
Dr. Babasaheb Ambedkar Open University

2024

Mobile
Application
Development

shared by the Android Open Source Project and used according to terms described in the
Creative Commons 2.5 Attribution License.

This publication is made available under a Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/

ISBN: 978-81-940577-2-7

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad

While all efforts have been made by editors to check accuracy of the content, the
representation of facts, principles, descriptions and methods are that of the respective module
writers. Views expressed in the publication are that of the authors, and do not necessarily
reflect the views of Dr. Babasaheb Ambedkar Open University. All products and services
mentioned are owned by their respective copyrights holders, and mere presentation in the
publication does not mean endorsement by Dr. Babasaheb Ambedkar Open University. Every
effort has been made to acknowledge and attribute all sources of information used in
preparation of this learning material. Readers are requested to kindly notify missing attribution,
if any.

Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Manager, CPP Software, Bhavnagar

Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Course Writers

 Dr. Himanshu Patel

Content Reviewer

Mr. Nikhil Patel

Editors
Prof. (Dr.) Nilesh Modi

Dr. Himanshu Patel

Mobile Application Development

Dr. Babasaheb
Ambedkar Open
University

Unit-1: 02The Android Platform

Unit-2: Installing Android Studio 18

Unit-3: Android Studio for Android Software Development 32

Block-2: Android Application Development Basics

Unit-1: Building a sample Android application using Android Studio 48

Unit-2: Android Project Structure 56

Unit-3: Android Manifest File and its common settings 69

Block-3: Android Application Design Essentials

Unit-1: 81Activities

Unit-2: Services 98

Unit-3: Intents 109

Unit-4: Permissions 124

Unit-5: Application resources 136

Block-4: Android User Interface Design

Unit-1: 148Basic User Interface Screen elements

Unit-2: Designing User Interfaces with Layouts 171

Unit-3: Drawing and Working with Animation 191

Mobile Application Development

Block-1: Introduction to Android, Tools and Basics

BCAR-503

Block-1
Introduction to Android,

Tools and Basics

Unit-1: The Android Platform

Unit Structure

1.0. Learning Objectives

1.1. Introduction

1.2. History of mobile application development

1.3. The Open Handset Alliance (OHA)

1.4. The Android Platform

1.5. Android Versions

1.6. Native Android Applications

1.7. Android SDK Features

1.8. Android Architecture

1.9. Factors that affect Mobile Application development

1.10. Let us sum up

1.11. Check your Progress: Possible Answers

1.12. Further Reading

1.13. Assignment

1

1.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Know History of mobile application development

 List different version of Android

 Describe Android SDK features

 Understand Android architecture

 Enumerate factors that affect Mobile Application development

1.1 INTRODUCTION

 Android is an operating system that powers mobile devices and is one of the most

popular mobile platforms today. Android platform runs on hundreds of millions of

mobile devices throughout the world. It's the largest installed operating system of any

mobile operating system and growing rapidly day by day.

You can develop apps and games using Android and it gives you an open

marketplace for distributing your apps and games instantly.

Android is the operating system for powering screens of all sizes. Android version is

named after a dessert. The latest version of android is Android 9.0 Pie. Following

table shows how the android platform evolves.

1.2 HISTORY OF MOBILE APPLICATION DEVELOPMENT

To understand what makes Android so convincing, you must study how mobile

development has evolved and how Android differs from other mobile platforms.

The Motorola DynaTAC 8000X was the first commercially available cell phone and it

is of brick size. First-generation mobile were expensive, not particularly full featured

and has Proprietary software.

As mobile phone prices dropped, batteries improved, and reception areas grew,

more and more people began carrying these handy devices. Customers began

pushing for more features and more games. They needed some way to provide a

portal for entertainment and information services without allowing direct access to

the handset.

Early phone have postage stamp-sized low-resolution screens and limited storage

-intensive operations

required by traditional web browsers. The bandwidth requirements for data

transmission were also costly to the user.

Wireless Application Protocol

The Wireless Application Protocol (WAP) standard emerged to address above

concerns. WAP was stripped-down version of HTTP. WAP browsers were designed

to run within the memory and bandwidth constraints of the phone. Third-party WAP

sites served up pages written in a mark-up language called Wireless Mark up

Language (WML). The WAP solution was great for handset manufacturers and

mobile operators. Phone users can access the news, stock market quotes, and

sports scores on their phones.

WAP fell short of commercial expectations due to following reasons and Critics

a

 Handset screens were too small for surfing.

 WAP browsers, especially in the early days, were slow and frustrating.

 Reading a sentence fragment at a time, and then waiting seconds for the next

segment to download, ruined the user experience, especially because every

second of downloading was often charged to the user.

 Mobile operators who provided the WAP portal often restricted which WAP

sites were accessible.

Proprietary Mobile Platforms

Writing robust applications with WAP, such as graphic-intensive video games, was

nearly impossible. Memory was getting cheaper, batteries were getting better, and

PDAs and other embedded devices were beginning to run compact versions of

common operating systems such as Linux and Windows. A variety of different

proprietary platforms emerged and developers are still actively creating applications

for them. Some of the examples of proprietary mobile platform are:

 Palm OS (now Garnet OS)

 RIM BlackBerry OS

 Java Micro Edition [Java ME]

 Binary Runtime Environment for Wireless (BREW)

 Symbian OS

 OS X iPhone

Each platform has benefits and drawbacks.

1.3 OPEN HANDSET ALLIANCE (OHA)

The Open Handset Alliance (OHA) was formed in November 2007, comprised of

many of the largest and most successful mobile companies on the planet. Its

members include chip makers, handset manufacturers, software developers, and

service providers. The entire mobile supply chain is well represented.

In their own words, the OHA represents the following: A commitment to openness, a

shared vision for the future, and concrete plans to make the vision a reality, to

accelerate innovation in mobile and offer consumers a richer, less expensive, and

better mobile experience

The OHA hopes to deliver a better mobile software experience for consumers by

providing the platform needed for innovative mobile development at a faster rate and

with higher quality than existing platforms, without licensing fees for either software

developers or handset manufacturers.

1.4 THE ANDROID PLATFORM

Andy Rubin has been credited as the father of the Android platform. His company,

Android Inc., was acquired by Google in 2005. Working together, OHA members,

including Google, began developing a non-proprietary open standard platform based

upon technology developed at Android Inc. that would aim to solve the problems

hindering the mobile community. The result is the Android project.

M

he acts as VP of Engineering and manages the Android platform roadmap. Google

hosts the Android open source project and provides online Android documentation,

tools, forums, and the Software Development Kit (SDK) for developers. All major

Android news originates at Google.

What is android?

Complete: allows for rich application development opportunities.

Open: It is provided through open source licensing.

Free: Android applications are free to develop. Android applications can be

distributed and commercialized in a variety of ways.

Features of Android

 Free and Open Source

 Familiar and inexpensive development tools

 Freely available SDK

 Familiar Language, Familiar Development Environments

 Reasonable learning curve for developers

 Enabling development of powerful applications

 Rich, secure application integration

 No costly obstacles to publication

 A new growing platform

What it is not?

Android is not:

 A Java ME implementation: Android applications are written in the Java

language, but they are not run within a Java ME virtual machine, and Java-

compiled classes and executable will not run natively in Android.

 Part of the Linux Phone Standards Forum or the Open Mobile Alliance: Android

runs on an open-

complete software stack approach goes further than the focus of these

standards-defining organizations.

 Simply an application layer (like UIQ or S60): While Android does include an

encompassing the underlying operating system, the API libraries, and the

applications themselves.

 A mobile phone handset Android includes a reference design for mobile handset

designed to support many alternative hardware devices.

 : The iPhone is a fully proprietary hardware and

software platform released by a single company (Apple), while Android is an

open-source software

Check Your Progress-1

a) Android is complete, free and open source (True/False)

b) Android is a Java ME implementation (True/False)

c) List some proprietary mobile platforms

d) Give full form of OHA

e) Why c

1.5 THE ANDROID VERSION

Android is the operating system for powering screens of all sizes. Android version is

named after a dessert. The latest version of android is Android 9.0 Pie. Following

table shows how the android platform evolves.

Android

Version

Name Feature API

Level

1.0 Alpha Web browser, Camera, Synchronization of

Gmail, Contact and Calendar, Google Maps,

Google Search, Google Talk,

Instant Messaging, Text Messaging and MMS,

Media Player, Notification, Voice Dialer,

YouTube Video Player

Other applications include: Alarm Clock,

Calculator, Dialer (Phone), Home screen

(Launcher), Pictures (Gallery), and Settings.

1

1.1 Beta The update resolved bugs, changed the Android 2

Android

Version

Name Feature API

Level

API and added a number of features such as

Details and reviews available when a user

searches for businesses on Maps, Ability to

show/hide dial pad and save attachments in

messages.

1.5 Cupcake Virtual keyboards with text prediction and user

dictionary for custom words, widgets, video

recording and playback, Bluetooth, Copy and

Paste, animated screen transition, auto rotation,

upload video on YouTube, upload photo to

Picasa.

3

1.6 Donut Voice and text entry search, Multi-lingual

speech synthesis, updated technology support

for CDMA/EVDO, 802.1x, VPNs, and a text-to-

speech engine, WVGA screen resolutions,

Expanded Gesture framework and new Gesture

Builder development tool

4

2.0

2.0.1

2.1

Éclair Customize your home screen just the way you

want it. Arrange apps and widgets across

multiple screens and in folders. Stunning live

wallpapers respond to your touch.

5

6

7

2.2-2.2.3 Froyo Voice Typing lets you input text, while Voice

Actions allow you to control your phone, just by

speaking.

8

2.3 Gingerbread New sensors make Android great for gaming

so you can touch, tap, tilt and play away.

9-10

3.0 Honeycomb Optimized for tablets. 11-13

4.0 Ice Cream

Sandwich

A new, refined design. Simple, beautiful and

beyond smart.

14-15

4.1-4.3 Jelly Bean Fast and smooth with slick graphics. With

Google Now, you get just the right information

16-18

Android

Version

Name Feature API

Level

at the right time.

4.4 Kit Kat A more polished design, improved performance

and new features.

19-20

5.0 Lolipop Get the smarts of Android on screens big and

small with the right information at the right

moment.

21-22

6.0 Marshmallow New App Drawer, Doze mode, Native finger

print support, Android pay, USB type-C and

USB 3.1 support, Direct share.

23

7.0 Nougat Revamped notification, Split-screen use, file

based encryption, direct boot, data saver

24-25

8.0 Oreo Picture in picture, Google play protect, emoji 26-27

9.0 Pie Adaptive Battery, adaptive brightness, intuitive

navigation, dashboard, App timers, Wind down

and do not disturb, Digital wellbeing.

28

Table-1 Android Versions

1.6 NATIVE ANDROID APPLICATIONS

Android phones will normally come with a suite of generic preinstalled applications

that are part of the Android Open Source Project (AOSP), including, but not

necessarily limited to:

 An e-mail client

 An SMS management application

 A full PIM (personal information management) suite including a calendar and

contacts list

 A Web Kit-based web browser

 A music player and picture gallery

 A camera and video recording application

 A calculator

 The home screen

 An alarm clock

In many cases Android devices will also ship with the following proprietary Google

mobile applications:

 The Android Market client for downloading third-party Android applications

 A fully-featured mobile Google Maps application including StreetView, driving

directions and turn-by-turn navigation, satellite view, and traffic conditions

 The Gmail mail client

 The Google Talk instant-messaging client

 The YouTube video player

1.7 ANDROID SDK FEATURES

The true appeal of Android as a development environment lays in the APIs it

provides. As an application-neutral platform, Android gives you the opportunity to

create applications that are as much a part of the phone as anything provided out of

the box. The following list highlights some of the most noteworthy Android features:

 No licensing, distribution, or development fees or release approval processes

 Wi-Fi hardware access

 GSM, EDGE, and 3G networks for telephony or data transfer, enabling you to

make or receive calls or SMS messages, or to send and retrieve data across

mobile networks

 Comprehensive APIs for location-based services such as GPS

 Full multimedia hardware control, including playback and recording with the

camera and microphone

 APIs for using sensor hardware, including accelerometers and the compass

 Libraries for using Bluetooth for peer-to-peer data transfer

 IPC message passing

 Shared data stores

 Background applications and processes

 Home-screen Widgets, Live Folders, and Live Wallpaper

 The ability to integrate application search results into the system search

 An integrated open-source HTML5WebKit-based browser

 Full support for applications that integrate map controls as part of their user

interface

 Mobile-optimized hardware-accelerated graphics, including a path-based 2D

graphics library and support for 3D graphics using OpenGL ES 2.0

 Media libraries for playing and recording a variety of audio/video or still image

formats

 Localization through a dynamic resource framework

 An application framework that encourages reuse of application components and

the replacement of native applications

Check your progress-2

a) Android version is named after a dessert. (True/False)

b) Android version name is in ascending order of alphabets (True/False)

c) Which is the latest version of Android?

d) What is Android SDK?

1.8 ANDROID ARCHITECTURE

Android is an open source, Linux-based software stack created for a wide array of

devices and form factors. The following diagram shows the major components of the

Android platform.

The Linux Kernel

The foundation of the Android platform is the Linux kernel. For example, the Android

Runtime (ART) relies on the Linux kernel for underlying functionalities such as

threading and low-level memory management. Using a Linux kernel allows Android

to take advantage of key security features and allows device manufacturers to

develop hardware drivers for a well-known kernel.

Hardware Abstraction Layer (HAL)

The hardware abstraction layer (HAL) provides standard interfaces that expose

device hardware capabilities to the higher-level Java API framework. The HAL

consists of multiple library modules, each of which implements an interface for a

specific type of hardware component, such as the camera or Bluetooth module.

When a framework API makes a call to access device hardware, the Android system

loads the library module for that hardware component.

Android Runtime

For devices running Android version 5.0 (API level 21) or higher, each app runs in its

own process and with its own instance of the Android Runtime (ART). ART is written

to run multiple virtual machines on low-memory devices by executing DEX files, a

byte code format designed especially for Android that's optimized for minimal

memory footprint. Build tool chains, such as Jack, compile Java sources into DEX

byte code, which can run on the Android platform.

Some of the major features of ART include the following:

 Ahead-of-time (AOT) and just-in-time (JIT) compilation

 Optimized garbage collection (GC)

 On Android 9 (API level 28) and higher, conversion of an app package's

Dalvik Executable format (DEX) files to more compact machine code.

 Better debugging support, including a dedicated sampling profiler, detailed

diagnostic exceptions and crash reporting, and the ability to set watch points

to monitor specific fields

Prior to Android version 5.0 (API level 21), Dalvik was the Android runtime. If your

app runs well on ART, then it should work on Dalvik as well, but the reverse may not

be true. Android also includes a set of core runtime libraries that provide most of the

functionality of the Java programming language, including some Java 8 language

features that the Java API framework uses.

Native C/C++ Libraries

Many core Android system components and services, such as ART and HAL, are

built from native code that requires native libraries written in C and C++. The Android

platform provides Java framework APIs to expose the functionality of some of these

native libraries to apps. For example, you can access OpenGL ES through the

2D and 3D graphics in your app. If you are developing an app that requires C or C++

code, you can use the Android NDK to access some of these native platform libraries

directly from your native code.

Figure-1: Android Software Stack

Java API Framework

The entire feature-set of the Android OS is available to you through APIs written in

the Java language. These APIs form the building blocks you need to create Android

apps by simplifying the reuse of core, modular system components and services,

which include the following:

lists, grids, text boxes, buttons, and even an embeddable web browser

 A Resource Manager, providing access to non-code resources such as

localized strings, graphics, and layout files

 A Notification Manager that enables all apps to display custom alerts in the

status bar

 An Activity Manager that manages the lifecycle of apps and provides a

common navigation back stack

 Content Providers that enable apps to access data from other apps, such as

the Contacts app, or to share their own data

Developers have full access to the same framework APIs that Android system apps

use.

System Apps

Android comes with a set of core apps for email, SMS messaging, calendars,

internet browsing, contacts, and more. Apps included with the platform have no

special status among the apps the user chooses to install. So a third-party app can

become the user's default web browser, SMS messenger, or even the default

keyboard (some exceptions apply, such as the system's Settings app).

The system apps function both as apps for users and to provide key capabilities that

developers can access from their own app. For example, if your app would like to

deliver an SMS message, you don't need to build that functionality you you can

instead invoke whichever SMS app is already installed to deliver a message to the

recipient you specify.

1.9 Factors that affect Mobile Application development

You should keep in mind the following factors while developing mobile application:

 Low processing power

 Limited RAM

 Limited permanent storage capacity

 Small screens with low resolution

 High costs associated with data transfer

 Slow data transfer rates with high latency

 Unreliable data connections

 Limited battery life

Following are some of the factors that affect app development time:

 User Interface & User Experience.

 Custom application

 Resource availability

 App security and publishing the app

 App designing

 Number of screens/devices/platforms/operating systems

 Third party integration

 Features

 Understanding the business logic

 Complexity of the App

Check your progress-3

a) List components of Android Software Stack

b) The foundation of the Android platform is the ____________

c) Give full form: JIT, ART, HAL

d) What are the important features of Android Run Time?

1.10 Let us sum up

In this unit we have discussed the history of mobile application development, you

have got detailed understanding of android and its version, android SDK features

and architecture, and we also elaborate factors that should be given consideration

while developing mobile application

1.11 Check your progress: Possible Answers

1-a True

1-b False

1-c Some of the examples of proprietary mobile platform are:

 Palm OS (now Garnet OS)

 RIM BlackBerry OS

 Java Micro Edition [Java ME]

 Binary Runtime Environment for Wireless (BREW)

 Symbian OS

 OS X iPhone

1-d OHA stands for Open Handset Alliance

1-e D

 Handset screens were too small for surfing.

 WAP browsers, especially in the early days, were slow and frustrating.

 Reading a sentence fragment at a time, and then waiting seconds for the next

segment to download, ruined the user experience, especially because every

second of downloading was often charged to the user.

 Mobile operators who provided the WAP portal often restricted which WAP

sites were accessible.

2-a True

2-b True

2-c Android version 9 Pie is the latest version of Android

2-d A software development kit that enables developers to create applications for

the Android platform. The Android SDK includes sample projects with source

code, development tools, an emulator, and required libraries to build Android

applications.

3-a) Following are the components of Android Software Stack

 The Linux Kernel

 Hardware Abstraction Layer (HAL)

 Android Runtime

 Native C/C++ Libraries

 Java API Framework

 System Apps

3-b) The foundation of the Android platform is the Linux kernel

3-c)

 JIT Just In Time

 ART Android Run Time

 HAL Hardware Abstraction Layer

3-d) Following are the important features of Android Run Time

 Ahead-of-time (AOT) and just-in-time (JIT) compilation

 Optimized garbage collection (GC)

 On Android 9 (API level 28) and higher, conversion of an app package's

Dalvik Executable format (DEX) files to more compact machine code.

 Better debugging support, including a dedicated sampling profiler, detailed

diagnostic exceptions and crash reporting, and the ability to set watch points

to monitor specific fields

1.12 Further Reading

 , Shane Conder

Lauren Darcey, Addison-Wesley, 2010

 , Wei-Meng Lee, Wiley Publishing

Inc., 2011

1.13 Assignments

 What is android? Explain history of android version with API level

 Explain android architecture and features of android SDK

Unit-2: Installing Android Studio

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 System Requirements for Android Studio

2.3 Downloading Android Studio

2.4 Downloading JDK

2.5 Installing JDK

2.6 Installing Android Studio

2.7 Launching Android Studio

2.8 Let us sum up

2.9 Check your Progress: Possible Answers

2.10 Further Reading

2.11 Assignment

2.12 Activities

2

2.0 Learning Objectives

After studying this unit student should be able to:

 Know about android studio

 List system requirements for android studio

 How to download and install android studio

 List the steps for downloading and installing android studio

 Launch the android studio

2.1 Introduction

For developing application for android platform, you will require Integrated

Development Environment (IDE). Android Studio is the official IDE for Android

application development. Android Studio provides everything you need to start

developing apps for Android, including the Android Studio IDE and the Android SDK

tools. First we discuss what the system requirements for android studio are and how

to install and configure android studio.

2.2 System Requirements for Android Studio

Windows

 Microsoft® Windows® 8/7/Vista/2003 (32 or 64-bit)

 GB RAM minimum, 4 GB RAM recommended

 400 MB hard disk space

 At least 1 GB for Android SDK, emulator system images, and caches

 1280 x 800 minimum screen resolution

 Java Development Kit (JDK) 7

 Optional for accelerated emulator: Intel® processor with support for Intel® VT-x,

Intel® EM64T (Intel® 64), and Execute Disable (XD) Bit functionality

2.3 Downloading Android Studio

Download android studio from http://developer.android.com/sdk/index.html. It will

open following web page.

Figure-2

page.

Figure-3

start installation before downloading and installing JDK 1.7 is over.

2.4 Downloading JDK

To download JDK 1.7 type following URL in browser.

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-

1880260.html. It will open page shown below.

Figure-4

Go to bottom of the page and accept License agreement and download JDK for

Windows x86 or Windows x64 for windows 32 bit and windows 64 bit respectively.

Figure-5

2.5 Installing JDK

Double click downloaded JDK Installation file and follow instructions on screen.

Figure-6

Press Next Button

Figure-7

Press Next Button this will start installation as shown below.

Figure-8

After installation starts it will asks for Java Runtime Environment (JRE) Installation

location.

Figure-9

Press Next Button it will start installing JRE as shown below.

Figure-10

Once Java SDK installation is finished it will display following screen.

Figure-11

Press close button to finish Java SDK installation.

To ensure that JDK is properly installed, open a terminal and type javac version

and press enter as shown below.

Figure-12

2.6 Installing Android Studio

Launch the .exe file you just downloaded. It will open following screen.

Figure-13

Click on Next button.

Figure-14

Click Next button.

Figure-15

Click on I Agree button.

Figure-16

Specify path for Android Studio Installation and Android SDK Installation or use

default and press Next button.

Figure-17

Press Install Button. This will start installation as shown below.

Figure-18

Once installation is finished completed message will be displayed as shown

below.

Figure-19

Press next button to finish installation and launch Android Studio.

Figure-20

Important Note: On some Windows systems, the launcher script does not find

where Java is installed. If you encounter this problem, you need to set an

environment variable indicating the correct location. Select Start menu >

Computer > System Properties > Advanced System Properties. Then open

Advanced tab > Environment Variables and add a new system variable

JAVA_HOME that points to your JDK folder, for example C:\Program

Files\Java\jdk1.7.0_XX.

2.7 Launching Android Studio

Click on Finish button to launch Android Studio. It will display following screen

Figure-21

Select last option and press OK. It will download updates and create virtual device

for you.

Figure-22

Press finish button to start Android Studio with following initial welcome screen.

Figure-23

Check your Progress 1

1) Downloading Android Studio is free of cost (True /False)

2) We can install Android Studio without installing Java (True/False)

3) If the Android launcher script does not find where Java is installed, you need to

set an environment variable indicating the correct location of Java.

2.8 Lets us sum up

In this unit we have learn about the System Requirements for Android Studio and

systematic method of downloading and installing JDK and android studio. Once the

installation is finished successfully we can launch the Android Studio.

