
BSCCS-203
Object Oriented Programming using C++

Bachelor Of Science (Hons.)
Cyber Security
(BSCCS)

(Established by Government of Gujarat)

Dr. Babasaheb Ambedkar
Open University

BAOU
Educa�on
for All

Object Oriented Programming
using C++

20

Dr. Babasaheb Ambedkar Open University

24

Object Oriented Programming using C++

Expert Committee

Prof. (Dr.) Nilesh K. Modi

Professor and Director, School of Computer Science, Dr.

Babasaheb Ambedkar Open University, Ahmedabad

(Chairman)

Prof. (Dr.) Ajay Parikh
Professor and Head, Department of Computer Science

Gujarat Vidyapith, Ahmedabad

(Member)

Prof. (Dr.) Satyen Parikh

Dean, School of Computer Science and Application

Ganpat University, Kherva, Mahesana

(Member)

M. T. Savaliya

Associate Professor and Head

Computer Engineering Department
Vishwakarma Engineering College, Ahmedabad

(Member)

Mr. Nilesh Bokhani
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member)

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member Secretary)

Course Writer

Dr. Sanjib Kr. Kalita Krishna Kanta Handiqui State Open University

Arabinda Saikia Krishna Kanta Handiqui State Open University

Dr. Tapashi Kashyap Das Krishna Kanta Handiqui State Open University

Content Editor

Nilesh N. Bokhani

Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

ISBN:

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad While all efforts have been

made by editors to check accuracy of the content, the representation of facts, principles, descriptions and methods

are that of the respective module writers. Views expressed in the publication are that of the authors, and do not

necessarily reflect the views of Dr. Babasaheb Ambedkar Open University. All products and services mentioned are

owned by their respective copyrights holders, and mere presentation in the publication does not mean endorsement

by Dr. Babasaheb Ambedkar Open University. Every effort has been made to acknowledge and attribute all sources

of information used in preparation of this learning material. Readers are requested to kindly notify missing

attribution, if any.

Acknowledgement: The content in this book is modifications based on the
work created and shared by the Krishna Kanta Handiqui State Open
University for the subject Object Oriented Programming through C++ used
according to terms described under Creative Commons Attribution-Non
Commercial-Share Alike 4.0 License

Dr. Babasaheb
Ambedkar Open
University

Object Oriented Programming using C++
 BLOCK-1:

UNIT-1
Introduction to Object Oriented Programming 07

UNIT-2
Features of Object-Oriented Programming 19

UNIT-3
Elements of C++ Language 29

UNIT-4
Operators and Manipulators 48

BLOCK-2:

UNIT-5
Decision and Control Structures 75

UNIT-6
Array, Pointers and Structure 103

UNIT-7
Functions in C++ 128

UNIT-8
Introduction to Classes and Objects 144

BSCCS-203

BLOCK-3:

UNIT-9
Constructors and Destructors 181

UNIT-10
Operator Overloading 205

UNIT-11
Inheritance 224

BLOCK-4:

UNIT-12
Virtual Functions and Polymorphism 261

UNIT-13
File Handling 279

COURSE INTRODUCTION

Programming is a skill not a science. To develop this skill one needs to practice this programming for a

few months. After practicing for a few months this skill will develop automatically. Moreover,

programming is exercised with the help of some programming languages. Like natural languages

programming languages also have grammar and syntax. Initially, the beginners need to develop two

skills, first, the grammar and syntax of the language and, secondly, the programming skill i.e. the logic

of a program. Every programming language has unique grammar, syntax and approach.

C++ is a case sensitive object oriented programming language. This course is designed and developed

in such a way that it does not require any prior programming knowledge. Moreover, it does not require

any knowledge of mathematics. The aim of this course is to provide knowledge of programming. All the

features of OOPs are discussed with adequate examples. Before starting this course learners need to

have one computer with C++ compiler, so that they can practice the programming practically.

There are two blocks in this course:

Block 1 deals with the basic concept of OOPs and C++ programming. After going through this block

learners will be comfortable to learn block 2.

Block 2 concentrates on the implementation of the features of OOPs. All the features like class,

objects, constructors, destructors, operator overloading, inheritance and polymorthism are discussed

in this block.

Each unit of these blocks includes some along-side boxes to help you know some of the difficult,

unseen terms. Some “EXERCISES” have been included to help you apply your own thoughts. You may

find some boxes marked with: “LET US KNOW”. These boxes will provide you with some interesting

and relevant additional information. Again, you will get “CHECK YOUR PROGRESS” questions. These

have been designed to self-check your progress of study. It will be helpful for you if you solve the

problems put in these boxes immediately after you go through the sections of the units and then match

your answers with “ANSWERS TO CHECK YOUR PROGRESS” given at the end of each unit.

BLOCK INTRODUCTION

This course contains thirteen units in two blocks. Block I contains 7 units. These units discuss the

basic concept of C++ programming. The Unit 1 deals with the basic concept of object oriented

programming and introduces the learners to the concept of procedural programming, object oriented

programming, benefits of OOPs etc. Unit 2 introduces object oriented programming features like

abstraction, encapsulation, inheritance and polymorphism. The basic of C++ programming like data

type, keywords, character set, variables, headers files are discussed in Unit 3. Operators and their

precedence are discussed in Unit 4. Unit 5 discusses the control statements used for writing C++

program. Both the decision and loop control structures are discussed in this unit. Array, pointers

and structures are discussed in unit 6. Unit 7 discusses the details about functions like user defined

function, built in function, function call, function definition, declaration, actual parameter, formal

parameter etc.

UNIT 1: INTRODUCTION TO OBJECT ORIENTED
PROGRAMMING

 UNIT STRUCTURE

 1.1 Learning Objectives

 1.2 Introduction

 1.3 Benefits of OOP

 1.4 OOP Languages

 1.4.1 C++

 1.4.2 Smalltalk

 1.4.3 Java

 1.5 Elements of Object Oriented Programming

 1.5.1 Objects

 1.5.2 Classes

 1.6 How to write, compile and execute C++program

 1.7 Let Us Sum Up

 1.8 Further Reading

 1.9 Answers To Check Your Progress

 1.10 Model Questions

 1.1 LEARNING OBJECTIVES

After going through this unit you will be able to:

 describe object and class in real world as well as in Object

Oriented programming.

 define procedural programming and Object Oriented

programming(OOP)

 describe relationship between data and functions.

 describe benefits of OOP

 describe OOPs programming languages

 describe how to write, save, compile and execute C++ program

1.2 INTRODUCTION

The real world entities are called objects, which are derived from

some classes. An object may be physical or logical. For example, an

wooden table is a physical object with several attributes or properties such

as number of legs, color, weight, height etc. derived from class wood. But

proper classification of class and object is a little bit confusing. Because,

one may say that woods are objects derived from class tree, while another

Object Oriented Programming through C + + (Block - 1) 7

Unit - 1 Introduction to Object Oriented Programming

may say that different trees are objects derived from class forest and so

on. However, a class is a set of members or attributes or properties. The

members of a class do not have any value, but they are capable of holding

values or data. For example, if man is a class, then properties such as

name, address, sex, age do not have any particular value. But, when

objects are created from the class ‘man’ such as Hari, Jadu, Madhu etc.

then each object will contain some attributes value. For example name is

Hari, address is Guwahati, sex is male and age is 32. Attributes value for

each and every objects may be different or same. The number of attributes

of each object are same. There are two main categories of programming.

They are

a. Procedural programming

b. Object oriented programming (OOP).

a) Procedural programming : Procedural programming is comparatively

older than object oriented programming. The programming languages

like BASIC, COBOL, Pascal, FORTRAN, C are based on procedural

programming concept. In procedure oriented programming the problem

to be solved is treated as a sequence of steps. It basically depends on

function. For each activity a specific function is written. A function is a self

contained program to perform some specific task. It is defined somewhere

in the program and called from other location when it is required. Functions

are normally used to manipulate or process data. Data may be declared

as local or global. Local data are accessible from within the function only

whereas global data are accessible from any function within that program.

In a multi function program, many data items are placed as a global data

so that they may be accessed by all the functions. In a large program, it is

difficult to manage global data as many functions use the same data or

the same variable. Figure 1 depicts the relationship between data and

functions in procedure-oriented programming.

Fig. 1.1 : Relationship between data and functions

8 Object Oriented Programming through C + + (Block - 1)

Global data Global data

Function1

Local data

Function2

Local data

Function3

Local data

Object Oriented Programming through C + + (Block - 1) 9

Introduction to Object Oriented Programming Unit - 1

From Figure 1.1 it is clear that global data are accessible from all the

functions of that program whereas local data are accessible within that

function only. This reduces the reliability of global data. Another

disadvantage of procedural programming is that it is not based on real

world problems. The following are some characteristics of procedural

programming

a. Emphasis is given on step by step solution

b. Programs are divided into subprograms known as functions

c. Functions shares global data

d. There is no concept of data hiding

e. Functions transform data from one form to another form

f. Top-down approach is used in program design

b) Object Oriented Programming : Like hardware industry, software

industry is also changing day by day. Due to the technological

advancement, programming platform has also shifted from procedural

programming to object oriented programming. The primary concern of

procedural programming was that it views data and functions in two

separate entities, but in object oriented programming data and functions

are viewed in a single entity. As a result, reusability of code is possible in

OOP. The main advantages of OOP is that the programmer can create

modular, reusable code. The modular program allows the programmers

to modify a particular module without affecting the other modules. This

increases the programmer productivity.

The basic objective of object oriented programming is to reduce the

drawbacks of procedural oriented programming. OOPs consider data as

a critical element and does not allow it to flow freely around the program.

The access specifiers (private, public, protected) introduced in OOPs

protect data from its external access. In OOPs data and functions are

tightly bound to each other. Due to this reason data are not accessible

from outside functions. OOPs permit to decompose a problem into

subproblems depending upon the entities of the application. As an example,

in a library of a college the common entities are books, borrower, issue,

return etc. In OOPs data structure is designed based on the entities and

the corresponding operations in the form of functions. The relationship

between data and functions in object oriented programming have been

depicted in Figure 1.2.

Unit - 1 Introduction to Object Oriented Programming

Object1 Object2

Fig. 1.2 : Relationship between data and function

Objects are created from class. As an example if animal is the class then

tiger, lion, cow are the objects. A class is normally combination of data

and function. A function associated with a particular class can be accessed

through the object created from that class. Probably this features makes

OOPs more secure. The following are the some common features of

OOPs.

a. Focused on data rather than algorithm

b. Programs are based on objects

c. Data structures are based on entity

d. Functions and data are tied together

e. Hidden data are not accessible from external function

f. Objects may communicate to each other through functions

g. New data and functions can be added easily without affecting the

existing code.

Note : In C++ programming, a class is a set of variables and functions.

Variables are called data member and functions are called member

function. Data members are used to store data and member functions

are used to operate on data. The binding of data member and member

function into a single unit is called encapsulation.

data Data

Functions Functions

Object3

Functions

Data

Object Oriented Programming through C + + (Block - 1) 11

Introduction to Object Oriented Programming Unit - 1

 1.3 BENEFITS OF OOP

OOPs provide several benefits to both the system designer and

user. Since the objects are independent entities and share with other

objects through functions, so it provides better communication among

objects. The independence of each object provides easy development

and maintenance of a program. The main benefits of OOPs are

 New data and methods can be added at any stage of program

development without affecting the existing system

 Code can be reused through inheritance.

 Data hiding is one of the major benefits of OOPs. It helps the

programmer to build a secure program.

 Most of the OOP languages provide a standard class library that can

be extended by the users, hence it can reduce programming time and

effort. As a result programming productivity increases.

 Many OOP languages provide dynamic initalization of objects

 It is possible for multiple instances of an object to co-exist without any

interference.

 It is easy to partition the work into a number of modules based on

objects.

 1.4 OOP LANGUAGES

All programming languages are based on some programming

techniques. In OOP programming the attention is given on objects. A

CHECK YOUR PROGRESS

1. Write True or False

(i) Members of a class can have some values

(ii) COBOL is object oriented programming language

(iii) In procedural programming emphasis is given on step by step

solution

(iv) In OOP data and functions are same

(v) In OOPs Objects may communicate to each other through

functions

12 Object Oriented Programming through C + + (Block - 1)

Unit - 1 Introduction to Object Oriented Programming

language that is specially designed to support the OOP concepts makes

it easier to implement them. A language that supports several OOP

concepts is called object oriented language. OOP languages are classified

into two categories based upon the features they support.

a. Object based programming languages

b. Object oriented programming languages.

a. Object based programming style basically supports data

encapsulation and object identity. The following are the major features

supported by object based programming languages

i. Data encapsulation

ii. Data hiding and access mechanism

iii. Automatic and dynamic initialization of objects

iv. Operator overloading

b. Object oriented programming language incorporates all the object

based programming features along with the following two features.

i. Inheritance

ii. Dynamic binding

The following are some object oriented languages

1.4.1 C++

The C++ language was developed at AT & T Bell laboratories as

an extension of C language in 1980s. Bjarne Stroustrup was the

founder of C++. Initally it was not so powerful as it is today. The

language was developed taking the idea from C, Simula67 and

ALGOL68 programming languages. Initially C++ was known as “C

with Classes”. In the initial version of “C with Classes” features like

operator overloading, references and virtual functions are not

available. Later, it was added in C++. The name C++(pronounced

as C plus plus) was proposed by Rick Mascitti in 1983. Some of

the common features of C++ are classes, operator and function

overloading, free storage management, references, inline

functions, inheritance, virtual functions, streams for console and

file manipulation, templates and exception handling. In C++,

variables are known as data member and functions are known as

member function. Both the data members and member functions

are grouped into a single unit known as class. Memebers of a class

Object Oriented Programming through C + + (Block - 1) 13

Introduction to Object Oriented Programming Unit - 1

may be declared as private, protected and public. These three

keywords are called access specifiers. By default all members

are private. The private members of a class are accessible by the

member function of that class. In other words, private members

are not accessible from outside the class definition. Public members

are accessible from outside the class definiton, but it violates the

data hiding property. The term ‘data hiding’ means that data is

there but not accessible. Protected members are also not

accessible from outside the class definiton, but it is inheritable.

Inheritance is the feature through which code and members can

be reused in other classes. Another special member function

whose name is exactly same with class name is called

constructor. Constructors are used to initialize new objects. Like

constructor, another special member function used to destroy

objects is called destructor.

 1.4.2 Smalltalk

Smalltalk is the first object oriented language. It was developed at

Xerox’s Palo Alto Research Centre(PARC) in around 1970. It

introduces the basic concept of OOPs like objects, class, message,

method and inheritance. Smalltalk is efficient, portable, easy to use

and reliable. Smalltalk introduces the concept of mouse

programming, bit-mapped graphics display, windowing systems,

object oriented programming, user interface etc. Due to the licensing

restrictions and high cost the original Smalltalk-80 was not

circulated to the common people. It was basically used in research

and academic circles. The concept of functions and objects are

similar to C++.

 1.4.3 Java

Java is another object oriented programming language. It was

developed by Sun Microsystems in 1995. The latest release of the

Java Standard Edition is Java SE 8. The primary objective of Java

was Write Once, Run Anywhere. The following are some common

features of Java:

14 Object Oriented Programming through C + + (Block - 1)

Unit - 1 Introduction to Object Oriented Programming

a. Object Oriented: Java is pure object oriented. All programming

should be written within a class and it has to be executed with the

help of objects of that class.

b. Platform Independent: Java is platform independent. Its means

that the program written in one machine(specific architecture) can

execute in other machine(different architecture). This is because

when Java is compiled, it is not compiled into platform specific

machine; rather, it produced byte code. This byte code is distributed

over the web and interpreted by the Virtual Machine.

c. Simple: It is designed to be easy to learn. Anyone who has the

programming idea in C++ can learn Java easily.

d. Secure: You can use java compatible web browser to safely

download java applets without fear of viral infection or malicious

intent.

e. Architecture-neutral: Java compiler generates a machine

independent object file format, which makes the compiled code

executable on many processors, with the presence of Java runtime

system.

f. Portable: In addition to the architecture-neutral features java

programs are also portable. This is one of the important design

aspect of java that it can be portable.

g. Multithreaded: Java is multithreaded programming languages.

With this feature it is possible to write programs that can perform

many tasks simultaneously.

h. Distributed: Java is designed for the distributed environment of

the internet.

 1.5 ELEMENTS OF OBJECT ORIENTED
PROGRAMMING

The following are some components of object oriented programming

 1.5.1 Objects

Any logical or physical entities are called objects. The entities which

can touch through our hand are called physical entities. On the

Object Oriented Programming through C + + (Block - 1) 15

Introduction to Object Oriented Programming Unit - 1

other hand logical entities are not touchable with our hand like bank

account, salary, a job etc. Figure 1.3 depicts some example of

physical objects. Each object has some specific attributes. Figure

1.4 shows some object names and their corresponding attributes.

BOY DOG BOOK

Fig 1.3 : Examples of physical objects

Fig 1.4 : Object names and attributes

Every object has some attributes and and associated operations.

If we consider account as an object then Accountnumber,

Accounttype, name, balance are the attributes and deposite,

withdraw are the operations. Objects, attributes and operations are

created from real world applications.

 1.5.2 Classes

A class is a data structure that consists of a set of attributes and

operations. Attributes are called data member and operations are

called member function.

1.6 HOW TO WRITE/SAVE/COMPILE and EXECUTE
 C++ PROGRAMS

Most compilers have their own interface and editor except a few

such as COBOL, JAVA. C++ compiler has also its own editor. Writing a

program and execution is done in the following sequences-

Object : BOY

name

Weight

Height

Object : DOG

Type

Weight

Color

Object : BOOK

Author

Name

Publisher

16 Object Oriented Programming through C + + (Block - 1)

Unit - 1 , Introduction to Object Oriented Programming

1. Writing the program.

2. Saving the program.(a file name with .cpp extension)

3. Compile the program.(generate two more file with .obj and .exe

extension)

4. Linking the program with functions and

5. Executing the program.

Although these steps remain the same irrespective of the operating

system, the system commands used are different for different systems. If

you have MSDOS operating system and TURBO C compiler, then the

required steps are

C:\>

C:\>cd tc [or turboc]

C:\tc>tc(Here press enter key from the keyboard)

To highlight the menu option press F10 and select File->New. After

writing the program press F2 to save the program. Before executing the

program one should save the newly created program so that there is no

chance of loosing the program.The following keys are pressed to compile,

execute the program.

F9 - Compile

Ctrl+F9- Execute.

While using Microsoft Windows the steps would be

Start->program->MS DOS Prompt

C:\windows>

C:\windows>cd..

C:\>cd tc[or turboc]

C:\tc>tc(Here press enter key from the keyboard)

The program written by the programmer is known as source

program. The source program is then converted to object program

provided that there is no syntax error. The object programs are generated

automatically after successful compilation of the source program.

Working with UNIX or LINUX environment is a little bit different from

DOS and Windows environments. The commercial C-compiler for DOS

and UNIX are different with same functional capabilities. In UNIX operating

system programs are created using some text editor like ed or vi. UNIX

text editors have two working mode- one is text mode and the other is

command mode. Programs are written using text mode and saved by

using command mode. Esc key is used to switch from text mode to

Object Oriented Programming through C + + (Block - 1) 17

Introduction to Object Oriented Programming Unit - 1

command mode and i or a is used to get the text mode. Capital letters I or

A are not used as UNIX command- since the UNIX commands are case

sensitive. In UNIX compilation is performed with cc command as follows—

cc test.cpp (Where cc UNIX command and test.cpp is the file name)

After successful compilation of the source program object file or

program is generated with .o extension. Object files are then converted to

executable object file with the name a.out. The command for executing

a C program in UNIX environment is a.out.

 1.7 LET US SUM UP

 A class is a set of data member and member function

 Objects are run time entity of class

 There are two main categories of programming. They are

a. Procedural programming

b. Object oriented programming(OOP)

 For procedural programming emphasis is on data and function

 For object oriented programming(OOP) emphasis is on objects.

 The features of OOP’s are data encapsulation, data hiding, automatic

and dynamic initialization of objects, operator overloading, inheritance,

dynamic binding, polymorphism etc.

 Venugopal, K.P. (2013). Mastering C++. Tata McGraw-Hill Education

 Balagurusami, E. (2001). Object Oriented Programming with C++,

6e. Tata McGraw-Hill Education

1.9 ANSWERS TO CHECK YOUR PROGRESS

Answer to Q. No. 1

(i) False

(ii) False

(iii) True

(iv) False

(v) True

1.8 FURTHER READING

18 Object Oriented Programming through C + + (Block - 1)

Unit - 1 Introduction to Object Oriented Programming

 1.10 MODEL QUESTIONS

1. What is object oriented language?

2. The name C++(C plus plus) was proposed by

3. Is it possible to access private data member from outside the class

definiton?

4. What are the features of C++?

5. What are the features of Java?

6. Why OOP’s are preferable to procedural oriented language?

7. Give some real life examples of class, objects and operations.

Object Oriented Programming through C + + (Block - 1) 19

UNIT 2: FEATURES OF OBJECT ORIENTED
PROGRAMMING

 UNIT STRUCTURE

 2.1 Learning Objectives

 2.2 Introduction

 2.3 Inheritance

 2.3.1 Forms of Inheritance

 2.4 Defining the Derived Class

 2.4.1 Making Private Member Inheritable

 2.5 Virtual Base Class

 2.6 Encapsulation

 2.7 Polymorphism

 2.7.1 Function Overloading

 2.7.2 Operator Overloading

 2.8 Let Us Sum Up

 2.9 Further Reading

 2.10 Answers To Check Your Progress

 2.11 Model Questions

 2.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 learn about the different features like abstraction, encapsulation,

inheritance, polymorphism.

 describe the different forms of Inheritance

 explain the need and advantages of Inheritance

 2.2 INTRODUCTION

In the previous unit we have learnt about the basic concept of

programming languages like procedural or object oriented languages.

Every language has its own properties. Most of the object oriented

languages have some common properties like inheritance, encapsulation,

polymorphism etc. In this unit you will be able to learn about these properties

in brief. In the subsequent units you will be able to learn these features in

detail

20 Object Oriented Programming through C + + (Block - 1)

Unit - 2 Features of Object Oriented Programming

 2.3 INHERITANCE

Inheritance is a technique of creating a new class from an existing

one. It is like copying the existing codes from one location to another location

during run time. In real life, attributes of one class can be inherited by

another new class. For example, the face appearance of father may be

inherit ed by his child. Are all properties of the father inheritable to his child?

Definately no. For example, the qualification of the father is not inheritable

to his child. In C++, a class is a set of data member and member functions.

These members can be inherited from one existing class to another new

class. The existing class is called the base class or parent class and the

new one is called the derived class. The derived class may contain some

members from the base class and some from its own. A class can also

inherit properties from more than one class or from more than one level.

The derived class can inherit one or all members of the base class. The

main advantage of inheritance is to reduce the number of instructions in

the program and hence it reduces the programming time, effort and required

memory space.

 2.3.1 Forms of Inheritance

Inheritance is classified into the following forms based on the

levels of inheritance.

(i) Single Inheritance

(ii) Multiple Inheritance

(iii) Hierarchical Inheritance

(iv) Multilevel Inheritance

(v) Hybrid Inheritance

(i) Single Inheritance : A derived class with only one base

class is called single inheritance.

(ii) Multiple Inheritance : A derived class with several base

classes is called multiple inheritance.

(iii) Hierarchical Inheritance : Several derived classes with

only one base class is called hierarchical inheritance.

(iv) Multilevel Inheritance : The techniques of deriving a

class from another derived class is called multilevel

inheritance.

(v) Hybrid Inheritance : Inheritance that involves two or

more forms of inheritance is called hybrid inheritance.

Object Oriented Programming through C + + (Block - 1) 21

Features of Object Oriented Programming Unit - 2

(i) Single inheritance (ii) Multiple inheritance (iii) Hierarchical inheritance

EMPLOYEE EMPLOYEE

DEPT SALARY DEPT

SALARY PROJECT

(iv) Multilevel inheritance (v) Hybrid inheritance

Fig 2.1 Forms of Inheritance

 2.4 DEFINIING THE DERIVED CLASS

A derived class is a class that contains its own data members and

member functions and some from its base class. Derived class is defined

by specifying its relationship with the base class. The general form or

syntax of defining a derived class is:

There are two visibility mode in C++ private and public. It specifies,

whether members of the base class are derived privately or publicly. The

use of visibility mode in derived class definition is optional. The default

visibility mode is private.

Examples

class salary:private employee //private derivation of members from

class employee

{

data members and member functions of class salary;

};

class derived_class_name : Visibility_mode base_class_name

{

data members and member functions of derived class;

};

EMPLOYEE

SALARY

SALARY DEPT

EMPLOYEE

EMPLOYEE

SALARY DEPT

22 Object Oriented Programming through C + + (Block - 1)

Unit - 2 Features of Object Oriented Programming

class salary : public employee//public derivation of members from class

employee

{

data members and member functions of class salary;

};

class salary : employee//private derivation of members from class

employee

{

data members and member functions of class salary;

};

As discussed earlier, members of a base class can be derived

privately or publicly. When public members of a base class are inherited

as public, then public members of the base class become public in the

derived class and they are accessible from derived class objects. On the

other hand, if public members of a base class are inherited as private,

then the public members of the base class become private in the derived

class and they are not accessible from derived class objects. Private

members of a base class are not inherited directly. Inheritance of derived

class members to its base class is impossible.

2.4.1 MAKING PRIVATE MEMBER INHERITABLE

As discussed earlier, private members of the base class are

not inheritable to its derived class. One way to inherit a member is

by changing the limit of visibility from private to public. Public

members are inheritable to its derived class but violating the data

hiding property. Fortunately, C++ provides another visibility modifier,

protected, whose scope is in between private and public. Protected

members are inheritable like public members but not accessible

from outside the class definition like private member. When a

protected member is inherited in public mode, it becomes

protected in the derived class, and accessible by the member

functions of the derived class. It is also ready for further inheritance.

On the other hand, when a protected member is inherited in private

mode, it becomes private in the derived class. It is available to the

member functions of the derived class, but not ready for further

inheritance.

Object Oriented Programming through C + + (Block - 1) 23

Features of Object Oriented Programming Unit - 2

Table-2.1 : Visibility of inherited members

Base class

visibility

Derived class visibility

Public derivation Private derivation

Private

Protected

Public

Not inherited

Protected

Public

Not inherited

Private

Private

The keywords private, protected and public may appear

in any order and in any number of times in a program.

 2.5 VIRTUAL BASE CLASS

A base class that is derived with the keywork ‘virtual’ is called virtual base

class. The virtual base class concept is essential when one uses multiple

and multilevel inheritance in a single program.Consider a situation where

some employees works for a particular project and they belong to some

department. At the end of the project it is required to process their bill. This

situation may be depicted as in Fig. 2.2. The BILL has two direct base

classes ‘PROJECT’ and ‘DEPT’ which have a common base class

EMPLOYEE. The BILL class inherits the members of class EMPLOYEE

through PROJECT and DEPT class. Inheritance by the BILL class will

create a problem of duplicate data. All the public and protected memebrs

of EMPLOYEE class are inherited into BILL twice via PROJECT and DEPT.

This will generate duplicate data or ambigity in BILL class.This ambiguity

can be removed by making the common base class as virtual base class.

Remember virtual is a keyword. Virtual base class takes the necessary

action to remove this ambiguity. We will discuss virtual base class in

subsequent units.

Fig 2.2 : Multiple base class

PROJECT

BILL

DEPT

EMPLOYEE

24 Object Oriented Programming through C + + (Block - 1)

Unit - 2 Features of Object Oriented Programming

 2.6 ENCAPSULATION

The grouping of data and functions into a single unit is called en-

capsulation. Data encapsulation is the most powerful features of C++.

The functions which are grouped with the data are permitted to access

that data. No outside function can access data.

 2.7 POLYMORPHISM

Polymorphism means one name many forms. It is one of the important

features of OOPs. It can be classified as depicted in Figure 2.3

Fig. 2.3 : Forms of Polymorphism

 2.7.1 Function Overloading

Overloading means the same word or symbol with different

meanings. C++ supports the concept of function overloading or

function polymorphism i.e. different functions with the same

function name which performs different tasks. To differentiate one

function form another one must consider the list of arguments. The

function would perform different operations depending on the

argument list in the function call. This fact can be explained with

the help of an example. Suppose there are three students with same

name and title(say Dilip Medhi) in a class room. The class teacher

is decided to call one particular student for a particular task. The

basic problem for the teacher is that he can not call a particular

student name sharing the same with the two others because it

Operator

Overloading

Function

Overloading

Compile time

Polymorphism

Virtual

functions

Runtime

Polymorphism

Polymorphism

Object Oriented Programming through C + + (Block - 1) 25

Features of Object Oriented Programming Unit - 2

causes confusion to the students. The teacher has to take some

extra parameters such as color of shirt, fathers name, address

etc. Atleast one parameter must be different from one student to

another to identify them. Similarly, in C++ function overloading,

atleast one parameter must be different from one function to another

to make them unique. The overloaded functions must declare

globally. When calling a function, the number of actual parameter

and the number of formal parameter should match in type and their

order. In some situation, type of parameters may not match, then

the function selection involves the following steps:

(a) First, the compiler tries to find out the match for type of

actual parameter and formal parameter and their order.

(b) If match is not found, then the compiler tries to match as

follows

char to int(i.e. char in actual and int in formal)

float to double(i.e. float in actual and double in formal)

(c) When either of them fails, the compiler tries to use the

built-in conversions to the actual arguments.

 2.7.2 Operator Overloading

Overloading means many forms for different activities with one

common name. Operator overloading is one of the key features of

C++ language. It has the capability to provide the operators such

as +, - etc. with a special meaning for a data type. The technique

of giving such special meanings to an operator is known as operator

overloading. However, there are certain operators which cannot

be overload. C++ supports several operators to be overloaded as

stated in Table 2.2

Table 2.2 : List of operators to overload

Operators can be overloaded Operators can not be overloaded

Unary : ++ -- Members access operators (., .*)

Arithmetic : + - / * Scope resolution operator(::)

Relational : < > == Size operator(sizeof)

Shorthand :+= -= *= /= Conditional operator(?:)

Stream :<< >>

26 Object Oriented Programming through C + + (Block - 1)

Unit - 2 Features of Object Oriented Programming

Subscript :() []

Memory : new and delete

Arrow : ->

Comma : ,

To define an additional task to an operator, we must specify what it

means in relation to the class to which the operator is applied. This

is done with the help of a special member function, called operator

function. These functions should be either member function or friend

function. The basic difference between them is that a friend function

accepts only one argument for unary operators and two for binary

operators, while a member function has no argument for unary

operators and only one for binary operators.

Overloading without explicit arguments to an operator function is

known as unary operator overloading and overloading with a single

explicit argument is known as binary operator overloading.

Syntax for operator overloading:

Examples

(a) Unary operators (b) Binary operator overloading

(i) test operator +() (i) complex operator +(complex c1);

(ii) int operator –() (ii) int operator –(int a);

(iii) void operator ++() (iii) void operator *(complex c1);

(iv) void operator – –() (iv) void operator /(complex c1);

(v) int operator *() (v) complex operator +=(complex

c1);

Return type operator operatorsymbol ([arg1, [arg2]])

CHECK YOUR PROGRESS

1.Write True or False

(i) All members of a class are inheritable

(ii) Private members can be inherited

(iii) Binary operator can be overloaded

(iv) Unary operator can not be overloaded

(v) Virtual is a keyword

(vi) Virtual base class is used to remove ambiguity.

Object Oriented Programming through C + + (Block - 1) 27

Features of Object Oriented Programming Unit - 2

 2.8 LET US SUM UP

 Most of the object oriented languages have some common properties

like inheritance, encapsulation, polymorphism etc.

 Inheritance is the process of creating a new class from the existing

one.

 Private data are not inheritable.

 There are different types of inheritance like

(i) Single Inheritance

(ii) Multiple Inheritance

(iii) Hierarchical Inheritance

(iv) Multilevel Inheritance and

(v) Hybrid Inheritance

 In inheritance the parent class is called base class and the child class

is called derived class.

 There are three visibility modes like private, protected and public.

 The grouping of data and functions into a single unit is called encapsu-

lation.

 A base class that is derived with the keywork ‘virtual’ is called virtual

base class.

 The basic idea of operator overloading and function overloading

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata McGraw-

Hill Education

2.9 FURTHER READING

28 Object Oriented Programming through C + + (Block - 1)

Unit - 2 Features of Object Oriented Programming

 2.10 ANSWERS TO CHECK YOUR PROGRESS

1. (i) False

(ii) False

(iii) True

(iv) False

(v) True

(vi) True

 2.11 MODEL QUESTIONS

1. Explain the different features of object oriented languages

2. What is inheritance? What are the different forms of inheritance?

3. What is virtual base class? Why is it necessary?

4. What is polymorphism? What are the different types of polymorphism?

5. Mention the names of operators that can be overloaded

6. Mention the names of operators that cannot be overloaded

7. What is function overloading? Mention the implicit rules in function

overloading.

Object Oriented Programming through C + + (Block - 1) 29

UNIT 3 : ELEMENTS OF C++ LANGUAGE

 UNIT STRUCTURE

 3.1 Learning Objectives

 3.2 Introduction

 3.3 Token, Identifier and Keywords

 3.4 Character Set and Symbols

 3.5 Basic Data types in C++

 3.6 Variables

 3.7 Constants

 3.8 Dynamic Initialization of Variables

 3.9 Reference Variable

 3.10 Streams in C++

 3.11 Let Us Sum Up

 3.12 Further Reading

 3.13 Answers to Check Your Progress

 3.14 Model Questions

 3.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 learn about the basic elements of C++, viz. character set, token,

identifier and keywords

 declare variables and constants

 describe dynamic initialization of variable, and reference variables

 3.2 INTRODUCTION

Every programming language has its own syntax and rules. So, before

writing any error free program it is necessary to know the rules of syntax

of the language.

In this unit, we will introduce you to the some basic elements of C++

language including character set, token, identifier, keywords etc. We will

also discuss the variables, constants and reference variable. In addition,

we will also see how a variable can be initialized dynamically.

30 Object Oriented Programming through C + + (Block - 1)

Unit - 3 Elements of C++ Language

 3.3 TOKEN, IDENTIFIER AND KEYWORDS

TOKEN

A C++ program contains various components. The individual elements in

a program is identified as a token by the compiler. Tokens are classified in

the following types:

 Keywords

 Variables

 Constants

 Special character

 Operators

Keywords are a set of reserved words with fixed meanings e.g., int,

switch, char, class etc.

Variables are used to hold data temporarily, e.g., marks, age, name

etc.

Constants are fixed values like 3.2, 9.3 etc.

Special characters are symbols like #, ~ are known as special character

Operators are used to perform different operations such as arithmetic

or logic etc. e.g. +, -, :, ?, >, < etc.

IDENTIFIER

Identifiers are the names that are given to various program elements, such

as variables, functions and arrays. Identifiers consist of letters and digits,

in any order, except that the first character must be a letter. To construct

an identifier you must obey the following points:

 only alphabet, digit and lender scores are permitted.

 an identifier cannot start with a digit.

 identifiers are case sensitive, i.e. upper case and lower case letters

are distinct.

In C++, there is no limit to the length of an identifier and at least the first

1024 characters are significant. Some correct and incorrect identifiers

name given here :

Correct Incorrect

count 1 count

names #$sum

tax_rate order-no

_temp highbalance

Object Oriented Programming through C + + (Block - 1) 31

Elements of C++ Language Unit - 3

An identifier cannot be the same as a C or C++ keyword, and should not

have the same name as functions that are in the C or C++ library.

KEYWORDS

Reserved words are the essential part of language definition. The meaning

of these words has already been explained to the complier. So, you can’t

use these reserved words as a variable name. All C keywords are valid in

C++. There are 63 keywords in C++.

The common keywords in C and C++ are listed in Table 3.1. Table

 describes the additional keywords of C++.

Table 3.1 : C & C++ common keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 3.2 : Additional C++ keywords

asm private bool wchar_t

catch protected mutable explicit

class public typename static_cast

delete template const_cast export

friend this namespace true

inline throw using false

new try dynamic_cast typeid

oprator virtual reinterpret_cast

32 Object Oriented Programming through C + + (Block - 1)

Unit - 3 Elements of C++ Language

 3.4 CHARACTER SET AND SYMBOLS

Using the valid character set and symbols a source program is created.

The following is the valid list of character set and symbols in C++.

 3.5 BASIC DATA TYPES IN C++

C++ supports a wide variety of data types. We can choose the appropri-

ate type for writing error free programs. The data types in C++ can be

classified in the following categories.

We will concentrate on the discussion of basic data types in this

unit. The derived data types such as arrays and pointers and the user

defined data types such as structure, union and classes are being dis-

cussed in next units.Table 3.3 lists all combinations of the basic data types

and modifiers along with their size and ranges:

Table 3.3 : Basic data types and size

Type Size (Bytes) Range

char 1 -128 to 127

unsigned char 1 0 to 255

signed char 1 -128 to 127

int 2 -32768 to 32767

unsigned int 2 0 to 65535

signed int 2 -32768 to 32767

short int 2 -32768 to 32767

Basic Data Type

Char

Int

Float

Double

Derived Data Type

Array

Function

Pointer

Reference

User Defined Data Types

Structure

Union

Class

Alphabets A to Z,

a to z and _(under score)

Digits 0 to 9

Special symbols # , & | ! ? ~ ^ { } [] () < > . : ; $ ‘ “ + - /

* = % blank \

Object Oriented Programming through C + + (Block - 1) 33

Elements of C++ Language Unit - 3

unsigned short int 2 0 to 65535

signed sort int 4 -32768 to 32767

long int 4 -2147483648 to 2147483647

unsigned long int 4 0 to 4294967295

signed long int 4 -2147483648 to 2147483647

float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E-308

long float 10 3.4E-4932 to 1.1E+4932

 3.6 VARIABLES

A variable is an entity that is used to represent some specified type of

information within a program and whose value can be changed during the

execution of the program. A variable is denoted by giving a name to it. A

variable declaration associates a memory location to the variable name. It

means whenever we declare a variable, a definite amount of memory

location is reserved for it. The main factors associated with a variable are

as follows–

 Date type – type of the data it stores i.e. char, int, float, date

(user defined) etc.

 Variable Name – the name that is given to the variable by pro-

grammer.

 Address – address of the memory location.

 Value – data stored in memory locations.

We have already learnt in C programming, how to give names to a

variable, how to declare a variable and how to initialize values to a variable.

Let us discuss it briefly.

Variable Name

Variable names are indentifiers used to name variables. They are the

symbolic names assigned to memory locations. A variable name consists

of a sequence of letters and digits. The first one must be a letter. Examples

of some valid variable names are:

x sum count

name student_name MAX

age _num dept_num

34 Object Oriented Programming through C + + (Block - 1)

Unit - 3 Elements of C++ Language

Some invalid variable names are:

2 slum – first character should be a letter

date birth – blank is not allowed

Emp, record – , is not allowed

student--age – illegal character (-)

Variable Declaration :

We know that a variable must be declared before using it in a program.

Actually this declaration process reserves memory depending on the type

of the variable. Syntax for declaring a variable is shown below -

Data type VarName1, VarName n;

The following are some valid variable declaration statements:

int x; // x is an integer variable

int m, n, q; // m, n, q are integer variables

float root1, root2 // root1, root2 are floating point variables

Variables can also be declared at the point of their usage as follows :

for (int i = 0; i < 10; i++)

count << i;

int d = 10;

Here, variable i and d are defined at the point of their usage.

Variable Initialization

A variable can be assigned with a value during its declaration. The

assignment operator (=) is used in this case. The following syntax shows

how a variable initialized.

Data-type VariableName = constant value;

The following are the valid initialization statements :

int a = 20

float x = 2.25, y = 6.0925;

The following program demonstrates the initialization of variables.

// Program 3.1 : initialization of variables

#include<iostream.h>

#include<conio.h>

void main()

{

int x, y;// x and y are integer type variables

int z = 75;//75 is initialized to integer variables z

Object Oriented Programming through C + + (Block - 1) 35

Elements of C++ Language Unit - 3

float average;

clrscr ();

x = z;

y =z+50;// value of z is added with 50 and assigned to y

average = 5.125;

cout <<“x=” <<x << “\n”;

cout << “y =” <<y <<“\n”;

cout<<“z=”<<z<<“\n”;

cout <<“average=” <<average <<“\n”;

getch ();

}

OUTPUT : x = 75

y = 125

z = 75

average = 5.125

Here, the statement cout << “x=” <<x <<“\n”;

displays a message ‘x=’ followed by the contents of the variable x and then

a new line. We will discuss the input and output operations of C++, in the

next section of this unit.

 3.7 CONSTANTS

The constants in C++ are applicable to the values which do not change

during the execution of a program. C++ has two types of constants

(i) literal constants

(ii) symbolic constants

i) Literal constant

A literal constant is just a value. For example, 10 is a literal constant.

It does not have a name, just a literal value.

For example, int x = 100;

where x is a variable of type int and 10 is a literal constant. We

cannot use 10 to store another integer value and its value cannot be

altered. The literal constant does not hold memory location.

Depending on the type of data, literal constants are of the following

types shown with examples below

36 Object Oriented Programming through C + + (Block - 1)

Unit - 3 Elements of C++ Language

Example Constant Type

547 Integer constant

65.125 Floating point constant

0x98 Hexadecimal integer constant

0175 Octal integer constants

‘a’ Character constant

“Student Name” String constant

“1024” String constant

Remember that a character constant is always enclosed with single

quotation mark, whereas a string constant is always enclosed with

a double quotation mark. Another point to remember is that an octal

integer constant always starts with 0 and a hexadecimal integer

constant with 0x.

ii) Symbolic constant

A symbolic constant is defined in the same way as variable. However,

after initialization of constants the assigned value cannot be altered.

