified in the link creation statement
A connected user database link Connected user's remote schema

A current user database link Current user's schema

If t he da tabase c annot f ind t he ob ject, then it c hecks pub lic obj ects of t he remote
database. If it cannot resolve the object, then the established remote session remains

but the SQL statement cannot execute and returns an error.

3.9 DISTRIBUTED DATABASE APPLICATION
DEVELOPMENT

Application development in a distributed system raises issues that are not applicable in
an on-distributed s ystem. T his s ection ¢ ontains t he f ollowingt opics r elevant for

distributed application development:

e Transparency in a Distributed Database System
e Remote Procedure Calls (RPCs)

132

https://docs.oracle.com/html/E25494_01/ds_concepts005.htm#i1009082�
https://docs.oracle.com/html/E25494_01/ds_concepts005.htm#i1009129�

o Distributed Query Optimization

3.9.1 TRANSPARENCY IN A DISTRIBUTED DATABASE SYSTEM

With m inimal ef fort, y ou c and evelop app lications t hat m ake a n O racle D atabase
distributed database system transparent to users that work with the system. The goal of
transparency is to m ake a di stributed dat abase s ystem appear as thoughitis as ingle
Oracle D atabase. C onsequently, the s ystem does not burden d evelopers and us ers of
the s ystem w ithc omplexitiest hatw ould o therwise m ake di stributed database

application development challenging and detract from user productivity.

The f ollowing s ections ex plain m ore aboutt ransparencyina distributed database

system.

A. Location Transparency: An Oracle D atabase distributed dat abase s ystem has
features that allow application developers and administrators to hide the physical
location of dat abaseo bjectsf rom appl icationsan dus ers. Location
transparency exists when a user can universally refer to a database object such
as at able, regardless of the nod e to w hich a n ap plication c onnects. Loc ation
transparency has several benefits, including:

e Accesstoremotedatais simple, b ecause databaseusersdono tneedto
know the physical location of database objects.
o Administrators ¢ an m ove d atabase obj ects w ith no i mpact on en d-users or

existing database applications.

Typically, adm inistrators and d evelopers us e s ynonyms t o es tablish | ocation

transparency for the tables and supporting objects in an application schema.

B. SQL and COMMIT Transparency: The O racle D atabase di stributed dat abase
architecture al so provides quer y, update, an dt ransaction transparency. F or
example, standard SQL statements such as SELECT, INSERT, UPDATE,

and DELETE work justas t hey do in an on-distributed dat abase env ironment.

133

https://docs.oracle.com/html/E25494_01/ds_concepts005.htm#i1009144�

Additionally, app lications ¢ ontrolt ransactionsus ingt hes tandardS QL
statements COMMIT, SAVEPOINT, and ROLLBACK.

C. Replication Transparency: The database also provide many features to
transparently r eplicated ataam ongt henod esof t hes ystem.F orm ore
information about O racle D atabase r eplication f eatures, s ee Oracle D atabase

Advanced Replication.
3.9.2. REMOTE PROCEDURE CALLS (RPCYS)

Developers c an ¢ ode P L/SQL pac kages an d procedures to s upport a pplications t hat
work w ith ad istributed database. Applications ¢ an m ake | ocal pr ocedure c allst o
perform work at the local database and remote procedure calls (RPCs) to perform work

at a remote database.

When a program c alls ar emote pr ocedure, t he | ocal s erver p asses al | procedure

parameters to the remote server in the call.

In order for the RPC to succeed, the called procedure must exist at the remote site, and

the user being connected to must have the proper privileges to execute the procedure.

When developing packages and procedures for distributed database systems,
developers m ust c ode w ith an un derstanding of w hat pr ogram u nits should do at

remote locations, and how to return the results to a calling application.

3.9.3 DISTRIBUTED QUERY OPTIMIZATION

Distributed query optimization is an Oracle Database feature that reduces the amount of
data transfer required between s ites w hen a transaction r etrieves data from r emote

tables referenced in a distributed SQL statement.

Distributed query o ptimization us es cost-based optimization to find or generate S QL

expressions that extract only the necessary data from remote tables, process that data

134

at a remote site or sometimes at the local site, and send the results to the local site for
final pr ocessing. T his o peration r educes the amount of required d ata transfer w hen
comparedtothetime itt akestotransferal It het ableda tat ot hel ocal sitef or

processing.

Using various cost-based optimizer hints such as DRIVING_SITE, NO_MERGE, and
INDEX, you c an c ontrol w here O racle D atabase processesthe dataandhowit

accesses the data.

» Check Your Progress

6. Define Distributed Database and Distributed Processing?

135

3.10LET US SUM UP

In this chapter, we have discussed about oracle architecture and instance. We have
also explored m emory s tructure of O racle D atabase. W e ha ve c ome t o k now v ital
processes, which is executes during database execution. We have also summarized
storage s tructures a nd s upported files an d ar chitectures. After c ompletion oft his

chapter we came to know about schemas and various schema objects.

3.11CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Distributed d atabaseis as etof databasesin ad istributeds ystemthatc an
appear to applications as a s ingle d ata source. W hile distributed processingis
the operation that occurs when an application distributes its tasks among different
computers in a network.

2. Generic connectivity enables you to connect to non-Oracle Database data stores
by us ing e ither a Heterogeneous S ervices O DBC agent or a Heterogeneous
Services OLE DB agent. The advantage to generic connectivity is that it may not
be required for you to purchase and configure a separate system-specific agent.
You use an ODBC or OLE DB driver that can interface with the agent.

3. Ad atabaselinkis ac onnection be tweentwo ph ysical da tabase s ervers t hat
allows a clientto access them as one logical database. These basic link types

differ according to which users are allowed access to the remote database:
Type Description

Private Creates linkin as pecific schema of the |l ocal database. O nlythe
owner of a private da tabase | ink or P L/SQL s ubprograms in the
schemac anus et his| inkt o ac cess dat abase o bjectsi nt he

corresponding remote database.

Public Creates a d atabase-wide link. Allusers and PL/SQL s ubprograms

in the database can use the link to access database objects in the

136

Type Description
corresponding remote database.

Global Creates a network-wide | ink. W hen an O racle ne twork uses a
directory server, the directory server automatically create and
manages g lobal database | inks (as net s ervice n ames) for e very
Oracle Database in the network. Users and PL/SQL subprograms in
any d atabasec anus eagl obal linkt oac cessobjectsint he

corresponding remote database.

4. Distributed quer y opt imization is an O racle D atabase f eature t hat r educes t he
amount of data transfer required between sites when a transaction retrieves data

from remote tables referenced in a distributed SQL statement.

3.12ASSIGNMENTS

Explain Homogenous and Heterogeneous Distributed Database.
Explain Transaction Processing in Distributed Database.

Describe Security Aspects in Distributed Database.

AW N o

What is Database Links? Describe different users of Database Links in details.

3.13 Further Reading

1. Expert O racle D atabase Architecture, T hird E dition, D arl Kuhn & T homas K yte,
Apress Publishing.
2. Oracle Database 10g The Complete Reference, Kevin Loney, Oracle Press.

137

Unit 4. Database Backup

Unit Structure

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

Learning Objectives & Outcomes
Introduction

Logical Database Backup

Physical Database Backup

Let Us Sum Up

Check your progress: Possible Answers
Assignments

Further Reading

138

4.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,

* To understand Types of Oracle Backups

* To understand the Logical Backup Plan (Export/Import)
* To understand the Physical Backup & Recovery

Outcome:

At the end of this unit,

* Students will be completely aw are with Logical an d P hysical Backup S trategies of
Oracle database.

» Students will able to Perform Export/Import with its different parameter.

« Students will be aware with different mode of Online and Offline Backup.

» Students will be aware with how t o m ake database r eady for physical database

backup.
4.2 INTRODUCTION

Abackupis ar epresentative copy of d ata. T his copy can include important parts of a
database such as the control file, redo logs, and datafiles. A backup protects data from
application error and acts as a safeguard against unexpected data loss, by providing a

way to restore original data.

Backups are divided i nto p hysical bac kups and | ogical bac kups. P hysical bac kups are
copies of physical d atabase files. The phrase " backup and recovery" us ually r efers to
the t ransfer of c opiedf iles from o ne location t o an other, a longw itht he v arious

operations performed on these files.

In c ontrast, | ogical bac kups c ontain dat athatis ex ported us ing S QL ¢ ommands and
stored in a binary file. Oracle records both committed and uncommitted changes in redo

log buffers. Logical backups are used to supplement physical backups.

139

Restoring a physical backup m eans r econstructing it and m aking it availabletot he
Oracle server. To recover a restored backup, data is updated using redo records from
the transaction log. The transaction log records changes made to the database after the

backup was taken.

Elements of a Backup And Recovery Strategy
Although backup and recovery operations can be intricate and vary from one business

to another, the basic principles follow these four simple steps:

1. Multiplex the online redo logs

2. Runthe databasei n ARCHIVELOG m ode and archive r edo logs t o m ultiple
locations

3. Maintain multiple concurrent backups of the control file

4. Take frequent b ackups of ph ysical da tafiles ands toret heminas afe p lace,

making multiple copies if possible

As long as users have backups of the database and archive redo logs in safe storage,

the original database can be recreated.

4.3 LOGICAL DATABASE BACKUP

Oracle ut ility Import/Exportar e usedt o p erform Log ical D atabase O peration, w hich
allow us to make e xports & imports ofthe data objects, and t ransfer the data across
databasest hatr esideond ifferenthar dware pl atformsondi fferentO racle
versions.Export (exp) an d i mport (imp) ut ilities ar e us ed t o p erform | ogical database
backup a nd r ecovery. W hen ex porting, database obj ects are dum pedto a bi naryfile

which can then be imported into another Oracle database.

From Oracle 10g, users can choose between using the old imp/exp utilities, or the newly
introduced Data pum p utilities, c alled e xpdp an d impdp. T hese new ut ilities i ntroduce

much needed performance improvements, network based exports and imports, etc.

140

http://www.orafaq.com/wiki/Oracle_10g�

Various parameters are available t o c ontrol w hat o bjects are ex ported or imported. To
geta list of available parameters,r unt he exp orimp utiltiesw ith

the help=yes parameter.

The export/import utilities are commonly used to perform the following tasks:

e Backup and recovery (small databases only)

e Move data between Oracle databases on different platforms.

e Reorganization o fd ata/ eliminate dat abase f ragmentation (export, dropan dr e-
import tables)

e Upgrade databases from extremely old versions of Oracle

e Detect database corruption. Ensure that all the data can be read

e Transporting tablespaces between databases

A. Different Modes of Export/Import Utility

1. Full Export: The EXP_FULL_DATABASE and IMP_FULL_DATABASE,
respectively, are ne eded to p erform af ull e xport. Use the full export par ameter
for a full export.

2. Tablespace: Use the tablespaces export parameter for a tablespace export.

3. User: Thismode canbeusedto exportandimport all objects that belongto a
user. Use the owner export parameter and the fromuser import parameter for a
user (owner) export-import.

4. Table: Specific tables (and partitions) can be exported/imported with table export

mode. Use the tables export parameter for a table export.

4.3.1 EXPORT UTILITY

This utility can be used to transfer data objects between oracle databases. The objects

and the data in Oracle dat abase can be moved to other Oracle database running even

on a different hardware and software configurations.

141

http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#exp_full_database�
http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#imp_full_database�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_full#exp_full�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_tablespaces#exp_tablespaces�
http://www.adp-gmbh.ch/ora/admin/objects.html�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_owner#exp_owner�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_tables#exp_tables�
javascript:void(0)�
javascript:void(0)�
javascript:void(0)�

The export utility copies database definitions and actual data into an operating system
file (export file). The export file is an Oracle binary-format dump file (with .dmp), which is
normally created on disk or tape. Before exporting we must ensure that there is enough

space available on the disk or tape used.

Exported dum p files can be r ead o nly by using the Import utility of Oracle. W e c annot
use ear lier v ersions of i mport ut ility f or importing t he da ta ex ported us ing ¢ urrent
version.

EXP command can be used to invoke export utility interactively without any parameters.
Parameters also can be specified in a file called parameter file. We can use more than

one parameter file at a time with exp command.

General Parameters are used with exp command are as:

e Full: Use this parameter to specify full export mode.

e Tablespaces: Use this parameter to specify tablespace export mode.

e Owner: Use this parameter to specify user export mode.

e Tables: Use this parameter to specify table export mode.

e Query: Restricts the e xported rows by m eans of aw here clause. T he query

parameter can only be used for table export mode. For obvious reasons, it must

be appliable to all exported tables.
o Parfile: Specifies a parfile. Parameter file is a simple text files creating using any
text editor.

There are basically 3 types of exports like Full, Owner, and Table. Full export exports
all the objects, structures and data within the database for all schemas. Owner export
exports onl y t he o bjects ow ned by s pecific us er ac count. Table export exports on ly

tables owned by a specific user account.

Toex portat ablew ec anr unE XP ut ility ei ther i nteractively or by p uttingal | the

parameters f or t he e xportont he c ommand |l ine. | ni nteractive m ode j ustt ype E XP

142

http://www.adp-gmbh.ch/ora/admin/imp_exp.html#full_export_mode#full_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#tablespace_export_mode#tablespace_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#user_export_mode#user_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#table_export_mode#table_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#table_export_mode#table_export_mode�

before the command prompt an d ans wer the qu estions w hen pr ompted, otherwise the

parameters can be typed on the command line as shown below.

Examples:

1. Wew antt oex port EMP tablef rom s cott/tiger (usernameand password
respectively) users and exported data will be stored into dump file namely emp as a

command line parameter.

EXP scott/tiger file=emp.dmp tables=(EMP)

2. Wew antt oex portE MP tablef roms cott/tiger (username and password
respectively) us ers and ex ported data will be stored into dump file namelyempin

interactive mode.

SWINDOWS system32hcmd.exe - EXP

C:~>EXP

Export: Release 18.1.8.2_.8 — Production on Sat Apr 23 22:397:681 2885

Copuright <c> 1982, 2084, Oracle. All rights reserved.

Uzername: SCOTT

Password:

annected to: Oracle Databhase 18g Enterprise Edition Release 18.1.8.2.8 - FProdu
ﬁi:ﬂ the Partitioning, OLAP and Data Mining options

Enter array fetch buffer size: 48%6 >

Export file: EXPDAT.DMP > D:“ahc.dmp

C2)U<zers2,. or (32TCables>: (22U > 3

Export table data <wess/no2: yes > y

Compress extents C(yes snold: yes > n
Export done in WEBMSWIN1252 character set and AL16UTFi6 HCHAR character set

About to export specified tables wia Conventional Path __.
Table<T> or Partition{T:P> to he exported: {(RETURM to guit> > EMP

. . exporting tahle EMP 14 rows exported
Table<T> or Partition<T:P> to he exported: (RETURM to guit> >

Figure 8.1: Exporting single table in interactively mode.

143

3. We want to export emp table with deptno=10 in non-interactive mode.

W WINDOWS system32'\ cmnd.exe

Microsoft Windows [Wersion 5.2.37981
C(C» Copyright 1985%-2003 Microsoft Corp.

C:“Documents and Settings“Administratoricds

C:rexp scottstiger tahles=emp guery=‘"wvhere deptno=184"

Export: Release 18.1.8.2.8 - Production on Sun Apr 24 BA:45:52 2805
Copyright <c> 1982, 2084, Oracle. All rights reserved.

Connected to: Oracle Databaze 18g Enterprize Edition Releasze 18.1.8.2.8 — Produc
tion

With the Partitioning, OLAP and Data Mining options

Export done in WEBMSWIN1IZ25Z character zet and AL1I6UTFi6 MCHAR character set

About to export specified tables via Conventional Path ...

. - exporting table EMP 3 rouws exported
EXP-08071: Exporting guestionable statistics.

EXP-80821 : Exporting guestionahle statistics.

Export terminated successfully with warnings.

Con

Figure 8.2: Exporting conditional rows in non-interactively mode.

4.3.2 IMPORT UTILITY

IMP command can be used to invoke import utility interactively without any parameters.
Import utility is used to extract objects from export dump file created using export utility.
We c anus e m ore t han o ne par ameterfile at a timew ith exp c ommand. Various

parameters of Import Utility are described as follow:

144

FFER:The integer specified for BUFFER is the size, in bytes, of the buffer
through which datarows are transferred.

COMMIT:Specifies whether Import should commit after each array insert. By
default, Import commits only after loading each table, and Import performs a
rollback when an error occurs, before continuing with the next object.
CONSTRAINTS: Specifies whether or not table constraints are to be imported.
The default is to import constraints. If you do not want constraints to be
imported, you must set the parameter value to n.

FILE:Specifies the names of the export files to import. The default extension is
.dmp, because Export supports multiple export files, you may need to specify
multiple filenames to be imported.

FROMUSER:The parameter enables you to import a subset of schemas from
an export file containing multiple schemas.

FULL: Specifies whether to import the entire export dump file.
GRANTS:Specifies whether to import object grants.

PARFILE:Specifies a filename for a file that contains a list of Import
parameters. For more information about using a parameter file, see Parameter
Files.

ROWS:Specifies whether or not to import the rows of table data.
TABLES:Specifies that the import is a table-mode import and lists the table
names and partition and sub partition names to import. Table-mode import
lets you import entire partitioned or non-partitioned tables.

TOUSER: Specifies a list of user names whose schemas will be targets for
Import. The user names must exist prior to the import operation; otherwise an
error is returned. The IMP_FULL_DATABASE role is required to use this
parameter. To import to a different schema than the one that originally
contained the object, specify TOUSER.

USERID: Specifies the username/password (and optional connect string) of

the user performing the import.

145

http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/exp_imp.htm#i1021490#i1021490�
http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/exp_imp.htm#i1021490#i1021490�
http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/exp_imp.htm#i1021490#i1021490�

S WINDDWYS' system32', CMD.exe

C:5\>IMP SCOTT-TIGER FILE=D:“filel.dmp TABLES= (TEST)

Import: Release 18.1.8.2.8 - Production on Wed Apr 27 23:86:24 2085
Copyright <c) 1982, 2804, Oracle. All rights reserved.

Connected to: Oracle Datahase 1By Enterprise Edition Release 18.1.8.2.8 - Produc
tion
With the Partitioning, OLAP and Data Mining options

Export file created by EXPORT:U1iB.01.0@ via conventional path
import done in WEBMSWIN1252 character set and ALL6UTF16 MCHAR character set
. importing SCOTT’=s ohjects into SCOTT

. importing tahle “"TEST" 3 rows imported
Import terminated successfully without warnings.

Civd

Figure 8.3: Example of Import Utility in Interactive mode.

It is possible to import dump created using an earlier (version 8.1.7 utility) version can
be imported using the later version utility (Version 9.0.1 utility). We should not use later
version u tilities to e xport dat a from earlier dat abase v ersions. B ut an earlier utility can
be us ed to e xport | ater versions of database. F or e xample you can export data from
Oracle9i us ing 8 .1.7 ut ility a nd c an import t hat e xported file into or acle 8i dat abase

using import utility 8.1.7.

4.4 PHYSICAL DATABASE BACKUP

4.4.1 BACKUP

Backups can be combined in a variety of ways. For example, we can take weekly whole
database backups, to ensure a relatively current copy of original database information,
but take daily backups of the most accessed tablespaces. The DBA can also multiplex
the all important control file and archived redo log as an additional safeguard.

A. Online Database Backup: An online backup or also known as an open backup is a
backup i n w hich all r ead-write da tafiles a nd c ontrol f iles ha ve not be en ¢ heck
pointed with respect to the same SCN. If the database must be up and running 24
hours a day, 7 days a week, then you have no choice but to perform online backups
of a whole database which is in ARCHIVELOG mode.

146

B. Offline Database Backup: Int his bac kup, al 1d atafiles an d ¢ ontrol f iles ar e
consistent to the same point in time - consistent with respect to the same SCN. This
type of backup allows the user to open the set of files created by the backup without
applying redo logs, since the d ata is already consistent. The only way t o per form
this type of backup is to shut down the database cleanly and make the backup while
the dat abase i s closed. A consistent whole dat abase bac kup is t he o nly v alid
backup option for databases runningin NOARCHIVELO G mode.

Whole Database Backup: The mostcommon type ofbackup, aw hole database
backup c ontains t he ¢ ontrol f ile al ong w ith al | dat abase files t hat bel ongt o a
database. If op eratingi n ARCHIVELOG m ode, the D BAal soh as t he opt ion of
backing up different parts of the database over a period of time, thereby

constructing a whole database backup piece by piece.

Tablespace Backups: At ablespacebac kupi sas ubsetof t hedat abase.
Tablespace backups are only valid if the database is op erating in ARCHIVELOG
mode. T he onlytimeat ablespace bac kupisv alidfora databaser unningin

NOARCHIVELOG mode is when that tablespace is read-only or offline-normal.

Datafile Backups: A datafleb ackup is a backup of as ingle da tafile. D atafile
backups, which are not as common as tablespace backups and are only valid if the
database is run in ARCHIVELOG mode. The only time a datafile backup is valid for
a database running in NOARCHIVELOG mode is if that datafile is the only file in a

tablespace.

Control File Backups: A control file backup is a backup of a database's control file.

If a databaseis open, the user can create av alid backup by issuing the f ollowing
SQL statement: ALTER DATABASE BACKUP CONTROLFILE to 'location’; or use

Recovery Manager (RMAN).

147

Archived Redo Log Backups: Archived redo logs are the key to successful media
recovery. D epending onthe disk s pace available and the number of transactions
executed on the database, you want to keep as many days of archive logs on disk

and you want to back them up regularly to ensure a more complete recovery.

Configuration Files: Configuration files m ay c onsist of spfile or init.ora, pas sword
file, thsnames.ora, and sqlnet.ora. Since these files do not change often, then they
require a | ess frequent b ackup s chedule. Ifyoulostac onfigurationfileitcan be
easily r ecreated m anually. W henr estoretimeis apr emium,itwillb efasterto
restore a backup of the configuration file then manually creating a file with a specific

format.

4.4.1.1 Types of Backup

There are basically two types of Backup we can take for Oracle Database.

. OFFLINE Backup

When dat abaseis D OWN, no ac tivity r unning on database, no one accessingt he

database, that time taken database backup called OFFLINE BACKUP. It is also known
as offline or consistent database bac kup. Database do esn'trequire ARCHIVELOG

mode for COLD backup. To take offline backup we must need to SHUTDOWN Oracle

Database and stop Database service.

. ONLINE Backup

When dat abase i s ope n, us er ac cessing t he d atabase that t ime w e taken b ackup is
called online, hot or inconsistent b ackup. Database m ust require ARCHIVELOG m ode
for HOT backup.

148

Making User-Managed Backups of Online Tablespaces and Datafiles
You can back up all or only specific datafiles of an online tablespace while the database
is open. The procedure differs depending on whether the online tablespace is read/write

or read-only. You should not back up temporary tablespaces.

Making User-Managed Backups of Online Read/Write Tablespaces

You must put ar ead/write tablespace in bac kup m ode to m ake us er-managed dat afile
backups w hent het ablespace is onlineandt hedat abasei s open. The
ALTERTABLESPACE ... BEGINBACKUP statement places a tablespace in bac kup
mode. In backup mode, the database copies whole changed data blocks into the redo
stream. After you take the tablespace out of backup mode with the
ALTERTABLESPACE...ENDBACKUP or ALTERDAT ABASEENDBACKUP
statement, the database advances the datafile header to the current database

checkpoint.

When restoring a datafile backed up in this way, the database asks for the appropriate
set of redolog files to apply if recovery be needed. The redo logs contain all changes

required to recover the datafiles and make them consistent.

To back up online read/write tablespaces in an open database:

1. Before be ginningabac kupof at ablespace,i dentifyal |of t hed atafilesint he
tablespace with the DBA_DATA_FILES data dictionary view.

2. Mark the beginning of t he o nline t ablespace b ackup. F or e xample, t he f ollowing
statement marks the start of an online backup for the tablespace users:
ALTER TABLESPACE users BEGIN BACKUP;

3. Backupt heon linedat afiles of t heonl ine tablespace w ith oper ating s ystem
commands.

4. After bac king u pt he d atafiles of t he onl ine t ablespace, runt he S QL s tatement
ALTERTABLESPACE with the ENDBACKUP option.
ALTER TABLESPACE users END BACKUP;

149

5. Archivet heu n-archivedr edol ogss ot hat ther edo r equiredt or ecovert he
tablespace backup is archived.
ALTER SYSTEM ARCHIVE LOG CURRENT,;

Making User-Managed Backups of the Control File

Back up thec ontrol file of ad atabase a fter m aking a s tructural m odification to a
database op eratingin ARCHIVELOG mode. T o back up a d atabase's control file, y ou
must have the ALTERDATABASE system privilege.

Backing Up the Control File to a Binary File

The pr imary m ethod f or backing up the c ontrol file istous e aS QL statement to
generate a binary file. Abinarybackupis preferabletoatracefile backup because it
contains add itional information s uch as the archived | og history, offline range for read-
only and offline tablespaces, and backup sets and copies (if you use RMAN). Note that

binary control file backups do not include tempfile entries.

To back up the control file after a structural change:

e Back up the database's control file, specifying a filename for the output binary file.
ALTER DATABASE BACKUP CONTROLFILE TO '/disk1l/backup/cf.bak’ REUSE;
Specify t he REUSE optionto m ake the new c ontrol file overwrite one that c urrently
exists.

Making User-Managed Backups of Archived Redo Logs

Tos aved isks pace in your pr imary archiving | ocation, you m ayw ant to back up
archivedl ogst ot apeor t oanal ternative di skl ocation. Ify ou ar chivet om ultiple

locations, then only back up one copy of each log sequence number.

4.4.2 RECOVERY

Basic recovery involves two parts: restoring a physical backup and then updating it with

the changes made to the database since the last backup. The most important aspect of

150

recovery is making s ure all data files are consistent with respect t o the same p oint in
time. Oracle has integrity checks that prevent the user from opening the database until

all data files are consistent with one another.

A. RECOVERY PROCESS

In every type of recovery, Oracle sequentially applies redo data to data blocks. Oracle
uses information in the control file and datafile headers to ascertain whether recovery is
necessary. Recovery has two parts: rolling forward and rolling back. When Oracle rolls
forward, it applies redo records to the corresponding data blocks. Oracle systematically
goes t hroughtheredologt o det ermine w hich c hangesitne eds toap plytow hich
blocks, and then changes the blocks. For example, if a user adds a row to a table, but
the s erver c rashes bef ore it can s ave the c hange todisk, Oracle can us etheredo

record for this transaction to update the data block to reflect the new row.

Once O racle has ¢ ompleted t he r olling f orward s tage, t he O racle d atabase ¢ an be
opened. The rollback phase begins after the database is open. The rollback information
is s tored i ntransaction t ables. O racle s earches t hrough t he t able for u ncommitted
transactions, un doingan y thatitfinds. F or ex ample, i ft he us er nev er c ommitted t he
SQL statement that ad ded t he row, t hen O racle will discover this factin at ransaction
table and undo the change.

e Responding to the Loss of a Subset of the Current Control Files

Use the following pr ocedures to recover a database ifa permanent media failure h as
damaged on e or more control files of ad atabase and at least o ne current c ontrol file

has not been damaged by the media failure.

e Copying a Multiplexed Control File to a Default Location

If the disk and file system containing the lost control file are intact, then you can simply
copy one of the intact control files to the location of the missing control file. In this case,
you do not have to editthe CONTROL_FILES initialization parameter.