2.9 Check your progress: Possible Answers

1-a) True

1-b) False

1-c) True

2.10 Further Reading

 https://developer.android.com/studio
 https://developer.android.com/studio/install
 https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html

2.11 Assignments

 Explain the steps for downloading, installing and launching Android Studio

2.13 Activities

 Download and install android studio

3Unit-3: Android Studio for
Android Software Development

Unit Structure

3.0 Learning Objectives

3.1 Introduction

3.2 Features of Android Studio

3.3 App Workflow

3.4 Android Virtual Devices (AVD)

3.5 Using Hardware Device to test Application

3.6 Android Studio IDE Components

3.7 Android Studio Code Editor Customization

3.8 Coding Best Practices

3.9 Let us sum up

3.10 Check your Progress: Possible Answers

3.11 Further Reading

3.12 Assignment

3.13 Activities

3.0 Learning Objectives

After studying this unit student should be able to:

 List features of Android Studio

 Understand App Workflow

 Define Android Virtual Devices (AVD)

 Use Hardware Device to test an Application

 Use Android Studio IDE Components

 Customize the Android Studio Code Editor

 Learn Coding Best Practices

3.1 Introduction

Android Studio is the official Integrated Development Environment (IDE) for Android

app development. Android Studio offers many features that enhance your

productivity when building Android apps. In this unit we will explore in great details

about Android Studio.

3.2 Features of Android Studio

Android Studio has following salient features for android application development:

Intelligent code editor: Android Studio provides an intelligent code editor capable

of advanced code completion, refactoring, and code analysis. The powerful code

editor helps you be a more productive Android app developer.

Project Wizard: New project wizards make it easier than ever to start a new project.

Start projects using template code for patterns such as navigation drawer and view

pagers, and even import Google code samples from GitHub.

Multi-screen app development: Build apps for Android phones, tablets, Android

Wear, Android TV, Android Auto and Google Glass. With the new Android Project

View and module support in Android Studio, it's easier to manage app projects and

resources.

Virtual devices for all shapes and sizes: Android Studio comes pre-configured

with an optimized emulator image. The updated and streamlined Virtual Device

Manager provides pre-defined device profiles for common Android devices.

Android builds evolved, with Gradle: Create multiple APKs for your Android app

with different features using the same project.

To develop apps for Android, you use a set of tools that are included in Android

Studio. In addition to using the tools from Android Studio, you can also access most

of the SDK tools from the command line.

3.3 App Workflow

The basic steps for developing applications encompass four development phases,

which include:

 Environment Setup: During this phase you install and set up your development

environment. You also create Android Virtual Devices (AVDs) and connect

hardware devices on which you can install your applications.

 Project Setup and Development: During this phase you set up and develop

your Android Studio project and application modules, which contain all of the

source code and resource files for your application.

 Building, Debugging and Testing: During this phase you build your project into

a debuggable .apk package(s) that you can install and run on the emulator or an

Android-powered device. Android Studio uses a build system based on Gradle

that provides flexibility, customized build variants, dependency resolution, and

much more. If you're using another IDE, you can build your project using Gradle

and install it on a device using adb.

Next, with Android Studio you debug your application using the Android Debug

Monitor and device log messages along with the IntelliJ IDEA intelligent coding

features. You can also use a JDWP-compliant debugger along with the

debugging and logging tools that are provided with the Android SDK.

Last, you test your application using various Android SDK testing tools.

 Publishing: During this phase you configure and build your application for

release and distribute your application to users.

3.4 Android Virtual Devices (AVD)

An Android Virtual Device (AVD) is an emulator configuration that lets you model an

actual device by defining hardware and software options to be emulated by the

Android Emulator. An AVD consists of:

A hardware profile: Defines the hardware features of the virtual device. For

example, you can define whether the device has a camera, whether it uses a

physical QWERTY keyboard or a dialing pad, how much memory it has, and so on.

A mapping to a system image: You can define what version of the Android

platform will run on the virtual device. You can choose a version of the standard

Android platform or the system image packaged with an SDK add-on.

Other options: You can specify the emulator skin you want to use with the AVD,

which lets you control the screen dimensions, appearance, and so on. You can also

specify the emulated SD card to use with the AVD.

A dedicated storage area on your development machine: the device's user data

(installed applications, settings, and so on) and emulated SD card are stored in this

area.

The easiest way to create an AVD is to use the graphical AVD Manager. You can

also start the AVD Manager from the command line by calling the android tool with

the avd options, from the <sdk>/tools/ directory.

You can also create AVDs on the command line by passing the android tool options.

You can create as many AVDs as you need, based on the types of device you want

to model. To thoroughly test your application, you should create an AVD for each

general device configuration (for example, different screen sizes and platform

versions) with which your application is compatible and test your application on each

one. Keep these points in mind when you are selecting a system image target for

your AVD:

 The API Level of the target is important, because your application will not be able

to run on a system image whose API Level is less than that required by your

application, as specified in the minSdkVersion attribute of the application's

manifest file.

 You should create at least one AVD that uses a target whose API Level is greater

than that required by your application, because it allows you to test the forward-

compatibility of your application. Forward-compatibility testing ensures that, when

users who have downloaded your application receive a system update, your

application will continue to function normally.

 If your application declares a uses-library element in its manifest file, the

application can only run on a system image in which that external library is

present. If you want to run your application on an emulator, create an AVD that

includes the required library. Usually, you must create such an AVD using an

Add-on component for the AVD's platform.

Check Your Progress -1

a) How may AVDs you will be able to be create in Android Studio?

(A) One (B) Two (C) Three (D) As many as you want

b) During _______ phase you build your project into a debuggable .apk package(s)

that you can install and run on the emulator or an Android-powered device.

(A) Environment Setup (B) Development (C) Building (D) Publishing

c) An AVD consist of

(A) Hardware Profile (B) A mapping to a System Image

(C) Dedicated Storage Area (D) All of these

3.5 Using Hardware Device to test Application

When building a mobile application, it's important that you always test your

application on a real device before releasing it to users.

You can use any Android-powered device as an environment for running, debugging,

and testing your applications. The tools included in the SDK make it easy to install

and run your application on the device each time you compile. You can install your

application on the device directly from Android Studio or from the command line with

ADB.

3.6 Android Studio IDE Components

Android Studio has just created an application project and opened the main window

as shown below.

Figure-24: Android studio IDE

Project Tool Window

The newly created project and references to associated files are listed in the Project

tool window located on the left hand side of the main project window. The user

interface design for our activity is stored in a file named activity_hello_world.xml

which can be located using the Project tool window as shown below in Figure

Figure-25: Android studio IDE

Double click on the file to load it into the User Interface Designer tool which will

appear in the center panel of the Android Studio main window as shown below:

Designer Window

This is where you design your user interface. In the top of the Designer window is a

menu set to Nexus 4 device which is shown in the Designer panel.

To change the orientation of the device representation between landscape and

portrait simply use the drop down menu immediately to the right of the device

selection menu showing the icon .

Figure-26: Designer Window

Pellet

On left hand side of the panel is a palette containing different categories of user

interface components that may be used to construct a user interface, such as

buttons, labels and text fields. Android supports a variety of different layouts that

provide different levels of control over how visual user interface components are

positioned and managed on the screen.

Component Tree Panel

Component Tree panel is by default located in the upper right hand corner of the

Designer panel and is shown in Figure and shows layout used for user interface.

Figure-27: Component Tree Panel

Property Window

Property Window allows setting different properties of selected component.

Figure-28: Property Window

XML Editing Panel

We can modify user interface by modifying the activity_hello_world.xml using UI

Designer tool but we can also modify design by editing XML file also. At the bottom

of the Designer panel are two tabs labeled Design and Text respectively. To switch

to the XML view simply select the Text tab as shown in Figure. At the right hand side

of the XML editing panel is the Preview panel and shows the current visual state of

the layout.

Figure-29: XML Editing Panel

Previewing the Layout

In above figure layout has been previewed of the Nexus 4 device. The layout can be

tested for other devices by making selections from the device menu in the toolbar

across the top edge of the Designer panel. We can also preview screen size for all

currently configured device as shown in figure.

Check Your Progress 2

a) Component Tree panel is by default located in the upper left hand corner of the

Designer panel (True/False)

b) Property Window allows setting different properties of selected component.

(True/False)

Figure-30: Previewing the Layout

3.7 Android Studio Code Editor Customization

We customize code editor for font, displaying quick help when mouse moves over

code.

Font Customization:

From File menu select settings option following dialog will open.

Figure-31

Select Colors & Fonts option. In scheme Default scheme is displayed. Click

 Button and give new name as to scheme. Now select font

option as shown below and customize font as per your requirement.

Figure-32

Show quick doc on mouse move

In android studio code editor, when you move your mouse over a method, class or

interface, a documentation window would appear with a description of that

programming element. This feature is by default disabled in android studio. This

feature can be enabled in android studio as follows.

From file menu select settings option following dialog box appears. Select General

option from list and scroll down to checkbox highlighted with red rectangle in below

figure. Then press OK.

Figure-33

3.8 Coding Best Practices

Following are some of the code editing practices you should follow when creating

Android Studio apps.

Code Practice Description
Alt + Enter key For quick fixes to coding errors such as missing imports, variable

assignments, missing references, etc. You can use Alt + Enter key

to fix errors for the most probable solution.

Ctrl + D The Ctrl + D key are used for quickly duplicating code lines or

fragments. Instead of copy and paste, you can select the desired

line or fragment and enter this key.

Navigate menu Use the Navigate menu to jump directly to the class of a method or

field name without having to search through individual classes.

Code folding This allows you to selectively hide and display sections of the code

for readability. For example, resource expressions or code for a

nested class can be folded or hidden in to one line to make the

outer class structure easier to read. The inner class can be later

expanded for updates.

Image and
color preview

When referencing images and icons in your code, a preview of the

image or icon appears (in actual size at different densities) in the

code margin to help you verify the image or icon reference.

Pressing F1 with the preview image or icon selected displays

resource asset details, such as the dp settings.

Quick
documentation

You can inspect theme attributes using View > Quick

Documentation (Ctrl+Q), If you invoke View > Quick

Documentation on the theme attribute

?android:textAppearanceLarge, you will see the theme inheritance

hierarchy and resolved values for the various attributes that are

pulled in.

Table-2

The following tables list keyboard shortcuts for common operations.

Action Android Studio Key Command

Command look-up

(autocomplete command name)

CTRL + SHIFT + A

Project quick fix ALT + ENTER

Reformat code CTRL + ALT + L (Win)
OPTION + CMD + L (Mac)

Show docs for selected API CTRL + Q (Win)
F1 (Mac)

Show parameters for selected method CTRL + P

Generate method ALT + Insert (Win)
CMD + N (Mac)

Jump to source F4 (Win)
CMD + down-arrow (Mac)

Delete line CTRL + Y (Win)
CMD + Backspace (Mac)

Search by symbol name CTRL + ALT + SHIFT + N (Win)
OPTION + CMD + O (Mac)

Table-3

Following table lists project and editor key commands:

Action Android Studio Key Command

Build CTRL + F9 (Win), CMD + F9 (Mac)

Build and run SHIFT + F10 (Win), CTRL + R (Mac)

Toggle project visibility ALT + 1 (Win), CMD + 1 (Mac)

Navigate open tabs ALT + left-arrow; ALT + right-arrow (Win)
CTRL + left-arrow; CTRL + right-arrow (Mac)

Table-4

You can change these shortcuts from file menu settings option as shown below.

Check your Progress 3

a) The short cut key to access quick documentation is F1 (True/False)

b) The Ctrl+D are used for quickly duplicating code lines or fragments. (True/False)

c) You can use Ctrl+Enter to fix errors for the most probable solution (True/False)

d) We can customize the code editor for font, displaying quick help when mouse

moves over code. (True/False)

Figure-34

3.9 Let us sum up

Before starting the development of Android based applications, the major step is to

set up a suitable development environment. This consists of the Java Development

Kit (JDK), Android SDKs, and Android Studio IDE. In this chapter, we have covered

the steps necessary to install these packages on Windows operating system and

how to create Hello World application project using Android Studio. We have also

discussed android studio IDE component and project structure and how to do code

editor customization and discuss some of the best practices for coding.

3.10 Check your Progress: Possible Answers

1-a) D 1-b) C 1-c) D

2-a) False 2-b) True

3-a) False 3-b) True 3-c) False 3-d) True

3.11 Further Reading

 https://developer.android.com/studio/intro

3.12 Assignment

 Explain different components of Android Studio

3.13 Activities

 Create two AVDs with different configuration in Android Studio

 Customize Android Studio for font and show quick doc on mouse move

Block-2
Android Application
Development Basics

Unit-1: Building a sample
Android application using

Android Studio

1.0. Learning Objectives

1.1. Introduction

1.2. Building a sample Android application using Android Studio

1.3. Creating a new Android Project

1.4. Defining the Project and SDK Settings

1.5. Creating Activity

1.6. Running a HelloWorld Application

1.7. Let us sum up

1.8. Check your Progress: Possible Answers

1.9. Further Reading

1.10. Assignment

1.11. Activities

1

1.0 Learning Objectives

After studying this unit student should be able to:

 Create a new android studio project

 List the steps for creating an Android Application

 Configure project and SDK setting for Android Application

 Create an activity

 Run an Android Application

1.1 Introduction

With all the tools and the SDK downloaded and installed, it is now time to start your

engine! As in all programming books, the first example uses the ubiquitous Hello

World application. This will enable you to have a detailed look at the various

components that make up an Android project.

 Generally a program is defined in

terms of functionality and data, and an Android application is not an exception. It

performs processing, show information on the screen, and takes data from a variety

of sources.

To Develop Android applications for mobile devices with resource constraint requires

a systematic understanding of the application lifecycle. This unit introduces you with

the most important components of Android applications and provides you with a

more detailed understanding of how to create and run an Android application.

1.2 Building a sample Android application using Android
Studio

Before developing sophisticated Android application, it is necessary to check

whether all of the required development packages are installed and functioning

correctly. The simple way to realize this aim is to create an Android application and

compile and run it. This topic will explain how to create a simple Android application

project using Android Studio. Once the project has been created, a later chapter will

explore the use of the Android emulator environment to perform a test run of the

application.

1.3 Creating a New Android Project

The first step in the application development process is to create a new project within

Figure-35

To create the new project, simply click on the Start a new Android Studio project

option to display the first screen of the New Project wizard as shown in Figure:

Figure-36

In the New Project window, set the Application name field to HelloWorld. The

application name is the name by which the application will be referenced and

identified within Android Studio and is also the name that will be used when the

completed application goes on sale in the Google Play store.

The Package Name is used to uniquely identify the application within the Android

application ecosystem. It should be based on the reversed URL of your domain

name followed by the name of the application. For example, if your domain is

www.baou.edu, and the application has been named HelloWorld, then the package

name might be specified as follows:

edu.baou.HelloWorld

The Project location setting will default to a location in the folder named

AndroidStudioProjects located in your home directory and may be changed by

clicking on the button to the right of the text field containing the current path setting.

Click Next to proceed.

1.4 Defining the Project and SDK Settings

On the form factors screen, enable the Phone and Tablet option and set the

minimum SDK setting to API 8: Android 2.2 (Froyo). The reason for selecting an

older SDK release is that this ensures that the finished application will be able to run

on the widest possible range of Android devices. The higher the minimum SDK

selection, the more the application will be restricted to newer Android devices.

Figure-37
Click Next to proceed.

1.5 Creating Activity

The next step is to define the type of initial activity that is to be created for the

application. A range of different activity types is available when developing Android

applications. For sack of simplicity we select the option to create a Blank Activity and

Click Next to proceed.

Figure-38

On the final screen name the activity and title HelloWorldActivity. The activity will

consist of a single user interface screen layout which, for the purposes of this

example, should be named activity_hello_world as shown in Figure and with a menu

resource named menu_hello_world:

Figure-39

Finally, click on Finish to initiate the project creation process.

1.6 Running a HelloWorld Application

1.

Figure-40

2. Select Launch emulator option and select your Android virtual device and Press

OK.

3. The Android emulator starts up, which might take a moment

4. Press the Menu button to unlock the emulator.

5. The application starts, as shown in Figure below.

Figure-41

6. Click the Home button in the Emulator to end the application.

7. Pull up the Application Drawer to see installed applications. Your screen looks

something

8. like Figure shown below

Figure-42

Recall that earlier you created a few AVDs using the AVD Manager. So which one

will be launched by Android Studio when you run an Android application? Android

studio will check the target that you specified (when you created a new project),

comparing it against the list of AVDs that you have created. The first one that

matches will be launched to run your application.

If you have more than one suitable AVD running prior to debugging the application,

Android Studio will display the Android Device Chooser window, which enables you

to select the desired emulator/device to debug the application.

Check your progress-1

a) What is reason for selecting an older version SDK for android application?

b) What is short cut key for running an application?

c) The Package Name is used to uniquely identify the application within the Android

application ecosystem (True/False)

d) __________ should be based on the reversed URL of your domain name

followed by the name of the application.

s sum up

This chapter has provided a brief overview of Android Application Development

steps, and highlighted some of its capabilities. If you have followed the sections on

downloading the tools and SDK, you should now have a working system one that is

the Hello World application. In the next chapter, you will learn about the concepts of

A Framework for a Well-Behaved Application in Android.

1.8 Check your Progress: Possible Answers

1-a) The reason for selecting an older SDK release is that this ensures that the

finished application will be able to run on the widest possible range of Android

devices

1-b) Shift+F10

1-c) True

1-d) Package Name

1.9 Further Reading

 https://developer.android.com/training/basics/firstapp

1.10 Assignment

 Write steps for creating an Android Application

1.11 Activities

 Create HelloWorld Application in Android Studio

Unit-2: Android Project
Structure and Basics

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 Android Project Structure

2.3 Android Project Files

2.4 Android Application Modules

2.5 Types of Modules

2.6 Project structure settings

2.7 Anatomy of an Android Application

2.8 Important Android Terminology

2.9 Basic Android API Packages

2.10 Android Advanced API Packages

2.11 Let us sum up

2.12 Check your Progress: Possible Answers

2.13 Further Reading

2.14 Assignment

2

2.0 Learning Objectives

After studying this unit student should be able to:

 Know the structure of Android Project

 List the various types of Android Project files

 Define Android application modules

 Enumerate the types of modules

 Modify project structure setting

 Understand anatomy of an android application

 Know basic and advanced Android API

2.1 Introduction

The Android build system is organized around a specific directory tree structure for

the Android project, similar to the any Java project. The project prepares the actual

application that will run on the device or emulator. When you create a new Android

 which is discussed in sub

sequent sections.

When you create an Android project as discussed in previous unit, you provide the

fully-qualified vity for the application (e.g.,

edu.baou.HelloWorld).

tree in place, plus a stub Activity subclass representing your main activity (e.g.,

src/edu/baou/HelloWorld.java). You can modify this file and add others to the src/

tree as per requirement implement your application.

When you compile the project for first time

directory, the Android build chain will create R.java. This contains a number of

constants tied to the various resources you placed out in the res/ directory tree. You

should not modify R.java yourself, letting the Android tools handle it for you. You will

see throughout many of the samples where we reference things in R.java (e.g.,

2.2 Android Project Structure

An Android project contains everything that defines your Android app. The SDK tools

require that your projects follow a specific structure so it can compile and package

your application correctly. Android Studio takes care of all this for you.

A module is the first level of control within a project that encapsulates specific types

of source code files and resources. There are several types of modules with a

project:

Module Description

Android

Application

Modules

It contain source code, resource files, and application level

settings, such as the module-level build file, resource files, and

Android Manifest file.

Test Modules It contains code to test your application projects and is built into

test applications that run on a device.

Library

Modules

It contains shareable Android source code and resources that you

can reference in Android projects. This is useful when you have

common code that you want to reuse.

App Engine

Modules

They are App Engine java Servlet Module for backend

development, App Engine java Endpoints Module to convert

server-side Java code annotations into RESTful backend APIs,

and App Engine Backend with Google Cloud Messaging to send

push notifications from your server to your Android devices.

Table-4

When you use the Android development tools to create a new project and the

module, the essential files and folders will be created for you. As your application

grows in complexity, you might require new kinds of resources, directories, and files.

2.3 Android Project Files

Android Studio project files and settings provide project-wide settings that apply

across all modules in the project.

Figure-43

File Meaning

.idea Directory for IntelliJ IDEA settings.

App Application module directories and files.

Build This directory stores the build output for all project modules.

Gradle Contains the gradler-wrapper files.

.gitignore Specifies the untracked files that Git should ignore.

build.gradle Customizable properties for the build system.

gradle.properties Project-wide Gradle settings.

gradlew Gradle startup script for Unix.

gradlew.bat Gradle startup script for Windows.

local.properties Customizable computer-specific properties for the build system,

such as the path to the SDK installation.

.iml Module file created by the IntelliJ IDEA to store module

information.

settings.gradle Specifies the sub-projects to build.

Table-5

Check your progress-1

a) _________contains shareable Android source code and resources that you can

reference in Android projects.

b) _________ contain source code, resource files, and application level settings,

such as the module-level build file, resource files, and Android Manifest file.

c)

directory, the Android build chain will create _________

2.4 Android Application Modules

Android Application Modules contain things such as application source code and

resource files. Most code and resource files are generated for you by default, while

others should be created if required. The following directories and files comprise an

Android application module:

Figure-44

File Meaning

build/ Contains build folders for the specified build variants. Stored in the

File Meaning

 main application module.

libs/ Contains private libraries. Stored in the main application module.

src/ Contains your stub Activity file, which is stored at

src/main/java/<ActivityName>.java. All other source code files

(such as .java or .aidl files) go here as well.

androidTest/ Contains the instrumentation tests.

main/jni/ Contains native code using the Java Native Interface (JNI).

main/gen/ Contains the Java files generated by Android Studio, such as your

R.java file and interfaces created from AIDL files.

main/assets/ This is empty. You can use it to store raw asset files. For example,

this is a good location for textures and game data. Files that you

save here are compiled into an .apk file as-is, and the original

filename is preserved. You can navigate this directory and read

files as a stream of bytes using the AssetManager.

main/res/ Contains application resources, such as drawable files, layout files,

and string values in the following directories.

anim/ For XML files that are compiled into animation objects.

color/ For XML files that describe colors.

drawable/ For bitmap files (PNG, JPEG, or GIF), 9-Patch image files, and

XML files that describe Drawable shapes or Drawable objects that

contain multiple states (normal, pressed, or focused).

mipmap/ For app launcher icons. The Android system retains the resources

in this folder (and density-specific folders such as mipmap-

xxxhdpi) regardless of the screen resolution of the device where

your app is installed. This behavior allows launcher apps to pick

the best resolution icon for your app to display on the home

screen.

layout/

XML files that are compiled into screen layouts (or part of a

screen).

menu/ For XML files that define application menus.

raw/ For arbitrary raw asset files. Saving asset files here is essentially

File Meaning

the same as saving them in the assets/ directory. The only

difference is how you access them. These files are processed by

aapt and must be referenced from the application using a resource

identifier in the R class. For example, this is a good place for

media, such as MP3 or Ogg files.

values/ For XML files that define resources by XML element type. Unlike

other resources in the res/ directory, resources written to XML files

in this folder are not referenced by the file name. Instead, the XML

element type controls how the resources defined within the XML

files are placed into the R class.

xml/ For miscellaneous XML files that configure application

components. For example, an XML file that defines a

PreferenceScreen, AppWidgetProviderInfo, or Searchability

Metadata.

AndroidManife

st.xml

The control file that describes the nature of the application and

each of its components. For instance, it describes: certain qualities

about the activities, services, intent receivers, and content

providers; what permissions are requested; what external libraries

are needed; what device features are required, what API Levels

are supported or required; and others.