The constant can be defined in the following three ways :

a) # define

b) The const keyword

c) The enum keyword

a) # define : The # define preprocessor directive can be used for

defining constants as

define Maximum 100

define PI 3.142

define AGE 30

In the above example, Maximum, PI, AGE symbolic constants

contain the value 100, 3.142 and 30 and here it is not mentioned

whether the type is int, float or char. Every time when the

preprocessor finds the word Maximum, PI, AGE, it will just substitute

it with the values 100, 3.142 and 30 respectively.

The following program demonstrates the use of #define–

// Program 3.2

#include<iostream.h>

#include<conio.h>

#define PI 3.142

void main ()

Object Oriented Programming through C + + (Block - 1) 37

Elements of C++ Language Unit - 3

{

}

Output :

float radius, area;

clrscr ();

cout <<“Enter the radius :”;

cin >> radius;

area = PI * radius * radius;

cout << “Area of the circle =” <<area <<“\n”;

getch ();

Enter the radius : 2.5

Area of the circle = 19.6375

In the above program the statement

area = PI * radius * radius;

is translated by the preprocessor as

area = 3.142 * radius * radius;

and are calculated result is stored in the variable ‘area’ which is

displayed in the next statement.

b) const keyword : The syntax of defining variables with the const

keyword is shown below :

const [data type] variable name = constant value;

The following examples illustrate the declaration of constant variable :

const float p1 = 3.142;

const int TRUE = 1;

const int FALSE = 0;

The following program demonstrates the use of constant variable

and its declaration :

// Program 3.3

#include< iostream.h >

#include< conio.h >

const int MAX = 5;

void main ()

{

int i ;

clrscr () ;

for (i = 1; i < = MAX ; i+ +)

38 Object Oriented Programming through C + + (Block - 1)

Unit - 3 Elements of C++ Language

cout << “ The loop runs for =” << i << “times” <<

“/n” ;

getch() ;

}

Output:

The loop runs for 1 times

The loop runs for 2 times

The loop runs for 3 times

The loop runs for 4 times

The loop runs for 5 times

In the above program, the for loop will run for 5 times because the

MAX variable contains the constant value 5.

c) enum keyword : enum is a keyword to assign constant to a

variable. Constants can be defined using enumeration as given

below :

Example :

enum { a,b,c };

Here a,b and c are declared as integer constants with value 0,1

and 2.

We can also assign new values to a, b and c

enum { a = 5,b =10, c = 15 } ;

Here, a, b and c are declared as integer constants with value

5,10 and 15.

 3.8 DYNAMIC INITIALIZATION OF VARIABLE

The declaration and initialization of variable in a single statement at any

place in the program is called as dynamic initialization. The dynamic

initialization is always accomplished at run time i.e., when program

execution is going on . Dynamic means process carried out at run time,

for example, dynamic initialization, dynamic memory allocation etc.

The C++ compiler allows declaration and initialization of variables at

any place in the program. In C initialization of variables can be done at the

beginning of the program, but in C++ initialization of variables can be done

anywhere in the program.

The following program illustrates the dynamic initialization of variables in

C++.

Object Oriented Programming through C + + (Block - 1) 39

Elements of C++ Language Unit - 3

// Program 3.4

#include<iostream.h>

#include<conio.h>

void main()

{

}

Output :

clrscr () ;

cout << “Enter radius : / n”;

int r ;

cin >> r ;

float area = 3.14 * r * r ;

cout << “/n Area = “<< area ;

getch () ;

Enter radius = 3

Area = 28.26

In the above program, variable ‘r’ and area are declared inside the program.

In the statement float area = 3.14 * r * r ;

variable area is declared and initialize with the value 3.14 * r * r. This

assignment is carried out at run time. Such type of declaration and

initialization of a variable is called as dynamic initialization.

3.9 REFERENCE VARIABLE

C++ supports another type of variable called reference variable. A reference

variable acts as an alternative (alias) name for a previously defined variable.

Recall that a variable holds only a value and we have already learnt from C

programming that pointer variables are used to hold the address of some

other variables. A reference variable behaves similar as an ordinary variable

and also as a pointer variable. Inside a program code it is used as an

ordinary variable but it acts as a pointer variable. The syntax for declaring

a reference variable is shown below:

Data type & Reference variable name = variable name;

Example :

int sum = 100;

int & totalsum = sum;

Here, the variable sum is already declared and initialized. The second

40 Object Oriented Programming through C + + (Block - 1)

Unit - 3 Elements of C++ Language

statement defines an alternative variable name i.e. totalsum to variable

sum. Both the variables will display the same value, any change made in

one of the variables causes change in both the variables.

The following are some examples of reference variable–

char ch; float m;

char & ch 1 = ch float & n = m;

The following program illustrates the use of reference variables.

//Program 3.5

#include<iostream.h>

#include<conio.h>

void main()

{

int x = 10, y = 11, z = 12;

clrscr ();

int & m = x; // variable m becomes alias of x

cout <<“x =” <<x <<“y =” <<y <<“z=” <<z <<“m=” <<m<<“\n”;

m = y;//changes value of x to value of y

Cout<<“x=”<<x<<“y=”<<y<<“z=”<<z<<“m=”<<m<<“\n”;

m = z; // changes value of x to value of z

cout<<“x=”<<x<<“y=”<<y<<“z=”<<z<<“m=”<<m<<“\n”;

getch ();

}

Output:

x = 10 y = 11 z = 12 m = 10

x = 11 y = 11 z = 12 m = 11

x = 12 y = 11 z = 12 m = 12

From the above program we have seen that any change made to the

reference variable m also reflects in the variable x.

 3.10 STREAMS IN C++

Generally, every program involves in the process reading data from input

device - computation is done on the data - sending the result to output

devices. Hence, to control such operations every language provides a set

Object Oriented Programming through C + + (Block - 1) 41

Elements of C++ Language Unit - 3

of built-in functions. C++ also supports a rich set of functions for performing

input and output operations. These C++ I/O functions make it possible for

the user to work with different types of devices such as keyword, monitor,

disk, tape drives etc. It is designed to provide a consistent and devise

independent interface. These I/O functions are part of standard library. A

library is nothing but a set of .obj (object) files.

Now, we have come to know that the data flows from an input device

to programs and from programs to output device. In C++, a stream is

used to refer to the flow of data in bytes in sequence. If data is received

from input devices in sequence then it is called as source stream and

when the data is passed to output devices then it is called as destination

stream. The data is received from keyword or disk and can be passed on

to monitor or to the disk. The following figure describes the concept of

stream with input and output devices.

Fig. 3.1 : Streams with I/O devices

Data in source stream can be used as input data by program. So the

source stream is also called as input stream. The destination stream

that collects output data from the program is known as output stream.

The mechanism of input and output stream is illustrated in figure 3.2.

Input stream

Input Device Extraction from

input stream

Output stream

Fig. 3.2 : Input and output streams

Insertion from
output stream

Thus, the stream acts as an intermediator or interface between I/O devices

Output Device

Stream

Disk Disk

Monitor Keyword

42 Object Oriented Programming through C + + (Block - 1)

Unit - 3 Elements of C++ Language

and the user. The input stream pulls the data from keyword or storage

devices such as hard disk, floppy disk etc. The data present in output

stream is passed on to the output devices such as monitor, printer etc.

C++ has a number of predefined streams that are also called

standard I/O objects. These streams are automatically activated when

the program execution starts. The four standard streams cin, cout, cerr

and clog are automatically opened before the function main() is executed;

they are closed after main() has completed. These predefined stream

objects are declared in the header file iostream.h. In this unit, we will

concentrate on the discussion about cin and cout.

Output stream

The output stream allows to perform write operation on output devices

such as monitor, disk etc. Output on the standard stream is performed

using the cout object. The syntax for standard output operation is as follows:

cout << variable;

The cout object is followed by the symbol << which is called the insertion

operator and then the items (it may be variable/constants/expressions)

that are to be displayed.

The following are examples of stream output operation:

cout << “KKHSOU” ;

cout << “BCA 3rd semester” ;

float area ;

cout << area ;

char code ;

cout << code ;

More then one item can be displayed using a single cout output stream

object. Such output operations are called cascaded output operations. As

an example in the above programs 3.1, 3.2, 3.4 we have already used

cascaded output operation. The following are some statements which we

have used in our previous programs

cout << “Area =” << area ; and

cout << “x = “<< x << “ y = “ << y << “ z = “<< z << “ m = “<< m << “ \n “;

The cout object will display all the items from left to right, we have

shown in RUN portion of the program. In the first statement it will first

display “ Area = “ and then will display the value of the `area` variable

which will be finally

Area = 28.26

Object Oriented Programming through C + + (Block - 1) 43

Elements of C++ Language Unit - 3

The second statement will be displayed as–

x = 10 y = 11 z = 12 m = 10

Where 10,11,12,10 are the value of the variable x, y, z and m.

The complete syntax of standard output stream operation is as follows :

cout << variable1 << variable2 <<<< variableN ;

Input stream :

The input stream allows to perform read operation through input devices

such as keyboard, disk etc. Input from the standard stream is performed

using the cin object. The syntax for standard input operation is as follows :

cin >> variable ;

The cin object is followed by the symbol >> which is called the extraction

operator and then the variable, into which the input data is to be stored.

The following are some example of standard input operations :

int r ;

cin >> r ;

float radius ;

cin>>radius;

char name [25] ;

cin >> name ;

Using the cin input stream object inputting of more then one item can also

be performed. The complete syntax of the standard input stream operation

is as follows:

cin >> variable 1 >> variable 2 >>....>>variable N;

Following are some valid input statements;

cin >> i >> j >> k ;

cin >> name >> age >> address ;

The following program illustrates the use of cin and cout object :

// Program 3.6

#include<iostream.h>

#include<conio.h>

void main ()

{

int marks1, marks2, marks3 ;

char name [25] ;

char semester [15] ;

clrscr () ;

44 Object Oriented Programming through C + + (Block - 1)

Unit - 3 Elements of C++ Language

cout << “====================================”;

cout << “ \n “ ;

cout << “ Enter Marks : “ ;

cin >> marks1 >> marks2 >> marks3 ;

cout << “ Enter Name : “ ;

cin >> name ;

cout << “Enter Semester : ;

cin >> semester ; << “/n”;

cout<< Marks 1 = “<<marks1<<“\n”<< “Marks 2 = “marks2

<<“\n”

<<“Marks 3 = “ <<marks 3 << “\n” ;

cout << “/n =======The End ===================” ;

getch () ;

}

Output :

===

Enter Marks : 61 71 59

Enter name : Bikash Bora

Enter Semester : 3rd Semester

Marks 1 = 61

Marks 2 = 71

Marks 3 = 59

===============The End ===================

The following figure shows flow of input and output stream :

Fig. 3.3 : Working of cin and cout statement

variable MEMORY >>

Cin

variable

cout

<<

Input

device

Output

device

Object Oriented Programming through C + + (Block - 1) 45

Elements of C++ Language Unit - 3

 3.11 LET US SUM UP

 In C++, tokens are the various elements present in a program.

Tokens can be classified as - keyword, variable, constants, special

character and operators.

 Identifiers are names of variables, function and arrays. They are user-

CHECK YOUR PROCESS

1. State whether the following statements are TRUE or FALSE

(a) A variable name can consist of letters, digits and

underscore (-) but no other special characters.

(b) In dynamic initialization, we initialize a variable at compile

time.

(c) In C++, an identifier must be initialized using constant

expressions.

(d) $age is a valid variable name.

(e) Cin is also called extraction operator.

2. Choose the correct answer from the following:

(i) Which of the following is a reserved word in C++:

(a) template (b) throw

(c) this (d) all of the above

(ii) A variable defined within a block is visible :

(a) within a block (b) within a function

(c) both (a) and (b) (d) none of the above

(iii) The cin and cout functions require the header file to

include:

(a) isotream.h

(c) iomanip.h

(iv) The streams is a :

(a) flow of data

(c) flow of statements

(b) stdio.h

(d) none of the above

(b) flow of integers

(d) none of the above

(v) Which of the following is C++ standard stream :

(a) cin (b) cout

(c) cerr (d) All of the above

46 Object Oriented Programming through C + + (Block - 1)

Unit - 3 Elements of C++ Language

defined names, consisting of sequence of letters and digits, with a

letter as a first character,

 The C++ keywords are reserved words by the compiler. All C

language keywords are valid in C++ and a few additional keywords

are added.

 Variables are used to store value i.e. information. A variable is a

sequence of memory locations, which are used to store assigned

values.

 C++ permits declaration of variables anywhere in the program.

 The constants in C++ are applicable to those values, which do not

change during the execution of a program. The two types of constants

are literal and symbolic.

 The initialization of variable at run-time is called as dynamic

initialization.

 In C++, a reference variable acts as an alternative (alias) name for a

perviously defined variable.

 C++ supports all data type in C.

 A stream is a series of bytes that acts as a source and destination

for data. The source stream is called input stream and the destination

stream is called output stream.

 The cin, cout, cerr and clog are predefined streams.

 The header file iostream.h must be include when we use cin and

cout functions.

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata McGraw-

Hill Education

3.12 FURTHER READING

Object Oriented Programming through C + + (Block - 1) 47

Elements of C++ Language Unit - 3

 3.13 ANSWER TO CHECK YOUR PROGRESS

1. (a) T, (b) F, (c) F, (d) F, (e) T.

2. (i) d, (ii) a, (iii) a, (iv) a, (v) d.

 3.14 MODEL QUESTIONS

1. What are identifiers, variables and constants?

2. What is the difference between a keyword and an identifier?

3. List the rules of naming an identifier in C++?

4. Which are the two types of constants? Describe them with suitable

examples ?

5. What is dynamic initialization? Is it possible in C?

6. What is the difference between reference variable and normal

variable?

7. Write short note on the following:

(a) Dynamic initialization of variable

(b) Reference variable

(c) Input stream

(d) Output stream

(e) Constants

(f) Variables

48 Object Oriented Programming through C + + (Block - 1)

UNIT 4: OPERATORS AND MANIPULATORS

UNIT STRUCTURE

 4.1 Learning Objectives

 4.2 Introduction

 4.3 Operators

 4.4 Types of Operators

 4.4.1 Arithmetic Operator

 4.4.2 Relational and Logical Operator

 4.4.3 Assignment Operator

 4.4.4 Increment and Decrement Operator

 4.4.5 Bitwise Operator

 4.4.6 Conditional Operator

 4.4.7 Comma Operator

 4.4.8 sizeof Operator

 4.4.9 Scope Resolution Operator

 4.4.10 Insertion and Extraction Operator

 4.4.11 Address and Indirection Operator

 4.4.12 Memory Management Operator

 4.5 Precedence and Associativity

 4.6 Manipulators

 4.7 Let Us Sum Up

 4.8 Further Reading

 4.9 Answers To Check Your Progress

 4.10 Model Questions

 4.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 describe about operators and manipulators in C++

 describe different types of operators like arithmetic, relational,

logical, bitwise etc.

 describe to use scope resolution, insertion, extraction operators

 describe precedence and associativity of operators

Object Oriented Programming through C + + (Block - 1) 49

Operators and Manipulators Unit - 4

 4.2 Introduction

In the earlier units, we become familiar with the elements of C++ lan-

guage. These variables, constants and other elements can be joined to-

gether by various operators to form expressions. All C language operators

are valid in C++. In addition, C++ introduces some new operators.

This unit describes the opereators used in C++ language. It also

introduces the concept of manipulators which are required to format the

display of data.

 4.3 Operators

An operator consists of symbols or words which help the user to com-

mand the computer to do a certain mathematical or logical manipulations.

They are used in programs to manipulate data and variables. Operators

are essential to form expressions.

 4.4 Types of Operators

C++ has a rich set of operators which can be classified based on their

utility and action. There are different types of operators like arithmetic,

relational, logical, bitwise, increment and decrement, assignment , condi-

tional comma etc. C++ also provides the facility to give several meanings

to an operator depending upon the type of arguments used.

 4.4.1 Arithmetic Operator

The operators used to perform arithmetic operations like plus, mi-

nus, multiplication, division etc. are known as arithmetic operators.

The basic arithmetic operators in C++ are listed in Table 4.1.

Table 4.1 : Arithmetic Operators

Operator Action

– Subtraction

+ Addition

* Multiplication

/ Division

% Modulus

50 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

The operators +, -, * and / all work the same way as they do in other

programming languages like C. We can apply them to almost any

built-in data type. When we apply / (division) to an integer or char-

acter, any remainder will be truncated.

For example, 7/2 will equal 3 in integer division. But the

modulus operator (%) produces the remainder of an integer divi-

sion, i.e., 7%2 will give 1.

/*Program 4.1: Program showing summation, subtraction, multi-

plication, division, modulo division, increment, decrement of two

integer numbers*/

#include<iostream.h>

#include<conio.h>

int main()

{

int a, b, sum, sub, mul, div, mod;

clrscr();

cout<<"Enter two integer numbers:";

cin>>a>>b; //inputs the operands

sum = a+b;

cout<<"\n The sum is ="<<sum;

sub = a-b;

cout<<"\n The difference is= "<<sub;

mul = a*b;

cout<<"\n The product is = "<<mul;

div = a/b; // will give the quotient

cout<<"\n The division is = "<<div;

mod = a%b; //will give the remainder

cout<<"\n The modulus is = "<<mod;

getch();

return 0;

}

If we enter 7 and 2 as input number then the output of the above

program will be like this:

Enter two integer number: 7 2

The sum is = 9

The difference is = 5

Operand:

The data items that

operators act upon

are called operands.

Object Oriented Programming through C + + (Block - 1) 51

Operators and Manipulators Unit - 4

The product is = 14

The division is = 3

The modulus is = 1

 4.4.2 Relational and Logical Operators

Often it is required to compare the relationship between operands

and bring out a decision and program accordingly. The operands

can be literals(constants), variables or expressions. For example,

we may compare the age of two persons, marks of students, sal-

ary of persons, or the price of two items, and so on. These com-

parisons can be done with the help of relational operators.

With the help of logical operators these relationships can be

connected. The relational and logical operators often work together

and they are discussed together here. The relational and logical

operators supported by C++ are listed in Table 4.2. The relational

and logical operator introduce the idea of true and false value. We

have learned earlier that true is any value other than zero and false

is zero.

Table 4.2 : Relational and Logical Operators

Relational Operators Action

>

>=

<

<=

= =

! =

Greater than

Greater than or equal

Less than

Less than or equal

Equal

Not equal

Logical Operators Action

&&

||

!

AND

OR

NOT

Expressions that use relational or logical operators return 0

for false and 1 for true. C++ supports this zero/nonzero concept.

However, it also defines the bool data type and the Boolean con-

stants true and false. In C++, a 0 value is automatically converted

into false, and a non-zero value is automatically converted into true.

52 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

A simple relational expression contains only one relational

operator and takes the following form:

where operand1 and operand2 are expressions, which may

be simple constants, variables or combination of them i.e., expres-

sion. Some examples of relational expressions and their evaluated

values are listed below:

3.5 <= 12 TRUE

–6 > 0 FALSE

10 < 7 + 5 TRUE

When arithmetic expressions are used on either side of a

relational operator, the arithmetic expressions will be evaluated first

and then the results compared. The truth table for logical operators

cosidering 1 for true and 0 for false is shown in Table 4.3.

AND (&&)

The logical AND operator is used to evaluate two conditions

or expressions with relational operators simultaneously. If both the

expressions to the left and to the right of the logical operator are

true then the whole compound expression is true. For example :

a>b && x = = 8

The whole expression is true only if both expressions a>b

and x==8 are true i.e., if a is greater than b and x is equal to 8.

OR (||)

The logical OR operator is used to combine two expressions

or the condition evaluates to true if any one of the two expressions

is true. For example:

a < m || a < n

The expression evaluates to true if any one of them is true or

if both of them are true. It evaluates to true if a is less than either m

or n and when a is less than both m and n.

NOT (!)

The logical NOT operator takes single expression and evalu-

ates to true if the expression is false and evaluates to false if the

expression is true. In other words it just reverses the value of the

expression.

operand1 relational operator operand2

Object Oriented Programming through C + + (Block - 1) 53

Operators and Manipulators Unit - 4

Table 4.3 : Truth table for Logical AND, OR, NOT

operand1 operand2 NOT NOT AND OR

a b !a !b a&&b a||b

T T F T T T

T F F T F T

F T T F F T

F F T T F F

(T indicates True and F indicates False)

CHECK YOUR PROGRESS

1. Choose the appropriate option for the correct answer:

(i) 15%6 yields a result of

(a) 3 (b) 2

(c) 0 (d) none of these

(ii) !(-6>0) results

(a) False

(c) Both a) and b)

(b) True

(d) none of these

2. Give the output of the following code:

void main()

{ int i=2;

cout<<“Output :”<<endl<<i+5<<endl<<i-3<<endl<<i;

}

3. What is the final value of x if initially x has the value 1, after

execution of the following codes:

(a) if(x>=0) (b) if(x>=0)

x+=10; x+=10;

else if(x>=10) if(x>=10)

x+=2; x+=2;

54 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

 4.4.3 Assignment Operator

C and C++ use a single equal sign (=) to indicate assignment op-

eration. The general form of assignment operator is:

where an expression can be a single variable or literal, or a

combination of variables, literals, and operators. The left part of the

assignment must be a variable or a pointer. It cannot be a function

or a constant. For example, in the following assignment statement:

sum = a + b ;

the value of a + b is evaluated first and then substituted to the

variable sum. Like C, shortcut of assignment operator is possible

in C++ also. For example, in place of the following statement:

a = a+1;

we may use the shorthand form : a += 1;

It is also possible to assign many variables with the same

value by using multiple assignments in a single statement. For ex-

ample, the following statement assigns a,b and c the value 0:

a = b = c = 0;

 4.4.4 Increment and Decrement Operator

The increment operator (++) adds 1 to its operand and the dec-

rement operator (- -) substracts 1. Increment and decrement op-

erators require single variable as their operand. These operators

are used in a program as follows:

++ i; or i ++;

- - i; or i - -;

where i is an integer type variable. When an increment or

decrement operator precedes its operand, then they are in prefix

form. The increment or decrement operation in prefix notation is

performed before obtaining the value of the operand for use in the

expression. If the operator follows its operand i.e., in postfix form,

the value of the operand is obtained before incrementing and

decrementing it. For example, consider the following statements:

variable_name = expression;

Object Oriented Programming through C + + (Block - 1) 55

Operators and Manipulators Unit - 4

+ + a ;

a + +;

In the above statements, it does not matter whether the in-

crement operator is pre incremented or post incremented; it will

produce the same result. However, in the following statements, it

does make a difference:

int x = 0, y = 5;

x = ++y;

Here, the value of x after the execution of this statement will

be 6, since y is incremented first and then assigned. If we write

x = y++;

instead of the previous, then the value of x will be 5, since it is

assigned first and then incremented.

 4.4.5 Bitwise Operator

Bitwise operators are used for manipulation of data at bit level. These

operators are used for testing, complementing, setting, or shifting

bits to the right or left in a byte or word. Bitwise operators can be

used in char and int type data. We cannot use bitwise operations

on float, double, long double, void, or bool types of data. The

bitwise AND, OR, NOT(one’s complement) possesses the same

truth table as their logical equivalents, except that they work bit by

bit. Bitwise operators used in C++ are listed in table 4.4.

Table 4.4 : Bitwise Operators

Operator Action

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

~ Bitwise NOT

<< Bitwise left shift

>> Bitwise right shift

Relational and logical operators always produce a result that is ei-

ther true(1) or false(0), whereas the similar bitwise operations may

produce any arbitrary value in accordance with the specific opera-

56 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

tion. The truth table of Bitwise AND (&), OR(|) and NOT(~) opera-

tors are same with logical AND(&&), OR(||) and NOT(!)

respectively(table 4.3).

Following is an example of bitwise AND operator :

unsigned int a = 60; // 60 = 0011 1100

unsigned int b = 13; // 13 = 0000 1101

unsigned int c = 0; // &

c = a & b; //12 = 0000 1100

The bitwise OR operator places a 1 in the resulting value’s

bit position if either operand has a bit set (i.e.,1) at the position.

Operation of bitwise OR(|) is shown with the following statements:

unsigned int a = 60; // 60 = 0011 1100

unsigned int b = 13; // 13 = 0000 1101

unsigned int c = 0; // |

c = a | b; // 61 = 0011 1101

The bitwise exclusive OR (XOR) operator sets a bit in the

resulting value’s bit position if either operand (but not both) has a bit

set (i.e.,1) at the position. Bitwise exclusive OR operation can be

understood with the following statement:

unsigned int a = 60; // 60 = 0011 1100

unsigned int b = 13; // 13 = 0000 1101

unsigned int c = 0; // ^

c = a ^ b; // 49 = 0011 0001

The bitwise NOT (~) operator reverses each bit in the oper-

and. That is, all 1s are set to 0, and all 0s are set to 1.

The bit-shift operators, >> and <<, move all bits in a value to

the right or left as specified. As bits are shifted off one end, 0’s are

brought in the other end. The bits shifted off one end do not come

back around to the other. The bits shifted off are lost. In the case of

a signed, negative integer, a right shift will cause a 1 to be brought

in so that the sign bit is preserved.

The left shift operator shifts bits to the left. Let us consider

the following declaration:

unsigned int a = 5; // 5 in binary = 00000000 00000101

a = a<<1; // after left shift by 1 = 00000000 00001010

a=a<<15;

// after left shift by 15

= 10 in decimal

=10000000 00000000

 = 32768 in decimal

Object Oriented Programming through C + + (Block - 1) 57

Operators and Manipulators Unit - 4

Shifting once to the left multiplies the number by 2. Multiple

shifts of 1 to the left, results in multiplying the number by 2 over and

over again. In other words, multiplying by a power of 2.

For example, let us evaluate 4 << 2. In binary 16-bit format, 4

is 00000000 00000100. To evaluate 4<<2, we can add 2 zeros to

the end of its binary equivalent. It gives 00000000 000010000, which

is 16, i.e., 4*22 = 4*4 = 16. Similarly, 4 << 3 can be evaluated by

adding 3 zeros to get 00000000 00100000, which is 4*23 = 4*8 =

32. Some other examples are:

5 << 3 = 5*23 = 5*8 = 40

8 << 4 = 8*24 = 8*16 = 128

1 << 2 = 1*22 = 1*4 = 4

The right shift operator shifts bits to the right. As bits are

shifted toward low-order position, 0 bits enter the high-order posi-

tions, if the data is unsigned. If the data is signed and the sign bit is

0, then 0 bits also enter the high-order positions. For example, let

us consider the statement

unsigned int x = 40960;

and x in bibary 16-bit format is 10100000 00000000. Now if we

apply right shift, then

x >> 1 is 01010000 00000000 or 20480 decimal

and x >> 15 is 00000000 00000001 or 1 decimal

/* Program 4.2: Program for the demonstrating of left shift and

right shift */

#include<iostream.h>

#include<conio.h>

int main()

{

unsigned int a,b,c;

a=5;

b=8;

c=40960;

clrscr();

cout<<"\na ="<<a;

a=a<<1; //left shift by 1

cout<<"\na after left shift by 1:"<<a; //

output will be 10

58 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

cout<<"\n\nb ="<<b;

b=b>>1; //right shift by 1

cout<<"\nb after right shift by 1:"<<b;

//output will be 4

cout<<"\n\nc ="<<c;

c=c>>15; //right shift by 15

cout<<"\nc after right shift by 15:"<<c;

//output will be 1

getch();

return 0;

}

 4.4.6 Conditional Operator

The conditional operator consists of two symbols, the question mark

(?) and the colon (:) . The syntax is

where exp1, exp2, and exp3 are expressions. exp1 is evalu-

ated first. If the expression is true then exp2 is evaluated and its

value becomes the result of the expression. If exp1 is false, exp3 is

evaluated and its value becomes the result of the expression. For

example, let us consider the program segment :

a = 10;

b = 15;

x = (a > b) ? a : b;

Here x is assigned the value 15. As the condition (a>b) is

false for a= 10 and b=15, therefore the value of b will be assigned

to x.

//Program 4.3 : Program showing the use of conditional op-

erator?

#include<iostream.h>

#include<conio.h>

int main()

{

int age;

clrscr();

cout<<"Enter your age in years: ";

exp1 ? exp2 : exp3 ;

Object Oriented Programming through C + + (Block - 1) 59

Operators and Manipulators Unit - 4

cin>>age;

(age>=18)?(cout<<"\nYou can vote\n"):(cout<<"You

cannot vote");

getch();

return 0;

}

If we enter age as 26 then the output will be:

Enter your age in years: 26

You can vote

Again, if we run the program by entering age as 15, then the

output will be:

Enter your age in years:15

You cannot vote

 4.4.7 Comma Operator

The comma operator can be used to link related expressions to-

gether. The comma allows for the use of multiple expressions to

be used where normally only one would be allowed. The comma

operator forces all operations that appear to the left to be fully com-

pleted before proceeding to the right of comma. Let us consider

the following declaration:

The comma ensures that num2 will not be changed to 2 be-

fore num2 has been added to 1 and the result placed into num1.

We will observe the use of comma operator while we discuss loop

in later units. For example, in exchanging(swap) values we can

use comma operator like this :

 4.4.8 sizeof Operator

The sizeof operator returns the number of bytes required to repre-

sent a data type or variable. It can be used with built-in as well as

user-defined data types. The general form of writing sizeof opera-

tor is:

num1 = num2 + 1, num2 = 2;

temp = x, x = y, y = temp;

60 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

sizeof(data type);

sizeof(variable);

For example, the following statements:

double a;

char c;

cout<<sizeof(c); //returns 1

cout<<sizeof(int); //returns 2

cout<<sizeof(a); //returns 8

will give the result 1 2 8 as the size of character, integer and

double are 1, 2 and 8 bytes respectively.

 4.4.9 Scope Resolution Operator(::)

We can use nested blocks in C++. For example, we can write

nested blocks as follows:

....

{

int a = 5; // a is global for inner block

....

....

{

}

....

....

int a = 2;inner block

....

....

outer block

}

EXERCISE-1

Q. What will be the output of the following code :

void main()

{

char *p;

cout<<sizeof(p);

}

Object Oriented Programming through C + + (Block - 1) 61

Operators and Manipulators Unit - 4

Declaration of variable in an inner block hides a declaration of the

same variable in an outer block. A variable declared inside a block

is said to be local to that block. In C, a global version of a variable

can not be accessed from within the inner block. But in C++, we

can resolve this problem using a new operator :: called the scope

resolution operator. It can be written as:

:: variable_name;

// Program 4.4 : Use of scope resolution operator

#include<iostream.h>

#include<conio.h>

int a=20; // global a

int main()

{

int a=5; // a is local to main()

clrscr();

{

int a=15; // a is local to inner block

cout<<"In inner block a is = "<<a; / /

here, a will be 15

}

cout<<"\nIn outer block a is = "<<a; / /

here, a will be 5

cout<<"\nOutside main function a is = "<<::a;

//here, a will be 20

getch();

return 0;

}

The output of the above program will be like this:

In inner block a is = 15

In outer block a is = 5

Outside main function a is = 20

We have used ::a to display the value of global variable. If we

use simply a then it will give 5 instead of 20.

One major application of the scope resolution operator is to

identify the class to which a member function belongs. The role of

scope resolution operator will be discussed in more detail in later

units when classes and objects are introduced.

62 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

 4.4.10 Insertion and Extraction Operator

We have already used the insertion and extraction operator in many

input/output statements of our program. The insertion operator

(<<) is used with cout object to carry out output operations. Simi-

larly, the extraction operator (>>) is used with cin object to carry

out input operations. These can be written as:

cout<<variable;

cin>>variable;

For example, cout<<v
1
<<v

2
<<v

3
<<v

n
;

cin>>v
1
>>v

2
>>v

3
>>v

n
;

where v
1
,v

2
, v

3 ,
v

n
are variables.

 4.4.11 Address and Indirection Operator

All the variables defined in a program reside at specific addresses

in memory. It is possible to obtain the address of a variable used in

a program by using the address operator (&). When used as a

prefix to a variable name, & operator returns the address of that

variable.

The indirection operator (*) return the value of the variable

located at the address that follows it. For example, let us consdier

the following program.

// Program 4.5 : Demonstration of * and & operator

#include<iostream.h>

#include<conio.h>

int main()

{

int a, *p ;

a=50;

p= &a;

clrscr();

cout<<"Value of a :"<<a<<endl;

cout<<"Value of a: "<<*p<<endl;

cout<<"Value of a: "<<*(&a)<<endl;

cout<<"Address of a: "<<&a<<endl;

cout<<"Address of a: "<<p;

Object Oriented Programming through C + + (Block - 1) 63

Operators and Manipulators Unit - 4

getch();

return 0;

}

Output will be like this:

 4.4.12 Memory Management Operator

In C language, we have studied the function malloc(), calloc() and

realloc() which are used to allocate memory dynamically at run

time. Similarly, free() function is used to release memory which is

allocated by these functions. Although C++ supports these func-

tions, it also defines two operators for allocation and deallocation of

memory in an easier way. These two operators are new and de-

lete.

new operator

The new operator allocates memory of specified type and

returns back the starting address to the pointer variable. The gen-

eral form of new operator is:

pointer_variable = new data_type[size];

Here, the pointer_variable is a pointer to the data_type. The

size is optional. We can specify the size when we want to allocate

memory space for user defined data types such as arrays, struc-

ture and classes. If the new operator fails to allocate memory, it

returns NULL. For example, let us consider the following declara-

tion:

int *p ;

p = new int ;

char *q = new char ;

where p is the pointer of type int and q is a pointer of type char.

64 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

For allocation of memory for user defined data type such as

array, we can use the foolowing form:

The statement int *p = new int[10]; creates memory space

for an array of 10 integers (i.e.,20 bytes). p[0] will refer to the first

element, p[1] to the second element and so on.

We can also initialize the memory using the new operator like

this:

For example, int *ptr = new int(5); where 5 is assigned to pointer

variable ptr.

delete operator

The delete operator releases the memory allocated by the

new operator. Following are the syntax of delete operator:

delete pointer_variable;

delete [size] pointer_variable;

For example, delete p;

delete [10] p;

pointer_variable = new data_type[size] ;

pointer_variable = new data_type(value);

CHECK YOUR PROGRESS

4. Find the output of the following program segment:

(a) int main()

{

int x = 50;

cout<<x++<<endl;

cout<<++x;

getch();

return 0;

}

(b) void main()

{

float a[4],s;

Object Oriented Programming through C + + (Block - 1) 65

Operators and Manipulators Unit - 4

 4.5 Precedence and Associativity

There are two important characteristics of operators which determine how

operands group with operators. These are precedence and associativity.

clrscr();

s=sizeof(a);

cout<<"\nSize is "<<s<<" bytes";

getch();

}

(c) int p=100;

void main(){

int p=5;

clrscr();

cout<<p<<endl;

{

p=20;

cout<<p<<endl;

cout<<::p+5;

}

getch();

}

5. Choose the appropriate option for the correct answer:

(i) The scope resolution operator is denoted by the symbol

(a) :: (b) : (c) -> (d) !

(ii) The new operator

(a) releases memory

(b) allocates memory statically

(c) allocates memory dynamically

(d) none of these

(iii) float *ptr = new float[15]; allocates memory of

(a) 30 bytes (b) 40 bytes

(c) 10 bytes (d) 60 bytes

(iv) Bitwise operators can be used only with

(a) int and float datatype

(b) char and int datatype

(c) float, double,long double datatype

(d) none of these

66 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

Every operator in C++ language has a precedence associated with it. Pre-

cedence rules help in removing the ambiguity about the order of perform-

ing operations while evaluating an expression. An operator’s precedence

is meaningful only if other operators with higher or lower precedence are

present. Expressions with higher-precedence operators are evaluated first.

The grouping of operands can be forced by using parentheses.

With each operator, there is an associativity factor that tells in what

direction the operands associated with the operator are to be evaluated. It

is the left-to-right or right-to-left order for grouping operands to operators

that have the same precedence. For example, in the following statements,

b = 9;

c = 18;

a = b = c;

the value 18 is assigned to both a and b because of the right-to-left

associativity of the assignment = operator. The value of c is assigned to b

first, and then the value of b is assigned to a. Similarly, in the expression

x = a + b * c / d;

As precedence of * and / is more than binary +, therefore multiplica-

tion and division are performed before +. Again, b is multiplied by c before

it is divided by d because of their left-to-right associativity. A list indicating

the precedence and associativity of operators is shown in table 4.5. C++

operators are classified into 16 categories based on their precedence.

The operators within each category have equal precedence. In the table,

operators are arranged from highest(in top) to lowest(in bottom) prece-

dence.

Table 4.5 : Operators from highest to lowest precedence

Prece-

ence

Operator Description Associ-

ativity

() Function call L-to-R

 [] Array subscript L-to-R

1 –> C++ indirect component selector L-to-R

 :: Scope Resolution L-to-R

 . C++ direct component selector L-to-R

Object Oriented Programming through C + + (Block - 1) 67

Operators and Manipulators Unit - 4

Prece-

ence

Operator Description Associ-

ativity

! Logical NOT R-to-L

 ~ Bitwise NOT(1’s complement) R-to-L

 + Unary Plus R-to-L

 – Unary Minus R-to-L

 ++ Increment R-to-L

2 -- Decrement R-to-L

 & Address R-to-L

 * Indirection R-to-L

 sizeof Returns size of operand in bytes R-to-L

 new Dynamically allocates memory R-to-L

 delete Reseases memory R-to-L

3 .* –>* C++ dereference L-to-R

 * Multiply L-to-R

4 / Divide L-to-R

 % Modulus L-to-R

5 + Binary plus L-to-R

 – Binary minus L-to-R

6 << >> Left and Right shift L-to-R

7 < <= > >= Relational L-to-R

8 == != Equality L-to-R

9 & Bitwise AND L-to-R

10 ^ Bitwise XOR L-to-R

11 | Bitwise OR L-to-R

12 && Logical AND L-to-R

13 || Logical OR L-to-R

14 ?: Conditional R-to-L

 = *= /= %= Assignment R-to-L

15 += –= >>=

 <<= &= ^= |=

16 , Comma R-to-L

 4.6 MANIPULATORS

Manipulators are used to format the display of data. They are specifically

designed to be used in conjunction with the insertion (<<) and extraction

(>>) operators on stream objects.

68 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

We often use two important manipulators which are endl and setw.

For example, suppose we are to display the following text in three

different lines: KKHSOU

Guwahati

Assam

We have already learnt how to use the newline character “\n” for

displaying a value or text in different lines. The effect of endl is also same.

The manipulator endl when used in an output statement, causes a linefeed

to be inserted. It can be used as follows:

cout<<“KKHSOU”<<endl;

cout<<“Guwahati”<<endl;

cout<<“Assam”;

The manipulator setw(n) sets the field width to n for displaying the value

of a variable. The use of these two manipulators are demonstrated in the

following program where sum of three values are displayed in two differ-

ent format.

// Program 4.6 : Program for the demonstration of setw and endl

#include<iostream.h>

#include<iomanip.h> //for manipulator set

#include<conio.h>

int main()

{

int a,b,c,s;

clrscr();

a = 2000, b = 50, c = 500;

cout<<"Before using setw:"<<endl<<endl;

cout<<"a="<<a<<endl;

cout<<"b="<<b<<endl;

cout<<"c="<<c<<endl;

s=a+b+c;

cout<<endl<<"s="<<s<<endl;

cout<<endl<<"After using setw:"<<endl<<endl;

cout<<"a="<<setw(5)<<a<<endl;

cout<<"b="<<setw(5)<<b<<endl;

cout<<"c="<<setw(5)<<c<<endl;

cout<<endl<<"s="<<setw(5)<<s;

Object Oriented Programming through C + + (Block - 1) 69

Operators and Manipulators Unit - 4

getch();

return 0;

}

In the output screen content will be like this:

Here we see that after using setw(5) the display is in ideal format.

The most commonly used manipulators are listed below :

Table 4.6 : List of Manipulators

Manipulators Function

setw(int n)

setprecision(int d)

setfill(char f)

setiosflags(long f)

resetiosflags(long f)

endl

skipws

noskipws

flush

ws

dec, oct, hex

Sets the field width to n.

Sets the floating point precision to d.

The fill character is set to character.

Stored in variable f.

Sets the format flag f .

Clears the flag indicated by f.

Inserts new line.

Omits white space on input.

Does not omit white space on input.

Flushes the buffer stream.

Used to omit the leading white.

spaces present before the first field.

Displays the number system in deci-

mal, octal and hexadecimal format.

The manipulator dec, oct, hex, ws, endl, flush are defined in header

file iostream.h. The manipulator like setw(), setfill(), etc. which require an

argument are defined in iomanip.h.

70 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

// Program 4.7 : Program showing some use of manipulators

#include<iostream.h>

#include<conio.h>

#include<iomanip.h>

int main()

{

int n;

float per=72.56888;

clrscr();

cout<<"Enter a decimal number:";

cin>>n;

cout<<endl<<"Entered number is "<<n;

cout<<endl<<"Hexadecimal equivalent is "<<hex<<n;

cout<<endl<<"Octal equivalent is "<<oct<<n<<endl;

cout<<endl<<"Percentage

"<<setprecision(2)<<per;

getch();

return 0;

}

If we enter 29, the output screen will be as follows :

Object Oriented Programming through C + + (Block - 1) 71

Operators and Manipulators Unit - 4

 4.7 LET US SUM UP

The key points to keep in mind in this unit are:

 Operators are special characters or symbols or some specific words

in C++ which instruct the compiler to perform operation on some

operands. Operands can be a variables, expressions etc.

