
––

––– 2024

Web Technology
using FOSS-LAMP

Dr. Babasaheb Ambedkar Open University

Web Technology Using FOSS– LAMP

Expert Committee

Prof. (Dr.) Nilesh K. Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Chairman)

Prof. (Dr.) Ajay Parikh
Professor and Head, Department of Computer Science
Gujarat Vidyapith, Ahmedabad

(Member)

Prof. (Dr.) Satyen Parikh
Dean, School of Computer Science and Application
Ganpat University, Kherva, Mahesana

(Member)

M. T. Savaliya
Associate Professor and Head
Computer Engineering Department
Vishwakarma Engineering College, Ahmedabad

(Member)

Mr. Nilesh Bokhani
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member)

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member Secretary)

Course Writer

Dr. Ashish Parejiya INDUS Institute of Information & Communication

Technology

Dr.Kamalesh Salunke Department of Computer Science, Gujarat Vidyapith

Dr. Ketan D Patel AMPICS, Ganpat University

Content Reviewer and Editor

Prof. (Dr.) Ajay Parikh Department of Computer Science, Gujarat Vidyapith

Prof. (Dr.) Nilesh K. Modi Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Copyright © Dr. Babasaheb Ambedkar Open University – Ahmedabad. 2024

ISBN -

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad While all efforts

have been made by editors to check accuracy of the content, the representation of facts, principles,
descriptions and methods are that of the respective module writers. Views expressed in the publication
are that of the authors, and do not necessarily reflect the views of Dr. Babasaheb Ambedkar Open
University. All products and services mentioned are owned by their respective copyrights holders, and
mere presentation in the publication does not mean endorsement by Dr. Babasaheb Ambedkar Open
University. Every effort has been made to acknowledge and attribute all sources of information used in
preparation of this learning material. Readers are requested to kindly notify missing attribution, if any.

iv

Dr. Babasaheb
Ambedkar Open
University

BCAMA-403

Web Technology using FOSS-LAMP

Block-1: Open Source & Linux Administration

UNIT-1

Open-Source Software - Introduction 02

UNIT-2

Open-Source Software Vs Closed Source Software 07

UNIT-3

Linux Administration 10

UNIT-4

Manage File Permissions and Processes 17

Block-2: Database Management Using MySQL

UNIT-1

Introduction to Relational Database Management
System and MySQL 26

UNIT-2

Structured Query Language 39

UNIT-3

SQL Sub Languages 61

v

Block-3: PHP Programming

UNIT-1

Getting started with PHP

085

UNIT-2

Control and Looping Statements 115

UNIT-3

Working with Functions 142

UNIT-4

Working with Arrays

178

Block-4: Processing Web Forms and Handling

Database in PHP

UNIT-1

Working with forms in PHP

00

UNIT-2

File and directory accessin PHP 00

UNIT-3

Working and formatting with strings 00

UNIT-4
Handling Databases inPHP

00

1

Block-1

Open Source & Linux Administration

2

Unit 1: Open-Source Software -
Introduction 1

Unit Structure

1.1. Learning Objectives

1.2. Introduction of Open-Source Software

1.3. Open-Source Products

1.4. Open-Source Software Development Philosophy

1.5. Pros and Cons of Open-Source Software

1.6. Suggested answers for check your progress

3

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand about open-source software and products

 Understand pros and cons of open-source software.

1.2 INTRODUCTION OF OPEN-SOURCE SOFTWARE

The term open-source means something which is publicly available and one can

modify and share it. The idea behind open source is that the software should be

available to everyone so that people can understand and learn it, modify it and

improve it. Generally, these kinds of sources are available under GNU General

Public Licence.

Open-source software is a kind of computer software whose source code is made

available to all the users. It gives freedom to users to use it, modify it, add some

functionality into it, improve the existing futures and fix the bugs in the earlier

versions.

Open-source software is different from any other type of software in a way that their

creators make the source code available to all and allow them to learn, modify and

share it. Open-source software licences permits the users to use it for their intended

purpose. The biggest advantage of open-source software is that they are freely

available and there is no need to purchase any licence.