.gitignore/ Specifies the untracked files ignored by git.

app.iml/ IntelliJ IDEA module

build.gradle Customizable properties for the build system. You can edit this file

to override default build settings used by the manifest file and also

set the location of your keystore and key alias so that the build

tools can sign your application when building in release mode. This

file is integral to the project, so maintain it in a source revision

control system.

proguard-

rules.pro

ProGuard settings file.

Table-6

2.5 Types of Modules

Android Studio offers a few distinct types of module:

Android app module: It provides a container for your app's source code, resource

files, and app level settings such as the module-level build file and Android Manifest

file. When you create a new project, the default module name is "app". In the Create

New Module window, Android Studio offers the following types of app modules:

 Phone & Tablet Module

 Wear OS Module

 Android TV Module

 Glass Module

They each provide essential files and some code templates that are appropriate for

the corresponding app or device type.

Dynamic feature module: It denotes a modularized feature of your app that can

take advantage of Google Play's Dynamic Delivery. For example, with dynamic

feature modules, you can provide your users with certain features of your app on-

demand or as instant experiences through Google Play Instant.

Library module: It provides a container for your reusable code, which you can use

as a dependency in other app modules or import into other projects. Structurally, a

library module is the same as an app module, but when built, it creates a code

archive file instead of an APK, so it can't be installed on a device.

In the Create New Module window, Android Studio offers the following library

modules:

 Android Library: This type of library can hold all file types supported in an

Android project, including source code, resources, and manifest files. The

build result is an Android Archive file or AAR file that can be added as a

dependency for your Android app modules.

 Java Library: This type of library can contain only Java source files. The build

result is a Java Archive or JAR file that can be added as a dependency for

your Android app modules or other Java projects.

Google Cloud module: it provides a container for your Google Cloud back end

code. It has the required code and dependencies for a Java App Engine back end

that uses HTTP, Cloud Endpoints, and Cloud Messaging to connect to your app. You

can develop your back end to provide cloud services need by your app.

2.6 Project structure settings

To change various settings for your Android Studio project, open the project

structure dialog by clicking File Project Structure. It contains the following

sections:

 SDK Location: Sets the location of the JDK, Android SDK, and Android NDK

that your project uses.

 Project: Sets the version for Gradle and the Android plugin for Gradle, and

the repository location name.

 Developer Services: Contains settings for Android Studio add-in components

from Google or other third parties. See Developer Services, below.

 Modules: Allows you to edit module-specific build configurations, including

the target and minimum SDK, the app signature, and library dependencies.

2.7 Anatomy of an Android Application

Generally a program is defined in terms of functionality and data, and an Android

application is not an exception. It performs processing, show information on the

screen, and takes data from a variety of sources.

To Develop Android applications for mobile devices with resource constraint requires

a systematic understanding of the application lifecycle. Important terminology for

application building blocks terms are Context, Activity, and Intent. This section

introduces you with the most important components of Android applications and

provides you with a more detailed understanding of how Android applications

function and interact with one another.

2.8 Important Android Terminology

The followings are the important terminology used in Android application

development.

 Context: The context is the essential command for an Android application. It

stores the current state of the application/object and all application related

functionality can be accessed through the context. Typically you call it to get

information regarding another part of your program such as an activity, package,

and application.

 Activity: It is core to any Android application. An Android application is a

collection of tasks, each of which is called an Activity. Each Activity within an

application has an exclusive task or purpose. Typically, applications have one or

more activities, and the main objective of an activity is to interact with the user.

 Intent: Intent is a messaging object which can be used to request an action from

another app component. Each request is packaged as Intent. You can think of

each such request as a message stating intent to do something. Intent mainly

used for three tasks 1) to start an activity, 2) to start a service and 3) to deliver a

broadcast.

 Service: Tasks that do not require user interaction can be encapsulated in a

service. A service is most useful when the operations are lengthy (offloading

time-consuming processing) or need to be done regularly (such as checking a

server for new mail).

2.9 Basic Android API Packages

Application program interface (API) is a set of routines, protocols, and tools for

building software applications. An API specifies how software components should

interact and APIs are used when programming graphical user interface (GUI)

components. Android offers a number of APIs for developing your applications. The

following list of core APIs

devices will offer support for at least these APIs:

API Package Use

android.util Provides common utility methods such as date/time

manipulation, base64 encoders and decoders, string and

number conversion methods, and XML utilities.

android.os Provides basic operating system services, message passing,

and inter-process communication on the device.

android.graphics Provides low level graphics tools such as canvases, color filters,

points, and rectangles that let you handle drawing to the screen

directly.

android.text Provides classes used to render or track text and text spans on

the screen.

android.database Contains classes to explore data returned through a content

provider.

android.content Contains classes for accessing and publishing data on a device.

android.view Provides classes that expose basic user interface classes that

handle screen layout and interaction with the user.

android.widget The widget package contains (mostly visual) UI elements to use

on your Application screen.

android.app Contains high-level classes encapsulating the overall Android

application model.

android.provider Provides convenience classes to access the content providers

supplied by Android.

android.webkit Provides tools for browsing the web.

Table-7

2.10 Advanced Android API Packages

The core libraries provide all the functionality you need to start creating applications

for Android,

that offer the really exciting functionality.

Android hopes to target a wide range of mobile hardware, so be aware that the

suitability and implementation of the following APIs will vary depending on the device

upon which they are implemented.

API Package Use

android.location Contains the framework API classes that define Android

location-based and related services.

android.media Provides classes that manage various media interfaces in

audio and video.

android.opengl Provides an OpenGL ES static interface and utilities.

android.hardware Provides support for hardware features, such as the camera

and other sensors.

android.bluetooth Provides classes that manage Bluetooth functionality, such as

scanning for devices, connecting with devices, and managing

data transfer between devices. The Bluetooth API supports

both "Classic Bluetooth" and Bluetooth Low Energy.

android.net.wifi Provides classes to manage Wi-Fi functionality on the device.

android.telephony Provides APIs for monitoring the basic phone information, such

as the network type and connection state, plus utilities for

manipulating phone number strings.

Table-8

Check your progress-2

a) All application related functionality can be accessed through the ________

b) _____ Package provide classes that manage various media interfaces in audio

and video.

c) Tasks that do not require user interaction can be encapsulated in a _______.

d) Application Program Interface is a set of routines, protocols, and tools for building

software applications (True/False)

e) Service is a messaging object which can be used to request an action from

another app component. (True/False)

f) An Android application is a collection of tasks, each of which is called an Activity

(True/False)

2.11 Let us sum up

In this unit you have lean about the structure of Android Project, various types of

Android Project files, Android application modules and understand anatomy of an

android application. You have also learnt about basic and advanced Application

Program Interface.

2.12 Check your Progress: Possible Answers

1-a) Library Modules 1-b) Android Application Modules 1-c) R.java

2-a) Context 2-b) android.media 2-c) Service

2-d) True 2-e) False 2-f) True

2.13 Further Reading

 https://developer.android.com/studio/projects

2.14 Assignment

 Explain Android Project Structure

 Write detailed note on basic and advanced API packages

 Define: Activity, Service, Context, Intent

Unit-3: Android Manifest File
and its common settings

Unit Structure

3.0 Learning Objectives

1.3 Introduction

1.4 Components of Manifest file

1.5 Package name and application ID

1.6 App components

1.7 Permissions

1.8 Device compatibility

1.9 File conventions

1.10 Manifest elements reference

1.11 Example of Manifest file

1.12 Let us sum up

1.13 Check your Progress: Possible Answers

1.14 Further Reading

1.15 Assignment

1.16 Activities

3

3.0 Learning Objectives

After studying this unit students should be able to

 What is AndroidManifest.xml file

 Understand various components of Manifest file

 Specify package, activity, permission, device configuration in Manifest file

 Understand File convention used in Manifest file

 Modify the default Manifest file as per requirement

3.1 Introduction

Each and every android app project must have an AndroidManifest.xml file in the

root of your project. The manifest file describes important information about your

app. The manifest file declares the following:

 The app's package name

 The components of the app such as activities, services, broadcast receivers, and

content providers.

 Which device configurations it can handle

 Intent filters that describe how the component can be started.

 Permissions required by the app

 The hardware and software features the app requires

Android Studio generally builds the manifest file for you when you create a project.

For a simple application with a single activity and nothing else, the auto-generated

manifest will work fine with little or no modifications.

3.2 Component of Manifest file

Android manifest file is global application description file which defines your

 This topic describes some

of the most important characteristics of your app which is stored in the manifest file.

3.3 Package name and application ID

The manifest file's root element requires an attribute for your app's package name,

For example, the following snippet shows the root <manifest> element with the

package name "in.edu.baou.databasedemo":

<? xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="in.edu.baou.databasedemo"

 android:versionCode="1"

 android:versionName="1.0" >

 ...

</manifest>

While building your app into the final APK, the Android build tools use the package

attribute for two things:

It applies this name as the namespace for your app's generated R.java class. With

the above manifest, the R class is created at in.edu.baou.databasedemo.R.

Android manifest file uses package this name to resolve any relative class names

that are declared in the manifest file.

If, an activity declared as <activity android:name=".MainActivity"> is resolved to be

in.edu.baou.databasedemo.MainActivity.

You should keep in mind that once the APK is compiled, the package attribute also

represents your app's universally unique application ID. After the build tools perform

the above tasks based on the package name, they replace the package value with

the value given to the applicationId property in your project's build.gradle file.

3.4 App Components

For each app component that you create in your app, you must declare a

corresponding XML element in the manifest file so that the system can start it.

For each subclass of Activity, we have <activity>

For each subclass of Service, we have <service>

For each subclass of BroadcastReceiver we have <receiver>.

For each subclass of ContentProvider, we have <provider>

The name of your subclass must be specified with the name attribute, using the full

package designation, e.g. an Activity subclass can be declared as follows

<manifest package=" in.edu.baou.databasedemo" ... >

 <application ... >

 <activity android:name=".SQLiteDBActivity " ... >

 ...

 </activity>

 </application>

</manifest>

In above example, the activity name is resolved to

"in.edu.baou.databasedemo.SQLiteDBActivity "

App activities, services, and broadcast receivers are activated by intents. It is an

asynchronous messaging mechanism to match task requests with the appropriate

Activity.

When an app issues intent to the system, the system locates an app component that

can handle the intent based on intent filter declarations in each app's manifest file.

The system launches an instance of the matching component and passes the Intent

object to that component. If more than one app can handle the intent, then the user

can select which app to use. An intent filters is defined with the <intent-filter>

element as shown below.

<activity

 android:name=".SQLiteDBActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

A number of manifest elements have icon and label attributes for displaying a small

icon and a text label, respectively, to users for the corresponding app component.

For example, the icon and label that are set in the <application> element are the

default icon and label for each of the app's components.

The icon and label that are set in a component's <intent-filter> are shown to the user

whenever that component is presented as an option to fulfill intent.

3.5 Permissions

Android apps must request permission to access personnel user data such as

contacts, SMS, camera, files, internet etc. Each permission is identified by a unique

label. For example, an app that needs to send and receive SMS messages must

have the following line in the manifest:

<manifest ... >

 <uses-permission android:name="android.permission.SEND_SMS" />

 <uses-permission android:name="android.permission.RECEIVE_SMS" />

 ...

</manifest>

From API level 23, the user can approve or reject some app permissions at runtime.

You must declare all permission requests with a <uses-permission> element in the

manifest. If the permission is granted, the app is able to use the protected features. If

not, its attempts to access those features fail. A new permission is declared with the

<permission> element.

3.6 Device Compatibility

In manifest file is you can declare what types of hardware or software features your

app requires and types of devices with which your app is compatible. be

installed on devices that don't provide the features or system version that your app

requires. The following table shows the most common tags for specifying device

compatibility.

Tag Description

<uses-feature> It allows you to declare hardware and software features your app
needs

Example

<manifest ... >

 <uses-feature

 android:name="android.hardware.sensor.compass"

 android:required="true" />

 ...

</manifest>

<uses-sdk> It indicates the minimum version with which your app is compatible
element are overridden by corresponding properties in
the build.gradle file.

<manifest>

 <uses-sdk android:minSdkVersion="5" />

 ...

</manifest>

Table-9

3.7 File conventions

Following are the conventions and rules that generally apply to all elements and

attributes in the manifest file.

 Only the <manifest> and <application> elements are required. They each must

occur only once, other elements can occur zero or more times.

 Elements at the same level are generally not ordered hence elements can be

placed in any order

 All attributes are optional but attributes must be specified so that an element can

serve its purpose. If attributes are not provided then it indicates the default value

 Except for some attributes of the root <manifest> element, all attribute names

begin with an android: prefix.

3.8 Manifest elements reference

The following table provides links to reference documents for all valid elements in

the AndroidManifest.xml file.

Element Description

<action> It is used to add an action to an intent filter.

<activity> It is used to declare an activity component.

<activity-alias> It is used to declare an alias for an activity.

<application> It is used to declare the application.

<category> It is used to add category name to an intent filter.

<compatible-screens> It is used to specifies each screen configuration with which
the application is compatible.

<data> Adds a data specification to an intent filter.

<grant-uri-permission> Specifies the subsets of app data that the parent content
provider has permission to access.

<instrumentation> Declares an Instrumentation class that enables you to
monitor an application's interaction with the system.

<intent-filter> Specifies the types of intents that an activity, service, or
broadcast receiver can respond to.

<manifest> The root element of the AndroidManifest.xml file.

<meta-data> A name-value pair for an item of additional, arbitrary data
that can be supplied to the parent component.

<path-permission> Defines the path and required permissions for a specific
subset of data within a content provider.

<permission> Declares a security permission that can be used to limit
access to specific components or features of this or other
applications.

<permission-group> Declares a name for a logical grouping of related
permissions.

<permission-tree> Declares the base name for a tree of permissions.

<provider> Declares a content provider component.

<receiver> Declares a broadcast receiver component.

<service> Declares a service component.

<supports-gl-texture> Declares a single GL texture compression format that the
app supports.

<supports-screens> Declares the screen sizes your app supports and enables
screen compatibility mode for screens larger than what
your app supports.

<uses-configuration> Indicates specific input features the application requires.

<uses-feature> Declares a single hardware or software feature that is used
by the application.

<uses-library> Specifies a shared library that the application must be
linked against.

<uses-permission> Specifies a system permission that the user must grant in
order for the app to operate correctly.

<uses-sdk> Lets you express an application's compatibility with one or
more versions of the Android platform, by means of an API
level integer.

Table-10

3.9 Example of Manifest file

The XML below is a simple example AndroidManifest.xml that declares two activities

for the app.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="in.edu.baou.listnameactivity"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="22" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="in.edu.baou.listnameactivity.NameDisplayActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="in.edu.baou.listnameactivity.MultipleChoiceActivity"

 android:label="@string/title_activity_multiple_choice" >

 </activity>

 </application>

</manifest>

Check your progress-1

a) Android Studio generally builds the manifest file for you when you create a

project. (True/False)

b) <uses-feature> indicates specific input features the application requires.

(True/False)

c) _________ declares a security permission that can be used to limit access to

specific components or features of this or other applications.

d) In manifest file is you can declare __________ features your app requires

(i) Hardware feature (ii) Software feature

(iii) Device compatibility (iv) All of these

e) In Manifest file ___________ tag is compulsory

(i) <manifest> (ii) <application>

(iii) Both (i) and (ii) (iv) None of these

3.10 Let us sum up

The AndroidManifest.xml file contains important information regarding package, and

components of the application such as activities, services, broadcast receivers,

content providers etc. It performs some other tasks such as to protect the application

to access any protected parts by providing the permissions. It also declares the

android api that the application is going to use. It lists the instrumentation classes.

The instrumentation classes provide profiling and other information. This information

is removed just before the application is published etc. This is the required xml file

for all the android application and located inside the root directory.

Each Android application has a specially formatted XML file called

Some information you must define within the Android manifest file includes the

 name and version information, what application components it contains,

which device configurations it requires, and what permissions it needs to run.The

Android manifest file is used by the Android operating system to install, upgrade, and

run the application package.

3.11 Check your Progress: Possible Answers

1-a) True

1-b) False

1-c) <permission>

1-d) (iv) All of these

1-e) (iii) Both (i) and (ii)

3.12 Further Reading

 https://developer.android.com/guide/topics/manifest/manifest-intro

 http://www.androiddocs.com/guide/topics/manifest/manifest-intro.html

 https://www.javatpoint.com/AndroidManifest-xml-file-in-android

3.13 Assignment

 Write detailed note on AndroidManifest.xml file

 How can we specify permission in Android Manifest file?

 Explain with example how can we specify device compatibility in Android

Manifest file.

3.14 Activities

 Create Android Studio Project and study the default AndroidManifest.xml file

created for you and try to modified as per your requirement

Block-3
Android Application Design

Essentials

Unit-1: Activities

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 What is activity?

2.4 Configuring the AndroidManifest.xml file

2.5 Life Cycle of an Activity

2.6 Understanding Life Cycle of an Activity

2.7 Context

2.8 Activity Transition

2.9 Let us sum up

2.10 Check your Progress: Possible Answers

2.11 Further Reading

2.12 Assignment

2.13 Activities

1

1.0 Learning Objectives

After studying this unit, the students will be able to

 Understand the activity and life cycle of an activity

 Configure activity in AndroidManifest.xml file

 Know activity transition

1.1 Introduction

Generally a program is defined in terms of functionality and data, and an Android

application is not an exception. It performs processing, show information on the

screen, and takes data from a variety of sources.

To Develop Android applications for mobile devices with resource constraint requires

a systematic understanding of the application lifecycle. Important terminology for

application building blocks terms are Context, Activity, and Intent. This unit

introduces you with the most important components of Android applications and

provides you with a more detailed understanding of how Android applications

function and interact with one another.

The Activity class is a crucial component of an Android app, and the way activities

are launched and put together is a fundamental part of the platform's application

model. Unlike programming paradigms in which apps are launched with a main()

method, the Android system initiates code in an Activity instance by invoking specific

callback methods that correspond to specific stages of its lifecycle.

This document introduces the concept of activities, and then provides some

lightweight guidance about how to work with them. For additional information about

best practices in architecting your app, see Guide to App Architecture.

1.2 What is activity?

The mobile-app experience differs from its desktop counterpart in that a user's

interaction with the app doesn't always begin in the same place. Instead, the user

journey often begins non-deterministically. For instance, if you open an email app

from your home screen, you might see a list of emails. By contrast, if you are using a

social media app that then launches your email app, you might go directly to the

email app's screen for composing an email.

The Activity class is designed to facilitate this paradigm. When one app invokes

another, the calling app invokes an activity in the other app, rather than the app as

an atomic whole. In this way, the activity serves as the entry point for an app's

interaction with the user. You implement an activity as a subclass of the Activity

class.

An activity provides the window in which the app draws its UI. This window typically

fills the screen, but may be smaller than the screen and float on top of other

windows. Generally, one activity implements one screen in an app. For instance, one

implements a Select Photo screen.

Most apps contain multiple screens, which means they comprise multiple activities.

Typically, one activity in an app is specified as the main activity, which is the first

screen to appear when the user launches the app. Each activity can then start

another activity in order to perform different actions. For example, the main activity in

a simple e-mail app may provide the screen that shows an e-mail inbox. From there,

the main activity might launch other activities that provide screens for tasks like

writing e-mails and opening individual e-mails.

Although activities work together to form a cohesive user experience in an app, each

activity is only loosely bound to the other activities; there are usually minimal

dependencies among the activities in an app. In fact, activities often start up

activities belonging to other apps. For example, a browser app might launch the

Share activity of a social-media app.

manifest, and you must manage activity lifecycles appropriately. The rest of this

document introduces these subjects.

1.3 Configuring the AndroidManifest.xml

For your app to be able to use activities, you must declare the activities, and certain

of their attributes, in the manifest.

Declare activities: To declare your activity, open your manifest file and add an

<activity> element as a child of the <application> element. For example:

<manifest ... >

 <application ... >

 <activity android:name=".ExampleActivity" />

 ...

 </application ... >

 ...

</manifest >

The only required attribute for this element is android:name, which specifies the

class name of the activity. You can also add attributes that define activity

characteristics such as label, icon, or UI theme.

Declare intent filters: Intent filters are a very powerful feature of the Android

platform. They provide the ability to launch an activity based not only on an explicit

request, but also an implicit one. For example, an explicit request might tell the

ail activity in the Gmail app". By contrast, an implicit

an intent filter at work.

You can take advantage of this feature by declaring an <intent-filter> attribute in the

<activity> element. The definition of this element includes an <action> element and,

optionally, a <category> element and/or a <data> element. These elements combine

to specify the type of intent to which your activity can respond. For example, the

following code snippet shows how to configure an activity that sends text data, and

receives requests from other activities to do so:

<activity android:name=".ExampleActivity" android:icon="@drawable/app_icon">

 <intent-filter>

 <action android:name="android.intent.action.SEND" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="text/plain" />

 </intent-filter>

</activity>

In this example, the <action> element specifies that this activity sends data.

Declaring the <category> element as DEFAULT enables the activity to receive

launch requests. The <data> element specifies the type of data that this activity can

send. The following code snippet shows how to call the activity described above

// Create the text message with a string

Intent sendIntent = new Intent();

sendIntent.setAction(Intent.ACTION_SEND);

sendIntent.setType("text/plain");

sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);

// Start the activity

startActivity(sendIntent);

If you intend for your app to be self-contained and not allow other apps to activate its

activities, you don't need any other intent filters. Activities that you don't want to

make available to other applications should have no intent filters, and you can start

them yourself using explicit intents.

Declare permissions: You can use the manifest's <activity> tag to control which

apps can start a particular activity. A parent activity cannot launch a child activity

unless both activities have the same permissions in their manifest. If you declare

a <uses-permission> element for a particular activity, the calling activity must have a

matching<uses-permission> element.

For example, if your app wants to use a hypothetical app named SocialApp to share

a post on social media, SocialApp itself must define the permission that an app

calling it must have:

<manifest>

<activity android:name="...."

 android:permiss

/>

Then, to be allowed to call SocialApp, your app must match the permission set in

SocialApp's manifest:

<manifest>

<uses-permission android:name="com.google.socialapp.permission.SHARE_POST"

/>

</manifest>

Check your progress-1

a) When one app invokes another, the calling app invokes an activity in the other

app, rather than the app as an atomic whole (True/False)

b) Most apps contain multiple screens, which means they comprise multiple _____

(A) Activities (B) Services (C) Contexts (D) Intents

c) You can use activities in your app, without registering the information about them

d) By default, the activity created for you contains the ________ event

e) The only required attribute for <activity> element is __________

1.4 Life Cycle of an Activity

The Activity class is an important for application's whole lifecycle. Android

applications can be multi-process, and the multiple applications to run concurrently if

memory and processing power is available. Applications can have background

processes, and applications can be interrupted/paused when events such as

message or phone calls occur. There can be only one active application visible to the

user at a time or in other words only a single Activity is in the foreground at any given

time.

Activities in the Android operating system are managed using an activity stack.

When a new activity is started, it is placed on the top of the stack and becomes the

running/foreground activity the previous activity always remains below it in the stack,

and will not come to the foreground again until the new activity exits.

Activity States

An activity has essentially four states:

State Description
Active or running When an activity is in the foreground of the screen (at the top of

the stack).

Paused If an activity has lost focus but is still visible, it is paused. A

paused activity maintains all state and member information and

remains attached to the window manager, but can be killed by the

system in extreme low memory situations.

Stopped If an activity is completely hidden by another activity, it is stopped.