 Some operators operate on a single operand and they are called

unary operators. Most operators act between two operands and

they are called binary operators.

 C++ supports all operators of C. There are some other operators

introduced by C++ which are listed in table 4.5.

CHECK YOUR PROGRESS

6. Name the header files that shall be needed for the follow-

ing code:

void main()

{

int number= 105;

clrscr();

cout<<setw()<<number;

getch();

}

(b) For endl, the header file is .

7. State which of the following statements are true(T) or False(F):

(i) endl is an operator.

(ii) setw is an operator with a parameter.

(iii) Presedence of comma operator is less than assignment

operator.

(iv) Associativity factor gives in what direction the operands

associated with the operator are to be evaluated.

(v) 7*2/3 yields 4 because of their left-to-right associativity.

(vi) 7*2/3 yields 2 because of their right to-left associativity.

72 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

 The assignment operator(=) evaluates an expression on the right

of the expression and substitutes it to the value or variable on the left

of the expression.

 The five arithmetic operators supported by C++ are +(addition), -

(subtraction), *(multiplication), /(division),%(modulus) .

 Relational operators are used to make comparisons between

expressions. All relational operators are binary and require two

operands. These operators are used to compare logically related

data for taking decisions.

 Logical operators are useful in combining one or more conditions.

 Bitwise operators are used to manipulate integer and character

operand at bit level.

 The increment and decrement operator increases or decreases

the value of a variable on which they operate by one.

 The conditional operator is an alternate method of using a simple

if-else construct.

 The sizeof operator accepts one parameter that can be either a

data type of a variable or a variable itself and returns the size in

bytes of that type or object.

 Comma operator links the related expressions together. We can

use the comma operator to build a compound expression by putting

several expressions inside a set of parentheses.

 To allocate memory dynamically, C++ uses the new operator. The

delete operator is used to release the memory which is dynamically

allocated. The new and delete operators are easy in writing as

compared to malloc(), calloc(), realloc(), free() functions whch are

also supported by C.

 The scope resolution operator :: plays significant role in C++. It is

useful for accessing class members. It allows a programmer to

access a global name even if it is hidden by a local redeclarion of

that name.

 Precedence of operators help in removing the ambiguity about the

order of performing operations while evaluating an expression.

 Associativity of operators specifies the direction in which the

operators are evaluated in an expression.

 C++ provides some manipulators which are used to format the

display of data.

Object Oriented Programming through C + + (Block - 1) 73

Operators and Manipulators Unit - 4

 Venugopal, K.P. (2013). Mastering C++. Tata McGraw-Hill Education

 Balagurusami, E. (2001). Object Oriented Programming with C++,

6e. Tata McGraw-Hill Education

 Kamthane, Ashok. Object-Oriented Programming with ANSI and

Turbo C++. Pearson Education India.

4.9 ANSWERS TO CHECK YOUR PROGRESS

1. (i) (a) 3 (ii) (b) True

2. Output : 7

-1

2

3. (a) 11 (b) 13

4. (a) 50 (b) Size is 16 bytes (c) 5

52 20

105

5. (i) (a) ::

(ii) (c) allocates memory dynamically

(iii) (d) 60 bytes

(iv) (b) char and int datatype

6. (a) The header files needed for the code are: iostream.h

conio.h

iomanip.h

(b) iostream.h

7. (i) False (ii) False (iii) True

(iv) True (v) True (vi) False

4.8 FURTHER READING

74 Object Oriented Programming through C + + (Block - 1)

Unit - 4 Operators and Manipulators

 4.10 MODEL QUESTIONS

1. What are logical and relational operators? Give the truth table for

the logical operators.

2. What is bitwise operator? Explain with example.

3. Write a C++ program to allocate memory using new operator for 15

integers. Input and dispaly the integers.

4. Write a C++ program to evaluate the following expression and display

their result (initialize a and b with some value)

(i) x = a*(++b);

(ii) y = a*(b++); where a,b,x,y are intergers.

5. Write a C++ program to find the largest of two numbers.

6. Write a C++ program to display 1 if the input taken from the keyboard

is character, otherwise display 0.

7. Write short notes on:

(i) Precedence of operators in C++

(ii) Division and Modulus operator

8. Write a C++ program to display the size of integer, float, character,

float, long and double.

9. What is the use of manipulators in C++? Give the function of any 3

manipulators.

10. What is scope resolution operator? Explain with example.

Object Oriented Programming through C + + (Block - 2) 75

UNIT 5: DECISION AND CONTROL STRUCTURES

 UNIT STRUCTURE

 5.1 Learning Objectives

 5.2 Introduction

 5.3 Decision Making Statements

 5.3.1 if statements

 5.3.2 if-else statements

 5.3.3 switch statements

 5.4 Loops

 5.4.1 while loop

 5.4.2 do-while loop

 5.4.3 for loop

 5.5 Unconditional Branching Statements

 5.5.1 break statement

 5.5.2 continue statement

 5.5.3 goto statement

 5.6 Let Us Sum Up

 5.7 Further Reading

 5.8 Answers to Check Your Progress

 5.9 Model Questions

 5.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 learn about conditional statements

 learn how to deal with multiple choice situations

 use loops to perform some repetition of task in a program

 alter the sequence of program execution with the help of break ,

continue and goto statement.

 5.2 INTRODUCTION

A program is usually not limited to a linear sequence of instructions. During

its process it may bifurcate, repeat code or take decisions. For that purpose,

C++ provides control structures that serve to specify what has to be done

by our program, when and under which circumstances.

76 Object Oriented Programming through C + + (Block - 2)

Unit - 5 Decision and Control Structures

In this unit, we will look at how to add decision-making capabilities

to our programs. We will also learn how to make our programs repeat a

set of actions until a specific condition is met.

 5.3 DECISION MAKING STATEMENTS

Decision-making is an important concept in any programming language

and to accomplish this, C++ uses the following decision making

statements:

 if statement

 if-else statement

 switch statement

 5.3.1 if statements

The if statement is a powerful decision making statement and is

used to control the flow of execution of statements. The syntax of if

state-ment is as follows:

False

if (test expression)

{

statement ;

statement ;

.................

True

}

statement;

................

Whenever an if statement is encountered in a program, it

evaluates the expression first and if the expression returns true

(non-zero) value then all the statements inside the braces of if block

are executed.

Otherwise, if the expression returns false (zero), then the

statement outside the if block is executed. If there is only one

statement to be executed when the expression returns true in an if

statement, then it can be written without the curly braces. The flow

chart of if statement is given in figure 5.1.

Block : In C++ and

some other

languages like C,

Java, blocks are

collection of one or

more than one

statements enclosed

by curly braces { }.

Block statements are

also referred to as

compound statement.

Object Oriented Programming through C + + (Block -2)) 77

Decision and Control Structures Unit - 5

Fig. 5.1 : Flow chart of if statement

For example, let us consider a program where the programmer

desires to display “Pass” if the marks obtained by the student is

greater than or equal to 150. Thus, this can be performed as follows:

/*Program 5.1: Demonstration of if statement */

#include<iostream.h>

#include<conio.h>

int main()

{

float marks;

clrscr();

cout<<"\nEnter the marks obtained by the

student:";

cin>>marks;

if(marks>=150)

cout<<"Pass";

getch();

return 0;

}

There is only one statement to execute if the statement

if(marks>=150) returns true value, therefore, the braces are not

used. They are optional in such cases.

Suppose, the programmer wants to display the percentage

of the student if he/she is passed, then we can modify the above

program with the following lines of code. Here braces are used for

the if block as follows:

Start

Is the

expression

true?

yes

process

statement(s)

Stop

78 Object Oriented Programming through C + + (Block - 2)

Unit - 5 Decision and Control Structures

/*Program 5.2: Demonstration of if statement (more than one

statements inside if statement)*/

#include<iostream.h>

#include<conio.h>

int main()

{

float totalmarks=500,marks,per;

clrscr();

cout<<"\nEnter the marks obtained by the stu-

dent:";

cin>>marks;

if(marks>=150)

{

cout<<"Pass";

per=(marks/totalmarks)*100;

cout<<"\nPercentage of the student is

"<<per<<"%";

} //end of if statement

getch();

return 0;

}

 5.3.2 if-else statements

The if-else statement is an extension of the simple if statement. It

performs some action even when the test expression fails.

In the syntax, we can see if the test expression is true, then

the true block statement(s), immediately following the if statement

are executed; otherwise the false block statement(s) are executed.

The syntax of if-else statement is as follows:

Object Oriented Programming through C + + (Block – 2)

)

79

Decision and Control Structures Unit - 5

if (test expression)

{

True

False

}

else

{

}

true block statement(s) ;

................

false block statement(s) ;

.................

statement;

The flow chart of if-else state-ment is given in figure 5.2 :

Fig. 5.2 : Flow chart of if-else statement

/*Program 5.3: Program to display “Pass” or “Fail” along with

student's percentage. If marks obtained by the student is greater

than or equal to 150 then the result will be Pass otherwise Fail. There

are 5 subjects and total marks is 500. */

#include<iostream.h>

#include<conio.h>

int main()

{

float totalmarks=500,marks,per;

cout<<"\nEnter the marks obtained by the

student:";

Start

No
Is the

expression

true?

yes

False block True block

statement(s) statement(s)

Stop

80 Object Oriented Programming through C + + (Block - 2)

Unit - 5 Decision and Control Structures

cin>>marks;

if(marks>=150)

{

}

else

{

}

cout<<"\nPass";

per=(marks/totalmarks)*100;

cout<<"\nPercentage is:"<<per<<"%";

cout<<"\nFail";

per=(marks/totalmarks)*100;

cout<<"\nPercentage is: "<<per<<"%";

getch();

return 0;

}

Sometimes, our program will need to check many conditions.

The syntax of if-else statement for such a situation is:

if (condition)

{

statement 1;

statement 2;

……………

}

else if (condition)

{

statement 1;

statement 2;

……………

}

……………

……………

else

{

statement 1;

statement 2;

……………

}

Object Oriented Programming through C + + (Block - 2) 81

Decision and Control Structures Unit - 5

The compiler will check the first condition. If the condition is

true, then all the statements inside the if block will be executed and

the else if will be ignored. If the condition is false, control passes to

else block where condition is again checked with the if statement.

This process continues till there is no if statement in the last else

block. If one of the if statements statisfies the condition, other nested

if-else will not be executed. This is referred to as a if-else-if lad-

der. The use of nested if-else is shown in program 5.4.

/*Program 5.4: Program to display division and percentage

of student if he/she has passed the examination. There are 5 pa-

pers and each paper carrying 100 marks. If marks obtained by the

student is greater than or equal to 300 then First division, if it is

greater than or equal to 225 then Second division and if it is greater

than or equal to 150 then Third division. If marks obtained by the

student is less than 150 then the result should be Fail. (Demon-

stration of if-else-if ladder)*/

#include<iostream.h>

#include<conio.h>

int main()

{

float totalmarks=500,marks,per;

clrscr();

cout<<"\nEnter the marks obtained by the stu-

dent:";

cin>>marks;

if(marks>=300)

{

vision";

}

cout<<"\nPass. Student has got First Di-

per=(marks/totalmarks)*100;

cout<<"\nPercentage is: "<<per<<"%";

else if(marks>=225)

{

sion";

cout<<"\nPass. Student has got Second Divi-

per=(marks/totalmarks)*100;

82 Object Oriented Programming through C + + (Block - 2)

Unit - 5 Decision and Control Structures

cout<<"\nPercentage is: "<<per<<"%";

}

else if(marks>=150)

{

sion";

}

else

}

cout<<"\nPass. Student has got Third Divi-

per=(marks/totalmarks)*100;

cout<<"\nPercentage is: "<<per<<"%";

cout<<"\nFail";

getch();

return 0;

 5.3.3 switch statements

When there are many conditions, it becomes too difficult and compli-

cated to use the if and if-else constructs. The switch statement is

suitable when many conditions are being tested for. The general

form of a switch statement is:

switch (expression)

{

case constant1:

statements1

break;

case constant2:

statements2

break;

case constant3:

case constant4:

case constant5:

statements3 // multiple values can share the

break; // same statement

.........

.........

Object Oriented Programming through C + + (Block - 2) 83

Decision and Control Structures Unit - 5

of the

.........

default:

statements // execute if expression != any

} // above case constant

The expression value must be always integral. The

expression to be tested comes after the switch statement and it

can be a variable, an expression or the result of a function. The

keyword case is followed by an integer or character constant. Every

case constant terminates with a colon (:). Switch statement

evaluates expression and checks if it is equivalent to constant1. If it

is, it executes group of statements1 until it finds the break statement.

When it finds this break statement the control jumps to the end of

the switch block. While studying unconditional statements in this

unit you will be able to learn about the break statement elaborately.

If expression was not equal to constant1 it will be checked

against constant2. If it is equal to this, it will execute group of

statements2 until a break keyword is found, and then will jump to

the end of the switch block. Finally, if the value of expression did not

match any of the previously specified constants, the program will

execute the statements included after the default statement, if it

exists. If default is not present since it is optional, then simply control

flows out of the switch block.

As we have seen, the statements to be executed for a

particular case are terminated by a break statement. The break

transfers execution to the statement after the switch. If we donot

include it, all the statements for the cases following the one selected

will be executed. For example if constant1 was met with the value

of the expression, and there was no break statement at the end of

the case, then all other cases like case constant2, case constant3,

etc. and even default would all be executed. The flow chart of switch

statement is given as in Fig 5.3

84 Object Oriented Programming through C + + (Block - 2)

Statements 3

Statements 2

Statements 1

Evaluate

expression

expression

==

constant 1

Yes

No

expression

==
constant 2

No

Yes

expression
==

constant 3

Unit - 5 Decision and Control Structures

Fig. 5.3 : Flow chart of switch statement

It is important to know that no two case constants in the same

switch can have identical values. Of course, a switch statement

enclosed by an outer switch may have case constants that are the

same.

Here is an example where the programmer wishes to calculate

the area of any one the following:

1. Circle

2.Rectangle

3.Triangle.

If 1 is pressed in the keyword, then area of circle should

appear. Similarly, for 2 and 3 area of rectangle and triangle should

appear. Other parameters like radius, length, breadth, base etc.

should be entered through keyboard.

//Program 5.5:

#include<iostream.h>

Default:

Statements

Break

Break

Break

Yes

No

Object Oriented Programming through C + + (Block - 2 85

Decision and Control Structures Unit - 5

#include<conio.h>

int main()

{

float area,radius,length,breadth,base,height;

int ch;

clrscr();

cout<<"\n1.Area of Circle::";

cout<<"\n2.Area of Rectangle::";

cout<<"\n3.Area of Triangle::";

cout<<"\n\nEnter your choice(1,2,or 3):";

cin>>ch;

switch(ch)//here expression inside () is an

integer variable

{

case 1: // followed by an integer constant,

which is 1

cout<<"\nEnter the radius of the circle:";

cin>>radius;

area=3.1416*radius*radius; // p = 3.1416

cout<<"\nArea is "<<area<<" sq. units";

break;

case 2: // followed by an integer constant,

which is 2

cout<<"\nEnter the length & breadth :";

cin>>length>>breadth;

area=length*breadth; //area=length*breadth

cout<<"\nRectangle area is "<<area<<"

sq.units";

break;

case 3:

cout<<"\nEnter the base and height of

the triangle:";

cin>>base>>height;

a r e a = (b a s e * h e i g h t) / 2 . 0 ; / /

area=(base*height)/2.0

cout<<"\nArea of the triangle is

"<<area<<" sq.units";

break;

86 Object Oriented Programming through C + + (Block 2)

Unit - 5 Decision and Control Structures

default:

cout<<"\nInvalid choice";

break;

}

getch();

return 0;

}

EXERCISE-1

1. Write a C++ program to find the largest of the three numbers

using if-else statement. Numbers should be entered through the key-

board.

2. Write a C++ program using switch statement that will exam-

ine the value of a floating point variable called temperature and dis-

play one of the following messages, depending on the value assigned

to temperature.

(a) ICE, if the value of tempetarure is less than 0(zero),

(b) WATER, if the value of temperature lies between 0 and

100

(c) STEAM, if the value of temperature exceeds 100.

3. What will be output of the following code segment:

int main(){

int a=300, b=100, c;

if(a>= 250){

b=200; c=b+100;

}

cout<<“a=” <<a<<“ b= ”<<b<<“ c= ”<<c;

return 0;

}

Object Oriented Programming through C + + (Block - 2) 87

Decision and Control Structures Unit - 5

CHECK YOUR PROGRESS

1. Answer the following by selecting the appropriate option:

(i) In a simple if statement with no else, what happens if the

condition following the if is false?

(a) The program searches for the last else in the pro-

gram

(b) Both (a) and (c)

(c) Control falls through to the statement following the if

statement

(d) None of these.

(ii) The advantage of a switch statement over an if-else

contruct is:

(a) Several different statements can be executed for each

case in a switch.

(b) A default condition can be used in the switch.

(c) The switch is easier to understand.

(d) Several different conditions can cause one set of

statements to be executed in a switch.

2. State whether the following statements are true(T) or false(F):

(i) No two case constants in the same switch statement can

have identical values.

(ii) When a break is encountered in a switch, the control

jumps to the end of the switch block.

(iii) It is mandatory to write a default statement within a switch

statement.

(iv) In case of if-else-if ladder, the final else is not associated

with an if.

(v) The switch statement is used in place of many if-else

statements.

 5.4 LOOPS

In programming we often come across some situation where we are to

perform some tasks repeatedly. C++ provides loop structures to perform

88 Object Oriented Programming through C + + (Block - 1)

Unit - 5 Decision and Control Structures

those tasks which are repetitive in nature. A loop lets you repeat lines of

code as many times as you need instead of having to type out the code a

whole lot of times. Loops in C++ are mainly of three types:

 while loop

 do-while loop

 for loop

For those who have studied C language, this is not very new as the syntax

for the loops are exactly the same.

 5.4.1 while loop

The while loop has the form:

while (condition)

{

statements;

}

Here, the given condition (or expression) is evaluated and

if the condition is true then the body of the loop is executed. After

the execution of the body, the test condition is once again evaluated

and if it is true, the body is executed once again. This process of

repeated execution of the body continues until the test condition

finally becomes false and the control is transferred out of the loop.

On exit, the program continues with the statements immediately

after the body of the loop. The body of the loop may have one or

more statements. The braces “{“ and “}” are needed only if the

body contained two or more statements. When using a while loop,

we must always consider that it has to end at some point, therefore

we must provide within the block some method to force the

condition to become false at some point, otherwise the loop will

continue looping forever.

Let us take a small example of a program which displays

KKHSOU four (4) times. Here we have written the statement i++;

with the body of while loop, that increases the value of the variable

‘i’ that is being evaluated in the condition by one. This will eventually

make the condition (i<=4) to become false after a certain number

of loop iterations.

Object Oriented Programming through C + + (Block - 1) 89

Decision and Control Structures Unit - 5

//Program 5.6: Demonstration of while loop

#include<iostream.h>

#include<conio.h>

int main()

{

int i=1;

clrscr();

while(i<=4)

{

i++;

cout<<“KKHSOU”<<endl;

}

getch();

return 0;

}

The output of the above code will be :

KKHSOU

KKHSOU

KKHSOU

KKHSOU

Let us consider another example where we are using while loop.

Here we are to display the multiplication table of a number which is

entered through the keyboard.

/* Program 5.7: Displaying multiplication table of a number using

while loop*/

#include<iostream.h>

#include<conio.h>

int main()

{

int n,i=1;

clrscr();

cout<<"\nEnter a number to display it's

multiplication table:";

cin>>n;

while(i<=10)

{

cout<<n<<" * "<<i<<" = " <<n*i<<endl;

90 Object Oriented Programming through C + + (Block - 1)

Unit - 5 Decision and Control Structures

i++;

}

getch();

return 0;

}

If we enter 5 then the output will be:

5*1 = 5

5*2 = 10

5*3 = 15

5*4 = 20

5*5 = 25

5*6 = 30

5*7 = 35

5*8 = 40

5*9 = 45

5*10= 50

 5.4.2 do-while loop

The do-while loop is also a kind of loop, which is similar to the

while loop. In contrast to while loop, the do-while loop tests the

condition at the bottom of the loop after executing the body of the

loop. Since the body of the loop is executed first and then the loop

condition is checked we can be assured that the body of the loop is

executed at least once. The syntax of do-while loop is:

do

{

statement block;

} while (condition);

Here the statements are executed, then condition is evaluated.

If the condition is true then the body is executed again and this

process continues till the condition becomes false. Here we have

modified Program 5.7 for demonstration of do-while loop.

//Program 5.8: Displaying multiplication table using do-while loop.

#include<iostream.h>

#include<conio.h>

Object Oriented Programming through C + + (Block - 1) 91

Decision and Control Structures Unit - 5

int main()

{

int n,i=1;

clrscr();

cout<<"\nEnter a number for multiplication

table:";

cin>>n;

do

{

cout<<n<<" * "<<i<<" = " <<n*i<<endl;

i++;

} while(i<=10); //end of do-while loop

getch();

return 0;

}

 5.4.3 for loop

The for loop provides a more concise loop control structure. The

general form of the for loop is:

for (initialization; condition; increment or decrement)

{

statements;

}

Initialization is executed first. Generally, it is an initial value

setting for a counter variable. This is executed only once. After

initialization the condition is checked and if it is true (i.e., satisfied),

the statements inside the loop will be executed. As usual, it can be

either a single statement or a block of statements enclosed in braces

{ }. After that the value of the counter variable will be incremented

or decremented. Then again, the condition is checked with the

new value of the counter variable. If the condition is true, the body

of the loop will be executed again. This process continues until the

condition becomes false. If the condition becomes false (i.e., not

satisfied), then the statements inside the loop are not executed

and the control is transferred to the end of the loop. For demostration

of for loop let us take an example of displaying all odd numbers

between 1 to 20.

92 Object Oriented Programming through C + + (Block - 1)

Unit - 5 Decision and Control Structures

//Program 5.9: Displaying odd numbers between 1 to 20

#include<iostream.h>

#include<conio.h>

int main()

{

int i;

cout<<"The odd numbers between 1 to 20

are:"<<endl;

for(i=1;i<=20;i++)

{

if(i%2!=0)

cout<<i<<"\t";

}

getch();

return 0;

}

The output will be like this:

The odd numbers between 1 to 20 are:

1 3 5 7 9 11 13 15 17 19

In the above example the loop

for(i=1 ; i<=20 ;

{

if(i%2!=0)

cout<<i<<“\t”;

Initialization

Condition

Increment

}

will execute 20 times. The variable i is incremented by one in

each iteration.

The initialization part of a for loop can also include a declaration

statement for a loop variable. Using our previous example, we could

have written the loop to include the declaration for the loop counter

i:

for(int i = 1; i <= 20; i++)// i is declared and

initialized

{

if(i%2!=0)

i++)

Object Oriented Programming through C + + (Block - 1) 93

Decision and Control Structures Unit - 5

cout<<i<<“\t”;

}

We can also omit the initialization part altogether. If we initialize

i appropriately in the declaration, we can write the loop as:

int i = 1;

for(; i <= 20 ; i++)

{

if(i%2!=0)

cout<<i<<“\t”;

}

But we need the semicolon that separates the initialization

from the test condition for the loop. In fact, both semicolons must

be in place. This flexibility also applies to the contents of the

increment/decrement part.

/*Program 5.10: Combining two strings without using string library

functions.(Example to show for loop without any body)*/

#include<iostream.h>

#include<conio.h>

int main()

{

char a[20],b[20],c[40];

int length1,length2,i,j;

clrscr();

cout<<"Enter the first string:";

cin.getline(a,20);

cout<<"Enter the second string:";

cin.getline(b,20);

for(length1=0;a[length1]!='\0';length1++);

/*for loop ending with a semicolon */

for(length2=0;b[length2]!='\0';length2++);

//

for(i=0;i<length1;i++)

c[i]=a[i];

c[i]=' ';

for(j=0;j<length2;j++)

c[length1+j]=b[j];

94 Object Oriented Programming through C + + (Block - 1)

Unit - 5 Decision and Control Structures

c[length1+length2]='\0';

cout<<"The combined string is: "<<c;

getch();

return 0;

}

In the statements

for(length1=0;a[length1]!='\0';length1++);

for(length2=0;a[length2]!='\0';length2++);

we have used the semicolon after the closing parentheses,

to indicate that the loop statement are empty. If we omit the

semicolon, the statement immediately following the loop will be

interpreted as the loop statement. In the above program, these two

for loops are simply used to determine the length of the first and

the second string.

The infinite loop

When a test condition specified in a loop evaluates and returns

true forever then statements within the loop are executed infinitely.

This form of loop construct is called infinite loop. Here is an

example of infinite loop:

//Program 5.11: Example of infinite loop (Program will run

indefinitely)

#include<iostream.h>

#include<conio.h>

int main()

{

int i=1;

clrscr();

while(i)

{

cout<<i;

i++;

}

getch();

return 0;

}

Object Oriented Programming through C + + (Block - 1) 95

Decision and Control Structures Unit - 5

As we have not specified the limit of ‘i’ in the while loop, so the loop

will execute indefinite number of times.

 5.5 UNCONDITIONAL BRACHING STATEMENTS

The statements which tranfer the control from one place to another within

the program unconditionally are known as jump or unconditional state-

ments. The following are three important jump statements:

 break statement

 continue statement

 goto statement

 5.5.1 break statement

The break statement is used to break out of a loop statement

i.e., stop the execution of a looping statement, even if the loop

condition has not become false or the sequence of items has been

completely iterated over. The break statement can be written as:

break;

Within nested loop, the break statement terminates only the

inner loop that immediately encloses it. The break is also used with

the switch statement to terminate the processing of a particular

case within a switch statement. It passes the control out of the

switch body to the next statement outside the switch statement.

The control flow in for loop with break statement is shown below:

for (initialization; condition; increment or decrement)

{

.........

if(expression)

break;

.........

}

statements;

Break statements are necessary within the switch statement

(Used in Program 5.5). Here is another example for the

demonstration of break statement :

96 Object Oriented Programming through C + + (Block - 1)

Unit - 5 Decision and Control Structures

//Program 5.12: Displaying the summation of all entered numbers

#include<iostream.h>

#include<conio.h>

int main()

{

int i,n,sum=0;

clrscr();

cout<<"\nEnter as many number as you wish(0

to Quit): ";

while(1)

{

cin>>n;

if(n==0)

break; //use of break statement

sum=sum+n;

}

cout<<"\ nThe summation of all entered

nos:"<<sum;

getch();

return 0;

}

The above program takes as many number as we enter and displays

their summation.

 5.5.2 continue statement

The continue statement passes control to the next iteration

of the innermost loop (while, do-while or for) in which it appears,

bypassing any remaining statements in the loop body. During

program execution, when the continue statement is encountered,

the control automatically passes to the condition which is evaluated;

if it is true, the loop is executed again. The continue statement can

be written as:

continue;

Usually, continue statement is associated with an if statement.

The control flow in for, while and do-while loop with continue statement

are indicated with arrows as follows:

Object Oriented Programming through C + + (Block - 1) 97

Decision and Control Structures Unit - 5

The following example demonstrates the use of continue statement.

/*Program 5.13: Program to find the summation of all even num-

bers between 1 to 10 */

#include<iostream.h>

#include<conio.h>

int main()

{

int n,i,sum=0;

clrscr();

cout<<"\nThe even numbers between 1 to 10

are: ";

for(i=1;i<=10;i++)

{

if(i%2!=0) //if i%2!=0 i.e., i is an

do

{

if(expression)

continue;

.................

} while(condition);

while(condition)

{

.................

if(expression)

continue;

................

}

for (initialization; condition; increment or decrement)

{

.........

if(expression)

continue;

.........

}

98 Object Oriented Programming through C + + (Block - 1)

Unit - 5 Decision and Control Structures

odd number

continue;// it will skip the odd no. and

increment i

cout<<"\t"<<i;

sum=sum+i;

}

cout<<"\nThe summation of all even numbers

is "<<sum;

getch();

return 0;

}

 5.5.3 goto statement

With the help of goto statement one can transfer the control to any-

where in the program. The destination point is identified by a label,

The label is a valid identifier followed by a colon and placed before

the statement requiring labeling. The general syntax of goto state-

ment is shown below :

goto label;

.........

.........

.........

label: statement

A program may contain a number of goto statements with

different label names. Each labelled statement within the program

must have a unique label i.e., no two statements can have the

same label. Let us demostrate the goto statement with an example.

/*Program 5.13: Calculating the summation of first n natural

numbers using goto statement. (value of n should be entered through

key-board) */

#include<iostream.h>

#include<conio.h>

int main()

{

int limit, num,sum=0;

clrscr();

Object Oriented Programming through C + + (Block - 1) 99

Decision and Control Structures Unit - 5

cout<<"\nEnter the limit for addition of

natural numbers\n ";

cin>>limit;

num=1;

target : sum=sum+num; / / t a rg e t u se d a s

label

if(num<limit)

{

num++;

goto target; //goto statement

}

cout<<"\nSum of first "<<limit<<" natural

number is "<<sum;

getch();

return 0;

}

In the above example control is transferred repeatedly out of

if statement to the statement whose label is target until num<limit.

If we enter the limit as 10, then the following lines of code behaves

like a loop form 1 to 9 in the above program.

num=1;

target : sum=sum+num; //target used as

label

if(num<limit)

{

num++;

goto target; / / g o t o

statement

}

The use of goto statement should generally be avoided as a

number of goto statements in a program make the program diffi-

cult to understand. Occational situations do arise, however, in which

the goto statement can be useful. In a difficult programming situa-

tion it seems so easy to use a goto to take the control where you

want to.

100 Object Oriented Programming through C + + (Block - 1)

Unit - 5 Decision and Control Structures

 5.6 LET US SUM UP

The key points to keep in mind in this unit are:

 C+ + provides three major decision making statements: if, if-else

and switch.

 The if statement by itself will execute a statement or a group of

state-ments, when the condition following if evaluates true (non zero

value). When the condition evaluates false (zero value) the control

falls through to the statement following the if statement.

 In case of if-else statement, if the expression evaluates true then

the statement or group of statements following if will be executed

and if the expression evaluates false, then the statement or group of

statements following else will be executed.

 The switch statement is suitable when many conditions are being

tested for. It is mainly used to replace multiple if-else sequence which

is difficult to maintain in a program.

 The switch statement successively tests the value of an expression

against a list of integer or character constants associated with case

and when a match is found, the statement associated with that

constants are executed.

 A program may require that a group of instructions be executed re-

peatedly until some logical condition has been satisfied. This is

known as looping. Loops are basically means to do a task multiple

times, without actually coding all statements over and over again.

 There are three types of loop: while, do-while and for loop. While

loop does not execute when the given condition is false. Do-while

loop executes atleast one time even if the given condition is false. The

for loop is most popular and it allows us to specify the three things :

initialization, condition and increment / decrement in a single line.

 The break statement exits out of a loop and transfers the control to

the statement immediately following the control structure.

 The continue statement skips the remainder of the current iteration

in a loop and initiates the execution of the next iteration. The loop

does not terminate when a continue statement is encountered.

 The goto statement unconditionally transfers control to the statement

labeled by the specified identifier.

Object Oriented Programming through C + + (Block - 1) 101

Decision and Control Structures Unit - 5

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata McGraw-

Hill Education

5.8 ANSWERS TO CHECK YOUR PROGRESS

1. (i) (c) Control falls through to the statement following the if state-

ment

(ii) (c) The switch is easier to understand.

2. (i) True (ii) True (iii) False (iv) True (v) True

3. (i) (b) do-while (ii) (a) always true

(iii) (b) the inner most loop is completed first

(iv) (c) a label (v) (b) allows the programmer to terminate the loop

(vi) (d) continue

 5.9 MODEL QUESTIONS

1. What is the purpose of if-else statements?

2. What are the differences between break and continue statements?

Explain with examples.

3. What is the purpose of the break statement? Within which control

statements can the break statement be included?

4. What is the purpose of continue statement? Compare it with the

break statement.

5. What is the purpose of the goto statement? How are the assotiated

target statements identified?

5.7 FURTHER READING

102 Object Oriented Programming through C + + (Block - 1)

Unit - 5 Decision and Control Structures

6. What happens when the value of the expression in the switch state-

ment matches the value of one of the case labels? What happens when

the value of this expression does not match any of the case labels?

7. What is loop? What are the different types of loops in C++. Give

their syntax with example.

8. What is the purpose of do-while loop? What is the minimum number

of times that a do-while loop can be executed?

9. What are the differences between while and do-while loop?

10. What is an infinite loop?

11. Write a C++ program to check whether a given number is prime or

not?

12. Write a C++ program to determine the sum of all digits of an entered

number.

Object Oriented Programming through C + + (Block - 1) 103

UNIT 6: ARRAY, POINTER AND STRUCTURE

 UNIT STRUCTURE

 6.1 Learning Objectives

 6.2 Introduction

 6.3 Arrays

 6.4 Pointers

 6.5 Structures

 6.6 Unions

 6.7 Let Us Sum Up

 6.8 Further Reading

 6.9 Answers to Check Your Progress

 6.10 Model Questions

 6.1 LEARNING OBJECTIVES

After going through this unit, you will able to :

 describe manipulation of an array

 describe the concept of pointers and its implementation

 describe how to use the structures

 6.2 INTRODUCTION

Till now, we have discussed about the elements of C++ language includ-

ing operators and conditional statements. In this unit, we will concentrate

on the dicussion of array, pointer, structure and union.

 6.3 ARRAYS

Arrays are the basic building blocks for more complex data structures.

We have already been familiar with the array. An array is a similar collec-

tion of series of data elements (or variables) in which all the elements are

of same type and are stored consecutively in memory. Each array ele-

ment (i.e., each individual data item) is referred to by specifying the array

name followed by one or more subscripts, with each subscript being en-

closed in square brackets. The syntax for declaration of an one dimen-

sional array is

104 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

Storage Class datatype arrayname [expression];

Here, storage class may be auto, static or extern. Storage class refers to

the permanence of a variable, and its scope within the program, i.e. the

portion of the program over which the variable is recognized. If the storage

class is not given then the compiler assumes it is an auto storage class.

The one dimensional array can be declared as :

int x[15];//x is a 15 element integer array

char name[25];//name is a 25 element character array

In the array x, the array elements are x[0], x[1],, x[14] as illus-

trated in the fig. 6.1.

 …………………

x[0] x[1] x[2] x[3] ………………….. x[12] x[13] x[14]

Fig 6.1 : A one dimensional array data structure

Array can be initialized at the time of the declaration of the array. For

example,

int marks [5] ={ 85, 79, 60, 87, 70 };

Then, the marks array can be represented as follows :

85 79 60 87 70

marks [0] marks [1] marks [2] marks [3] marks [4]

Fig. 6.2 : the marks array after initialization

The number of the subscripts determines the dimensionality of

the array. For example,

marks [i],

refers to an element in the one dimensional array. Similarly, matrix

[i] [j] refers to an element in the two dimensional array.

Two dimensional arrays are declared in the same way as that one

dimensional arrays. For example,

int matrix[3][5];

is a two dimensional array consisting of 3 rows and 5 columns for a

total of 20 elements. Two dimensional array can be initialized in a manner

analogous to the one dimensional array :

Object Oriented Programming through C + + (Block - 1) 105

Array, Pointer and Structure Unit - 6

int matrix [3][5] = {

{ 10, 5, -3, 9, 2 },

{ 1 , 0, 14, 5, 6 },

{ -1, 7, 4, 9, 2 }

};

The matrix array can be represented as follows: :

Column1 column2 column3 column4 column5

row 0

row 1

row 2

[0][0] [0][1] [0][2] [0][3] [0][4]

10 5 -3 9 2

[1][0] [1][1] [1][2] [1][3] [1][4]

1 0 14 5 6

[2][0] [2][1] [2][2] [2][3] [2][4]

Fig. 6.3 : Matrix array after initialization

The above statement can be written as follows :

int matrix[3][5]={10,5,-3,9,2,1,0,14,5,6,-1,7,4,9,2};

A statement such as

int matrix [3][5] = {

{ 10, 5, -3 },

{ 1 , 0, 14 },

{ -1, 7, 4 }

};

only initializes the first three elements of each row of the two

dimensional array. The remaining values are set to 0.

The following program demonstrating the use of two dimensional

matrix. The program read a matrix and calculate the sum of the upper

diagonal elements and lower diagonal elements.

-1 7 4 9 2

106 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

// Program 6.1

#include<iostream.h>

#include<conio.h>

void main()

{

clrscr();

int a[20][20],i,j,m,n,csum=0,dsum=0;

cout<<"Enter the size of the Matrix\n";

cin>>m>>n;

if(m!=n)

cout<<"You cannot get a proper Diagonal with this

size \n";

else

{

cout<<"Enter elements of the Matrix\n";

for(i=0; i<m; i++)

{

for(j=0; j<n; j++)

cin>>a[i][j];

}

cout<<"Matrix is :\n";

for(i=0; i<m; i++)

{

cout<<"\n";

for(j=0; j<n; j++)

cout<<" "<<a[i][j];

}

csum=0;

for(i=0; i<m; i++)

for(j=0; j<n; j++)

{

if(i<j)

csum += a[i][j];

}

:";

cout<<"\nSum of the Elements\n Above the diagonal

cout<<csum<<"\n";

dsum=0;

Object Oriented Programming through C + + (Block - 1) 107

Array, Pointer and Structure Unit - 6

for(i=0; i<m; i++)

for(j=0; j<n; j++)

{

if(i>j)

dsum += a[i][j];

}

cout<<"Below the diagonal :";

cout<<dsum<<"\n";

}

OUTPUT

Enter the size of the Matrix : 3 3

Enter elements of the matrix : 1 2 3 4 5 6 3 2 1

Matrix is : 1 2 3

4 5 6

3 2 1

Sum of the Elements

Above the diagonal : 11

Below the diagonal : 9

String Manipulations

Strings are used in programming language for storing and

manipulating text, such as word, names and sentences. We have already

been familiar with the declaration of a character array for storing which

looks like–

char array-name [size];

e.g.char name [30];

which stores 30 bytes of memory for storing a set of characters.

In C++, we can also initialize the characters or strings at the time of

declaration of the variables like the following -

char name[4]={‘a’, ‘b’, ‘c’, ‘d’};

It can also be declared without specifying the size of the array as

follows :

char name [] = { “krishna” } ;

K r i s h n a \0

name [0] name [1] name [2] name [3] name [4] name[5] name[6] name[7]

Fig. 6.4 : name array after initialization

108 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

Remember that every character string is terminated by a null

character (\0). Some more declarations of arrays with initial values are

given below :

char vowels [] = { ‘A’, ‘E’, ‘I’, ‘O’, ‘U’ };

char colour [] = { ‘v’,‘I’,‘B’,‘G’,‘Y’,‘O’,‘U’,‘R’};

In the above case, the compiler assumes that the array size is equal

to the number of elements enclosed in the curly braces. Thus, in the above

statements, size of array would automatically be assumed to be 5. If the

number of elements in the initializer list is less than the size of the array,

the rest of the elements of the array may remain uninitialized or may be

initialized to zero or garbage value depending on the compiler.

In C++ also, you will get several built-in functions like strlen(), strcat(),

strcpy() etc.

Here, strlen() – returns the length of a given function

strcat() – concatenates two strings resulting in a single string

strcpy() – copies the contents of one string to another

strcmp() – compares lexicographically two string and returns

integer based on the outcome shown below

greater than zero, if string1>string2

zero, if string1==string2

less than zero, if string1<string2

To use these functions, the header file string.h must be included in

the program using the statement

#include<string.h>

The following program demonstrates the use of string functions.

//Program 6.2

#include<iostream.h>

#include<conio.h>

#include<string.h>

void main()

{

char str1[20], str2[20];

clrscr();

cout<<"Enter 1st string:";

cin>>str1;

cout<<"Enter 2nd string:";

Object Oriented Programming through C + + (Block - 1) 109

Array, Pointer and Structure Unit - 6

cin>>str2;

cout<<"\n";

cout<<"Length of 1st string:"<<strlen(str1)<<"\n";

cout<<"Length of 2nd string:"<<strlen(str2)<<"\n";

int flag=strcmp(str1,str2);

if(flag==0)

cout<<str1<<"Equals to"<<str2<<"\n";

else

if(flag>0)

cout<<str1<<"Greater than"<<str2<<"\n";

else

cout<<str1<<"Less than"<<str2<<"\n";

cout<<"String after concatenation :"<< strcat(str1,

str2);

getch();

}

OUTPUT

Enter 1st string : computer

Enter 2nd string : programming

Length of 1st string : 8

Length of 2nd string : 11

computer Less than programming

Resultant string after concatenation : computerprogramming

Arrays of Strings

Let us consider a two dimensional character array as–

char name[15][20];

Here, the name array can store 15 names, each of length of 19

character, because we know that the last character is used to represent

‘\0’. The first name is accessed by the expression name[0], and second

name by name[1], and so on. If we write name[5][2], then it will represent

the 3rd character of the 5th name, similarly the expression name[0][4] will

represent the 5th character of the first name. Such types of two dimensional

array of characters are known as array of strings. The array char

colour[3][5] is represented in Figure 6.5.

110 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

0 1 2 4 5

0

1

2

Fig. 6.5 : An array of strings representation

 6.4 POINTERS

Each memory location that you use to store a data value has an

address. A pointer is a variable that stores an address of another

variable(not the value) of a particular type. A pointer has a variable name

just like any other variable and also has a type which designates what kind

of variables its contents refer to.

Suppose we define a variable called sum as follows :

int sum = 25;

Let’s now define another variable, called pt_sum in the following

way

int *pt_sum;

It means that pt_sum is a pointer variable pointing to an integer,

where * is a unary operator, called the indirection operator, that operates

only on a pointer variable.