151

e Toreplace adamaged control file by copying a multiplexed control file:

If the instance is still running, then shut it down:
SQL> SHUTDOWN ABORT

Correct the har dware problem that caused the media failure. If you cannot repair the
hardware problem quickly, then proceed with database recovery by restoring damaged

control files to an alternative storage device.

Use anintact multiplexed copy o fthe d atabase's c urrent c ontrol file to copy o ver t he

damaged control files.

Start a new instance and mount and open the database.
SQL> STARTUP

e Determining Which Datafiles Require Recovery
You c an us e t he dy namic per formance view VSRECOVER_FILE to d etermine w hich
files to restore in preparation for media recovery. This view lists all files that need to be

recovered, and explains why they need to be recovered.
The following query displays the file ID numbers of datafiles that require media recovery
as wellas thereason forrecovery (if known)andt he SCNa ndtime w hen recovery

needs to begin:

SELECT * FROM V$RECOVER_FILE;

Query VSDATAFILE and VSTABLESPACE to o btain filenames and t ablespace n ames
for datafiles requiring recovery.

152

e Restoring Datafiles

If a media failure permanently damages one or more datafiles of a database, then you
must restore bac kups of these dat afiles be fore you can r ecover the dam aged files. If
you cannot restore a damaged datafile toits original | ocation (for e xample, y ou m ust
replace a disk, so you restore the files to an alternate disk), then you must indicate the

new locations of these files to the control file.

If you arerestoringanOracle fleona rawdiskor par tition, thenthe procedure is
basically the same as when restoring to a file on a file system. However, you must be
aware of the naming conventions for files on raw devices (which differ depending on the

operating system), and use an operating system utility that supports raw devices.

To restore backup datafiles to their default location:
1. Determine which datafiles to recover by using the techniques described in

"Determining Which Datafiles Require Recovery".

2. If the database is ope n, t hen taket het ablespaces c ontaining t he i naccessible

datafiles offline.
ALTER TABLESPACE users OFFLINE IMMEDIATE;

3. Copy backups of the d amaged da tafiles t o their de fault | ocation us ing o perating

system commands.

4. Recover the affected tablespace. For example, enter:
RECOVER TABLESPACE users

5. Bring the recovered tablespace online. For example, enter:
ALTER TABLESPACE users ONLINE;

153

http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96572/osrestore.htm#26852�
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96572/osrestore.htm#26852�
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96572/osrestore.htm#26852�

Recovering After the Loss of Archived Redo Log Files:

If the database is operating in ARCHIVELOG mode, and if the only copy of an archived
redo log file is damaged, then the damaged file does not affect the present operation of
the database. The following situations can arise, however, depending on when the redo

log was written and when you backed up the datafile.

» Check Your Progress

10. Describe Basic Principles for Backup Strategy?

12. Which Parameter of Import Utility is used to Prevent rollback when error

occurs ?

14.How to find File names and Tablespace names for datafile requiring

recovery?

154

4.5 LET US SUM UP

Int his ¢ hapter, w e h ave di scussed about di fferentt ypes or D atabase B ackup
Strategies like Logical Backup and Physical Backup. In which conditions we have to
perform | ogical bac kup. W e hav e al so | earnt d ifferent par ameters f or Import/Export
utility of O racle. Alsow e ha ve d ifferent t ypes of ph ysical bac kup | ike hot a nd c old
backup and try to describe all the possible aspects of both types of physical backups

and recovery strategies.

4.6 CHECK YOUR PROGRESS: POSSIBLEANSWERS

1. Basic principles follow these four simple steps:
e Multiplex the online redo logs
¢ Runthe databasei n ARCHIVELOG m ode and archive r edo logs t o m ultiple
locations
¢ Maintain multiple concurrent backups of the control file
e Take frequent bac kups of phy sical dat afiles and s torethem inas afe place,
making multiple copies if possible

2. The EXP_FULL DATABASE and IMP_FULL _DATABASE, r espectively, ar e
needed to perform a full export.

3. COMMIT specifies whether Import should commit after successfully execution of
Import.

4. InconsistentB ackup m eansab ackupt akenw hen databasei s open and
database m ustr equire ARCHIVELOG m odeforit. Itisalso knownas HOT
Backup.

5. VSDATAFILE and VSTABLESPACE data dictionaryis usedto obtain filenames

and tablespace names for datafiles requiring recovery

155

http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#exp_full_database�
http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#imp_full_database�

4.7 ASSIGNMENTS

Explain Different Command line Parameters for EXPORT with example.
Explain Different Command line Parameters for IMPORT with example.
Define Online Backup? How can we Backup Read/Write Tablespace?

Explain Recovery Process in detail.

Plr wN o

.8 Further Reading

1. Oracle D atabase 11g: B ackup and R ecovery U ser's G uide, Lanc e Ashdown,

Oracle Press.
2. Oracle Database 10g The Complete Reference, Kevin Loney, Oracle Press.

156

Block-3
Oracle Server and SQL

157

Unit 1. Structured Query
Language

Unit Structure

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

1.16.

1.17.

1.18.

Learning Objectives & Outcomes
Introduction

Basic Data Types of SQL

SQL Statements

Data Definition Statements
Constraints

Data Manipulation Statements
SQL Operators

Oracle Built-in Functions

SQL Joins

Sub Queries

Sub Views

SQL Indexes

SQL Sequence

Let Us Sum Up

Check your progress: Possible Answers
Assignments

Further Reading

158

1.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
* To understand SQL and its Process Architecture

* To learn various types of SQL Statements

» To understand SQL O perators & Functions.

* To learn Joins and Sub Queries in SQL.

* To Understand Views, Index and Sequence.

Outcome:

At the end of this unit,

« Students will be completely aware with Architecture of SQL.

+ Students will come to know the SQL statements in detail.

« Students will be able to write queries to retrieve data from tables as per organization
requirements.

« Students will be able to create different SQL objects like Tables, Views, Indexes etc.

1.2 INTRODUCTION

SQL is an ANSI standard computer language, which is used for storing, manipulating
and r etrieving data stored in r elational dat abase. SQL is t he standard language for

Relational Database System.

SQL Process

When ex ecuting an SQL commands, s ystem first d etermines the bestwayto carry
out SQL query request and SQL engine figure out how to interpret the task. There are
various c omponents i ncluded i nthe pr ocess w hichis known as Q uery D ispatcher,

Optimization Engines, Classic Query Engine and SQL Query Engine etc.

159

SQL Query

Query Language Parser + Optimization

Processor

v

File Manager

Database Engine
+

Transaction Manager

Physical Database

Figure-9.1 Simple diagram of SQL

Above figure s hows thatwhen S QL Q uery will fire first Q uery L anguage P rocess
parses and o ptimize SQL query and pass the optimized version into the D atabase

engine.

1.3 BASIC DATA TYPES OF SQL

Oracle Database pr ovides f ollowing b asic dat at ypes f or attributes d efined w ith
CREATE TABLE clause of database.

Data Types Description

Char (N) Fixed Len gth C haracter D ata. Maximum
size is 2000 bytes. Defaultor Minimum
Size 1 Byte.

Varchar (N) Variable Le ngth Character D ata. Maximum

up to 2000 characters.

Varchar2 (N) Variable Le ngth C haracter D ata. Maximum

160

up to 4000 characters.

Nvarchar2 (N)

Variable-length U nicode ¢ haracter s tring
having m aximum size is determined by the
national ¢ haracter s etd efinition, w itha n
upper limit of 4000 bytes.

Number (P,S)

Numeric dat at ype f ori ntegers and R eal
Numbers. P = Overall number of Digits.
Maximum values 38. S = Number of

digits to the right of the decimal point.

FLOAT (p) A subtypeof t he NUMBER datat vype.
AFLOAT valuer equiresf rom 1 to 22
bytes.

LONG Variable Length Character Data (Up to
2GB)

Date Date data type for storing date and time.

The size is fixed at 7 bytes.

BINARY_FLOAT

32-bit floating point number.

BINARY_DOUBLE

64-bit floating point number.

RAW & LONG RAW

RAW Binary Data
RAW: Maximum size is 2000 bytes.
LONG RAW: Maximum up to 2GB

CLOB Character Data (Up to 4GB)

NCLOB CharacterD atac ontaining Unicod
characters. (Up to 4GB)

BLOB Binary Data (Up to 4GB)

BFILE Binary D ata s tored into external file (Up to
AGB)

ROWID Abase-64 number system representing
the unique address of a raw in its table.

UROWID Abase-64 number systemrepresenting

161

the logical ad dress of ar aw of an indexed
organized table.

DATETIME Data Types

TIMESTAMP
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Date with Fractional Seconds

Stored as an interval of years and months.

Storedas a ni nterval of days, h ours,

minutes and seconds.

1.4 SQL STATEMENTS

SQL statement includes dat a insert, qu ery, up date and de lete, s chema creation and
modification and data access control. Based u pon that SQL s tatements ar e divided

into different categories as described below:

Data Manipulation Language (DML)

SELECT Retrieve certain record from one or more tables or views.

INSERT Create new record into the table.

UPDATE Modify existing record(s).

DELETE Delete existing record(s).

MERGE Conditionallyi nsert oru pdated ata de pendingo ni ts
presence, also known as UPSERT.

Data Definition Language (DDL)

CREATE Create New O bjects in D atabase | ike T able, View Index,
etc.

ALTER Modify the existing object.

DROP Destroying an existing object.

RENAME Change the name of existing object.

TRUNCATE Deleting an existing object. (Drop and Re-Create)

COMMENT Provides Single line or multi line comment(s).

162

Data Control Language (DCL)
GRANT Gives different Privileges to the user.

REVOKE Tack back privileges which is previously granted from user.

Transaction Control Language (TCL)

COMMITE Make permanent all changes performed in the transaction.
ROLLBACK Undo all uncommitted works done by the transaction(s).
SAVEPOINT Identify a p ointin at ransactionto which you can laterroll
back.

1.5 DATA DEFINITION STATEMENTS

Data D efinition Statements ofthe SQL is used t o create d ifferent dat abase ob jects

and manage that objects.

1.5.1. CREATE TABLE

Create Table clause is used to create a new database objects like table, view, index etc.

Syntax:
CREATE TABLE <TABLE NAME>

(

<Column 1><Datatype><Size> [not null] [unique] [<column constraint>],
<Column 2><Data type><Size> [not null] [unique] [<column constraint>],

<Column N><Data type><Size> [not null] [unique] [<column constraint>],
[Table Constraint(s)]

163

For each column, a nam e and a da ta type must be s pecified and t he column name

must be unique within table definition. Columns are separated by colons.

1.5.2. ALTER TABLE

ALTER T ABLEcommand is us ed t o a dd, de lete or m odify c olumns i na n existing
table. Youw oulda Isous e ALTER T ABLE c ommand to add a nd drop v arious

constraints on an existing table.

Syntax:
ALTER TABLE <TABLE NAME> ADD/MODIFY/DROP column [datatype];

1.5.3. DROP TABLE

It is used to delete remove entire table with structure from the database.

Syntax:
DROP TABLE <TABLE NAME> ;

1.5.4. TRUNCATE TABLE

The TRUNCATE TABLE command is used to delete complete data from an existing
table.

Syntax:
TRUNCATE TABLE <TABLE NAME> ;

Example:

1. Create Salesman Table with Salesman No as a Primary Key and Salesman Name

as a mandatory field.

164

CREATE TABLE SALESMAN
(

SNUM NUMBER (4) PRIMARY KEY,
SNAME VARCHAR2(30) NOT NULL,
CITY VARCHAR2(30),

COMM NUMBER(4,2)

2. Add New Column Mobile No into Salesman Table.
ALTER TABLE SALESMAN ADD (MOBILE NUMBER (10));

3. Remove Customer Table.
DROP TABLE CUSTOMER.

1.6 CONSTRAINTS

Constraints are the rules enforced on data columns on table. These are used to limit
the types of data that can go into the table. C onstraint could be applied at column
level or table level. Column level constraints are applied only one column whereas
Table level constraints are applied to the whole table. There are two types of data

constraints that can be applied to data being inserted into the tables.

1.6.1. I/O CONSTRAINTS

This data constraint determines the speed at which data can be inserted or extracted
from a table.

A. PRIMARY KEY

Primary key is a filed in a table which is uniquely identifies each row (or record) in a
database t able. Primary key field m ust be m andatory means can’'t have n ull values
and m ust be uni que v alues. A table c an h ave o nly one pr imary k ey, w hich m ay

consist of single or m ultiple fields. W hen P rimary key c reated onsinglefield it is

165

known as Single Field Primary Key and when Primary key created on multiple fields
itis known as Composite Primary Key.

Examples:

1. Single Field Primary Key at Column Level:

Below ex ample s hows the Salesman table with SNUM as P rimary key c reated at

column level.

CREATE TABLE SALESMAN

(
SNUM NUMBER (4) PRIMARY KEY,
SNAME VARCHAR2(30) NOT NULL,
CITtYy VARCHAR2(30),
COMM NUMBER(4,2)

);

2. Composite Primary Key at Table Level:
Below example shows the Salesman table with SNUM and BCODE as Composite
Primary key.

CREATE TABLE SALESMAN

(
SNUM NUMBER (4),
BCODE NUMBER (4),
SNAME VARCHAR2(30) NOT NULL,
CcITtYy VARCHAR2(30),
COMM NUMBER(4,2),
PRIMARY KEY (SNUM,BCODE)

B. FOREIGN KEY / REFERENCE KEY

Foreign key (or reference key) is a column or a combination of columns whose values
match a Primary key in a different table. The relationship between tables matches the
primary key in one of the tables with foreign key in other tables. The referencing table

is called the child table, and the referenced table is called the parent table.

166

Examples:
1. Reference Key at Column Level:
CREATE TABLE CUSTOMER
(
CNUM NUMBER (4) PRIMARY KEY,
CNAME VARCHARZ2(30) NOT NULL,
CITY VARCHAR2(30),
RATTING NUMBER(3),
SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES SALESMAN

In this ex ample, the c olumn S NUM of C USTOMER table (Child T able) b uilds t he
foreign key namely FK_SNUM a nd references the Primary key of SALESMAN table
(Parent Table).

2. Reference Key at Table Level:
CREATE TABLE CUSTOMER
(
CNUM NUMBER (4) PRIMARY KEY,
CNAME VARCHAR2(30) NOT NULL,
CITY VARCHAR2(30),
RATTING NUMBER(3),
SNUM NUMBER (4),
CONSTRAINT FK_SNUM FOREIGN KEY (SNUM) REFERENCES SALESMAN
(SNUM)

);
1.6.2. BUSINESS RULE CONSTRAINTS

Business R ule constraints al low ap plication of business rules to table columns. T hese

rules are applied to data, prior the data is being inserted into the table columns.

167

A. UNIQUE
The U NIQUE c onstraint pr events du plicate v alues i nt he c olumn. B utitp ermits
multiple NULL values inthe c olumn. S ame as primary k ey unique c onstraint al so

create unique index on the field.

Examples:
Unigue Key at Column Level:
CREATE TABLE CUSTOMER
(
CNUM NUMBER (4) PRIMARY KEY,
CNAME VARCHAR2(30) NOT NULL,
CITY VARCHAR2(30),
EMAIL VARCHAR2(30) CONSTRAINT CUST_EMAIL_UK UNIQUE,
RATTING NUMBER(3),
SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES
SALESMAN

)i

B.NOT NULL
In oracle, by d efault column can hold NULL values. If you donotwant acolumnto
have a NULL values, then you need to define NOT N ULL constraint on t hat column.
NOT NULL constraints only implemented at column level.
Examples:

CREATE TABLE CUSTOMER

(

CNUM NUMBER (4) PRIMARY KEY,

CNAME VARCHAR2(30) NOT NULL,

CIty VARCHAR2(30),

EMAIL VARCHAR2(30) C ONSTRAINT C UST_EMAIL_UK
UNIQUE,

RATTING NUMBER(3) NOT NULL,

168

SNUM NUMBER (4) C ONSTRAINT F K_SNUM R EFERENCES
SALESMAN

)i

C. CHECK CONSTRAINT
Business Rule validations can be applied to a table column by using check constraint.

Check constraint must b e s pecified as a logical e xpression t hat evaluates e ither to
TRUE or FALSE.

Examples:
Check constraint at Table Level:

CREATE TABLE CUSTOMER
(

CNUM NUMBER (4) PRIMARY KEY,

CNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),

RATTING NUMBER(3),

SNUM NUMBER (4) CONSTRAINT FK SNUM REFERENCES
SALESMAN,

CONSTRAINT CUST_NAME_CHK CHECK (CNAME = UPPER (CNAME)),
CONSTRAINT CUST_RATTING_CHK CHECK (RATING >= 100)

Above example create CUSTOMER table, where Name of customer must be consist

of upper case letters only and minimum ratting of customer is 100.

D. DEFAULT VALUE

The D EFAULT c onstraint pr ovides a def aultvaluetoac olumnwhenar ecordis
loaded into the table, and the column is left empty.

Examples:

169

CREATE TABLE CUSTOMER
(

CNUM NUMBER (4) PRIMARY KEY,
CNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),

RATTING NUMBER(3) DEFAULT 100,

SNUM NUMBER (4) CONSTRAINT FK SNUM REFERENCES
SALESMAN

Above example create CUSTOMER table with RATTING field is set to 100 by default.

1.7 DATA MANIPULATION STATEMENTS

1.7.1. INSERT INTO STATEMENT

Insert Into statementis used toinsertrecords intothe d atabase table. T he G eneral

syntax of INSERT INTO clause as given below:

INSERT INTO <TABLE NAME> [(Column1, Column2 ..., ColumnN)]
VALUES (Valuel, ValueZ2..., ValueN)

Here, column1, column2 ..., columnN are the names of the columns in the table into
which you want to insert data. You may not need to specify the column(s) name in the

SQL query if you are adding values for all the columns of the table.

Example:
1. INSERT INTO SALESMAN VALUES (1001, 'BADAL', 'PATAN', 0.12);
2. INSERT INTO SALESMAN (SNUM, SNAME, COMM) VALUES (1002, 'VIRAL',
0.09);

170

1.7.2. UPDATE STATEMENT

The UPDATE Queryis usedtomodify the existingrecordsinatable. Youcanuse
WHERE clause with UPDATE query to update selected rows, otherwise all the rows

would be affected. General Syntax of Update Clause as:

UPDATE <TABLE_NAME> SET columnl =valuel, column2 = value2....
WHERE [condition];

Example:
1. UPDATE SALESMAN SET CITY = ‘PATAN WHERE SNUM = 1002;

1.7.3. DELETE STATEMENT

The DELETE Query is us ed to del ete t he existing r ecords from a t able. S yntax of

Delete Statement as given below:

DELETE FROM <TABLE_NAME> WHERE [condition];

Example:
1. DELETE FROM SALESMAN WHERE SNUM = 1002;

1.7.4. SELECT STATEMENT

SQL SELECT Statement is used to fetch record(s) from e xisting d atabase t able(s),
which returns the result data in form of table. When we will display selected columns

from the table then it is known as Projection operations.

Syntax:
SELECT [DISTINCT] columnl, column2 ... FROM <FROM_CLAUSE>

171

[WHERE <CONDITION>]
[GROUP BY <EXPRESSION >]
[HAVING <CONDITION>]

[ORDER BY <COLUMN> [ASC|DESC]]

Example:
1. Display all the information of salesman’s in the sequence of City, Name and comm.
SELECT CITY, SNAME, COMM FROM SALESMAN;

1.7.5. WHERE CALUSE IN SQL

WHERE c lause i n g ueryr epresents t he ¢ ondition f or f etchingr ecords f rom t he
table(s), known as SELECTION operation.

Example:
1. Display Num and Name of all customers with salesman number 1001.

SELECT CNUM, CNAME, SNUM FROM CUSTOMER WHERE SNUM = 1001;

1.7.6. ORDER BY CLAUSE

The S QL Order By Clauseis usedin S ELECT s tatementtosortthe dataeitherin
ascending or d escending order, bas ed on one or more columns. Oracle sorts query
results in ascending order by default. If you want to sort the data in descending order,
you must explicitly specify using DESC Keyword follow the column name.

Example

1. List all Salesmen with commission above 10% and result should be in ascending

order of City and reverse order of commission.

SELECT SNUM,SNAME,CITY,COMM FROM SALESMAN WHERE COMM >
0.10 ORDER BY CITY, COMM DESC;

172

1.7.7. GROUP BY CLAUSE

The SQL GROUP BY clause establishes data groups based on columns and
aggregates the information within a gr oup only. The grouping criterion is defined by
the columns s pecified in GROUP BY clause. GROUP BY clause canonly be used
with aggr egate functions. The group by clause s hould contain all the columns in the

select list expect those used along with the group functions.

Example
1. Display total orders for each salesman.
SELECT SNUM, SUM (AMOUNT) FROM ORDERS GROUP BY SNUM,;

1.7.8. HAVING CLAUSE

The H aving Clause ena bles y ou to s pecify ¢ onditions t hat filter w hich gr oup r esults
appear in the final results. HAVING clause places conditions on groups created by the
GROUP BY clause. The HAVING clause must follow the GROUP BY clause in a query
and must also precede the ORDER BY clause if used.
Example
1. Display total orders of each salesman having more than single order.
SELECT SNUM, COUNT (ONUM) FROM ORDERS GROUP BY SNUM HAVING
COUNT(SNUM) > 1;

1.8 SQL OPERATORS

An op eratorisa reservedw ordus edpr imarilyi nS QL S tatement’s t o per form
operation(s). An operator manipulates individual data items and returns a result. The
data items are called operands or arguments.

A. Arithmetic Operator: Arithmetic operators manipulate numeric operands. Below

Tables shows the list of Arithmetic Operators.

173

Operator

Description

+

Addition

Subtraction

*

Multiplication

/

Division

*%

Exponentiation

B. Character Operator: Character operators are used in expressions to manipulate

character strings. Below Tables shows the list of Character Operators.

Operator

Description

Concatenates character strings

C. Comparison Operator: Comparison operators are used in conditions that

compare one value or expression with another. The result of a comparison can be

TRUE or FALSE.

Operator Description

= Equality test.

I= A= <> Inequality test.

> Greater than test.

< Less than test.

>= Greater than or equal to test.

<= Less than or equal to test.

IN "Equivalent to any member of" test. E quivalent to
"= ANY".

ANY/ SOME Comparesav aluet oeac hv alueina listor
returned by a q uery. E valuates to F ALSE ift he
query returns no rows.

NOT IN Equivalent to "= ANY". Evaluates to FALSE if any
member of the setis NULL.

ALL Compares av aluewitheveryvaluein alistor

174

returned by a query. Must be preceded by =, 1=, >,
<,<=,or >=Evaluatesto T RUE ift hequery

returns no rows.

EXISTS

TRUE if a sub-query returns at least one row.

IS [NOT] NULL

Testsf ornul Is. T hisi s theonl yoper atort hat

should be used to test for nulls.

D. Range Searching Operator: In orderto selectd atathatis withinar angeof

values, the range searching operator is used.

Operator Description
[Not] [Not] greaterthan or equalto x andless than or
BETWEEN x AND y equaltoy.

E. Pattern Matching Operator: Pattern m atching oper ator al lows ¢ omparison of

one string value with another string value, which is not identical. This is achieved

by using wildcard characters.

Operator

Description

LIKE X

The c haracter " %" m atches any string of zero or

more ¢ haracters ex ceptnul I. T he ¢ haracter"

matches any single character.

F. Logical Operator: Logical operators manipulate the results of conditions.

Operator Description

NOT Returns TRUE if the following condition is FALSE.
Returns FALSE ifitis TRUE.

AND Returns T RUE if bot h c omponent ¢ onditions ar e
TRUE. Returns FALSE if either is FALSE.

OR Returns T RUE i f ei ther c omponent ¢ onditioni s
TRUE. Returns FALSE if both are FALSE.

175

G. Set Operator: Set o perators c ombine the results of two qu eries into as ingle

result.

Operator Description

UNION Returns all distinct rows selected by either query.

UNION ALL Returns all rows selected by either query,
including all duplicates.

INTERSECT Returns all distinct rows selected by both queries.

MINUS Returns all distinct rows selected by the first query
but not the second.

Example

1. Display all customers not located in LONDON.
SELECT * FROM CUSTOMER WHERE CITY <> 'LONDON

2. List all salesmen with commission between 11% and 15%.
SELECT * FROM SALESMAN WHERE COMM BETWEEN 0.11 AND 0.15;

3. List all salesmen whose names begin with letter ‘B’.
SELECT * FROM SALESMAN WHERE SNAME LIKE 'B%'";

1.9 ORACLE SQL BUILT-IN FUNCTIONS

Oracle SQL Built-in Functions serve the pur pose of manipulating dataitems and
returning a result. We can assign a value in form of variable or constants, such values

are known as Arguments of functions. Oracle Functions can be divided into main two

categories as described below:

176

1.9.1. GROUP FUNCTIONS (AGGREGATE FUNCTIONS)

These functions group the rows of data based on the values returned by the qu ery.

The group functions ar e us ed t o c alculate aggr egate v alues, w hich r eturn j ust one

value after processing a group of rows.

Function

Value Returned

SUM (Values|Column)

Returns Sum of given Values.

AVG (Values|Column)

Return the Average Value.

COUNT (Values|Column)

Return Number of rows w here t he v alue of

the column is not NULL

COUNT (%)

Return Number of rows including d uplicates
and NULLs

MAX (Values|Column)

Returns Maximum Value.

MIN (Values|Column)

Returns Minimum Value.

MEDIAN (Values|Column)

Returns Median (Middle) v alue in the s orted

column, interpolating if necessary

STDDEV (Values|Column)

Returns S tandard d eviation o ft he c olumn

ignoring NULL values

VARIANCE (Values|Column)

Returns Variance of the column ignoring
NULL values

CORR (Column-1,Column-2)

Returns C orrelation c oefficient be tween t he

two columns after eliminating nulls.

Example

1. Count the no. of salesmen currently having orders.

SELECT COUNT(DISTINCT (SNUM)) FROM ORDERS;

177

1.9.2. SINGLE ROW FUNCTIONS (SCALAR FUNCTION)

Single row or S calar functions returnav alueforeveryrowthatis processedina

query. There are four types of single row functions.

A. Numeric Functions: These ar e functions t hat accept num eric i nputan d return

numeric values.

Function Value Returned

ABS (m) Absolute value of m

MOD(m,n) Remainder of m divided by n

POWER (m, n) m raised to the nth power

ROUND (m, n) m rounded to the nth decimal place
TRUNC (m, n) m truncated to the nth decimal place
CEIL (n) smallest integer greater than or equal to n
FLOOR (n) greatest integer smaller than or equal to n
SQRT (n) positive square root of n

EXP(n) e raised to the power n

LN(n) natural logarithm of n

LOG(n2,n1) logarithm of n1, base n2

SIN(n) sine (n)

COS (n) cosine (n)

TAN(n) tan (n)

B. String Functions: These are functions that accept character input and can return

both character and number values.