It still retains all state and member information, it will often be

killed by the system when memory is needed elsewhere.

Destroyed If an activity is paused or stopped, the system can drop the

activity from memory by either asking it to finish, or simply killing

its process. When it is displayed again to the user, it must be

completely restarted and restored to its previous state.

Table-11

Activity Events

The Activity base class defines a series of events that governs the life cycle of an

activity. The Activity class defines the following events:

Event Description
onCreate() Called when the activity is first created

onStart() Called when the activity becomes visible to the user

onResume() Called when the activity starts interacting with the user

onPause() Called when the current activity is being paused and the previous

activity is being resumed

onStop() Called when the activity is no longer visible to the user

onDestroy() Called before the activity is destroyed by the system

onRestart() Called when the activity has been stopped and is restarting again

Table-12

By default, the activity created for you contains the onCreate() event. Within this

event handler is the code that helps to display the UI elements of your screen.

Figure-45: important state paths of an Activity

The above figure shows the important state paths of an Activity. The square

rectangles represent callback methods you can implement to perform operations

when the Activity moves between states. The colored ovals are major states the

Activity can be in.

1.5 Understanding Life Cycle of an Activity

The best way to understand the various stages experienced by an activity is to

create a new project, implement the various events, and then subject the activity to

various user interactions.

1. Create a New Android Studio Project as discussed in section 1.4 with project

name ActivityDemo and Main Activity name as MainActivity

2. In the MainActivity.java file, add the following statements in bold:

package in.edu.baou.activitydemo;

import android.util.Log;

public class MainActivity extends ActionBarActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Log.d("Event", "In the onCreate() event");
 }
 public void onStart()
 {
 super.onStart();
 Log.d("Event", "In the onStart() event");
 }
 public void onRestart()
 {
 super.onRestart();
 Log.d("Event", "In the onRestart() event");
 }

 public void onResume()
 {
 super.onResume();
 Log.d("Event", "In the onResume() event");
 }
 public void onPause()
 {
 super.onPause();
 Log.d("Event", "In the onPause() event");
 }
 public void onStop()
 {
 super.onStop();
 Log.d("Event", "In the onStop() event");

 }
 public void onDestroy()
 {
 super.onDestroy();
 Log.d("Event", "In the onDestroy() event");
 }
}

3.

Press OK.

Figure-46

4. When the activity is first loaded, you should see the following in the LogCat

window.

Figure-47

5. Now press the back button on the Android Emulator, observe that the following is

printed:

Figure-48

6. Click the Home button and hold it there. Click the ActivityDemo icon and observe

the following:

Figure-49

7. On Android Emulator from notification area open settings on so that the activity is

pushed to the background. Observe the output in the LogCat window:

Figure-50

8. Notice that the onDestroy() event is not called, indicating that the activity is still in

memory. Exit the settings by pressing the Back button. The activity is now visible

again. Observe the output in the LogCat window:

Figure-51

Please note that the onRestart() event is now fired, followed by the onStart() and

onResume() events.

This application uses logging feature of Android. To add logging support to

ActivityDemo app, edit the file MainActivity.java to add the following import statement

for the Log class:

import android.util.Log;

Logging is a valuable resource for debugging and learning Android. Android logging

features are in the Log class of the android.util package. Some helpful methods in

the android.util.Log class are shown in Table. We have used Log.d() method to print

message in LogCat Window when particular event of activity fired.

Method Purpose

Log.e() Log errors

Log.w() Log warnings

Log.i() Log information messages

Log.d() Log debug messages

Log.v() Log verbose messages

 Table-13

1.6 Context

As the name suggests, it is the context of current state of the application/object. It

lets newly created objects understand what has been going on. Typically you call it

to get information regarding other part of your program (activity,

package/application). The application Context is the central location for all top-level

application functionality. The Context class can be used to manage application-

specific configuration details as well as application-wide operations and data. Use

the application Context to access settings and resources shared across multiple

Activity instances.

Retrieving the Application Context

You can get the context by invoking getApplicationContext(), getContext(),

getBaseContext() or this (when in the activity class). You can retrieve the Context

for the current process using the getApplicationContext() method, like this: Context

context = getApplicationContext();

Uses of the Application Context

After you have retrieved a valid application Context, it can be used to access

application-wide features and services. Typical uses of context are:

1) Creating new views, adapters, listeners object

TextView tv = new TextView(getContext());

ListAdapter adapter = new SimpleCursorAdapter(getApplicationContext(), ...);

2) Retrieving Application Resources: You can retrieve application resources

using the getResources() method of the application Context. The most

straightforward way to retrieve a resource is by using its resource identifier, a

unique number automatically generated within the R.java class.The following

example retrieves a String instance from the application resources by its resource

ID:

String greeting = getResources().getString(R.string.settings);

3) Retrieving Shared Application Preferences: You can retrieve shared

application preferences using the getSharedPreferences() method of the

application Context. The SharedPreferences class can be used to save simple

application data, such as configuration settings.

4) Accessing Other Application Functionality Using Context: The application

Context provides access to a number of other top-level application features.

Here are a few more things you can do with the application Context:

 Launch Activity instances

 Inspect and enforce application permissions

 Retrieve assets packaged with the application

 Request a system service (for example, location service)

 Manage private application files, directories, and databases

1.7 Activity Transition

In the course of the lifetime of an Android application, the user might transition

between a numbers of different Activity instances. At times, there might be multiple

Activity instances on the activity stack. Developers need to pay attention to the

lifecycle of each Activity during these transitions.

Some Activity instances such as the application splash/startup screen are shown

and then permanently discarded when the Main menu screen Activity takes over.

The user cannot return to the splash screen Activity without re-launching the

application.

Other Activity transitions are temporary, such as a child Activity displaying a dialog

box, and then returning to the original Activity (which was paused on the activity

stack and now resumes). In this case, the parent Activity launches the child Activity

and expects a result.

Transitioning between Activities with Intents: As previously mentioned, Android

applications can have multiple entry points. There is no main() function, such as you

find in iPhone development. Instead, a specific Activity can be designated as the

main Activity to launch by default within the AndroidManifest.xml file; Other Activities

might be designated to launch under specific circumstances. For example, a music

application might designate a generic Activity to launch by default from the

Application menu, but also define specific alternative entry point Activities for

accessing specific music playlists by playlist ID or artists by name.

Launching a New Activity by Class Name: You can start activities in several ways.

The simplest method is to use the Application Context object to call the startActivity()

method, which takes a single parameter, an Intent.

Intent (android.content.Intent) is an asynchronous message mechanism used by the

Android operating system to match task requests with the appropriate Activity or

Service (launching it, if necessary) and to dispatch broadcast Intents events to the

system at large. For now, though, we focus on Intents and how they are used with

Activities. The following line of code calls the startActivity() method with an explicit

Intent. This Intent requests the launch of the target Activity named MyDrawActivity by

its class. This class is implemented elsewhere within the package.

startActivity(new Intent(getApplicationContext(),

MyDrawActivity.class));

This line of code might be sufficient for some applications, which simply transition

from one Activity to the next. However, you can use the Intent mechanism in a much

more robust manner. For example, you can use the Intent structure to pass data

between Activities.

Creating Intents with Action and Data: een the simplest case to use

Intent to launch a class by name. Intents need not specify the component or class

they want to launch explicitly. Instead, you can create an Intent Filter and register it

within the Android Manifest file. The Android operating system attempts to resolve

the Intent requirements and launch the appropriate Activity based on the filter

criteria.

The guts of the Intent object are composed of two main parts: the action to be

performed and the data to be acted upon. You can also specify action/data pairs

using Intent Action types and Uri objects. An Uri object represents a string that gives

the location and name of an object. Therefore, an Intent is basi

 what resource to do the action to). The most

common action types are defined in the Intent class, including ACTION_MAIN

(describes the main entry point of an Activity) and ACTION_EDIT (used in

conjunction with a Uri to the data edited).You also find Action types that generate

integration points with Activities in other applications, such as the Browser or Phone

Dialer.

Launching an Activity Belonging to another Application: Initially, your

application might be starting only Activities defined within its own package

However, with the appropriate permissions, applications might also launch external

Activities within other applications. For example, a Customer Relationship

Management (CRM) application might launch the Contacts application to browse the

Contact database,

identifier to the CRM application for use.

Here is an example of how to create a simple Intent with a predefined Action

(ACTION_DIAL) to launch the Phone Dialer with a specific phone number to dial in

the form of a simple Uri object:

Uri number = Uri.parse(tel:5555551212);

Intent dial = new Intent(Intent.ACTION_DIAL, number);

startActivity(dial);

Check your progress-2

a) There can be ____________ activities in application are visible to the user at a

time (A) One (B) Two (C) Three (D) Many

b) You can use the ___________to access settings and resources shared across

multiple Activity instances.

c) Which of the following you can do with Context

(A) Launch Activity instances

(B) Inspect and enforce application permissions

(C) Request a system service (for example, location service)

(D) All of the above

d) Android logging features are in the Log class of the __________ package.

e) The Intent object are composed of

(A) Action (B) Data (C) Both (A) and (B) (D) None of these

f) You can get the context by invoking

(A) getApplicationContext()

(B) getContext()

(C) getBaseContext()

(D) Any of these

g) The simplest method is to use the Application Context object to call the

_____________method, which takes a single parameter, an Intent

1.8 Let us sum up

In this unit you have learn all about android activity, important terminology. You have

understand the life cycle of an activity through practical example and you have also

lean about how to onfigure activity in AndroidManifest.xml file at the end of unit we

have discuss activity transition.

1.9 Check your Progress: Possible Answers

1-a) True 1-b) Activities 1-c) False

1-d) onCreate() 1-e) android:name

2-a) One 2-b) Application Context 2-c) (D) All of the above

2-d) android.util 2-e) Both (A) and (B) 2-f) (D) Any of these

2-g) startActivity()

1.10 Further Reading

 http://developer.android.com/guide/appendix/g-app-intents.html.

1.11 Assignment

 What is activity? Explain activity life cycle

 Explain activity transition

 Write short note on activity state and activity events

1.12 Activity

 Write android activity using logging feature to demonstrate activity life cycle

Unit-2: Services

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 Use of services

2.3 Creating a service

2.4 Start and Stop Service

2.5 Service Life Cycle

2.6 Creating your own Service

2.7 Let us sum up

2.8 Check your Progress: Possible Answers

2.9 Further Reading

2.10 Assignment

2.11 Activities

2

2.0 Learning Objectives

After studying this unit student will be able to

 Define service

 List the uses of services

 Create, start and stop service

 Understand service life cycle

 Create own service

2.1 Introduction

In Android a service is an application that runs in the background without any

interaction with the user. For example, while using an application, you may want to

download some file at the same time. In this case, the code that is downloading file

has no need to interact with the user, and hence it can be run as a service. Services

are also perfect for circumstances in which there is no need to present a user

interface (UI) to the user. For example, consider an application that continually logs

the geographical coordinates of the device. In this case, you can write a service to

do that in the background. You can create your own services and use them to

perform background tasks asynchronously.

To improve application responsiveness and performance, consider implementing a

service to handle the task outside the main application lifecycle. Any Services

exposed by an Android application must be registered in the Android Manifest file.

2.2 Uses Services

You can use services for different purposes. Generally, you use a service when no

input is required from the user. Here are some circumstances in which you might

want to implement or use an Android service:

 A weather, email, or social network app might implement a service to routinely

check for updates.

 A photo or media app that keeps its data in sync online might implement a

service to package and upload new content in the background when the device is

idle.

 A video-editing app might offload heavy processing to a queue on its service in

order to avoid affecting overall system performance for non-essential tasks.

 A news applic -

downloading news stories in advance of when the user launches the application,

to improve performance.

2.3 Creating a Service

To create service you must defined a class that extends the Service base class.

Inside your service class, you have to implement four methods discussed below:

Method Description

onStartCommand() The system calls this method when another component,

such as an activity, requests that the service be started, by

calling startService().

 Once this method executes, the service is started and can

run in the background indefinitely.

 It is your responsibility to stop the service when its work is

done, by calling stopSelf() or stopService().

 If you only want to provide binding, you don't need to

implement this method.

onBind() The system calls this method when another component

wants to bind with the service by calling bindService().

 In your implementation of this method, you must provide

an interface that clients use to communicate with the

service, by returning an IBinder.

 If you don't want to allow binding, then you should return

null.

onCreate() The system calls this method when the service is first

created, to perform one-time setup procedures before it

Method Description

calls either onStartCommand() or onBind().

 If the service is already running, this method is not called.

onDestroy() The system calls this method when the service is no longer

used and is being destroyed.

 This method should be implemented to clean up any

resources such as threads, registered listeners, receivers,

etc.

 This is the last call the service receives.

Table-14

2.4 Start and Stop a Service

You can use Intents and Activities to launch services using the startService() and

bindService() methods. A service can essentially take two forms. The difference

between two is as follows:

startService() bindService()

A service is "started" when an application

component starts it by calling

startService()

A service is "bound" when an application

component binds to it by calling

bindService()

Once started, a service can run in the

background indefinitely, even if the

component that started it is destroyed

A bound service runs only as long as

another application component is bound

to it. Multiple components can bind to the

service.

Usually, a started service performs a

single operation and does not return a

result to the caller. For example, it might

download or upload a file over the

network. When the operation is done, the

service should stop itself

A bound service offers a client-server

interface that allows components to

interact with the service, send requests,

get results, and even do so across

processes with inter process

communication (IPC)

Table-15

2.5 Service Life Cycle

Like an activity, a service has lifecycle callback methods that you can implement to

monitor changes in the service's state and perform work at the appropriate times as

discussed above. Below Figure illustrates the typical callback methods for a service

for that are created by startService() and from those created by bindService.

Figure-52

2.6 Creating your own service

We will create service to logs counter which starts from 1 and incremented by one at

interval of one second. To do so perform following steps:

1. Create a New Android Studio Project with project name ServiceDemo and Main

Activity name as ServiceActivity

2. Add new service by right click on package and select New Service Service

and click.

Figure-53

3. In dialog box, Enter class name as TimerService as shown in figure and press

finish Button.

Figure-54

4. Write following code inside TimerService class

package in.edu.baou.servicesdemo;

import android.util.Log;
import android.widget.Toast;

import java.util.Timer;
import java.util.TimerTask;

public class TimerService extends Service {
 int counter = 0;
 Timer timer = new Timer();

 public TimerService() {
 }

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 Toast.makeText(this, "Service Started!", Toast.LENGTH_LONG).show();
 timer.scheduleAtFixedRate(new TimerTask() {
 public void run() {
 Log.d("MyService", String.valueOf(++counter));
 }
 }, 0, 1000);
 return START_STICKY;
 }
 @Override
 public void onDestroy() {
 super.onDestroy();
 if (timer != null){
 timer.cancel();
 }
 Toast.makeText(this, "Service Destroyed!", Toast.LENGTH_LONG).show();
 }
}

5. In android_service.xml file add the following statements in bold

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
android:paddingBottom="@dimen/activity_vertical_margin"
tools:context=".ServiceActivity">

 <TextView android:text="Service Demonstration"
android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textView" />

 <Button
 android:layout_width="match_parent"

 android:layout_height="wrap_content"
 android:text="Start Timer Service"
 android:id="@+id/btnStartTimer"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:layout_below="@+id/textView" />

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Stop Timer Service"
 android:id="@+id/btnStopTimer"
 android:layout_below="@+id/btnStartTimer"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

</RelativeLayout>

6. Add the following statements in bold to the ServiceActivity.java file:

package in.edu.baou.servicesdemo;

import android.content.Intent;
import android.view.View;
import android.widget.Button;
public class ServiceActivity extends ActionBarActivity {

 Button startTimer,stopTimer;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_service);

 startTimer = (Button)findViewById(R.id.btnStartTimer);
 stopTimer = (Button)findViewById(R.id.btnStopTimer);

 startTimer.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 startService(new Intent(getBaseContext(), TimerService.class));
 }
 });

 stopTimer.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 stopService(new Intent(getBaseContext(), TimerService.class));
 }

 });
}

7.

Press OK.

Figure-55

8. It will open activity in emulator as shown below. Clicking the START TIMER

SERVICE button will start the service as shown below. To stop the service, click

the STOP TIMER SERVICE.

Figure-56

9. Once service is started, you can see counter value incremented by in LogCat

window

Figure-57

Explanation

 Inside project layout file we created two buttons to start and stop service with ID

btnStartTimer and btnStopTimer..

 Inside ServiceActivity we define two button objects that represents button in

layout file.

 The findViewByID() method is used to take reference of button.

 Button clicked event is handled by onClick() method of OnClickListener

associated to button using setOnClickListener().

 Inside TimerService class we define counter variable which initialized to zero at

the start of service and increment by one every one second using Timer class

scheduledAtFixedRate() Method.

 The value of counter is logs inside LogCat window using Log.d() Method with tag

step-8 and is displayed using makeText method of Toast class.

Check you progress-1

a) Services are perfect for circumstances in which there are no need to present a

user interface (UI) to the user. (True/False)

b) You can use Intents and Activities to launch services using the _____ methods.

(A) startService() (B) bindService()

(C) Either (A) or (B) (D) None of these

c) Once _________ method executes, the service is started and can run in the

background indefinitely.

d) A service is "bound" when an application component binds to it by calling ______

e) Generally, you use a service when to interact with the user.

f) Any Services exposed by an Android application must be registered in the

Android Manifest file.

2.7 Let us sum up

In this unit we have learn about service, uses of services, how to create, start and

stop services. We have also discussed service life cycle and demonstrated how to

create your own service.

2.8 Check your Progress: Possible Answers

1-a) True

1-b) (C) Either (A) or (B)

1-c) onStartCommand()

1-d) bindService()

1-e) False

1-f) True

2.9 Further Reading

1. https://developer.android.com/reference/android/app/Service

2.10 Assignment

 Differentiate between startService() and bindService()

 Explain service life cycle

 List uses of services

2.11 Activity

 Creating your own service

Unit-3: Intent

Unit Structure

4.0 Learning Objectives

4.1 Introduction

4.2 Intent Structure

4.3 Other Operations on Intent

4.4 Types of Intent

4.5 Intent Resolution

4.6 Example of Intent

4.7 Explanation of Example

4.8 Standard Activity Actions

4.9 Standard Broadcast Actions

4.10 Let us sum up

4.11 Check your Progress: Possible Answers

4.12 Further Reading

4.13 Assignment

4.14 Activity

3

3.0 Learning Objective

After studying this unit, the student should be able to

 Understand the structure of an Intent

 Perform operations on Intent

 List the types of Intent

 Know what is Intent Resolution?

 Give example of Intent

 List standard Activity Actions

 List standard Broadcast Actions

3.1 Introduction

Intent is an abstract description of an operation to be performed. It can be used to

launch an Activity, broadcastIntent to send it to any interested BroadcastReceiver

components, and to communicate with a background Service.

Intent provides a facility for performing late runtime binding between the codes in

different applications. Its most significant use is in the launching of activities, where it

can be thought of as the glue between activities. It is basically a passive data

structure holding an abstract description of an action to be performed.

3.2 Intent Structure

The intent has primary attributes which are mandatory and secondary attributes

which are optional.

Primary Attributes

Primary Attributes: The primary pieces of information in intent are:

1. Action: The general action to be performed, such

as ACTION_VIEW, ACTION_EDIT, ACTION_MAIN, etc.

2. Data: The data to operate on, such as a person record in the contacts database,

expressed as an Uri.

Some examples of action/data pairs are:

 ACTION_VIEW content://contacts/people/9 : Display information about the person

whose identifier is "9".

 ACTION_DIAL content://contacts/people/9 : Display the phone dialer with the person

filled in.

 ACTION_VIEW tel:123 : Display the phone dialer with the given number filled in. Note

how the VIEW action does what is considered the most reasonable thing for a

particular URI.

 ACTION_DIAL tel:123 : Display the phone dialer with the given number filled in.

 ACTION_EDIT content://contacts/people/9 : Edit information about the person whose

identifier is "9".

 ACTION_VIEW content://contacts/people/ : Display a list of people, which the user

can browse through. This example is a typical top-level entry into the Contacts

application, showing you the list of people. Selecting a particular person to view

would result in a new intent {ACTION_VIEWcontent://contacts/people/N } being used

to start an activity to display that person.

Secondary Attributes

In addition to these primary attributes, there are a number of secondary attributes

that you can also include with intent:

 Category: Gives additional information about the action to execute. For

example, CATEGORY_LAUNCHERmeans it should appear in the Launcher as a

top-level application, while CATEGORY_ALTERNATIVE means it should be

included in a list of alternative actions the user can perform on a piece of data.

 Type: Specifies an explicit type (a MIME type) of the intent data. Normally the type is

inferred from the data itself. By setting this attribute, you disable that evaluation and

force an explicit type.

 Component: Specifies an explicit name of a component class to use for the intent.

Normally this is determined by looking at the other information in the intent (the

action, data/type, and categories) and matching that with a component that can

handle it. If this attribute is set then none of the evaluation is performed, and this

component is used exactly as is. By specifying this attribute, all of the other Intent

attributes become optional.

 Extras: This is a Bundle of any additional information. This can be used to provide

extended information to the component. For example, if we have a action to send an

e-mail message, we could also include extra pieces of data here to supply a subject,

body, etc.

3.3 Other Operations on Intent

Here are some examples of other operations you can specify as intents using these

additional parameters:

 ACTION_MAIN with category CATEGORY_HOME: Launch the home screen.

 ACTION_GET_CONTENT with MIME type vnd.android.cursor.item/phone:

Display the list of people's phone numbers, allowing the user to browse through

them and pick one and return it to the parent activity.

 ACTION_GET_CONTENT with MIME type */* and category

CATEGORY_OPENABLE: Display all pickers for data that can be opened and

allowing the user to pick one of them and then some data inside of it and

returning the resulting URI to the caller. This can be used, for example, in an e-

mail application to allow the user to pick some data to include as an attachment.

There are a variety of standard Intent action and category constants defined in the

Intent class, but applications can also define their own, for example, the standard

ACTION_VIEW is called "android.intent.action.VIEW".

3.4 Types of Intent

There are two primary forms of intents you will use.

 Explicit Intents have specified a component which provides the exact class to be

run. Often these will not include any other information, simply being a way for an

application to launch various internal activities it has as the user interacts with the

application.

 Implicit Intents have not specified a component; instead, they must include enough

information for the system to determine which of the available components is best to

run for that intent.

3.5 Intent Resolution

When using implicit intents, given such an arbitrary intent we need to know what to

do with it. This is handled by the process of Intent resolution, which maps an Intent

to an Activity, BroadcastReceiver, or Service that can handle it.

The intent resolution mechanism basically revolves around matching Intent against

all of the <intent-filter> descriptions in the installed application packages.

There are three pieces of information in the Intent that are used for resolution: the

action, type, and category. Using this information, a query is done on the

PackageManager for a component that can handle the intent. The appropriate

component is determined based on the intent information supplied in the

AndroidManifest.xml file as follows:

 The action, if given, must be listed by the component as one it handles.

 The type is retrieved from the Intent's data, if not already supplied in the Intent.

Like the action, if a type is included in the intent (either explicitly or implicitly in its

data), then this must be listed by the component as one it handles.

 For data that is not a content: URI and where no explicit type is included in the

Intent, instead the scheme of the intent data (such as http: or mailto:) is

considered. Again like the action, if we are matching a scheme it must be listed

by the component as one it can handle.