We have already used the ‘&’ unary operator as a part of a scanf

statement in our C programs. This operator is known as the address

operator, that evaluates the address of its operand.

Now, let us assign the address of sum to the variable pt_sum such

as

pt_sum = ∑

Now the variable pt_sum is called a pointer to sum, since it “points”

to the location or address where sum is stored in memory. Remember,

that pt_sum represents sum’s address, not its value. Thus, pt_sum re-

ferred to as a pointer variable.

The relationship between pt_sum and sum is illustrated in Figure 6.6

pt_sum sum

Fig. 6.6 : Relationship between pt_sum and sum

address of sum value of sum

Object Oriented Programming through C + + (Block - 1) 111

Array, Pointer and Structure Unit - 6

The data item represented by sum (i.e., the data item stored in sum’s

memory cells) can be accessed by the expression *pt_sum.

Therefore, *pt_sum and sum both represent the same data item i.e.

25.

Several typical pointer declarations in C program are shown below

int *alpha ;

char *ch ;

float *s ;

Here, alpha, ch and s are declared as pointer variables, i.e. variables

capable of holding addresses. Remember that, addresses (location nos)

are always going to be whole numbers, therefore pointers always contain

whole numbers.

The declaration float *s does not mean that s is going to contain a

floating-point value. What it means is, s is going to contain the address of

a floating-point value. Similarly, char *ch means that ch is going to contain

the address of a char value. The following program shows the use of

pointers in a program.

// Program 6.3 : Use of pointers in a program

#include <iostream.h>

#include<conio.h>

void main()

{

int a = 5;

int *b;

b = &a;

clrscr();

cout<<"value of a:"<<a;

cout<<"\n value of a:"<<*(&a);

cout<<"\n value of a:"<<*b+1;//notice how value of a

changes

cout<<"\n address of a:"<<&a;

cout<<"\n address of a:"<<b;

cout<<"\n address of b:"<<&b;//address of b is

different

getch();

}

112 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

Output

value of a : 5

value of a : 5

value of a : 6

address of a : 0x8fa9fff4

address of a : 0x8fa9fff4

address of a : 0x8fa9fff2

Void pointer

Let us consider the following pointer declarations :

float *ptr1; // pointer to float

char str; // character variable

Now, if we write an assignment statement like :

ptr1 = &str;

the compiler will generate an error, because the type of both the

variable is not same i.e. incompatible. Such types of compatibility problems

can be overcome by using a general purpose pointer called void pointer.

The format for declaring a void pointer is as follows :

void *vd_ptr; // declaring a void pointer

The reserved word void is used for specifying the type of the pointer.

Pointers defined in this manner do not have any type associated with them

and can hold the address of any type of variable.

The following are some valid C++ statements :

void *vd_ptr;

int *num_ptr;

int marks;

char name;

float percnt;

vd_ptr = &marks;

vd_ptr = &name;

vd_ptr = %

num_ptr=&marks;

The following are some invalid statements :

num_ptr = &name;

num_ptr = %

Pointer to Pointer

A pointer to a pointer is a technique used frequently in more complex

Object Oriented Programming through C + + (Block - 1) 113

Array, Pointer and Structure Unit - 6

programs. To declare a pointer to a pointer, place the variable name after

two successive asterisks (*). In this case one pointer variable holds the

address of the other pointer variable. The following statement shows a

pointer to pointer :

int **x;

The following program shows the use of pointer to pointer techniques :

//Program 6.4 : Use of pointer to pointer

#include<iostream.h>

#include<conio.h>

void main()

{

int i;

int *ptr;//declaration of pointer variable

int **pptr;//declaration of pointer to pointer

variable

clrscr();

i=6;

ptr=&i; // address of i stored in ptr

pptr=&ptr; // address of ptr is stored in

pptr

cout<<"i="<<i<<"\n";

cout<<"*ptr="<<*ptr<<"\n";// *ptr means value of i

cout<<"**pptr="<<**pptr<<"\n";// **ptr means value

of i

}

RUN :

getch();

i=6

*ptr=6

**ptr=6

Array of pointers

An array of pointers is an array, that contains a collection of addresses.

The elements of such arrays (i.e. addresses) are stored in memory just

like the elements of any kind of arrays. We can declare an array of pointers

in the same way as we declare a normal array. The syntax for declaring an

114 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

array of pointers is as follows :

datatype *ArrayName[size];

With an array of pointers of type char, each element can point to an

independent string, and the lengths of each of the strings can be different.

The following program shows the use of array of pointers technique.

// Proogram 6.5 : Use of array of pointers

#include<iostream.h>

#include<conio.h>

void main()

{

int flag = 0;

clrscr();

// Initializing a pointer array

char *pstr[] = {"Red",

"Green",

"Yellow",

"Orange",

"Blue",

"violet"

};

char *pstart = "Your favourite colour is :: ";

/*notice the new style of cout statement*/

cout<< " Pick a favourite colour!\n"

<< " Enter a number between 1 and 6: ";

cin >> flag;

cout << “\n”;

if(flag >= 1 && flag <= 6) / / C h e c k i n p u t

validity

cout << pstart << pstr[flag-1];// Output colour

name

else

// Invalid input

cout << "Sorry, you haven't got a colour.";

cout << endl;

getch();

}

Object Oriented Programming through C + + (Block - 1) 115

Array, Pointer and Structure Unit - 6

Output

Pick a favourite colour!

Enter a number between 1 and 6 : 2

Your favourite colour is :: Green

In the program, in char *pstr[] we have not specified the size of the

array. It means that we can allocate memory as we need. The array char

*pstr[], and how it will act in the program, is pictorially shown in Figure 6.7

below.

R e d \0

pstr[0]

pstr[1]

pstr[2]

pstr[3]

pstr[4]

pstr[5]

V i o l e t \0

Figure 6.7 : Representation of array of pointers char *pstr[]

Pointers to functions

A pointer-to-function can also be defined to hold the starting address

of a function. Even though a function is not a variable, it still has a physical

location in memory that can be assigned to a pointer. This address is the

entry point of the function and it is the address used when the function is

called. Once a pointer points to a function, the function can be called

through that poiinter. Function pointers also allow functions to be passed

as arguments to other functions. The syntax of defining a pointer to a

function is shown below :

returntype (*ptr_to_func) (arguments);

Note that in the definition the return type of the function(to which the

pointer variable points) and the argument lists of the function also has to

be specified. It should be remembered that the function prototype or

G r e e n \0

Y e l l o w \0

O r a n g e \0

B l u u \0

116 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

definition should be known before its address is assigned to a pointer.

After defining a pointer to a function, it will point to any function with

which its return type and arguments list will match. As an example, let us

declare a pointer to a function such as - its return type is integer and there

are two arguments as follows -

int (*point) (int, int);

Now, it points to the following functions :

int sum(int x, int y);

int max(int m, int y);

The statement of the form–

point = sum;

or

point = max;

will assign the address of the function to pointer variable point.

For invoking the function, say int sum(int x, int y); we will have to

write a statement as follows–

(*point)(a,b);

where a,b are two parameter passing to the function.

The following program shows the use of pointer to function.

//Program 6.6 : Use of pointer to function

#include<iostream.h>

#include<conio.h>

int maximum(int a, int b)

{

int max;

if(a>b)

max=a;

else

max=b;

return max;

}

void main()

{

int x, y, z;

Object Oriented Programming through C + + (Block - 1) 117

Array, Pointer and Structure Unit - 6

clrscr();

int (*point)(int, int);//declaration of pointer to

function

point=maximum; //assigns the address of

function

cout<<"Enter the two numbers:";

cin>>x>>y;

z=(*point)(x,y); //calls the function maximum

cout<<"The Maximum is :"<<z;

getch();

}

OUTPUT

Enter two numbers : 12 6

Maximum is : 12

CHECK YOUR PROGRESS

1. Describe the output generated by the following program :

#include<iostream.h>

void main()

{

int a, b=0;

static int c[10] = { 1,2,3,4,5,6,7,8,9,0}

for(a=0; a<10; ++a)

if((a%2)==0) b+=c[a];

cout<<“b=”<<b;

}

2. Explain the meaning of each of the following declarations

a) float a, b; b) float a = -0.167;

float *pa, *pb; float *pa = &a;

c) char *d[4] = {“north‘, ‘south”, “east”, “west”};

d) float (*x)(int *a);

118 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

 6.5 STRUCTURES

Structure is a user defined data type in C++. A structure is a collection

of variables under a single name. These variables can be of different types,

and each has a name which is used to select it from the structure. But in

an array, all the data items are of the same type. The individual variables in

a structure are called member variables. A structure is a convenient way

of grouping several pieces of related information together.

Here is an example of a structure declaration.

struct student

{

char name[25];

char course[20];

int age;

int year;

};

Declaration of a structure always begins with the key word struct

followed by a user given name, here the student. Recall that after the

opening brace there will be the member of the structure containing different

names of the variables and their data types followed by the closing brace

and the semicolon.

Graphical representation of the structure student is shown in Fig. 6.8 :

Figure 6.8 : A structure named Student

After declaring the structure of any type, the next step is to create

structure variables. At the time of creation of the structure variables, storage

space are also allocated for them. The syntax for structure variable definition

year

age

course

name

Student

Object Oriented Programming through C + + (Block - 1) 119

Array, Pointer and Structure Unit - 6

is shown below–

structurename var1, var2 ;

e.g. Student s1, s2;

where s1, s2 are structure variable of type student.

We can create structure variables during the structure declaration as

follows :

struct student

{

char name[25];

char course[20];

int age;

int year;

} s1, s2;

Accessing Structure Members :

C++ provides the period operator or dot (.) operator to access the

members of a structure independently. The dot operator connects a

structure variable and its member. The member variables of the structure

student are accessed by the variable s1 as shown below :

s1.name s1.course

s1.age s1.year

The following program uses the structure data type to read and display the

information about a book.

// Program 6.7

#include<iostream.h>

#include<conio.h>

struct book

{

char name[20] ;

float price ;

int pages ;

} ;

void main()

{

struct book b1;

clrscr();

120 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

cout<<"\nEnter Data for Book :\n";

cout<<"Book Name :";

cin>>b1.name;

cout<<"\nPrice :";

cin>>b1.price;

cout<<"\nPage :";

cin>>b1.pages;

cout<<“=========================”;

cout<< "\nYou have entered - \n";

cout<<"Book Name:"<<b1.name<<"\n";

cout<<"Price :"<<b1.price<<"\n";

cout<<"Pages :"<<b1.pages<<"\n";

getch();

}

OUTPUT

Enter Data for Book :

Book Name : Data Structlure through C++

Price :500

Page : 250

===============================

You have entered -

Book Name: Data Structlure through C++

Price :500

Page : 250

Array of structure

Now let us see how to declare an array of structure.

In the following we have declared a variable st_rec

of type student :

student st_rec[100];

In this declaration st_rec is a 100 element array of

structures. Each element of st_rec i.e st_-rec[1],

st_rec[2], st_rec[3].......st_rec[99] are separate

structure of type student it means each element of

st_rec represents an individual student record.

The representation of st_rec[100] is shown in the

Figure. 6.9.

st_rec[1]

st_rec[2]

st_rec[99]

Figure 6.9 : Array of structure representation

name

course

age

year

name

course

age

year

.

.

.

.

name

course

age

year

Object Oriented Programming through C + + (Block - 1) 121

Array, Pointer and Structure Unit - 6

Let us see how the elements of such structure can be accessed. As

an example, if we want to access the name of the 10th student (i.e.

st_rec[9]) from the above structure then we will have to write

st_rec[9].name

Similarly, course and age of the 10th student can be accessed by

writing

st_rec[9].course and st_rec[9].age

The members of a structure variable can be assigned initial values

in much the same manner as the elements of an array. Example of

assigning the values for the 10th student record is shown in the following:

struct student st_rec[9] = { “Arup Deka”, “BCA”, 21, 2008 };

Now let us try to write a program using array of structure to display

id_no, name, address, age of 20 voters whose age exceed 45 by assuming

suitable data types.

// Program 6.8

#include<iostream.h>

#include<conio.h>

struct voter

{

int id_no;

char name[25];

char address[50];

int age;

} ;

void main()

{

struct voter ward[20];//declaration of array

of structure

clrscr();

for(int i=0; i<2; i++)

{

cout<<"\n"<<"Voter No."<<i+1;

cout<<"\n"<<"Enter Id_No :";

cin>>ward[i].id_no;

cout<<"\n Enter Name :";

122 Object Oriented Programming through C + + (Block - 1)

CHECK YOUR PROGRESS

3. Give appropriate declaration for the following :

(i) An array temp to store 30 temperatures along with their

corresponding dates dd/mm/yyyy.

(ii) Give the output of the following program :

#include<iostream.h>

struct point

{

int X, Y;

};

void show(point P)

{

cout<<P.X<<“:”<<P.Y<<“\n”;

Unit - 6 Array, Pointer and Structure

cin>>ward[i].name;

cout<<"\n Enter Address :";

cin>>ward[i].address;

cout<<"\n Enter Age :";

cin>>ward[i].age;

}

for(i=0; i<20; i++)

{

if(ward[i].age>45)

{

cout<<"Id_No :";

cout<<ward[i].id_no;

cout<<"\n Name :";

cout<<ward[i].name;

cout<<"\n Address :";

cout<<ward[i].address;

cout<<"\n";

}

}

getch();

}

Object Oriented Programming through C + + (Block - 1) 123

Array, Pointer and Structure Unit - 6

 6.6 UNIONS

We have come to know that, in the case of structures, the amount

of memory required to store a structure variable is the sum of the size of

all the members. In the fig. 6.9 each variable i.e. st_rec[1], st_rec[2] etc

are occupying 49 (i.e. 25+20+2+2) bytes, so the amount of memory occu-

pied by the whole structure is 49 x 100=4900bytes (approximately 5MB).

C++ offers another data type called union which is similar to struc-

ture datatype except that the members of a union variable occupy the

same locations in memory i.e. share the storage space. The declaration

of a union type must specify all the possible different types that may be

stored in the variable. The form of such a declaration is similar to declar-

ing a structure.

An example of declaring a union type is shown below :

union student

{

char name[25];

char course[20];

int age;

int year;

};

}

void main()

{

Point U= {20,10}, V, W;

V=U;

V.X +=20;

W=V;

U.Y +=10;

U.X +=5;

W.X -=5;

show(U);

show(V);

show(W);

}

124 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

The union variables of the above union student can be defined as follows :

union student s1;

Here, s1 is the union variable and the memory requirement to store

s1 is equal to the member variable having maximum size. In our above

example, the member variable having maximum size is char name[25]

which is 25 bytes. So, the size of s1 will be 25 bytes. At any point of time,

the union variable can hold data of any one of its members. The following

program illustrates the memory requirements for variables of the structure

and union types.

// Program 6.9

#include<iostream.h>

#include<conio.h>

struct

{

char name[25];

char course[20];

int age;

int year;

} s1;

union

{

char name[25];

char course[20];

int age;

int year;

} s2;

void main()

{

clrscr();

cout<<"The size of Structure is

:"<<sizeof(s1)<<"\n";

cout<<"The size of Union is :"<<sizeof(s2)<<"\n";

getch();

}

Object Oriented Programming through C + + (Block - 1) 125

Array, Pointer and Structure Unit - 6

RUN :

The size of Structure is : 49

The size of Union is : 25

Unions obey the same syntactic rules as structures. We can access ele-

ments with either the dot operator (.) or the right arrow operator (->).

The following program demonstrates the use of union data type :

// Program 6.10

#include<iostream.h>

#include<conio.h>

void main()

{

union data

{

int a;

float b;

};

union data d;

clrscr();

d.a=20; // assigns value to member

variables

d.b= 195.25;

cout<<"First member is :"<<d.a;

cout<<"\nSecond member is :"<<d.b;

getch();

}

OUTPUT

First member is : 20

Second member is : 195.5

 6.7 LET US SUM UP

 An array is a collection of two or more adjacent memory locations

containing same types of data.

 A pointer is a memory variable that stores a memory address of

126 Object Oriented Programming through C + + (Block - 1)

Unit - 6 Array, Pointer and Structure

another variable. It can have any name that is valid for other variable

and it is declared in the same way as any other variable. It is always

denoted by ‘*’.

 A structure is a collection of variables under a single name. These

variables can be of different types, and each has a name which is

used to select it from the structure.

 A structure which contains a member field that points to the same

structure type is called a self-referential structure.

 Unions are similar as structures and the only difference is that the

members of a union variable occupy the same locations in memory.

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata McGraw-

Hill Education

6.9 ANSWERS TO CHECK YOUR PROGRESS

1. 25, sum of the even array elements

2. (a) a and b are floating point variables, pa and pb are pointers to

floating point quantities (though not necessarily to a & b)

(b) a is a floatinig point variable whose initial value is -0.167; pa is a

pointer to a floating point quantity, the address of a is assigned to

pa as an intial value.

(c) d is a one dimensional array of pointers to the string ‘north’, ‘south’,

‘east’ and ‘west’.

(d) x is a pointer to function that accepts an argument which is a

pointer to an integer quantity and returns a floating point quantity.

3. a) struct date

{

int dd;

int mm;

int yyyy;

6.8 FURTHER READING

Object Oriented Programming through C + + (Block - 1) 127

Array, Pointer and Structure Unit - 6

};

struct temp_det

{

float temp;

date dt;

};

temp_det temp[30];

b) 25 : 20

40 : 10

35 : 10

 6.10 MODEL QUESTIONS

1. What are arrays? Discuss how the elements of one-dimensional

array are stored and accessed?

2. Write a program in C++, to find the sum of diagonal elements of a

square matrix.

3. Write a program by applying bubble sort algorithm on an array ARR

containing 8 elements : 71, 31, 41, 9, 84, 11, 60, 51.

4. Write a C++ program to search for an item in a sorted array using

linear search algorithm.

5. Define a pointer. What is the relationship between an array and a

pointer?

6. Differentiate between– *p and **p

&p and *p

7. What is a structure? How is a structure different from an array?

8. What is meant by array of structure?

9. Using pointer concept write a function that takes two string arguments

and returns a string which is the larger of the two. Also show how

this function will be invoked from main().

10. Write a program in C++ to prepare the marksheet of a college

examination and the following items will be read from keyboard

student name, subject, internal marks & external marks

Assume that a student will fail if total marks (internal+external marks)

is <50%

Prepare a list of students showing separately those who have failed

and those who have passed in the examination.

11. What is union? Differentiate between structure and union.

128 Object Oriented Programming through C + + (Block - 1)

UNIT 7 : FUNCTIONS

 UNIT STRUCTURE

 7.1 Learning Objectives

 7.2 Introduction

 7.3 Library Function

 7.4 I/O Functions

 7.5 Unformatted I/O Functions

 7.6 User Defined Function

 7.7 Key Terms Related to Function

 7.8 Rules for Writing Function

 7.9 Syntax for Function Declaration

 7.10 Category of Function

 7.11Mathematical Library Function

 7.12 Inline Function

 7.13 Function Overloading

 7.14 Default Argument

 7.15 Macros or Macro Function

 7.16 Let Us Sum Up

 7.17 Further Reading

 7.18 Answers to Check Your Progress

 7.19 Model Questions

 7.1 LEARNING OBJECTIVE

After going through this unit you will be able to learn about

 describe library function and user defined function

 describe function declaration, definition, call, actual parameter,

formal parameter, return type.

 define inline function, default arguments, macro function

.

 7.2 INTRODUCTION

Reading input data, processing data and writing results are the three

important components of a computer program. In our previous discussion

we have used some standard functions such as getch(), clrscr(),

Object Oriented Programming through C + + (Block - 1) 129

Functions Unit - 7

pow(). A function is a self contained program to perform some specific

tasks. It is very easy to write C++ program using function. Because most

of the functions are already defined and have to be used only. C++ functions

can be classified into two categories - Library function and user defined

function. main() is an example of user defined function. Library functions

are predefined and attached with the C++ compiler. It reduces complexcity

of program and programming time.

 7.3 LIBRARY FUNCTION

A library function is a program to perform some specific task. C++ is

rich in library functions. All the related functions are put together in a single

group known as library. For example, all mathematical functions are stored

into a single file known as math library. C++ standard functions are clas-

sified into different categories. Some of these are given below.

* I/O functions

* Mathematical functions

* Data conversion functions

* Character functions

* String functions

* Memory allocation functions

* Graphics functions

* Time related functions and

* DOS interface functions

 7.4 I/O FUNCTIONS

A computer program is generally used to accept data, process these

data and to display the result onto some media. Data are stored into

variables to process them. Key board is the most common input device

through which data can be supplied to the computer program and

monitor(VDU) is the most commonly used output device onto which data

can be displayed. Apart from keyboard, there are other devices such as

mouse, scanner, disk ect. through which data can be supplied to the

program. Though C has no provision for I/O, still with the help of standard

I/O library functions it is possible to do it. Library functions are not part of

C++’s formal definition, they have become a standard feature of C++

130 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

language. I/O functions take a major role in the data input and output

process. Based on the input and output devices, I/O functions can be

classified into three categories. In this section we will discuss I/O functions

related to keyboard and monitor only. The other functions will be discussed

in the subsequent sections.

(I/O functions related to

Keyboard and monitor)

(I/O functions related to

Floppy disk and Hard disk)

(I/O functions related to

various ports)

The I/O functions are classified into three categories—

 7.5 UNFORMATTED I/O FUNCTIONS

Unformatted functions are easier to use. They do not need to use

any control string. There are several input and output functions through

which we can accept data and display them on the monitor. We can ac-

cept a single character or a set of characters. Similarly, we can display a

single character as well as a set of characters using output functions.

Input functions

Output functions

getch()

getche()

getchar()

gets()

putch()

putchar()

puts()

getch() : This function accepts a character from the keyboard and does

not echo the typed character on the screen. It will read a character

just after it is typed without waiting for the enter key to be pressed.

In most of our previous examples, we have used this function. One

I/O functions

Port I/O functions Disk I/O functions Console I/O functions

Object Oriented Programming through C + + (Block - 1) 131

Functions Unit - 7

might think that C++ program always ends with getch() - which is

not true. The function getch() can be used anywhere in a C++

program to accept a single character. Most often this function is

used to hold the execution of a program, or to see intermediate

results or to stop rolling the screen.

getche() : The function getche() is similar to getch() except that getche(

) will echo the typed character on the screen whereas getch()

does not echo the typed character on the screen.

getchar() : getchar() also reads a character from the keyboard and echo

it on the screen just after it is typed. It requires the enter key to be

pressed.

gets() : It accepts a string or a group of words from the keyboard at a time

which is not possible by cin or getch() . It is used to read a sen-

tence from the keyboard. The reading process will terminate when

an enter key is hit.

Program 7.1 : Program to show the use of library functions

void main()

{

char a, b, c;

clrscr();

cout“Press any key to continue : \n”;

a=getch();

cout<<“Type any character \n”;

b=getche();

cout<<“Press any key and press enter key \n”;

c=getchar();

cout<<“Outputs are : “;

putch(a);

putch(b);

putch(c);

getch();

}

putch() and putchar() are just opposite to getch(). They are

used to display a single character on the screen. puts() is also

just opposite to gets(). It is used to display a string or a sen-

tence on the screen.

132 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

Program 7.2 : Program to read your name and title from the key-

board and display it

void main()

{

Output

char name[30];

clrscr();

cout<<“Your name please: “;

gets(name);

puts(“Hello “);

puts(name);

getch();

}

Your name please: Ankita Talukdar

Hello Ankita Talukdar

 7.6 USER DEFINED FUNCTIONS

As already mentioned C and C++ are rich in functions. Functions

are normally used to perform certain task. A function may contain a single

statement or a set of statements or there may be a function without any

statement inside the body of the function. Every C/C++ program has at

least one user defined function that is main(), which is responsible for the

final execution of the program. One may be confused why user defined

functions are needed, since C++ is rich in standard functions. It is because

of the variety of applications. For example, if we have to calculate salary of

100 employees, C++ standard function can not do this job, because the

formula for calculating salary is different for different organizations.

Moreover, we can do this job without writing functions, but we have to write

same line of codes 100 times. So it increases the size of the program and

program complexity unnecessarily. An application may contain several

activities. For example in a college library there are so many activities

such as maintaining books stock, issuing books to students, return books,

checking validity for library member etc. For each and every activity we

can write functions to make complete the application. Though for the

beginners it may be little bit difficult to write functions themselves, still

perhaps all professional programmers prefer program development by

using only user defined functions due to their simplicity. Functions are just

Object Oriented Programming through C + + (Block - 1) 133

Functions Unit - 7

like co-workers for the main worker. The general form of a function is given

below.

main() test()

{ {

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - - -

- - - -

test(); ----------------------

- - -

- - -

}

- - -

- - -

- - - -

- - }

- - - - - -

7.7 KEY TERMS RELATED TO FUNCTIONS

To be familiar with functions, one should understand and remember

the following key terms.

 Function declaration

 Function call

 Function definition

 Actual parameter

 Formal parameter

 Return type

 7.8 RULES FOR WRITING FUNCTION

(a) Every function should have a unique name which must be self-

explanatory.

(b) A function should be declared before it is used.

(c) Function must be defined.

(d) The header of a function definition and a function declaration must

be same.

(e) Function declaration is to be terminated with semicolon(;)

(f) The parent or owner function is called a calling function and the

child function is called a called function.

(g) A function accepts many parameters and returns only single value

through return statement.

(h) Parameters used in function definition or declaration are called formal

argument and the parameters used to call a function are called

134 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

actual arguments.

(i) The number of formal arguments, type of formal arguments and

order of formal arguments must be same with the number of actual

arguments, type of actual arguments and order of actual arguments.

(j) A function may be called many times and from other functions using

the function name.

(k) If a function does not return any value, then the return type of the

function declaration must be void. Void is a keyword to indicate that

the function does not return any value.

(l) A same function may be a calling function and/or a called function.

 7.9 SYNTAX FOR FUNCTION DECLARATION

<return type> <function name>(argument list);

Function declaration statements contain three parts i.e. return

type, function name and argument list of which return type and argu-

ment list are optional. The default return type is int. Return type may be

any valid C/C++ data type. A function declaration is not always mandatory

in C++. In absence of function declaration, the compiler always assumed

that the function would return an integer value.

Example

void sum(); //function does not return value and no parameter

passing

int sum(); //function return integer value and no parameter

passing

int sum(int a, int b); //function return one integer value

and accept two integer param-

eters.

int sum(int, int);

float sum(int a, float b);

7.10 CATEGORIES OF FUNCTIONS

Functions are categorised into four ways based on the parameters

passed and the return type.

(a) Function with no parameter and no return type.

(b) Function with parameter(s) and no return type.

(c) Function with no parameter(s) and return type

Object Oriented Programming through C + + (Block - 1) 135

Functions Unit - 7

(d) Function with parameter(s) and return type.

It may be described in tabler view as shown below

Passing

Parameters

Return

type

Category I No No

Category II Yes No

Category III No Yes

Category IV Yes Yes

One may be confused with the category of functions to be used and

when it is as per the convenience of the programmer. The C/C++ com-

piler does not restrict the programmers on the use of any category of

functions.

(a) Function with no parameter and no return type.

Program 7.3: Function without declaration

void main()

{

clrscr();

india(); // Function call

getch();

}

india() //Function definition

{

cout<<“Hello I am inside India “;//Called function

}

Program 7.4 : Called and calling function

void main()

{

clrscr();

india();

getch();

}

india()

{

printf(“Hi! I am inside india\n “);

assam();

136 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

}

assam()

{

printf(“Hi! I am inside Assam\n “);

guwahati();

}

guwahati()

{

printf(“Hi! I am inside Guwahati “);

}

Program 7.5 : Addition of two numbers using functions

void main()

{

}

sum()

{

}

clrscr();

sum();

getch();

int a=10, b=20,c;

c=a+b;

cout<<“Sum= ”<<c;

Output Sum=30

Here the function sum() calculates the sum of two numbers and

does not return any value to the calling program i.e. main().

(b) Function with parameter(s) and no return type

A function may accept any number of parameters of any type. When

calling a function one must be careful about the number, type and order of

parameters which must match with the formal paramers of the called func-

tion.

Program 7.6 : Addition of two numbers

void main()

{ int a=10, b=20;

clrscr();

sum(a,b);

getch();

}

Object Oriented Programming through C + + (Block - 1) 137

Functions Unit - 7

sum(int p, int q)

{

int c;

c=p+q;

cout<<“Sum= ”<<c;

}

Here a and b are called actual parameters and p and q are called

formal parameters. When the statement(function call) sum(a,b) is ex-

ecuting inside main(), then the control is transffered to the function defini-

tion and the value of a and b will be copied to p and q. In place of p and q

one can use a and b and so on, but the compiler will treat them as different

from that of a and b of main().

Program 7.7 : Program to find whether a number is prime or not.

//A prime number is a number that is divisible only by that number and 1.

void main()

{ int a;

clrscr();

cout<<“Enter a number “;

cin>>a;

prime(a);

getch();

}

prime(int p)

{

int i, flag=1;

for(i=2;i<=p/2;i++)

if((p%i)==0)

flag=0;

if(flag==1)

cout<<“Number is prime”;

else

}

cout<<“Number is not prime”;

(c) Function with no parameter(s) and return type

In some situation, function may not accept any parameter(s) and

may still return some value.

138 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

Program 7.8 : Addition of two numbers

void main()

{ int s;

clrscr();

s=sum();

cout<<“Sum= ”<<s;

getch();

}

sum()

{

}

int a=10, b=20,c;

c=a+b;

return c;

Output Sum=30

Here, the function sum() calculates a+b, and then the value is re-

turned to the calling function main() and assigned to the variable s. Look,

how interesting it is? Calculation is done by the function i.e. sum(), but the

value is displayed by the function main().

Program 7.9: Addition of two floating point numbers

void main()

{ float s;

clrscr();

s=sum();

cout<<“Sum= ”<<s;

getch();

}

sum()

{

}

float a=10.2, b=20.3,c;

c=a+b;

return c;

Output Sum=30.000000(incorrect result)

Here, the correct result is 30.5, but it is displayed as 30.0. It is be-

cause of the absence of function declaration. Since the normal tendency

of a function is to return an integer value not a float value. Though the

function sum() calculates the correct result it returns only the integer part,

Object Oriented Programming through C + + (Block - 1) 139

Functions Unit - 7

discarding the fractional portion. If any one is interested for the correct

result then he/she must declare the function at the beginning of main() as

follows-

float sum();

(d) Function with parameter(s) and return type

Function can accept any number of parameters and can return only

a single value through return statement.

 7.11 MATHEMATICAL LIBRARY FUNCTIONS

C/C++ support the following mathematical standard functions

Function

Meaning

Trigonometric

acos(x) Arc cosine of x

asin(x) Arc sin of x

atan(x) Arc tangent of x

atan2(x,y) Arc tangent of x/y

cos(x) Cosine of x

sin(x) Sine of x

tan(x) Tangent of x

Hyperbolic

cosh(x) Hyperbolic cosine of x

sinh(x) Hyperbolic sine of x

tanh(x) Hyperbolic tangent of x

Other functions

ceil(x) x rounded up to the nearest integer

exp(x) e to the power x (ex)

fabs(x) Absolute value of x

floor(x) x rounded down to the nearest integer

fmod(x,y) Remainder of x/y

log(x) Natural log of x, x>0

log10(x) Base 10 base of x, x>0

pow(x,y) x to the power y (xy)

sqrt(x) Square root of x, x>=0

Note : 1. x any y should be declared as double

2. In trigonometric and hyperbolic functions , x and y are in radians

3. All the functions return a double.

140 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

 7.12 INLINE FUNCTION

A function is a self contained program to perform some specific task.

Function execution involves jumping of control from the calling program to

called function. This is an overhead for the program and increases the

time in execution. To eliminate this overhead, C++ provides a mechanism

called inline function. An inline function is a function that is declared with

the keyword inline. The keyword inline is a request to the compiler, not a

command. It is applicable only in case of simple functions, where there is

no decision or loop construct. In case of complex function the compiler

may ignore this request without any error message to the programmer

and treated it as a normal function. The compiler replaces the function call

with the corresponding function body at the time of compilation. The general

form of an inline function is described below.

Program 7.10 : Addition of two numbers using inline function

#include<iostream.h>

#include<conio.h>

inline int sum(int p, int q)

{

return p+q;

}

void main()

{

clrscr();

int s=sum(10,20);

cout<<“Sum=”<<s;

getch();

}

Here, the function body contains only one statement i.e. return

p+q and it replaces the function call sum(10,20) at the time of compila-

tion.

inline returntype functionname(parameters)

{

//body of the function

}

Object Oriented Programming through C + + (Block - 1) 141

Functions Unit - 7

 7.13 FUNCTION OVERLOADING

Overloading means the same word or symbol with different meaning.

C++ supports the concept of function overloading or function

polymorphism i.e. different functions with same function name which

performs different tasks. To differentiate one function from another one

must consider the list of arguments. The function would perform different

operations depending on the argument list in the function call. This fact

can be explained with the help of an example. Suppose there are three

students with the same name and title(say Dilip Medhi) in a class room.

The class teacher has decided to call one particular student for a particular

task. The basic problem for the teacher is that he cannot call a particular

student sharing the same name with others because it makes confusion

to the students. The teacher has to take some extra parameters such as

color of shirt, father’s name, address etc. Atleast one parameter must be

different from one student to another to identify them. Similarly, in C++

function overloading atleast one parameter must be different from one

function to another to make them unique. The overloaded functions must

declare globally. When calling a function, the number of actual parameter

and the number of formal parameter should match in type and their order.

In some situation, type of parameters may not matche, then the function

selection involves the following steps:

(a) First, the compiler tries to find out the match for type of actual

parameter and formal parameter and their order.

(b) If match is not found, then the compiler tries to match as follows

 char to int(i.e. char in actual and int in formal)

 float to double(i.e. float in actual and double in formal)

(c) When either of them fails, the compiler tries to use the built-in

conversions to the actual arguments.

Program 7.11 //overload.cpp : Program to overload sum() functions

#include<iostream.h>

#include<conio.h>

void sum();

void sum(int p, int q);//Global declaration of

void sum(int p, float q);//overloaded function sum()

void main()

{

clrscr();

142 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

sum();

sum(1,2); //Overloaded function call

sum(5, 3);

getch();

}

void sum()

{

cout<<“Sum(without parameters) =”<<10+20<<“\n”;

}

void sum(int p, int q)

{

c o u t < < “ S u m (w i t h i n t , i n t p a r a m e t e r s)

=”<<p+q<<“\n”;

}

void sum(int p, float q)

{

cout<<“Sum(with int,float parameters) =”<<p+q<<“\n”;

}

Here,

void sum() ------------ > No parameter

void sum(int p, int q) -- > Two integer parameters

void sum(int p, float q) > One integer and one float

parameter

 7.14 DEFAULT ARGUMENTS

C/C++ functions may or may not have arguments at the time of

definition. When a function is defined with certain arguments, then it should

call with some values which are known as actual parameters. C++ provides

some flexibility at the time of function definition. Default values can be

assigned to its arguments at the time of function declaration. In such a

situation, when the actual parameter is missing , the compiler substitutes

the default values in that place. Default values must be initialized from

right to left, not from left to right or at middle.

Example

Valid Invalid

void sum(int p=10, int q); void sum(int p=10, int q=20);

void sum(int p, int q=20);

Object Oriented Programming through C + + (Block - 1) 143

Functions Unit - 7

Default arguments are applicable in case of some fixed values such as

rate of interest in a bank, examination fees of a college student etc.

Program 7.12 : Program to show the use of default arguments

#include<iostream.h>

#include<conio.h>

void main()

{

void sum(int p=10, int q=20);

clrscr();

sum();

sum(1);

sum(5, 3);

getch();

}

void sum(int p, int q)

{

Output

}

Sum=30

Sum=21

Sum=8

cout<<“Sum =”<<p+q<<“\n”;

Here, the function sum() is called three times. First without actual

parameters, second with one parameter and thirdly with both parameters.

In the first case sum(), parameters p and q use default values 10 and 20,

in the second case sum(1), the value of p is replaced by 1 and in the third

case sum(5, 3), value of p and q are replaced by the value 5 and 3.

 7.15 MACROS or MACRO FUNCTIONS

C and C++ provides a mechanism which substituted the function

body at the point of function call during compilation called marcos or macro

functions. The advantage of macro function is that there will be no explicit

function call during execution, since the function body is substituted at the

point of macro call during compilation. Thereby the runtime overhead for

function linking is reduced. However, it takes up more memory because

the statements that define the macro function are substituted at each point

144 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

where the function is called. The pre-processor directives #define, indicates

the start of a macro or macro function.

Examples

Valid macro declaration Invalid macro declaration

#define MAX_SIZE 10 #define MAX SIZE 10

#define TRUE 1 #define TRUE 1;

#define FALSE 0

#define begin {

#define end }

Program 7.13 //readdata.cpp : Program to read 5 numbers in an array

and display it

#include<iostream.h>

#include<conio.h>

#define SIZE 5

void main()

{

int a[SIZE],i;

cout<<“Enter 5 numbers one by one: “;

for(i=0;i<=4;i++)

cin>>a[i];

for(i=0;i<=4;i++)

cout<<a[i]<<“ “;

getch();

}

Syntax for declaring macro function

Program 7.14 //add.cpp : Program to add two numbers using macro

function

#include<iostream.h>

#include<conio.h>

#define SUM(a,b) (a+b)

void main()

macro parameters

Name of macro function

pre-compiler directive

Start of preprocessor directive indicator

C++ statements

#define <macro function name> (parameters) Single line function body

Object Oriented Programming through C + + (Block - 1) 145

Functions Unit - 7

{

cout<<“The sum is “<<SUM(10,20);

getch();

}

Here, SUM is the name of the macro function and a, b its parameter.

 7.16 LET US SUM UP

 main() is an example of user defined function

 A function should be declared before using it.

 Function must defined.

 The header of a function definition and a function declaration must

be same.

 Function declaration is to be terminated with semicolon(;)

 The parent or owner function is called a calling function and the

child function is called a called function.

 A function accepts many parameters and returns only single value

through return statement.

 Parameters used in function definition or declaration are called for-

mal argument and parameters used to call a function are called

actual arguments.

 The number of formal arguments, type of formal arguments and

order of formal arguments must be same with number of actual

arguments, type of actual arguments and order of actual arguments.

CHECK YOUR PROGRESS

1. State whether the following are True or False

a. Library function and user defined functions are same

b. Function can return only one value

c. Function can accept only one parameter

d. Parameter used to call a function is called actual parameter

e. Library functions are defined in header file.

f. sqrt() is an user defined function.

2. Write a function to accept a number and find the sum of the digits

3. write a function to accept a string and find the length of the string

without using string function.

146 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

 A function may be called many times and from other functions us-

ing the function name.

 If a function does not return any value, then the return type of the

function declaration must be void. Void is a keyword to indicate

that the function does not return any value.

 An inline function is a function that is declared with the keyword

inline. The keyword inline is a request to the compiler, not a com-

mand.

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata McGraw-

Hill Education

 7.18 ANSWER TO CHECK YOUR PROGRESS

Answer: 1

a. False

b. True

c. False

d. True

e. True

f. False

Answer: 2

#include<iostream.h>

#include<conio.h>

int digitsum(int p)

{

int sum=0,r;

while(p>0)

{

r=p%10;

p=p/10;

sum=sum+r;

}

return sum;

7.17 FURTHER READING

Object Oriented Programming through C + + (Block - 1) 147

Functions Unit - 7

}

void main()

{

int x,z;

cout<<“Enter the number”;

cin>>x;

z=digitsum(x);

cout<<“Sum of digit “<<z;

getch();

}

Answer 3

#include<iostream.h>

#include<conio.h>

int stlen(char *s)

{

int count=0;

while(*s!=’\0')

{

count++;

s++;

}

return count;

}

void main()

{

char name[20];

int c;

cout<<“Enter a string”;

cin>>name;

c=stlen(&name[0]);

cout<<“The length is “<<c;

getch();

}

 7.19 MODEL QUESTIONS

1. Write the output of the following program segment

main()

{

int i=10, m,n;

m=check(0);

n=check(i);

148 Object Oriented Programming through C + + (Block - 1)

Unit - 7 Functions

cout<<m<<“,”<<n;

}

ckeck(int p)

{

if(p>=10)

return(0);

else

}

return(1);

143

2. State whether the following statements are true or false:

(i) The variables commonly used in C++ functions are available to all

the functions in a program.

(ii) The same variable names can be used in different functions without

any conflict.

(iii) To return the control back to the calling function we must use the

keyword return.

(iv) Every return statement in a function may return a different value.

(v) A function can return more then one value.

3. Write C++ functions for the following:

(i) The basic pay of an employee is input through the keyboard. His

dearness allowance is 67% of basic pay, and house rent allowance

is 12% of basic pay. Write a program to calculate his gross salary.

(ii) The distance between two cities(in kms) is input through the

keyboard. Write a program to convert and print this distance in

meters, inches and centimeters.

(iii) Temperature of a city in Fahrenheit degrees is input through the

keyboard. Write a program to convert this temperature into

Centigrade degrees.

(iv) If a five-digit number is input through the keyboard, write a program

to reverse the number.

(vii) Write a program to check whether an inputed integer is odd or

even.

(viii) Any year is input through the keyboard. Write a program to

determine whether the year is a leap year or not.

(ix) A number is entered through the keyboard. Write a program to find

the reversed number and to determine whether the original and

reversed numbers are equal or not.

(x) Any character is entered through the keyboard, write a program to

determine whether the character entered is a capital letter, a small

case letter, a digit or a special symbol.