Function Value Returned

LOWER (s) All letters are changed to lowercase.

UPPER (s) All letters are changed to uppercase.

INITCAP (s) First letter of each word is changed to uppercase

and all other letters are in lower case.

178

CONCAT (s1, s2)

Concatenation of s 1ands 2. Equivalentto sl ||
s2

LPAD (s1, n, s2)

Returns s 1 right justified and p added | eft with n

characters from s2; s2 defaults to space.

RPAD (s1, n, s2)

Returns s 1 left justified and p added right with n

characters from s2; s2 defaults to space.

LTRIM (s,set)

Returns s with characters removed up to the first

character not in set; defaults to space

RTRIM (s, set)

Returns s with final characters removed after the

last character not in set; defaults to space

REPLACE (s, s earch_s,

replace_s)

Returns s with every occurrence of search_s in's
replaced by replace s; default removes

search_s

SUBSTR (s, m, n)

Returns a substring from s, beginning in position
m and n ¢ haracters long; de fault returns to e nd
of s.

LENGTH (s)

Returns the number of characters in s.

INSTR ('s1, s2, m, n)

Returns the pos ition of the nth oc currence of s2
ins 1, b eginning at p ositionm ,bot hm andn
default to 1.

C. Date Functions: These are functions that take values that are of datatype DATE

as input and return values of datatype DATE.

Function

Value Returned

SYSDATE

Current date

LAST_DAY (Date)

Date of the last day of the

month containing date

NEXT_DAY (Date, day)

Date of the first day of the week

after date

ADD_MONTHS (Date, No. of Month) Add No. of Months in Date

179

Returns D ifferencei n Month
MONTHS_BETWEEN (Date-1, Date-2)
between two dates.
GREATEST (Date-1, Date-2, ..., Date-N) Latest of the given dates
LEAST (Date-1, Date-2, ..., Date-N) Earliest of the given dates
NEW_TIME Display Date and Time in New

(Date,Current_Timezone,New_TimeZone) TimeZone Format

D. Conversion Functions: These are functions that help us to convert a value in one

form to another form.

Function Value Returned

Character S tring c onvertedto a N umber
TO_NUMBER (String, Format) _
as Specified by Format.

Convert Number or D ate i nto C haracter
TO_CHAR(Value, Format) . -
string as specified by Format.

String Valuec onvertedi naD ateas
TO_DATE (String, Format) __]
specified by given Format.

ROUND (Date, Format) Date Rounded as specified by the Format.

Datet runcatedas S pecifiedby t he
TRUNC (Date, Format)
Format.

1.10 SQL Joins

Sometimes it is required to retrieve information from multiple tables; at that time Join
conditionis required. R owsinon etablecanbe joinedtor owsin anothertable
according to c ommon v alues ex isting i n ¢ orresponding ¢ olumns. W e musthaveto

keep in mind some principle as follows:

e When W ritingaS ELECT s tatementt hat joins t ables, pr ecede t he ¢ olumn

name with the table name for clarify and to enhance the database access.

180

e Ifthe same columnname appears in more than onet able, the column name
must be prefixed with the table name.

e Tojoin N tables together, you need a minimum of N-1 join conditions.

1.10.1. TYPES OF ORACLE JOINS
e Inner Join
e Outer Join
e Self Join

A. INNER Join (Equi Join OR Simple Join)
ltisas impleS QL join c ondition w hich uses t he equal s ign asthe c omparison
operator. The query compares each row of table1 with each row of table2 to find all

pairs of rows which satisfy the join-predicate.

Figure-9.2 Inner Join Diagram

The SQL INNER JOIN would return the records where table1 and table2 intersect.

B. Outer Join
An Outer Join is used to identify situations where rows in one table do not match rows
ina s econd table, eventhoughthetwotables arer elated. T he S QL outer j oin

operator in Oracle is (+) and is used on one side of the join condition only.

There are two types of outer joins:
e LEFT OUTER JOIN

181

e RIGHT OUTER JOIN
I. LEFT OUTER JOIN
ALEFTOUTER JOINadds bac kallthe rows that are dr opped from t he first (left)

table in the join condition, and output columns from the second (right) table are set to

NULL.

table2

Figure-9.3 Left Outer Join Diagram

The SQL LEFT OUTER JOIN would return the all records from tablel and only those

records from table2 that intersect with tablel.

Il. RIGHT OUTER JOIN
ARIGHT O UTER JOIN adds backallthe r ows that are dropped from the s econd
(right) table in the join condition, and output columns from the first (left) table are set

to NULL.

table1

Figure-9.4 Right Outer Join Diagram

182

The SQL R IGHT O UTER JOINwouldreturnthe allr ecords from table2 andon ly

those records from tablel that intersect with table2.

C. Self Join
Sometimes you need to join a table to itself only. When a table is joined to itself, the
join is known as Self Join. It is necessary to ensure that the join statement defines as

alias for both copies of the table to avoid column ambiguity.

Example

1. Show the name of all customers with their relational salesman’'s name.
SELECT C UST.CNAME, S MAN.SNAME F ROM C USTOMER C UST, S ALESMAN
SMAN WHERE SMAN.SNUM = CUST.SNUM;

2. Find all pairs of customers having the same city without duplication.
SELECT C U.CNAME, C U.CITY, C UST.CNAME, C UST.CITYFR OMC USTOMER
CU, CUSTOMER CUST WHERE CU.CITY = CUST.CITY AND CU.CNUM >
CUST.CNUM;

1.11 SUB QUERIES

A query within another query is known as Sub query or Inner Query or Nested query.
It is em bedded w ithint he W HERE c lause. S ub q ueries m ust be enc losed w ithin
parentheses. A sub query is used to return data that will be used in the main query as
a condition to further restrict the data to be r etrieved. S ub qu eries can be us ed with
the SELECT, INSERT, UPDATE, and DELETE statements along with the operators.

There are a few rules that sub queries must follow:

e Asubquerycanhave only one columninthe SELECT clause, unless m ultiple

columns are in the main query for the sub query to compare its selected columns.

183

e An ORDER BY cannot be used in a sub query, although the main query can use
an ORDER BY. The GROUP BY can be used to perform the same function as the
ORDER BY in a sub query.

e Sub queries that return more than one row can only be used with multiple value
operators, such as the IN operator.

e TheB ETWEEN operator c annot beus edw ith as ubq uery; how ever,t he

BETWEEN operator can be used within the sub query.

Example
1. Following e xample up dates S ALARY by 0. 25 times in C USTOMERS table for all

the customers whose AGE is greater than or equal to 27:

UPDATE CUSTOMERS SET SALARY = SALARY * 0.25 WHERE AGE IN (SELECT
AGE FROM CUSTOMERS_BKP WHERE AGE >= 27);

1.12 SQL VIEWS

A view is nothing more than a SQL statement that is stored in the database with an
associated nam e. Aviewis ac tuallyac ompositionof at ablei nt hef orm of a
predefined SQL query. A view can contain all rows of a table or select rows from a
table. Aview can be c reated from one or many tables w hich d epend o n the written

SQL query to create a view.

Views, which are kind of virtual tables, allow users to do the following:

e Structure data in a way that users or classes of users find natural or intuitive.

e Restrictaccesstothedatasuchthataus ercanseeand(sometimes)m odify
exactly what they need and no more.

e Summarize data from various tables which can be used to generate reports.

184

Database views ar e c reated us ingt he CREATE VIEW statement. Views ¢ an be

created from a single table, multiple tables, or another view.

CREATE VIEW <VIEW NAME> AS SELECT COLUMN1, COLUMNZ2..... FROM
<TABLE NAME> WHERE [CONDITION]J;

Obviously, where you have a view, you need a way to drop the view if it is no longer

needed. The syntax is very simple as given below:

DROP VIEW <VIEW NAME>;

1.13 SQL INDEXES

Indexes are special lookup tables that the database search engine can use to speed
up data retrieval. An index helps speed up SELECT queries and WHERE clauses, but
it slows down data input, with UPDATE and INSERT statements.

Creating an index involves the CREATE INDEX statement, which allows you to name
the index, to specify the table and which column or columns to index, and to indicate

whether the index is in ascending or descending order.

Indexes can also be unique, in that the index prevents duplicate entries in the column

or combination of columns on which there's an index.

Syntax:
CREATE INDEX <INDEX_NAME> ON <TABLE_NAME>;

There are three types of index as follows:

e Single-Column Indexes: A single-column index is one that is created based on

only one table column.

185

e Unique Indexes: Unique indexes are used not only for performance, but also for
data integrity. A unique index does not allow any dup licate values to be i nserted
into the table.

e Composite Indexes: A composite index is an index on two or more columns of a
table.

An index can be dr opped using SQL DROP command. C are s hould be t aken w hen

dropping an index because performance may be slowed or improved.
Syntax:
DROP INDEX <INDEX_NAME>;

1.14 SQL SEQUENCE

Sequenceis an or acle object whichis used to ge nerate unique integers, which can
help t o generate pr imary k eys au tomatically. Anew primary k ey value c an be
obtained by selecting the most produced value and incrementing it. It required a lock
during the transaction and causes other users to wait for next value of primary key it
is k nownas serialization. T oc reateas equence us ers m ustobt ain C REATE
SEQUENCE system privileges.

Syntax:
CREATE SEQUENCE <SEQUENCE_NAME>
STARTWITH INITIAL-VALUE
INCREMENT BY INCREMENT-VALUE
MAXVALUE MAXIMUM-VALUE
CYCLE [INOCYCLE
CACHE | NOCACHE;

Where,
START WITH: Specifies the starting value for the Sequence.
INCREMENT BY: Specifies the value by which sequence will be incremented.

186

MAXVALUE: specifies the up per limit or the maximum value up t o w hich s equence

will increment itself.
CYCLE: Specifies t hat if the m aximum v alue e xceeds t he s et limit, s equence w ill

restart its cycle from the beginning.
CACHE: Pre-allocates a set of sequence number and keep them into memory so the

sequence number can be accessed faster.

Example
1. Let's start by creating a sequence, which will start from 1001, increment by 1 with

a maximum value of 9999.

CREATE SEQUENCE ST_SEQ
STARTWITH1001

INCREMENT BY1

MAXVALUE 9999

CYCLE;

To insert Sequence Value in SNUM of Salesman table, query will be
INSERTINTO SALESMAN VALUE (ST_SEQ.nextval,’AMIT’, ’'PATAN’, 0.15);

» Check Your Progress

15. Explain difference between varchar2 & nvarchar2 data types.

187

1.15 LET US SUM UP

Int his ¢ hapter, w e ha ve di scussed about S QL A rchitecture a nd di fferentS QL
Statements. W e hav e also e xplored data types availablein SQL. We have come to
know vital processes like Selection, Projection Grouping, Joins and Sub Queries. We
have also described different operators and functions available in SQL. We have tried

to e xplore different c onstraints. W e h ave des cribed s ome S QL O bjects like View,

Indexes, and Sequences etc.

1.16CHECK YOUR PROGRESS: POSSIBLE ANSWERS

188

1.

Varchar2 r epresents variable | ength ¢ haracter datau pto4 000 c haracters.
While n varchar2 r epresents Unicode ¢ haracter s tring ha ving m aximum s ize
determined by the National Character Set with an upper limit of 4000 Bytes.
TRUNCATE clause is used to delete all records from existing tables.
Definition of table remains as itis. W hile DROP removes en tire de finition of
table means delete all records including the table structure.

Primary Key is us edt o u niquely identify e achr ecordina d atabase t able.
When Primary key is created on multiple fields of the table than it is known as
Composite Primary Key. Composite Primary Key created at table level.
Example:

CREATE TABLE Employee
(

Employeeld NUMBER (4),

BranchCode NUMBER (4),
EmployeeNAME VARCHAR2(30) NOT NULL,
EmployeeCity VARCHARZ2(30),

EmployeedoinDate DATE,
PRIMARY KEY (Employeeld,BranchCode)
);
Above Query is us ed to Create E mployee T able with Composite P rimary Key
namely (Employeeld,BranchCode).
An operator is used to perform different operation and return result set. In SQL
operators have different types as follows:
Arithmetic Operators
Character Operators
Comparison Operators
Range Searching Operator
Pattern Matching Operator

Logical Operator

@ mmoo w

. Set Operator

189

At the end of this unit,

« Students will be able to write simple procedure and execute it

» Students will write stored procedure for various operations to be applied on database
table

« Students will be able to simple function and call it

2.2 INTRODUCTION

A procedure or functionis anam ed o bject of P L/SQL b lock. T here are two t ypes of
subprograms i n P L/SQL nam ely P rocedures and F unctions. E very s ubprogram w ill
contain dec laration block, an execution block or body, and an exception handling block
being an optional part.

When us er ex ecutes a pr ocedure or function, the e xecution takes p lace at the server
side. T his o bviously r educes net work t raffic. T he s ubprograms ar et he ¢ ompiled
programs and stored in the or acle database and can b e invoked whenever required.
Whenever the sub programs are called, they only need to e xecute bec ause they are

stored in compiled form. So, they save time required for compilation of the sub program.

2.3 STORED PROCEDURE BASICS

A procedure maytake one or more arguments. If a procedure t akes arguments then
these arguments are to be s upplied at the time of calling the procedure. A procedure
contains two p arts s pecification a nd the bo dy. P rocedure specification be gins w ith
Create and ends with procedure name or parameters list. Procedures without
parameters are written without a parenthesis. The body of the procedure starts after the
keyword IS or AS and ends with keyword End.

Syntax:

CREATE [OR REPLACE] PROCEDURE [schema.] procedure_name
[(parameter_1 [IN] [OUT] parameter_data_type 1,

parameter_2 [IN] [OUT] parameter_data_type 2,...

parameter N [IN] [OUT] parameter_data_type N)]

[AUTHID DEFINER | CURRENT _USER]

190

IS

— declaration_statements

BEGIN

— executable_statements

return {return_data_type};
[EXCEPTION

— the exception-handling statements]

END [procedure_name];

Where,

Create or Replace means the procedure is created if the procedure with the same name
doesn'’t exist or the existing procedure is replaced with the new code.

IS represents the beginning of the body of the procedure and is similarto D eclare in
anonymous P L/SQL Blocks. The code between IS and BEGIN makes the D eclaration
section.

The syntax within the brackets [] indicate optional fields. The optional parameter list will
contain name, mode and t ypes of the p arameters. INrepresents the value that will be
passed from ou tside and O UT r epresents the parameter thatwillbe used toreturn a
value outside of the procedure.

EXCEPTION is again an optional part. It is used to handle run-time errors.

2.3.1 COMPONENTS OF PROCEDURE

To understand procedure easily we will divide the Procedure in two parts:

l. Procedure Head

All the code before the “IS” keyword is called the Procedure head or signature. Various

parts of PL/SQL Procedure Head are:
A. Schema

This is an optional parameter and defines the schema name in which the procedure will
be created. The default schema is the current user. If we specify a different user then,
the other user must have the privileges to create a procedure in his/her schema.

B. Name

191

The NAME p arameter d efines the name ofthe procedure. The name of a procedure

should be more meaningful and readable.

C. Parameters

The parameters are optional. These will be required to pass and receive values from a

PLSQL procedure. There are 3 styles of passing parameters.

e IN: This is the default style of parameter in PLSQL procedure. We use the IN mode
whenever we want the parameter to be read only i.e. we cannot change the value of
the parameter in the PLSQL procedure.

e OUT:The OUT parameter returns the values to the calling subprogram
orsubroutines. A default value cannot be assigned to OUT parameter so we cannot
make it o ptional. W e have to as sign a value to O UT par ameter b efore we exitthe
procedure or t he value of the O UT p arameter w illb e NULL. W hile c alling a
procedure with O UT par ameters, we have to make sure that we pas s variables for
the corresponding O UT parameters.

e [N OUT: In this mode the actual parameter is passed to the PLSQL procedure with
initial values and then within the PLSQL procedure the value of the parameter may
get changed or reassigned. The IN OUT parameter is finally returned to the calling
subroutine.

D. Authid

This is al so an opt ional par ameter and i t d efines w hether t he pr ocedure w ill ex ecute

with t he pr ivileges of the C reator/ D efiner of t he procedure or witht hat oft he

Current_User privileges.

Il. Procedure’s Body

Everything after the “IS” keyword is called the body of the procedure. The procedure’s

body c ontains t he d eclaration of variables int he d eclaration s ection, the codeto be

executed in the executable statements part and the code to handle any exception in the
exception handling part.

The d eclaration an d e xception handling p arts are optional in PLSQL procedure body.

We must have at least one executable statement in the executable statement part. The

executionp artistheon ew herew e ha vetow ritet he b usiness | ogic. T he R eturn

192

statementin procedureis us edto discontinue t he ex ecution o ft he pr ocedure f urther
and return the control to the calling subroutine.

To create a stored procedure, user must have Create Procedure system privilege. User
must al so hav e r equired ob ject pr ivileges ont he ob jects t hat arer eferred int he

procedure in order to successfully compile the procedure.

2.3.2 TYPES OF PARAMETERS
There are two types of parameters of a procedure.

1. Formal parameters

2. Actual Parameters

» Formal Parameters
The parameters declared in the definition of procedure are known as formal parameters.
They receive the values sent while calling the procedure. For example,

e procedure Welcome (message varchar2, name varchar2)

In the above code message, name parameters are called as formal parameters.
» Actual Parameters

The values given w ithin p arentheses w hile c alling the pr ocedure ar e called as actual
parameters.

e Welcome (‘Welcome Mr.’, ‘Himanshu’);
‘Welcome Mr.” and * Himanshu'’ ar e actual parameters. These values are copiedtothe

corresponding formal parameters message and name.

2.4 CREATING STORED PROCEDURES

After di scussingt he di fferent par tof t he pr ocedure,itstimet oc reate procedure.

Suppose we have a table named ‘employee’ as shown below:

Create table employee
(Employee_id number(5),
Employee_name varchar2(10),

Employee_salary number(6,2),

193

Employee_department varchar2(10),
Employee_commission number(8,2));

After creating ‘employee’ table insert few records in it.
Now, we will create a P rocedure in whichwe will pas s the ‘employee_id’" and ‘salary’.
The Procedure will u pdate the record o f the em ployee ha ving the same ‘employee _id’

using Oracle SQL Update statement.
Example:

Createor R eplace P rocedure up date_employee salary (emp_id_in INN umber,
salary_in IN Number)
IS
Begin

Update employee

Set employee_salary = salary_in

Where employee_id = emp_id_in;

dbms_output.put_line(‘Procedure executed successfully’);

End update_employee salary;
/

Int he ab ove c ode, w e hav e ¢ reated a pr ocedure nam ed ‘ update_employee_salary’
which will t ake two p arameters ‘employee_id’ and ‘salary’ and up date the ‘employee’
table.

» Calling PL/SQL Procedure
After c reating procedure, itcan becalledusingthe E XEC or E XECUTE S tatement.

Syntax to call a Procedure using EXEC or EXECUTE statement is:
Syntax:

EXEC procedure_name(parameters);
or

EXECUTE procedure_name(parameters);

194

http://techhoney.com/tag/UPDATEPLSQL/�

Suppose, we want to update the salary of ‘employee_id = 101" from 1000 to 1500 using
update_employee_salary procedure. So, call update_employee_salary procedure using
EXEC statement as shown below.
e Exec update_employee_salary(101,1500);

The procedure will successfully update the salary of employee having id ‘101’ from 1000
to 1500 using PL/SQL Procedure.

» IN Parameter
Here we will create a s tored procedure to ac cept a s ingle p arameter and pr intout the
message with parameter passed via DBMS_OUTPUT.
Example:

Create or Replace Procedure INParameter(var in varchar2)

IS

Begin

dbms_output.put_line("‘Welcome: The argument passed is: ‘ || var);
End;

To Run the procedure pass following command with argument as stated in below:

e Exec INParameter('BAOU’);
Output:

e Welcome: The argument passed is: BAOU

> OUT Parameter

A stored procedure to demonstrate the OUT Parameter.
Example:

Create or Replace Procedure O UTParameter(outvar out varchar2)
IS
Begin
outvar:= ‘Welcome to Hindustan’;
End;
/

195

Now execute the above procedure. It will create the procedure.

Now t 0 e xecute t he pr ocedure w e w ill w rite a f ollowing bl ock of c odeand ¢ allt he

Procedure from the body of the block.

Example:
Declare
outvar varchar2(100);
Begin
outparameter(outvar);
doms_output.put_line(outvar);
End,;
/

The executed code is shown below.
Output:
e Welcome to Hindustan
» INOUT Parameter

A's tored pr ocedure t o ac cept a INOUT p arameter (Param), ¢ onstructt he output

message and assign back to the same parameter name(Param) again.

Example:

Create or replace procedure inoutparameter(param IN OUT varchar?2)

IS
Begin

param := ‘Welcome to India ‘|| param;

End;
/

The executed code will create the procedure.

To e xecute t he pr ocedure w e w ill c reate a following block of ¢ odea ndc allt he

Procedure from the body of the block.
Example:

196

Declare
param varchar2(100) := ‘veddesai’;
Begin
inoutparameter(param);
dbms_output.put_line(param);
End;

The above code produces following output.
Output:

¢ Welcome to India veddesai

2.4.1 STORED PROCEDURE WITH DML STATEMENTS
[. INSERT Statement

First of all we will create User_data table in Oracle database as shown below.

Create Table User_data(
User _id number (5) not null, username varchar2 (20) not null,

created_by varchar2 (20) notnull, created date date not null,

primary key (user_id));

Once the table is created, we will create a stored procedure. The procedure will accept
4 IN parameters and insert it into table “User_data”.
Example:

Create OR Replace Procedure insert USERD AT A(
userid IN USER_data.USER_ID%TYPE,
username IN USER_data. USERNAME%T YPE,
createdby IN USER_data.CREATED_BY%TYPE,
pdate IN USER_data.CREATED_DATE%TYPE)

Begin

197

Insert INTOU SER data(“User_Id”,“ Username”,“ Created By’
“Created_Date”)
Values (userid, username,createdby,pdate);
Commit;
End;
/

Once the procedure insertUSERdata created, we will execute it from PL/SQL block as
shown below.

Example:

Begin

insertUSERdata(201,’Het’,’scott’,.SYSDATE);
End;
/

Execute the above PL/SQL block and check the table records.

Il. UPDATE Statement

We will continue with the previously created us er_data table. W e will create a s tored
procedure which will accept 2 IN parameters and update the username field based on
the provided userld.

Example:

Create or Replace Procedure update USERdata(
userid IN USER_data.USER_ID%TYPE,
newusername IN USER_data. USERNAME %TYPE)

IS
Begin
Update USER data S ET Username = n ewusername w here USER_ID =
userid;
Commit;
End;

198

Once the procedure updateUSERdata created, we will execute it from PL/SQL block as

shown below.

Example:
Begin
updateUSERdata(201,'Mansi');
End;
/

Execute the above PL/SQL block and check the table records.
[1l. DELETE Statement

We will continue with the previously created us er_data table. W e will create a s tored

procedure which will delete the record based on the provided userld.

Example:

Create or Replace P rocedure de leteUSERdata(userid IN
USER_data.USER_ID%TYPE)

IS

Begin

Delete USER_data where USER _ID = userid,;
Commit;

End;

/

Once the procedure deleteUSERdata created, we will execute it from PL/SQL block as

shown below.

Example:
Begin

deleteUSERdata(201);
End;

199

Execute the above PL/SQL block and check the table records.
2.4.2 DELETING A STORED PROCEDURE

To delete a stored procedure we have to fire following command.
Example:

e Drop procedure update USERdata;
Above code deletes the procedure updateUSERdata.

2.5 FUNCTION BASICS

A stored function is same as a procedure, except that it returns a value. Create Function

command is used to create a stored function.
Syntax:

Create [OR Replace] Function function_name

[(parameter_1 [IN] [OUT] parameter_data_type 1,
parameter_2 [IN] [OUT] parameter_data_type 2,...
parameter N [IN] [OUT] parameter_data_type N)]
RETURN return_datatype

IS | AS

— declaration_statements

BEGIN

— executable_statements

return {return_data_type};

[EXCEPTION

— the exception-handling statements]

END [function_name];

Where,

1. The function_name is the name given to the PLSQL function.

200

2. T he parameter_name is t he nam e of t he par ametert hatw ear e p assingtot he
function.

3. The parameter_data_type is the datatype of the parameterthatwe are passing to
the PLSQL function.

4. Every Oracle PL/SQL function must have a R eturn s tatement in the c ode e xecution
part.

The RETURN s pecified in the he ader p art of the or acle PL/SQL function s pecifies the

data-type of the value returned by the function.
2.5.1 PARAMETER PASSING TO A FUNCTION

There are 3 ways of passing parameters to PLSQL Function:
a. IN

b. OUT and

c.INOUT

¢ IN: This is the default style of parameter in PLSQL function. This provides same
functionality as of Stored Procedure.

e OUT: The O UT par ameterr eturns t he valuest ot hec alling s ubprogram or
subroutines. This provides same functionality as of Stored Procedure.

e IN OUT: In this mode the actual parameter is passed to the PL/SQL function with
initial values and then within the PL/SQL function the value of the parameter may
get c hanged or r eassigned. T he N O UT par ameteris finallyreturnedt ot he
calling subroutine. This provides same functionality as of Stored Procedure.

The b lock s tructure of a P L/SQL functionis same as those of a PL/SQL Anonymous
Block. A nonymous B lock does n’t ha ve C reate or R eplace F unction, t he par ameters
section of code and the Return Clause.

To und erstand f unctions w e wiill us e t he previously c reated t able nam ed * employee’.
Now s uppose we wantto create afunctionthatshows us the name of anem ployee
whenever we pass employee_id as parameter.

Example:

Create or Replace Function get_employee _name (emp_no IN number)

201

RETURN varchar2
IS
emp_name varchar2(100);
Begin
Select employee_name into emp_name
From employee
Where employee_id = emp_no;
Return emp_name;
End get_employee name;
/

Once the get_employee _name function created, we will execute it from P L/SQL b lock
as shown below.

» Calling Function
We can call an Oracle PL/SQL Function two ways.
l. Using Oracle SQL SELECT statement
We can call the above PL/SQL function using an SQL SELECT statement shown below
and check the output.

e Selectget employee name (101) from dual;

Now, suppose if we change the employee _id passed to the function then we will get the

name of another employee.

Il. Using Oracle Anonymous Block
Second way to call functionis to create an Anonymous block. Here we will create an
anonymous block to call the get_employee_name PLSQL function.

Example:

Declare
First_ Name varchar2(30);

202

Second_Name varchar2(30);
Third_Name varchar2(30);
Begin
First_Name := get_employee_name(101);
Second_Name := get_employee_name(102);

Third_Name := get_employee _name(103);

dbms_output.put_line(First_Name);

dbms_output.put_line(Second_Name);

dbms_output.put_line(Third_Name);
End;

When we execute the above Oracle SQL Anonymous Block we will get three names as

the output.
2.5.2 DELETING FUNCTION
To delete a function we have to use drop function command.
Syntax:
¢ Drop function <function-name>;
Example:
e Drop function get_employee name;
Above code has deleted the function get_employee name.
» Check Your Progress
1) What is procedure and function in PLSQL?