 The categories, if supplied, must all be listed by the activity as categories it

handles. That is, if you include the categories CATEGORY_LAUNCHER and

CATEGORY_ALTERNATIVE, then you will only resolve to components with an

intent that lists both of those categories. Activities will very often need to support

the CATEGORY_DEFAULT so that they can be found by startActivity.

3.6 Example of Intent

For example, consider the Note Pad sample application that allows a user to browse

through a list of notes data and view details about individual items.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="in.edu.baou.notepad">

 <application android:icon="@drawable/app_notes" android:label="@string/app_name">

<provider class=".NotePadProvider" android:authorities="in.edu.baou.provider.NotePad" />

<activity class=".NotesList" android:label="@string/title_notes_list">

 <intent-filter>

<action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <action android:name="android.intent.action.EDIT" />

 <action android:name="android.intent.action.PICK" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.GET_CONTENT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

 </activity>

 <activity class=".NoteEditor" android:label="@string/title_note">

 <intent-filter android:label="@string/resolve_edit">

 <action android:name="android.intent.action.VIEW" />

 <action android:name="android.intent.action.EDIT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.INSERT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

 </intent-filter>

 </activity>

 <activity class=".TitleEditor" android:label="@string/title_edit_title"

 android:theme="@android:style/Theme.Dialog">

 <intent-filter android:label="@string/resolve_title">

 <action android:name="com.android.notepad.action.EDIT_TITLE" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.ALTERNATIVE" />

 <category android:name="android.intent.category.SELECTED_ALTERNATIVE" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

 </activity>

 </application>

</manifest>

3.7 Explanation of Example

In above example, the first activity, in.edu.baou.provider.notepad,NotesList, serves

as our main entry into the app. It can do three things as described by its three intent

templates:

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

This provides a top-level entry into the NotePad application: the standard MAIN

action is a main entry point (not requiring any other information in the Intent), and the

LAUNCHER category says that this entry point should be listed in the application

launcher.

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <action android:name="android.intent.action.EDIT" />

 <action android:name="android.intent.action.PICK" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

 </intent-filter>

This declares the things that the activity can do on a directory of notes. The type

being supported is given with the <type> tag,

where vnd.android.cursor.dir/vnd.google.note is a URI from which a Cursor of zero

or more items (vnd.android.cursor.dir) can be retrieved which holds our note pad

data (vnd.google.note). The activity allows the user to view or edit the directory of

data (via the VIEW and EDIT actions), or to pick a particular note and return it to the

caller (via the PICK action). Note also the DEFAULT category supplied here: this

is required for the startActivity method to resolve your activity when its component

name is not explicitly specified.

 <intent-filter>

 <action android:name="android.intent.action.GET_CONTENT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

This filter describes the ability to return to the caller a note selected by the user

without needing to know where it came from. The data

type vnd.android.cursor.item/vnd.google.note is a URI from which a Cursor of exactly

one (vnd.android.cursor.item) item can be retrieved which contains our note pad

data (vnd.google.note). The GET_CONTENT action is similar to the PICK action,

where the activity will return to its caller a piece of data selected by the user. Here,

however, the caller specifies the type of data they desire instead of the type of data

the user will be picking from.

Given these capabilities, the following intents will resolve to the NotesList activity:

 { action=android.app.action.MAIN } matches all of the activities that can be used

as top-level entry points into an application.

 { action=android.app.action.MAIN, category=android.app.category.LAUNCHER

} is the actual intent used by the Launcher to populate its top-level list.

 { action=android.intent.action.VIEW

data=content://com.google.provider.NotePad/notes } displays a list of all the

notes under "content://com.google.provider.NotePad/notes", which the user can

browse through and see the details on.

 { action=android.app.action.PICK

data=content://com.google.provider.NotePad/notes } provides a list of the notes

under "content://com.google.provider.NotePad/notes", from which the user can pick

a note whose data URL is returned back to the caller.

 { action=android.app.action.GET_CONTENT

type=vnd.android.cursor.item/vnd.google.note } is similar to the pick action, but

allows the caller to specify the kind of data they want back so that the system can

find the appropriate activity to pick something of that data type.

 The second activity, in.edu.baou.notepad.NoteEditor, shows the user a single note

entry and allows them to edit it. It can do two things as described by its two intent

templates:

 <intent-filter android:label="@string/resolve_edit">

 <action android:name="android.intent.action.VIEW" />

 <action android:name="android.intent.action.EDIT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

The first, primary, purpose of this activity is to let the user interact with a single note,

as described by the MIME type vnd.android.cursor.item/vnd.google.note. The activity

can either VIEW a note or allow the user to EDIT it. Again we support the DEFAULT

category to allow the activity to be launched without explicitly specifying its

component.

 <intent-filter>

 <action android:name="android.intent.action.INSERT" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

 </intent-filter>

The secondary use of this activity is to insert a new note entry into an existing

directory of notes. This is used when the user creates a new note: the INSERT

action is executed on the directory of notes, causing this activity to run and have the

user create the new note data which it then adds to the content provider.

Given these capabilities, the following intents will resolve to the NoteEditor activity:

 {action=android.intent.action.VIEW

data=content://in.edu.baou.provider.NotePad/notes/{ID}} shows the user the

content of note {ID}.

 { action=android.app.action.EDIT data=content://

in.edu.baou.provider.NotePad/notes/{ID} } allows the user to edit the content of

note {ID}.

 { action=android.app.action.INSERT data=content://

in.edu.baou.provider.NotePad/notes } creates a new, empty note in the notes list

at "content://com.google.provider.NotePad/notes" and allows the user to edit it. If

they keep their changes, the URI of the newly created note is returned to the caller.

 The last activity, com.android.notepad.TitleEditor, allows the user to edit the title of a

note. This could be implemented as a class that the application directly invokes (by

explicitly setting its component in the Intent), but here we show a way you can

publish alternative operations on existing data:

 <intent-filter android:label="@string/resolve_title">

 <action android:name="com.android.notepad.action.EDIT_TITLE" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.ALTERNATIVE" />

 <category android:name="android.intent.category.SELECTED_ALTERNATIVE"

/>

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

 </intent-filter>

 In the single intent template here, we have created our own private action

calledcom.android.notepad.action.EDIT_TITLE which means to edit the title of a

note. It must be invoked on a specific note like the previous view and edit actions,

but here displays and edits the title contained in the note data.

 In addition to supporting the default category as usual, our title editor also supports

two other standard categories: ALTERNATIVE and SELECTED_ALTERNATIVE.

Implementing these categories allows others to find the special action it provides

without directly knowing about it, through the

PackageManager.queryIntentActivityOptions(ComponentName, Intent[], Intent,

int) method, or more often to build dynamic menu items

with Menu.addIntentOptions(int, int, int, ComponentName, Intent[], Intent, int,

MenuItem[]). Note that in the intent template here was also supply an explicit name

for the template (via android:label="@string/resolve_title") to better control what the

user sees when presented with this activity as an alternative action to the data they

are viewing.

 Given these capabilities, the following intent will resolve to the TitleEditor activity:

 {action=com.android.notepad.action.EDIT_TITLE

data=content://com.google.provider.NotePad/notes/{ID}} displays and allows the

user to edit the title associated with note {ID}.

3.8 Standard Activity Actions

These are the current standard actions that Intent defines for launching activities

(usually through Context#startActivity. The most important, and by far most

frequently used, are ACTION_MAIN and ACTION_EDIT.

ACTION_MAIN

ACTION_VIEW

ACTION_ATTACH_DATA

ACTION_EDIT

ACTION_PICK

ACTION_CHOOSER

ACTION_GET_CONTENT

ACTION_DIAL

ACTION_CALL

ACTION_SEND

ACTION_SENDTO

ACTION_ANSWER

ACTION_INSERT

ACTION_DELETE

ACTION_RUN

ACTION_SYNC

ACTION_PICK_ACTIVITY

ACTION_SEARCH

ACTION_WEB_SEARCH

ACTION_FACTORY_TEST

3.9 Standard Broadcast Actions

These are the current standard actions that Intent defines for receiving broadcasts

(usually through registerReceiver or a <receiver> tag in a manifest).

ACTION_TIME_TICK

ACTION_TIME_CHANGED

ACTION_TIMEZONE_CHANGED

ACTION_BOOT_COMPLETED

ACTION_PACKAGE_ADDED

ACTION_PACKAGE_CHANGED

ACTION_PACKAGE_REMOVED

ACTION_PACKAGE_RESTARTED

ACTION_PACKAGE_DATA_CLEARED

ACTION_PACKAGES_SUSPENDED

ACTION_PACKAGES_UNSUSPENDED

ACTION_UID_REMOVED

ACTION_BATTERY_CHANGED

ACTION_POWER_CONNECTED

ACTION_POWER_DISCONNECTED

ACTION_SHUTDOWN

Check your progress-1

 Intent provides a facility for performing late runtime binding between the codes

in similar applications. (True/False)

 Which of the following is a type of intent

(A) Primary (B) Secondary (C) Both (A) and (B) (D) Neither (A) nor (B)

 Which of the following pieces of information is used for intent resolution?

(A) Action (B) Type (C) Category (D) All of these

 The intent has secondary attributes which are optional

 Which of the following is standard activity action?

(A) ACTION_MAIN (B) ACTION_VIEW (C) ACTION_EDIT (D) All of these

 Intent is an abstract description of an operation to be performed

3.10 Let us sum up

In this unit we have learned about the structure of Intent, what type of operation can

be performed on Intent, types of Intent, Intent Resolution, take example of Intent,

discussed standard Activity actions and standard broadcast actions.

3.11 Check your Progress: Possible Answers

1-a) False 1-b) (C) Both (A) and (B) 1-c) (D) All of these

1-d) True 1-e) All of these 1-f) True

3.12 Further Reading

 https://developer.android.com/reference/android/content/Intent

3.13 Assignment

 Write detailed note on Intent

 Explain types of intent

 What is Intent Resolution?

 List standard activity actions and standard broadcast actions

Unit-4: Permissions

Unit Structure

4.0 Learning Objectives

4.1 Introduction

4.2 Permission approval

4.3 Request prompts for dangerous permissions

4.4 Permission for optional hardware features

4.5 Custom App Permission

4.6 Permission Protection Level

4.7

4.8 Let us sum up

4.9 Check your Progress: Possible Answers

4.10 Further Reading

4.11 Assignment

4.12 Activity

4

4.0 Learning Objectives

After studying this unit, students will be able to:

 Define permission

 List different types of permission and their uses

 Define custom app permission

 Understand various permission protection levels

4.1 Introduction

The purpose of a permission is to protect the privacy of an Android user. Android

apps must request permission to access sensitive user data (such as contacts and

SMS), as well as certain system features (such as camera and internet). Depending

on the feature, the system might grant the permission automatically or might prompt

the user to approve the request.

A central design point of the Android security architecture is that no app, by default,

has permission to perform any operations that would adversely impact other apps,

the operating system, or the user. This includes reading or writing the user's private

data (such as contacts or emails), reading or writing another app's files, performing

network access, keeping the device awake, and so on.

This unit provides an overview of how Android permissions work, including: how

permissions are presented to the user, the difference between install-time and

runtime permission requests, how permissions are enforced, and the types of

permissions and their groups.

4.2 Permission Approval

An app must publicize the permissions it requires by including <uses-permission>

tags in the app manifest. For example, an app that needs to send SMS messages

would have this line in the manifest:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.snazzyapp">

 <uses-permission android:name="android.permission.SEND_SMS"/>

 <application ...>

 ...

 </application>

</manifest>

If your app lists normal permissions in its manifest (that is, permissions that don't

pose much risk to the user's privacy or the device's operation), the system

automatically grants those permissions to your app.

If your app lists dangerous permissions in its manifest (that is, permissions that could

potentially affect the user's privacy or the device's normal operation), such as the

SEND_SMS permission above, the user must explicitly agree to grant those

permissions.

4.3 Request prompts for dangerous permissions

Only dangerous permissions require user agreement. The way Android asks the

user to grant dangerous permissions depends on the version of Android running on

the user's device, and the system version targeted by your app.

Runtime requests (Android 6.0 and higher)

If the device is running Android 6.0 (API level 23) or higher, and the app's

targetSdkVersion is 23 or higher, the user isn't notified of any app permissions at

install time. Your app must ask the user to grant the dangerous permissions at

runtime. When your app requests permission, the user sees a system dialog as

shown in figure 1 telling the user which permission group your app is trying to

access. The dialog includes a Deny and Allow button.

If the user denies the permission request, the next time your app requests the

permission, the dialog contains a checkbox that, when checked, indicates the user

doesn't want to be prompted for the permission again as shown in figure 2.

Figure-58

If the user checks the Never ask again box and taps Deny, the system no longer

prompts the user if you later attempt to requests the same permission.

Even if the user grants your app the permission it requested you cannot always rely

on having it. Users also have the option to enable and disable permissions one-by-

one in system settings. You should always check for and request permissions at

runtime to guard against runtime errors (SecurityException).

Install-time requests (Android 5.1.1 and below)

If the device is running Android 5.1.1 (API level 22) or lower, or the app's

targetSdkVersion is 22 or lower while running on any version of Android, the system

automatically asks the user to grant all dangerous permissions for your app at install-

time as shown in figure 2.

Figure-59

If the user clicks Accept, all permissions the app requests are granted. If the user

denies the permissions request, the system cancels the installation of the app.

If an app update includes the need for additional permissions the user is prompted to

accept those new permissions before updating the app.

4.4 Permissions for optional hardware features

Access to some hardware features such as Bluetooth or the camera requires app

permission. However, not all Android devices actually have these hardware features.

So if your app requests the CAMERA permission, it's important that you also include

the <uses-feature> tag in your manifest to declare whether or not this feature is

actually required. For example:

<uses-feature android:name="android.hardware.camera" android:required="false" />

If you declare android:required="false" for the feature, then Google Play allows your

app to be installed on devices that don't have the feature. You then must check if the

current device has the feature at runtime by calling

PackageManager.hasSystemFeature(), and gracefully disable that feature if it's not

available.

If you don't provide the <uses-feature> tag, then when Google Play sees that your

app requests the corresponding permission, it assumes your app requires this

feature. So it filters your app from devices without the feature, as if you declared

android:required="true" in the <uses-feature> tag.

4.5 Custom App Permission

Permissions aren't only for requesting system functionality. Services provided by

apps can enforce custom permissions to restrict who can use them.

Activity permission enforcement

Permissions applied using the android:permission attribute to the <activity> tag in the

manifest restrict who can start that Activity. The permission is checked during

Context.startActivity() and Activity.startActivityForResult(). If the caller doesn't have

the required permission then SecurityException is thrown from the call.

Service permission enforcement

Permissions applied using the android:permission attribute to the <service> tag in

the manifest restrict who can start or bind to the associated Service. The permission

is checked during Context.startService(), Context.stopService() and

Context.bindService(). If the caller doesn't have the required permission then

SecurityException is thrown from the call.

Broadcast permission enforcement

Permissions applied using the android:permission attribute to the <receiver> tag

restrict who can send broadcasts to the associated BroadcastReceiver. The

permission is checked after Context.sendBroadcast() returns, as the system tries to

deliver the submitted broadcast to the given receiver. As a result, a permission

failure doesn't result in an exception being thrown back to the caller; it just doesn't

deliver the Intent.

In the same way, a permission can be supplied to Context.registerReceiver() to

control who can broadcast to a programmatically registered receiver. Going the other

way, a permission can be supplied when calling Context.sendBroadcast() to restrict

which broadcast receivers are allowed to receive the broadcast.

Note that both a receiver and a broadcaster can require permission. When this

happens, both permission checks must pass for the intent to be delivered to the

associated target.

Content Provider permission enforcement

Permissions applied using the android:permission attribute to the <provider> tag

restrict who can access the data in a ContentProvider. Unlike the other components,

there are two separate permission attributes you can set: android:readPermission

restricts who can read from the provider, and android:writePermission restricts who

can write to it. Note that if a provider is protected with both a read and write

permission, holding only the write permission doesn't mean you can read from a

provider.

The permissions are checked when you first retrieve a provider and as you perform

operations on the provider.

Using ContentResolver.query() requires holding the read permission;

using ContentResolver.insert(), ContentResolver.update(), ContentResolver.delete()

requires the write permission. In all of these cases, not holding the required

permission results in a SecurityException being thrown from the call.

URI permissions

The standard permission system described so far is often not sufficient when used

with content providers. A content provider may want to protect itself with read and

write permissions, while its direct clients also need to hand specific URIs to other

apps for them to operate on.

A typical example is attachments in a email app. Access to the emails should be

protected by permissions, since this is sensitive user data. However, if a URI to an

image attachment is given to an image viewer, that image viewer no longer has

permission to open the attachment since it has no reason to hold a permission to

access all email.

The solution to this problem is per-URI permissions: when starting an activity or

returning a result to an activity, the caller can set

Intent.FLAG_GRANT_READ_URI_PERMISSION and/or

Intent.FLAG_GRANT_WRITE_URI_PERMISSION. This grants the receiving activity

permission access the specific data URI in the intent, regardless of whether it has

any permission to access data in the content provider corresponding to the intent.

This mechanism allows a common capability-style model where user interaction

(such as opening an attachment or selecting a contact from a list) drives ad-hoc

granting of fine-grained permission. This can be a key facility for reducing the

permissions needed by apps to only those directly related to their behavior.

To build the most secure implementation that makes other apps accountable for their

actions within yor app, you should use fine-grained permissions in this manner and

declare your app's support for it with the android:grantUriPermissions attribute or

<grant-uri-permissions> tag.

Other permission enforcement

Arbitrarily fine-grained permissions can be enforced at any call into a service. This is

accomplished with the Context.checkCallingPermission() method. Call with a desired

permission string and it returns an integer indicating whether that permission has

been granted to the current calling process. Note that this can only be used when

you are executing a call coming in from another process, usually through an IDL

interface published from a service or in some other way given to another process.

There are a number of other useful ways to check permissions. If you have the

process ID (PID) of another process, you can use the Context.checkPermission()

method to check a permission against that PID. If you have the package name of

another app, you can use the PackageManager.checkPermission() method to find

out whether that particular package has been granted a specific permission.

Check your progress-1

a) What is purpose of permission?

b) Every app has by default, permission to perform any operations that would

adversely impact other apps, the operating system, or the user (True/False)

c) An app must publicize the permissions it requires by including ______tags in the

app manifest.

d) In mobile with Android 6.0 and higher, the request for permission is requested to

user at __________

(A) Runtime (B) Install-time (C) Either (A) or (B) (D) Neither (A) nor (B)

e) Services provided by apps can enforce custom permissions to restrict who can

use them.

4.6 Permission Protection levels

Permissions are divided into several protection levels. The protection level affects

whether runtime permission requests are required.

There are three protection levels that affect third-party apps: normal, signature, and

dangerous permissions.

Normal permissions

Normal permissions cover areas where your app needs to access data or resources

outside the app's sandbox, but where there's very little risk to the user's privacy or

the operation of other apps. For example, permission to set the time zone is a

normal permission.

If an app declares in its manifest that it needs a normal permission, the system

automatically grants the app that permission at install time. The system doesn't

prompt the user to grant normal permissions, and users cannot revoke these

permissions.

As of Android 9 (API level 28), the following permissions are classified as

PROTECTION_NORMAL:

ACCESS_LOCATION_EXTRA_COMMANDS

ACCESS_NETWORK_STATE

ACCESS_NOTIFICATION_POLICY

ACCESS_WIFI_STATE

BLUETOOTH

BLUETOOTH_ADMIN

BROADCAST_STICKY

CHANGE_NETWORK_STATE

CHANGE_WIFI_MULTICAST_STATE

CHANGE_WIFI_STATE

DISABLE_KEYGUARD

EXPAND_STATUS_BAR

FOREGROUND_SERVICE

GET_PACKAGE_SIZE

INSTALL_SHORTCUT

INTERNET

KILL_BACKGROUND_PROCESSES

MANAGE_OWN_CALLS

MODIFY_AUDIO_SETTINGS

NFC

READ_SYNC_SETTINGS

READ_SYNC_STATS

RECEIVE_BOOT_COMPLETED

REORDER_TASKS

REQUEST_DELETE_PACKAGES

SET_ALARM

SET_WALLPAPER

SET_WALLPAPER_HINTS

TRANSMIT_IR

USE_FINGERPRINT

VIBRATE

WAKE_LOCK

WRITE_SYNC_SETTINGS

Signature permissions

The system grants these app permissions at install time, but only when the app that

attempts to use permission is signed by the same certificate as the app that defines

the permission.

As of Android 8.1 (API level 27), the following permissions that third-party apps can

use are classified as PROTECTION_SIGNATURE:

BIND_ACCESSIBILITY_SERVICE

BIND_AUTOFILL_SERVICE

BIND_CARRIER_SERVICES

BIND_CHOOSER_TARGET_SERVICE

BIND_CONDITION_PROVIDER_SERVICE

BIND_DEVICE_ADMIN

BIND_DREAM_SERVICE

BIND_INCALL_SERVICE

BIND_INPUT_METHOD

BIND_MIDI_DEVICE_SERVICE

BIND_NFC_SERVICE

BIND_NOTIFICATION_LISTENER_SERVICE

BIND_PRINT_SERVICE

BIND_SCREENING_SERVICE

BIND_TELECOM_CONNECTION_SERVICE

BIND_TEXT_SERVICE

BIND_TV_INPUT

BIND_VISUAL_VOICEMAIL_SERVICE

BIND_VOICE_INTERACTION

BIND_VPN_SERVICE

BIND_VR_LISTENER_SERVICE

BIND_WALLPAPER

CLEAR_APP_CACHE

MANAGE_DOCUMENTS

READ_VOICEMAIL

REQUEST_INSTALL_PACKAGES

SYSTEM_ALERT_WINDOW

WRITE_SETTINGS

WRITE_VOICEM

Dangerous permissions

Dangerous permissions cover areas where the app wants data or resources that

involve the user's private information, or could potentially affect the user's stored

data or the operation of other apps. For example, the ability to read the user's

contacts is a dangerous permission. If an app declares that it needs a dangerous

permission, the user has to explicitly grant the permission to the app. Until the user

approves the permission, your app cannot provide functionality that depends on that

permission.

To use a dangerous permission, your app must prompt the user to grant permission

at runtime. For a list of dangerous permissions, see table 16 below.

Permission Group Permissions

CALENDAR READ_CALENDAR
WRITE_CALENDAR

CALL_LOG READ_CALL_LOG
WRITE_CALL_LOG
PROCESS_OUTGOING_CALLS

CAMERA CAMERA
CONTACTS READ_CONTACTS

WRITE_CONTACTS
GET_ACCOUNTS

LOCATION ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION

MICROPHONE RECORD_AUDIO
PHONE READ_PHONE_STATE

READ_PHONE_NUMBERS
CALL_PHONE
ANSWER_PHONE_CALLS
ADD_VOICEMAIL
USE_SIP

SENSORS BODY_SENSORS
SMS SEND_SMS

RECEIVE_SMS
READ_SMS
RECEIVE_WAP_PUSH
RECEIVE_MMS

STORAGE READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE

Table-16: Dangerous permissions and permission groups.

Special permissions

There are a couple of permissions that don't behave like normal and dangerous

permissions. SYSTEM_ALERT_WINDOW and WRITE_SETTINGS are particularly

sensitive, so most apps should not use them. If an app needs one of these

permissions, it must declare the permission in the manifest, and send an intent

requesting the user's authorization. The system responds to the intent by showing a

detailed management screen to the user.