(xi) Write a program to calculate overtime pay of an employee. Over

time is paid at the rate of Rs. 10.00 per hour for every hour worked

avove 8 hours. Assume that employees do not work for fractional

part of an hour.

144

UNIT 8: INTRODUCTION TO CLASSES AND
OBJECT

 UNIT STRUCTURE

 8.1 Learning Objectives

 8.2 Introduction

 8.3 Classes in C++

 8.4 Class Declaration

 8.4.1 Access Control in Class

 8.5 Declaring Objects

 8.5.1 Accessing Class Members

 8.6 Defining Member Functions

 8.6.1 Member Function inside a Class

 8.6.2 Member Function outside a Class

 8.7 Inline Member Function

 8.8 Array of Objects

 8.9 Objects as Function Argument.

 8.9.1 Pass by Value

 8.9.2 Pass by Reference

 8.9.3 Pass by Pointer

 8.10 Friend Function and Friend Class

 8.11 Static Data Member and Member Function

 8.12 Let Us Sum Up

 8.13 Further Reading

 8.14 Answers to Check Your Progress

 8.15 Model Questions

8.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 identify the basic components of a class

 define a class and create objects

 define member function of a class

 describe array of objects

 use objects as function arguments

Unit - 8 Introduction to Classes and Object

145

 8.2 INTRODUCTION

So far, we have learnt that C ++ lets you create variables which can be of

a range of basic data types : int, long, double and so on. However, the

variables of the basic type do not allow you to model realworld objects (or

even imaginary objects) adequately. We come to know that the basic theme

of the object oriented approach is to model the real –world problems. So,

object oriented programming language C++ introduces a new data type

called class by which you can define your own data types as class. Defining

the variables of a class data type is known as a class instantiation and

such variables are called objects. In this unit, we will introduce you how to

declare a class and how to create objects of a class.We will also discuss

how a member function declare inside a class or outside a class and how

it can be accessed. Moreover, the techniques of passing objects as function

arguments are also illustrated in this unit.

 8.3 CLASSES IN C++

We are already familiar with the term encapsulation which is a fundamental

feature of OOP. The encapsulation is nothing but a mechanism that binds

together the data and functions into a single component, and keeps both

safe from outside interference and misuse.

The data cannot be accessible by outside functions. With encapsulation

data hiding can be accomplished.

In C++, the encapsulation is supported by a construct called- “class”. First,

let us think a bit about-what is an object . From the general concept, we

can say that an object is something that has fixed shape or well defined

boundary. In other words, an object can be a person, a place, or a thing

with which the computer must deal. If you look at your surroundings some

objects may correspond to real-world entities such as– student, bank

account, book, cars, bags, computer, lock, watch etc. You will observe

two characteristics about objects–

Introduction to Classes and Object Unit - 8

146

(i) each objects has certain attributes.

(ii) each objects has some behaviours or actions or operations associated

with it.

For example, the objects ‘computer’ & ‘car’ have the following attributes

and operations–

 Object : car

Attributes: company, model, colour, & capacity

Operation: speed (), average (), & break ()

 Object: Computer

Attributes: brand, price, monitor resolution, hard disk and RAM size

Operation: Processing(), display() & printing ()

Each object will have its own identity though its attributes and operation

are same, the objects will never become equal. In case of person object,

for instance, two person have the same attributes like name, age and sex,

but they are not equal. Objects are the basic run time entities in an object

– oriented system. Thus, in C++, an object is a collection of related

variables and function bound together to form a high level entity. Thus,

 The variable defines – the state of the object

 function defines – the action or operation that can be performed on

the object.

Now, let us come back to the discussion of class.

A class is a grouping of objects having identical attributes and common

behaviour (operations). It means all objects possessing similar attributes

or properties are grouped into the same unit which is called a class. A

class encloses both the data and function into a single unit as shown in

the following Figure 8.1

Unit - 8 Introduction to Classes and Object

147

Class

Figure 8.1 Grouping of data and function in a class

Thus, the entire group of data and code of an object can be built as a

user-define data type using class. It is obvious that classes are the basic

language construct in C++ for creating the user defined data types. Once

a class has been declared, the programmer can create a number of objects

associated with that class. Objects are nothing but the variable of the class

data type. Defining variables of a class data type is known as a class

instantiation. The syntax used to create an object of the class data type

is similar to the syntax used to create an integer variable in C. In the next

section, we will learn how to declare a class and an object.

8.4 CLASS DECLARATION

We have come to know that classes contain not only data but also

functions. Data and functions within a class are called members of a class.

The data inside a class is called a data member and the functions are

called member function. The member functions define the set of

operations that can be performed on the data member of a class. The

syntax of a class declaration is shown below—

Data

data 1

data 2

data 3

Functions

Func 1 ()

Func 2 ()

Func 3 ()

Introduction to Classes and Object Unit - 8

148

class <Class Name>

{

private :

data member;

member function;

public:

data member;

member function;

};

The keyword ‘class’ indicates the name which follows class name, is an

abstract data type. The declaration of a class is enclosed with curly braces

and terminated by a semi-colon. The body of a class contains declaration

of data members and member functions.

The members of a class are usually grouped in two sections i.e. private

and public, which define the visibility of members.

The following declaration illustrates a class specification:

class employee

{

Private :

char name[30];

float age;

Public :

void insert_data (void);

void show_data (void);

};

A class name should be meaningful, reflecting the information it holds.

Here in our example, the class ‘employee‘ contains two data members

and two member functions. The member function insert_data() is used to

assign value to the member variable or data member ‘name’ and ‘age’.

The member function show_data() is used to display the values of the

Name of the class Keyword

Unit - 8 Introduction to Classes and Object

149

data members. The data member of the class ‘employee’ cannot be

accessed by any other functions that are defined outside the class. It means

only the member functions of a class are permitted to access its data

members.

In general, the data members are declared as private and member

functions are declared as public. In our example, though, we have not

specifed the data members as private; yet they are treated as private by

default.

Figure 8.2 represent the class ‘employee’.

Figure 8.2 Representation of ‘employee’ class

 8.4.1 Access Control in a Class

The members of a class are generally grouped into three sections

by using the following keyword–

 private

 public

 protected

These keywords are called access control specifiers. These control

specifiers are written inside the class and terminated by this ‘:’

char name [30]

insert_data ()

show_data ()

float age

insert_data ()

private: name [30]

age

show_data ()

Introduction to Classes and Object Unit - 8

150

symbol. All the members that follow a keyword (upto another keyword)

belong to that type. If no keyword is specified, then the members are

assumed as private member. We will discuss later about the

protected keyword. Let us now briefly discuss about private and public

keywords.

 Private: Private members are accessible to their own class

members only. They cannot be accessed from outside the class by

any member functions. The members at the beginning of class

without any access specifier are private by default. Hence, writing

the keyword ‘private’ at the beginning of a class is optional.

 Public: Public members are visible (accessible) outside the class,

they should be declared in public section. All data members are not

only accessible to their own members of a class but also can be

accessible from anywhere in the program, either by functions that

belong to the class or by those external to the class.

 8.5 DECLARING OBJECTS

A class declaration only builds the structure of objects. In our example, the

class employee does not define any objects of employee but only specifies

what it will contain. Once a class has been declared, we can create variable

of that type by using the class name (like any other built-in type variable).

The process of creating objects (variables) of the class is called class

instantiation. For example–

int x, y, z; // declaration of integer variables

float m, n; // declaration of float variables

employee a; // declaration of object or class variable

The syntax for creating objects are shown below :

Keyword Name of user defined class Name of user defined objects

Unit - 8 Introduction to Classes and Object

151

class classname object name, ……

Remember, the use of the keyword ‘class’ is optional at the time creating

objects.

For example, class employee e1,

or

employee e1;

In a single statement we can create more than one object as shown below.

employee e1, e2, e3, e4;

As in the case of structures, we can create objects by placing their names

immediately just after the closing braces as follows –

class employee

{

// body of the class

} e1, e2, e3;

This practice is rarely followed because we would like to define the objects

as and when required, or at the point of their use.

Always remember that, at the time of declaration of object, necessary

memory space is allocated for an object. Suppose, we have declared two

objects as –

employee e1, e2;

Both e1 and e2 have the same data members and it is illustrated by the

following figure.

e1 e2

name age name age

Fig. 8.3 : Allocation of memory for objects

4 bytes 30 bytes 30 bytes 4 bytes

Introduction to Classes and Object Unit - 8

152

Here, in the figure the objects e1 and e2 occupy the memory area. They

are not initialized to anything; however the data members of each object

will simply contain junk values. So, our main task is to access the data

members of the object and setting them to some specific values.

An object is a conceptual entity having the following properties:

- it is individual

- it points to a thing, either physical or logical that is identifiable by the

user.

- it holds data as well as operation method that handles data.

- its scope is limited to the block in which it is defined.

8.5.1 Accessing Class Members

After creating an object of a class, it is the time to access its members.

This is the achieved by using the member access operator, dot (.). The

syntax for accessing members (data and functions) of a class is shown

below–

dot operator

Object Name . Data Member

(a) Accessing data member of a class

Object Name . Function Name (Actual Arguments)

(b) Accessing member function of a class

Arguments to the

function

Name of user defined object Data member of a class

Name of user

defined object

Name of member

function

Unit - 8 Introduction to Classes and Object

153

The following program demonstrates how the objects are used for

accessing the class data members.

//Program 8.1

include <iostream.h>

include <string.h>

include <conio.h>

class employee

{

private:

char name [30]; // name of an employee

float age; // age of an employee

public : // initializing data members

void insert_data (char * name1, float age)

{ strcpy (name, name1);

age = age1;

}

void show_data () //displaying the data members

{

cout << “Name :”<<name<<endl;

cout << “Age :”<<age<<endl;

}

};

void main ()

{

employee e1; //first object of class employee

employee e2; //second object of class employee

clrscr();

e1.insert_data(”Hemanga”,30);

//e1 calls member insert_data ()

e2.insert_data (”Prakash”,32);

//e2 calls member insert_data ()

cout << “Employee Details:”<<endl;

e1.show_data (); // e2 calls member show_data (

)

e2.show_data (); // e2 calls member show_data (

)

getch ();

}

Introduction to Classes and Object Unit - 8

154

OUTPUT : Employee Details:

Name : Hemanga

Age : 30

Name : Prakash

Age : 32

In the above program, in main() we have declared two objects through the

statements

employee e1; and employee e2;

The statements

e1.insert_data (“Hemanga”, 30);

e2.insert_data (“Prakash”, 32);

initialize the data members of object e1 and e2. The object e1’s data

member ‘name’ is assigned ‘Hemanga’ and age is assigned 30. Similarly,

the object e2’s data member ‘name’ is assigned ‘Prakash’ and age is

assigned 32.

The statements

e1.show_data ();

e2.show_data ();

call their member show_data () to display the contents of data members

namely, ‘name’ and ‘age’ of employee objects e1 and e2. The two objects

e1 and e2 will hold different data values.

CHECK YOUR PROGRESS

1. Answer the following by selecting the appropriate option:

a) The members of a class are by default.

(i) Private (ii) Public

(iii) Protected (iv) None of these

b) The private data of any class is accessed by -

(i) Only public member function

(ii) Only private member function

Unit - 8 Introduction to Classes and Object

155

 8.6 DEFINING MEMBER FUNCTIONS

We have already come to know that a class holds both the data and

functions which are called data members and member functions. The

data member of a class must be declared within the body of the class.

The member functions of a class can be defined in two places

 inside the class definition

 outside the class definition

It is obvious that a function should perform the same task, no matter where

it is defined. But the syntax of a member function definition changes

depending on the place of its definition, i.e. inside a class or outside a

class. We will now discuss both the approaches.

 8.6.1 Member Function Inside a Class

In this method, the function is defined inside the class body. When a

function is defined inside a class, it is treated as an inline function.

We will discuss inline function in the next section.

In the program 8.1 we have defined the member functions–

void insert_data (char * name1, float age);

c)

d)

(iii) Boths (i) & (ii)

Encapsulation means

(i) Protecting data

(iii) Data hiding

The size of object is equal to

(iv) None of these

(ii) Allowing global access

(iv) Both (i) & (iii)

(i) Total size of member data variables

(ii) Total size of member functions

(iii) Both (i) & (ii) (iv) None of these

e) In a class, only member function can access data which

is not accessible to out side. This feature is called

(i) data security (ii) data hiding

(iii) data manipulation (iv) data definition

Introduction to Classes and Object Unit - 8

156

and

void show_data ();

inside the class ‘employee’. We have seen that these function

definition are similar to the normal function definition except that they

are enclosed within the body of a class. They will be treated as an

inline function. Remember that if a function contains loop instruction

i.e. for, while do, while ...etc. then that function will not be treated as

inline function.

8.6.2 Member Function outside a Class

In this method of defining a member function outside a class - first

you will have to declare a function prototype within the body of the

class and then define the function outside the body of the class.

The function defined outside the body of a class have the same syntax

as normal functions i.e. they should have a function header and a

function body. But, there must have a mechanism of binding the

functions to the class to which they belong. This is done by using the

scope resolution operation (: :), in the header of the function. The

scope resolution operator acts as an ‘identity-label’ and tells the

compiler the class to which the function belongs. The general form

of a member function definition is shown below–

ClassName

{

............

ReturnType MemberFunction (arguments); // Function Prototype

............

............

} ;

Return Type ClassName : : MemberFunction (arguments)

{

// body of the function

}

Unit - 8 Introduction to Classes and Object

157

Here, the label ClassName : : tells the compiler that the function

MemberFunction is the member of class ClassName. The scope

of the function is restricted to only the objects and other members of

the class. We can modify the Program 8.1 by defining the member

functions outside the class body, as shown below:

//Program 8.2

#include<iostream.h>

#include<string.h>

#include<conio.h>

class employee

{

private:

Char name [30];

float age;

public:

void insert_data (char *name1, float age1);

void show_data ();// Member Function

};

void employee::insert_data (char *name1, float age1)

{

strcpy (name, name1);

age = age1;

}

void employee ::show_data ()// Function definition

{

cout <<“Name :”<<name<<endl;

cout <<“Age:”<<age<<endl;

}

void main ()

{

employee e1, e2;

clrscr();

e1 . insert_data (“Hemanga”, 30);

e2 . insert_data (“Prakash”, 32);

cout<<“EMPLOYEE DETAILS ... ”<<endl;

e1 . show_data ();

e2 . show_data ();

getch ();

}

Introduction to Classes and Object Unit - 8

158

OUTPUT : EMPLOYEE DETAILS:

Name : Hemanga

Age : 30

Name : Prakash

Age : 32

In the above definitions, the label ‘employee : :’ informs the compiler

that the functions insert_data () and show_data () are the members

of the employee class.

The member functions have some special characteristics. There

are–

 A program can have several different classes and they can use

the same name for different member functions. The ‘membership

label’ (ClassName : :) resolves the ambiguity of the compiler in

deciding which function belong’ to which class.

 Member functions can access the private data of the class,

whereas non-member functions are not allowed to access. But

‘friend function’ can access the private data member of a class

we will discuss later the friend functions.

o Member functions of the same class can access all other

members of their own class without the use of dot operator.

 8.7 INLINE MEMBER FUNCTION

Let us first see what an inline function is. C++ provides a mechanism

called inline function. When a function is declared as inline, function body

is inserted in place of function call during compilation. In this mechanism,

passing of control between caller and callee functions is avoided. The use

of the inline function is most effective when calling function is small. If the

calling function is very large, in such a case also, compiler copies the

content of the inline function in the called function which reduces the

program’s execution speed. So, in such a case inline function should not

be used.

Unit - 8 Introduction to Classes and Object

159

Now, let us see how an inline function behaves with class specification.

We have come to know that we can define a member function outside the

class definition. The same member function can be defined as inline

function by just using the qualifier inline in the header line of the function

defining. In the followng, the syntax for defining inline function outside the

class declaration is shown

Keyword indicates function defined outside a class body is inline

In fact, the inline mechanism reduces overhead relating to accessing the

member function. It provides better efficiency and allows quick execution

of functions. An inline member function is treated like a macro i.e. any call

to this function in a program is replaced by the function itself. This is known

as inline expansion. Inline functions are also called open subroutines

because their code is replaced at the place of function call in the caller

function. The normal functions are known as closed subroutines because

when such functions are called, the control passes to the function. By

default, all member functions defined inside the class are inline function.

We can modify the Program 8.1 by defining the member functions as

inline function as shown below:

// Program 8.3

#include<iostream.h>

#include<string.h>

#include<conio.h>

class employee

{

private:

char name [30];

float age;

public :

void insert_data (char *name1, float age1);

void show_data ();

inline ReturnType ClassName : : FunctionName (arguments)

Introduction to Classes and Object Unit - 8

160

} ;

inline void employee::insert_data(char *name1, float age)

{

strcpy (name, name1);

age = age1;

}

inline void employee : : show_data ()

{

cout <<“Name :”<<name <<endl;

cout <<“Age:” <<age <<endl;

}

void main()

{

employee e1, e2;

clrscr();

e1.insert_data (“Hemanga”, 30);

e2.insert_data (“Prakash”, 32);

cout<< “Employee Details ..” << endl;

e1.show_data ();

e2.show _data ();

getch ();

}

OUTPUT :

Employee Details–

Name : Hemanga

Age : 30

Name : Prakash

Age : 32

 8.8 ARRAY OF OBJECTS

We know that arrays hold data of similar type. Arrays can be of any data

type including user defined data type, created by using struct, class etc.

We can create an array of variables by using class data type. Such an

Unit - 8 Introduction to Classes and Object

161

array of variables of class data type is also known as an array of objects

which handle a group of objects.

Let us consider the following class definition :

class employee

{

private :

char name [30]

float age ;

Public :

void insert_data (char* name1, float age1);

void show_data ();

};

Here, the identifier ‘employee’ is a user defined data type and can be used

to create objects that relate to different categories of employees. For

example, the following definition will creates an array of objects of ‘employee’

class–

employee consultant [30]; // array of cosultant

employee clerk [15]; // array of clerk

employee lecturer [20]; // array of lecturer

The array consultant contain 30 objects (consultant), namely, consultant

[0], consultant [1],......... consultant [29], of type employee class. Similarly,

clerk array contains 15 objects and lecturer array contains 20 objects.

We know that as array elements occupy continuous memory locations

like the same way as array of objects occupy contiguous memory locations

as shown in the fig. 8.4

Introduction to Classes and Object Unit - 8

162

name

age

name

age

name

age

consultant [0]

consultant [1]

consultant [2]

name

age
consultant [29]

Fig.8.4 Stoage of data items in ‘consultant’ array of objects.

By using index an individual element of an array of objects can be referred

i.e. consultant [15], consultant [9] etc. By using the dot operator [.]

we can access any member of an object. For example

consultant [30] . show_data ()

will display the data of 30th consultant.

We can rewrite the Program 8.1 by using array of objects as shown below:

// Program 8.4

#include<iostream.h>

#include<string.h>

#include<conio.h>

class employee

{

private:

char name [30];

float age;

public:

void insert_data (char *name1, float age)

Unit - 8 Introduction to Classes and Object

163

{

strcpy (name, name1);

age = age1;

}

void show_data ()

{

cout<<“Name:”<<name<<endl;

cout<<“Age:”<<age<<endl;

}

};

void main ()

{

int i, age, count;

char name [30], tag;

employee consultant [30];

clrscr ();

count = 0;

for (i=0; i<30; i++)

{

cout<<“Enter Data For Employee (Y/N):”;

cin >> tag;

if (tag = = ‘y’ || tag = = ‘Y’)

{

}

else

}

cout <<“\n Enter Name of Employee:”;

cin >> name;

cout << “Age:”;

cin >> age;

consultant[i].insert_data(name, age);

count ++;

break;

cout <<“\n\n Employee Details\n” ;

Introduction to Classes and Object Unit - 8

164

for (i=0; i < count; i ++)

consultant[i].show_data();

getch ();

}

OUTPUT : Enter Data for Employee (Y/N) : y

Enter Name of Employee : Prakash

Age : 30

Enter Data for Employee (Y/N) : y

Enter Name of Employee : Hemanga

Age : 28

Enter Data for Employee (Y/N) : n

Employee Details...

Name : Prakash

Age : 30

Name : Hemanga

Age : 28

 8.9 OBJECTS AS FUNCTION ARGUMENTS

Objects can be passed as an argument to a function. There are three

ways of passing objects as function arguments:

 a copy of the entire object is passed to the function, which is also

called pass-by-value

 only the address of the object is sent implicitly to the function, which

is also called – pass by-reference.

 the address of the object is sent explicitly to the function, which is

also called – pass-by-pointer.

8.9.1 Pass-by-value

In this technique, a copy of the object is passed to the called function

(callee) from the calling function (caller). Since a copy of the object is

passed so any changes made to the object inside the called function do

Unit - 8 Introduction to Classes and Object

165

not affect the object used to call the function

The following program demonstrates the use of objects as function

arguments in pass-by-value mechanism.

//Program 8.5

#include<iostream.h>

#include<conio.h>

class age

{

private:

int birthyr ;

int presentyr ;

int year ;

public:

void getdata ();

void period (age);

};

void age : : getdata ()

{

cout<<“ \ n Year of Birth:”;

cin >> birthyr ;

cout << “Current year:” ;

cin >> presentyr ;

}

void age : : period (age x1)

{

year = x1 . presentyr - x1 . birthyr ;

cout << “Your Present Age :” <<year<<“Years” ;

}

void main (){

clrscr ();

age a1 ;

a1 . getdata ();

a1 . period (a1) ;

getch();

Introduction to Classes and Object Unit - 8

166

}

OUTPUT: Year of Birth : 1990

Current Year : 2002

Your Present Age : 19 years

In the above program, the class age has three data member. The function

getdata () reads integers through keyboard. The function period ()

calculates the difference between the two integers. In function main (), a1

is an object to the class age. The object a1 calls the function getdata ().

The same object a1 is passed to the function period (), which calculates

the difference between the two integers. Thus, an object can be passed to

a function.

8.9.2 Pass-by-Reference

In this technique, only the address of the object is sent to the function.

When an address of the object is passed, the address acts as reference

pointer to the actual object in the calling funciton. Therefore, any change

made to the objects inside the called function will reflect in the actual object

in the calling funciton. We can modify the program 8.5 by using the pass

by reference mechanism

// Program 8.6

#include<iostream.h>

#include<conio.h>

class age

{

private:

int birthyr ;

int presentyr ;

int year ;

public:

void getdata ();

void period (age);

167

};

void age : : getdata ()

{

cout<<“ Year of Birth:”;

cin >> birthyr ;

cout << “Current year:” ;

cin >> presentyr ;

}

void age : : period (age & x1)

{

x1. year = x1 . presentyr - x1 . birthyr ;

cout << “Your Present Age :” <<year<<“Years” ;

}

void main ()

{

clrscr ();

age a1 ;

a1 . getdata ();

a1 . period (a1) ;

getch ();

}

RUN : Year of Birth : 1990

Current Year : 2009

Your Present Age : 19 years

 8.9.3 Pass-by-Pointer

In this mechanism also, the address of the object is passed explicitly to

the called function from the calling function. The program 8.6 is modified

by using the mechanism pass-by-pointer as follows:

Introduction to Classes and Object Unit - 8

168

//Program 8.7

#include<iostream.h>

#include<conio.h>

class age

{

private:

int birthyr ;

int presentyr ;

int year ;

public:

void getdata ();

void period (age *);

};

void age : : getdata ()

{

cout<<“ \n Year of Birth:”;

cin >> birthyr ;

cout << “current year:” ;

cin >> presentyr ;

}

void age : : period (age * x1)

{

year = x1  presentyr - x1  birthyr ;

cout << “Your Present Age :” <<year<<“Years” ;

}

void main ()

{

clrscr ();

age a1 ;

a1 . getdata ();

a1 . period (&a1) ;

getch ();

}

Unit - 8 Introduction to Classes and Object

169

OUTPUT: Year of Birth : 1990

Current Year : 2009

Your Present Age : 19 years

In Program 8.6 and Program 8.7 we need to keep an eye on the symbols

‘.’, ‘  ’, ‘*’, ‘&’, and the statements(bold lines) where we have appropriately

used them.

 8.10 FRIEND FUNCITON AND FRIEND CLASS

We have already discussed the fact that the private members of a class

cannot be accessible from the outside of the class. Only the member

functions of that class have permission for accessing the private members.

This policy enforces the encaptulation and data hiding techniques.

Let us think of a situation where a user need a funciton to operate on

objects of two different classes. It means that the function will be allowed

to access the private data of both the classes. In C++, this situation is

over come by using the concept of friend function. It permits a friend function

to access the private members of different classes.

The declaration of a friend function must be prefixed by the keyword “friend”.

In the following class is shown a declaration of a friend function.

class test

{

private:

- -- --

- -- --

public :

- -- --

- -- --

friend void sum() ;

};

Introduction to Classes and Object Unit - 8

170

The function can be defined anywhere in the program similar to any normal

C++ function. The function definition does not use either the keyword friend

or the scope operator ‘: :’. The functions that are declared with the keyword

‘friend’ are called friend functions. A friend function can be a friend to a

multiple classes. The friend function have the following properties :

 There is no scope restriction for the friend function; hence they can

be called directly without using objects.

 Unlike member functions of class, friend function cannot access

the members directly. On the other hand, it uses object and dot

operator to access the private and public member variables of the

class.

 Use of friend function is rarely done, because it violates the rule of

encapsulation and data hiding.

 The function can be declared in public or private sections without

changing its meaning.

The following program demonstrates the use of friend function:

// Program 8.8

#include<iostream.h>

#include<conio.h>

class first ; /*forward declaration like function Prototype*/

class second

{

int x ;

public :

void get value ()

{

cout << “\n Enter a number :” ;

cin >> x ;

}

friend void sum(second, first);//declaration of friend

dunction

} ;

class first

{

Unit - 8 Introduction to Classes and Object

171

int y ;

public :

void getvalue ()

{

cout << “\n Enter a number:” ;

cin >> y ;

}

friend void sum (second, first) ;

} ;

void sum (second m, first n)

{

cout << “\n Sum of two numbers :” << n.y + m.x

}

void main()

{

clrscr ();

first a ;

second b ;

a.get value () ;

b.get value () ;

sum(b,a);//funciton is called like a general function in C++

}

OUTPUT: Enter a number : 9

 Enter a number : 12

 Sum of two numbers : 21

In the above program each of the two classes ‘first’ and ‘second’ has a

member function named getvalue () and one private data member. Notice

that, the function sum () is declared as friend function in both the class.

Hence, this function has the ability to access the members of both the

classes. Using sum () function, addition of integers is calculated and

displayed.

It is possible to declare all the member functions of a class as the friend

functions of another class. When all the functions need to access another

class in such a situation we can declare an entire class as friend class.

Always remember that friendship is not exchangeable. Its meaning is that

Introduction to Classes and Object Unit - 8

172

- declaring class A to be a friend of class B does not mean that class B is

also a friend of class A. The declaration of a friend class is as follows:

class second

{

- - -

- - -

friend class first;

}; /* all member functions of class first are friends to

class second */

The following program demonstrates the use of friend class :

//Program 8.9

#include<iostream.h>

#include<conio.h>

class smallvalue;

class value

{

int a;

int b;

public:

value (int i, int j) // declaration of constructor with

arguments

{

a = i;

b = j;

}

friend class smallvalue;

};

class smallvalue

{

public:

int minimum(value x)

{

return x.a < x.b ? x.a : x.b;

}

Unit - 8 Introduction to Classes and Object

173

};

void main ()

{

value x (15, 25);

clrscr () ;

smallvalue y;

cout << y. minimum(x);

getch ();

}

In the above program we have used the constructor with arguments. The

concept of constructor is illustrated in unit 9 ‘Constructors and

Destructors’.

CHECK YOUR PROGRESS

2. Fill in the blanks of the following :

(i) Member functions defined within the class definition are

implicity .

(ii) When only the address of the object is sent explicity, it is

called

(iii) function can access the private data members of a

class.

3. State whether the following statements are true or false:

(a) To reference an object using a pointer to object, uses the<>

operator.

(b) In the prototype void sum (int &) arguments are passed

by reference.

(c) If class A is a friend class of class B then a member function

of class B can access the data members of class A.

Introduction to Classes and Object Unit - 8

174

 8.11STATIC DATA MEMBER AND MEMBER

FUNCTON

After studying public and private members, let us study about the static

members of a class. Recall what we have learnt from C Programming:

(i) A variable can be declared as static inside a function or outside

main().

(ii) Static variables value do not disappear when function is no longer

active; their last updated value always persists. That is, when the

control comes back to the same function again the static variables

have the same value as they leave at the last time.

in C++ also. However, C++ has objects. Hence, the meaning of static with

respect to member variables of an object is different.

We have already gained the idea that each object has its separate set of

data member variable in memory. The member functions are created only

once and all object share the function. No separate copy of the function of

each object is created in the memory like data member variables. Figure

 shows the accessing of member function by objects.

Fig. 8.5 Data members and member functions in memory

Object A

fun A ()

fun B ()

fun C ()

Object C Object D

Object B

Variable n

Variable 2

Variable 1

Variable n

Variable 2

Variable 1

Variable n

Variable 2

Variable 1

Variable n

Variable 2

Variable 1

Unit - 8 Introduction to Classes and Object

175

In C++, it is possible to create common member variables like function

using the static keyword. Once a data member variable is declared as

static, only one copy of the member is created for the whole class and all

objects of the class will share that variable.

Always remember–

 A static variable preserves the value of a variable.

 When a variable is declared as static it is initialized to zero.

 A static data member or member function is only recognized inside

the scope of the present class.

 A static variable can be a public or private.

The syntax for declaring static data member or member function within a

class is shown below:

static <variable name> ;

static <function name> ;

When you declare a static data member within a class, you are not defining

it i.e. you are not allocating storage for it. Instead, you must provide a

global definition for it elsewhere, outside the class. This is done by

redeclaring the static variable using the scope resolution operator to identify

the class to which it belongs. This causes storage for the variable to be

allocated.

Fig. 8.6 Static member in memory

Object B

Variable 1

Variable 2

Variable n

Object D

Variable 1

Variable 2

Variable n Variable n

Variable 1

Variable 2

Object C

Variable n

Variable 1

Variable 2

Object A

Static variable

Introduction to Classes and Object Unit - 8

176

The declaration of static member is shown below :

class number

{

static int C;

public:

- - - -

- - - -

};

int number : : C = 0 // initializaiton of static member variable

The following program demonstrates the use of static data member in a

class–

// Program 8.10

#include<stdio.h>

#include<conio.h>

class number

{

static int C;

public:

void count ()

{

C ++;

cout << “\n C =” << C;

}

};

int number : : C = 0;

void main()

{

number a, b, c;

clrscr () ;

a.count ();

b.count ();

c.count ();

getch ();

}

Unit - 8 Introduction to Classes and Object

177

OUTPUT: c = 1

c = 2

c = 3

In the above program, the class number has one static data variable C.

The count() is a member funciton, increment value of static member

variable C by 1 when called. The statement int number : : C = 0 initiatize

the static member with 0. It is possible to initialize the static data members

with other values. In the function main(), a, b and c are three objects of

class number. Each object calls the funciton count(). At each call to the

function count() the variable C gets incremented and the count statement

displays the value of variable C. The objects a, b and c share the same

copy of static data member C.

STATIC MEMBER FUNCTION

In C++, like member variables, funcitons can also be declared as static.

When a function is defined as static, it can access only static member

variable and functions of the same class. The non-static members are not

available to these functions. The static member function declared in public

section can be invoked using its class name without using its objects. The

static keyword makes the funciton free from the individual object of the

class and its scope is global in the class without creating any side effect

for other part of the program.

The following points should be remembered while declaring static function:

a) Just one copy of the static member is created in the memory for the

entire class. All objects of the class share the same copy of static

member.

b) Static member functions can access only static data member, or

funcitons.

c) Static member functions can be invoked using class name.

d) It is also possible to invoke static member funcitons using objects.

e) When one of the objects changes the value of data member variables,

the effect is visible to all the objects of the class.

Introduction to Classes and Object Unit - 8

178

The following program demonstrates the use of the static member function

in a class.

//Program 8.11

#include<iostream.h>

#include<conio.h>

class number

{

private:

static int X;

public:

static void count () {X++; }

static void display ()

{

cout << “\n value of X =” << X;

}

};

int number : : X = 0;

void main ()

{

clrscr () ;

number::display(); //invokes display function

number::count(); //invokes count function

number::count(); //invokes display function

number::display(); //invokes display function

getch ();

}

OUTPUT: Value of X : 0

Value of X : 2

In the above program, the member variable X and functions count () &

display () of class number are static. The function count () when called,

increases the value of static variable X. The function display () prints the

current value of the variable X. The static functions can be called using

class name and scope resolution operator as shown in the program–

number : : count ();

number : : display ();

Unit - 8 Introduction to Classes and Object

179

8.12 LET US SUM UP

 Classes are the basic language construct in C++ for creating the

user defined data types.

 A class contains member variable or data members and member

functions.

 The members of a class are grouped into two sections, namely,

private and public.

 Defining variables of a class data type is known as a class instantiation

and such variables are called objects.

 Using the member accessed operator, dot(.), the class members

can be access by the objects.

 The member function can be defined as a) private or public b) inside

the class or outside the class.

 The scope resolution operator (::) is used, when a member function

is defined outside the class body.

 Inline member function is treated like a macro, when a function is

declared as inline, function body is inserted in place of function call

during compilation.

 We can create an array of variables by using the class data type,

then these variables are called array of objects, which occupies

contiguous memory locations inmemory.

 There are three methods of passing objects to function, namely,

pass-by-value, pass-by-reference, and pass-by-pointer.

 The function that are declared with the keyword friend are called

friend function. A function can be a friend to multiple classes.

 static is the keyword used to preserve value of a variable. When a

variable is declared as static, it is initialized to zero. A static function

or data element is only recognized inside the scope of the present

class.

 When a function is defined as static, it can access only static member

variables and functions of the same class. The static member

functions are called using its class name without using its objects.

Introduction to Classes and Object Unit - 8

180

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata McGraw-

Hill Education

8.14 ANSWERS TO CHECK YOUR PROGRESS

1. a) i. b) iii. c) iv. d) i. e) ii

2. i) inline, ii) pass-by-pointer, iii) friend

3. a) False, b) True, c) False

 8.15 MODEL QUESTIONS

1. What is a class ? How does it accomplish data hiding ?

2. What is an object ? How is an object created ?

3. How is a member function of a class defined or declared ?

4. Explain the use of private and public keywords. How are they different

from each other ?

5. What is the significance of scope resolution operator :: ?

6. When will you make a function inline and why ?

7. Explain the different methods of passing objects to functions.

8. What is a friend function and a friend class ? Explain with example.

8.13 FURTHER READING

181

 UNIT 9 : CONSTRUCTORS AND DESTRUCTORS

UNIT STRUCTURE

 9.1 Learning Objectives

 9.2 Introduction

 9.3 Constructors

 9.3.1 Parameterized Constructors

 9.3.2 Copy Constructors

 9.4 Overloading of Contructors

 9.5 Destructors

 9.6 Dynamic Initialization of Objects

 9.7 Let Us Sum Up

 9.8 Further Reading

 9.9 Answers to Check Your Progress

 9.10 Model Questions

 9.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 define and use constructors in programming

 learn about default constructor

 learn to use parameterized contructors

 define and use copy constructor

 learn about destructors

 describe the way of declaring a destrcutor

 initialize object dynamically

 9.2 INTRODUCTION

In the previous unit we have studied data members and member functions

of class. We have seen so far a few examples of classes being

implemented. In all cases, we defined a separate member function for

reading input values for data members. With the use of object, member

Constructors and Destructors Unit - 9

182

functions are invoked and data members are initialized. These functions

cannot be used to initialize the data members at the time of creation of

object. C++ provides a pair of special member functions called constructor

and destructor. Constructor enables an object to initialize itself when it is

created and destructor destroys the object when it is no longer required.

In this unit we will discuss the constructor and destructor. Different types

of contructor and their implementation will also be discussed in this unit.

 9.3 CONSTRUCTORS

A constructor is a special member function in a class that is called when a

new object of the class is created. It, therefore, provides the opportunity to

initialize objects as they are created and to ensure that data members

only contain valid values. It is a member function whose task is to ini-

tialize the object of its class and allocate the required resources such

as memory. It is distinct from other members of the class because it has

the same name as its class.

A constructor can be declared and defined with the following syntax:

class classname

{ Private members

........ ;

public : Constructor declaration

classname();

};

classname :: classname()

{

//Body of constructor

}

Constructors have some special constraints or rules that must be followed

while defining them. These are as follows:

Constructor definition

Unit - 9 Constructors and Destructors

183

 Constructor is executed automatically whenever the class is instan-

tiated i.e., object of the class is created.

 It always has the same name as the class in which it is defined

 It cannot have any return type, not even void.

 It is normally used to initialize the data members of a class.

 It is also used to allocate resources like memory to the dynamic

data members of a class.

 It is normally declared in the public access within the class.

For example, let us declare a class with class name ‘circle’. If we use

constructor, then the constructor name must also be ‘circle’. The program

can be written as follows:

/*Program 9.1: Program to demostrate constructor while calculating the

area of a circle*/

#include<iostream.h>

#include<conio.h>

#define PI 3.1415

class circle

{

private:

float radius;

public:

circle(); //constructor declaration

void area() // member function

{

cout<<"\nArea of the circle is " ;

cout<<PI*radius*radius<<" sq.units\n";

}

};

circle :: circle() //constructor definition

{

cout<<"\nEnter radius of the circle: ";

cin>>radius;

}

Constructors and Destructors Unit - 9

184

int main()

{

clrscr();

circle c;//constructor invoked automatically

c.area();

getch();

return 0;

}

The output of the above program will be :

Enter radius of the circle: 5

Area of the circle is 78.5375 sq. units

In the above program, the constructor circle() takes the value of radius

from the keyboard. Although the data member is private, the constructor

could initialize them. The statement circle c declares a variable c as

object of (type) class circle. It also calls the constructor implicitly.

The Default Constructors

The constructor which takes no arguments is called the default

constructor. The following code fragment shows the syntax of a default

constructor.

class class_name

{

private:

data members;

public:

class_name(); //default constructor

};

class_name : : class_name()

{

/* definition of constructor without any arguments and body */

}

If no constructor is defined for a class, then the compiler supplies the

default constructor.

Unit - 9 Constructors and Destructors

185

Instantiation of Object

Instantiating an object is what allows us to actually use objects in our

program. We can write hundreds and hundreds of class declarations, but

none of that code will be used until we create an instance of an object. A

class declaration is merely a template for what an object should look like.

When we instantiate an object, C++ follows the class declaration as if it

were a blueprint for how to create an instance of that object.

CHECK YOUR PROGRESS

1. State whether the following statements are True (T) or

False (F):

(i) The constructor is not a member function.

(ii) It is wrong to specify a return type for a constructor.

(iii) It is possible to define a class which has no constructor

at all.

(iv) The name of a constructor need not be same as that of

the class to which it belongs.

(v) A class may have two default constructors.

2. Choose the appropriate option:

(i) A function that is automatically called when an object is

created is known as :

(a) constructor

(b) destructor

(c) delete

(d) free() function

(ii) Constructor with no parameter is known as

(a) stand-alone constructor (c) copy constructor

(b) default constructor (d) none of these

(iii) For a class namely Shape, the contructor will be like

(a) void Shape() { } (b) shape() {}

(c) Constructor Shape(){......} (d) Shape() {....... }

Unit - 9 Constructors and Destructors

186

3. Write a program in C++ that displays the factorial of a given

number using a constructor member function.

4. Write a program in C++ to find the area of a rectangle of length

and breadth 6.0 by using a class “rectangle”. The program

should also contain a constructor along with other member

function.

 9.3.1 Parameterized Constructors

The constructor that can take arguments are called parameterized

constructor. The arguments can be separated by commas and

they can be specified within braces similar to the argument list in

function.

When a constructor has been parameterized, the object declaration

without parameter may not work. In case of parameterized

constructor, we must provide the appropriate arguments to the

constructor when an object is declared. This can be done in two

ways:

 By calling the constructor explicitly.

 By calling the constructor implicitly.

The implicit call method is sometimes known as shorthand method

as it is shorter and is easy to implement.

Let us consider the following example to demonstrate how

parameterized constructor works.

// Program 9.2: Program creating parameterized constructor

#include<iostream.h>

#include<conio.h>

class student

{

private:

int roll,age, marks;

public:

student(int r,int m,int a);//parameterized

Unit - 9 Constructors and Destructors

187

constructor

void display()

{

cout<<“\nRoll number :” <<roll <<endl;

cout<<“Total marks : <<marks<<endl;

cout<<“Age:”<<age<<endl;

}

}; //end of class declaration

student::student(int r, int m, int a) //constructor

definition

{

roll = r;

marks =m;

age=a;

}

int main()

{

student manoj(5,430,16); //object creation

cout<<“\nData of student 1 : “<<endl;

manoj.display();

student rahul = student(6,380,15);//object

creation

cout<<“\n\nData of student 2 : “<<endl;

rahul.display();

getch();

return 0;

}

Explicit

constructor call

The output of the above program will be like this:

Data of student 1 :

Roll number : 5

Total Marks : 430

Age : 16

Data of student 2 :

Roll number : 6

Total Marks : 380

Implicit

constructor call

Unit - 9 Constructors and Destructors

188

Age : 15

Constructors and Destructors Unit - 9

189

In the above program, the statement student(int r, int m, int a,); is

a parameterized constructor with two arguments. In the main()

function, we see that there are two objects, manoj and rahul of

class type student. The object manoj is initialized with the values

5,430 and16 with the implicit call statement student manoj(5,

430,16);. The object rahul is initialized with the values 6,380 and 15

with the explicit call statement student rahul = student(6, 380,15);

This statement creates a student object rahul and passes the values

6, 380 and 15 to it.