3) Write the code for calling functions and procedures in a PLSQL block.

203

2.6LET US SUM UP

In this c hapter, w e h ave | earned P L/SQL s ubprograms. W e ha ve |earned t o c reate
Procedure a nd di fferent ways of callingit. W e have also discussed to create F unction
and w ays of calling it. W e al so learnt parameter p assing an d r eturning values from
subprograms. In PLSQL s tored procedure and function plays a v ery important role for

passing and manipulating data records very efficiently and effectively.

2. /CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. A Procedure is a subprogram block consists of a group of PL/SQL statements while

function is an independent PL/SQL subprogram.
2. Pre_defined_functions ares toredi nt he s tandard package c alled “Functions,

Procedures

and Packages”.

204

3. Function is called as a part of an expression:
Example: squr:=count_sqr(‘10’);
Procedure is called as a statement in PL/SQL.:

Example: count_salary(‘201’);

4. Following are the five inbuilt String function:
I.INSTR(maintext, string, start, occurance): It gives the position of particular
text in the given string.
Where,
maintext is main string,
string is text that need to be searched,
start indicates starting position of the search (optional),
accordance indicates the occurrence of the searched string (optional).
Example:
Select INSTR(‘Gujarat,’a’,2,1) from dual;
Output: 4
Il. UPPER (string): It returns the uppercase of the provided string.
Example:Select upper(‘baou’) from dual;
Output: BAOU
lll. LOWER (string): It returns the lowercase of the provided string.
Example:Select upper(‘BAOU’) from dual;
Output: baou
IV. INITCAP (string): It returns the given string with the starting letter in upper
case.
Example:Select (‘gujarat vidyapith’) from dual;
Output: Gujarat Vidyapith
V. LENGTH (text) Returns the length of the given string.
Example:Select LENGTH (‘BAOU’) from dual;
Output: 4

205

5. Both can be called from other PL/SQL blocks.

If the exception raised in the subprogram is not handled in the subprogram exception

handling section, then it will propagate to the calling block.

Both can have as many parameters as required.
Both are treated as database objects in PL/SQL.

6. Following table shows the difference between Procedure and Function:

Procedure

Function

It is used to a execute certain process

Itis used mainlyt oa e xecute c ertain

calculations

It can’t be called in Select statement

A Function without DML statements can

be called in Select statement

It uses Out parameter to return the value

It uses Return to return the value

Itis not mandatory to returnthe v alue

from procedure

Itis mandatory to returnthe value from

function

Return will exit the control from

subprogram.

Return will exit the control from
subprogram al ongw ith r eturningt he

value

Return d atatypei s n otr equiredt o be
specified at the time of procedure

creation

Return da tatype is m andatory to s pecify

at the time of function creation

2.8 ASSIGNMENTS

1. Define stored Procedure. Explain the characteristics of stored Procedure.

2. Define function. Explain the characteristics of functions.

3. Explain various Parameters of PLSQL subprograms.

4. C reate apr oceduret hatt akest he pnum , p name as i nput and

‘tbIPerson’ table of the database.

insertittot he

206

5. Create a function that takes the number as input and returns the cube as output.

2.9 Further Reading

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan
2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbylvan.
3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

207

Unit 3:Package and Trigger

Unit Structure

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

Learning Objectives & Outcomes
Introduction

Package Component

Package Implementation

Trigger

Levels of Trigger

User

Let Us Sum Up

Check your progress: Possible Answers
Assignments

Further Reading

208

3.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,

* To learn and understand trigger and Package concepts

 To define, declare and initialize trigger on various kind of events

* To learn and initialize package and use it

» To learn the concept of Users and their roles

Outcome:

At the end of this unit,

» Students will b e able to d eclare, i nitialize an d write trigger bas ed o n various kinds of
events

« Students will be able to define package and access that package

« Students will be able to create and remove user, grant and revoke privileges

3.2 INTRODUCTION

A Package is collection of objects. It contains procedures, functions, variables and SQL

statements c reatedas as ingleun it. A package c onsists of t wo par ts, P ackage
Specification or package header and Package Body.
Package S pecification w orks as a ni nterfacetot he package. D eclaration oft ypes,
variables, constants, exceptions, cursors and subprograms is made in Package
specifications. P ackage s pecification does not allow any c ode s tatements. P ackage
body is the platform to provide implementation for the subprograms.
Package delivers various Advantages like,
= |tallows us ertogrouptogetherr elated ob jects, t ypes and s ubprograms as a
PL/SQL module.
= |If package contains a procedure and when a procedure is called first time, entire
package is loaded. This is expensive with respect to resources. But it takes less
response time for queries for subsequent calls.
= Package allows us to create types, variable and s ubprograms that are private or

public

209

ltems dec lared w ithin package body ar e known as private. T hey ar e o nly ac cessed

within the p ackage. W hile items dec lared w ithin p ackage s pecificationis public a nd

available outside the package.

3.3 PACKAGE COMPONENT

Package component consists of two parts.
3.3.1 PACKAGE SPECIFICATION

The syntax for the package specification is as follows.
Syntax:

CREATE [OR REPLACE] PACKAGE package name
[AUTHID { CURRENT_USER | DEFINER }]
{IS| AS}
[Definitions of public TYPES
,Declarations of public variables, types, and objects
,Declarations of Exceptions
,Pragmas
,Declarations of Cursors, Procedures, and Functions
,Headers of Procedures and Functions]

END [package name];

3.3.2 PACKAGE BODY

The syntax for the package body is as follows:

Syntax:

CREATE [OR REPLACE] PACKAGE BODY package_name
{IS| AS}
[Definitions of private TYPEs
,Declarations of private variables, types, and objects
[full definitions of Cursors

full definitions of Procedures and Functions]

210

[BEGIN
sequence_of_statements

[EXCEPTION
Exception _handlers]]

END [package name];

Package body is not required if the package specification contains only types,
constants, variables, exceptions. T his type of packages only c ontains global v ariables

that will be used by subprograms or cursors.

3.4 Package Implementation

Now we will discuss the implementation of package. First of all, we will start with simple
example as follows:

Example 1: Inthe be low code, first we ar e creating a pac kage s pecification with two
stored procedure one to find the maximum number and another to find the cube of the

given number.
Package Specification:

Create or Replace Package PackageTest as
procedure findMaximum(num1 IN number, num2 IN number);
procedure findCube (num IN number);

end PackageTest;
/

Oncew eex ecutea bovec odei tw illc reate apac kages pecificationn amed

‘PackageTest’ (the body is not created yet).

Package Body:

Now consider the following code:

Create or Replace Package body PackageTest as

211

procedure findMaximum(num1 IN number, num2 IN number) is
begin
if (num1 > num2) then
dbms_output.put_line (num1||‘ is greater than ‘|| num2);
else
dbms_output.put_line (num2||‘ is greater than ‘|| num1);
end if;
end,;
procedure findCube(num IN number) is
begin
dbms_output.put_line (‘Cube of the number ‘|| num || “is ’|| (num * num *
num));
end,;
end PackageTest;
/

When w e ex ecute t he ab ove c ode it will c reate t he p ackage bo dy for t he pr eviously
created package specification. All the members in the package body must match with all
the d eclarations w ithin t he package s pecification. We ha vet o m ake s ure t hat bo th
package specification and package body gets stored in the database.
To execute package we have to use the command ‘execute’ followed by
the “packagename.sub-programname”. To e xecute the a bove c reated p ackage from
SQL prompt the following command will be used.

o Execute PackageTest.findcube(15);

o Execute PackageTest.findMaximum(15,25);
Both of the above execution will return the respective output.
Example 2:
Now we will create a package to interact with a database. Before creating a package we
will c reate tables n amed E mployee and D epartment to b e ac cessed in p ackage as

shown below.

212

e Createt ableem ployee(eno n umber(3) pr imary k ey,ename
varchar2(15),salary number(7,2), deptno number(3) references department);

e Create table department(deptno number(3) primary key, deptname
varchar2(15));

After creating both the tables insert few records in both the tables.
After inserting records into the tables we will create package to access both the tables
init.

Package Specification:

Create or Replace Package PackageDBAccess as
procedure dispEmprecord,
procedure dispDeptrecord;

end PackageDBAccess;

/

Package Body:

Create or Replace Package body PackageDBAccess AS
Procedure dispEmprecord as
Cursor cursor_emprec is
select ename, salary from employee;
Begin
dbms_output.put_line (‘Name’ || ¢ " || ‘Salary’);
for record_emp in cursor_emprec
loop
dbms_output.put_line (record_emp.ename || |
record_emp.salary);
end loop;
End;
Procedure dispDeptrecord as
Cursor cursor_deptrec is
select deptno,deptname from department;

213

Begin

dbms_output.put_line (‘DeptNo’ || ‘ " || ‘DeptName’);
for record_dept in cursor_deptrec
loop

dbms_output.put_line (record_dept.deptno || ¢ |l
record_dept.deptname);
end loop;
End;
End PackageDBAccess;
/

Above block of code will successfully create a package body.
Package Execution
To execute each of these procedures separately, we can use the following command as
shown below.
e Execute PackageDBAccess. dispemprecord,
e Execute PackageDBAccess. dispdeptrecord;
When we execute both the above statements it will display both table records.
3.4.1 ALTERING PACKAGE
Sometime we need to modify the package code. So, after updating the code we have to
just recompile the package body.

Package Alter Syntax is:

o Alter Package <package name> Compile Body;

3.4.2 DELETING PACKAGE

To delete the package we have to use package Drop command.

Package Drop Syntax is:

e Drop Package <package name>;

214

3.5 TRIGGERS

A databasetriggeris a stored procedure associated with a dat abase table, view or
event. T he trigger can be i nvoked once, when s ome event oc curs. It may oc cur m any
times, once for each row affected by an Insert, Update or Delete statement. The trigger
can be invoked before the event to prevent unexpected operations. The executable part
ofat rigger c anc ontain pr ocedural s tatements and S QL s tatements. T he s tored
procedure an d functions have to be c alled e xplicitly w hile t he database triggers are
executed or called implicitly whenever the table is affected by any DML operations.
We c an write triggers that will b e invoked w henever one of t he following o perations
oCCurs:
e DML commands (Insert, Update, Delete) on a particular table or view issued by
any user.
e DDL commands (Create or Alter primarily) issued either by a particular
schemaluser or by any schemal/user in the database.
e Database e vents s uch as |ogon/logoff, errors or s tartup/shutdown, issued either
by a particular schema/user or by any schemal/user in the database
» Uses of Triggers
1. Trigger allows e nforcing b usiness rules that can’t be defined by using integrity
constants.
2. Trigger enables us to gain strong control over the security.
3. Using trigger we can also collect statistical information on the table access.
. Using triggers we can prevent invalid transaction.

3.5.1 TYPES OF TRIGGERS
Trigger type d epends on t he t ype of triggering o peration and b y the level at w hich the

trigger is executed. Triggers are of Two Types.
3.5.1.1 Row Level Triggers

Arowtriggeristriggered e achtime ar ow inthe table is affected by the triggering
statement. For example, if an update statement updates multiple rows of a table, a row

trigger is triggered once for each row affected by the update statement. If the triggering

215

statement af fects no r ows, the triggeris not executed. R ow triggers s hould b e us ed
when some processing is required whenever a triggering statement affects a single row
in a table. Row level triggers are created using the “For Each Row” Clause in the Create
Trigger statement.

3.5.1.2 Statement Level Triggers

A's tatement | evel t riggeri st riggered o nce on be half of t het riggering s tatement,
independent of the number of rows the triggering statement affects (even if no rows are
affected). Statement triggers should be used when a triggering statement affects rows in
atable but the processing r equired is completely independent of the number of r ows
affected. S tatement | evel t riggers ar e t he def ault t rigger c reated via C reate T rigger
statement.

Syntax:

CREATE [OR REPLACE] TRIGGER Trigger_Name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name]

ON table_name
[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW]
WHEN (condition)
BEGIN
--- SQL statements
END;

Explanation:
o CREATE [OR REPLACE] TRIGGER trigger_name : T his creates a t rigger with
the given name or overwrites an existing trigger with the same name.
e {BEFORE | AFTER |INSTEAD OF}: This s pecifies at what time the trigger g et
fired. i .e bef ore or af ter u pdatinga table. B efore m eans b efore c ompiling t he

statement t he trigger will b e fired, after m eans af ter t he c ompilation the trigger

216

will be fired. INSTEAD OF is used to create a trigger on a view. Before and after
cannot be used to create a trigger on a view.

o {INSERT [OR] | UPDATE [OR] | DELETE} : This determines the triggering event.
There are more than one triggering events that can be used together separated
by OR keyword. The trigger gets fired at all the specified triggering event.

e [OF col_name]: This clauseis us ed with upd ate triggers. T his c lauseis us ed
when we want the trigger to fire only when a specific column is updated.

o« [ONtable_name]: This clause s pecifies the nam e of the table or view to w hich
the trigger is associated.

e [REFERENCING OLD AS o NEW AS n]: This clause is used to reference the old
and new values of the data being changed. By default, we reference the values
as : old.column_name or: new.column_name. W e c annot r eference o Id v alues
when inserting a record, or new values when deleting a record because they do
not exist.

o« [FOR EACH ROW]: This clause is used to determine whether a trigger must fire
when e ach row gets affected (i.e. a Row L evel Trigger) or just once when the
entire SQL statement is executed (i.e. statement level Trigger).

e WHEN (condition) : This clause is valid only for row level triggers. The trigger is
fired only for rows that satisfy the specified condition.

3.5.1.3INSTEAD OF Trigger

This t ype of trigger enables ustos topa ndr edirectt he p erformance of aD ML
statement. This type of trigger helps us in managing the way we write to non-updatable
views. S ometimes, t he INSTEAD O F t riggers ar e al sos eeni nserting, up dating or
deleting rows in designated tables that are otherwise unrelated to the view.

3.5.1.4 Compound Triggers

These ar e m ulti-tasking t riggers t hat w ork as bot h s tatementas w ellas r ow-level

triggers when the data is inserted, updated or deleted from a relation.

3.5.2 DML TRIGGERS

These triggers are executed before or after we perform any DML operations on a table.
Whenw e c reate at rigger, t he t rigger def initioni s s tored i nt he da tabase, w hichis

217

identified with the trigger name. The code in the trigger is processed when we apply any
command on the database or table.

» Statement Level Triggers:
Example 1: Create a Trigger, which displays a message whenever we insert a new row

in to Employee table.

Create or replace trigger instrigger before insert on Employee
Begin
dbms_output.put_line(‘one record inserted successfully.....");
End;
/

Example 2.Createa T rigger, W hich di splays am essage w henever w e updat e an

existing row in the tableEmployee.

Create or replace trigger updtrigger before update on Employee
Begin
dbms_output.put_line(‘one record updated successfully.....’);
End;
/

Example 3.Create a Trigger, which displays a message whenever we delete a row from

the table Employee.

Create or replace trigger deltrigger before delete on Employee
Begin
dbms_output.put_line(‘record(s) deleted successfully.....’);
End;
/

» Row Level Triggers:
Example 1.Create a Trigger, which displays a message whenever we insert a new row

into a tableEmployee.

218

Create or replace trigger instrigger before insert on Employee
for each row

Begin

dbms_output.put_line(:new.id|| record inserted successfully.....");
End;
/

Example 2.Create at rigger, which displays a m essage whenever we updatearowin

the table Employee.

Create or replace trigger updtrigger before update on Employee
for each row
Begin
dbms_output.put_line(:old.id||’ record updated to ‘||:new.id);
End;
/

Example 3.Create a Trigger, which displays a message whenever we delete a row from

the table Employee.

Create or replace trigger deltrigger after delete on Employee
for each row
Begin
dbms_output.put_line(:old.id||’ record deleted successfully.....);
End;
/

3.5.3DDL TRIGGERS

Example 1.Create a T rigger, which displays an error m essage whenever we create a

new table.

Create or replace trigger restrict CreateTable

219

before create on schema
begin
raise_application_error(-20001,’"CREATE Table not Permitted’);
end;
/

As we can see thatthe abo ve code creates at rigger restrict CreateTable. N ow w hen

we try to create a table named test it will not allow us to do so.

Example 2.Create a Trigger, which will display an error m essage wheneverwe tryto

drop any table. Now create one table named Test as shown below.

e Create table Test(tno number(3),thame varchar2(20));

Create or replace trigger restrict DropTable
before drop on schema
begin
raise_application_error(-20001,’DROP Table not permitted’);
end;
/

After the above block o f code gets executed it will create a trigger restrict DropTable.

Now try to drop the previously created table Test and check the output.

Example 3.Create a Trigger, which will display an error message whenever we tryto

alter any table.

Create or replace trigger restrict_AlterTable
before alter on schema
begin
raise_application_error(-20001,’ALTER Table not permitted’);
end;
/

220

After the above b lock of code gets executed it will create at rigger restrict_AlterTable.
Now try to alter the previously created table Test and check the output.
Example 4.Createa T rigger, w hich di splays an er ror m essage w heneverw etryto

truncate any table.

Create or replace trigger restrict_TruncateTable
before truncate on schema
begin
raise_application_error(-20001, TRUNCATE table not Permitted’);
end;
/

After the above block of code gets executed it will create a trigger

restrict_TruncateTable. Now try to truncate the previously created table Test and check
the output.

3.6 LEVELS OF TRIGGER

Level of trigger can be categorized as follows.
3.6.1 BEFORE INSERT TRIGGER
A Before Inserttrigger means t hetriggerwillbe f ired beforethe insertop eration is
executed.
Syntax:
CREATE [OR REPLACE] TRIGGER trigger name
BEFORE INSERT

ON table_name

[FOR EACH ROW]

DECLARE

-- variable declarations

BEGIN

221

-- trigger code
EXCEPTION
WHEN ...

-- exception handling

END;

Suppose we have a table named Customer_Order created as follows:

Create Table Customer_Order
(Custorder_id number(5), Ordquantity number(4),
cost_per_Orditem number(6,2), total Ordcost number(8,2),
ord_date date, Ordcreated_by varchar2(10));

After c reating the t able, we can then us e the Create Trigger s tatement to create a
Before Insert Trigger as follows:

Example:

Create or Replace Trigger Before_InsertData
Before Insert ON Customer_Order
For Each Row
Declare
u_name varchar2(10);
Begin
Select user INTO u_name from dual;
-- Update ord_date field with current system date
:new.ord_date := sysdate;
-- Update Ordcreated by field to t he us ername of the person performing t he
Insert
:new.Ordcreated_by := u_name;
dbms_output.put_line(‘The Trigger Executed Successfully’);
End;

222

Once the trigger is created insert f ollowing r ecords into t he table. W hen we insert t he

records the trigger will be invoked implicitly.

e insertinto Customer_Order values(1,12,5,60, 28-march-19’,’vinod’);

¢ insertinto Customer_Order values(2,5,15,75, 28-march-19'’mukesh’);

By observing the above execution, we can say that when we have inserted the records
with d ate an d us er * 28-march-19’,'vinod’ & ‘ 28-march-19’,’mukesh’ r espectively; t he
created trigger will fire implicitly on Customer_Order table and replace the date and user
values as per the trigger body.

Note: The values in Ord_Date and OrdCreated_By columns may be different for you as

they depend on system date and user logged in.
3.6.2 AFTER INSERT TRIGGER

An After Insert Trigger means that t he trigger will be fired after the insert operation is
executed.
Syntax:
CREATE [OR REPLACE] TRIGGER trigger_name
AFTER INSERT
ON table_name
[FOR EACH ROW]

DECLARE

-- variable declarations

BEGIN

-- trigger code

EXCEPTION
WHEN ...

223

-- exception handling

END;

Example:

Suppose we have a table named Customer as follows:

Create Table Customer
(emp_id num ber(4), emp_name v archar2(30), creation_date d ate, created_by
varchar2(30));

We will also create a duplicate table of ‘Customer’ table as ‘Duplicate_ Customer’ using

the code below:

Create Table Duplicate_Customer As (select * from Customer);

At this moment we have not inserted any data in ‘Customer’ and ‘Duplicate_Customer’
tables. Now, create a trigger on ‘Customer’ table sothat whenever we will enter any
customer record in the ‘Customer’ table the same record also gets stored in ‘Duplicate_
Customer table.

Trigger:

Create or Replace Trigger After_InsertData_trigger
After Insert
ON Customer
For each row
Declare
creator_name varchar2(30);

creation_date date;

Begin

224

--Getting the name of the current logged in User
Select User INTO creator name From dual;
--setting system date in creation_date
creation_date := sysdate;
--Inserting data into the Duplicate_Customer table
Insert into Duplicate_Customer
Values (:new.emp_id, :new.emp name, ¢ reation date,
creator_name);
End;

Here we have created a PL/SQL After Insert Trigger named ‘After_InsertData_trigger’
which will insert a record in the ‘Duplicate_Customer’ table as soon as insert operation
is performed on ‘Customer’ table.

Let’s insert a row in ‘Customer’ table as:

¢ Insert Into Customer Values (1, ‘himanshu’,sysdate,’vinod’);

After executing above Insert statement, we can query on both the tables and check the
output.

Here using the PL/SQL After Insert Trigger we can see that in the ‘Duplicate_Customer’
table a record got inserted as soon as we inserted a record in ‘Customer’ table.

We c an al so create t rigger f or bef ore upd ate, af ter upd ate, b efore d elete and af ter

delete operations.
3.6.3 DROP TRIGGER

After creatingat riggerin Oracle,we mightfindthatwe needtoremoveitfromthe

database. We can do this with the Drop Trigger statement.

Syntax:

e Drop Trigger Trigger-Name;
Example:

e Drop trigger After_InsertData_trigger;

225

3.6.4 ENABLE-DISABLE TRIGGER

Whenever w e ne edt o di sable the trigger, wec ando thisw itht he Alter Trigger
statement.

Example:

e ALTER Trigger Before_Insert_Trigger DISABLE;

Above s tatementus est he AlterT riggers tatementt odi sablet het rigger
called Before_Insert_Trigger.

» Disable all Triggers on a Table
We c an disable all triggers as sociated withat able at t he s ame time using the Alter
Table statement with the Disable All Triggers option. For example, to disable all triggers
defined for the Customer_Order table, we can write the following command.
Syntax:

o Alter table table_name Disable All Triggers;

» Enable a Trigger
Sometimes we want to en able trigger on at able which is disabled earlier. W e can do
this with the help of Alter Trigger statement.
Syntax:

e ALTER TRIGGER trigger name ENABLE;
Example:

e ALTER TRIGGER orders_before_insert ENABLE;

This ex ampleus est he Alter Triggers tatementt o enable thet riggerc alled
orders_before_insert.

» Enable all Triggers on a Table
We c an enabl e all triggers as sociated with atable at t he sametime usingthe Alter
Table statement with the Enable All Triggers option. To en able al | triggers defined for

the Customer_Order table, enter the following command.

Syntax:

e Alter Table table_name Enable All Triggers;

226

Example:

e Alter Table Customer_Order Enable All Triggers;

3.7 USER

To create a user, simply issue the Create User command to generate a new account.

3.7.1 CREATING A USER
Example:
e Create User Ved Identified By rdbms;
Here we have simply created a Ved accountthatis identified or a uthenticated byt he
rdoms password.
> Privileges and Roles
Privilegesdefines the access rights provided to a user on a database objects. There are
two types of privileges:
l. System Privileges: This privilege allows user to create, alter, or drop database
elements.
Il. Object Privileges: This privilege allows user to execute, select, insert, or delete

data from database objects to which the privileges apply.

Roles ar e t he ¢ ollection o f privileges or ac cess rights.Inc aseof manyusersina
database it becomes complex to grant or revoke privileges to the users. So, if we define
roles we can automatically grant/revoke privileges.

Data C ontrol Language (DCL) commands are used to enforce d atabase s ecurityin a
multiple da tabase en vironment. T wo types of D CL c ommands us ed ar e Granta nd
Revoke. D atabase Administrator's or owner’s of t he database object c an provide or

remove privileges on a database object.
3.7.2 GRANT COMMAND

SQL Grant command is used to provide access or privileges on the database objects to
the users. The syntax for the GRANT command is:

e GRANT pr ivilege_ name O No bject name T O { user name |P UBLIC |

227

role_name} [with GRANT option];

Where,
e privilege name is the access right or privilege granted to the user.
e object name is the name of the database object like table, view etc.
e user_name is the name of the user to whom an access right is being granted.
e Public is used to grant rights to all the users.

¢ With Grant option allows users to grant access rights to other users.

In c reate us er s ection, w e have Ved ac count c reated, w ec an now s tarta dding
privileges to the account using the GRANT statement. GRANT is a very important and
powerful c ommand w ith m any possible o ptions. G enerally, w e f irstw ant t o as sign
privileges to the user through connecting the account to various roles.
Syntax:

e GRANT<privilege> to <user>
Example:

e Grant Connect to Ved;

To allow your userto login, we needto give itthe create s ession privilege as s hown
below:

e Grant create session to Ved:;

We c an give m any s ystem pr ivileges in one command also. Grantthese toV ed by

chaining them together as shown below:

e Grant create table, create view, create procedure, create sequence to Ved;

In newer versions of oracle it is not necessary but some older version may require that
we m anually as signt he ac cessrightst ot he newus ert oas pecific schema and

database tables.

228

For example,ifwewantour Vedusertohavetheabilityto per form S elect, U pdate,
Insertand D elete operationont hes tudentt able, w e m ight e xecute t he f ollowing
GRANT statement:

e Grantselect, insert, update, delete on schema.student to Ved;

This ensures that Ved can perform the four basic operation for the student table that is

part of the database schema.

3.7.3 REVOKE COMMAND

The revoke command removes user access rights or privileges to the database objects.
The syntax for the REVOKE command is:

e REVOKE privilege name O N object name FROM{ User_name |P UBLIC |

Role_name}

For e xample to revoke s elect, up date, i nsert privilege gr antedto Vedthen givethe

following statement.

e revoke select, update, insert on employee from Ved;
To r evoke up date s tatement on em ployee gr anted t o pu blic t hen gi ve t he f ollowing
command.

e revoke update on employee from public;

» Revoking System Privileges and Roles:
We can revoke s ystem privileges or roles using the SQL command revoke. Any user
with the admin capacity for a s ystem privilege or role can revoke the privilege or role
from any other database user. The grantor does not have to be the user that originally
granted the privilege or role. T he following s tatement revokes the c reate table S ystem
Privilege from Ved:

e Revoke create table from Ved;

229

» Revoking Object Privileges and Roles:
We can revoke object privileges using the SQL command revoke. To revoke an object
privilege, the revoker must be the original grantor of the object privilege being revoked.
For ex ample, assuming you ar e the original gr antor, torevoke t he s elect and insert
privileges on the employee table from the users Ved and Shrey, you have to issue the
following command:

¢ Revoke select, insert on employee from Ved, Shrey;

» Revoking Column Selective Object Privileges:
Users can grant specific column level insert, update and references privileges for tables
and v iews. B ut t hey c annot r evoke ¢ olumn s pecific pr ivileges w ith a s imilar r evoke
statement. For that, the grantor must first revoke the object privilege for all columns of a
table or view, and then regrant the column specific privileges.
For e xample, assume that role Computer_Science is granted the up date privilege on
the deptld and dname columns of the table dept. To revoke the update privilege on just

the deptld column, we have to issue the following two commands:

¢ Revoke update on dept from Computer_Science;

e Grant update (dname) on dept to Computer_Science;

The revoke statement revokes update privilege on all columns of the dept table from the
role Computer_Science. T he grant statement regrants u pdate privilege on the d name

column to the role Computer_Science.
3.7.4 DROP USER

The DROP USER command is used toremove a user from t he or acle d atabase a nd
remove all objects owned by that user.
Syntax:

e DROP USER user_name [CASCADE J;

Where:

user_name: It specifies the name of the user to remove from the Oracle database.