4.7 How to View app's permissions

You can view all the permissions currently defined in the system using the Settings

app and the shell command adb shell pm list permissions. To use the Settings app,

go to Settings > Apps. Pick an app and scroll down to see the permissions that the

app uses. For developers, the adb '-s' option displays the permissions in a form

similar to how the user sees them:

$ adb shell pm list permissions -s

All Permissions:

Network communication: view Wi-Fi state, create Bluetooth connections, full internet

access, view network state

Your location: access extra location provider commands, fine (GPS) location, mock

location sources for testing, coarse (network-based) location

Services that cost you money: send SMS messages, directly call phone numbers

...

You can also use the adb -g option to grant all permissions automatically when

installing an app on an emulator or test device:

$ adb shell install -g MyApp.apk

Check your progress-2

 Which of the following is a protection level that affects third-party apps?

(A) Normal (B) Signature (C) Dangerous (D) All of these

 SEND_SMS is ____________ type of permission

(A) Normal (B) Signature (C) Dangerous (D) All of these

 READ_VOICEMAIL is ____________ type of permission

(A) Normal (B) Signature (C) Dangerous (D) All of these

d) SET_WALLPAPER is ____________ type of permission

(A) Normal (B) Signature (C) Dangerous (D) All of these

4.8 Let us sum up

In this unit you have learned about permission, different types of permissions, how to

define custom permission and various permission protection levels that affect third-

party apps.

4.9 Check your Progress: Possible Answers

1-a) The purpose of a permission is to protect the privacy of an Android user

1-b) False

1-c) <uses-permission>

1-d) (C) Either (A) or (B)

1-e) True

2-a) (D) All of these

2-b) (C) Dangerous

2-c) (B) Signature

2-d) (A) Normal

4.10 Further Reading

 https://developer.android.com/training/permissions/usage-notes

 https://developer.android.com/guide/topics/permissions/default-handlers

 https://developer.android.com/guide/topics/permissions/defining

4.11 Assignment

 Write detailed note on permissions

 Explain permissions for optional hardware features

 Explain Permission Protection levels in details

4.12 Activity

 Check the permissions used by different Apps installed in your Android Mobile

and remove any unnecessary permission granted.

Unit-5: Application Resources

Unit Structure

3.0 Learning Objectives

5.1 Introduction

5.2 What are resources?

5.3 Resource Directory Hierarchy

5.4 Resource Value Types

5.5 Storing Different Resource Value Types

5.6 Accessing Resource Programmatically

5.7 Referencing System Resources

5.8 Let us sum up

5.9 Check your Progress: Possible Answers

5.10 Further Reading

5.11 Assignment

5.12 Activity

5

5.0 Learning Objectives

After studying this unit student should be able to learn:

 Define Application Resources

 List different types of resources

 Understand resource directory hierarchy within android project

 How resources are stored

 Access user resources and system resources programmatically.

5.1 Introduction

Resources are the additional files and static content that your code uses, such as

bitmaps, layout definitions, user interface strings, animation instructions, and more.

You should always externalize app resources such as images and strings from your

code, so that you can maintain them independently. You should also provide

alternative resources for specific device configurations, by grouping them in

specially-named resource directories. At runtime, Android uses the appropriate

resource based on the current configuration. For example, you might want to provide

a different UI layout depending on the screen size or different strings depending on

the language setting.

Once you externalize your app resources, you can access them using resource IDs

that are generated in your project's R class. This document shows you how to group

your resources in your Android project and provide alternative resources for specific

device configurations, and then access them from your app code or other XML files.

The well-written application accesses its resources programmatically instead of hard

coding them into the source code. This is done for a variety of reasons. Storing

application resources in a single place is a more organized approach to development

and makes the code more readable and maintainable. Externalizing resources such

as strings makes it easier to localize applications for different languages and

geographic regions.

5.2 What are resources?

All Android applications are composed of two things: functionality (code instructions)

and data (resources).The functionality is the code that determines how your

application behaves. This includes any algorithms that make the application run.

Resources include text strings, images and icons, audio files, videos, and other data

used by the application. Android resource files are stored separately from the java

class files in the Android project. Most common resource types are stored in

XML.You can also store raw data files

5.3 Resource Directory Hierarchy

Resources are organized in a strict directory hierarchy within the Android project. All

resources must be stored under the /res project directory in specially named

subdirectories that must be lowercase. Different resource types are stored in

different directories. The resource sub-directories generated when you create an

Android project are shown in below.

Figure-60: Resource Hierarchy

Each resource type corresponds to a specific resource subdirectory name. For

example, all graphics are stored under the /res/drawable directory structure.

Resources can be further organized in a variety of ways using even more specially

named directory qualifiers.

For example, the /res/drawable-hdpi directory stores graphics for high-density

screens, the /res/drawable-ldpi directory stores graphics for low-density screens, and

the /res/drawable-mdpi directory stores graphics for medium-density screens. If you

had a graphic resource that was shared by all screens, you would simply store that

resource in the /res/drawable directory.

5.4 Resource Value Types

Android applications rely on many different types of resources such as text strings,

graphics, and color schemes for user interface design.

These resources are stored in the /res directory of your Android project in a strict

(but reasonably flexible) set of directories and files. All resources filenames must be

lowercase and simple (letters, numbers, and underscores only).

The resource types supported by the Android SDK and how they are stored within

the project are shown in table below

Resource Type Directory Filename XML Tag

Strings /res/values/ strings.xml <string>

String

Pluralization

/res/values/ strings.xml <plurals>, <item>

Arrays of Strings /res/values/ strings.xml <string-array>, <item>

Booleans /res/values/ bools.xml <bool>

Colors /res/values/ Colors.xml <color>

Color State Lists /res/color/ Examples include

buttonstates.xml

indicators.xml

<selector>, <item>

Dimensions /res/values/ Dimens.xml <dimen>

Resource Type Directory Filename XML Tag

Integers /res/values/ integers.xml <integer>

Arrays of Integers /res/values/ integers.xml <integer-array>,<item>

Mixed-Type Arrays /res/values/ Arrays.xml <array>, <item>

Simple Drawables /res/values/ drawables.xml <drawable>

Graphics /res/drawable/ Examples include

icon.png logo.jpg

Supported graphics files

or drawable definition

XML files such as

shapes.

Tweened

Animations

/res/anim/ Examples include

fadesequence.xml

spinsequence.xml

<set>, <alpha>,

<scale>, <translate>,

<rotate>

Frame-by-Frame

Animations

/res/drawable/ Examples include

sequence1.xml

sequence2.xml

<animation-list>,

<item>

Menus /res/menu/ Examples include

mainmenu.xml

helpmenu.xml

<menu>

XML Files /res/xml/ Examples include

data.xml

data2.xml

Defined by the

developer

Raw Files /res/raw/ Examples include

jingle.mp3

somevideo.mp4

helptext.txt

Defined by the

developer

Layouts /res/layout/ Examples include

main.xml

help.xml

Varies. Must be a layout

control.

Styles and Themes /res/values/ styles.xml

themes.xml

<style>

Table-17

5.5 Storing Different Resource Value Types

Storing Simple Resource Types Such as Strings

Simple resource value types, such as strings, colors, dimensions, and other

primitives, are stored under the /res/values project directory in XML files. Each

resource file under the /res/values directory should begin with the following XML

header:

-

Next comes the root node <resources> followed by the specific resource element

types such as <string> or <color>. Each resource is defined using a different element

name. Although the XML file names are arbitrary, the best practice is to store your

resources in separate files to reflect their types, such as strings.xml, colors.xml, and

so on. However,

resource files for a given type, such as two separate xml files called

bright_colors.xml and muted_colors.xml, if they so choose.

Storing Graphics, Animations, Menus, and Files

In addition to simple resource types stored in the /res/values directory, you can also

store numerous other types of resources, such as animation sequences, graphics,

arbitrary XML files, and raw files. These types of resources are not stored in the

/res/values directory, but instead stored in specially named directories according to

their type. For example, you can include animation sequence definitions in the

/res/anim directory. Make sure you name resource files appropriately because the

resource name is derived from the filename of the specific resource. For example, a

file called flag.png in the /res/drawable directory is given the name R.drawable.flag.

5.6 Accessing Resource Programmatically

When android application is compiled, a R class gets generated, which contains

resource IDs for all the resources available in your res/ directory. You can use R

class to access that resource using sub-directory and resource name or directly

resource ID.

During your application development you will need to access defined resources

either in your code, or in your layout XML files. Following section explains how to

access your resources in both the scenarios.

Example-1: To access res/drawable/myimage.png and set an ImageView you will

use followi

ImageView imageView = (ImageView) findViewById(R.id.myimageview);

imageView.setImageResource(R.drawable.myimage);

Here first line of the code make use of R.id.myimageview to get ImageView defined

with id myimageview in a Layout file. Second line of code makes use of

R.drawable.myimage to get an image with name myimage available in drawable sub-

directory under /res.

Example-2: Consider next example where res/values/strings.xml has following

definition:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="hello">Hello, World!</string>

</resources>

Now you can set the text on a TextView object with ID msg using a resource ID as

follows:

TextView msgTextView = (TextView) findViewById(R.id.msg);

msgTextView.setText(R.string.hello);

Example-3: Consider a layout res/layout/activity_main.xml with the following

definition

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a TextView" />

 <Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a Button" />

</LinearLayout>

This application code will load this layout for an Activity, in the onCreate() method as

follows:

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

}

Accessing Resources in XML Layout

Consider the following resource XML res/values/strings.xml file that includes a color

resource and a string resource:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <color name="opaque_red">#f00</color>

 <string name="hello">Hello!</string>

</resources>

Now you can use these resources in the following layout file to set the text color and

text string as follows:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:textColor="@color/opaque_red"

 android:text="@string/hello" />

5.7 Referencing System Resources

You can access system resources in addition to your own resources. The android

package contains all kinds of resources, which you can browse by looking in the

android.R subclasses. Here you find system resources for

 Animation sequences for fading in and out

 Arrays of email/phone types (home, work, and such)

 Standard system colors

 Dimensions for application thumbnails and icons

 Many commonly used drawable and layout types

 Error strings and standard button text

 System styles and themes

You can reference system resources the same way you use your own; set the

package name to android. For example, to set the background to the system color

for darker gray, you set the appropriate background color attribute to

@android:color/darker_gray.

resources. Instead

resources under the android.R class.

Check your progress-1

a) All Android applications is composed of ___________

(A) Functionality (B) Data (C) Both A and B (D) Neither A nor B

b) You should always externalize app resources from your code, so that you can

maintain them independently (True/False)

c) You can use R class to access that resource using sub-directory and resource

name or directly resource ID. (True/False)

d) You cannot store resources, such as animation sequences, graphics, arbitrary

XML files, and raw files. (True/False)

e) All resources filenames must be in uppercase and simple (True/False)

f) Different resource types are stored in different directories (True/False)

g) You can access system

resources. (True/False)

 5.8 Let us sum up

Android applications rely on various types of resources, including strings, string

arrays, colors, dimensions, drawable objects, graphics, animation sequences,

layouts, styles, and themes. Resources can also be raw files. Many of these

resources are defined with XML and organized into specially named project

directories. Both default and alternative resources can be defined using this resource

hierarchy.

Resources are compiled and accessed using the R.java class file, which is

automatically generated when the application resources are compiled. Developers

access application and system resources programmatically using this special class.

5.9 Check your Progress: Possible Answers

1-a) Both A and B 1-b) True 1-c) True

1-d) False 1-e) False 1-f) True

1-g) True

5.10 Further Reading

 https://developer.android.com/reference/android/content/res/Resources

 https://developer.android.com/guide/topics/resources/providing-resources

5.11 Assignment

 What are resources?

 Explain Resource Directory Hierarchy

 How can we reference the system resources?

 Explain with example how can we access resource programmatically?

5.12 Activity

 Create String Resource for Title and Welcome message for Main Activity and use

it at design time and programmatically to set at runtime.

Block-4
Android User

Interface Design

Unit-1: Basic User Interface
Screen elements

Unit Structure

1.0. Learning Objectives

1.1. Introduction

1.2. Introduction to Views, Controls and Layout

1.3. TextView

1.4. EditText

1.5. AutoCompleteTextView

1.6. Spinner

1.7. Buttons

1.8. Check Boxes

1.9. Radio Groups

1.10. Pickers

1.11. Let us sum up

1.12. Check your Progress: Possible Answers

1.13. Further Reading

1.14. Activities

1

1.0 Learning Objective

After studying this unit you will be able to learn

 The user interface elements available within the Android Software Development

Kit (SDK).

 Uses of various user interface elements

 How to use a variety of different components and controls to build a screen

 How your application can listen for various actions performed by the user.

 How to style controls and apply themes to entire screens.

1.1 Introduction

Most Android applications inevitably need some form of user interface. In this unit,

we will discuss the user interface elements available within the Android Software

Development Kit (SDK). Some of these elements display information to the user,

whereas others gather information from the user.

You learn how to use a variety of different components and controls to build a screen

and how your application can listen for various actions performed by the user.

Finally, you learn how to style controls and apply themes to entire screens.

1.2 Introduction to Views, Controls and Layout

Before we go any further, we need to define a few terms. This gives you a better

understanding of certain capabilities provided by the Android SDK before they are

fully introduced. class.

Introduction to Android Views

This class represents the basic building block for user interface components. A View

occupies a rectangular area on the screen and is responsible for drawing and event

handling. View is the base class for widgets, which are used to create interactive UI

components (buttons, text fields, etc.). The ViewGroup subclass is the base class for

layouts, which are invisible containers that hold other Views (or other ViewGroups)

and define their layout properties.

All of the views in a window are arranged in a single tree. You can add views either

from code or by specifying a tree of views in one or more XML layout files. There are

many specialized subclasses of views that act as controls or are capable of

displaying text, images, or other content.

Once you have created a tree of views, there are typically a few types of common

operations you may wish to perform:

Set properties: for example setting the text of a TextView. The available properties

and the methods that set them will vary among the different subclasses of views.

Note that properties that are known at build time can be set in the XML layout files.

Set focus: The framework will handle moving focus in response to user input. To

force focus to a specific view, call requestFocus().

Set up listeners: Views allow clients to set listeners that will be notified when

something interesting happens to the view. For example, all views will let you set a

listener to be notified when the view gains or loses focus. You can register such a

listener using setOnFocusChangeListener(android.view.View.OnFocusChangeListener).

Other view subclasses offer more specialized listeners. For example, a Button

exposes a listener to notify clients when the button is clicked.

Set visibility: You can hide or show views using setVisibility(int).

Introduction to Android Controls

The Android SDK contains a Java package named android.widget. When we refer to

controls, we are typically referring to a class within this package.The Android SDK

includes classes to draw most common objects, including ImageView, FrameLayout,

EditText, and Button classes. All controls are typically derived from the View class.

We cover many of these basic controls in detail.

Introduction to Android Layout

One special type of control found within the android.widget package is called a

layout. draw anything

specific on the screen. Instead, it is a parent container for organizing other controls

(children). Layout controls determine how and where on the screen child controls are

drawn. Each type of layout control draws its children using particular rules. For

instance, the LinearLayout control draws its child controls in a single horizontal row

or a single vertical column. Similarly, a TableLayout control displays each child

control in tabular format (in cells within specific rows and columns).

By necessity, we use some of the layout View objects within this unit to illustrate how

to use the controls previously mentioned.

various layout types available as part of the Android SDK until the next unit. We will

lean in more details about layout in next unit.

1.3 TextView

TextView is a user interface element that displays text to the user. Following table

shows important XML Attributes of TextView control.

Attribute Description

id id is an attribute used to uniquely identify a text view

gravity The gravity attribute is an optional attribute which is used to control the

alignment of the text like left, right, center, top, bottom, center_vertical,

center_horizontal etc.

text text attribute is used to set the text in a text view.

textColor textColor attribute is used to set the text color of a text view. Color

textSize textSize attribute is used to set the size of text of a text view. We can

set the text size in sp(scale independent pixel) or dp(density pixel).

textStyle textStyle attribute is used to set the text style of a text view. The

possible text styles are bold, italic and normal.

background background attribute is used to set the background of a text view. We

can set a color or a drawable in the background of a text view

padding padding attribute is used to set the padding from left, right, top or

bottom.

Table-18

The following code sample shows a typical use, with an XML layout and code to

modify the contents of the text view:

 <LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <TextView

android:id="@+id/text_view_id"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="This is TextView"

android:layout_centerInParent="true"

android:textSize="35sp"

android:padding="15dp"

android:textColor="#aaa"

android:background="#fff"/>

</LinearLayout>

This code sample demonstrates how to modify the contents of the text view defined

in the previous XML layout:

 public class MainActivity extends Activity {

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 final TextView helloTextView = (TextView) findViewById(R.id.text_view_id);

 helloTextView.setText(R.string.user_greeting);

 }

 }

To display this TextView on the screen, all your Activity needs to do is call the

setContentView() method with the layout resource identifier in which you defined in

the preceding XML shown.

You can change the text displayed programmatically by calling the setText() method

on the TextView object. Retrieving the text is done with the getText() method. To

customize the appearance of TextView we can use Styles and Themes.

1.4 EditText

EditText is a user interface element for entering and modifying text. Following table

shows important XML Attributes of EditText control.

Attribute Description

id This is an attribute used to uniquely identify an edit text

gravity The gravity attribute is an optional attribute which is used to control

the alignment of the text like left, right, center, top, bottom,

center_vertical, center_horizontal etc.

text This attribute is used to set the text in a text view.

hint It is an attribute used to set the hint i.e. what you want user to enter in

this edit text. Whenever user start to type in edit text the hint will

automatically disappear.

lines Defines how many lines tall the input box is. If this is not set, the entry

field grows as the user enters text.

textColorHint It is an attribute used to set the color of displayed hint.

textColor This attribute is used to set the text color of a edit text. Color value is

textSize This attribute is used to set the size of text of a edit text. We can set

the text size in sp(scale independent pixel) or dp(density pixel).

textStyle This attribute is used to set the text style of a edit text. The possible

text styles are bold, italic and normal.

background This attribute is used to set the background of a edit text. We can set

a color or a drawable in the background of a edit text

padding Padding attribute is used to set the padding from left, right, top or

bottom.

Table-19

Following layout code shows a basic EditText element.

<EditText

txtName

Full Name

The EditText object is essentially an editable TextView. You can read text from it in

by using the getText() method. You can also set initial text to draw in the text entry

area using the setText() method. You can also highlight a portion of the text from

code by call to setSelection() method and a call to selectAll() method highlights the

entire text entry field.

By default, the user can perform a long press to bring up a context menu. This

provides to the user some basic copy, cut, and paste operations as well as the ability

to

used words. You can set the editable attribute to false, so the user cannot edit the

text in the field but can still copy text out of it using a long press.

1.5 AutoCompleteTextView

In Android, AutoCompleteTextView is a view i.e. similar to EditText, except that it

displays a list of completion suggestions automatically while the user is typing. A list

of suggestions is displayed in drop down menu from which user can choose an item

which actually replace the content of EditBox with that.

It is a subclass of EditText class so we can inherit all the properties of EditText in a

AutoCompleteTextView.

Following layout code shows a basic AutoCompleteTextView element.

<AutoCompleteTextView

android:id="@+id/ac"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text=" Auto Suggestions EditText"/>

To display the Array content in an AutoCompleteTextView we need to implement

Adapter. In AutoCompleteTextView we mainly display text values so we use Array

Adapter for that. ArrayAdapter is used when we need list of single type of items

which is backed by an Array. For example, list of phone contacts, countries or

names.

ArrayAdapter(Context context, int resource, int textViewResourceId, T[] objects)

AutoCompleteTextView ac = (AutoCompleteTextView) findViewById(R.id.ac);

Following code retrieve the value from a AutoCompleteTextView in Java class.

String v = ac.getText().toString();

Check your progress-1

a) Which class represents the basic building block for user interface components?

(A) View (B) ViewGroup (C) TextView (D) EditText

b) Which subclass is the base class for layouts?

(A) View (B) ViewGroup (C) TextView (D) EditText

c) You can add views from __________

(A) Code (B) XML Layout file (C) Either (A) or (B) (D) Neither (A) nor (B)

d) __________ is a user interface element that displays text to the user

 (A) Label (B) EditText (C) TextBox (D) TextView

e) ___________is a user interface element for entering and modifying text.

 (A) Label (B) EditText (C) TextBox (D) TextView

f) AutoCompleteTextView is a view i.e. similar to ________except that it displays a

list of completion suggestions automatically while the user is typing.

1.6 Spinner

In Android, Spinner provides a quick way to select one value from a set of values. It

is similar to dropdown list in other programming language. In a default state, a

spinner shows its currently selected value. It provides an easy way to select a value

from a known set. Following table shows important XML Attributes of spinner control.

Attribute Description

dropDownHorizontalOffset Amount of pixels by which the drop down should be
offset horizontally.

dropDownSelector List selector to use for spinnerMode="dropdown"
display.

May be a reference to another resource, in the form
"@[+][package:]type/name" or a theme attribute in the
form "?[package:]type/name".

May be a color value, in the form of "#rgb", "#argb",
"#rrggbb", or "#aarrggbb".

dropDownVerticalOffset Amount of pixels by which the drop down should be
offset vertically.

dropDownWidth Width of the dropdown in spinnerMode="dropdown".
gravity Gravity setting for positioning the currently selected

item.
popupBackground Background drawable to use for the dropdown in

spinnerMode="dropdown".
prompt The prompt to display when the spinner's dialog is

shown.
spinnerMode Display mode for spinner options. Must be one of the

following constant values.

Constant Value Description

dialog 0 Spinner options will be presented to

the user as a dialog window.

dropdown 1 Spinner options will be presented to

the user as an inline dropdown

anchored to the spinner widget itself.

Table-20

As with the auto-complete method, the possible choices for a spinner can come from

an Adapter. You can also set the available choices in the layout definition by using

the entries attribute with an array resource. Following is an XML layout for showing

spinner

<Spinner

android:layout

This places a Spinner control on the screen. When the user selects it, a pop-up

shows the prompt text followed by a list of the possible choices. This list allows only

a single item to be selected at a time, and when one is selected, the pop-up goes

away.

First, the entries attribute is set to the values that shows by assigning it to an array

resource, referred to here as @array/colors.

Populate the Spinner with User Choices

The choices you provide for the spinner can come from any source, but must be

provided through a SpinnerAdapter, such as an ArrayAdapter if the choices are

available in an array or a CursorAdapter if the choices are available from a database

query.

For instance, if the available choices for your spinner are pre-determined, you can

provide them with a string array defined in a string resource file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="planets_array">
 <item>Mercury</item>
 <item>Venus</item>
 <item>Earth</item>
 <item>Mars</item>
 <item>Jupiter</item>
 <item>Saturn</item>
 <item>Uranus</item>
 <item>Neptune</item>
 </string-array>
</resources>

With an array such as this one, you can use the following code in

your Activity or Fragment to supply the spinner with the array using an instance

of ArrayAdapter:

Spinner spinner = (Spinner) findViewById(R.id.spinner);

// Create an ArrayAdapter using the string array and a default spinner layout

ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,

R.array.planets_array, android.R.layout.simple_spinner_item);

// Specify the layout to use when the list of choices appears

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_ite

m);

// Apply the adapter to the spinner

spinner.setAdapter(adapter);

The createFromResource() method allows you to create an ArrayAdapter from the

string array. The third argument for this method is a layout resource that defines how

the selected choice appears in the spinner control. The simple_spinner_item layout

is provided by the platform and is the default layout you should use unless you'd like

to define your own layout for the spinner's appearance.

You should then call setDropDownViewResource(int) to specify the layout the

adapter should use to display the list of spinner choices.