Constructors with Default Arguments

It is possible to have a constructor with arguments having default

values. It means that if we have a parameterized constructor with n

parameters, then we can invoke it with less than n parameters speci-

fied in the call.

It is useful when most of the objects to be created are likely to have

the same value for some data members. We need not specify that

in every invocation. For example, suppose we want to record the

data of class x (ten) students. For this, we can consider the same

class student as shown in Program 8.2. Most of the students are of

age 16. Hence, their birth year is likely to be the same. Only a few of

them may have a different year of birth. For this we can use the

statement

student(int r, int m, int a=16);

where the third parameter is given the default value. When we write

the following statement

student s(1,360);

it assigns the values 1 and 360 to the argument r and m respectively

and 16 to the argument a by default. Again, if we write

student t(2,400,15);

it assigns 2, 400 and 15 to r, m and a respectively. Thus, the actual

arguments, when specified, overrides the default values.

Unit - 9 Constructors and Destructors

190

 9.3.2 Copy Constructors

Object of the same class cannot be passed as argument to con-

structor to that class by value method.

class student

{

private:

....... This is not a valid

public: declaration

student(student s);

};

But it is possible to pass an object of the same class as argument to

a constructor by reference method. Such type of constructor, i.e., a

constructor having parameter which is a reference to object of the

same class is called a copy constructor. Thus, the following dec-

laration is a valid declaration.

class student

{

private:

//data members

public:

//copy constructor

int roll, marks, age;

student(student &s);

}; Reference to an object

of class student

EXERCISE

Q. Write a C++ program to create a class “EMPLOYEE” to ini-

tialize EMP_ID, DESIGNATION and BASIC_PAY using a construc-

tor and display data for three employees.

Constructors and Destructors Unit - 9

191

Copy constructor is also called one argument constructor as it takes

only one argument. The main use of copy constructor is to initialize

the objects while in creation, also used to copy an object. This

constructor allows the programmer to create a new object from an

existing one by initialization. Let us demostrate copy constructor with

the following program :.

//Program 9.3: Program to demonstrate copy constructor

#include<iostream.h>

#include<conio.h>

class student

{

private:

int roll, marks, age;

public:

student(int r,int m,int a)

// parameterized constructor

{

rol l = r;

marks = m;

age = a;

}

student(student &s) //copy constructor

{

roll = s.roll;

marks = s.marks;

age=s.age;

}

void display()

{

cout<<"Roll number :" <<roll <<endl;

cout<<"Total marks :"<<marks<<endl;

cout<<"Age:"<<age<<endl;

}

};

Unit - 9 Constructors and Destructors

192

int main()

{

clrscr();

student t(3,350,17);// or student k(t);

student k = t;// invokes copy constructor

cout<<"\nData of student t:"<<endl;

t.display();

cout<<"\n\nData of student k:"<<endl;

k.display();

getch();

return 0;

}

The outout of the above program will be like this:

Data of student t :

Roll number : 3

Total marks : 350

Age : 17

Data of student k :

The statements

parameterized constructor

constructor

student t(3,350,17); / / i n v o k e s

student k = t; //invokes copy

initialize one object k with another object t. The data members of t

are copied member by member into k. When we see the output of

the program we observe that the data of both the objects t and k are

same.

Roll number : 3

Total marks : 350

Age : 17

Constructors and Destructors Unit - 9

193

9.4 OVERLOADING OF CONTRUCTORS

A class may contain multiple constructors i.e., a class can have more

than one constructor with the same name. The constructors are then

recognized depending on the arguments passed. It may differ in terms of

arguments, or data types of their arguments, or both. This is called

overloading of constructors or constructor overloading.

Program 9.3 is also an example of constructor overloading as it has two

constructors: one is parameterized and the other is a copy constructor.

Let us take a suitable example to demostrate overloading of constructors.

//Program 9.4: Demonstration of constructor overloading

#include<iostream.h>

#include<math.h>

#include<conio.h>

class complex

{

private:

float real,imag;

public:

complex()//constructor with no argument

{

real = imag = 0.0;

}

complex(float r, float i)

//constructor with two arguments

{

real = r;

imag = i;

}

complex(complex &c) //copy constructor

{

real = c.real;

imag = c.imag;

Unit - 9 Constructors and Destructors

194

}

complex addition(complex d);

/*member function returning object and taking

object as argument */

void display() //Display member function

{

cout<<real;

if(imag < 0)

cout<<"-i";

else

cout<<"+i";

value

cout<<fabs(imag);/*fabs calcute the absolute

of a floating point

number */

}

};

complex complex::addition(complex d)

{

complex temp; //temporary object of type

complex class

temp.real=real+d.real; //real parts added

temp.imag=imag+d.imag; //imaginary parts

added

}

return(temp);

int main()

{

tor

clrscr();

complex x1,x4; //invokes default constructor

cout<<"\nThe complex numbers in a+ib form :\n\n";

cout<<"First complex number: ";

x1.display();

complex x2(1.5,5.3);//invokes parameterized construc-

Constructors and Destructors Unit - 9

195

cout<<"\nSecond complex number: ";

x2.display();

complex x3(2.4,1.9);

cout<<"\nThird complex number: ";

x3.display();

cout<<"\nAddition of 2nd and 3rd complex number: ";

x4=x2.addition(x3); //function call

x4.display();

cout<<"\nThe result is copied to another object:

";

complex x5(x4); //invokes copy constructor

x5.display();

getch();

return 0;

}

The output of the above program will be:

The complex numbers in a+ib form:

First complex number: 0+i0

Second complex number: 1.5+i5.3

Third complesx number: 2.4+i1.9

Addition of second and third complex number: 3.9+i7.2

The result is copied to another object: 3.9+i7.2

We have the following three constructors

complex();

complex(float r, float i) ;

and complex(complex &c);

The above program indicates overloading of constructors. These

constructors are invoked during the creation of an object depending on the

number and types of arguments passed. The default constructor complex(

); initializes the data members real and imag to 0.0. In main(), the statement

complex x2 (1.5,5.3); passes two parameters to the constructor explicitly

with the help of the parameterized constructor complex (float r, float i);

With the help of copy constructor complex (complex &c); data members

of one object is copied member by member into another.

Unit - 9 Constructors and Destructors

196

 9.5 DESTRUCTORS

Like constructors, destructors are also special member functions used in

C++ programming language. Destructors have the opposite function of a

constructor. The main function of destructors is to free memory and to

release resources. Destructors take the same name as that of the class

name preceded by a tilde ~. A destructor takes no arguments and has no

return type.The general syntax of a destructor is as follows:

class classname

{

};

tion

{

}

private : //Private members

........ ;

public :

~classname(); //Destructor declaration

classname :: ~classname()//Destructor defini-

//Body of destructor

In the above, the symbol tilde ~ represents a destructor which precedes

the name of the class. Like the default constructor, the compiler always

creates a default destructor if we donot create one. Similar to constructors,

a destructor must be declared in the public section of a class. Destructor

cannot be overloaded i.e., a class cannot have more than one destructor.

/* Program 9.5 : Program demonstrating destructor */

#include<iostream.h>

#include<conio.h>

#include<string.h>

class student

{

private:

Constructors and Destructors Unit - 9

197

int age;

char name[25];

public:

student(int a, char n[25])

{

age=a;

strcpy(name,n);

}

void show()

{

"<<name;

}

cout<<"\nThe name of the student is:

cout<<"\nHis age is: "<<age;

~student() //destructor defined

{

cout<<"\nObject Destroyed";

}

};

int main()

{

student s1(21,"Rahul");

student s2(23,"Dipankar");

clrscr();

s1.show();

s2.show();

return 0;

}

To see the execution of destructor, we have to press Alt+F5 after compiling

and running the program. The ouput will be like this:

The name of the student is : Rahul

His age is : 21

The name of the student is : Dipankar

His age is : 23

Unit - 9 Constructors and Destructors

198

Object Destroyed

Object Destroyed

The following points should be kept in mind while defining and writing the

syntax for the destructor

 A destructor must be declared with the same name as that of the

class to which it belongs. But destructor name should be preceeded

by a tilde (~).

 A destructor should be declared with no return type.

 A destructor must have public access in the class declaration.

9.6 DYNAMIC INITIALIZATION OF OBJECTS

We can dynamically initialize objects through constructors. Object’s data

members can be initialized dynamically at run time even after their cre-

ation.

//Program 9.6 Demonstration of dynamic initialization of object

#include<iostream.h>

#include<conio.h>

#include<math.h>

class number

{

public:

int num;

number(int n)

{

num=n;

}

int sum()

{

num=num+5;

return(num);

Constructors and Destructors Unit - 9

199

}

};

int main()

{

number obj1(1); // parameterized constructor invoked

number obj2(2);

clrscr();

cout<<"\nValue of object 1 and object 2 are : ";

cout<<obj1.num<<"\t"<<obj2.num;

number obj3(obj1.sum());//dynamic initialization of

object

cout<<“\nValue of object 1 after calling sum() :

”<<obj1.num;

cout<<"\nValue of object 3 is :"<<obj3.num;

getch();

return 0;

}

The output of the above program will be :

Value of object 1 and object 2 are : 1 2

Value of object 1 after calling sum() : 6

Value of object 3 is : 6

The statements number obj1(1); and number obj2(2); will initialize obj1

and obj2 by 1 and 2 respectively by invoking the constructor number(int n).

obj1.sum() will return the value 6. This is passed as argument in the

statement

number obj3(obj1.sum());

where obj3 is initialized dynamically with the value returned by obj1.sum().

Unit - 9 Constructors and Destructors

200

 9.7 LET US SUM UP

Based on the discussion so far, the key points to be kept in mind from this

unit are:

 A constructor is a special member function for automatic initialiation

of an object. Whenever an object is created, the constructor will be

called.

CHECK YOUR PROGRESS

5. State whether the following statements are true(T) or false(F) :

(i) A class may have more than one destructor.

(ii) When an object is destroyed, destructor is automatically

called.

(iii) Presence of many destructor in a class is called

destructor overloading.

(iv) A destructor can have a return type.

(v) A destructor can have arguments like destructor.

(vi) We can pass arguments to a constructor.

(vii) Destructors cannot take arguments.

(viii) Destructors can be overloaded.

6. Choose the appropriate option:

(i) Return type of a destructor is

(a) int (b) tilde

(c) void (d) nothing, destructor has no return value

(ii) A class may have destructor

(a) two (b) only one

(c) many (d) none of these

7. Distinguish between the following two statements:

time t1(14, 10, 30); //statement1

time t1 = time(14, 10, 30); //statement2

Constructors and Destructors Unit - 9

201

 Constructor should have the same name as that of class name to

which it belong.

 Constructor has no return type.

 The constructor without argument is called a default constructor.

 Constructors may be overloaded to provide different ways of initial-

izing an object.

 We may have more than one constructor with the same name, pro-

vided each has a different signature or arguments list.

 A constructor can accept a reference to its own class as a parameter.

Such a constructor having a reference to an instance of its own

class as an argument is known as copy constructor.

 C++ also provides another member function called destructor that

releases memory by destroying objects when they are no longer

required.

 A destructor never takes any argument nor does it return any value.

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata McGraw-

Hill Education

 9.9 ANSWERS TO CHECK YOUR PROGRESS

1. (i) False (ii) True (iii) True (iv) False (v) False

2. (i) (a) constructor (ii) (b) default constructor (iii) (d) Shape() {}

3. // Program for finding factorial of a number

#include<iostream.h>

#include<conio.h>

class factorial

{

9.8 FURTHER READING

Unit - 9 Constructors and Destructors

202

private:

long n;

public:

factorial();

};

factorial::factorial()

{

cout<<"\nEnter the number to find factorial:

";

cin>>n;

long fact =1;

while(n>1)

{

fact =fact *n;

n=n-1;

}

cout<<"\n\nThe factorial is : "<<fact;

}

int main()

{

factorial f;

getch();

return 0;

}

4. /*Program for finding the area of a rectangle of length 10.0 and breadth

6.0*/

#include<iostream.h>

#include<conio.h>

class rectangle

{

private:

float length,breadth;

public:

rectangle()

{

Constructors and Destructors Unit - 9

203

length = 10.0;

breadth=6.0;

}

float area()

{

return(length*breadth);

}

};

void main()

{

rectangle r;

clrscr();

cout<<“\ n The area of the rectangle is:

”<<r.area()

<<“ square units”;

getch();

return 0;

}

5. (i) False (ii)True (iii) False
(iv) False

(v) False (vi) False (vii) True (viii) False

6. (i) (d) nothing, destructor has no return value,

(ii) (b) only one

7. The first statement creates the object t1 by calling the time constructor

implicitly. On the other hand, the second statement creates the object

t1 by calling the time constructor explicitly.

 9.10 MODEL QUESTIONS

1. What are constructor and destructors? Expalin how they differ from

normal member functions.

2. What are the characteristics of a constructor?

3. Write short notes on (i) Default Constructor

(ii) Copy Constructor

Unit - 9 Constructors and Destructors

204

4. Differentiate between constructor and destructors.

5. Give the rules governing the declaration of a constructor and de-

structor.

6. What is a parameterized constructor ?

7. Write a C++ program to show overloading of constructors?

8. Define a class ‘complex_no’ which has two data members, one for

representing the real part and the other for complex part. Define a

constructor to initialize the object.

9. Define suitable constructor(s) for the STRING class defined below;

STRING

{

int length;

char s[50];

public:

//define suitable constructors

};

205

UNIT 10: OPERATOR OVERLOADING

 UNIT STRUCTURE

 10.1 Learning objectives

 10.2 Introduction

 10.3 Basic Concept of Overloading

 10.4 operator Keyword

 10.5 Overloading Unary Operators

 10.6 Operator Return Type

 10.7 Overloading Binary Operators

 10.8 Strings and Operator Overloading

 10.9 Type Conversion

 10.10 Let Us Sum Up

 10.11 Further Readings

 10.12 Answers to Check Your Progress

 10.13 Model Questions

10.1 LEARNING OBJECTIVES

After going through this unit, you will able to :

 describe the fundamental concept of overloading

 describe the use of the keyword operator

 illustrate the overloading of unary and binary operators

 describe manipulation of strings using operators

 10.2 INTRODUCTION

So far, we have discussed the concept of class and objects and how to

allocate required resource such as memory and initialize the objects of

classes using constructors and how to deallocate the memories using

destructors. C++ offers an another important feature namely operator over-

loading, through which operators like +,-,<=,>= etc. can be used with user

defined data types, with some additional meaning.

Unit - 10 Operator Overloading

206

In this unit, we will concentrates on the dicussion of overloading of opera-

tors (unary and binary) as well as the string manipulations using opera-

tors.

 10.3 BASIC CONCEPT OF OVERLOADING

We know that operators (+,-,<=,>= etc.) are used to perform operation

with the constants and variables. Without the use of the operators a pro-

grammer cannot write or built an expression. We have already used these

operators with the basic data types such as int or float etc. The operator

+(plus) can be used to perform addition of two variables but we cannot

apply the + operator for addition of two objects. If we want to add two

objects using the + operator then the compiler will show an error mes-

sage. To avoid this error message you must have to make the compiler

aware about the addition process of two objects. To perform operation

with objects you need to redefine the definition of various operators. For

example, for addition of objects X and Y, we need to define operator +(plus).

Re-defining an operator does not change its original meaning. It can be

used for both variables of built-in data types as well as objects of user

defined data types.

Operator overloading in C++, permits to provide additional meaning to the

operators such as +, *, >=, –, = etc., when they are applied to user defined

data types. Hence, the operator overloading is one of the most valuable

concepts introduced by C++ language. It is a type of polymorphism. We

will discuss polymorphism in a later unit. C++ allows the following list of

operators for overloading.

Operator Overloading Unit - 10

207

︵

︶

Table 10. 1:C++ Overlodable Operators

Operator Category Operators

Arithmetic +, -, *, /, %

Bit-Wise &, |, ~, ̂

Logical &&, ||, !

Relational <, >, ==, !=, <=, >=

Assignment =

Arithmetic assignment +=, -=, *=, /=, %=, &=, |=, ̂ =

Shift >>, <<, >>=, <<=

Unary ++, --

Subscripting []

Function call

Dereferencing ->

Unary sign prefix +, -

Allocate and free new, delete

 10.4 operator KEYWORD

The keyword operator helps in overloading of the C++ operators. The gen-

eral format of operator overloading is shown below :

ReturnType opeator OperatorSymbol ([arg1], [arg2])

{

// body of the function

}

Here, the keyword operator indicates that the OperatorSymbol is the name

of the operator to be overloaded. The operator overloaded in a class is

known as overloaded operator function.

The following statements shows the use of the operator keywords.

class Index

{

// class data and member function

Index operator ++()

{

index temp;

Unit - 10 Operator Overloading

208

value = value+1;

temp.value = value;

return temp;

}

};

Here, return type of the operator function is the name of a class within

which it is declared. It can be defined as follows :

class Index

{

// class data and member function

Index operator ++();

};

Index Index :: operator ++()

{

index temp;

value = value+1;

temp.value = value;

return temp;

}

The operator function should be either a member function or a friend func-

tion. When the operator function is declared as member function and takes

no argument, it is known as unary operator overloading and when it takes

one argument it is known as binary operator overloading.

 10.5 OVERLOADING UNARY OPERATORS

When an operator function takes no argument, it is called as unary opera-

tor overloading. You are already familiar with the operators ++, --, and -,

which have only single operands are called unary operators. The unary

operators ++ and -- can be used as prefix or suffix with the functions.

The following program demonstrates the overloading of unary ‘--’ opera-

tors.

Operator Overloading Unit - 10

209

// Program 10.1

#include<iostream.h>

#include<conio.h>

class unary

{

tor

};

int x, y, z;

public :

unary (int i, int j, int k) // parameterized construc-

{

x=i; y=j; z=k;

}

void display();//displays contents of member variables

void operator --();//overloads the unary operator --

void unary :: operator --()

{

--x; --y; --z;// values of variables will decrease by 1

}

void unary :: display()

{

cout<<"X="<<x<<"\n";

cout<<"Y="<<y<<"\n";

cout<<"Z="<<z<<"\n";

}

void main()

{

clrscr();

unary A(31, 41, 51);

cout<<"\n Before Decrement of A :\n";

A.display();

--A;// calls the function operator --()

cout<<"\n After Decrement of A :\n";

A.display();

getch();

}

Unit - 10 Operator Overloading

210

OUTPUT : Before Decrement of A : X=31

Y=41

Z=51

After Decrement of A : X=30

Y=40

Z=50

 10.6 OPERATOR RETURN TYPE

In the above example, we have declared the operator function of type void

i.e. it will not return any value. But it is possible to return value and assign

it to other object of same type. The return value of the operator is always of

the class type, it means that class name will be in the place of the return

type specification because we are applying the operator overloading prop-

erties only for the objects. Always remember that an operator cannot be

overloaded for basic data types, so the return value of operator function

will be of class type. The following program demonstrates the operator

return types :

// Program 10.2

#include<iostream.h>

#include<conio.h>

class unary

{

int x;

public :

unary () { x=0; }

int getx() // returns the current value of variable x

{ return x; }

unary operator ++();

};

unary unary :: operator ++()

{

unary temp;

Operator Overloading Unit - 10

211

x=x+1;

temp.x=x;

return temp;

}

void main()

{

clrscr();

unary A1,A2;

cout<<"\n A1="<<A1.getx();

cout<<"\n A2="<<A2.getx();

A1=A2++;//first increment the value of A2 and assigns it to

A1

cout<<"\n A1="<<A1.getx();

cout<<"\n A2="<<A2.getx();

A1++; // object A1 is incresed

cout<<"\n A1="<<A1.getx();

cout<<"\n A2="<<A2.getx();

getch();

}

RUN : A1 = 0

A2 = 0

A1 = 1

A2 = 1

A1 = 2

A2 = 1

 10.7 OVERLOADING BINARY OPERATORS

Binary operators are overloaded by using member functions and friend

functions. The difference is in the number of arguments used by the func-

tion. In the case of binary operator overloading, when the function is a

member function then the number of arguments used by the operator mem-

ber function is one. When the function defined for the binary operator over-

loading is a friend function, then it uses two arguments. Here, we will dis-

Unit - 10 Operator Overloading

212

cuss the overloading of binary operator when the operator function is a

member function.

Binary operator overloading, as in unary operator overloading, is performed

using a keyword operator. The following program demonstrates the

overloading of binary operators.

// Program 10.3

#include <iostream.h>

#include<conio.h>

class Binary

{

private:

int x;

int y;

public:

Binary() //Constructor

{ x=0; y=0; }

void getvalue() //Member Function for Inputting values

{

cout <<"\n Enter value for x:";

cin >> x;

cout << "\n Enter value for y:";

cin>> y;

}

void displayvalue()//Member Function for Outputting Values

{

cout<<"\n\nThe resultant value : \n";

cout <<" x =" << x <<"; y ="<<y;

}

Binary operator +(Binary);//Binary is class name

};

Binary Binary :: operator +(Binary e2)

//Binary operator overloading for + operator defined

{

Binary temp;

temp.x = x+ e2.x;

Operator Overloading Unit - 10

213

temp.y = y+e2.y;

return (temp);

}

void main()

{

Binary e1,e2,e3; //Objects e1, e2, e3 created

clrscr();

cout<<"\nEnter value for Object e1:";

e1.getvalue();

cout<<"\nEnter value for Object e2:";

e2.getvalue();

e3= e1+ e2; //Binary Overloaded operator used

e3.displayvalue();

getch();

}

OUTPUT : Enter value for Object e1 :

Enter value for x : 10

Enter value for y : 20

Enter value for Object e2 :

Enter value for x : 30

Enter value for y : 40

The Resultant Value : x = 40; y = 60

In the above example, the class Binary has created three objects e1, e2,

e3. The values are entered for objects e1 and e2. The binary operator

overloading for the operator ‘+’ is declared as a member function inside

the class Binary. The definition is performed outside the class Binary by

using the scope resolution operator and the keyword operator.

The important aspect is that the following two statements are equivalent.

e3= e1 + e2; // e3= e1.operator +(e2)

The binary overloaded operator ‘+’ is used. When the compiler encounters

such expressions, it examines the argument type of the operator. In this

statement, the argument on the left side of the operator ‘+’, e1, is the object

Unit - 10 Operator Overloading

214

of the class Binary in which the binary overloaded operator ‘+’ is a member

function. The right side of the operator ‘+’ is e2. This is passed as an

argument to the operator ‘+’ i.e. the expression means e3 = e1.operator

+(e2). The operator returns a value (binary object temp in this case), which

can be assigned to another object (e3 in this case).

Since the object e2 is passed as argument to the operator’+’ inside the

function defined for binary operator overloading, the values are accessed

as e2.x and e2.y. This is added with e1.x and e1.y, which are accessed

directly as x and y.

Always remember that, in the overloading of binary operators, the left-

hand operand is used to invoke the operator function and the right-hand

operand is passed as an argument to the operator function.

 10.8 STRINGS AND OPERATOR OVERLOADING

We are already familiar with the strcat() function which is used for concat-

enation of strings. Consider the following two strings

char str1[50] = “Bachelor of Computer”;

char str2[20] = “Application”;

The string str1 and str2 are combined, and the result is stored in str1 by

invoking the function strcat() as follows :

strcat(str1, str2);

The same operation can be done by defining a string class and overload-

ing the + operator. The following program demonstrates the concatena-

tion of two string using the overloading concept.

// Program 10.4

#include<iostream.h>

#include<string.h>

#include<conio.h>

class String

{

Operator Overloading Unit - 10

215

private:

char str[100];

public:

String() //Constructor

{ strcpy(str," "); }

String(char *msg) //Constructor

{ strcpy(str, msg); }

void display() //Member Function for Display strings

{

cout <<str;

}

String operator +(String s);

};

String String :: operator +(String s)

//Binary operator overloading for + operator defined

{

String temp = str;

strcat(temp.str, s.str);

return temp;

}

void main()

{

clrscr();

String str1 = "Bachelor of Computer";

String str2 = "Application";

String str3;

str3= str1+str2;

cout<<"\n str1 =";

str1.display();

cout<<"\n str2 =";

str2.display();

cout<<"\n The String after str3=str1+str2 \n \n";

str3.display();

getch();

}

Unit - 10 Operator Overloading

216

In this program, the concatenation is performed by creating a temporary

string object temp and initializing it with the first string. The second string

is added to first string in the object temp using the strcat() and finally the

resultant temporary string object temp is returned. Here, in the program,

the length of str1+str2 should not exceed the array size 100 (i.e. char

str[100]).

Thus, we have seen that, in C++ programming language, operator

overloading adds new functionality to its existing operators. The

programmer must add proper comments concerning the new functionality

of the overloaded operator. The program will be efficient and readable only

if operator overloading is used only when necessary. The operators that

cannot be overloaded are - ., ?:, sizeof, ::, .* , #, ##.

 10.9 TYPE CONVERSION

We cannot convert between user-defined data types(classes) just as we

can convert between basic types. This is beacuse the compiler does not

know anything about the user-defined type.

Now, let us look into how C++ handles conversions for its built-in types

(int, float, char, double etc.). When you make a statement assigning a

value of one standard type to a variable of another standard type, C++

automatically will convert the value to the same type as the receiving variable,

provided the two types are compatible.

For example, the following statements all generate numeric type

conversions:

long count = 8; // int value 8 converted to type long

double time = 11;// int value 11 converted to type double

int side = 3.33; // double value 3.33 converted to type int 3

These assignments work because C++ recognizes that the diverse

numeric types all represent the same basic thing, a number, and because

C++ incorporates built-in rules for making the conversions. However, you

can lose some precision in these conversions. For example, assigning

Operator Overloading Unit - 10

217

3.33 to the int variable results in only getting the value 3, losing the 0.33

part.

The C++ language does not automatically convert types that are not

compatible.

For example, the statement

int * p = 10; // type clash

fails because the left-hand side is a pointer-type, whereas the right-hand

side is a number. And even though a computer may represent an address

internally with an integer, integers and pointers conceptually are quite

different. For example, you wouldn’t square a pointer. However, when

automatic conversions fail, you may use a type cast:

int * p = (int *) 10; // ok, p and (int *) 10 both pointers

This sets a pointer to the address 10 by type casting 10 to type pointer-to-

int (that is, type int *).

Now, let us look into how C++ handles conversions from basic type to

user-defined types vice-versa.

Basic type to user defined type :

This type of conversion can be easily carried out. It is automatically done

by the compiler with the help of in-built routines or by type casting. In this

type the left hand operand of = sign is always class type or user defined

type and the right hand side operand is always basic type. The following

program explains this type of conversion.

//Program 10.5

#include <iostream.h>

#include<conio.h>

class Test

{

private:

Unit - 10 Operator Overloading

218

int x;

float y;

public:

Test() //Constructor

{ x=0; y=0; }

Test(float z) //Constructor with one argument

{ x=2; y=z; }

void display() // Function for displaying values

{

cout <<"\n x =" << x <<" y ="<<y;

cout <<"\n x =" << x <<" y ="<<y;

}

};

void main()

{

Test a;

clrscr();

a=9;

a.display();

a=9.5;

a.display();

getch();

}

OUTPUT : x=2 y=9

x=2 y=9

x=2 y=9.5

x=2 y=9.5

In the above program, the class Test has two data member of type integer

and float. It also has two constructors one with no arguments and the

second with one argument. In main() function, a is an object of class Test.

When a is created the constructor with no argument is called and data

memberms are initialize to zero. When a is initialized to 9 the constructor

with float argument i.e. Test(float z) is invoked. The integer value is

converted to float type and assigned to data member y. Again, when a is

Operator Overloading Unit - 10

219

assigned to 9.5, same process repeated. Thus, the conversion from basic

to class type is carried out.

User defined type to basic type :

As we know, the compiler does not have any prior information about user

defined data type using class, so in this type of conversion it needs to

inform the compiler how to perform conversion from class to basic type.

For this purpose, a conversion function should be defined in the class in

the form of the operator function. The operator function is defined as an

overloaded basic data type which takes no arguments. The syntax of such

a conversion function is shown below-

operator Basic type()

{

// steps for converting

}

In the above syntax, you have noticed that, the conversion function has no

return type. While declaring the operator function the following condition

should always remember :

i) the operator function should not have any argument.

ii) it has no any return type.

iii) it should be a class member.

The following program demonstrates this conversion mechanism :

// Program 10.6

#include <iostream.h>

#include<conio.h>

class Time

{

private:

int hour;

int minute;

public:

Unit - 10 Operator Overloading

220

Time(int a)

{

hour=a/60;

minute=a%60;

}

operator int()

{

int a;

a=hour*60+minute;

return a;

}

};

void main()

{

clrscr();

Time t1(500);

int i=t1; // operator int() is invoked

cout<<"\n"<<"The value of i:"<<i;

getch();

}

OUTPUT : The value of i : 500

In the above program, the statement int i=t1, invokes the operator function

which finally converts a time object to corresponding magnitude (of type

int).

CHECK YOUR PROGRESS

1. Choose the correct answer from the following :

a) Operator overloading is

i) making C++ operators work with objects

ii) giving C++ operators more than they can handle

iii) giving new meaning to existing C++ operators

iv) making new C++ operators

Operator Overloading Unit - 10

221

b) To convert from a user-defined class to basic type, you

would use

i) a built-in conversion function

ii) a one argument constructor

iii) an overloaded = operator

iv) a conversion function that is a member of the class

c) To convert from a basic type to user-defined class, you

would use

i) a built-in conversion function

ii) a one argument constructor

iii) an overloaded = operator

iv) a conversion function that is a member of the class

d) operator must have one class object.

i) + ii) new

iii) all iv) none of these

e) Binary overload operators are passed

i) one ii) two

arguments.

iii) no iv) none of the above

2. Fill in the blanks :

i) The statement x=y will cause

are of different classes.

if the objects

ii) ii)
data types.

is making operators to woork with user defined

iii) Single argument constructor is usually defined in the

class.

iv) function must not have a return type.

v) are operators that act on only one operand.

10.10 LET US SUM UP

 Operator overloading is one of the important concepts in C++ which

allows to provide additional meaning to operators +, -, >=, <= etc.

when they are applied to user defined data types.

Unit - 10 Operator Overloading

222

 Overloaded operators are redefined within a class using the keyword

operator followed by an operator symbol. When an operator is

overloaded, the produced symbol is called the operator function

name.

 Overloading of operator cannnot change the basic meaning of an

operator. When an operator is overloaded, its prooperties like systax,

precedence and associativity remain constant.

 Operators ++, --, and -, which have only single operands are called

unary operators. The unary operators ++ and -- can be used as

prefix or suffix with the functions.

 The binary operators require two operand. Binary operators are

overloaded by using member functions and friend functions.

 The operators which cannot be overloaded are - ., ?:, sizeof, ::, .*

, #, ##.

 The concept of operator overloading can also be applied to data

conversion. C++ offers automatic conversion of primitive data types.

 Actually there are three possibilities of data conversion :

a) Basic type to user defined type(class type)

b) User defined type(class type) to basic type

c) Class type to another class type (we have not discussed here)

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata

McGraw-Hill Education

10.11 FURTHER READINGS

Operator Overloading Unit - 10

223

 10.12 ANSWERS TO CHECK YOUR

 PROGRESS

1. a) iii, b) iv, c) iii,

d) ii, e) i.

2. i) Compiler error,

ii) operator overloading,

iii) destination,

iv) casting operator,

v) unary operator

 10.13 MODEL QUESTIONS

1. What is operator overloading? Give the advantage of operator

overloading.

2. What is operator function? Describe operator function with syntax

and examples.

3. What is the difference between overloading of binary operators and

of unary operators?

4. Explain the conversion from basic type to user defined type(class

type) with examples.

5. Explain the conversion from user defined type(class type) to basic

type with examples.

6. Write a program to overload the -- operator.

7. Write a program to overload the binary operator + in order to perform

addition of complex numbers.

8. Write a program to overload the relational operator (>, <, ==) in order

to perform the comparision of two strings.

224

 UNIT 11 : INHERITANCE

UNIT STRUCTURE

 11.1 Learning Objectives

 11.2 Introduction

 11.3 Inheritance

 11.3.1 Defining a Derived Class

 11.3.2 Accessing Base Class Members

 11.4 Types of Inheritance

 11..4.1 Single Inheritance

 11.4.2 Multiple Inheritance

 11.4.3 Hierarchical Inheritance

 11.4.4 Multilevel Inheritance

 11.4.5 Hybrid Inheritance

 11.4.6 Multipath Inheritance

 11.5 Virtual Base Classes

 11.6 Abstract Classes

 11.7 Let Us Sum Up

 11.8 Further Reading

 11.9 Answers to Check Your Progress

 11.10 Model Questions

 11.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 describe the concept of inheritance in C++

 create new classes by reusing the members and properties of

existing classes

 describe the advantages and disadvantages of inheritance in pro

gramming

 describe how to use base class access specifier public, private

and protected

 describe about the use of virtual base class and abstract class

Inheritance Unit - 11

225

 11.2 INTRODUCTION

In this unit, we shall discuss one important and useful feature of Object -

Oriented Programming (OOP) which is called inheritance. C++ supports

the concept of inheritance. We have already discussed the concept of

classes and objects in our previous unit. The knowledge of class and

objects is a prerequisite for this unit.

With the help of inheritance we can reuse (or inherit) the property of a

previously written class in a new class. There are different types of

inheritance which will be discussed in this unit. The concept of abstract

and virtual base class will also be covered in this unit.

 11.3 INHERITANCE

In Biology, inheritance is a term which represents the transformation of

the hereditary characters from parents or ancestors to their descendent.

In the context of Object-Oriented Programming, the meaning is almost

same. The process of creating a new class from existing classes is called

inheritance. The newly created class is called derived class and the

existing class is called the base class. The derived class inherits some or

all of the characteristics of the base class. Derived class may also pos-

sess some other characteristics which are not in the base class.

For example, let us consider two classes namely, “employee ” and

“manager”. Whatever information is present in “employee” class, the same

will be present in “manager’ also. Apart from that, there will be some extra

information in “manager” class due to other responsibilities assinged to

managers. Due to the facility of inheritance in C++, it is enough only to

indicate those pieces of information which are specific to manager in its

class. In addition, the “manager” class will inherit the information of

“employee” class.

Before discussing the different types of Inheritance and their implementa-

tion in C++, we will first denote the advantages and disadvantages of

inheritance.

Unit - 11 Inheritance

226

Advantages of Inheritance

 Reusability

Reusability is an important feature of Object Oriented Programming.

We can reuse code in many situations with the help of inheritance.

The base class is defined and once it is compiled, it need not be

rewritten. Using the concept of inheritance the programmer can

create as many derived classes from the base class as needed.

New features can also be added to each derived class when required.

 Reliability and Cost

Reusability would not only save time but also increase reliability and

decrease maintenance cost.

 Saves Time and Effort

The reuse of class that has already been tested, debugged and used

many times can save us the effort of developing and testing the

same again.

Disadvantages of Inheritance

 Inappropriate use of inheritance makes a program more complicated.

 In the class hierarchy various data elements remain unused, the

memory allocated to them is not utilized.

 11.3.1 Defining a Derived Class

A derived class is defined by specifying its relationship with the base

class in addition to its own details. The general form of deriving a

new class from an existing class is as follows:

class DerivedClassName : access specifier BaseClassName

{

..........

.......... //members of derived class

..........

};

Inheritance Unit - 11

227

The derived class name and the base class name are separated by

a colon “:”. We can derive classes using any of the three base

class access specifiers: public, private or protected. If we do not

specify the access specifier, then by default it will be private. Gener-

ally, it is convenient to specify the access specifier while deriving a

class. Access specifiers are sometime called visibility mode. It de-

termines the access control of the base class members inside the

derived class. In the previous unit, we have already learnt about pri-

vate and public access specifier while declaring classes. Protected

specifier has a significant role in inheritance.

11.3.2 Accessing Base Class Members

There may be three types of base class derivation:

 Public derivation

 Private derivation

 Protected derivation

 Public derivation

When the base class is inherited by using public access

specifier then all public members of the base class become public

members of the derived class, and all protected members of the

base class become protected members of the derived class. The

private members of the base class remain private and are not ac-

cessible by members of derived class. Let us examine this with the

following example:

// Program 11.1: Base class with public access specifier

#include<iostream.h>

#include<conio.h>

class base

{

private:

int num1,num2;

Unit - 11 Inheritance

228

public:

void input(int n1, int n2)

{

num1=n1;

num2=n2;

}

void display()

{

cout<<"Number 1 is: "<<num1<<endl;

cout<<"Number 2 is: "<<num2;

}

}; //end of base class

class derived : public base

{

private:

int num3;

public:

void enter(int n3)

{

num3=n3;

}

void show()

{

cout<<"\nNumber 3 is: "<<num3;

}

}; //end of derived class

int main()

{

derived d; // d is an object of derived class

clrscr();

d.enter(15); //enter() function is called by object d

d.input(5,10); /* accessing base class member. input()

is a public member of base class */

d.display(); /* accessing base class member display() is a

Inheritance Unit - 11

229

public member of base class */

d.show();

getch();

return 0;

}

OUTPUT: Number 1 is : 5

Number 2 is : 10

Number 3 is : 15

Here, d is a derived class object. With the statement d.input(5,15);

we have made a call to the function input() of base class by the

derived class object. Similarly, we have called display() member

function of base class.

 Private derivation

When the base class is inherited by using private access

specifier, all the public and protected members of the base class

become private members of the derived class. Therefore, public

members of base class can only be accessed by the member func-

tions of the derived class and they are not accessible to the objects

of the derived class.

For example, if we use the statement

class derived : private base

instead of class derived : public base

in the above program, it will give two error messages while compil-

ing:

Error: base::input(int,int) is not accessible

Error: base::display() is not accessible

As the base class is privately inherited, input() and display() become

private to the derived class althogh they were public in the base

class. So other functions like main() cannot access them. State-

ment like d.input(5,10); and d.display(); will be invalid in that case.

Unit - 11 Inheritance

230

Protected Members and Inheritance:

Protected members provide greater flexibility in case of inheritance.

By using protected instead of private declaration, we can create

class members that are private to their class but that can still be

inherited and accessed by derived class. A member declared as

protected is accessible by the member functions within its class

and any class immediately derived from it.

When a protected member is inherited in public mode, it becomes

protected in the derived class too and therefore is accessible by

the member functions of the derived class. It also becomes ready

for further inheritance. If a base class is inherited as private, then

the protected member of base class becomes private in the de-

rived class. Although it is available to the member function of the

derived class, it is not available for further inheritance since private

members cannot be inherited.

/*Program 11.2: Program showing protected members inherited in

public mode */

#include<iostream.h>

#include<conio.h>

class base

{

protected:

int num1,num2; /*private to base, protected to derived and acces-

sible by derived class member function*/

public:

void input(int n1, int n2)

{

num1=n1;

num2=n2;

}

void display()

{

Inheritance Unit - 11

231

cout<<"Number 1 is: "<<num1<<endl;

cout<<"Number 2 is: "<<num2;

}

}; //end of base class

class derived : public base//base class is publicly

inherited

{

private:

int s;

public:

void add()

{

s=num1+num2 ; /* derived class accessing base class pro-

tected member num1, num2 */

}

void show()

{

cout<<"\nSummation is : "<<s;

}

}; //end of derived class

int main()

{

derived d; // d is an object of derived class

clrscr();

d.input(10,20); /* accessing base class member. input() is a func-

tion of base class */

d.display(); /* accessing base class member. display() is a function

of base class */

d.add();

d.show();

getch();

return 0;

}

Unit - 11 Inheritance

232 Object Oriented Programming through C + + (Block - 2)

OUTPUT: Number 1 is : 10

Number 2 is : 20

Summation is : 30

The derived class member function void add() can access num1

and num2 of the base class because num1 and num2 are declared

as protected and the base class access specifier is public.

 Protected derivation

When the base class is inherited by using protected ac-

cess specifier, then all protected and public members of base class

become protected members of the derived class. Let us consider

the following example:

//Program 11.3 : Base class derived as protected

#include<iostream.h>

#include<conio.h>

class base

{

protected:

int num1,num2;

public:

void input(int n1, int n2)

{

num1=n1;

num2=n2;

}

void display()

{

cout<<"Number 1 is: "<<num1<<endl;

cout<<"Number 2 is: "<<num2;

}

}; //end of base class

class derived : protected base

{

private:

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 233

int s;

public:

void add()

{

input(30,60); /*member function add() of derived

class can access input() as it is inherited as protected */

s=num1+num2; // num1,num2 are inherited as

// protected, so add() can access

}

void showall()

{

display(); //display() is inherited as protected

cout<<"\nSummation is : "<<s;

}

}; //end of derived class

int main()

{

derived d;

clrscr();

//d.input(10,20); /* invalid. input() is inherited as protected member

of derived. main() can't access it */

d.add(); /* accessing base class member display() is a function of

base class */

d.showall(); // public member of derived

// d.display(); /* invalid. display() can be accessible by derive

class member function only */

getch();

return 0;

}

OUTPUT: Number 1 is : 30

Number 2 is : 60

Summation is : 90

In the program we can see that input(), display(), num1, num2 of

base class are inherited as protected to derive class. The member

functions add(), showall() of derived class can use them; as protected

Unit - 11 Inheritance

234 Object Oriented Programming through C + + (Block - 2)

members are accessible by derive class members. But main() is

not a member function and it cannot access input() and display().

Although num1, num2 are protected to derived class, but they behave

as private to base class.