230

CASCADE: It is optional. It specifies that if user_name owns any objects (i.e. tables or
views in its schema), we must specify CASCADE to drop all of these objects.
Example:
If the user does not own any objects in its schema, we can execute the following DROP
USER statement:

e DROP USER Ved;

Above code will drop the user called Ved. This DROP USER command will only run if
Ved does not own any objects in its schema.

If Ved did own objects in its schema, we will ne ed torunthe following DROP USER
command:

e DROP USER Ved CASCADE;

This DROP USER statement will remove the user Ved, drop all objects (i.e. tables and
views) owned by Ved, and all referential integrity constraints on Ved's objects will also
be dropped.

» Check Your Progress

1) What is Trigger?

4) Differentiate between execution of triggers and stored procedures.

231

3.8 LET US SUM UP

In this unit we have discussed package and trigger. Package allows us to bundle all the
objects like function, procedure within it and later we can execute them either directly or
from other s ubprograms. W e also learnt that the trigger can be invoked whenever an
event occurs. Event may be an Insert, Update or Delete statement. Throughout Trigger
discussion we observed that it helps us in enforcing business rules that can’t be defined
by us ing i ntegrity c onstants. W e can gener ate s tatistical da ta us ing trigger a bout t he
table ac cess. T hrough trigger w e c an pr event i nvalid t ransaction from ex ecution. S o,
both package and trigger objects of PLSQL allows programmer a wide scope in writing
sub programs. At last we have learnt the creation of user, granting roles and privileges

to users and removing the users.

232

3.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Trigger is a database object, executes automatically in response to some events on

thet ables or views. Itis us edtom aintaintheintegrity constrainttothe da tabase

objects.

2. The word ‘Trigger means to activate. Triggers are mainly required for the following
goals:

e To maintain complex integrity constraints on the database tables

e To audit table information by recording the changes

o To signal other program actions when changes are made to database table

e To enforce complex business rules

e To preventing invalid transactions

3. The INSTEAD O F triggers ar e written es pecially for updating v iews, w hich is not
possible to modify directly through SQL DML statements.

4. S tored pr ocedure i s ex ecuted e xplicitly by i ssuing pr ocedure c all s tatement f rom
another block while trigger is executed implicitly whenever any triggering event like any

DML operation happens.

5. APL/SQL package contains;
e PL/SQL table and record TYPE statements
e Procedures and Functions
e Cursors
e \Variables and constants

e Exception and pragmas for associating an error number with an exception

6. PL/SQL package is a schema that groups functions, cursors, stored procedures and

variables in one place. PL/SQL packages have the following two parts:

233

l. Specification part: This part specifies the part where the interface to the application is
defined.

Il. Body part: Body part specifies the implementation of the specification is defined.

7. Privileges aretherights to execute S QL c ommands. Grants ar e as signedtot he
object s o that ob jects c an be ac cessed ac cordingly. Grants canb e as signed by t he

owner or creator of an object.

3.10 ASSIGNMENTS

. Explain the uses of database trigger?

. Explain 3 basic parts of a trigger.

. What are the benefits of PL/SQL packages?

. Explain the difference between Triggers and Constraints?

. Explain types of triggers supported by PL/SQL with example.

. Write a trigger that may execute after deleting a record from the table.

. Define User, role and privileges.

0o N oo o B~ O0ON =

. Explain Grant and Revoke command with proper example.

3.11 Further Reading

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan
2. SQL/PLSQL,TheProgramming Language of ORACLE,BPB Publication by Ivan.
3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

4. http://beginner-sql-tutorial.com/sql-grant-revoke-privileges-roles.htm

234

Unit 4:Managing User Privileges 4
& Roles and User Profile

Unit Structure

4.1. Learning Objectives & Outcomes

4.2. Introduction

43. UserRole

4.4. Privileges

4.5. Managing User Role and Privileges

4.6. User Profile

47. LetUs Sum Up

4.8. Check your progress: Possible Answers
4.9. Assignments

4.10. Further Reading

235

4.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
* To understand User Role
* To learn about Privileges

* To understand User Profile.

Outcome:
At the end of this unit,
« Students will be able to understand User Role and Privileges.
+ Students will be able to create User Defined Role and assign it to the Users.
*S tudents w ill u nderstand difference between S ystem P rivileges a nd S chema
Objects
Privileges.

» Students will be able to create User Profile.

4.2 INTRODUCTION

Roles, on the other hand, are created by users (usually administrators) and are used to
group together privileges or other roles. They are a means of facilitating the granting of
multiple privileges or roles to users. A user privilege is a right to execute a particular

type of SQL statement, or a right to access another user's object.

Eachrolea nd userhas its ow n unique s ecurityd omain. Ar ole's s ecurity dom ain
includes the privileges granted to the role plus those privileges granted to any roles that

are granted to the role.

A user's security domain includes privileges on all schema objects in the corresponding
schema, the privileges granted to the user, and the privileges of roles granted tothe
user that are currently enabled. A role can be simultaneously enabled for one user and

disabled for a nother. Aus er's s ecurity dom ain al so i ncludes t he privileges an d roles

236

granted to the user group PUBLIC. The SESSION_ROLES view shows all roles that are

currently enabled.

Ins ome en vironments, y ouc an administer database security us ingt he oper ating
system. T he op erating s ystem can be used to manage the granting (and revoking) of
database r oles andt om anage t heir pas sword au thentication. T his ¢ apability i s not

available on all operating systems.

This chapter describes management of different SQL concepts as follows:
e User Roles
e Privileges

e User Profiles.

4.3 User Role

Oracle provides for easy and controlled privilege management through roles. Roles are
named groups of related privileges that you grantto users or otherroles. Roles are
designed to eas e the adm inistration of en d-user s ystem and s chema object privileges.
However, roles are notm eantt ob eus ed f or application developers, becauset he
privileges to access schema objects within stored programmatic constructs need to be

granted directly.

These properties of roles allow for easier privilege management within a database:

Reduced pr ivilege | Rather than gr anting the s ame s et of p rivileges e xplicitly t o
administration several users, you can grant the privileges for a group of related
userstoar ole,andthenonlytheroleneedstobegr antedto

each member of the group.

Dynamic privilege | If the privileges of a group must change, only the privileges of the
management rolen eedt obe m odified. T he s ecurityd omains of al lus ers
granted the group's role aut omatically reflect the c hanges m ade

to the role.

Selective You can selectively enable or disable the roles granted to a user.

237

specific security

availability of | This al lows s pecific c ontrol of a us er's privilegesin any given

privileges situation.

Application The data dictionary records which roles exist, so you can design

awareness applications to quer y the dictionary and a utomatically ena ble (or
disable) s elective r oles w hen a user at tempts t o ex ecute the
application by way of a given username.

Application- You can protectrole use with a password. Applications can be

created s pecifically to enable arolew hen s upplied t he c orrect
password. Users cannot en able the role if they do not k now the

password.

In general, you create a role to serve one of two purposes: to manage the privileges for

a database application or to manage the privileges for a user group.

bR R
X t x\

PAY_CLERK Role

MANAGER Role REC_CLERK Role User Roles

NSNS

ACCTS_PAY Hole ACCTS_REC Hole

Application Aoles

T

T

Privileges to Privileges to o o
execute the execute the Application Privileges
ACCTE_PAY ACCTS_REC

application application

238

Application Roles: You grant an application role all privileges necessary to run a given
database ap plication. Then, you gr ant the application role to other roles or to s pecific
users. A n ap plication c an hav e s everal di fferent r oles, w ith eac hr ole as signed a

different s et of pr ivileges t hat a llow f or m ore or | ess da ta access w hileus ingt he
application.

User Roles: You create a userrolefora groupof dat abase us ers withc ommon
privilege r equirements. You manage user privileges by granting ap plication roles and

privileges to the user role and then granting the user role to appropriate users.

Database roles have the following functionality:

e Arole can be granted system or schema object privileges.

e Avrole can be granted to other roles. However, a role cannot be granted to itself
and cannot be granted circularly.

e Anyrole can be granted to any database user.

o Eachrole granted to a user is, at a given time, either enabled or disabled.

e An indirectly grantedrole (arole grantedtoar ole) can be explicitly ena bled or
disabled for a us er. However, by e nabling ar ole that contains ot her roles, y ou

implicitly enable all indirectly granted roles of the directly granted role.

Granting and Revoking Roles

You grant or revoke roles from users or other roles using the following options:
e The GrantS ystem P rivileges/Rolesdi alogbo xa ndR evokeS ystem
Privileges/Roles dialog box of Oracle Enterprise Manager
e The SQL commands GRANT and REVOKE

Roles can also be gr anted to an d revoked from us ers us ing the oper ating s ystem that

executes Oracle, or through network services.

239

Any us er withthe GRANT ANY R OLE s ystem privilege c an grant or revoke any role
(except a global role) to or from other users or roles of the database. Any user granted a
role withthe ADMIN OPTION can grant orrevoke that role to or from other us ers or

roles of the database.

Predefined Roles

Ther olesC ONNECT,R ESOURCE,D BAE XP_FULL _DATABASE, and
IMP_FULL _DATABASE are defined automatically for Oracle databases. These roles
are pr ovided for backward c ompatibility t o e arlier v ersions of O racle an d ¢ an be

modified in the same manner as any other role in an Oracle database.

4.4 Privileges

A privilege is a right to execute a particular type of SQL statement or to access another
user's object. Some examples of privileges include the right to

e connect to the database (create a session)

e create a table

e select rows from another user's table

e execute another user's stored procedure

You grant privileges to users so these users can accomplish tasks required for their job.
Excessive gr anting of unn ecessary pr ivileges ¢ an c ompromise s ecurity. A us er ¢ an

receive a privilege in two different ways:

e You can grant privileges to users explicitly.
e Youcanalsograntprivileges toarole (anamed group of privileges), and then

grant the role to one or more users.

There are two distinct categories of privileges:
e System privileges
e Schemaobject privileges

240

A. System Privileges

A system privilege is the right to perform a particular action, or to perform an action on
any s chemaobj ects of a par ticulart ype. F or example, t he pr ivileges t o c reate
tablespaces and todeletetherows of anytablein ad atabase ar e s ystem privileges.
There are over 100 distinct s ystem privileges. E ach s ystem privilege allows a userto

perform a particular database operation or class of database operations.

Youc angrantor revokes ystem privilegestous ers andr oles. If you gr ants ystem
privileges to roles, you can use the roles to manage system privileges System privileges

are granted to or revoked from users and roles using either of the following:

e The GrantS ystem P rivileges/Roles di alogbo xa ndR evokeS ystem
Privileges/Roles dialog box of Oracle Enterprise Manager
e The SQL commands GRANT and REVOKE

Only users who have been granted a specific system privilege with the ADMIN OPTION
or users with the GRANT ANY PRIVILEGE system privilege can grant or revoke system

privileges to other users.

Because system privileges are so powerful, Oracle recommends that you configure your
database t o prevent r egular (non-DBA) us ers ex ercising ANY system privileges (such
as UPDATE ANY TABLE) on the data dictionary. In order to secure the data dictionary,
ensuret hat the O7_DICTIONARY_ACCESSIBILITY initialization p arameteri ss et
to FALSE. This feature is called the dictionary protection mechanism.

B. Schema Object Privileges

A's chema object pr ivilegeis a privilege or rightto p erform a par ticular ac tion on
a specific table, view, s equence, pr ocedure, f unction, or pac kage. D ifferent o bject

privileges are available for different types of schema objects.

241

Some s chema objects (such as clusters, indexes, triggers, and da tabase links) do not
have as sociated ob ject pr ivileges; t heir useis c ontrolled w ith s ystem privileges. F or
example,toa lterac luster,aus erm ustow nthec lusteror h avethe ALTER ANY
CLUSTER system privilege.

A schema object and its synonym are equivalent with respect to privileges; that is, the
object privileges granted for at able, view, s equence, procedure, function, or package

apply whether referencing the base object by name or using a synonym.

Schema object privileges can be granted to and revoked from users and roles. If you
grant ob ject privileges to roles, youcan m aket he privileges s electively a vailable.
Object privileges forus ersan drolescanb e gr anted or revokedus ingt he S QL
commands G RANT and R EVOKE, r espectively, or t he Add P rivilege to R ole/User
dialog b ox a nd R evoke P rivilege from R ole/User di alog box of O racle E nterprise

Manger.

4.5 Managing User Role and Privileges

4.5.1. CREATE ROLE

Youmaywishtocreate arole sothatyoucanlogically group the us ers' permissions.

Please note that to create a role, you must have CREATE ROLE system privileges.

You must give each role you create a unigue name among existing user names and role
names of t he d atabase. R oles ar e not c ontainedin t he s chemaof a ny user. In a
database that uses a multibyte character set, Oracle recommends that each role name
contain atl easto nes ingle-byte ¢ haracter. far ole nam e c ontains on ly m ultibyte
characters, then t he enc rypted r ole nam e a nd pas sword c ombination i s ¢ onsiderably

less secure.

Syntax

242

CREATE ROLE <ROLE_NAME>
[NOT IDENTIFIED | IDENTIFIED {BY password | USING [schema.] package |
EXTERNALLY | GLOBALLY}] ;

Where,
ROLE_NAME: The name of the new role that y ou are creating. This is how you will

refer to the grouping of privileges.
NOT IDENTIFIED: Itm eanst hatt he role is i mmediately en abled. No pas sword is

required to enable the role.

IDENTIFIED: It means that a user must be authorized by a specified method before the
role is enabled.

BY password: It means that a user must supply a password to enable the role.

USING package: It means thaty ou ar e creating an applicationrole - arolethat is
enabled only by applications using an authorized package.

EXTERNALLY: ltmeans thataus erm ustbe aut horized by a nexternals erviceto

enable the role. An external service can be an operating system or third-party service.
GLOBALLY: ltmeansthata userm ustb e authorized b yt he enterprise directory

service to enable the role.

If b oth NOT IDENTIFIED and IDENTIFIED areom ittedi nt he C REATE R OLE
statement, the role will be created as a NOT IDENTIFIED role.

Example
CREATE ROLE DEMO_ROLE;
It will create New Role called DEMO_ROLE;

A. Grant TABLE Privileges to Role

Once you have created therolein Oracle, yourne xt stepis to grant privileges to that

role.

243

Just as you granted privileges to users, you can grant privileges to arole. Let's start with

granting table privileges to a role. Table privileges can be any combination of SELECT,

INSERT, UPDATE, DELETE, REFERENCES, ALTER, INDEX, or ALL.

Syntax
GRANT <PRIVILEGES> ON <OBJECT> TO <ROLE_NAME>;
Where,
Privileges: The privileges to assign to the role. It can be any of the following values:
Privilege Description
SELECT Ability to perform SELECT statements on the table.
INSERT Ability to perform INSERT statements on the table.
UPDATE Ability to perform UPDATE statements on the table.
DELETE Ability to perform DELETE statements on the table.
REFERENCES | Ability to create a constraint that refers to the table.
ALTER Ability to perform ALTER TABLE statements to change the table
definition.
INDEX Abilitytoc reatea nindex onthetablewiththe c reateindex
statement.
ALL All privileges on table.

Object: The nam e of the database obj ectthat you are granting privileges for. Inthe

case of granting privileges on a table, this would be the table name.

Role_Name: The name of the role that will be granted these privileges.

Example

1.1f youwantedtogrant SELECT, INSERT, UPDATE, and D ELETE privileges on a

table c alled salesmantoa r ole nam ed DEMO_ROLE, you w ouldr unt he f ollowing

GRANT statement:
GRANT select, insert, update, delete ON salesman TO DEMO_ROLE;

244

https://www.techonthenet.com/oracle/grant_revoke.php�

2. You canalsousethe ALL keyword to indicate thatyou wish all permissions to be
granted. GRANT all ON salesman TO DEMO_ROLE;

B. Revoke Table Privileges from Role

Once you have granted table privileges to a role, you may need to revoke some or all of
these privileges. To do this, you can execute a revoke command. You can revoke any
combination of SE LECT, INSERT, U PDATE,D ELETE, R EFERENCES, AL TER,
INDEX, or ALL.

Syntax
REVOKE <PRIVILEGES> ON <OBJECT> FROM <ROLE_NAME>;

Where,
Privileges: The privileges to revoke from the role. It can be any of the following values:
Privilege Description
SELECT Ability to perform SELECT statements on the table.
INSERT Ability to perform INSERT statements on the table.
UPDATE Ability to perform UPDATE statements on the table.
DELETE Ability to perform DELETE statements on the table.
REFERENCES | Ability to create a constraint that refers to the table.
ALTER Ability t o per form ALTER T ABLE statements to change the table
definition.
INDEX Abilityt oc reatea ni ndexo nt het ablew itht he ¢ reate i ndex
statement.
ALL All privileges on table.

Object: The name of the d atabase objectthatyou are revoking privileges for. Inthe

case of revoking privileges on a table, this would be the table name.
Role_Name: The name of the role that will have these privileges revoked.

245

Example

1. If youw anted to revoke DELETE privileges on at able called salesman from ar ole
named DEMO_ROLE, you would run the following REVOKE statement:

REVOKE delete ON salesman FROM DEMO_ROLE;

2. fyouwantedtorevoke ALL privileges on the table c alled Salesman from arole
named DEMO_ROLE, you could use the ALL keyword.
REVOKE all ON salesman FROM DEMO_ROLE;

4.5.2. GRANT ROLE TO USER

Now, that you've created the role and assigned the privileges to the role, you'll need to

grant the role to specific users.

Syntax
GRANT <ROLE_NAME> TO <USER_NAME>;

Where,
Role_Name: The name of the role that you wish to grant.

User_Name: The name of the user that will be granted the role.

Example
1. GRANT DEMO_ROLE TO SCOTT;
This example would grant the role called DEMO_ROLE to the user named SCOTT.

A. Enable/Disable Role (Set Role Statement)
To enable or disable a role for a current session, you can use the SET ROLE statement.

When a us er logs into Oracle, all default roles are enab led, but no n-default roles m ust
be enabled with the SET ROLE statement.

246

Syntax

SET ROLE (ROLE_NAME [IDENTIFIED BY PASSWORD] | ALL [EXCEPT ROLEL1,
ROLE2, ...] | NONE);

Role_Name: The name of the role that you wish to enable.

IDENTIFIED BY password: The password for the role to enable it. If the role does not
have a password, this phrase can be omitted.

ALL: Itmeans that all roles should b e en abled for t his current s ession, e xcept t hose
listed in EXCEPT.

NONE: Disables all roles for the current session (including all default roles).

Example
SET ROLE DEMO_ROLE IDENTIFIED BY demo123;
This enable the role called DEMO_ROLE with a password of demo123.

B. Set role as DEFAULT Role

A default role means that the role is always enabled for the current session at logon. It
is not necessary to issue the SET ROLE statement. To setarole as a DEFAULT ROLE,
you need to issue the ALTER USER statement.

Syntax
ALTER USER <USER_NAME> DEFAULT ROLE (<ROLE_NAME> | ALL [EXCEPT

ROLE1L, ROLEZ2, ...] | NONE);

Where,

USER_NAME: The name of the user whose role you are setting as DEFAULT.
ROLE_NAME: The name of the role that you wish to set as DEFAULT.

ALL: Itmeanst hat allr oles s hould be enabledas D EFAULT, e xceptt hose | isted

in EXCEPT.
NONE: Disables all roles as DEFAULT.

Example

247

ALTER USER scott DEFAULT ROLE DEMO_ROLE;
It would set the role called DEMO_ROLE as a DEFAULT role for the user named scott.

4.5.3. DROP ROLE

In some cases, itmay be ap propriate to drop ar ole from the d atabase. The s ecurity
domains of all users and roles granted a dropped role is immediately changed to reflect
the absence of the dropped role privileges. All indirectly gr anted roles of t he dr opped
role are alsoremoved from af fected s ecurity domains. D ropping a r ole aut omatically

removes the role from all user default role lists.

Because the creation of ob jects is not depen dent on t he privileges received through a

role, tables and other objects are not dropped when a role is dropped.

Syntax
DROP ROLE <ROLE_NAME>;

Example
DROP ROLE DEMO_ROLE;

It will drop the role called DEMO_ROLE that we defined earlier.

4.6 USER PROFILE

Profile is a set of limits on database resources. If you assign the profile to a user, then
that us er c annot exceed these limits. Use pr ofiles to | imit t he dat abase r esources

available to a user for a single call or a single session.

Prerequisites
e Tocreate a profile, you must have the CREATE PROFILE system privilege.

e To specify resource limits for a user, you must:

248

o Enable resource limits dynamically with the ALTER SYSTEM statement or with the
initialization parameter RESOURCE_LIMIT. This parameter does not apply to

password resources. Password resources are always enabled.
o Create a profile that defines the limits using the CREATE PROFILE statement

e Assign the profile to the user using the CREATE USER or ALTER USER statement

Oracle Database enforces resource limits in the following ways:

e Ifaus erex ceedsthe CONNECT_TIME or IDLE_TIME session r esource | imit,
then the database rolls back the current transaction and ends the session. When

the user process next issues a call, the database returns an error.
o [If a user attempts to perform an operation that exceeds the limit for other session
resources, t hent he da tabase ab orts t he op eration, r olls backt he ¢ urrent

statement, and immediately returns an error. T he user can then commit or roll

back the current transaction, and must then end the session.
o If a user attempts to perform an operation that exceeds the limit for a single call,

then t he d atabase a borts t he operation, rolls bac k the c urrent s tatement, a nd

returns an error, leaving the current transaction intact.

4.6.1. CREATE PROFILE

Syntax

CREATE PROFILE <PROFILE_NAME> LIMIT [Resource Parameter | Password

Parameter] ;

249

UNLIMITED

When s pecified with a r esource parameter, UNLIMITED indicates that a us er as signed
this pr ofile c anus e anu nlimited am ount of t his r esource. W hen s pecified w ith a
password parameter, UNLIMITED indicates that no limit has been set for the

parameter.

DEFAULT

Specify DEFAULT if youwantto omit alimitfor this r esource in this profile. Auser
assignedt his profilei s subjectt o thel imitf ort his resource specifiedi n
the DEFAULT profile. T he DEFAULT profile initially defines u nlimited r esources. Y ou
can change those limits with the ALTER PROFILE statement.

Any us erw hois n otex plicitly as signed a profileis s ubjecttothe limits defined in
the DEFAULT profile. Also, if the profile that is explicitly assigned to a user omits limits
for some resources or s pecifies DEFAULT for some limits, then the useris subjectto
the limits on those resources defined by the DEFAULT profile.

RESOURCE_PARAMETERS

e SESSIONS PER_USER: Specify the number of concurrent sessions to which you
want to limit the user.

e CPU_PER_SESSION: Specify the C PUtimel imitf or as ession, ex pressedin
hundredth of seconds.

e CPU_PER_CALL: Specify the CPU time limit for a call (a parse, execute, or fetch),
expressed in hundredths of seconds.

e CONNECT_TIME: Specify t he total e lapsed time limitfor a session, ex pressed in
minutes.

e IDLE_TIME: Specify t he permitted p eriods of ¢ ontinuous inactive time d uring a
session, expressed in minutes. Lon g-running quer ies and ot her op erations ar e not

subject to this limit.

250

LOGICAL_READS_PER_SESSION: Specify t he per mitted num ber of data b locks
read in a session, including blocks read from memory and disk.
LOGICAL_READS_PER_CALL: Specify the permitted number of data blocks read
for a call to process a SQL statement (a parse, execute, or fetch).

PRIVATE_SGA: Specify the amount of private space a session can allocate in the
shared poolo ft hes ystem g lobal ar ea (SGA). P leaser efer t o size clause for

information on that clause.

PASSWORD_PARAMETERS

Use the following clauses to s et pas sword parameters. P arameters that s et |engths of

time are interpreted in number of d ays. For testing purposes you c an s pecify minutes
(n/1440) or even seconds (n/86400).

FAILED LOGIN_ATTEMPTS: Specify the num ber of failed at tempts tologin to
the user account before the account is locked.

PASSWORD_LIFE_TIME: Specify the number of days the same password can be
used for authentication. If you also set a value for PASSWORD_GRACE_TIME, the
password expires if it is not changed within the grace period, and further
connections are rejected. If you do not set a value for PASSWORD_GRACE_TIME,
its default of UNLIMITED will cause the database to issue a warning but let the user
continue to connect indefinitely.

PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX: These't WO
parameters must be set in conjunction with each
other. PASSWORD_REUSE_TIME specifies t he num ber of days b efore w hich a
password c annot be r eused. PASSWORD_REUSE_MAX specifies t he n umber of
password changes required before the current password can be reused. For these
parameter to have any effect, you must specify an integer for both of them.

o If you s pecify ani nteger for b oth o f these p arameters, then the us er c annot
reuse a password until the p assword has been c hanged t he pas sword the
number of times specified for PASSWORD_REUSE_MAX during the number
of days specified for PASSWORD_REUSE_TIME.

251

https://docs.oracle.com/cd/B19306_01/server.102/b14200/clauses008.htm#CHDEIJBC�

e If you specify an integer for either of these parameters and
specify UNLIMITED for the other, then the user can never reuse a password.

o If you specify DEFAULT for either parameter, then Oracle Database uses the
value def inedi nt he DEFAULT profile. B y de fault, al | par ameters ar e s et
to UNLIMITED inthe DEFAULT profile. Ify ou ha ve not ¢ hanged t he def ault
setting of UNLIMITED inthe DEFAULT profile, then t he dat abase treats the
value for that parameter as UNLIMITED.

o If you set both of these parameters to UNLIMITED, then the database ignores
both of them.

e PASSWORD_LOCK_TIME: Specify the num ber of days an ac count will be | ocked
after the specified number of consecutive failed login attempts.

e PASSWORD_GRACE_TIME: Specify the n umber of d ays after t he grace per iod
begins during which a warning is issued and login is allowed. If the password is not
changed during the grace period, the password expires.

e PASSWORD_VERIFY_FUNCTION: The PASSWORD_VERIFY_FUNCTION claus
e lets a PL/SQL password complexity verification script be passed as an argument
to the CREATEPROFILE statement.