Call setAdapter() to apply the adapter to your Spinner.

Responding to User Selections

When the user selects an item from the drop-down, the Spinner object receives an

on-item-selected event.

To define the selection event handler for a spinner, implement the

AdapterView.OnItemSelectedListener interface and the corresponding

onItemSelected() callback method. For example, here's an implementation of the

interface in an Activity:

public class SpinnerActivity extends Activity implements OnItemSelectedListener {
 ...

 public void onItemSelected(AdapterView<?> parent, View view,
 int pos, long id) {
 // An item was selected. You can retrieve the selected item using
 // parent.getItemAtPosition(pos)
 }

 public void onNothingSelected(AdapterView<?> parent) {
 // Another interface callback
 }
}

The AdapterView.OnItemSelectedListener requires the onItemSelected() and

onNothingSelected() callback methods.

Then you need to specify the interface implementation by calling

setOnItemSelectedListener():

Spinner spinner = (Spinner) findViewById(R.id.spinner);

spinner.setOnItemSelectedListener(this);

If you implement the AdapterView.OnItemSelectedListener interface with your

Activity or Fragment (such as in the example above), you can pass this as the

interface instance.

1.7 Button

A user interface element the user can tap or click to perform an action. To display a

button in an activity, add a button to the activity's layout XML file:

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/button_text"

android:drawableLeft="@drawable/button_icon"

... />

To specify an action when the button is pressed, set a click listener on the button

object in the corresponding activity code:

Figure-61

public class MyActivity extends Activity {

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.content_layout_id);

 final Button button = findViewById(R.id.button_id);

 button.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 // Code here executes on main thread after user presses button

 }

 });

 }

}

The above snippet creates an instance of View.OnClickListener and wires the

listener to the button using setOnClickListener(View.OnClickListener). As a result,

the system executes the code you write in onClick(View) after the user presses the

button.

Every button is styled using the system's default button background, which is often

different from one version of the platform to another. If you are not satisfied with the

default button style, you can customize it.

1.8 Checkbox

A checkbox is a specific type of two-states button that can be either checked or

unchecked.

Figure-62

To create each checkbox option, create a CheckBox in your layout. Because a set of

checkbox options allows the user to select multiple items, each checkbox is

managed separately and you must register a click listener for each one.

Responding to Click Events

When the user selects a checkbox, the CheckBox object receives an on-click event.

To define the click event handler for a checkbox, add the android:onClick attribute to

the <CheckBox> element in your XML layout. The value for this attribute must be the

name of the method you want to call in response to a click event. The Activity

hosting the layout must then implement the corresponding method.

For example, here are a couple CheckBox objects in a list:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <CheckBox android:id="@+id/checkbox_meat"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/meat"

 android:onClick="onCheckboxClicked"/>

 <CheckBox android:id="@+id/checkbox_cheese"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/cheese"

 android:onClick="onCheckboxClicked"/>

</LinearLayout>

Within the Activity that hosts this layout, the following method handles the click event

for both checkboxes:

public void onCheckboxClicked(View view) {
 // Is the view now checked?
 boolean checked = ((CheckBox) view).isChecked();

 // Check which checkbox was clicked
 switch(view.getId()) {
 case R.id.checkbox_meat:
 if (checked)
 // Put some meat on the sandwich
 else
 // Remove the meat
 break;
 case R.id.checkbox_cheese:
 if (checked)
 // Cheese me
 else
 // I'm lactose intolerant
 break;
 // TODO: Veggie sandwich

 }
}

1.9 Radio Button

Radio buttons allow the user to select one option from a set. You should use radio

buttons for optional sets that are mutually exclusive if you think that the user needs

to see all available options side-by-side. If it's not necessary to show all options side-

by-side, use a spinner instead.

Figure-63

To create each radio button option, create a RadioButton in your layout. However,

because radio buttons are mutually exclusive, you must group them together inside a

RadioGroup. By grouping them together, the system ensures that only one radio

button can be selected at a time.

Responding to Click Events

When the user selects one of the radio buttons, the corresponding RadioButton

object receives an on-click event.

To define the click event handler for a button, add the android:onClick attribute to the

<RadioButton> element in your XML layout. The value for this attribute must be the

name of the method you want to call in response to a click event. The Activity

hosting the layout must then implement the corresponding method.

For example, here are a couple RadioButton objects:

<?xml version="1.0" encoding="utf-8"?>

<RadioGroup xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical">

 <RadioButton android:id="@+id/radio_pirates"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/pirates"

 android:onClick="onRadioButtonClicked"/>

 <RadioButton android:id="@+id/radio_ninjas"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/ninjas"

 android:onClick="onRadioButtonClicked"/>

</RadioGroup>

Within the Activity that hosts this layout, the following method handles the click event

for both radio buttons:

public void onRadioButtonClicked(View view) {

 // Is the button now checked?

 boolean checked = ((RadioButton) view).isChecked();

 // Check which radio button was clicked

 switch(view.getId()) {

 case R.id.radio_pirates:

 if (checked)

 // Pirates are the best

 break;

 case R.id.radio_ninjas:

 if (checked)

 // Ninjas rule

 break;

 }

}

1.10 Pickers

Android provides controls for the user to pick a time or pick a date as ready-to-use

dialogs. Each picker provides controls for selecting each part of the time (hour,

minute, AM/PM) or date (month, day, year). Using these pickers helps ensure that

your users can pick a time or date that is valid, formatted correctly, and adjusted to

the user's locale.

Figure-64

It is recommended that you use DialogFragment to host each time or date picker.

The DialogFragment manages the dialog lifecycle for you and allows you to display

the pickers in different layout configurations, such as in a basic dialog on handsets or

as an embedded part of the layout on large screens.

Creating a Time Picker

To display a TimePickerDialog using DialogFragment, you need to define a fragment

class that extends DialogFragment and return a TimePickerDialog from the

fragment's onCreateDialog() method.

Extending DialogFragment for a time picker

To define a DialogFragment for a TimePickerDialog, you must:

Define the onCreateDialog() method to return an instance of TimePickerDialog

Implement the TimePickerDialog.OnTimeSetListener interface to receive a

callback when the user sets the time.

Here's an example:

public static class TimePickerFragment extends DialogFragment

 implements TimePickerDialog.OnTimeSetListener {

 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // Use the current time as the default values for the picker

 final Calendar c = Calendar.getInstance();

 int hour = c.get(Calendar.HOUR_OF_DAY);

 int minute = c.get(Calendar.MINUTE);

 // Create a new instance of TimePickerDialog and return it

 return new TimePickerDialog(getActivity(), this, hour, minute,

 DateFormat.is24HourFormat(getActivity()));

 }

 public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

 // Do something with the time chosen by the user

 }

}

Showing the time picker

Once you've defined a DialogFragment like the one shown above, you can display

the time picker by creating an instance of the DialogFragment and calling show().

For example, here's a button that, when clicked, calls a method to show the dialog:

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/pick_time"

 android:onClick="showTimePickerDialog" />

When the user clicks this button, the system calls the following method:

public void showTimePickerDialog(View v) {

 DialogFragment newFragment = new TimePickerFragment();

 newFragment.show(getSupportFragmentManager(), "timePicker");

}

This method calls show() on a new instance of the DialogFragment defined above.

The show() method requires an instance of FragmentManager and a unique tag

name for the fragment.

Creating a Date Picker

Creating a DatePickerDialog is just like creating a TimePickerDialog. The only

difference is the dialog you create for the fragment.

To display a DatePickerDialog using DialogFragment, you need to define a fragment

class that extends DialogFragment and return a DatePickerDialog from the

fragment's onCreateDialog() method.

Extending DialogFragment for a date picker

To define a DialogFragment for a DatePickerDialog, you must:

 Define the onCreateDialog() method to return an instance of DatePickerDialog

 Implement the DatePickerDialog.OnDateSetListener interface to receive a

callback when the user sets the date.

Here's an example:

public static class DatePickerFragment extends DialogFragment

 implements DatePickerDialog.OnDateSetListener {

 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // Use the current date as the default date in the picker

 final Calendar c = Calendar.getInstance();

 int year = c.get(Calendar.YEAR);

 int month = c.get(Calendar.MONTH);

 int day = c.get(Calendar.DAY_OF_MONTH);

 // Create a new instance of DatePickerDialog and return it

 return new DatePickerDialog(getActivity(), this, year, month, day);

 }

 public void onDateSet(DatePicker view, int year, int month, int day) {

 // Do something with the date chosen by the user

 }

}

Showing the date picker

Once you've defined a DialogFragment like the one shown above, you can display

the date picker by creating an instance of the DialogFragment and calling show().

For example, here's a button that, when clicked, calls a method to show the dialog:

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/pick_date"

 android:onClick="showDatePickerDialog" />

When the user clicks this button, the system calls the following method:

public void showDatePickerDialog(View v) {

 DialogFragment newFragment = new DatePickerFragment();

 newFragment.show(getSupportFragmentManager(), "datePicker");

}

This method calls show() on a new instance of the DialogFragment defined above.

The show() method requires an instance of Fragment Manager and a unique tag

name for the fragment.

Check your progress-2

a) __________ provides a quick way to select one value from a set of values from

drop down list?

(A) Button (B) Checkbox (C) EditText (D) Spinner

b) When the user selects an item from the drop-down, the Spinner object receives

an ___________ event.

c) When the user selects a checkbox, the Checkbox object receives an on-click

event. (True/False)

d) Android provides controls for the user to pick a ______as ready-to-use dialogs.

(A) Date (B) Time (C) Date or Time (D) None of these

e) Radio buttons allow the user to select many options from a set. (True/False)

f) Every button is styled using the system's default button background, which is

often different from one version of the platform to another. (True/False)

1.11 Let us sum up

In this unit you have learned about user interface elements available within the

Android Software Development Kit (SDK). We have discussed use of various user

interface elements and use of different components and controls to build a screen,

this unit also explains about how application can listen for various actions performed

by the user and how to apply style controls and themes to entire screens.

1.12 Check your Progress: Possible Answers

1-a) (A) View 1-b) (B) View Group 1-c) (C) Either (A) or (B)

1-d) (D) TextView 1-e) (B) EditText 1-f) (B) EditText

2-a) (D) Spinner 2-b) on-item-selected 2-c) True

2-d) (C) Date or Time 2-e) False 2-f) True

1.13 Further Reading

 https://developer.android.com/reference/android/widget/TextView

 https://developer.android.com/reference/android/widget/EditText

 https://developer.android.com/reference/android/widget/Button

 https://developer.android.com/reference/android/widget/CheckBox

 https://developer.android.com/reference/android/widget/Spinner

1.14 Assignment

 Write short note on EditText

 Explain the use of TextView, EditText, Button, Checkbox, Spinner, Radio Button.

 What is difference between checkbox and radio button

1.15 Activity

 Write an application to demonstrate use of user interface element you have

learned in this unit.

Unit-2: Designing User
Interfaces with Layouts

Unit Structure

2.0. Learning Objectives

2.1. Introduction

2.2. Creating Layouts Using XML Resources

2.3. Creating Layouts Programmatically

2.4. Built-In Layouts

2.5. Frame Layout

2.6. Linear Layout

2.7. Relative Layout

2.8. Table Layout

2.9. Data Driven Container

2.10. Let us sum up

2.11. Check your Progress: Possible Answers

2.12. Further Reading

2.13. Assignment

2.14. Activity

2

2.0 Learning Objectives

In this unit you learn about

 Layout and its use

 How to create layout using XML

 How to create layout programmatically

 Different types of built in layouts

 Use of List View, Grid View and Gallery view

2.1 Introduction

One special type of control found within the android.widget package is called a

layout. A layout control is still a View object, but it

specific on the screen. Instead, it is a parent container for organizing other controls

(children). Layout controls determine how and where on the screen child controls are

drawn. Each type of layout control draws its children using particular rules. For

instance, the LinearLayout control draws its child controls in a single horizontal row

or a single vertical column. Similarly, a TableLayout control displays each child

control in tabular format (in cells within specific rows and columns).

Application user interfaces can be simple or complex, involving many different

screens or only a few. Layouts and user interface controls can be defined as

application resources or created programmatically at runtime.

2.2. Creating Layouts Using XML Resources

Android provides a simple way to create layout files in XML as resources provided in

the /res/layout project directory. This is the most common and convenient way to

build Android user interfaces and is especially useful for defining static screen

elements and control properties that you know in advance, and to set default

attributes that you can modify programmatically at runtime.

You can configure almost any ViewGroup or View (or View subclass) attribute using

the XML layout resource files.This method greatly simplifies the user interface design

process, moving much of the static creation and layout of user interface controls, and

basic definition of control attributes, to the XML, instead of littering the code.

Developers reserve the ability to alter these layouts programmatically as necessary,

but they can set all the defaults in the XML template. You will recognize the following

as a simple layout file with a LinearLayout and a single TextView control.

<?xml -

<TextView

</LinearLayout>

This block of XML shows a basic layout with a single TextView. The first line, which

you might recognize from most XML files, is required.

Creating only an XML file, t

particular layout is usually associated with a particular Activity. In your default

Android project, there is only one activity, which sets the main.xml layout by default.

To associate the main.xml layout with the activity, use the method call

setContentView() with the identifier of the main.xml layout.The ID of the layout

matches the XML filename without the extension. In this case, the preceding

example came from main.xml, so the identifier of this layout is simply main:

setContentView(R.layout.main);

2.3. Creating Layouts Programmatically

You can create user interface components such as layouts at runtime

programmatically, but

for the odd case rather than the norm. The main reason is because the creation of

layouts programmatically is onerous and difficult to maintain, whereas the XML

resource method is visual, more organized, and could be done by a separate

designer with no Java skills.

The following example shows how to programmatically have an Activity instantiate a

LinearLayout view and place two TextView objects within it. No resources

whatsoever are used; actions are done at runtime instead.

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

TextView text1 = new TextView(this);

TextView text2 = new TextView(this);

text2.setTextSize((float) 60);

LinearLayout ll = new LinearLayout(this);

ll.setOrientation(LinearLayout.VERTICAL);

ll.addView(text1);

ll.addView(text2);

setContentView(ll);

}

The onCreate() method is called when the Activity is created. The first thing this

method does is some normal Activity housekeeping by calling the constructor for the

base class. Next, two TextView controls are instantiated.The Text property of each

TextView is set using the setText() method.All TextView attributes, such as TextSize,

are set by making method calls on the TextView object. These actions perform the

same function that you have in the past by setting the properties Text and TextSize

using the layout resource designer, except these properties are set at runtime

instead of defined in the layout files compiled into your application package.

2.4. Built in layouts

We talked a lot about the LinearLayout layout, but there are several other types of

layouts. Each layout has a different purpose and order in which it displays its child

View controls on the screen. Layouts are derived from android.view.ViewGroup.

The types of layouts built-in to the Android SDK framework include:

 FrameLayout

 LinearLayout

 RelativeLayout

 TableLayout

All layouts, regardless of their type, have basic layout attributes. Layout attributes

apply to any child View within that layout. You can set layout attributes at runtime

programmatically, but ideally you set them in the XML layout files using the following

syntax:

There are several layout attributes that all ViewGroup objects share.These include

size attributes and margin attributes. You can find basic layout attributes in the

ViewGroup.LayoutParams class.The margin attributes enable each child View within

a layout to have padding on each side. Find these attributes in the

ViewGroup.MarginLayoutParams classes. There are also a number of ViewGroup

attributes for handling child View drawing bounds and animation settings.

2.5. Frame Layout

FrameLayout is designed to block out an area on the screen to display a single item.

Generally, FrameLayout should be used to hold a single child view, because it can

be difficult to organize child views in a way that's scalable to different screen sizes

without the children overlapping each other. You can, however, add multiple children

to a FrameLayout and control their position within the FrameLayout by assigning

gravity to each child, using the android:layout_gravity attribute.

Child views are drawn in a stack, with the most recently added child on top. The size

of the FrameLayout is the size of its largest child (plus padding), visible or not (if the

FrameLayout's parent permits). Views that are View.GONE are used for sizing only if

setConsiderGoneChildrenWhenMeasuring() is set to true.

Following Table describes some of the important attributes specific to FrameLayout

views.

Attribute
Name

Applies
To

Description Value

android:

foreground

Parent
view

Drawable to draw
over the content

Drawable resource.

android:

foreground-

Gravity

Parent
view

Gravity of
foreground

drawable.

One or more constants separated

top, bottom, left, right,
center_vertical, fill_vertical,

center_horizontal,

fill_horizontal, center, and fill.

android:

measureAll-

Children

Parent
view

Restrict size of
layout to all child
views or just the
child views set

to VISIBLE (and not
those set to

INVISIBLE).

True or false.

android:

layout_

gravity

Child
view

A gravity constant
that

describes how to
place the child View
within the parent.

One or more constants separated

top, bottom, left, right,

center_vertical, fill_

vertical, center_horizontal,

fill_horizontal, center,

and fill.

Table-21

An Example of FlowLayout is shown below

Figure-65

Check your Progress-1

a) __________controls determine how and where on the screen child controls are

drawn.

b) In _________ layout, Child views are drawn in a stack, with the most recently

added child on top.

(A) Linear (B) Frame (C) Relative (D) Table

c) creation of layouts programmatically is onerous and difficult to maintain

(True/False)

2.6. LinearLayout

A LinearLayout view organizes its child View objects in a single row, shown in Figure

below, or column, depending on whether its orientation attribute is set to horizontal

or vertical. This is a very handy layout method for creating forms.

You can find the layout attributes available for LinearLayout child View objects in

android.control.LinearLayout.LayoutParams. Following table describes some of the

important attributes specific to LinearLayout views.

Attribute
Name

Applies
To

Description Value

android:

orientation

Parent
view

Layout is a single
row (horizontal) or
single column
(vertical).

Horizontal or Vertical

android:

gravity

Parent
view

Gravity of child
views within
layout.

One or more constants
separated by
available are top, bottom, left,
right, center_vertical, fill_vertical,

center_horizontal, fill_horizontal,
center, and fill.

android:

layout_

gravity

Child
View

The gravity for a
specific child view.
Used for
positioning of
views.

One or more constants
separated by
available are top, bottom, left,
right, center_vertical, fill_vertical,

center_horizontal, fill_horizontal,
center, and fill.

android:

layout_

weight

Child
view

The weight for a
specific child view.
Used to provide
ratio of screen

space used within
the parent control.

The sum of values across all
child views in a parent view must
equal 1. For example, one child
control might have a value of .3
and another have a value of .7.

Table-22

An Example of Linear Layout is shown below

Figure-66

2.7. RelativeLayout

The RelativeLayout view enables you to specify where the child view controls are in

relation to each other. For instance, you can set a child View to be positioned

its unique identifier. You can also align child View objects relative to one another or

the parent layout edges. Combining RelativeLayout attributes can simplify creating

interesting user interfaces without resorting to multiple layout groups to achieve a

desired effect. You can find the layout attributes available for RelativeLayout child

View objects in android.control.RelativeLayout.LayoutParams. Following Table

describes some of the important attributes specific to RelativeLayout views.

Attribute Name Applies
To

Description Value

android:gravity Parent
view

Gravity of child views
within layout.

One or more
constants

The constants
available are
top, bottom, left,
right,
center_vertical,
fill_vertical,
center_horizonta
l, fill_horizontal,
center, and fill.

android:

layout_centerInParent

Child
view

Centers child view
horizontally and vertically
within parent view.

True or False

android:

layout_centerHorizontal

Child
view

Centers child view
horizontally within parent
view

True or False

android:

layout_centerVertical

Child
view

Centers child view
vertically within parent
view.

True or False

android:

layout_alignParentTop

Child
view

Aligns child view with top
edge of parent view

True or False

android:

layout_alignParentBott
om

Child
view

Aligns child view with
bottom edge of parent
view.

True or False

Attribute Name Applies
To

Description Value

android:

layout_alignParentLeft

Child
View

Aligns child view with left
edge of parent view.

True or False

android:

layout_alignParentRigh
t

Child
View

Aligns child view with right
edge of parent view.

True or False

android:

layout_alignRight

Child
View

Aligns child view with right
edge of another child view,
specified by ID.

A view ID;

for example,

@id/Button1

android:

layout_alignLeft

Child
View

Aligns child view with left
edge of another child view,
specified by ID.

A view ID;

for example,

@id/Button1

android:

layout_alignTop

Child
View

 A view ID;

for example,

@id/Button1

android:

layout_alignBottom

Child
View

 A view ID;

for example,

@id/Button1

android:

layout_above

Child
View

Positions bottom edge of
child view above another
child view, specified by ID.

A view ID;

for example,

@id/Button1

android:

layout_below

Child
View

Positions top edge of child
view below another child
view, specified by ID.

A view ID;

for example,

@id/Button1

android:

layout_toLeftOf

Child
View

Positions right edge of
child view to the left of
another child view,
specified by ID.

A view ID;

for example,

@id/Button1

android:

layout_toRightOf

Child
View

Positions left edge of child
view to the right of another
child view, specified by ID.

A view ID;

for example,

@id/Button1

Table-23

Following figure shows how each of the button controls is relative to each other.

Figure-67

View objects, a Button object aligned relative to its parent, and an ImageView

aligned and positioned relative to the Button (and the parent):

-

<RelativeLayout xmlns:android=

<Button

<ImageView

</RelativeLayout>

2.8. TableLayout

A TableLayout view organizes children into rows, as shown in following Figure-68.

You add individual View objects within each row of the table using a TableRow

layout View (which is basically a horizontally oriented LinearLayout) for each row of

the table. Each column of the TableRow can contain one View (or layout with child

View objects).You place View items added to a TableRow in columns in the order

they are added. You can specify the column number (zero-based) to skip columns as

necessary (the bottom row shown in above figure demonstrates this); otherwise, the

View object is put in the next column to the right. Columns scale to the size of the

largest View of that column. You can also include normal View objects instead of

TableRow elements, if you want the View to take up an entire row.

Figure-68

You can find the layout attributes available for TableLayout child View objects in

android.control.TableLayout.LayoutParams.You can find the layout attributes

available for TableRow child View objects in

android.control.TableRow.LayoutParams. Following Table describes some of the

important attributes specific to TableLayout View objects.

Attribute Name Applies To Description Value

android:

collapseColumns

TableLayout A comma-delimited

list of column indices

to collapse (0-based)

String or string

resource. For

android:

shrinkColumns

TableLayout A comma-delimited

list of column indices

to shrink (0-based)

String or string

resource.

for all columns.

For example,

andriod:

stretchColumns

TableLayout A comma-delimited

list of column indices

to stretch (0-based)

String or string

resource.

for all columns.

For example,

android:

layout_column

TableRow

child view

Index of column this

child view should be

displayed in (0-based)

Integer or integer

resource. For

example, 1

android:

layout_span

TableRow

child view

Number of columns

this child view should

span across

Integer or integer

resource greater

than or equal to 1.

For example, 3

Table-24

two rows (two

TableRow child objects).The TableLayout is set to stretch the columns to the size of

the screen width. The first TableRow has three columns; each cell has a Button

object. The second TableRow puts only one Button view into the second column

explicitly:

<TableRow

<Button

<Button

<Button

</TableRow>

<TableRow

<Button

</TableRow>

</TableLayout>

2.9 Using Data-Driven Containers

Some of the View container controls are designed for displaying repetitive View

objects in a particular way. Examples of this type of View container control include

ListView, GridView, and GalleryView:

 ListView: Contains a vertically scrolling, horizontally filled list of View objects,

each of which typically contains a row of data; the user can choose an item to

perform some action upon.