CHECK YOUR PROGRESS

1. Answer the following by selecting the appropriate option:

(i) By using protected, one can create class members that

(a) cannot be inherited and accessed by a derived class

(b) can be accessed by a derived class

(c) can be public

(d) none of these

(ii) Class members are by default

(a) protected (b) public

(c) private (d) none of these

(iii) When base class access specifier is protected, then public

members of base class can be accessible by

(a) member function of derived class

(b) main() function

(c) objects of derived class

(d) none of these

(iv) Private data members of base class can be inherited by

declaring them as

(a) private (b) public

(c) protected (d) none of these

(v) If we donot specify the visibility mode in base class

derivation then by default it will be

(a) protected (b) private

(c) public (d) none of these

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 235

 11.4 TYPES OF INHERITANCE

A program can use one or more base classes to derive a single class. It

is also possible that one derived class can be used as base class for

another class. Depending on the number of base classes and levels of

derivation inheritance is classified into the following forms:

 Single Inheritance

 Multiple Inheritance

 Hierarchical Inheritance

 Multilevel Inheritance

 Hybrid Inheritance

 Multipath Inheritance

 11.4.1 Single Inheritance

The programs discussed so far in this unit are examples of single

inheritance. In single inheritance the derived class has only one

base class and the derived class is not used as base class. The

pictorial representation of single inheritance is given in Fig. 11.1

Base class

Derived class

Fig. 11.1: Single Inheritance

(vi) Private data members can be accessed

(a) from derive class

(b) only from the base class itself

(c) both from the base class and from its derived class

(d) None of these

Unit - 11 Inheritance

236 Object Oriented Programming through C + + (Block - 2)

The arrow directed from base class towards the derived class indi-

cates that the features of base class are inherited to the derived

class. In the following program, we have derived “employee” class

from “person” class. Data member “name” and “age” are common

to both of the two classes. “name” and “age” are declared as pro-

tected so that derive class can inherit “name” and “age” from the

base class “person”. Base class is inherited in public mode. Em-

ployee may have some other data like designation, salary. So the

other data members of “employee” class are “desig” and “salary”.

/* Program 11.4: Single inheritance with protected data member

and public inheritance of base class */

#include<iostream.h>

#include<conio.h>

#include<string.h>

class person //base class “person”

{

protected:

char name[30]; //protected to derived class ‘employee’

float age;

public:

void enter(char *nm, float a)/* base class member

function */

{

strcpy(name,nm);

age=a;

}

void display() //base class member function

{

cout<<"Name: "<<name<<endl;

cout<<"Age: "<<age<<endl;

}

};

class employee : public person */base class ”person” is pub-

licly

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 237

inherited */

{ */by derived class “employee” */

private:

float salary;

char desig[20];

public:

void enter_data(char *n,char *d,float ag,float

s)

{

strcpy(name,n); //”name” of base class can be accessible

//by derived class member function

strcpy(desig,d);

salary=s;

age=ag; //age can be accessible by

//enter_data() of derived class

function

inherited

}

void display_all() //derived class member

{

display(); //can be used here as publicly

c o u t < < " D e s i g n a t i o n :

"<<desig<<endl;

}

};

int main()

{

cout<<"Salary: "<<salary<<endl;

employee e1,e2; //e1,e2 are objects of derived class "employee"

person p; // p is an object of base class "Person"

clrscr();

e1.enter_data("Raktim","Clerk",32,5000);

cout<<"Employee Details "<<endl;

Unit - 11 Inheritance

238 Object Oriented Programming through C + + (Block - 2)

e1.display_all();

e2.enter("Vaskar",41); /*erived class object e1 accessing

public member of base enter() */

e2.display(); /*derived class object e2 accessing public member

of base display() */

cout<<endl<<"Person Details "<<endl;

p.enter("Pragyan",24);

p.display();

getch();

return 0;

}

Here, the derived class “employee” uses name and age of base

class “person” with the help of derived class member function

enter_data().

Two different classes may have member functions with the same

name as well as the same set of arguments. But in case of

inheritance, an ambiguous situation arises when base class and

derived classes contain member functions with the same name. In

main(), if we call member function of that particular name of base

class with derived class object, then it will always make a call to the

derived class member function of that name. This is because, the

function in the derived class overrides the inherited function. However,

we can invoke the function defined in base class by using the scope

resolution operator (::) to specify the class. For example, let us

consider the following program.

/*Program 11.5: When base and derived class has member func-

tions with same name*/

#include<iostream.h>

#include<conio.h>

class B

{

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 239

protected:

int p;

public:

void enter()

{

cout<<"\nEnter an integer:";

cin>>p;

}

void show()

{

cout<<"\n\nThe number in Base Class is:

"<<p;

}

};

class D : public B

{

private:

int q,r;

public:

void enter() //overrides enter() of "B"

{

B::enter();

cout<<"\nEnter an integer:";

cin>>q;

}

void show()

{

r=p*q;

cout<<"\nEntered numbers in Base and

Derived class are:"<<p<<"\t"<<q;

cout<<"\n\nThe product is :"<<r;

}

};

int main()

{

D d; //d is an object of class derived class "D"

Unit - 11 Inheritance

240 Object Oriented Programming through C + + (Block - 2)

clrscr();

d.enter(); //invokes enter() of "D"

d.show(); //invokes show() of "D"

d.B::show(); //invokes show() of "B"

getch();

return 0;

}

In the program, the function name show() is same in both base “B”

and derived class “D”. To call show() of base class “B”, we have

used the statement d.B::show(); If we use simply d.show(); then it

will invoke show() of derived class “D”.

When a derive class implements a function that has the same name

as well as the same set of arguments as the function in the base

class, it is called function overriding. When such a function is

called through a object of derived class, then the derived class function

would be invoked. However, that function in base class would remain

hidden.

But there are certain situations where function overriding plays an

important role.

 11.4.2 Multiple Inheritance

When one class is derived from two or more base classes then it is

called multiple inheritance. This type of inheritance allows us to

combine the properties of more than one existing classes in a new

class. Fig. 11.2 depicts multiple inheritance

Fig.11.2: Multiple inheritance

D

Z Y X

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 241

We have to specify the base classes one by one separated by

commas with their access specifiers. The general form of deriving

a derived class from numbers of base class is as follows:

class D : public X, public Y, public Z

{

...... //body of the derived class

};

where X,Y, Z are base classes and D is the derived class. There

may be numbers of base classes in multiple inheritance which is

indicated by the dotted line in the figure.

For demonstration of multiple inheritance let us consider the follow-

ing program. There are three base classes and one derived class.

The derived class CHARACTER has one private member “n” and

two public member functions “enter()” and “show()”. The function

“enter()” is used to read a number, a vowel, a consonent and a sym-

bol from the keyboard and the “show()” function is used to display

the contents on the screen. The class members of all the three base

classes are publicly derived.

// Program 11.6 : Example of Multiple inheritance

#include<iostream.h>

#include<conio.h>

class V //base class

{

protected:

char v;

};

class C //base class

{

protected:

char c;

};

class S //base class

Unit - 11 Inheritance

242 Object Oriented Programming through C + + (Block - 2)

{

protected:

char s;

};

class CHARACTER : public V, public C, public S

{

private:

int n;

public:

void enter() //derived class member function

{

"VOWEL"

}

cout<<"\nEnter a vowel:";

cin>>v;//accessing protected member v of class

cout<<"\nEnter a consonent:";

cin>>c; //accessing c of "CONSONENT" class

cout<<"\nEnter a symbol:";

cin>>s //accessing s of "SYMBOL" class

cout<<"\nEnter a number:";

cin>>n; //accessing n of "NUMBER" class

void show()

{ cout<<"\nThe entered characters are

:\n\n";

cout<<"\nVowel: "<<v;

cout<<"\nConsonent: "<<c;

cout<<"\nSymbol: "<<s;

cout<<"\nNumber: "<<n;

}

};

int main()

{

CHARACTER o; //o is an object of derived class

"character"

clrscr();

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 243

o.enter();

o.show();

getch();

return 0;

}

One suitable example of the implementation of multiple inheritance

is shown in the program below:

/*Program 11.7: Program showing multiple inheritance with two base

class (practical, theory) and one derived class (result) /*

#include<iostream.h>

#include<conio.h>

class practical //base class “practical”

{

protected:

float p1_marks, p2_marks,total;

public:

void practical_marks()

{

cout<<"Enter marks of practical paper 1 and

paper 2: ";

cin>>p1_marks>> p2_marks;

}

float add() //returns the total of practical

{

total=p1_marks+p2_marks;

return total;

}

void display_practical()

{

c o u t < < e n d l < < " T o t a l P r a c t i c a l

marks:"<<total;

}

}; //end of “practical” class

Unit - 11 Inheritance

244 Object Oriented Programming through C + + (Block - 2)

class theory // base class “theory”

{

protected:

float phy, chem, math, total_marks;

public:

void theory_marks(){

cout<<"Enter marks of Physics, Chem and Maths:";

cin>>phy>>chem>>math;

}

float sum()

{

total_marks=phy+chem+math;

return total_marks;

}

void display_theory()

{

c o u t < < e n d l < < " T o t a l T h e o r y

marks:"<<total_marks;

}

}; //end of base class “theory”

class result : public practical,public theory

{

protected:

int roll;

float grand_total,t,p;

public:

void enter() {

cout<<"ENTER STUDENT INFORMATION "<<endl;

cout<<"Enter Roll no.:";

cin>>roll;

theory_marks(); //inherited publicly from base class "theory"

practical_marks(); //inherited from base class "practical"

}

void theory_practical()

{

t=sum()

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 245

p=add();

grand_total=t+p;

cout<<"\nThe total marks of the student is:"

<<grand_total;

}

}; //end of derived class “result”

int main()

{

ber

result s1; //object of derived class

clrscr();

s1.enter();

s1.theory_practical();// accessing derived class mem-

s1.display_theory(); //s1 accessing "display_theory()" of

"theory"

s1.display_practical();

getch();

return 0;

}

When we execute the program entering marks for practical and

theory papers for a particular student, then it will display the result

as follows:

ENTER STUDENT INFORMATION......

Enter Roll no.: 1

Enter marks of Physics, Chemistry and Mathematics: 65 72 81

Enter marks of practical paper 1 and paper 2 : 25 26

The total marks of the student is : 269

Total Theory marks : 218

Total Practical marks : 51

The above program consists of three classes: two base classes

(“practical” and “theory”) and one derived class (“result”). The

member function “enter()” of derive class inherits member functions

“practical_mark()” and “theory_ marks()” of base class “practical”

Unit - 11 Inheritance

246 Object Oriented Programming through C + + (Block - 2)

and “theory” respectively. Similarly, member function

“theory_practical()” uses “sum()” and “add()” of base class to

calculate the “grand_total” marks of student. Thus, in the derived

class we need not have to write functions for entering practical and

theory marks. We just inherit them from the base classes.

 Hierarchical Inheritance

Derivation of more than one classes from a single base class is

termed as hierachical inheritance. This is a very common form of

inheritance in practice. The rules for defining such classes are the

same as in single inheritance. The pictorial representation of

hierarchical inheritance is shown in Fig. 11.3

Figure11 3: Hierarchical Inheritance

For demonstration of hierarchical inheritence let us consider a pro-

gram with one base class (“student”) and three derived classes

(“arts”, “science” and “commerce”).

//Program 11.8: Demonstration of hierarchical inheritance

#include<iostream.h>

EXERCISE

Q. Suppose a class D is derived from class B. B has two public

member functions getdata() and showdata() and D has two

public functions readdata() and displayall(). Define the

classes such that both function getdata() and showdata()

should be accessible in the main() function.

B

Z Y X

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 247

#include<conio.h>

class student // base class “student”

{

protected:

char fname[20],lname[20];

int age,roll;

public:

void student_info()

{

cout<<"Enter the first name and last name:

";

cin>>fname>>lname;

cout<<"\nEnter the Roll no.and Age: ";

cin>>roll>>age ;

}

void display()

{

cout<<"\nRoll Number = "<<roll;

c o u t < < " \ n F i r s t N a m e =

"<<fname<<"\t"<<lname;

cout <<"\nAge = " << age;

}

};

class arts : public student //derived class arts

{

private:

char asub1[20], asub2[20], asub3[20] ;

public:

void enter_arts()

{

student_info(); //base class member function

cout <<"\n Enter the subject1 of the arts

student:";

cin >> asub1 ;

cout<<"\nEnter the subject2 of the arts stu-

dent:";

Unit - 11 Inheritance

248 Object Oriented Programming through C + + (Block - 2)

cin >> asub2 ;

cout<<"\nEnter the subject3 of the arts stu-

dent:";

cin >> asub3 ;

}

void display_arts()

{

display();//base class member function

cout<<"\n\t Subject1 of the arts student="<<

asub1;

cout<<"\n\t Subject2 of the arts student="<<

asub2;

cout<<"\n\t Subject3 of the arts student="<<

asub3;

}

};

class commerce : public student //derived class

"commerce"

{

private:

char csub1[20], csub2[20], csub3[20] ;

public:

void enter_com(void)

{

student_info(); //base class member function

cout<<"\tEnter the subject1 of the commerce student:";

cin>> csub1;

cout<<"\tEnter the subject2 of the commerce student:";

cin>>csub2 ;

cout<<"\tEnter the subject3 of the commerce student:";

cin>> csub3 ;

}

void display_com()

{

display(); //base class member function

cout<<"\nSubject1 of the commerce student="

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 249

<<csub1;

cout<<"\nSubject2 of the commerce student="

<<csub2;

cout<<"\nSubject3 of the commerce student="<< csub3

}

};

class science : public student //derived class "science"

{

private:

char ssub1[20], ssub2[20], ssub3[20] ;

public:

void enter_sc(void)

{

student_info(); //base class member function

cout<<"\nEnter the subject1 of science student:";

cin>>ssub1;

cout<<"\nEnter the subject2 of science student:";

cin>>ssub2 ;

cout<<"\nEnter subject3 of the science student:";

cin>>ssub3 ;

}

void display_sc()

{

display(); //base class member function

cout<<"\nSubject1 of the science student="<< ssub1

cout<<"\nSubject2 of the science student="<< ssub2;

cout<<"\nSubject3 of the science student="<< ssub3;

}

};

int main()

{

arts a ; //a is an object of derived class "arts"

clrscr();

cout << "\n Entering details of the arts

student\n";

Unit - 11 Inheritance

250 Object Oriented Programming through C + + (Block - 2)

a.enter_arts();

cout <<"\nDisplaying the details of arts

student\n";

a.display_arts();

science s; //s is an object of derived class "science"

cout <<"\n\n Entering details of science

student\n"

s.enter_sc();

cout<<"\n Display details of the science

student\n";

s.display_sc();

commerce c ; //c is an object of derived class

"commerce"

cout<<"\ n\ n Enter d etails of commerce

student\n";

c.enter_com();

cout << "\n Display details of commerce

student\n";

c.display_com() ;

getch();

return 0;

}

11.4.4 Multilevel Inheritance

C++ also provides the facility of multilevel inheritance, according

to which the derived class can also be derived by an another class,

which in turn can further be inherited by another and so on. For

instance, a class X serves as a base class for class Y which in turn

serves as base class for another class Z. The class Y which forms

the link between the classes X and Y is known as the intermediate

base class. Further, Z can also be used as a base class for another

new class. The following figure depicts multilevel inheritance.

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 251

Figure11.4: Multilevel Inheritance

 11.4.5 Hybrid Inheritance

It is possible to derive a class involving more than one type of

inheritance. Hybrid inheritance is that type of inheritance where

several forms of inheritance are used to derive a class. There could

be situations where we need to apply two or more types of inherit-

ance to design a particular program.

For example, let us assume that we are to design a program which

will select players for a particular compitetion. For this purpose we

could consider four classes PLAYER, GAME, RESULT and

PHYSIQUE. PLAYER class contains the player details including

name, address, location etc. GAME class can be derived from

PLAYER class. Again, if weightage for physical test should be added

before finalizing the result, then we can inherit that from PHYSIQUE.

RESULT class is derived from two base classes GAME and

PHYSIQUE. The following diagram gives us the inhertance relation-

ship between various classes.

Fig.11.5: Hybrid Inheritance

X

Y

Z

E D

B

F

Unit - 11 Inheritance

252 Object Oriented Programming through C + + (Block - 2)

RESULT

In the diagram, RESULT has two base classes,GAME and PHY-

SIQUE. GAME is not only a base class but also a derived class.

Here we can see that two types of inheritance multiple and multi-

level are combined to create the RESULT class.

 11.4.6 Multipath Inheritance

The inheritance where a class is derived from two or more classes,

which are in turn derived from the same base class is known as

multipath inheritance. There may be many types of inheritance

such as multiple, multilevel, hierarchical etc. in multipath inheritance.

Certain difficulties may arise in this type of inheritance. Suppose we

have two derived classes D and E that have a common base class

B, and we have another class F that inherits from D and E.

PLAYER

PHYSIQUE GAME

Fig.11.6 : Multipath Inheritance

In the above diagram, we can observe three types of inheritances,

i.e., multiple, multilevel and hierarchical. For better illustration let us

consider the following program.

// Program 11.9: Demosntration of multipath inheritance

#include<iostream.h>

#include<conio.h>

class B

{

protected:

int b;

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 253

};

class D : public B //B is publicly inherited by D

{

protected:

int d;

};

class E : public B //B is publicly inherited by E

{

protected:

int e;

};

class F : public D, public E//D,E are publicly inherited

by F

{

protected:

int f;

public:

void enter_number()

{

cout<<"Enter some integer values for

b,d,e,f:";

cin>>b>>d>>e>>f;

}

void display()

{

cout<<"\nEntered numbers are:\n";

cout<<"\nb= "<<b<<"\nd= "<<d<<"\ne= "<<e<<"\nf=

"<<f;

}

};

int main()

{

F obj; //instantiaton of class F

clrscr();

obj.enter_number(); //enter_number() of F is called

Unit - 11 Inheritance

254 Object Oriented Programming through C + + (Block - 2)

obj.display();

getch();

return 0;

}

Now, if we instantiate class F and call the functions enter_number()

and display(), then the compiler shows the following types error

messages:

Error M.cpp 28: Member is ambiguous:’B ::b’ and ‘B::b’

Error M.cpp 33: Member is ambiguous:’B ::b’ and ‘B::b’

This is due to the duplication of members of class B in F. The mem-

ber b of class B is inherited twice to class F: one through class D

and another through class E. This leads to ambiguity. To avoid such

type of situation, virtual base class is introduced.

 11.5 VIRTUAL BASE CLASSES

C++ provides the concept of virtual base class to overcome the ambigu-

ity occurring due to multipath inheritance. While discussing multipath in-

heritance, we have faced a situation which may lead to duplication of in-

herited members in the derived class F (Fig.11.6). This can be avoided by

making the common base class (i.e.,B) as virtual base class while deri-

vation. We can declare the base class B as virtual to ensure that D and

E share the same data member B.

This is shown in the following program which is the modification of the

previous program 11.9.

/*Program 11.10: Virtual base class and removal of ambiguity occuerd in

multipath inheritance */

#include<iostream.h>

#include<conio.h>

class B

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 255

{

protected:

int b;

};

class D:public virtual B

//B is publicly inherited by D and made virtual

{

protected:

int d;

};

class E:public virtual B

//B is publicly inherited by E and made virtual

{

protected:

int e;

};

class F : public D, public E

//D,E are publicly inherited by F

{

protected:

int f;

public:

void enter_number()

{

cout<<"Enter some integer values for b,d,e,f:

";

cin>>b>>d>>e>>f;

}

void display()

{

cout<<"\nEntered numbers are:\n";

cout<<"\nb= "<<b<<"\nd= "<<d<<"\ne=

"<<e<<"\nf= "<<f;

Unit - 11 Inheritance

256 Object Oriented Programming through C + + (Block - 2)

}

};

int main()

{

F obj; //instantiaton of class F

clrscr();

obj.enter_number();

obj.display();

getch();

return 0;

}

Here we have used the keyword virtual in front of the base class specifiers

to indicate that only one subobject of type B, shared by class D and class

E, exists.. When a class is made a virtual base class, C++ takes the

necessary action that only one copy of that class is inherited, regardless

of how many paths exist between the virtual base class and a derived

class.

 11.6 ABSTRACT CLASSES

The objects created often are the instances of a derived class but not of

the base class. The base class just becomes a structure or foundaion

with the help of which other classes are built and hence such classes are

called abstract class or abstract base class. In other words, when a

class is not used for creating objects then it is called abstract class. In the

Program 10.10, B is an abstract class since it was not used for creating

any object.

LET US KNOW

Inheritance and Constructors, Destructors

Although constructors are suitable for initializing objects , we have not

used them in any program in this unit for the sake of simplicity. But if we

use contructors in program, then we must follow certain definite rules

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 257

CHECK YOUR PROGRESS

2. Select whether the following statements are True (T) or False

(F):

(i) A class can serve as base class for many derived classes.

(ii) When one class is derived from another derived class then

that is called multiple inheritance.

(iii) When one class is derived from more than one base class

then that is called multiple inheritence.

(iv) When more than one form of inheritance is used in de-

signing a class then that type is called hybrid inheritance.

3. Answer the following by selecting the appropriate option:

(i) In multilevel inheritance, the middle class acts as

(a) only derived class (b) only base class

(c) base class as well as derived class

(d) none of the above

(ii) A class is declared “virtual” when

(a) more than one class is derived

(b) two or more classes have common base class

(c) there are more than one base classes

while inheriting derive classes. If the base class contains no argument

constructor then the derived class does not require a constructor. If any

base class contains parameterized constructor, then it is mandatory for

the derived class to have a constructor and pass the arguments to the

base class constructors. In case of inheritance, normally derived classes

are used to declare objects. Hence it is necessary to define constructor

in the derived class. When both the derived and base classes contain

constructors, the base constructor is executed first and then the con-

structor in derived class is executed. Destructors are executed in the

reverse order of constructor execution.

Unit - 11 Inheritance

258 Object Oriented Programming through C + + (Block - 2)

 11.7 LET US SUM UP

 Inheritance is one of the most useful and essential characteristics

of object-oriented programming language. If we have developed a

class and we want a new class that is almost similar, but slightly

different, the principles of inheritance come handy. The existing class

is known as base class and the newly formed class is known as

derived class.The derived class can have some other characteristics

which are not in base class.

 Private members of a class cannot be inherited either in public mode

or in private mode.

 When a public member inherited in public, protected and private

mode, then in derived class it remains with the same access

specifiers as in base class i.e., public, protected and private

respectively.

 A protected member inherited in public mode becomes protected,

whereas inherited in private mode becomes private in derived class.

 The protected and public data

 In single inheritance, one new class is derived from a single base

class.

 When a class is derived using the properties of several base classes,

then it is called multiple inheritance.

(d) none of the above

(iii) When a class is not used for creating objects, it is called

(a) abstract class

(c) derived class

(b) virtual base class

(d) none of these

(iv) Intermediate base class is present in case of

(a) single inheritance (b) multiple inheritance

(c) multilevel inheritance (d) hierarchical inheritance

Inheritance Unit - 11

Object Oriented Programming through C + + (Block - 2) 259

 The process of deriving a class from another derived class is called

multilevel inheritance.

 More than one class can be derived from only one base class i.e.,

characteristics of one class can be inherited by more than one class.

This is called hierarchical inheritance.

 When different types of inheritance are applied in a single program

then it is termed as hybrid inheritance.

 When a class is derived from two or more classes, which are de-

rived from the same base class, such type of inheritance is known

as multipath inheritance.

 We can make a class virtual if it is a base class that has been used

by more than one derived class as their base class. When classes

are declared as virtual, the compiler takes necessary caution to avoid

the duplication of the member variables.

 When a class is not used for creating objects, it is called an ab-

stract class.

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata

McGraw-Hill Education

 11.9 ANSWERS TO CHECK YOUR PROGRESS

1. (i) (b) can be accessed by a derived class

(ii) (c) private

(iii) (a) member function of derived class

(iv) (c) protected

11.8 FURTHER READING

Unit - 11 Inheritance

260 Object Oriented Programming through C + + (Block - 2)

(v) (b) private

(vi) (b) only from the base class itself

2. (i) True (ii) False

(iii) True (iv) True

3. (i) (c) base class as well as derived class

(ii) (b) two or more classes have common base class

(iii) (a) abstract class

(iv) (c) multilevel inheritance

 11.10 MODEL QUESTIONS

1. What does inheritance mean in C++?

2. What are the types of inheritance? Explain any three of them with

examples.

3. What are the different types of visibility modes of base class?

4. Write a program to derive a class from multiple base classes.

5. When do we make a class virtual?

6. What are abstract base classes?

7. Explain multipath inheritance.

8. Write a C++ program involving appropriate type of inheritance which

will inherit two classes triangle and rectangle from polygon class.

Use member functions for entering appropriate parameters like

width,height etc. and to calculate the area of triangle and rectangle.

9. Consider a case of University having the disciplines of Engineering,

Management, Science, Arts and Commerce. There are many

colleges in the University. Assuming a college can run a course

partaining to only one discipline, draw the class diagram.To which

type of inheritance does this structure belong?

Object Oriented Programming through C + + (Block - 4) 261

UNIT 12 : VIRTUAL FUNCTIONS AND
POLYMORPHISM

UNIT STRUCTURE

 12.1 Learning Objectives

 12.2 Introduction

 12.3 Polymorphism

 12.3.1 Types of Polymorphism in C++

 12.4 Virtual Functions

 12.5 Pure Virtual Functions

 12.6 Let Us Sum Up

 12.7 Further Reading

 12.8 Answers to Check Your Progress

 12.9 Model Questions

12.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 describe polymorphism and its types

 define the rules for virtual function

 describe how to use virtual function to achieve run-time polymor-

phism

 describe and implement pure virtual function

 12.2 INTRODUCTION

In the previous unit, we have studied the concept of inheritance and its

importance in Object-Oriented Programming language like C++.

In this unit, we will discuss one useful feature of Object-Oriented

Programming, polymorphism. It is the ability of objects to take different

forms. The ability to display variable behavior depending on the situation is

a great facility in any programming language. In the earlier units, we have

seen operator overloading and function overloading. Those are also one

kind of polymorphism. C++ supports a mechanism known as virtual

Unit - 12 Virtual Functions and Polymorphism

262 Object Oriented Programming through C + + (Block - 4)

function to achieve run-time polymorphism. The necessity and usefulness

of virtual functions in programming will also be covered in this unit.

 12.3 POLYMORPHISM

The word polymorphism is a combination of two Greek words, poly and

morphism. “Poly” means “many” and “morphism” means “form”. The

functionality of this feature accords with its name.

12.3.1 Types of Polymorphism in C++

Polymorphism is supported by C++, at both compile-time and at

run-time. Hence, there are two types of polymorphism:

 Compile-time Polymorphism

 Run-time Polymorphism

 Polymorphism

Fig. 12.1: Polymorphism in C++

Operator overloading is achieved by allowing operators to operate

on the user defined data type with the same manner as that of built-

in data types. For example, plus “+” operator produces different

actions in case of integers, complex numbers or strings. With the

help of function overloading, we can write different functions by

using the same function name but with different argument lists. The

functon would perform different operations depending on the argu-

ment list in the functon call. The overloaded member functions are

Compile-time

Operator

Overloading

Function

Overloading

Virtual Func-

tion

Run-time

Virtual Functions and Polymorphism Unit - 12

Object Oriented Programming through C + + (Block - 4) 263

selected for invoking by matching the number of arguments and type

of arguments. This information is known to the compiler at the compile

time itself and, therefore, the selection of the appropriate function is

made at the compile time only.

In both cases, the compiler is aware of the complete information

regarding the type and number of operands. Hence, it is possible for

the compiler to select a suitable function at compile time. This is

known as compile-time polymorphism. It is also termed as static

binding or early binding.

Let us consider a program where the function name and argument

list are same in both the base and derived class.

//Program 12.1:

#include<iostream.h>

#include<conio.h>

class B //base class

{

protected:

int n;

public:

void enter()

{

cout<<"Enter a number in base class:\n";

cin>>n;

}

void display()

{

cout<<"\nThe number in base class is: "<<n;

}

}; //end of base class declaration

class D:public B //derived class D

{

private:

int num;

public:

Unit - 12 Virtual Functions and Polymorphism

264 Object Oriented Programming through C + + (Block - 4)

void input()

{

cout<<"\nEnter a number in derived class:";

cin>>num;

}

void display()

{

cout<<"\nThe number in derived class: "<<n;

}

};

int main()

{

D d;

clrscr();

d.enter(); //will call the enter() of base class

d.display();//display() of derived class will be invoked,

getch();

return 0;

}

Output of the above program will be like this:

Enter a number in base class : 6

The number in derived class : 6

But our intention is to display is :

The number in base class : 6

It has been observed that prototype of display() is same in both base and

derived class and we cannot term it as function overloading. Thus static

binding does not apply in this case. We have already used statement like

d.B::show(); in such situation (program 10.5 of unit Inheritance); i.e., we

used the scope resolution operator (::) to specify the class while invoking

the functions with the derived class objects. But it would be nice if the

appropriate member function could be selected while the program is

running. With the help of inheritance and virtual functions, C++ determines

which version of that function to call. This determination is made at run-

time and is known as run-time polymorphism. Here, the function is linked

with a particular class much later after the compilation and thus it is also

Virtual Functions and Polymorphism Unit - 12

Object Oriented Programming through C + + (Block - 4 265

known as late binding or dynamic binding. In the following section, we

will discuss how to implement virtual function to achieve run-time poly-

morphism.

 12.4 VIRTUAL FUNCTIONS

The concept of virtual functions is different from function overloading. A

virtual function is a member function that is declared within a base class

and redefined by a derived class. The whole function body can be replaced

with a new set of implementation in the derived class. To make a function

virtual, the virtual keyword must precede the function declaration in the

base class. The redefinition of the function in any derived class does not

require a second use of the virtual keyword. The difference between a

non virtual member function and a virtual member function is that the non

virtual member functions are resolved at compile time whereas the virtual

member functions are resolved during run-time.

The concept of pointers to object is prior to knowing before implementing

virtual function. We have already studied the concept of pointers in earlier

units. At this point, we shall discuss how class members are accessible

with the help of pointers.

Pointers to Objects

A pointer can point to a class object. This is called object pointer. Object

pointers are useful in creating objects at run time and public members of

class can be accessible by object pointers. For example, we can create

pointers pointing to classes, as follows:

polygon *optr;

i.e., class name followed byan asterik (*)and then the variable name. Thus,

in the above declaration, *optr is a pointer to an object of class polygon.

To refer directly to a member of an object pointed by a pointer we can use

arrow operator (- >). Here is a program for the illustration of object pointers:

Unit - 12 Virtual Functions and Polymorphism

266 Object Oriented Programming through C + + (Block - 4)

//Program 12.2: Demonstration of pointer to object

#include<iostream.h>

#include<conio.h>

class polygon

{

protected:

int width, height;

public:

void set_values (int w, int h)

{

width=w;

height=h;

}

void display()

{

cout<<“Width :”<<width<<endl<<“Height : <<height;

}

};

int main ()

{

polygon p; // p is an object of type polygon

polygon *optr = &p;// creation and initiazation of

// object pointer

optr->set_values (8,6);//object pointer accessing member

optr->display();//function “set_values()” and

//“display()”

getch(); // with arrow operator.

return 0;

}

With the statement polygon *optr = &p;

we have created object pointer optr of type polygon and initialized it with

the address of p object. We can also create the objects using pointers

and new operator as follows:

polygon *optr = new polygon;

This statement allocates enough memory for the data members in the

object of the particular class and assigns the address of the memory space

to optr.

Pointer to base and derived class objects

Pointers can also be used to point base or derived class object. Pointers

to object of base class is a type-compatible with a pointer to object of

Virtual Functions and Polymorphism Unit - 12

Object Oriented Programming through C + + (Block - 4) 267

derived class. If we create a base class pointer, then that pointer can point

to object of base as well as object of derived class.

For example, let us consider the following program :

//Program 12.3:

#include<iostream.h>

#include<conio.h>

class polygon

{

protected:

int width, height;

public:

void set_values(int w, int h)

{

width=w;

height=h;

}

};

class rectangle: public polygon //derived class rectangle

{

public:

int area()

{

return (width*height);

}

};

class triangle: public polygon //derived class triangle

{

public:

int area()

{

return (width*height / 2);

}

};

int main ()

{

Unit - 12 Virtual Functions and Polymorphism

268 Object Oriented Programming through C + + (Block - 4)

rectangle r; // derived class object r

triangle t; // derived class object t

clrscr();

polygon *p1 = &r;//base class pointer pointing derived class object r

polygon *p2 = &t; // p2 pointing to object t of triangle class

p1->set_values(5,6);

p2->set_values(5,6);

cout<<"\nArea of the rectangle is :"<<r.area()

<<endl;

cout<<"\nArea of the triangle is :" <<t.area()

<<endl;

getch();

return 0;

}

The output of the programm will be like this:

Area of the rectangle is : 30

Area of the triangle is : 15

In function main, we create two pointers p1 and p2 that point to objects of

class polygon. Then we assign references to r and t to these pointers.

Both are valid assignment operations as because both are objects of

classes derived from polygon. The only limitation in using *p1 and *p2

instead of r and t is that both *p1 and *p2 are object pointers of type

polygon and therefore we can only use these pointers to refer to the

members that rectangle and triangle inherit from polygon.

The use of pointer to objects of base class with the objects of its derived

class does not allow access even to public members of a derived class.

That is, it allows access only to those members inherited from the base

class but not to the members which are defined to the derived class. For

that reason when we call the area() members at the end of the program

we have had to use directly the objects r and t instead of the pointers *p1

and *p2.

In order to use area() with the pointers to base class polygon, this member

should also have been declared in the class polygon, and not only in its

derived classes. But the problem is that, rectangle and triangle implement

Virtual Functions and Polymorphism Unit - 12

Object Oriented Programming through C + + (Block - 2) 268

different versions of area(). Therefore, we cannot implement it in the base

class polygon. In such situations, virtual functions are necessary.

A pointer to a derived class object may be assigned to a base class pointer,

and a virtual function called through the pointer. If the function is virtual

and occurs both in the base class and in derived classes, then the right

function will be picked up based on what the base class pointer really

points at.

//Program 12.3: Program demonstrating the use of virtual function

#include<iostream.h>

#include<conio.h>

class polygon

{

protected:

int width, height;

public:

void set_values(int w, int h)

{

width=w;

height=h;

}

virtual int area() //virtual function

{

return (0);

}

};

class rectangle: public polygon

{

public:

int area() //virtual function redefined

{

return (width*height);

}

};

class triangle: public polygon

Unit - 12 Virtual Functions and Polymorphism

269 Object Oriented Programming through C + + (Block - 2)

{

public:

int area() //virtual function redefined

{

return (width * height / 2);

}

};

int main()

{

rectangle r; //r is an object of derived class rectangle

triangle t; //t is an object of derived class triangle

polygon p; //p is an object of base class polygon

clrscr();

polygon *p1=&r; //pointer to a derived class object r

polygon *p2=&t;

polygon *p3=&p;

p1->set_values(5,6);

p2->set_values (5,6);

p3->set_values (5,6);

cout<<"Area of rectangle is:"<<p1-

>area()<<endl;

cout<<"Area of triangle is: "<<p2-

>area()<<endl;

cout<<"Area in polygon is:"<<p3->area()<<endl;

getch();

return 0;

}

In the above program, the three classes polygon, rectangle and triangle

have one common member function: area(). The member function area()

has been declared as virtual in the base class and it is later redefined in

each derived class. The output of the program willl be like this:

Area of rectangle is : 30

Area of triangle is : 15

Area in polygon : 0

Virtual Functions and Polymorphism Unit - 12

Object Oriented Programming through C + + (Block - 2) 270

If we remove the virtual keyword from the declaration of area() within

polygon and run the program, the result will be 0 for the three polygons

instead of 30, 15 and 0. That is because instead of calling the corresponding

area() function for each object (rectangle::area(), triangle::area() and

polygon::area(), respectively), polygon::area() will be called in all cases

since the calls are via a pointer of type polygon. A class that declares or

inherits a virtual function is called a polymorphic class.

When functions are declared as virtual, the compiler adds a data member

secretly to the class. This data member is referred to as a virtual pointer

(VPTR). A table called virtual table (VTBL) contains pointers to all the

functions that have been declared as virtual in a class, or any other classes

that are inherited. Whenever a call to a virtual function is made in the C++

program, the compiler generates code to treat VPTR as the starting address

of an array of pointers to functions. The function call code simply indexes

into this array and calls the function located at the indexed addresses. The

binding of function call always requires this dynamic indexing activities

which always happens at run-time. If a call to a virtual function is made,

while treating the object in question, as a member of its base class, the

correct derived class function will be called. Thus, dynamic binding is

achieved with the help of virtual functions.

There are some definite rules for writing virtual function. These rules are:

 The virtual functions must be members of some class.

 Object pointers should be used to access virtual function.

 A virtual function in a base class must be defined even though it may

not be used.

 The prototype of the function which we declare as virtual in the base

class must be same with all its derived class versions.

 A base pointer can point to any type of the derived object. But we

cannot use a pointer to a derived class to access an object of the

base class.

 Constructors cannot be virtual but destructors can be virtual.

Unit - 12 Virtual Functions and Polymorphism

271 Object Oriented Programming through C + + (Block - 2)

CHECK YOUR PROGRESS

1. Choose the appropriate option for the correct answer:

(i) Run-time polymorphim can be accomplished with the help

of

(a) operator overloading (b) function overloading

(c) virtual function (d) friend function

(ii) Static binding is associated with

(a) compile-time polymorphism

(b) run-time polymorphism

(c) virtual function (d) none of these

(iii) Pionter to object of base class can point

(a) base class object (b) derived class object

(c) both (a) and (b) (d) none of these

(iv) Virtual functions can be accessible by

(a) scope resolution operator

(b) object pointer

(c) object (d) none of these

(v) The ability to take many forms is called

(a) encapsulation (b) polymorphism

(c) inheritance (d) none of these

2. State which of the following statements are True (T) or False

F) :

(i) The prototype of the function which we declare as virtual

in the base class must be different with all its derived

class versions.

(ii) Run-time polymorphism can be achieved only when a

virtual function is accessed through a pointer to the base

class.

(iii) Functions and operator overloading are examples of

compile-time polymorphism.

Virtual Functions and Polymorphism Unit - 12

Object Oriented Programming through C + + (Block - 2) 272

 12.5 PURE VIRTUAL FUNCTIONS

Generally, we declare a virtual function inside a base class and redefine it

in the derived classes. In many situations, there can be no meaningful

definition of a virtual function within a base class. Most of the times, the

idea behind declaring a function virtual (in the base class), is to stop its

execution.Then the question arises why should we define virtual functions?

This leads to the idea of pure virtual functions.

For example, in the previous program 12.3, we have defined a virtual func-

tion area() within the base class polygon . We have also created objects

of polygon class and made a call to its own area() function with object

pointer. As the function has minimal functionality, we could leave that area()

member function without any definition in the base class. This can be

done by appending =0 (equal to zero) to the function declaration as follows:

Such functions are called pure virtual functions. The general form of

declaring a pure virtual function is:

A pure virtual function is a virtual function that has no definition within

the base class. It only serves as a placeholder. In such cases, the compiler

requires each derived class to either define the function or redeclare it as

pure virtual function. A class containing pure virtual functions cannot be

used to declare objects of its own. Such classes are known as abstract

base class. As stated earlier, when a class is not used for creating ob-

jects then it is called abstract class or abstract base class, similarly, a

class containing pure virtual functions cannot be used for creating objects.

A class that cannot instantiate objects is not useless. We can create

pointers to it and take advantage of all its polymorphic abilities. Let us

examine the working of pure virtual functions with an example:

virtual int area() = 0;

virtual return_type function_name(parameter_list) = 0;

Unit - 12 Virtual Functions and Polymorphism

273 Object Oriented Programming through C + + (Block - 2)

//Program 12.4: Demonstration of pure virtual function

#include<iostream.h>

#include<conio.h>

class polygon

{

protected:

int width, height;

public:

void set_values(int w, int h){

width=w;

height=h;

tion

};

}

virtual int area() = 0;//pure virtual func-

class rectangle: public polygon

{

public:

int area()

{

return (width*height);

}

};

class triangle: public polygon{

public:

int area()

{

return (width * height / 2);

}

};

int main()

{

rectangle r; //r is an object of derived class rectangle

triangle t; //t is an object of derived class triangle

clrscr();

Virtual Functions and Polymorphism Unit - 12

Object Oriented Programming through C + + (Block - 4) 274

polygon *p1=&r; //p1 points to object r

polygon *p2=&t; //p2 points to object t

p1->set_values(5,6);

p2->set_values (5,6);

cout<<"Area of rectangle is:"<<p1->area()<<endl;

c o u t < < " A r e a o f t h e t r i a n g l e i s : " < < p 2 -

>area()<<endl;

getch();

return 0;

}

The output will be like this:

Area of the rectangle is : 30

Area of the rectangle is : 15

We can observe that, here we refer to objects of different but related classes

using a unique type of pointer (polygon *p1,*p2). In the main() function, if

we try to create object of polygon class with statement like polygon p;

then the compiler will give error message of the following type:

Error: Cannot create instance of abstract class ‘polygon’.

We should remember that when a virtual function is made pure, any derived

class must provide its own definition. If the derived class fails to override

the pure virtual function, a compile time error will occur.

Virtual function and dynamic allocation of objects

Virtual member function can also be implemented with dynamically

allocated objects. Let us demonstrate the same example with objects that

are dynamicalled allocated.