Examples
The following statement creates the profile named NEW_USER_PROFILE:
CREATE PROFILE NEW_USER_PROFILE LIMIT

PASSWORD REUSE_MAX 10
PASSWORD_REUSE_TIME 30;

» Check Your Progress

21. How can any user Grant/Revoke a granted role to/from other users?

252

22.How can user receive a Privileges?

4.7 LET US SUM UP

In this c hapter, we h ave learnt about Role and Privileges. W e have also c oncluded
the s ystem and obj ect privileges. W e have also e xplored different o peration of User
Role like Create, Grant and Revoke Role and Drop. We have come to know how can

we set limits on resources for any user using profiles.

4.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

5. Any user Grantedar ole with ADMIN O PTION can Grant/Revoke thatrole

to/from any other users.
6. A user canreceive Privileges in two different ways.
a. Grant Privileges to Users explicitly
b. GrantPrivilegestoaR oleandthen GrantthatRoletooneor more

users.

7. SetR ole S tatementisus edt o E nableor D isable ar olef ort he c urrent

session.

253

8. User Profile is a set of limits on database resources and user cannot exceed

these limits.

4.9 ASSIGNMENTS

1. Explain Privileges. Also describe difference between S ystem P rivileges and
Object Privileges.
2. What is User Role? Describe with all options.

3. Explain User Profile in detail with all parameters.

4.10 Further Reading

1. SQL/PLSQL, TheProgrammingLanguageofORACLE,BPBPublicationbylvan.
2. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

254

Block-4
Introduction to PL/SQL

255

1

Unit 1: Introduction to PL/SQL

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. PL/SQL Environment

1.4. Advantages of PL/SQL

1.5. Fundamentals of PL/SQL

1.6. Datatypes and Variables

1.7. Let Us Sum Up

1.8. Check Your Progress: Possible Answers
1.9. Assignments

1.10. Further Reading

256

1.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
* To learn, understand basics of PL/SQL and its Block structure
* To learn, declare and initialize identifiers in PL/SQL block

* To learn, understand and access local and global variables

Outcome:

At the end of this unit,

« Students will be able to declare, initialize and access local and global variables
+ Students will be able to write a PL/SQL block and execute it

« Students will be able to print the message or value from the PL/SQL block

1.2 INTRODUCTION

PL/SQL i s O racle's pr ocedural | anguage e xtensiont 0 S QL, ar elational database
language. PL/SQL thoroughly integrates modern software engineering features such as
data encapsulation, information hiding, overloading, exception handling. We don’t have
a separate place or prompt for executing our PL/SQL programs. PL/SQL technology is
like a n e ngine t hat e xecutes P L/SQL bl ocks and s ubprograms. D uet ot he s trong
integration of SQL and PL/SQL, PL/SQL is very effective in data manipulation.

SQL* Plus is an interactive and batch query tool that will be installed with every Oracle
installation. W ec anfoundit atS tart ->P rograms -> O racle-OraHomeName ->
Application D evelopment -> S QL P lus. Ith asalsoac ommand line us er interface,
Windows G Ul, a nd w eb-based us er interface. Iltallowstheus ertoconnecttot he

database and execute PL/SQL commands.

1.3 PL/SQL ENVIRONMENT

With P L/SQL, we canus e S QL s tatements t o m anipulate O RACLE da ta an d flow of
control s tatements t o pr ocess t he d ata. Moreover, w e c an also d eclare c onstants,

variables, define s ubprograms (procedures and f unctions) and ha ndle r untime er rors.

257

Thus, PL/SQL combines the data manipulating power of SQL with the data processing

power of procedural languages.

PL/SQL Engine

Procedural

PL/sqL Block = Statement
Executor

PL/SQL Block

sqL

S0L Statement Executor

Oracle Server

Figure 1 PL/SQL Environment

PL/SQL engine executes procedural s tatements and s ends SQL part of statements to
SQL statement processor in the Oracle server. PL/SQL combines the data manipulating

power of SQL with the data processing power of procedural languages.

1.3.1 PL/SQL BLOCK STRUCTURE
PL/SQL is a block-structured language. i.e. Programs of PL/SQL contain logical blocks.

258

Declaration-Optional

(Variable, Cursors, User Defined
Exceptions)

Begin- Mandatory

(SQL Statements, PL/SQL
Statements)

Exception-Optional

Error Handling code when error
oCCurs

End; -Mandatory

Figure 2 PL/SQL Block Structure

As shown in the Figure 2 a PL/SQL block has three parts;

1. Declaration: Necessary v ariables are declared in this s ection. Itis optional. T his is
an optional section of the code block. It contains the name of the local objects that will
be used in the code block. These include variables, cursor definitions, and exceptions.
This section begins with the keyword Declare.

2. Begin: This section contains executable statements of SQL and PL/SQL. This is the
only mandatory section. It contains the statements that will be executed. These consist
of S QL s tatements, D ML s tatements, pr ocedures (PL/SQL ¢ ode bl ocks), f unctions
(PL/SQL code blocks that return a value), and built-in subprograms. This section starts
with the keyword Begin.

3. Exception: Any error oc curred w hile e xecuting the s tatements in be gin p art can be
handled in this part. T his is an optional s ection. It is used to “handle” any errors that
occur during the execution of the statements and commands in the executable section.
This section begins with the keyword E xception.

The code blockis terminated by the End keyword. This is the only k eyword within the

constructt hati s f ollowedb yas emi-colon(;). T heo nlyr equireds ection ist he

259

executable section. This means the code block must have the Begin and End keywords.
The code block is executed by the slash (/) symbol.

13.2.2 PL/SQL Block Types

There are three PL/SQL Block types as shown in figure 3.

Anonymous Procedure Function
Block Block Block
[Declare] Procedure name Function name
EBegin is Return datatype
---Statements Begin is
[Exception] -—-Statements Begin
End; [Exception] —--Statements
End; Beturn value;
[Exception]
End;
Figure 3 PI/SQL Block types

PL/SQL is a block-structured language. The named blocks are called subprograms and
unnamed blocks are called anonymous blocks. Subprograms can be referred as either
functions or pr ocedures. T he difference between functions an d pr ocedures is that a
functioncan be us ed in an expression anditreturns a value to that e xpression. A
procedure i s invoked as a s tandalone s tatement an d p asses valuestot he c alling
program only through parameters. Subprograms can be nested within one another and
can be grouped in larger units called packages. The basic units (procedures, functions,
and anonymous blocks) that make up a PL/SQL program are logical blocks, which can
contain any number of nested sub-blocks. Typically, each logical block corresponds to a
problem or sub-problem to be solved. Anonymous block don’t have the name.

1.4 ADVANTAGES OF PL/SQL

There are various advantages of using PL/SQL. They are,

260

It is a portable and easy language.
We can declare identifiers.

We can program with procedural language control structures.

A w0 bd =

It can ha ndle errors and pr events program from abnor mal termination using the

exception handling mechanism.

5. It m odularizes pr ogram de velopment t hrough various P L/SQL b locks s uch as
Procedure and functions.

6. It integrates with Oracle server and shared library.

7. It improves performance through better communication with underlying DBMSs.

1.5 FUNDAMENTALS OF PL/SQL

Lexical Units

PL/SQL is not case-sensitive language, so lower-case letters are equivalent to
corresponding up per-case | etters ex cept w ithin s tring an d ¢ haracter literals. Aline of
PL/SQL t ext c ontains gr oups of c haracters k nown as | exical u nits, w hich c an be
classified as follows:

|. Delimiters (Simple and Compound Symbols)

A delimiter is a simple or compound symbol that has a special meaning to PL/SQL. For
example, we can use delimiters to represent arithmetic operations such as addition and
subtraction.

Il. Identifiers (include Reserved Words)

We c an us e i dentifiers t on ame P L/SQL program obj ects and u nits, w hich i nclude
constants, variables, exceptions, cursors, subprograms and packages. Some identifiers
called Reserved Words, have a special syntactic meaning to PL/SQL and so cannot be
redefined. F or f lexibility, P L/SQL lets us to enc lose identifiers w ithin double qu otes.
Quoted identifiers are seldom needed, but occasionally they can be useful.

lll. Literals

A literal is an explicit numeric, character, string, or Boolean value not represented by an
identifier. Two kinds of numeric literals can be used in arithmetic expressions: integers

and reals.

261

+String literal is a s equence of zero or more c haracters enclosed by single quo tes. All
string literals except the null string (*') belong to type CHAR. PL/SQL is case-sensitive
within string literals.

*Boolean literals are the predefined values TRUE and FALSE and the non-value NULL
(which stands for a m issing, unknown, or inapplicable value). Boolean literals are n ot
strings.

IV. Comments

The P L/SQL c ompiler i gnores comments. Adding comments to our program enha nces
readability and guides the user in understanding the code. PL/SQL supports two types
of comment styles, single-line and multiline.

» Single-line comments begin with a double hyphen (--) anywhere on a line and extend
to the end of the line.

» Multiline comments begin with a slash asterisk (/*), end with an asterisk-slash (*/), and
can span multiple lines. We cannot nest comments.

Example: In this code, we are going to print ‘Welcome to GVP’ and we are also going to

check how the commented lines behave in the code.

BEGIN

--This is a single line comment

dbms output.put line (‘Welcome to GVP’);
/*Multi line comments starts

Multi line comment ends */

END;

/

1.6 DATATYPES AND VARIABLES

Every constant and variable has a datatype, which specifies a storage format,
constraints and valid range of values.

PL/SQL provides a variety of predefined scalar and composite datatypes. A scalar type
has noi nternal c omponents. A c omposite t ype h as i nternal c omponents t hat c an be

manipulated individually. PL/SQL mostly used datatypes are discussed below.

262

* NUMBER
We us e the NUMBER dat atype to s tore fixed or floating po int num bers of virtually a ny
size. W e c an s pecify pr ecision, w hich is the total number o f di gits an d s cale, w hich
determines where rounding occurs.
NUMBER](precision, scale)]
We cannot us e c onstants or variables to s pecify pr ecision and s cale; we must us e an
integer literals.
* CHAR
We us e the CHAR d atatype to s tore fixed-length c haracter data. T he C HAR dat atype
takes an optional parameter that lets us to specify a maximum length up to 32767 bytes.
CHAR[(maximum_length)]
We cannot use a constant or variable to specify the maximum length; we must use an
integer literal. If we do not specify the maximum length, it defaults to 1.
* VARCHAR2
We use the VARCHARZ2 datatype to store variable-length character data. The
VARCHAR?2 dat atype t akes ar equired par ameter t hat | ets us to s pecify am aximum
length up to 32767 bytes.
VARCHAR2(maximum_length)
We cannot use a constant or variable to specify the maximum length; we must use an
integer literal.
* BOOLEAN
We us e the BOOLEAN datatype to store the values TRUE and F ALSE and the non-
value NULL. NULL stands for a missing, unknown, or inapplicable value. The
BOOLEAN datatype takes no parameters.
* DATE
We use the DATE datatype to store fixed-length date values. The DATE datatype takes
no par ameters. Valid dates f or D ATE v ariables i nclude January1, 4712B Cto
December 31, 4712 AD. When stored in the database column, date values will include
the time of day in seconds since midnight. The default date portion is the first day of the
current month and the default time portion is the midnight.
Defining Variables

263

Variables are defined in the declaration section of the program. The syntax is:
e Variable_name datatype(precision);

The d efinition m ust e nd with a s emi-colon. T he def inition s tatement b egins with t he
variable name and contains the data type. A value may also be assigned to the variable
during the definition statement. The variable may also be constrained.
Variables are used to store results. Forward references are not allowed. So we have to
first declare the variable and then use it. Variables can have any SQL datatype, such as
CHAR,D ATE, NUMBERet cor anyP L/SQL datatypel ikeB OOLEAN,
BINARY_INTEGER eftc.
We have to initialize variables designated as NOT NULL and CONSTANT. We have to
initialize i dentifiers b y us ing t he as signment op erator (:=) or t he D EFAULT r eserved
word.
Declaring Variables
Variables are declared in DECLARE section of PL/SQL.

DECLARE

Stu_No number (3);

Stu_Name varchar2 (15);

BEGIN
Variable Initialization
Variables and constants are initialized every time a block or subprogram is entered. By
default, variables are initialized to NULL. So, unless you explicitly initialize a variable, its
value i s undef ined. S calar v ariable dec laration an d i nitialization ex amples ar e as
follows.
var_job VARCHAR2(9);
var _count BINARY_INTEGER := 0;
var _total_sal NUMBER(9,2) := 0;
var _orderdate DATE := SYSDATE + 3;
var _tax_rate CONSTANT NUMBER(3,2) := 8.25;
var _valid BOOLEAN NOT NULL := TRUE;
Constraints Definitions

264

Constraints can be placed on the variables defined in the code block. A constraint is a
condition that is placed on the variable. Two common constraints are:
» Constant: This constraint will cause Oracle to ensure the value is not changed after a
value i s initially as signed to the v ariable. Ifas tatementtries to c hange the variable
value,a ner rorw illoc cur. T hef ollowingi st he e xample of ¢ onstrained variable
definitions:

Pl constant number(9,8) := 3.14159265;
* Not Null: This constraint will cause O racle to ens ure the variable always c ontains a
value. If a statement attempts to assign a null value to the variable, an error will occur.
The following is the example of constrained variable definitions:

Date_of Birth not null date := ‘26-March-2019’;

Declaration and usage of variables:
Here we are going to print the ‘Welcome to BAOU, Ahmedabad’ using the variables and

execute it.

Set Serveroutput on;

DECLARE

msg VARCHAR2(50);

BEGIN

msg:= ‘Welcome to BAOU,Ahmedabad’;
dbms_output.put_line (msg);

END:

/

Output:

Welcome to BAOU,Ahmedabad

SET SERVEROUTPUT ON
It is a command used to access results from Oracle Server. A PL/SQL program always
followed by a slash (“/) on a line by itself. It sends the information to the compiler that

the end of the blockis reached. Without ‘/’, the compiler will not consider the blockis

265

completed, and it will not execute it. DBMS_OUTPUT is a package and PUT_LINE is a

function in it.

Scope of Variables

A variable in PL/SQL block is as local to that block and global to all its Sub-blocks. If we
redeclare an i dentifierin a s ub-block, we cannot reference the global i dentifier e xcept
we use a qualified name.

Example:

In the given example declaration two variables named num1 and num2 are in the outer
block (i.e. Global v ariable) a nd third v ariable named num_sum declared i nto the inner
block (i.e. local variable). Variable ‘num_sum’ is declared in inner block so can't access

in the outer block. But no1 and no2 can be accessed anywhere in the block.

DECLARE
no1 number := 25;
no2 number := 15;

BEGIN
DECLARE

num_sum number;
BEGIN

num_sum := no1 + no2;

dbms_output.put_line(‘Sum is: * || num_sum);

END;

END;

/

Output:

Sum is: 40

We can use OUTER keyword to access outer block variable inside the inner block. It is
called global qualifier name space.

Example:

266

DECLARE
no number := 25;
BEGIN
DECLARE
no number := 15;
BEGIN
IF no> OUTER.no THEN
DBMS_OUTPUT.PUT_LINE(‘Inner variable is greater than outer variable’);
ELSE
DBMS_OUTPUT.PUT_LINE(‘Inner variable is smaller than outer variable’);
END IF;
END;
END;
/
Output:

Inner variable is smaller than outer variable

» Check Your Progress
1) What is the use of Dbms_output.put_line()?

267

5) T he P L/SQL e ngine e xecutes t he pr ocedural c ommands and passesthe S QL

commands to the Oracle server to process. State True or False.

1.7LET US SUM UP

268

In this u nit, we h ave discussed ab out P L/SQL b lock, its ben efit along w ith t he use of
SQL* Plus tool. We have also discussed about how to write the simple PL/SQL program
and how tod eclareandus eav ariableinthem. W e hav e al sous ed on e pac kage
DBMS_OUTPUT to print the message.

1.8CHECK YOUR PROGRESS : POSSIBLE ANSWERS

» Check Your Progress

1. Dbms_output.put_line() s tatement t akes a par ameter w hich can b e printed on to
the console screen. When we start the SQL Command Prompt or Terminal, first
we have to type:

Set serveroutput on;

This statement activates the working of print statement on the console screen.

2. We can get input from the user using the ‘&’ sign. For example, to get input in to
variable num,
num:=#
This statement will assign the value that the user enters for the variable.

3. While Comparison we need to keep in mind that,

l. NULL will never be TRUE or FALSE
Il. NULL cannot be equal or unequal to other values
[l When a value in an expression is NULL, then the expression itself
evaluates to NULL except for concatenation operator (||)
4. Declare
no1 integer;
no2 integer;
sum integer;
Begin
no1:=& no1;
no2:=& noz;

sum:=no1 + no2;

269

dbms_output.put_line(sum);
End;
/
5. True
6. PL/SQL blocks are of two types:
1. Anonymous blocks: A PL/SQL blocks without header are known as anonymous
blocks.
These blocks do not form the body of a procedure, function or triggers.
Example:
DECLARE
digit NUMBER(2);
sqr NUMBER(3);
BEGIN
digit:= &Number1;
sqr:= digit * digit;
DBMS_OUTPUT.PUT_LINE(‘Square?’ || sqr);
END;
2. N amed bl ocks: P L/SQL bl ocks with hea der or | abels are k nown as N amed
blocks. Named b locks m ay e ither b e s ubprograms (procedures, f unctions,
packages) or Triggers.
Example:
FUNCTION squar (digit IN NUMBER)
RETURN NUMBER is sqr NUMBER(2);
BEGIN
sqr:= digit * digit;
RETURN sqr;
END;

1.9ASSIGNMENT

1. Define PL/SQL.
2. Discuss PL/SQL environment and block structure.

3. What is local and global variable access in PL/SQL block?

270

4. Discuss various advantages of PL/SQL.

5. Write a PLSQL code to check whether a number is prime or not.

1.10 FURTHER READING
1. SQL/PLSQL, TheProgrammingLanguageofORACLE,BPBPublicationbylvan.

2. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

3. https://way2tutorial.com/plsql/

4. https://lwww.guru99.com/pl-sql-first-program-helloworld. html

271

https://way2tutorial.com/plsql/�
https://www.guru99.com/pl-sql-first-program-helloworld.html�

Unit 2;: Cursor

Unit Structure

2.1. Learning Objectives

2.2. Introduction

2.3. Cursor Execution Cycle

2.4. Types of Cursor

2.5. Cursor for Loop

2.6. Parameterized Cursor

2.7. LetUs Sum Up

2.8. Check Your Progress: Possible Answers
2.9. Assignments

2.10. Further Reading

272

2.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,

* Tolearn and understand Cursor and its execution cycle
* To define, declare and initialize Cursor to access data

* To learn and understand different types of Cursor

* To learn accessing Cursor through for loop

Outcome:

At the end of this unit,

+ Students will be able to declare, initialize and access Cursor

« Students will be able to declare Cursor and write a PL/SQL block to access Cursor
data

» Students will be able to write implicit, explicit and parameterized Cursor

14.2 INTRODUCTION

A cursor is a pointer to an area of memory, called a context area. The context area is
allocated by oracle in order to process a SQL statement. The cursor allows PL/SQL to
control what happens to the context area when a statement is processed. It can be used

by user to process the output of a select statement that returns more than one row.

Oracle uses a work area to execute SQL commands and store processing information.
PL/SQL allows us to access this area through a name using a Cursor. For the execution
of every SQL statement certain areain memory is allocated. T his private SQL area is
called context area or Cursor. Acursor works as a handle or pointer into the context
area.

Whenw e d eclare ac ursor, w e ge ta po inter v ariable, w hich initially do esn’t point
anywhere. When the cursor is opened, memory is allocated and the cursor structure is
created. The cursor variable will now points the cursor. When the cursoris closed the
memory allocated for the cursoris released. C ursors allow the programmer to retrieve

data from a table and perform actions on that data one row at a time.

273

2.3 CURSOR EXECUTION CYCLE

The important steps in the cursor execution cycle are OPEN, FETCHand CLOSE. A
cursor ex ecutionc ycler eferst ot he s tages w hicha c ursor f ollows t o process and

execute the query. The phases of cursor execution cycle are listed below:

Open

Fefch CTSE
Open Parse Bind Execute Fetch Close
Cursor saL | saL - Query Result Cursor

Figure 1: Cursor Execution Cycle
The activity carried out by the server in the key phases is:
1. OPEN Phase
In this ph ase,PGAm emory is allocated f or c ursor processing, S ELECT s tatement is
parsed, Variable bi ndingt akes place, S ELECT Q uery ex ecutes and f inally p ointer
moves to the first record.
2. FETCH Phase
In this phase, the record to which the record pointer points, is retrieved from the result
set. The record pointer will move only in the forward direction. The FETCH phase lives
until the last record is reached.
3. CLOSE Phase
After the last record of the result set is reached, cursor is closed and allocated memory
will b e garbage collected and returned backto S GA. lfanopen cursoris not closed,

oracle automatically closes it after the execution of its parent block.

2.4 Types of Cursor

There are two types of cursors.

e Implicit cursor

e Explicit cursor

274

2.4.1 IMPLICIT CURSORS

PL/SQL declares an implicit cursor for every DML command, queries it, which will return
a single row. The name of the implicit cursoris SQL. W e can directly us e this cursor
without any declaration.
For S QL quer ies w hich r eturns s ingle r ow, P L/SQL d eclares i mplicit ¢ ursors. I mplicit
cursors are simple SELECT statements and are written in the BEGIN block (executable
phase) of the P L/SQL. Implicit cursors retrieve exactly one row. The most commonly
raised exceptions are NO_DATA FOUND or TOO_MANY_ROWS.
For Example:

e Select sname, ssalary into sna, ssa from salesman where sno = 542;
Note: sname and ssalary are columns of the table salesman and sna and ssa are the
variables
used to store sname and ssalary fetched by the query.
Oracle implicitly opens a cursor to process each SQL statement not associated with an
explicitly declared cursor. We can refer to this cursor using the name SQL.
We cannot use the OPEN, FETCH, and CLOSE s tatements with SQL cursor. But, we
can us e c ursor at tributes t o get i nformation ab out t he m ost r ecently ex ecuted S QL
statement.
The following c ode s hows how to us e implicit c ursor to know w hether the m ost recent

UPDATE has updated any rows or not.

DECLARE
BEGIN
update. ..
if SQL%NOTFOUND then
statements;
end if;
END;

NOTFOUND is an at tribute of implicit cursor that will returns true if previous UPDATE

command has not affected any row.

275

» Implicit Cursor Attributes
Cursor attributes do not have the similar meaning for both explicit and implicit cursors.
The following are the attributes of implicit cursor.

1. NOTFOUND: It returns true, if previous DML operation didn’t affect any row.

2. FOUND: It returns true, if previous DML operation affected any row.

3. ROWCOUNT: Itr eturns num ber ofr ows af fectedb yt hem ostr ecentD ML

operation.

The following code shows how to use ROWCOUNT attribute with implicit cursor to know

how many rows were updated with most recent UPDATE command.

BEGIN
update salesman set scity = “Ahmedabad” where ssalary > 45;
/* if more than 3 rows are effected then rollback updation */
if SQL%ROWCOUNT > 3 then
rollback;
else
commit;
end if;
END;

2.4.2. EXPLICIT CURSOR

PL/SQL’s implicit c ursor c an handle o nly s ingle-row q ueries. But, if you need to s elect
more than o ne row using s elect then you have to use explicit cursor. The set ofrows
fetched by a queryis called active set. Select command in PL/SQL block will retrieve
onlyonerow. Ifselect command retrieves nor ow then NO_DATA FOUND e xception
will be raised. If select retrieves more than one row then TOO_MANY_ROWS exception
occCurs.

Aselect command will succeed only when it retrieves a s ingle row. S elect command

copies t he values of ¢ olumns t hatitr etrievedi ntov ariables. If m ultipler ows ar e

276

retrieved then m ultiple values for each columnw ill be copiedto as ingle variable and

that will create the problem.

Example:
DECLARE
ssid varchar2(5);
snam varchar2(5);
sdpt varchar2(5);
BEGIN
select scode, sname, sdept into ssid, snam, sdpt
from salesman where ssalary > 45;
END;

Select command inthe ab ove code willraise TOO_MANY_ROWS ex ceptionif m ore
than one salesman is having salary more than 45.
An e xplicit c ursoris the s olution to the pr oblem. Acursorcanstore a collection of
records retrieved by a query. Then it allows us to fetch one record from cursor at a time
and thereby enabling to process all the records in the cursor.

» Handling Explicit Cursor
Explicit cursoris anam e usedtorefertoanareawhere you can p lace m ultiple r ows
retrieved by s elect. W e must us e an ex plicit cursor whenever we h ave to us e am ulti-
row query in PL/SQL.
The following are the steps required to create and use an explicit cursor:

1. Declare the cursor in Declare section

2. Open the cursor using open statement in Executable part

3. Fetch onerow at a time using fetch statement.

4. Close the cursor after all the records in the cursor are fetched and processed by

using close.

Processing m ultiple rows is same as file handling. Infile processingwe needto open
the file, process records and then close the file. Similarly user-defined e xplicit c ursor

needs tob e ope ned, fetchandread t he rows, after w hichitis closed. Like how file

277

pointer marks current position in file processing, cursor marks the current position in the
active set.

» Declaring a Cursor
Ac ursori sdec lared inD eclares ection using c ursors tatement. Att het ime of
declaration the
name of the cursor and the associated select statement are mentioned.
Syntax:

CURSOR cursor_name [(parameter[, parameter]...)]
IS select_statement
[FOR UPDATE [OF column,column, ...];

The following code shows how to declare a cursor.

DECLARE
cursor sales_data is
select scode, sname, sdept
from salesman;
BEGIN
END;

sales_data is the name of the cursor, which will be populated with the rows retrieved by
the
given select at the time of opening the cursor.

» Opening a Cursor
OPEN statement is used to execute the select command associated with the cursor and
place
the rows retrieved by the query into cursor.

OPEN cursor_name [(input_arguments)];

Cursor_name is the name of the cursor that is to be opened.
Input_arguments are the values to be passed to the parameters of the cursor.
The following statement opens the cursor sales_data and places the rows retrieved by
the

278

query into the cursor.

DECLARE
cursor sales_data is
select scode, sname, sdept
from salesman;
BEGIN
open sales_data;
END;

» Fetching Rows
Once cursor is opened using op en s tatement, cursor has a s et of rows, which can be
fetched using fetch statement. Fetch statement takes the data of the current row in the
cursor and copies the values of the columns into variables given after INTO keyword.

FETCH cursor_name INTO variable-1, variable-2, . . .;

For each column in the cursor there should be a corresponding variable in FETCH
statement. We also need to make sure that the data types of variables and
corresponding columns are matching.
The following code demonstrates how to fetch and copy data from current row of the

cursor to variables given after INTO keyword.

DECLARE
Cursor sales_data is
select scode, sname, sdept
from salesman;
v_scode salesman.scode%type;
v_snhame salesman.sname%type;
v_dept salesman.sdept%type;
BEGIN
open sales_data;
loop

fetch sales_data intov_scode, v_sname, v_dept;

279

end loop;
END;

FETCH statement is used inside the loop to repeatedly fetch rows from the cursor. The
process of fetching will stop when all the rows of the cursor are fetched (reached end of

cursor). T he f ollowing ¢ ode s hows h ow t 0 exit ¢ ursor w hen ¢ ursor is c ompletely

processed.