 GridView: Contains a grid of View objects, with a specific number of columns; this

container is often used with image icons; the user can choose an item to perform

some action upon.

 GalleryView: Contains a horizontally scrolling list of View objects, also often used

with image icons; the user can select an item to perform some action upon.

These containers are all types of AdapterView controls. An AdapterView control

contains a set of child View controls to display data from some data source. An

Adapter generates these child View controls from a data source. As this is an

important part of all these container controls, we talk about the Adapter objects first.

In this section, you learn how to bind data to View objects using Adapter objects. In

the Android SDK, an Adapter reads data from some data source and provides a

View object based on some rules, depending on the type of Adapter used. This View

is used to populate the child View objects of a particular AdapterView.

The most common Adapter classes are the CursorAdapter and the ArrayAdapter.

The CursorAdapter gathers data from a Cursor, whereas the ArrayAdapter gathers

data from an array. A CursorAdapter is a good choice to use when using data from a

database. The ArrayAdapter is a good choice to use when there is only a single

column of data or when the data comes from a resource array.

There are some common elements to know about Adapter objects. When creating

an Adapter, you provide a layout identifier.This layout is the template for filling in

each row of data. The template you create contains identifiers for particular controls

that the Adapter assigns data to.A simple layout can contain as little as a single

TextView control.

When making an Adapter, refer to both the layout resource and the identifier of the

TextView control. The Android SDK provides some common layout resources for use

in your application.

How to Use the Adapter

An ArrayAdapter binds each element of the array to a single View object within the

layout resource. Here is an example of creating an ArrayAdapter:

private String[] items = {

ArrayAdapter adapt = new ArrayAdapter<String> (this, R.layout.textview, items);

In this example, we have a String array called items. This is the array used by the

ArrayAdapter as the source data. We also use a layout resource, which is the View

that is repeated for each item in the array. This is defined as follows:

<TextView xmlns:android=

This layout resource contains only a single TextView. However, you can use a more

complex layout with the constructors that also take the resource identifier of a

TextView within the layout. Each child View within the AdapterView that uses this

Adapter gets one TextView instance with one of the strings from the String array.

If you have an array resource defined, you can also directly set the entries attribute

for an AdapterView to the resource identifier of the array to automatically provide the

ArrayAdapter.

How to use Cursor Adapter

A CursorAdapter binds one or more columns of data to one or more View objects

within the layout resource provided.This is best shown with an example. The

following example demonstrates creating a CursorAdapter by querying the Contacts

content provider. The CursorAdapter requires the use of a Cursor.

Cursor names = managedQuery(Contacts.Phones.CONTENT_URI, null, null, null, null);

startManagingCursor(names);

ListAdapter adapter = new SimpleCursorAdapter(

this, R.layout.two_text,

names, new String[] {

Contacts.Phones.NAME,

Contacts.Phones.NUMBER

}, new int[] {

R.id.scratch_text1,

R.id.scratch_text2

});

In this example, we present a couple of new concepts. First, you need to know that

the Cursor must contain a field named _id. In this case, we know that the Contacts

content provider does have this field. This field is used later when you handle the

user selecting a particular item.

We make a call to managedQuery() to get the Cursor.Then, we instantiate a

SimpleCursorAdapter as a ListAdapter. Our layout, R.layout.two_text, has two

TextView objects in it, which are used in the last parameter. SimpleCursorAdapter

enables us to match up columns in the database with particular controls in our

layout. For each row returned from the query, we get one instance of the layout

within our AdapterView.

Binding Data to the AdapterView

Now that you have an Adapter object, you can apply this to one of the AdapterView

controls. Any of them works.Although the Gallery technically takes a SpinnerAdapter,

the instantiation of SimpleCursorAdapter also returns a SpinnerAdapter. Here is an

example of this with a ListView, continuing on from the previous sample code:

((ListView)findViewById(R.id.list)).setAdapter(adapter);

The call to the setAdapter() method of the AdapterView, a ListView in this case,

should come after your call to setContentView().This is all that is required to bind

data to your AdapterView. Figure given below shows the same data in a ListView,

Gallery, and GridView.

Figure-69

Handling Selection Events

You often use AdapterView controls to present data from which the user should

select. All three of the discussed controls ListView, GridView, and Gallery enable

your application to monitor for click events in the same way.You need to call

setOnItemClickListener() on your AdapterView and pass in an implementation of the

AdapterView.OnItemClickListener class.

Following is an example implementation of this class:

av.setOnItemClickListener(

new AdapterView.OnItemClickListener() {

public void onItemClick(

AdapterView<?> parent, View view,

int position, long id) {

Toast.LENGTH_SHORT).show();

}

});

In the preceding example, av is our AdapterView.The implementation of the

onItemClick() method is where all the interesting work happens.The parent

parameter is the AdapterView where the item was clicked.This is useful if your

screen has more than one AdapterView on it. The View parameter is the specific

View within the item that was clicked. The position is the zero-based position within

the list of items that the user selects.

Finally, the id parameter is the value of the _id column for the particular item that the

user selects. This is useful for querying for further information about that particular

row of data that the item represents.

Your application can also listen for long-click events on particular items.Additionally,

your application can listen for selected items.Although the parameters are the same,

your application receives a call as the highlighted item changes.This can be in

response to the user scrolling with the arrow keys and not selecting an item for

action.

Check your Progress-2

a) A __________ view organizes its child View objects in a single row or column

b) The __________Layout view enables you to specify where the child view controls

are in relation to each other

c) _________ contains a vertically scrolling, horizontally filled list of View objects,

each of which typically contains a row of data; the user can choose an item to

perform some action upon.

(A) ListView (B) GridView (C) GalleryView (D) All of these

d) Which of the following is a data driven control?

(A) ListView (B) GridView (C) GalleryView (D) All of these

e) _______ Contains a grid of View objects, with a specific number of columns

(A) ListView (B) GridView (C) GalleryView (D) All of these

f) __________ View contains a horizontally scrolling list of View objects, also often

used with image icons;

(A) ListView (B) GridView (C) GalleryView (D) All of these

2.10 Let us sum up

In this unit you learn about layout and its use, we have seen that the layout can be

created using XML as well as programmatically. You have learned about different

types of built in layouts and few data driven controls such as List View, Grid View

and Gallery view.

2.11 Check your Progress: Possible Answers

1-a) Layout 1-b) (B) Frame 1-c)

2-a) LinearLayout 2-b) Relative 2-c) ListView

2-d) All of these 2-e) GridView 2-f) (C) GalleryView

2.12 Further Reading

 https://developer.android.com/reference/android/widget/FrameLayout

 https://developer.android.com/reference/android/widget/TableLayout

 https://developer.android.com/reference/android/widget/RelativeLayout

 https://developer.android.com/reference/android/widget/GridLayout

 https://developer.android.com/reference/android/widget/ListView

 https://developer.android.com/reference/android/widget/GridView

 https://developer.android.com/reference/android/widget/Gallery

2.13 Assignment

 Write detailed note on Built-in Layouts

 Explain data driven controls

 Explain two ways of creating layouts with its advantages and disadvantages.

2.14 Activity

 Design Interface using different Layouts for collecting personal information such

as Id, Name, Date of Birth, Gender, Address etc.

Unit-3: Drawing and Working
with Animation

Unit Structure

3.0. Learning Objectives

3.1. Introduction

3.2. Canvas and Paints

3.3. Bitmaps

3.4. Shapes

3.5. Frame by Frame animation

3.6. Tweened Animation

3.7. Let us sum up

3.8. Check your Progress: Possible Answers

3.9. Further Reading

3.10. Assignment

3.11. Activity

3

3.0 Learning Objectives

In this unit you will learn about:

 The drawing and animation features built into Android

 Working with Canvas and Paint to draw shapes and text.

 Animation and Types of animation

3.1. Introduction

With Android, we can display images such as PNG and JPG graphics, as well as text

and primitive shapes to the screen. We can paint these items with various colors,

styles, or gradients and modify them using standard image transforms. We can even

animate objects to give the illusion of motion.

3.2 Canvas and Paint

The Canvas class holds the "draw" calls. To draw something, you need 4 basic

components:

1. A Bitmap to hold the pixels,

2. A Canvas to host the draw calls (writing into the bitmap),

3. A drawing primitive (e.g. Rect, Path, text, Bitmap), and

4. A paint (to describe the colors and styles for the drawing).

The android.graphics framework divides drawing into two areas:

 What to draw, handled by Canvas

 How to draw, handled by Paint.

For instance, Canvas provides a method to draw a line, while Paint provides

methods to define that line's color. Canvas has a method to draw a rectangle, while

Paint defines whether to fill that rectangle with a color or leave it empty. Simply put,

Canvas defines shapes that you can draw on the screen, while Paint defines the

color, style, font, and so forth of each shape you draw.

So, before you draw anything, you need to create one or more Paint objects. The

PieChart example does this in a method called init, which is called from the

constructor from Java.

private void init() {
 textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 textPaint.setColor(textColor);
 if (textHeight == 0) {
 textHeight = textPaint.getTextSize();
 } else {
 textPaint.setTextSize(textHeight);
 }

 piePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 piePaint.setStyle(Paint.Style.FILL);
 piePaint.setTextSize(textHeight);

 shadowPaint = new Paint(0);
 shadowPaint.setColor(0xff101010);
 shadowPaint.setMaskFilter(new BlurMaskFilter(8, BlurMaskFilter.Blur.NORMAL));

 ...

Creating objects ahead of time is an important optimization. Views are redrawn very

frequently, and many drawing objects require expensive initialization. Creating

drawing objects within your onDraw() method significantly reduces performance and

can make your UI appear sluggish.

Once you have your object creation and measuring code defined, you can implement

onDraw(). Every view implements onDraw() differently, but there are some common

operations that most views share:

 Draw text using drawText(). Specify the typeface by calling setTypeface(), and

the text color by calling setColor().

 Draw primitive shapes using drawRect(), drawOval(), and drawArc(). Change

whether the shapes are filled, outlined, or both by calling setStyle().

 Draw more complex shapes using the Path class. Define a shape by adding lines

and curves to a Path object, then draw the shape using drawPath(). Just as with

primitive shapes, paths can be outlined, filled, or both, depending on the

setStyle().

 Define gradient fills by creating LinearGradient objects. Call setShader() to use

your LinearGradient on filled shapes.

 Draw bitmaps using drawBitmap().

For example, here's the code that draws PieChart. It uses a mix of text, lines, and

shapes.

protected void onDraw(Canvas canvas) {

 super.onDraw(canvas);

 // Draw the shadow

 canvas.drawOval(shadowBounds, shadowPaint);

 // Draw the label text

 canvas.drawText(data.get(currentItem).mLabel, textX, textY, textPaint);

 // Draw the pie slices

 for (int i = 0; i < data.size(); ++i) {

 Item it = data.get(i);

 piePaint.setShader(it.shader);

 canvas.drawArc(bounds,360 - it.endAngle, it.endAngle - it.startAngle,

 true, piePaint);

 }

 // Draw the pointer

 canvas.drawLine(textX, pointerY, pointerX, pointerY, textPaint);

 canvas.drawCircle(pointerX, pointerY, pointerSize, mTextPaint);

}

3.3 Bitmaps

You can find lots of goodies for working with graphics such as bitmaps in the

android.graphics package. The core class for bitmaps is android.graphics.Bitmap.

Drawing Bitmap Graphics on a Canvas

You can draw bitmaps onto a valid Canvas, such as within the onDraw() method of a

View, using one of the drawBitmap() methods. For example, the following code loads

a Bitmap resource and draws it on a canvas:

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

...

Bitmap pic = BitmapFactory.decodeResource(getResources(),

R.drawable.bluejay);

canvas.drawBitmap(pic, 0, 0, null);

Scaling Bitmap Graphics

Perhaps you want to scale your graphic to a smaller size. In this case, you can use

the createScaledBitmap() method, like this:

Bitmap sm = Bitmap.createScaledBitmap(pic, 50, 75, false);

You can preserve the aspect ratio of the Bitmap by checking the getWidth() and

getHeight() methods and scaling appropriately.

3.4 Shapes

You can define and draw primitive shapes such as rectangles and ovals using the

ShapeDrawable class in conjunction with a variety of specialized Shape classes.

You can define Paintable drawables as XML resource files, but more often,

especially with more complex shapes, this is done programmatically.

Defining Shape Drawables as XML Resources

In Unit-5, of block-3, we show you how to define primitive

shapes such as rectangles using specially formatted XML files within the

/res/drawable/resource directory.

The following resource file called /res/drawable/green_rect.xml describes a simple,

green rectangle shape drawable:

-

</shape>

You can then load the shape resource and set it as the Drawable as follows:

ImageView iView = (ImageView)findViewById(R.id.ImageView1);

iView.setImageResource(R.drawable.green_rect);

You should note that many Paint properties can be set via XML as part of the Shape

definition. For example, the following Oval shape is defined with a linear gradient

(red to white) and stroke style information:

-

/>

</shape>

Defining Shape Drawables Programmatically

You can also define this ShapeDrawable instances programmatically. The different

shapes are available as classes within the android.graphics.drawable.shapes

package. For example, you can programmatically define the aforementioned green

rectangle as follows:

import android.graphics.drawable.ShapeDrawable;

import android.graphics.drawable.shapes.RectShape;

...

ShapeDrawable rect = new ShapeDrawable(new RectShape());

rect.getPaint().setColor(Color.GREEN);

You can then set the Drawable for the ImageView directly:

ImageView iView = (ImageView)findViewById(R.id.ImageView1);

iView.setImageDrawable(rect);

Drawing Different Shapes

Some of the different shapes available within the android.graphics.drawable.shapes

package include

 Rectangles (and squares)

 Rectangles with rounded corners

 Ovals (and circles)

 Arcs and lines

 Other shapes defined as paths

You can create and use these shapes as Drawable resources directly within

ImageView views, or you can find corresponding methods for creating these primitive

shapes within a Canvas.

Drawing Rectangles and Squares

Drawing rectangles and squares (rectangles with equal height/width values) is simply

a matter of creating a ShapeDrawable from a RectShape object. The RectShape

object has no dimensions but is bound by the container object in this case, the

ShapeDrawable.

You can set some basic properties of the ShapeDrawable, such as the Paint color

and the default size.

For example, here we create a magenta-colored rectangle that is 100-pixels long

and 2-pixels wide, which looks like a straight, horizontal line. We then set the shape

as the drawable for an ImageView so the shape can be displayed:

import android.graphics.drawable.ShapeDrawable;

import android.graphics.drawable.shapes.RectShape;

ShapeDrawable rect = new ShapeDrawable(new RectShape());

rect.setIntrinsicHeight(2);

rect.setIntrinsicWidth(100);

rect.getPaint().setColor(Color.MAGENTA);

ImageView iView = (ImageView)findViewById(R.id.ImageView1);

iView.setImageDrawable(rect);

Similarly we can draw other shapes.

3.5 Frame by Frame animation

You can think of frame-by-frame animation as a digital flipbook in which a series of

similar images display on the screen in a sequence, each subtly different from the

last. When you display these images quickly, they give the illusion of movement.

This technique is called frame-by-frame animation and is often used on the Web in

the form of animated GIF images.

Frame-by-frame animation is best used for complicated graphics transformations

that are not easily implemented programmatically.

An object used to create frame-by-frame animations, defined by a series of Drawable

objects, which can be used as a View object's background.

The simplest way to create a frame-by-frame animation is to define the animation in

an XML file, placed in the res/drawable/ folder, and set it as the background to a

View object. Then, call start() to run the animation.

An AnimationDrawable defined in XML consists of a single <animation-list> element

and a series of nested <item> tags. Each item defines a frame of the animation. See

the example below.

spin_animation.xml file in res/drawable/ folder:

<animation-list android:id="@+id/selected" android:oneshot="false">

 <item android:drawable="@drawable/wheel0" android:duration="50" />

 <item android:drawable="@drawable/wheel1" android:duration="50" />

 <item android:drawable="@drawable/wheel2" android:duration="50" />

 <item android:drawable="@drawable/wheel3" android:duration="50" />

 <item android:drawable="@drawable/wheel4" android:duration="50" />

 <item android:drawable="@drawable/wheel5" android:duration="50" />

 </animation-list>

Here is the code to load and play this animation.

// Load the ImageView that will host the animation and

// set its background to our AnimationDrawable XML resource.

 ImageView img = (ImageView)findViewById(R.id.spinning_wheel_image);

 img.setBackgroundResource(R.drawable.spin_animation);

 // Get the background, which has been compiled to an AnimationDrawable object.

 AnimationDrawable frameAnimation = (AnimationDrawable) img.getBackground();

 // Start the animation (looped playback by default).

 frameAnimation.start();

3.6 Tweened Animation

With tweened animation, you can provide a single Drawable resource - it is a Bitmap

graphic, a ShapeDrawable, a TextView, or any other type of View object and the

intermediate frames of the animation are rendered by the system. Android provides

tweening support for several common image transformations, including alpha, rotate,

scale, and translate animations. You can apply tweened animation transformations

to any View, whether it is an ImageView with a Bitmap or shape Drawable, or a

layout such as a TableLayout.

Defining Tweening Transformations

You can define tweening transformations as XML resource files or programmatically.

All tweened animations share some common properties, including when to start, how

long to animate, and whether to return to the starting state upon completion.

Defining Tweened Animations as XML Resources

In Unit-5 of Block-3, we showed you how to store animation sequences as specially

formatted XML files within the /res/anim/ resource directory. For example, the

following resource file called /res/anim/spin.xml describes a simple five-second

rotation:

-

<rotate android

</set>

Defining Tweened Animations Programmatically

You can programmatically define these animations.The different types of

transformations are available as classes within the android.view.animation package.

For example, you can define the aforementioned rotation animation as follows:

import android.view.animation.RotateAnimation;

...

RotateAnimation rotate = new RotateAnimation(0, 360,

 RotateAnimation.RELATIVE_TO_SELF, 0.5f,

 RotateAnimation.RELATIVE_TO_SELF, 0.5f);

rotate.setDuration(5000);

Defining Simultaneous and Sequential Tweened Animations

Animation transformations can happen simultaneously or sequentially when you set

the startOffset and duration properties, which control when and for how long an

animation takes to complete. You can combine animations into the <set> tag

(programmatically, using AnimationSet) to share properties.

For example, the following animation resource file /res/anim/grow.xml includes a set

of two scale animations: First, we take 2.5 seconds to double in size, and then at 2.5

seconds, we start a second animation to shrink back to our starting size:

-

<set xmlns:android=http://schemas.android.com/apk/res/android

<scale android:pivotX

<scale

andr

</set>

Loading Animations

Loading animations is made simple by using the AnimationUtils helper class.The

following code loads an animation XML resource file called /res/anim/grow.xml and

applies it to an ImageView whose source resource is a green rectangle shape

drawable:

import android.view.animation.Animation;

import android.view.animation.AnimationUtils;

...

ImageView iView = (ImageView)findViewById(R.id.ImageView1);

iView.setImageResource(R.drawable.green_rect);

Animation an = AnimationUtils.loadAnimation(this, R.anim.grow);

iView.startAnimation(an);

We can listen for Animation events, including the animation start, end, and repeat

events, by implementing an AnimationListener class, such as the MyListener class

shown here:

class MyListener implements Animation.AnimationListener {

public void onAnimationEnd(Animation animation) {

// Do at end of animation

}

public void onAnimationRepeat(Animation animation) {

// Do each time the animation loops

}

public void onAnimationStart(Animation animation) {

// Do at start of animation

}

}

You can then register your AnimationListener as follows:

an.setAnimationListener(new MyListener());

 four types of tweening transformations individually.

These types are:

 Transparency changes (Alpha)

 Rotations (Rotate)

 Scaling (Scale)

 Movement (Translate)

Working with Alpha Transparency Transformations

Transparency is controlled using Alpha transformations. Alpha transformations can

be used to fade objects in and out of view or to layer them on the screen.

Alpha values range from 0.0 (fully transparent or invisible) to 1.0 (fully opaque or

visible). Alpha animations involve a starting transparency (fromAlpha) and an ending

transparency (toAlpha).

The following XML resource file excerpt defines a transparency-change animation,

taking five seconds to fade in from fully transparent to fully opaque:

<alpha

andr

</alpha>

Programmatically, you can create this same animation using the AlphaAnimation

class within the android.view.animation package.

Working with Rotating Transformations

You can use rotation operations to spin objects clockwise or counterclockwise

around a

Rotations are defined in terms of degrees. For example, you might want an object to

make one complete clockwise rotation. To do this, you set the fromDegrees property

to 0 and the toDegrees property to 360. To rotate the object counterclockwise

instead, you set the toDegrees property to -360.

By default, the object pivots around the (0,0) coordinate, or the top-left corner of the

object. This is great for rotations such as those of

time, you want to pivot from the center of the object; you can do this easily by setting

the pivot point, which can be a fixed coordinate or a percentage.

The following XML resource file excerpt defines a rotation animation, taking five

seconds to make one full clockwise rotation, pivoting from the center of the object:

<rotate

Programmatically, you can create this same animation using the RotateAnimation

class within the android.view.animation package.

Working with Scaling Transformations

You can use scaling operations to stretch objects vertically and horizontally. Scaling

operations are defined as relative scales.Think of the scale value of 1.0 as 100

percent, or fullsize. To scale to half-size, or 50 percent, set the target scale value of

0.5. You can scale horizontally and vertically on different scales or on the same

scale (to preserve aspect ratio).You need to set four values for proper scaling:

starting scale (fromXScale, fromYScale) and target scale (toXScale, toYScale).

Again, you can use a pivot point to stretch your object from a specific (x,y)

coordinate such as the center or another coordinate.

The following XML resource file excerpt defines a scaling animation, taking five

seconds

<scale

 android:

Programmatically, you can create this same animation using the ScaleAnimation

class within the android.view.animation package.

Working with Moving Transformations

You can move objects around using translate operations.Translate operations move

an object from one position on the (x,y) coordinate to another coordinate.

To perform a translate operation, you must specify the change, or delta, in the

 coordinates. You can set four values for translations: starting position

(fromXDelta, fromYDelta) and relative target location (toXDelta, toYDelta).

The following XML resource file excerpt defines a translate animation, taking 5

seconds to move an object up (negative) by 100 on the y-axis.We also set the

fillAfter

when the animation finishes:

<translate -

Programmatically, you can create this same animation using the TranslateAnimation

class within the android.view.animation package.

Check your progress-1

a) You can define and draw primitive shapes such as rectangles and ovals using the

__________ class.

b) What to draw, handled by ___________.

c) How to draw, handled by ____________.

d) We can draw text on canvas using__________ method.

e) ___________animation is best used for complicated graphics transformations

that are not easily implemented programmatically

(A) Frame-by-Frame (B) Tweened (C) Either (A) or (B) (D) None of these

f) Which of the following is a tweening transformation?

(A) Rotate (B) Scale (C) Translate (C) All of these

3.7

The Android SDK comes with the android.graphics package, which includes powerful

classes for drawing graphics and text to the screen in a variety of different ways.

Some features of the graphics library include Bitmap graphics utilities, Typeface and

font style support, Paint colors and styles, different types of gradients, and a variety

of primitive and not-so-primitive shapes that can be drawn to the screen and even

animated using tweening and frame-by-frame animation mechanisms.

3.8. Check your Progress: Possible Answers

1-a) ShapeDrawable 1-b) Canvas 1-c) Paint

1-d) drawText() 1-e) (A) Frame-by-Frame 1-f) (D) All of these