/*Program 12.5: Demonstration of pure virtual function and

dynamically allocated object */

#include<iostream.h>

#include<conio.h>

class polygon

{

Unit - 12 Virtual Functions and Polymorphism

275 Object Oriented Programming through C + + (Block - 4)

protected:

int width, height;

public:

void set_values(int w, int h)

{

width=w;

height=h;

}

virtual int area()=0; //pure virtual function

};

class rectangle: public polygon

{

public:

int area()

{

return (width*height);

}

};

class triangle: public polygon

{

public:

int area()

{

return (width * height / 2);

}

};

int main()

{

polygon *p1=new rectangle;

polygon *p2=new triangle;

clrscr();

p1->set_values(5,6);

p2->set_values (5,6);

cout<<"Area of rectangle is:"<<p1->area()<<endl;

cout<<"Area of triangle is:"<<p2->area()<<endl;

delete p1;

Virtual Functions and Polymorphism Unit - 12

Object Oriented Programming through C + + (Block - 4) 276

delete p2;

getch();

return 0;

}

In the main() function, we have used the following statements:

polygon * p1= new rectangle;

polygon * p2= new triangle;

Here the pointer p1 and p2 are declared being of type pointer to polygon

but the objects dynamically allocated have been declared having the

derived class type directly.

CHECK YOUR PROGRESS

3. Choose the appropriate option for the corect answer:

(i) Dynamic binding is done using the keyword

(a) static (b) dynamic

(c) virtual (d) abstract

(ii) Virtual function helps us in achieving

(a) run-time polymorphism

(b) compile-time polymorphism

(c) both (a) and (b) (d) none of these

(iii) A base class which is not used for object creation is called

(a) abstract class (b) derived class

(c) virtual class (d) none of these

(iv) The function in the statement virtual show()=0; is a

(a) virtual function (b) pure member function

(c) friend function (d) pure virtual function

(v) A pointer can point to object

(a) derived class, base class

(b) void, NULL (c) base class, derived class

(d) none of these

4. State which of the following statements are True(T) or False(F):

(i) Class containg pure virtual function can instantiate objects

of its own.

Unit - 12 Virtual Functions and Polymorphism

277 Object Oriented Programming through C + + (Block - 4)

 Polymorphism is the ability to use an operator or function in different

ways. Poly, referring to many, signifies the many uses of these op-

erators and functions. C++ supports polymorphism both at run-time

and at compile-time.

 The use of overloaded funcAE1 `tions is an example of compile-

time poly- morphism. Run-time polymorphism can be achieved

through the use of pointer to base class and virtual functions.

 Object pointers are useful in creating objects at run-time. It can be

used to access the public members of an object along with an ar-

row operator.

 A base class pointer may address an object of its own class or an

object of any class derived from the base class.

 A pure virtual function is a virtual function declared in a base class

that has no definition.

 A class containing pure virtual functions cannot be used to declare

any objects of its own. Such classes are called abstract class or

abstract base class.

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata

McGraw-Hill Education

12.6 LET US SUM UP

(ii) Pointers to objects of a base class type are compatible

with the pointer to objects of a derived class.

(iii) A virtual function is a member function that expects to be

overridden in a derived class.

12.7 FURTHER READING

Virtual Functions and Polymorphism Unit - 12

Object Oriented Programming through C + + (Block - 4) 278

 12.8 ANSWERS TO CHECK YOUR PROGRESS

1. (i) (c) virtual function (ii) (a) compile-time polymorphism

(iii) (c) both (a) and (b) (iv) (b) object pointer

(v) (b) polymorphism

2. (i) False (ii) True (iii) True

3. (i) (c)virtual (ii) (a) run-time polymorphism

(iii) (a)abstract class (iv) (d)pure virtual function

(v) (c)base class, derived class

4. (i) False (ii) True (iii) True

 12.9 MODEL QUESTIONS

1. What is polymorphism? What are the different types of polymprphism

in C++?

2. How is polymorphism achieved

(i) at compile time (ii) at run-time

3. What is a virtual function?

4. Describe the rules for declaring virtual functions.

5. How can C++ achieve dynamic binding?

6. What are pointer to base and derived classes?

7. Write a C++ program to demostrate the use of abstract classes.

8. Find the error in the following declaration:

class Base

{

public:

virtual void display()=0;

};

void main()

{

Base b;

}

9. What are virtual and pure virtual functions? Use this concept to

calculate the area of a square and a rectangle.

279 Object Oriented Programming through C + +)

 UNIT 13 : FILE HANDLING

UNIT STRUCTURE

 13.1 Learning Objectives

 13.2 Introduction

 13.3 File Classes

 13.4 Opening and Closing a File

 13.5 File Pointers and their Manipulation

 13.6 Functions for Input and Output Operations

 13.7 Exception Handling

 13.8 Let Us Sum Up

 13.9 Further Readings

 13.10 Answers To Check Your Progress

 13.11 Model Questions

 13.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 describe file classes in C++

 open and close a file

 learn about different file modes

 define file pointers and them in programming use

 perform functions for input/output operations

 use some additional file handling features

 INTRODUCTION

In the previous units we have come across many useful features of the

C++ language like operators, arrays, pointers, functions etc, which provide

the basic programming platform for programmers. Also, we were

introduced to some new Object Oriented features and applications of the

C++ language like classes, operator overloading, inheritance,

polymorphism etc. In this unit, we will deal with a very important feature of

this language which deals with handling files and manipulating them.

File Handling Unit - 13

Object Oriented Programming through C + + 280

Files are a means to store data in a storage device. When we have to

deal with handling enormous volumes of data, we use several external

storage devices like floppy disks, hard disks etc. In the same way, we can

write programs to perform these file manipulation tasks by using C++ file

handling features. C++ file handling provides a mechanism to store the

output of a program in a file and read from a file on the disk. The file

operations of C++ are very much similar to the console oriented input and

output operations where a file stream acts as the interface between the

program and the file.

 13.2 FILE CLASSES

File processing in C++ is very similar to ordinary interactive input and

output because the same kind of stream objects are used. Input from a

file is managed by an ifstream object the same way that input from a

keyboard is managed by the istream object cin. Similarly, output to a

file is managed by an ofstream object the same way that output to the

monitor or printer is managed by the ostream object cout. The only

difference is that ifstream and ofstream objects have to be declared

explicitly and initialized with the external name of the file which they

manage. In other words, as we have been using <iostream> header file

which provide functions cin and cout to take input from console and

write output to a console respectively, we introduce one more header file

<fstream> which provides data types or classes (ifstream, ofstream,

fstream) to read from a file and write to a file.

Table 13.1 : Stream classes

Data type Description

ofstream This data type represents the output file stream and

is used to create files and to write information to files.

ifstream This data type represents the input file stream and

is used to read information from files.

fstream This data type represents the file stream generally,

and has the capabilities of both ofstream and

ifstream which means that it can create files, write

information to files, and read information from files.

Unit - 13 File Handling

281 Object Oriented Programming through C + +

These classes, designed to manage the disk files, are declared in fstream

and therefore we have to #include the <fstream> header file that defines

these classes in any program that uses files. These classes, designed to

manage the disk files, are declared in fstream and therefore we have to

#include the <fstream> header file that defines these classes in any

program that uses files.

 13.3 OPENING AND CLOSING A FILE

In C++, a file is opened by linking it to a stream. There are three types of

streams: input, output and input/output. To open an input stream we

must declare the stream to be of class ifstream. To open an output stream,

it must be declared as class ofstream. A stream that will be performing

both input and output operations must be declared as class fstream. For

example, the following fragment creates one input stream, one output

stream and one stream that is capable of both input and output.

ifstream in;

ofstream out;

fstream both;

Once a stream has been created, the next step is to associate a file with

it, and thereafter the file is available (opened) for processing.

Opening of files can be achieved in the following two ways:

1. Using the constructor function of the stream class.

2. Using the function open().

The first method is preferred when a single file is used with a stream.

However, for managing multiple files with the same stream, the second

method is preferred. Let us discuss each of these methods one by one.

Opening a File Using Constructors

We know that a constructor of a class initializes its object when it (the

object) is created. Simillarly, constructors of the stream classes (ifstream,

ofstream, or fstream) are used to initialize file stream objects with the

filenames passed to them, as given below:

File Handling Unit - 13

Object Oriented Programming through C + + (Block - 2) 282

To open a file named myfile as an input file (i.e., data will be needed from

it and no other operation like writing or modifying would take place on the

file), we shall create a file stream object of input type i.e., ifstream type

like:

ifstream fin(“myfile”, ios::in);

The above statement creates an object, fin, of input file stream. After

creating the ifstream object fin, the file myfile is opened and attached to

the input stream, fin.

To read from this file, this stream object will be used using the operator

(“>>”) as,

13.4 OPENING AND CLOSING A FILE

In C++, a file is opened by linking it to a stream. There are three types of

streams: input, output and input/output. To open an input stream we

must declare the stream to be of class ifstream. To open an output stream,

it must be declared as class ofstream. A stream that will be performing

both input and output operations must be declared as class fstream. For

example, the following fragment creates one input stream, one output

stream and one stream that is capable of both input and output.

ifstream in;

ofstream out;

fstream both;

Once a stream has been created, the next step is to associate a file with

it, and thereafter the file is available (opened) for processing.

Opening of files can be achieved in the following two ways:

1. Using the constructor function of the stream class.

2. Using the function open().

The first method is preferred when a single file is used with a stream.

However, for managing multiple files with the same stream, the second

method is preferred. Let us discuss each of these methods one by one.

Unit - 13 File Handling

283 Object Oriented Programming through C + + (Block - 4)

Opening a File Using Constructors

We know that a constructor of a class initializes its object when it (the

object) is created. Simillarly, constructors of the stream classes (ifstream,

ofstream, or fstream) are used to initialize file stream objects with the

filenames passed to them, as given below:

To open a file named myfile as an input file (i.e., data will be needed from

it and no other operation like writing or modifying would take place on the

file), we shall create a file stream object of input type i.e., ifstream type

like:

ifstream fin(“myfile”, ios::in);

The above statement creates an object, fin, of input file stream. After

creating the ifstream object fin, the file myfile is opened and attached to

the input stream, fin.

To read from this file, this stream object will be used using the operator

(“>>”) as,

char ch;fin>>ch; // read a character from the

filefloat amt;fin>>amt;// read a floating-point

number form the file

Similarly, opening an output file (on which there is no operation except

writing) can be accomplish by –

1. Creating ofstream object to manage the output stream.

2. Associating that object with a particular file.

ofstream fout(“secret” ios::out);//create ofstream...

// ..object named fout

This would create an output stream object named fout and attach the file

secret with it.

Now, to write something to it, we use the << operator like,

int code=2193;fout<<code<<“xyz”;

The connections with a file are closed automatically when the input and

the output stream objects expire i.e., when they go out of scope. We may

close a connection with a file explicitly by using the close() method:

f i n . c l o s e () ; / / c l o s e i n p u t c o n n e c t i o n t o

Unit - 13 File Handling

285

filefout.close();// close output connection to file

Closing such a connection does not eliminate the stream; it just

disconnects it from the file. For example, after the above statements, the

streams fin and fout still exist along with the buffers they manage. We

may later reconnect the stream to the same file or to another file, if needed.

Closing a file flushes the buffer which means that the data remaining in

the buffer (input or output stream) is moved out of it. For example, when

an input file’s connection is closed, the data is moved from the input buffer

to the program and when an output file’s connection is closed, the data is

moved from the output buffer to the disk file.

Opening Files Using Open() Function

There may be situations requiring a program to open more than one file.

The strategy for opening multiple files depends upon how they will be

used. If the situation requires simultaneous processing of two files, then

we need to create a separate stream for each file. However, if the situation

demands sequential processing of files (i.e., processing them one by one),

then we can open a single stream and associate it with each file in turn.

To use this approach, we declare a stream object without initializing it,

then use a second statement to associate the stream with a file. For

example,

i f s t r e a m f i n ; / / c r e a t e a n i n p u t s t r e a m

fin.open(“Master.dat”, ios::in);

//associate fin with Master.dat:

// process Master.dat

fin.close();//terminate association with Master.dat

fin.open(“Tran.dat”, ios::in);

//associate fin with Tran.dat:

process Tran.dat

fin.close();

// terminate association

The Concept of File Modes

The filemode describes how a file is to be used: to read from it, to write to

it, to append it, and so on. When we associate a stream with a file, either

by initializing a file stream object with a file name or by using the open()

method, we can provide a second argument specifying the file mode, as

Unit - 13 File Handling

286

mentioned below:

stream_object.open(“filename”, (filemode));

The second method argument of open(), the filemode, is of type int,

and we may choose one from several constants defined in the ios

class.

List of File Modes in C++

Following table lists the filemodes available in C++ with their meanings:

Table 14.2 : Different file modes

Constant Meaning Stream Type

ios :: in Opens file for reading, i.e., in input mode. ifstream

 Opens file for writing, i.e., in output mode.

ios :: out

ios :: ate

ifstream

This also opens the file in ios::trunc mode,

by default.This means an existing file is

truncated when opened, i.e., its previous

contents are discarded.

This seeks to end-of-file upon opening of

the file. I/O operations can still occur

anywhere within the file.

ofstream

ofstream

ios :: app .
This causes all output to that file to be

appended to the end. This value can be

used only with files capable of output

ofstream

ios :: trunc

This value causes the contents of a pre-

existing file by the same name to be

destroyed and truncates the file to zero

length.

ofstream

ios :: nocreate

This cause the open() function to fail if the

file does not already exist. It will not create

a new file with that name.

ofstream

ios :: noreplace

This causes the open() function to fail if

the file already exists.This is used when

you want to create a new file and at the

same time.

ofstream

Unit - 13 File Handling

287

ios :: binary

This causes a file to be opened in binary

mode. By default, files are opened in text

mode. When a file is opened in text mode,

various character translations may take

place, such as the conversion of carriage-

return into newlines.However, no such

character translations occur in file opened

in binary mode.

ofstream

ifstream

The fstream class does not provide a mode by default and, therefore,

one must specify the mode explicitly when using an object of the fstream

class.

Both ios::ate and ios::app place us at the end of the file just opened. The

difference between the two is that the ios::app mode allows us to add

data to the end of the file only, while the ios::ate mode lets us write data

anywhere in the file.

We may combine two or more filemode constants using the C++ bitwise

OR operator (symbol |). For example, the following statement:

ofstream fout;fout.open(“Master”, ios::app |

ios::nocreate);

will open a file in the append mode if the file exists and will abandon the file

opening operation if the file does not exist.

To open a binary file, we need to specify ios :: binary along with the file

mode, e.g.,

fout.open(“Master”, ios::app | ios::binary);

or,

fout. open(“ Main”, ios:: out | ios:: nocreate |

ios::binary);

Closing a File in C++

As already mentioned, a file is closed by disconnecting it with the stream

it is associated with. The close() function accomplishes this task and it

takes the following general form:

stream_object.close();

For example, if a file Master is connected with an ofstream object fout,

its connections with the stream fout can be terminated by the following

statement:

Unit - 13 File Handling

288

fout.close();

C++ Opening and Closing a File Example

Here is an example for the complete understanding on:

 how to open a file in C++ ?

 how to close a file in C++ ?

Program 13.1: Open a file to store/retrieve information to/from it, and

close that file after storing/retrieving the information to/from it.

#include<conio.h>

#include<string.h>

#include<stdio.h>

#include<fstream.h>

#include<stdlib.h>

void main()

{

ofstream fout;

ifstream fin;

char fname[20];

char rec[80], ch;

clrscr();

cout<<“Enter file name: “;

cin.get(fname, 20);

fout.open(fname, ios::out);

if(!fout)

{

cout<<“Error in opening the file “<<fname;

getch();

exit(1);

}

cin.get(ch);

cout<<“\nEnter a line to store in the file:\n”;

cin.get(rec, 80);

fout<<rec<<“\n”;

cout<<“\nThe line is stored successfully.”;

cout<<“\nPress any key to see...\n”;

getch();

fout.close();

fin.open(fname, ios::in);

if(!fin)

{

cout<<“Error in opening the file “<<fname;

cout<<“\nPress any key to exit...”;

getch();

exit(2);

}

Unit - 13 File Handling

289

cin.get(ch);

fin.get(rec, 80);

cout<<“\nThe file contains:\n”;

cout<<rec;

cout<<“\n\nPress any key to exit...\n”;

fin.close();

getch();

}

 FILE POINTERS AND THEIR MANIPULATION

The C++ input and output system manages two integer values associated

with a file.

These are:

 get pointer – specifies the location in a file where the next read

operation will occur.

 put pointer – specifies the location in a file where the next write

operation will occur. In other words, these pointers indicate the

current positions for read and write operations, respectively. Each

time an input or an output operation takes place, the pointers are

automatically advanced sequentially.

CHECK YOUR PROGRESS

1. Fill in the blanks

(a) Output to a file is managed by an

(b) In C++, a file is opened by linking it to a

(c) A stream that will be performing both

operations must be declared as class

object.

.

and _

.

_

(d) The with a file are closed automatically when the

input and the output objects expire.

(e) The

constants.

operator is used to combine two or more filemode

Unit - 13 File Handling

290

Fig 13.1: Action on file pointers while opening a file

Functions for manipulation of file pointers

The read operation from a file involves the get pointer. It points to a specific

location in the file and the reading starts from that location. Then, the get

pointer keeps moving forward which lets us read the entire file. Similarly,

we can start writing to a location where put pointer is currently pointing.

The get and put are known as file position pointers and these pointers

can be manipulated or repositioned to allow random access of the file.

The functions which manipulate file pointers are shown in Table 13.1:

Table 13.3 : File pointer

Function Description

seekg() Moves the get pointer to a specific location in the file

seekp() Moves the put pointer to a specific location in the file

tellg() Returns the current position of the get pointer

tellp() Returns the current position of the put pointer

seekg()

Sets the position of the get pointer. The get pointer determines

the next location to be read in the source associated to the stream. The

function seekg(n, ref_pos) takes two arguments:

1)) n denotes the number of bytes to move and ref_pos

denotes the reference position relative to which the pointer

moves.

2)) ref_pos can take one of the three constants:

 ios:: beg moves the get pointer n bytes from the

beginning of the file,

 ios:: end moves the get pointer n bytes from the end of

the file

 ios:: cur moves the get pointer n bytes from the current

position. If we don’t specify the second argument, then
ios:: beg is the default reference position.

File Handling Unit - 13

291

Program 13.2: Read a file into memory

#include<fstream.h>

#include<iostream.h>

int main (int argc, char** argv)

{

fstream myFile(“test.txt”, ios::in | ios::out |

ios::trunc);

myFile << “Hello World”;

myFile.seekg(6, ios::beg);

char buffer[6];

myFile.read(buffer, 5);

buffer[5] = 0;

cout << buffer << endl;

myFile.close();

}

In the above example, we open a new file for input/output discarding any

current content in the file. Adding the characters “Hello World” to the file,

we seek to read 6 characters from the beginning of the file. Then we read

the next 5 characters from the file into a buffer and end the buffer with a

null terminating character. Finally, we output the contents read from the

file and close it.

seekp()

The behaviour of seekp(n, ref_pos) is same as that of seekg().The

seekp method changes the location of a stream object’s file pointer for

output (put or write.) In most cases, seekp also changes the location of

a stream object’s file pointer for input (get or read).

Program 13.3: Read a file into memory

#include <fstream.h>

int main()

{

long pos;

ofstream outfile;

outfile.open(“test.txt”);

outfile.write(“This is an apple”,16);

pos=outfile.tellp();

outfile.seekp(pos-7);

outfile.write(“ sam”,4);

outfile.close();

return 0;

}

Unit - 13 File Handling

292

In this example, seekp is used to move the put pointer back to a position

7 characters before the end of the first output operation.

The final content of the file shall be:

This is a sample

tellg()

The tellg() function is used with input streams, and returns the current

get position of the pointer in the stream.

Syntax: pos_type tellg();

It has no parameters and return a value of the member type pos_type,

which is an integer data type representing the current position of the get

stream pointer.

tellp()

Returns the absolute position of the put pointer. The put pointer determines

the location in the output sequence where the next output operation is

going to take place.

Syntax: pos_type tellp();

The tellp() function is used with output streams, and returns the current

put position of the pointer in the stream. It has no parameters and return

a value of the member type pos_type, which is an integer data type

representing the current position of the put stream pointer.

Program 13.4: To demonstrate example of tellg() and tellp() function

#include<iostream>

#include<fstream>

using namespace std;

int main()

{

fstream file;

//open file sample.txt in and Write mode

file.open(“sample.txt”,ios::out);

if(!file)

{

cout<<“Error in creating file!!!”;

return 0;

}

//write A to Z

file<<“ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

//print the position

cout<<“Current position is: “<<file.tellp()<<endl;

file.close();

//again open file in read mode

File Handling Unit - 13

293

file.open(“sample.txt”,ios::in);

if(!file)

{

cout<<“Error in opening file!!!”;

return 0;

}

cout<<“After opening file position is:”

<<file.tellg()<<endl;

//read characters until end of file is not found

char ch;

while(!file.eof())

{

cout<<“At position: “<<file.tellg();

//current position

file>>ch; //read character from file

cout<<“ Character \””<<ch<<“\””<<endl;

}

//close the file

file.close();

return 0;

}

The tellg() and tellp() functions can be used to find out the current position

of the get and put file pointers respectively in a file.

 FUNCTIONS FOR INPUT AND OUTPUT

 OPERATIONS

We have seen the use of cin and cout which are the I/O operators that

give us formatting control over the input and output, but these are not

character I/O functions. We have also seen the file stream classes that

support a number of member functions for performing the input and output

operations on files. Some functions like put() and get() are designed for

handling a single character at a time, and some like write() and read()

are designed for writing and reading blocks of binary data.

The functions, put() and get(), which allow reading/writing character by

character are called character I/O functions.

put()

put() function sends one character at a time to the output stream, where

an output stream can be a standard output stream object or user-defined

output stream object

Unit - 13 File Handling

294

Program 13.5:

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<fstream.h>

void main()

{

clrscr();

char string[50];

cout<<“\n Enter a string to write in a file “;

gets(string);

fstream FILE;

FILE.open(“MYTEXT.TXT”,ios::app);

for(int i=0;string[i]!=’\0';i++)

{

FILE.put(string[i]);

}

FILE.close();

getch();

}

In the above program put() function is used with user-defined output

stream object “FILE” which represents a disk file “MYTEXT.TXT”.

get()

The get() inputs a single character from the standard input device (by

default it is keyboard). Syntax: device.get(char_variable); The device can

be any standard input device. If we want to get input from a keyboard then

we should use cin as the device. Because, most of the computers consider

the keyboard as the standard input device, stdin.

char ch;

cin.get(ch);

The get() function is a buffered input function. When we type in, data

does not go into our program unless we hit the Enter key. get() function

receives one character, including white space, at a time from the input

stream. An input stream can be a standard input stream object or user

defined stream object of the istream class.

Program 13.6:
#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<fstream.h>

#include<ctype.h>

void main()

File Handling Unit - 13

295

{

ifstream infile;

infile.open(“PARA.TXT”);

char ch;

int count=0;

while(infile)

{

infile.get(ch);

if(isdigit(ch))

count++;

}

infile.close();

cout<<“\n Total digits = “<<count;

}

Another way to read and write blocks of binary data is to use C++’s read()

and write() functions. Their prototypes are:

istream &read(char *buf, streamsize num);

ostream &write(const char *buf, streamsize num);

The read() function reads num characters from the invoking stream and

puts them in the buffer pointed to by buf. The write() function writes num

characters to the invoking stream from the buffer pointed to by buf

Program 13.7: Writing data using write()

#include<fstream.h>

#include<conio.h>

class Student

{

int roll;

char name[25];

float marks;

void getdata()

{

cout<<“\n\nEnter Roll : “;

cin>>roll;

cout<<“\nEnter Name : “;

cin>>name;

cout<<“\nEnter Marks : “;

cin>>marks;

}

public:

void AddRecord()

{

fstream f;

Student Stu;

Unit - 13 File Handling

296

f.open(“Student.dat”,ios::app|ios::binary);

Stu.getdata();

f.write((char *) &Stu, sizeof(Stu));

f.close();

}

};

void main()

{

Student S;

char ch=’n’;

do

{

S.AddRecord();

cout<<“\nAny more data(y/n): “;

ch = getche();

}

while(ch==’y’ || ch==’Y’);

cout<<“\nData written successfully...”;

}

Program 13.8: Reading data using read()

#include<fstream.h>

#include<conio.h>

class Student

{

int roll;

char name[25];

float marks;

void putdata()

{

cout<<“\n\t”<<roll<<“\t”<<name<<“\t”<<marks; }

public:

void Display()

{

fstream f;

StudentStu;

f.open(“Student.dat”,ios::in|ios::binary);

cout<<“\n\tRoll\tName\tMarks\n”;

while((f.read((char*)&Stu,sizeof(Stu)))!=NULL)

Stu.putdata();

f.close();

}

};

void main()

{ Student S;

S.Display();

}

File Handling Unit - 13

297

EXCEPTION HANDLING

An exception is a problem that arises during the execution of a program. A

C++ exception is a response to an exceptional circumstance that arises

while a program is running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to

another. C++ exception handling is built upon three keywords: try, catch,

and throw.

 throw: A program throws an exception when a problem shows up.

This is done using a throw keyword.

· catch: A program catches an exception with an exception handler

at the place in a program where we want to handle the problem.

The catch keyword indicates the catching of an exception.

· try: A try block identifies a block of code for which particular

exceptions will be activated. It is followed by one or more catch

blocks.

Assuming a block will raise an exception, a method catches an exception

using a combination of the try and catch keywords. A try/catch block is

placed around the code that might generate an exception. Code within a

try/catch block is referred to as protected code, and the syntax for using

try/catch looks like the following:

try

{

// protected code

}catch(Exception-Name e1)

{

// catch block

}catch(Exception-Name e2)

{

// catch block

}catch(Exception-Name eN)

{

// catch block

}

We may list down multiple catch statements to catch different type of

exceptions in case our try block raises more than one exception in different

situations.

Throwing Exceptions

Exceptions can be thrown anywhere within a code block using throw

Unit - 13 File Handling

298

statements. The operand of the throw statements determines a type for

the exception and can be any expression and the type of the result of the

expression determines the type of exception thrown.

Following is an example of throwing an exception when dividing by zero

condition occurs

double division(int a, int b)

{

if(b==0)

{

throw “Division by zero condition!”;

}

return(a/b);

}

Catching Exceptions

The catch block following the try block catches any exception. We can

specify what type of exception we want to catch and this is determined by

the exception declaration that appears in parentheses following the keyword

catch.

try {

// protected code

}catch(ExceptionName e) {

// code to handle ExceptionName exception

}

The above code will catch an exception of ExceptionName type. If we

want to specify a catch block handling any type of exception that is thrown

in a try block, we must put an ellipsis, ..., between the parentheses en-

closing the exception declaration as follows

try {

// protected code

}catch(...) {

// code to handle any exception

}

Program 13.9:

#include <iostream>

using namespace std;

int main()

{

cout<<“Start/n”;

try { // start a try block

cout<<“Inside Try block\n”;

throw 100; //Throw an error

File Handling Unit - 13

299

cout<<“This will not execute”;

}

catch(int i) //catch an error

{

cout<<“Caught an Exception. Value is”<<i;

}

return 0;

}

Because we are raising an exception of type const char*, so while catching

this exception, we have to use const char* in catch block.

Detecting EOF

The physical contents of a file may not be precisely known. C++ provides

a special function, eof(), that returns nonzero (TRUE) when there are no

more data to be read from an input file stream, and zero (FALSE) otherwise.

Returns true if the eofbit error state flag is set for the stream. This flag is

set by all standard input operations when the End-of-File is reached in the

sequence associated with the stream. Note that the value returned by this

function depends on the last operation performed on the stream (and not

on the next). Operations that attempt to read at the End-of-File fail, and

thus both the eofbit and the failbit end up set. This function can be used

to check whether the failure is due to reaching the End-of-File or to some

other reason.

Program 13.10

#include <iostream>

using namespace std;

int main()

{

int a, b;

cout<<“Enter Values of a and b \n”;

cin>>a;

cin>>b

int x=a-b;

try

{

if(x!=0)

{

cout<<“Result(a/x)=”<<a/x<<“\n”;

}

else

{

throw(x);

}

}

Unit - 13 File Handling

300

catch(int i)

{

cout<<“Exception caught: x=”<<x<<“\n”;

}

cout<<“END”;

return 0;

}

 LET US SUM UP

 C++ file handling provides a mechanism to store the output of a

program in a file.

 ofstream, ifstream and fstream classes are designed to manage

disk files.

 There are three types of streams: input, output and input/output.

 Constructors of the stream classes are used to initialize file stream

objects.

 A file is closed by disconnecting it with the stream it is associated

with.

CHECK YOUR PROGRESS

2. Fill in the blanks

(a) The get and put are known as file pointers.

(b) The tellg() function is used with _ streams, and

returns the current position of the pointer in the stream.

(c) function sends one character at a time to the output

stream.

(d) The get() function is a input function.

(e) provide a way to transfer control from one part of

a program to another.

(f) returns nonzero when there are no more data to be

read from an input file stream.

3. State TRUE or FALSE

(a) get pointer specifies the location in a file where the next

write operation will occur

(b) seekg() sets the position of the get pointer.

(c) The tellp() function is used with output streams, and returns

the current put position of the pointer in the stream

(d) The get() inputs a single character from the standard input

device

(e) Exceptions can be thrown anywhere within a code block

using try statements

(f) The catch block following the throw block catches any

exception

File Handling Unit - 13

301

 The C++ input and output system manages two integer values

associated with a file.

 The seekp() method changes the location of a stream object’s file

pointer for output.

 The functions, put() and get(), allow reading/writing character by

character.

 The read() and write() functions read and write blocks of binary

data.

 Balagurusamy, E. (2011), Object-oriented programming with C++,

6e. Tata McGraw-Hill Education

 Venugopal, K.R. (2013), Rajkumar, Mastering C++. Tata McGraw-

Hill Education

 Ravichandan D. (2002), Programming with C++, 2e. Tata

McGraw-Hill Education

 ANSWERS TO CHECK YOUR

 PROGRESS

1

(a)

ofstream.

 (b)

(c)

(d)

(e)

stream.

input, output, fstream.

connections, stream.

bitwise OR.

2.

 (a)

(b)

(c)

(d)

(e)

(f)

position.

Input, get.

put().

buffered.

Exceptions.

eof().

3.

 (a)

(b)

(c)

(d)

(e)
(f)

False

True

True

True

False

False

13.9 FURTHER READING

 MODEL QUESTIONS

1. What are Files classes in C++? Illustrate their use with examples.

2. Describe opening a file in C++ with an example.

3. Name and describe the different file modes in C++.

4. What are file pointers in C++? How are they used?

5. Illustrate the usage of seekg(), seekp(), tellg() and tellp() functions

with the help of examples.

6. Differentiate between the put() and get() functions.

7. Why are read() and write() functions used.

8. What is exception handling in C++. Illustrate its use with an

example.

9. How do we throw and catch an exception in C++?

10. Why is it necessary to detect EOF in C++ programs? Illustrate.

	COURSE INTRODUCTION
	BLOCK INTRODUCTION
	UNIT 1: INTRODUCTION TO OBJECT ORIENTED PROGRAMMING
	1.2 INTRODUCTION
	Unit - 1 Introduction to Object Oriented Programming
	Introduction to Object Oriented Programming Unit - 1
	Unit - 1 Introduction to Object Oriented Programming (1)

	1.3 BENEFITS OF OOP
	1.4 OOP LANGUAGES
	Unit - 1 Introduction to Object Oriented Programming

	1.4.1 C++
	Introduction to Object Oriented Programming Unit - 1

	1.4.2 Smalltalk
	1.4.3 Java
	Unit - 1 Introduction to Object Oriented Programming

	1.5 ELEMENTS OF OBJECT ORIENTED
	1.5.1 Objects
	Introduction to Object Oriented Programming Unit - 1

	1.5.2 Classes
	1.6 HOW TO WRITE/SAVE/COMPILE and EXECUTE
	Introduction to Object Oriented Programming Unit - 1

	1.7 LET US SUM UP
	1.9 ANSWERS TO CHECK YOUR PROGRESS
	1.10 MODEL QUESTIONS

	UNIT 2: FEATURES OF OBJECT ORIENTED PROGRAMMING
	2.2 INTRODUCTION
	2.3 INHERITANCE
	2.3.1 Forms of Inheritance
	Features of Object Oriented Programming Unit - 2

	2.4 DEFINIING THE DERIVED CLASS
	2.4.1 MAKING PRIVATE MEMBER INHERITABLE
	Features of Object Oriented Programming Unit - 2

	2.5 VIRTUAL BASE CLASS
	2.6 ENCAPSULATION
	2.7 POLYMORPHISM
	2.7.1 Function Overloading
	Features of Object Oriented Programming Unit - 2

	2.7.2 Operator Overloading
	Unit - 2 Features of Object Oriented Programming

	2.8 LET US SUM UP
	2.10 ANSWERS TO CHECK YOUR PROGRESS
	2.11 MODEL QUESTIONS

	UNIT 3 : ELEMENTS OF C++ LANGUAGE
	3.2 INTRODUCTION
	3.3 TOKEN, IDENTIFIER AND KEYWORDS
	3.4 CHARACTER SET AND SYMBOLS
	3.5 BASIC DATA TYPES IN C++
	3.6 VARIABLES
	Data type VarName1, VarName n;
	Data-type VariableName = constant value;

	3.7 CONSTANTS
	area = PI * radius * radius;
	area = 3.142 * radius * radius;
	const [data type] variable name = constant value;

	3.8 DYNAMIC INITIALIZATION OF VARIABLE
	3.9 REFERENCE VARIABLE
	Data type & Reference variable name = variable name;

	3.10 STREAMS IN C++
	cout << variable;
	cin >> variable 1 >> variable 2 >>....>>variable N;

	3.11 LET US SUM UP
	3.13 ANSWER TO CHECK YOUR PROGRESS

	UNIT 4: OPERATORS AND MANIPULATORS
	4.2 Introduction
	4.3 Operators
	4.4 Types of Operators
	4.4.1 Arithmetic Operator
	4.4.2 Relational and Logical Operators
	4.4.3 Assignment Operator
	4.4.4 Increment and Decrement Operator
	4.4.5 Bitwise Operator
	4.4.6 Conditional Operator
	4.4.7 Comma Operator
	4.4.9 Scope Resolution Operator(::)
	4.4.10 Insertion and Extraction Operator
	4.4.11 Address and Indirection Operator
	4.4.12 Memory Management Operator
	new operator
	delete operator

	4.5 Precedence and Associativity
	4.6 MANIPULATORS
	4.7 LET US SUM UP
	4.9 ANSWERS TO CHECK YOUR PROGRESS
	4.10 MODEL QUESTIONS

	UNIT 5: DECISION AND CONTROL STRUCTURES
	5.2 INTRODUCTION
	5.3 DECISION MAKING STATEMENTS
	Decision and Control Structures Unit - 5
	Decision and Control Structures Unit - 5 (1)
	Decision and Control Structures Unit - 5 (2)
	Decision and Control Structures Unit - 5 (3)
	Decision and Control Structures Unit - 5 (4)

	5.4 LOOPS
	Decision and Control Structures Unit - 5
	Decision and Control Structures Unit - 5 (1)
	Decision and Control Structures Unit - 5 (2)

	5.5 UNCONDITIONAL BRACHING STATEMENTS
	Decision and Control Structures Unit - 5

	5.6 LET US SUM UP
	Decision and Control Structures Unit - 5

	5.8 ANSWERS TO CHECK YOUR PROGRESS
	5.9 MODEL QUESTIONS

	UNIT 6: ARRAY, POINTER AND STRUCTURE
	6.2 INTRODUCTION
	6.3 ARRAYS
	Storage Class datatype arrayname [expression];
	#include<string.h>

	6.4 POINTERS
	6.5 STRUCTURES
	structurename var1, var2 ;

	6.6 UNIONS
	6.7 LET US SUM UP
	6.9 ANSWERS TO CHECK YOUR PROGRESS
	6.10 MODEL QUESTIONS

	UNIT 7 : FUNCTIONS
	7.2 INTRODUCTION
	7.3 LIBRARY FUNCTION
	7.4 I/O FUNCTIONS
	7.5 UNFORMATTED I/O FUNCTIONS
	7.6 USER DEFINED FUNCTIONS
	7.7 KEY TERMS RELATED TO FUNCTIONS
	7.8 RULES FOR WRITING FUNCTION
	7.9 SYNTAX FOR FUNCTION DECLARATION
	7.10 CATEGORIES OF FUNCTIONS
	7.11 MATHEMATICAL LIBRARY FUNCTIONS
	7.12 INLINE FUNCTION
	7.13 FUNCTION OVERLOADING
	7.14 DEFAULT ARGUMENTS
	7.15 MACROS or MACRO FUNCTIONS
	7.16 LET US SUM UP
	7.18 ANSWER TO CHECK YOUR PROGRESS
	7.19 MODEL QUESTIONS

	UNIT 8: INTRODUCTION TO CLASSES AND OBJECT
	UNIT STRUCTURE
	8.1 LEARNING OBJECTIVES
	8.2 INTRODUCTION
	8.3 CLASSES IN C++
	8.4 CLASS DECLARATION
	8.4.1 Access Control in a Class
	8.5 DECLARING OBJECTS
	employee e1;
	employee e1, e2, e3, e4;
	class employee
	} e1, e2, e3;
	employee e1, e2;

	8.5.1 Accessing Class Members
	employee e1; and employee e2;
	e1.show_data (); e2.show_data ();

	8.6 DEFINING MEMBER FUNCTIONS
	8.6.1 Member Function Inside a Class
	8.6.2 Member Function outside a Class
	8.7 INLINE MEMBER FUNCTION
	8.8 ARRAY OF OBJECTS
	consultant [30] . show_data ()

	8.9 OBJECTS AS FUNCTION ARGUMENTS
	8.9.1 Pass-by-value
	8.9.2 Pass-by-Reference
	8.9.3 Pass-by-Pointer
	8.10 FRIEND FUNCITON AND FRIEND CLASS
	8.11STATIC DATA MEMBER AND MEMBER FUNCTON
	static <variable name> ; static <function name> ;

	8.12 LET US SUM UP
	8.14 ANSWERS TO CHECK YOUR PROGRESS
	8.15 MODEL QUESTIONS

	UNIT 9 : CONSTRUCTORS AND DESTRUCTORS
	UNIT STRUCTURE
	9.1 LEARNING OBJECTIVES
	9.2 INTRODUCTION
	9.3 CONSTRUCTORS
	9.3.1 Parameterized Constructors
	9.3.2 Copy Constructors
	9.4 OVERLOADING OF CONTRUCTORS
	9.5 DESTRUCTORS
	9.6 DYNAMIC INITIALIZATION OF OBJECTS
	9.7 LET US SUM UP
	9.9 ANSWERS TO CHECK YOUR PROGRESS
	9.10 MODEL QUESTIONS

	UNIT 10: OPERATOR OVERLOADING
	UNIT STRUCTURE
	10.1 LEARNING OBJECTIVES
	10.2 INTRODUCTION
	10.3 BASIC CONCEPT OF OVERLOADING
	10.5 OVERLOADING UNARY OPERATORS
	10.6 OPERATOR RETURN TYPE
	10.7 OVERLOADING BINARY OPERATORS
	10.8 STRINGS AND OPERATOR OVERLOADING
	10.9 TYPE CONVERSION
	10.10 LET US SUM UP
	10.12 ANSWERS TO CHECK YOUR
	PROGRESS
	10.13 MODEL QUESTIONS

	UNIT 11 : INHERITANCE
	UNIT STRUCTURE
	11.1 LEARNING OBJECTIVES
	11.2 INTRODUCTION
	11.3 INHERITANCE
	 Reusability
	 Reliability and Cost
	 Saves Time and Effort

	11.3.1 Defining a Derived Class
	11.3.2 Accessing Base Class Members
	11.4 TYPES OF INHERITANCE
	11.4.1 Single Inheritance
	11.4.2 Multiple Inheritance
	Hierarchical Inheritance
	11.4.4 Multilevel Inheritance
	11.4.5 Hybrid Inheritance
	11.4.6 Multipath Inheritance
	11.5 VIRTUAL BASE CLASSES
	11.6 ABSTRACT CLASSES
	CHECK YOUR PROGRESS

	11.7 LET US SUM UP
	multilevel inheritance.

	11.9 ANSWERS TO CHECK YOUR PROGRESS
	11.10 MODEL QUESTIONS

	UNIT 12 : VIRTUAL FUNCTIONS AND POLYMORPHISM
	UNIT STRUCTURE
	12.1 LEARNING OBJECTIVES
	12.2 INTRODUCTION
	12.3 POLYMORPHISM
	12.3.1 Types of Polymorphism in C++
	 Compile-time Polymorphism

	12.4 VIRTUAL FUNCTIONS
	12.5 PURE VIRTUAL FUNCTIONS
	12.8 ANSWERS TO CHECK YOUR PROGRESS
	12.9 MODEL QUESTIONS

	UNIT 13 : FILE HANDLING
	UNIT STRUCTURE
	13.1 LEARNING OBJECTIVES
	INTRODUCTION
	13.2 FILE CLASSES
	13.3 OPENING AND CLOSING A FILE
	13.4 OPENING AND CLOSING A FILE
	Opening Files Using Open() Function
	The Concept of File Modes
	List of File Modes in C++
	Closing a File in C++
	C++ Opening and Closing a File Example

	FILE POINTERS AND THEIR MANIPULATION
	FUNCTIONS FOR INPUT AND OUTPUT
	EXCEPTION HANDLING
	Catching Exceptions
	Detecting EOF

	LET US SUM UP
	ANSWERS TO CHECK YOUR
	MODEL QUESTIONS

	Author page Sample (1).pdf
	Expert Committee