Loop
fetch sales_data intov_scode, v_sname, v_sdept;
exit when sales_data%notfound;

end loop;

NOTFOUND attribute of the c ursorr eturns T RUE when previous F ETCH do esn'’t
successfully
read a row from cursor.
» Closing a Cursor
Close statement is used to close cursor after the cursor is processed. Closing a cursor
will release the resources associated with cursor.
CLOSE cursor_name;

The following code closes sales_data cursor:

DECLARE
BEGIN
open ..
loop
end loop;
close sales_data;
END;

» Explicit Cursor Attributes

280

Cursor attributes al low us er t o retrieve i nformation regarding cursor. For e xample, we
can get the num ber of rows fetched s o far from a c ursor using ROWCOUNT attribute.
We can also determine whether a row is fetched or not using FOUND attribute.
The following syntax is used to access cursor attributes:

cursor_name%Attribute
Every cursor defined by the user has 4 attributes. When appended to the cursor name
these attributes allows the user to access important information about the execution of a
multirow query.

The attributes are:

1. %NOTFOUND: It is aB oolean attribute, w hichr eturns true, ift he lastfetchis
failed. i.e. when there are no rows left in the cursor to fetch.

2. %FOUND: Boolean variable, which returns true if the last fetch is succeeded.

3. %ROWCOUNT: It's a numeric attribute, which returns number of rows fetched by
the cursor so far.

4. %ISOPEN: AB oolean variable,w hichr eturnst ruei ft he c ursori s ope ned

otherwise returns false.

The following c ode s hows c ursor attributes with explicit c ursors. Attribute NOTFOUND

returns true if previous FETCH statement couldn’t fetch any row.

LOOP
fetch sales_data into s_scode, s_dept;
[* exit loop if previous FETCH failed */
exit when sales_data%NOTFOUND;
[* process the record fetched */

END LOOP;

Inthe above code E XIT is executed when NOTFOUND attribute of cursor s ales_data
returns TRUE.
» Using Cursor with LOOP

LOOP can be used to access the cursor values as shown in the following code.

281

Example:

DECLARE
Lname varchar2(10);
Sal number(8,2);
CURSOR C1 IS Select Last_ Name, Salary from Employee;
BEGIN
Open C1;
dbms_output.put_line(‘Last_Name’|[‘||'Salary’);
If C1%isopen then
LOOP
Fetch C1 into Lname, Sal;
dbms_output.put_line(Lname|| ‘||Sal);
END LOOP;
END IF;
END;

Fetchis us edt wicein the below e xample us ingW hile Looptom ake %FOUND
available.
Example:

DECLARE
Cursor C1is
SELECT ID, Last_ Name, city FROM Employee;
Num Employee.ID%type;
Nam Employee.Last Name%type;
Town Employee.city%type;
Begin
Open C1;
Fetch C1 into Num, Nam, Town;

while C1%found loop

282

dbms_output.put_line('Row Number '||C1%rowcount || is:'|| Num|| '||[Nam|[
'||Town);
Fetch C1 into Num, Nam, Town;
End loop;
Close C1;
End;
/

The above code will display the cursor C1 records with Employee Id, Name and city.

2.5 CURSOR FOR LOOP

The cursor for Loopcanbe used to process multiple records. There are two benefits
with cursor for Loop.

1. It implicitly declares a % ROWTYPE variable.

2. Cursorfor loop itself opens a cursor, read records and then closes the cursor
automatically. S o, O pen, F etch a nd C lose s tatements are not n ecessaryinit.
Toprocess ac ursor,we can use cursor FOR loop toa utomate t he following
steps.

e Opening cursor

e Fetching rows from the cursor

e Terminating loop when all rows in the cursor are fetched

e Closing cursor

The f ollowingis t he s yntax of cursorfor loop. T his for [oop is s pecifically m eant to

process cursors.

FOR rowtype_variable IN cursor_name
LOOP
Statements;
END LOOP;

283

rowtype_variable is automatically declared by cursor for loop. It is of ROWTYPE of the
cursor. [th as columns of the cursor as fields. T hese fields can be accessed us ing

rowtype_variable.fieldname.

Example:
DECLARE
CURSOR C1 IS Select Last_ Name, Salary from Employee;
BEGIN
For EMP_REC in C1
LOOP
dbms_output.put_line(EMP_REC.Last_name||
IEMP_REC.Salary);
END LOOP;
END;
/

The above code will display the cursor C1 records with Employee Last Name and their
salary. emp_rec is au tomatically created variable of % ROWTYPE. W e h ave not used
Open, Fetchand Close in the ab ove example as cursor for loop does it automatically.

Using Implicit for Loop the above example can be rewritten as shown below:
Example:

BEGIN
For EMP_REC in (Select Last_Name, Salary from Employee)
LOOP
dbms_output.put_line(EMP_REC.Last_name||
[EMP_REC.Salary);
END LOOP;
END;
/

284

2.6 Parameterized Cursor

Parameterized Cursor passes the parameters into a cursor and uses them in the query.
PL/SQL parameterized cursor define only datatype of parameter and doesn’t require to
define it's length. A cursor F OR loop aut omatically ope ns the cursor to which it refers,

so our program doesn’t require opening that cursor inside the loop.

Syntax: The syntax for a cursor with parameters in PL/SQL is:

CURSOR cursor_name (parameter_list)
IS
SELECT statement;

Example:

DECLARE
Cursor C1(num number) is select * from Employee
where ID = num;
emp Employee%rowtype;
BEGIN
if C1%Isopen Then
Close C1;
End If;
-- Open C1(5);
FOR emp INC1(5) LOOP
dbms_output.put_line('EMP_NUM: '|lemp.ID);
dbms_output.put_line('First_Name: '|lemp.First_Name);
dbms_output.put_line('Last_Name: '||emp.Last_Name);
dbms_output.put_line('EMP_Salary:'||lemp.Salary);
END Loop;
-- CLOSE Cf;
END;
/

285

» Check Your Progress

1) What is a cursor? Why Cursor is required?

4) Check following code and tell what will happen after commit statement?

Cursor C1is

Select empno,

ename from emp;
Begin

open C1;
loop

Fetch C1 into
eno. ename;

Exit When

C1 %notfound;-----

commit;

end loop;

end;

286

5) What is the use of WHERE CURRENT OF clause in cursors?

2. /SUMMARY

In this unit we have learnt that the major task of a cursor is to fetch data, one row at a
time, from the result s et. Cursors are us ed whenever the us er wants to m anipulate or
update records in a s ingleton fashion or inar ow by row manner, in a d atabase table.
The information stored in the Cursor is known as Active Data Set. Cursors are opened
in predefined area of Oracle’s DBMS inthe main memory s et, where the cursors are
opened. W e have also discussed c ursor with for loop and p arameter. C ursor plays an

important role in accessing data one row at a time unlike sql commands.

2.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

» Check Your Progress

1. Cursor is a named private SQL area from where we can access information. Cursors
needs to process rows individually for queries returning multiple rows.
2. DECLARE CURSOR cursor name, OPEN cursor name, FETCH cursor name INTO
or Record types, CLOSE cursor name.
3. Cursor attributes are;

l. %ISOPEN: Itis used to check whether cursor is open or not.

Il. % ROWCOUNT : It returns the number of rows fetched / updated / deleted.

[ll. % FOUND : It is used to check whether cursor has fetched any row. Returns

true if rows are fetched.

IV. % NOT FOUND : ltis usedto checkw hether cursor has fetched any row.

Returns true if no rows are fetched.

287

These attributes are processed with SQL for Implicit Cursors and with Cursor name for
Explicit Cursors.

4. In the above code the cursor is having query SELECT, so does not get closed even
after Commit / Rollback.

If, the cursoris havingquery as SELECT FOR UPDATE then it gets closed af ter
Commit / Rollback.

5. In cursor, WHERE CURRENT OF clause in an Update, Delete statement refers to the

latest row retrieved from a cursor.

2.9 ASSIGNMENTS

1. Define Cursor. Explain Cursor Cycle.

2. Discuss the types of cursor with proper syntax.

3. How do we use While Loop and For Loop in Cursor? Discuss with example.

4. Explain parameterized Cursor with example.

5. Differentiate Cursor declared in a procedure and Cursor declared in a package
specification.

6. What are PL/SQL cursor exceptions?

2. 10 FURTHER READING

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan
2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbylvan.
3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

288

Unit 3: Locking

Unit Structure

3.1.

3.2.

3.3.

34.

3.5.

3.6.

3.7.

3.8.

3.9.

Learning Objectives

Introduction

Locking Strategy

Types of Lock

Lock Table

Let Us Sum Up

Check Your Progress: Possible Answers
Assignments

Further Reading

289

3.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,

» To learn and understand database lock

* To learn the benefits of locking any database objects
* To learn and understand different modes of locks

* To learn and understand different types of locks

Outcome:
At the end of this unit,
» Students will be able to define database lock

« Students will be able to lock table with different locking mode

3.2 INTRODUCTION

Oracle D atabase provides da ta concurrency, ¢ onsistencya ndi ntegrityam ong
transactions through a locking mechanism. The locks are performed automatically and
require no user interaction. It is directly associated with a session. Database Locks are
mechanisms t hat pr event des tructive interaction b etween transactions accessingt he
shared r esource or o bjects. T hese resources c anbet ables, dat arows, data blocks,
cached items, connections and entire systems.

There ar e m any types of | ocks t hat ¢c an oc cur s uch s hared | ocks, e xclusive | ocks,
transaction | ocks,D ML | ocks, and bac kup-recoveryl ocks.O racle database
automatically obt ains required | ocks w hen p erforming S QL transactions. F or e xample,
before a session is permitted to u pdate dat a, the s ession must first lock the data. T he
lock empowers the session exclusive control over the data so that no other transaction

can update the locked data until the lock is released.

290

https://gerardnico.com/db/oracle/transaction�
https://gerardnico.com/db/oracle/session�

3.3 Locking Strategy

The d atabase m aintains different t ypes oflocks based on the operationthat holdthe
lock. Loc ks h ave directi mpacto ntheinteraction of read a nd w rite op eration. T he
following r ules summarize t he | ocking be haviour of or acle d atabase f or r eads a nd
writes:

e Arowislockedwhenever modified by aw rite op eration. W hen a transaction
updates one row, the transaction acquires a lock for this row only. The contention
can be minimized by locking table data at the row level.

e Whenonet ransactionis up dating arow,thenar owlock prevents adi fferent
transaction from updating the same row concurrently.

e Aread operation never blocks a write operation. A reading of a row does not lock
that row, a write operation can update this row. The only exception is a SELECT
... FOR UPDATE statement that will lock the row being read.

e Awrite o peration nev er blocks a r ead oper ation. When ar ow is being c hanged
by a write transaction, the database applies undo data to provide readers with a

consistent view of the row data.

3.3.1. LOCK MODES

Following table describe various types of locking mode with their meaning.

Lock Mode Meaning

EXCLUSIVE Ita llows a SELECT queryo nthel ockedt able, al | other
operations (i.e. Update, Delete etc.) are prohibited to other
transactions.

SHARE It allows concurrent queries, but updates are prohibited for

all transactions.

291

Lock Mode Meaning

ROW SHARE It allows concurrent access to the table, but no other users

can acquire an exclusive lock on the table.

ROW EXCLUSIVE | lti ses sentiallyt hes ameas ROW SHARE buta Iso
prevents locking in SHARE mode.

SHARE ROW It locks the entire table; queries ar e allowed but no other

EXCLUSIVE transaction can acquire any lock on the table.

3.4 Types of Lock

Oracle s erver implicitly acquires a lock situation if atransaction is done onthe same
table in different sessions. This default locking technique is
called implicit or automatic locking.

In Explicit Locking, a table or partition can be locked using the LOCK TABLE statement
in on e of the earlier s pecified modes. ltis betterto acquire an E xplicit L ocking rather
than relying on the implicit locking done by default by the Oracle server.

Generally, the database uses two types of locks:
3.4.1 EXCLUSIVE LOCKS

In Exclusive locks only one lock can be obtained on an object such as a row or a table.
This locking m ode pr events the as sociated resource from being shared. Atransaction
acquires an exclusive lock when it updates data. The first transaction who had acquired
a lock to resource exclusively is the only transaction that can modify the resource until
the exclusive lock is released.

15.3.2. Shared locks

In Shared | ocks m any s hare | ocks c an be obtainedonas ingle ob ject. T his | ocking

mode al lows the as sociated resource t o be s hared based on the op erations involved.

292

Multiple users reading data can share the same data, acquiring share locks to prevent

simultaneous access by a write transaction looking for an exclusive lock.

Oracle database does not allow a field level locking. It gives the Row level, Page level

and Table level locking mechanism.

from

is the

Row Level locking
In row-level locking, any specific row or rows in a table can be locked (unlocked
rows will be av ailable f or upd ates or del etes). T he | ocked rows c an be updat ed
only by the process that initiated the locking.
Page Level locking
A page level locking is used when the Where clause evaluates to a set of data.
Table Level locking

In table-level locking, the whole table is locked against any kind of DML actions

another transaction. Once a given transaction has locked a table, that transaction

only one that can change rows in the table.

3.5 LOCK TABLE

To lock any database table following syntax can be used.

Syntax:

e LOCKTABLE tables INlock_mode MODE [WAIT [, integer] | NOWAIT];

Where,

Tables is a A comma-delimited list of tables,
lock_mode is a previously discussed any lock mode,

WAIT s pecifies that the database will wait for a s pecific n umber of s econds as
mentioned by integer to acquire a DML lock.

NOWAIT indicates that the database should not wait for a lock to be released.

Example
Let's look at below code of how to use the LOCK TABLE statement.

293

For example:

e LOCK TABLE Student IN SHARE MODE NOWAIT,;

This code will lock the Student table in S HARE MODE and not wait for a lock to be

released.

e Lock table Student IN Exclusive Mode NOWAIT;

Above code will lock the Student table in EXCLUSIVE MODE and not wait for a lock to

be released.

» Check Your Progress
1) What are LOCKS?

294

3.6LET US SUM UP

Lockingis am echanism t o ens ure dat a c onsistency, ¢ oncurrency a nd i ntegrity w hile
allowing maximum simultaneous access to objects. It is used to implement concurrency
control when m ultiple us ers try to m anipulate table d ata at the same time. By learning
locking we can say that it helps in avoiding deadlock conditions and also avoids clashes
in ac quiring t he d atabase r esources. G enerally a us er does not nee dto w orry abo ut
locking, as R DBMS aut omatically s elects t he m ost appr opriate lock f ora particular

transaction.

3.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS

» Check Your Progress

1. Locks ar e t echniques us ed t o pr event destructive interaction b etween users
accessing database objects. ORACLE uses locks to control concurrent access to
data.

2. |. Consistency: It ensures thatthe data o bjects aus eris reading or changingis
not changed (by other users) until the user is finished with the data.
Il. Integrity: It e nsures that the database's data object and structures reflect all
changes made to them in the correct order.

3. a. Data Locks (DML)
b. Dictionary Locks (DDL)

c. Internal Locks and Latches

295

d. Distributed Locks
e. Parallel Cache Management Locks
4. Suppose database session A tries to update some data that is already locked by
database
session B. Here, session Awill remain in lock wait state, and session A will be stopped
from making any progress with any SQL transaction that it’s executing. We can say that

session A will be blocked until session B releases the lock on that data.

3.8ASSIGNMENTS

1. Define Lock. Explain Locking benefits.
2. Discuss different types of locking with example.

3. Explain various modes of lock.

3.9FURTHER READING

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan
2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbylvan.
3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

296

Unit 4: Exception Handling

Unit Structure

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

Learning Objectives

Introduction

User-defined Exceptions

Predefined (Named) E xceptions
SQLCODE and SQLERRM

PRAGMA E xception

Let Us Sum Up

Check Your Progress: Possible Answers

Assignments

4.10. Further Reading

297

4.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
* To learn and understand Exception
» To define and understand different types of Exception

* To learn and understand Exception handling

Outcome:

At the end of this unit,

« Students will be able to write exception handling block

« Students will be able to declare user defined exception

« Students will be able to use pre-defined exception for different types of errors

« Students will be able to write pragma exception

4.2INTRODUCTION

An E xception is an er ror situation or abnormal c ondition, w hich arises dur ing pr ogram
execution. When an error takes place exception is raised, normal execution is stopped
and control transfers to exception handling block. Exception handlers are block of codes
written t o han dle the e xception. The e xceptions can be s ystem-defined or pr e-defined
and User-defined exception. When PL/SQL raises a predefined exception, the program
is terminated by displaying error message. But if the program is s upposed to h andle
exception raised by PL/SQL then we have to use Exception Handling part of the block.
Control is transferred t o e xception handling part whenever an exception oc curs. After
the e xception h andler completes ex ecution, control is transferred to next statement in
the enc losing bl ock. Ifthereis no enclosing bl ock t hen c ontrol r eturns to H ost (from
where we ran the PL/SQL block).

Syntax of exception handling is:

WHEN exception-1 [or exception -2] ... THEN
statements;
[WHEN exception-3 [or exception-4] ... THEN

298

statements; | ...
[WHEN OTHERS THEN

statements; |

exception-1, exception-2 ar e exceptions that are to be h andled. T hese e xceptions are
either pre-defined exceptions or us er-defined exceptions. If an exceptionis raised b ut
not han dled by e xception ha ndling p art then PL/SQL block is terminated by displaying
an error message related to the exception.

The biggest advantage of exception handling is that it improves readability and reliability
of the code. Errors from many statements of code can be handles with a single handler.
Instead of checking for an error at every point we can just add an exception handler to

handle the exception when raised.

4.3 USER-DEFINED EXCEPTIONS

AU ser-defined e xception i s an ex ception def ined b y t he pr ogrammer. U ser-defined
exceptions ar e dec lared in the d eclaration s ection w ith t heir t ype as ex ception. T hey
must be r aised explicitly us ing R AISE C ommand, w hile pr e-defined ex ceptions ar e
raised implicitly. R AISE s tatement can also be usedtoraise internal exceptions. We
can map exception names with specific Oracle errors using the
EXCEPTION_INIT Pragma. W e c an a Iso as sign an umbera nd descriptiont ot he
exception using RAISE_APPLICATION_ERROR.

Declaring Exception:

DECLARE

myexception EXCEPTION,;
BEGIN

Raising Exception:
BEGIN

RAISE myexception;
Handling Exception:
BEGIN

EXCEPTION

299

WHEN myexception THEN
Statements;
END;

Note:

= An Exception cannot be declared twice in the same block.

= Exceptions declared in a block are considered as local to that block and global to
its sub-
blocks.

= An enclosing block cannot access Exceptions declared in its sub-block. While it is
possible for a sub-block to refer its enclosing Exceptions.

The f ollowing example d emonstratest heus e of User-defined E xception us ing
Procedure:

Create or Replace Procedure Raise_Exception (Input NUMBER) IS
Evenno_Exception EXCEPTION,;
Oddno_Exception EXCEPTION;

Begin
IF MOD(Input, 2) =1 THEN
RAISE Oddno_Exception;
ELSE
RAISE Evenno_Exception;
END IF;
EXCEPTION

WHEN Evenno_Exception THEN
dbms_output.put_line(TO_CHAR(Input) ||' is Even Number');
WHEN Oddno_Exception THEN
dbms_output.put_line(TO_CHAR(Input) || ' is Odd Number');
End Raise_Exception;
/

300

Now execute the procedure with following command and check out the output as shown
below.
e exec Raise_Exception(5);
5is odd Number
4.3.1 RERAISING AN EXCEPTION

When we want an exception to be handled in the current block as well in its enclosing
blockt henw e ne edt o use R AISE s tatement w ithout a n ex ception nam e. RAISE
command c an alsobe us edtor eraise a n exception s othatthe c urrent e xception is
propagated to outer block. Current exception will be raised again if a sub block executes
RAISE statement without specifying exception name in exception handler. In the below
example, the exception ZERO_DIVIDE is logged into a table before it is re-raised to the
user or to the application.

Note: RAISE statement without exception name is valid only in exception handler.

DECLARE

num NUMBER;
BEGIN
num := 5/0;
EXCEPTION

WHEN zero_divide THEN

INSERT INTO log_details VALUES (log_seq.nextval, SQLCODE || ‘||
sqlerrm);

RAISE;
END;
/

4.3.2 RAISE APPLICATION ERROR

Todi splay our owner rorm essagesw ec an uset hebu ilt in
RAISE_APPLICATION_ERROR. Itwilldisplay the error message inthe same way as
Oracle errors. W e s hould us e a negative number between —20000to —20999 for t he

error_number and the error message should not exceed 512 characters.

301

Syntax:

RAISE_APPLICATION_ERROR(<error_number>, <error_message>, <TRUE |
FALSE>);

Where,

error_number -20000 to -20999

error_message Varchar2(2048)

TRUE add to error stack

FALSE replace error stack (the default)

Let’s try to understand with following example.

CREATE OR REPLACE PROCEDURE Raise_application_Exception (Input NUMBER)
IS

evenno_exception EXCEPTION,;

oddno_exception EXCEPTION;

BEGIN
IF MOD(Input, 2) =1 THEN
RAISE oddno_exception;
ELSE
RAISE evenno_exception;
END IF;
EXCEPTION

WHEN evenno_exception THEN
RAISE_APPLICATION_ERROR(-20001, 'Even Number Entered');
WHEN oddno_exception THEN
RAISE_APPLICATION_ERROR(-20999, 'Odd Number Entered');
END Raise_application_Exception;
/

Execute the above procedure with following command and check the output. It will
display error message with error number.

e Exec Raise_application_Exception(5);

302

4.4 Predefined (Named) Exceptions

Predefined e xception i s raised a utomatically w henever t here is a v iolation o f O racle
coding rules. P L/SQL has de fined c ertain c ommon errors and gi ven names tothese
errors, which are called as predefined exceptions. Each exception has a corresponding
Oracle er ror c ode. P redefined exceptions ex amples ar et hose | ike ZERO_DIVIDE,
which is raised aut omatically w henw e try t o di vide a num ber by z ero. O ther bu ilt-in
exceptions are given b elow. W e can handl e une xpected O racle errors using O THERS
handler. It can handle all raised exceptions that are not handled by any other handler. It
must al ways be w ritten as the | ast han dler in e xception b lock. P redefined e xception
handlers are declared globally in package Standard. We don’t need to define them.
Structure of Error Handling:

CREATE OR REPLACE PROCEDURE <procedure_name> IS
BEGIN
NULL;
EXCEPTION
WHEN <named_exception> THEN
-- handle identified exception
WHEN <named_exception> THEN
-- handle identified exception
WHEN OTHERS THEN
-- handle any exceptions not previously handled
END;
/

Example of ZERO_DIVIDE Exception:

Declare
num number = 50;
div number := 0;

result number;

303

begin
result := num / div;
dbms_output.put_line(‘result: ‘||result);
exception
when zero_divide then
dbms_output.put_line(‘DIVIDE by ZERO: ’||sqlerrm);
end;
/

Example of NO_DATA_FOUND Exception:
The below program will show the name and address of a salesman as result whose ID

is matches. But there is no salesman with ID 10 in our record, so the program raises the
run-time exception NO_DATA FOUND, which is captured in EXCEPTION block.

DECLARE
s_id salesman.id%type := 10;
S_name salesman.name%type;
S_addr salesman.address%type;
BEGIN
SELECT name, address INTO s _name, s_addr
FROM salesman
WHERE id = s_id;
DBMS_OUTPUT.PUT_LINE (‘Name: ‘|| s_name);
DBMS_OUTPUT.PUT_LINE (‘Address: ‘ || s_addr);
EXCEPTION
WHEN no_data_found THEN
dbms_output.put_line(‘No such Salesman exists!’);
WHEN others THEN
dbms_output.put_line(‘There is problem™);
END;
/

304

The DUP_VAL_ON_INDEX exception is raised when a SQL statement tries to create a

duplicate v alue in ac olumn onw hich primary key or uni que c onstraints ar e def ined.

Following example demonstrates the use of DUP_VAL ON_INDE X exception.

BEGIN
Insert into salesman (id) values(1);
EXCEPTION
When dup_val_on_index then
dbms_output.put_line('Duplicate value on an index’);
END;

More than one Exception can be written in a single handler as shown below.

EXCEPTION

When NO_DATA_FOUND or TOO_MANY_ROWS then
Statements;

END;

Invalid Cursor Exception
Here we will try to check the exception associated with Cursor access. Let’'s examine

the below example.

CREATE OR REPLACE PROCEDURE InvalidCursor_exception IS
CURSOR CurExcp is
SELECT * FROMsalesman;
Cur_Record CurExcp%rowtype;
BEGIN
LOOP
-- note the cursor was not opened before the FETCH
FETCH CurExcp INTO Cur_Record;
EXIT WHEN CurExcp%notfound;

305

NULL;
END LOOP;
EXCEPTION
WHEN INVALID_CURSOR THEN
dbms_output.put_line('Invalid Cursor State exception Raised");
WHEN OTHERS THEN
dbms_output.put_line('Some Other Problem’);
END InvalidCursor_exception;
/

Execute the above procedure and check the output.

The following table shows some important predefined exception with their meaning and

error code.
Exception Name Error Description
ORA None of the choices in the WHEN clauses
CASE_NOT_FOUND 06592 of a CASE statement is selected and there

is no ELSE clause.

ORA- Raised when tried to open a cursor that was
CURSOR_ALREADY_OPEN
06511 |already open

Raised when an attempt to insert or update

ORA-
DUP_VAL ON_INDEX 00001 arecord in violation of a primary key or
unique constraint is made
ORA Raised when the cursor is not open, or not
INVALID _CURSOR 01001 valid in the context in which it is being
called.
ORA-
INVALID _NUMBER 01722 Raised when it isn’t a number

ORA- |Invalid name and/or password for the

LOGIN DENIED .
- 01017 |instance.

306

http://psoug.org/oraerror/ORA-06592.htm�
http://psoug.org/oraerror/ORA-06592.htm�
http://psoug.org/definition/WHEN.htm�
http://psoug.org/definition/ELSE.htm�
http://psoug.org/oraerror/ORA-06511.htm�
http://psoug.org/oraerror/ORA-06511.htm�
http://psoug.org/oraerror/ORA-00001.htm�
http://psoug.org/oraerror/ORA-00001.htm�
http://psoug.org/oraerror/ORA-01001.htm�
http://psoug.org/oraerror/ORA-01001.htm�
http://psoug.org/oraerror/ORA-01722.htm�
http://psoug.org/oraerror/ORA-01722.htm�
http://psoug.org/oraerror/ORA-01017.htm�
http://psoug.org/oraerror/ORA-01017.htm�

NO_DATA_FOUND

NOT_LOGGED_ON

PROGRAM_ERROR

ROWTYPE_MISMATCH

STORAGE_ERROR

SUBSCRIPT_BEYOND_COUNT

SUBSCRIPT_OUTSIDE_LIMIT

TIMEOUT_ON_RESOURCE

TOO_MANY_ROWS

ZERO_DIVIDE

ORA-
01403

ORA-
01012

ORA-
06501

ORA-
06504

ORA-
06500

ORA-
06533

ORA-
06532

ORA-
00051

ORA-
01422

ORA-
01476

Raised when the SELECT statement
returned no rows or referenced a deleted
element in a nested table or referenced an

initialized element in an Index-By table.

Raised when database connection lost.

Raised when internal PL/SQL error.

Raised when the rowtype does not match

the values being fetched or assigned to it.

Raised when a hardware problem either

RAM or disk drive occurs.

Raised when reference to a nested table or
varray index higher than the number of

elements in the collection.

Raised when reference to a nested table or
varray index outside the declared range

(such as -1).

Raised when the activity took too long and

timed out.

Raised when the SQL INTO statement
brought back more than one value or row

(only one is allowed).

Raised when an attempt is made to divide a

number by zero.

307

http://psoug.org/oraerror/ORA-01403.htm�
http://psoug.org/oraerror/ORA-01403.htm�
http://psoug.org/definition/SELECT.htm�
http://psoug.org/oraerror/ORA-01012.htm�
http://psoug.org/oraerror/ORA-01012.htm�
http://psoug.org/oraerror/ORA-06501.htm�
http://psoug.org/oraerror/ORA-06501.htm�
http://psoug.org/oraerror/ORA-06504.htm�
http://psoug.org/oraerror/ORA-06504.htm�
http://psoug.org/oraerror/ORA-06500.htm�
http://psoug.org/oraerror/ORA-06500.htm�
http://psoug.org/oraerror/ORA-06533.htm�
http://psoug.org/oraerror/ORA-06533.htm�
http://psoug.org/oraerror/ORA-06532.htm�
http://psoug.org/oraerror/ORA-06532.htm�
http://psoug.org/oraerror/ORA-00051.htm�
http://psoug.org/oraerror/ORA-00051.htm�
http://psoug.org/oraerror/ORA-01422.htm�
http://psoug.org/oraerror/ORA-01422.htm�
http://psoug.org/definition/INTO.htm�
http://psoug.org/oraerror/ORA-01476.htm�
http://psoug.org/oraerror/ORA-01476.htm�

4.5 SQLCODE AND SQLERRM

In WHEN O THERS part of exception handler, we can use SQLCODE and S QLERRM
functions t o r etrieve t he er ror num ber an d er ror m essage r espectively. T herei s no
predefined exception for every oracle errors.
By using these two functions we can get the error code and error message of the most
recently oc curred error. T he f ollowing ex ample d emonstrates how tous e SQLCODE
and SQLERRMfunctions. T o un derstand this we will create atable nam ed s ubject as
follows.

e Createt ables ubject(subcode v archar2(2) pr imaryk eyno tnul I, s ubname

varchar2(20));

After creating Table insert few records as shown below. Here we have to define subject

code primary key and not null.

Insert into subject values(‘A’,’ Java’);
Insert into subject values(‘B’,DBMS’);
Insert into subject values(‘C’;RDBMS’);

Insert into subject values(‘D’,C++’);

Now write and execute following code and check the output.

Example:

Declare

newscode varchar2(5) := null;

begin

update subject set subcode = newscode where subcode ="'C";
exception

when dup_val _on_index then
dbms_output.put_line('Duplicate subject code');

when others then

dbms_output.put_line(sqlerrm);

end;

308

If you run the above program, it will show cannot update (‘SYSTEM’,'Subject’,’subcode’)
to null with error code ORA-01407.

The above output is generated when others part of exception handling block executes.
SQLERRMr returns the error m essage o fthe m ostrecent error occurred. Asweare
tryingto s et SCODE, whichisa notnullcolumnto NULL value, P L/SQL raises an
exception. But as the error (-01407) is n ot as sociated with a ny predefined exception,

WHEN OTHERS part of exception handling part is executed.

4.6 PRAGMA EXCEPTION

PRAGMA EXCEPTION_INIT allows user to map ORA- error and it can be raised in
PL/SQL code. The SQL Error number passed in “EXCEPTION _INIT” is the same as
error code except for “NO_DATA FOUND” ORA-01403 which is 100.

Example:

Declare

no_rows_found exception;

pragma exception_init(no_rows_found, 100);
Begin

raise no_rows_found,;

End;

/

Execute above code and check the output.
Example with too many rows:

Declare

too_many_rows exception;

Pragma exception_init(too_many_rows, -1422);
Begin

raise too_many_rows;

End;

/

309

Execute above code and check the output.

Whenever O racle error -1407 oc curs, N ULL_VALUE_ERROR exception is raised by
PL/SQL. The following example will illustrate important points related to associating an
Oracle error with a user-defined exception.

Here we will consider the previously c reated S ubject table and s ame upda te query for
assigning null value to a not null column.

Example:

Declare
null_value_error Exception;
Pragma Exception_init(null_value_error, -1407);

newscode varchar2(5) := null;

begin

update subject set subcode = newscode where subcode ='C";

Exception

When null_value_error Then

dbms_output.put_line(‘User is trying to set null value to a not null column’);
end;
/

Execute above code and check the output.

» Check Your Progress
1) What is an Exception? State the types of Exception.

310

3) What is Raise_application_error?

4.7 LET US SUM UP

AP L/SQL block is successfulifite xits without raising any exceptions orraises an
exception b utthe exceptionis han dledinthe bl ock's ex ception han dling p art. S ame
way, A PL/SQL block is unsuccessful if it exits with an unhandled exception means the
executable par t raises a n e xception (either pr edefined or us er-defined) and itis n ot
handled in the block’s exception handler. In this unit we have discussed the exception
and e xception handling m echanism us ing predefined and user de fined e xception. W e
have al so di scussed R AISE_APPLICATION_ERROR pr ocedure t o g enerate aus er-

defined error.

4.8CHECK YOUR PROGRESS:POSSIBLE ANSWERS

» Check Your Progress
1. Exception is an er ror and E xception handling is the error h andling part of PL/SQL
block. The types of E xception ar e Predefined and user_defined. Some of Predefined
exceptions are:

¢ CURSOR_ALREADY_OPEN

311

e DUP_VAL ON_INDEX

e NO_DATA FOUND

e TOO_MANY_ROWS

e INVALID_CURSOR

e [INVALID_NUMBER

¢ LOGON DENIED

e NOT _LOGGED_ON

¢ PROGRAM-ERROR

¢ STORAGE_ERROR

e TIMEOUT_ON_RESOURCE

¢ VALUE_ERROR

e ZERO _DIVIDE

e OTHERS.
2. The PRAGMA keyword specifies that the statement is a compiler directive, which is
not processed when the PL/SQL blockis e xecuted. Itis apseudo-code thattells the
compiler to interpret al I t he oc currences of ex ception name w ithin the b lock w ith t he
associated oracle server number.
3. R aise_application_erroris a pr ocedure of pac kage D BMS_STANDARD. | t al lows
issuing an user_defined error messages from stored sub-program or database trigger.
4. The OTHERS exception handler makes sure that no exception goes unhandled and
the program terminates successfully.
5. The PRAGMA EXECPTION_INIT informs the complier to associate an exception with
an oracle error to get an error message of a specific oracle error.
For example, PRAGMA EXCEPTION_INIT (exception name, oracle error number)

4. 9ASSIGNMENT

1. What is Exception? How do we handle Exception in PL/SQL?
2. Explain User defined exception in PL/SQL.

3. Write a PL/SQL code to explain any four predefined exception.
4. Discuss PRAGMA Exception.
5. Discuss the SQLCODE and SQLERRM functions.

312

6. Is it possible for a PL/SQL block to process more than one exception at a time?

4.10FURTHER READING

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan
2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbylvan.
3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

313

	3.3 DATA MODELING
	3.4 THE HIERARCHICAL DATA MODEL
	1.3.1. FULLY FUNCTIONAL DEPENDENCY (FFD)
	1.3.2. ARMSTRONG’S AXIOMS OF FUNCTIONAL DEPENDENCIES (INFERENCE RULES)
	A set of rules that may be used to infer additional dependencies was proposed by William W. Armstrong in 1974. These rules (or axioms) are a complete set of rules in that all possible functional dependencies may be derived from them. Below given are ...
	Lossy Decomposition: The decomposition of relation R into R1 and R2 is 148Tlossy148T when the join of R1 and R2 does not yield the same relation as in R. One of the disadvantages of decomposition into two or more relational schemes (or tables) is that...
	Lossless Join Decomposition: The decomposition of relation R into R1 and R2 is lossless when the join of R1 and R2 yield the same relation as in R. A relational table is decomposed into two or more smaller tables, in such a way that the designer can c...

	Dependency-Preserving Decomposition: The dependency preservation decomposition is another property of decomposed relational database schema D in which each functional dependency X -> Y specified in F either appeared directly in one of the relation sch...
	B. Fourth normal form (4NF):
	Fully Functional Dependence (FFD) is defined, as Attribute Y is FFD on attribute X, if it is FD on X and not FD on any proper subset of X. According to FFD definition Y must not be FD .on any proper subset of X.
	Transitivity Axioms is similar to the transitivity rule in algebra. If X (Y holds and Y (Z, then X (Z holds.
	A relation is decomposed into two or more smaller relations, in a way by which we can obtain the original relation by joining the decomposed partition of relation.
	A complete set or closure set of FDs is a set of all possible FDs that can be derived from a given set of FDs. If F is used to donate the set of FDs for relation R, then a closure of a set of FDs implied by F is denoted by FP+P.
	Merits of Normalization:
	More efficient data structure.
	Avoid redundant fields or columns.
	More flexible data structure.
	Better understanding of data.
	Ensures that distinct tables exist when necessary.
	Easier to maintain data structure.
	Minimizes data duplication.
	Demerits of Normalization:
	You cannot start building the database before you know what the user needs.
	On Normalizing the relations to higher normal forms i.e. 4NF, 5NF the performance degrades.
	It is very time consuming and difficult process in normalizing relations of higher degree.
	Careless decomposition may leads to bad design of database which may leads to serious problems.
	Oracle Instance consists of Two components namely Memory Structure and Background Processes.
	SGA_MAX_SIZE parameter of Initialization Parameter file is used to define size of SGA. The size of the SGA cannot exceed the parameter SGA_MAX_SIZE minus the combination of the size of the additional parameters, DB_CACHE_SIZE, LOG_BUFFER, SHARED_POOL_...
	System Monitor (SMON) is responsible for instance recovery by applying entries in the online redo log files to the datafiles.
	Archived Redo Log File is the copy of redo log files and necessary for recovery in the event of disk failure.
	Yes, A Large tablespace may have more than one datafiles.
	Distributed Databases Vs Distributed Processing
	Heterogeneous Services
	Transparent Gateway Agents
	Generic Connectivity
	3.6.2. TYPES OF DATABASE LINKS
	3.6.3. USERS OF DATABASE LINKS
	3.6.4. DATABASE LINK RESTRICTIONS
	Authentication Through Database Links
	Authentication Without Passwords
	Supporting User Accounts and Roles
	Centralized User and Privilege Management
	Database Encryption

	Remote SQL Statements
	Distributed SQL Statements
	Shared SQL for Remote and Distributed Statements
	Remote Transactions
	Distributed Transactions
	Two-Phase Commit Mechanism
	Database Link Name Resolution
	Schema Object Name Resolution
	If the database cannot find the object, then it checks public objects of the remote database. If it cannot resolve the object, then the established remote session remains but the SQL statement cannot execute and returns an error.

	TRANSPARENCY IN A DISTRIBUTED DATABASE SYSTEM
	Location Transparency: An Oracle Database distributed database system has features that allow application developers and administrators to hide the physical location of database objects from applications and users. Location transparency exists when a ...
	SQL and COMMIT Transparency: The Oracle Database distributed database architecture also provides query, update, and transaction transparency. For example, standard SQL statements such as SELECT, INSERT, UPDATE, and DELETE work just as they do in a non...
	Replication Transparency: The database also provide many features to transparently replicate data among the nodes of the system. For more information about Oracle Database replication features, see Oracle Database Advanced Replication.

	3.9.2. REMOTE PROCEDURE CALLS (RPCS)
	Distributed database is a set of databases in a distributed system that can appear to applications as a single data source. While distributed processing is the operation that occurs when an application distributes its tasks among different computers i...
	Generic connectivity enables you to connect to non-Oracle Database data stores by using either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE DB agent. The advantage to generic connectivity is that it may not be required for you t...
	A database link is a connection between two physical database servers that allows a client to access them as one logical database. These basic link types differ according to which users are allowed access to the remote database:
	Distributed query optimization is an Oracle Database feature that reduces the amount of data transfer required between sites when a transaction retrieves data from remote tables referenced in a distributed SQL statement.
	Full Export: The EXP_FULL_DATABASE and IMP_FULL_DATABASE, respectively, are needed to perform a full export. Use the full export parameter for a full export.
	Tablespace: Use the tablespaces export parameter for a tablespace export.
	User: This mode can be used to export and import all objects that belong to a user. Use the owner export parameter and the fromuser import parameter for a user (owner) export-import.
	Table: Specific tables (and partitions) can be exported/imported with table export mode. Use the tables export parameter for a table export.
	4.3.1 EXPORT UTILITY

	General Parameters are used with exp command are as:
	Full: Use this parameter to specify 19Tfull export mode19T.
	Tablespaces: Use this parameter to specify 19Ttablespace export mode19T.
	Owner: Use this parameter to specify 19Tuser export mode19T.
	Tables: Use this parameter to specify 19Ttable export mode19T.
	Query: Restricts the exported rows by means of a where clause. The query parameter can only be used for 19Ttable export mode19T. For obvious reasons, it must be appliable to all exported tables.
	Parfile: Specifies a parfile. Parameter file is a simple text files creating using any text editor.
	4.3.2 IMPORT UTILITY

	FFER:The integer specified for 18TBUFFER18T is the size, in bytes, of the buffer through which data rows are transferred.
	COMMIT:Specifies whether Import should commit after each array insert. By default, Import commits only after loading each table, and Import performs a rollback when an error occurs, before continuing with the next object.
	CONSTRAINTS: Specifies whether or not table constraints are to be imported. The default is to import constraints. If you do not want constraints to be imported, you must set the parameter value to 18Tn.
	FILE:Specifies the names of the export files to import. The default extension is .18Tdmp18T, because Export supports multiple export files, you may need to specify multiple filenames to be imported.
	FROMUSER:The parameter enables you to import a subset of schemas from an export file containing multiple schemas.
	FULL: Specifies whether to import the entire export dump file.
	GRANTS:Specifies whether to import object grants.
	PARFILE:Specifies a filename for a file that contains a list of Import parameters. For more information about using a parameter file, see 19TParameter Files19T.
	ROWS:Specifies whether or not to import the rows of table data.
	TABLES:Specifies that the import is a table-mode import and lists the table names and partition and sub partition names to import. Table-mode import lets you import entire partitioned or non-partitioned tables.
	TOUSER: Specifies a list of user names whose schemas will be targets for Import. The user names must exist prior to the import operation; otherwise an error is returned. The 18TIMP_FULL_DATABASE18T role is required to use this parameter. To import to ...
	USERID: Specifies the 5Tusername5T18T/5T18Tpassword5T (and optional connect string) of the user performing the import.
	/

	Making User-Managed Backups of Online Tablespaces and Datafiles
	Making User-Managed Backups of Online Read/Write Tablespaces

	Making User-Managed Backups of the Control File
	Backing Up the Control File to a Binary File

	Making User-Managed Backups of Archived Redo Logs
	4.4.2 RECOVERY

	Responding to the Loss of a Subset of the Current Control Files
	Copying a Multiplexed Control File to a Default Location

	Determining Which Datafiles Require Recovery
	Restoring Datafiles
	Recovering After the Loss of Archived Redo Log Files:
	Take frequent backups of physical datafiles and store them in a safe place, making multiple copies if possible
	The EXP_FULL_DATABASE and IMP_FULL_DATABASE, respectively, are needed to perform a full export.
	COMMIT specifies whether Import should commit after successfully execution of Import.
	Inconsistent Backup means a backup taken when database is open and database must require ARCHIVELOG mode for it. It is also known as HOT Backup.
	18TV$DATAFILE18T and 18TV$TABLESPACE18T data dictionary is used to obtain filenames and tablespace names for datafiles requiring recovery
	SQL Process

	Oracle Database provides following basic data types for attributes defined with CREATE TABLE clause of database.
	1.5.1. CREATE TABLE
	Syntax:
	Example:
	A. PRIMARY KEY

	Examples:
	1. Single Field Primary Key at Column Level:
	2. Composite Primary Key at Table Level:
	B. FOREIGN KEY / REFERENCE KEY
	Examples:

	1. Reference Key at Column Level:
	2. Reference Key at Table Level:
	UNIQUE
	Examples:

	Unique Key at Column Level:
	B. NOT NULL
	Examples:
	Examples:

	Check constraint at Table Level:
	Examples:

	Arithmetic Operator: Arithmetic operators manipulate numeric operands. Below Tables shows the list of Arithmetic Operators.
	Character Operator: Character operators are used in expressions to manipulate character strings. Below Tables shows the list of Character Operators.
	Comparison Operator: Comparison operators are used in conditions that compare one value or expression with another. The result of a comparison can be TRUE or FALSE.
	Range Searching Operator: In order to select data that is within a range of values, the range searching operator is used.
	Pattern Matching Operator: Pattern matching operator allows comparison of one string value with another string value, which is not identical. This is achieved by using wildcard characters.
	Logical Operator: Logical operators manipulate the results of conditions.
	Set Operator: Set operators combine the results of two queries into a single result.
	Example
	Display all customers not located in LONDON.
	SELECT * FROM CUSTOMER WHERE CITY <> 'LONDON';
	List all salesmen with commission between 11% and 15%.
	SELECT * FROM SALESMAN WHERE COMM BETWEEN 0.11 AND 0.15;
	List all salesmen whose names begin with letter ‘B’.
	SELECT * FROM SALESMAN WHERE SNAME LIKE 'B%';
	Example
	Count the no. of salesmen currently having orders.
	SELECT COUNT(DISTINCT (SNUM)) FROM ORDERS;
	Sometimes it is required to retrieve information from multiple tables; at that time Join condition is required. Rows in one table can be joined to rows in another table according to common values existing in corresponding columns. We must have to keep...
	When Writing a SELECT statement that joins tables, precede the column name with the table name for clarify and to enhance the database access.
	If the same column name appears in more than one table, the column name must be prefixed with the table name.
	To join N tables together, you need a minimum of N-1 join conditions.
	Example
	In this chapter, we have discussed about SQL Architecture and different SQL Statements. We have also explored data types available in SQL. We have come to know vital processes like Selection, Projection Grouping, Joins and Sub Queries. We have also de...
	Varchar2 represents variable length character data up to 4000 characters. While nvarchar2 represents Unicode character string having maximum size determined by the National Character Set with an upper limit of 4000 Bytes.
	TRUNCATE clause is used to delete all records from existing tables. Definition of table remains as it is. While DROP removes entire definition of table means delete all records including the table structure.
	Primary Key is used to uniquely identify each record in a database table. When Primary key is created on multiple fields of the table than it is known as Composite Primary Key. Composite Primary Key created at table level.
	Example:
);
	Above Query is used to Create Employee Table with Composite Primary Key namely (EmployeeId,BranchCode).
	An operator is used to perform different operation and return result set. In SQL operators have different types as follows:
	Arithmetic Operators
	Character Operators
	Comparison Operators
	Range Searching Operator
	Pattern Matching Operator
	Logical Operator
	Set Operator

	II. Procedure’s Body
	I. INSERT Statement

	Data Manipulation Language (DML)
	Data Definition Language (DDL)
	Data Control Language (DCL)
	Transaction Control Language (TCL)
	II. UPDATE Statement
	III. DELETE Statement
	We will continue with the previously created user_data table. We will create a stored procedure which will delete the record based on the provided userId.
	Example:
	2.5 FUNCTION BASICS
	2.5.1 PARAMETER PASSING TO A FUNCTION
	1. A Procedure is a subprogram block consists of a group of PL/SQL statements while
	function is an independent PL/SQL subprogram.
	2. Pre_defined_functions are stored in the standard package called “Functions, Procedures
	and Packages”.
	3. Function is called as a part of an expression:
	Example: squr:=count_sqr(‘10’);
	Procedure is called as a statement in PL/SQL:
	Example: count_salary(‘201’);
	4. Following are the five inbuilt String function:
	I.INSTR(maintext, string, start, occurance): It gives the position of particular text in the given string.
	Where,
	maintext is main string,
	string is text that need to be searched,
	start indicates starting position of the search (optional),
	accordance indicates the occurrence of the searched string (optional).
	Example:
	Select INSTR(‘Gujarat,’a’,2,1) from dual;
	Output: 4
	II. UPPER (string): It returns the uppercase of the provided string.
	Example:Select upper(‘baou’) from dual;
	Output: BAOU
	III. LOWER (string): It returns the lowercase of the provided string.
	Example:Select upper(‘BAOU’) from dual;
	Output: baou
	IV. INITCAP (string): It returns the given string with the starting letter in upper
	case.
	Example:Select (‘gujarat vidyapith’) from dual;
	Output: Gujarat Vidyapith
	V. LENGTH (text) Returns the length of the given string.
	Example:Select LENGTH (‘BAOU’) from dual;
	Output: 4
	5. Both can be called from other PL/SQL blocks.
	If the exception raised in the subprogram is not handled in the subprogram exception handling section, then it will propagate to the calling block.
	Both can have as many parameters as required.
	Both are treated as database objects in PL/SQL.
	6. Following table shows the difference between Procedure and Function:
	2. Define function. Explain the characteristics of functions.

	Items declared within package body are known as private. They are only accessed within the package. While items declared within package specification is public and available outside the package.
	The syntax for the package specification is as follows.
	Syntax:
	The syntax for the package body is as follows:
	Syntax:
	Package body is not required if the package specification contains only types, constants, variables, exceptions. This type of packages only contains global variables that will be used by subprograms or cursors.
	Uses of Triggers
	3.5.1.3 INSTEAD OF Trigger
	3.5.1.4 Compound Triggers
	3.5.3 DDL TRIGGERS

	3.6.1 BEFORE INSERT TRIGGER
	By observing the above execution, we can say that when we have inserted the records with date and user ‘28-march-19’,’vinod’ & ‘28-march-19’,’mukesh’ respectively; the created trigger will fire implicitly on Customer_Order table and replace the date a...
	Note: The values in Ord_Date and OrdCreated_By columns may be different for you as they depend on system date and user logged in.
	3.6.2 AFTER INSERT TRIGGER
	An After Insert Trigger means that the trigger will be fired after the insert operation is executed.
	Syntax:
	Example:
	Suppose we have a table named Customer as follows:
	We will also create a duplicate table of ‘Customer’ table as ‘Duplicate_Customer’ using the code below:
	Trigger:
	We can also create trigger for before update, after update, before delete and after delete operations.
	3.6.3 DROP TRIGGER
	3.6.4 ENABLE-DISABLE TRIGGER
	Example:
	Above statement uses the Alter Trigger statement to disable the trigger called Before_Insert_Trigger.

	To create a user, simply issue the Create User command to generate a new account.
	3.7.1 CREATING A USER
	Example:
	Create User Ved Identified By rdbms;
	Here we have simply created a Ved account that is identified or authenticated by the rdbms password.
	Privileges and Roles
	Privilegesdefines the access rights provided to a user on a database objects. There are two types of privileges:
	I. System Privileges: This privilege allows user to create, alter, or drop database
	elements.
	II. Object Privileges: This privilege allows user to execute, select, insert, or delete
	data from database objects to which the privileges apply.
	Roles are the collection of privileges or access rights. In case of many users in a database it becomes complex to grant or revoke privileges to the users. So, if we define roles we can automatically grant/revoke privileges.
	3.7.2 GRANT COMMAND
	Syntax:
	GRANT<privilege> to <user>
	Example:
	Grant Connect to Ved;
	3.7.3 REVOKE COMMAND
	3.7.4 DROP USER
	1. Trigger is a database object, executes automatically in response to some events on the tables or views. It is used to maintain the integrity constraint to the database objects.
	2. The word ‘Trigger’ means to activate. Triggers are mainly required for the following goals:
	To maintain complex integrity constraints on the database tables
	To audit table information by recording the changes
	To signal other program actions when changes are made to database table
	To enforce complex business rules
	To preventing invalid transactions
	Application Roles: You grant an application role all privileges necessary to run a given database application. Then, you grant the application role to other roles or to specific users. An application can have several different roles, with each role as...
	User Roles: You create a user role for a group of database users with common privilege requirements. You manage user privileges by granting application roles and privileges to the user role and then granting the user role to appropriate users.

	Granting and Revoking Roles
	Predefined Roles
	A. System Privileges
	B. Schema Object Privileges
	4.5.1. CREATE ROLE
	Syntax
	Example

	A. Grant TABLE Privileges to Role
	Syntax
	Example

	B. Revoke Table Privileges from Role
	Syntax
	Example

	4.5.2. GRANT ROLE TO USER
	Syntax
	Example

	A. Enable/Disable Role (Set Role Statement)
	Syntax
	Example

	B. Set role as DEFAULT Role
	Syntax
	Example

	4.5.3. DROP ROLE
	Syntax
	Example

	4.6.1. CREATE PROFILE
	In this chapter, we have learnt about Role and Privileges. We have also concluded the system and object privileges. We have also explored different operation of User Role like Create, Grant and Revoke Role and Drop. We have come to know how can we set...
	Any user Granted a role with ADMIN OPTION can Grant/Revoke that role to/from any other users.
	A user can receive Privileges in two different ways.
	Grant Privileges to Users explicitly
	Grant Privileges to a Role and then Grant that Role to one or more users.
	Set Role Statement is used to Enable or Disable a role for the current session.
	User Profile is a set of limits on database resources and user cannot exceed these limits.
	4. Explain parameterized Cursor with example.
	3. Explain various modes of lock.
	1. Exception is an error and Exception handling is the error handling part of PL/SQL block. The types of Exception are Predefined and user_defined. Some of Predefined exceptions are:
	CURSOR_ALREADY_OPEN
	DUP_VAL_ON_INDEX
	NO_DATA_FOUND
	TOO_MANY_ROWS
	INVALID_CURSOR
	INVALID_NUMBER
	LOGON_DENIED
	NOT_LOGGED_ON
	PROGRAM-ERROR
	STORAGE_ERROR
	TIMEOUT_ON_RESOURCE
	VALUE_ERROR
	ZERO_DIVIDE
	OTHERS.
	3. Write a PL/SQL code to explain any four predefined exception.
	4. Discuss PRAGMA Exception.

	MSIT 102.pdf
	Page 2

	MSIT BACK SIDE.pdf
	Page 6

	MSCIT - 102 BOOKS COVER Design.pdf
	Page 3

	MSCIT - 102 back side.pdf
	Page 4

	MSCIT 102.pdf
	Page 3

	MSCIT 102 - BACK PAGE.pdf
	Page 4