These open-source software are managed by the open-source community which is a

worldwide community of software developers and programmers. These communityis

continuously working on various open-source projects to make them better.

Check your progress - 1:

1. What are open-source software?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

4

1.3 OPEN-SOURCE PRODUCTS

There are various of open-source products available world-wide for different

purposes. Some of the popular open-source products are:

 Operating Systems – Linux, Android, Ubuntu, Fedora etc.

 Browsers – Firefox, Chromium, Brave etc.

 Web Development Tools – Angular JS, Node JS, ReactJS, XAMPP,

Notepad++, WAMP, phpMyAdmin etc.

 Programming Languages –Java, PHP, Python, Ruby, R Programming etc.

 CMS – WordPress, Joomla, Dhrupal, Magento etc.

Check your progress - 2:

1. List out any 5 open-source software products with their use?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

1.4 OPEN-SOURCE SOFTWARE DEVELOPMENT
PHILOSOPHY

Open-Source software supports the belief that the source code of Open-Source

software should be available publiclyto view, change, improve and share that code

without paying for it

These software’s are community-based projects which are built by group of

developers and programmers who spent their time and expertise to build this

software, modify them, improve them by adding new futures and share the source

code to everyone without any financial motive.

Open-source philosophy promotes:

 Sharing source code to everyone

 Collaborative works

 Free exchange and sharing of information

5

1.5 PROS AND CONS OF OPEN-SOURCE SOFTWARE

Pros:

 Cost Effectiveness – generallyopen-source software’s is freely available.

Users are not required to pay anything.

 Flexible – Users are free to modify it as per their requirement.

 Reliability – open-source software’s are highly reliable as they are developed

and maintained by group of expert developers and programmers.

 Community Support - open-source software’s are managed by strong user

communities and hence they are stable and one can trust on it. Users will also

get modified versions on regular intervals.

Cons:

 Not user friendly – all the open-source software’s are not user friendly and

they are not easy to use. Some of their GUIs are not user friendly.

 Security – as the code is freely available and free to edit, there are chances

of vulnerabilities due to misuse of code.

 Compatibility issues -Many types of proprietary hardware need specialised

drivers to run open-source programs which may lead to extra cost.

 Lack of Support – you can not expect the level of support that you receive

from any proprietor software.

 Extra Cost – Though open-source software’s are free to use there are some

hidden costs involves while using them such as – additional hardware cost,

training cost, support and maintenance cost etc.

Check your progress - 3:

1. What are the pros and cons of open-source software?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

1.6 SUGGESTED ANSWERS FOR CHECK YOUR
PROGRESS

6

Check Your Progress - 1:

refer section 1.2

Check Your Progress - 2:

refer section 1.3

Check Your Progress - 3:

refer section 1.5

7

Unit 2: Open-Source Software
Vs Closed Source Software 2

Unit Structure

2.1 Learning Objectives

2.2 Open-Source Vs Closed Source Software

2.3 Free Software

2.4 Source Available Software

2.5 Suggested answers for check your progress

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand about open-source software and closed source software

 Understand the difference between open and closed source software

 Know about open-source development tools.

2.2 OPEN-SOURCE Vs CLOSED SOURCE SOFTWARE

There are some differences between open and closed source software.

Open-Source Software Closed-Source Software

Open-source software refers to the

computer software which source code is

open means the general public can

access, use and modify it.

Closed-source software refers to the

computer software which source code is

closed means public is not given access

to the source code.

source code is publicly available. source code is not publicly available. It is

8

 protected.

User can modify the source code. The owners or creators can only modify

the source code.

In most cases, open-source software is

freely available.

They are not freely available and user

has to pay for use.

They can be installed to any computer. They need to have a valid license before

installation into any computer.

No one is explicitly responsible for an

Open-Source software.

The owner or vendor is responsible for

Closed-Source software.

They are often less user friendly Generally, more user friendly.

Updates may take longer time to arrive. Generally, updates are available more

quickly.

Examples: Linux, Firefox, PHP, Open

Office etc.

Examples: Windows OS, Microsoft office,

Adobe Photo Shop etc.

Check your progress - 1:

1. What is the difference between open and closed source software?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

2.3 FREE SOFTWARE

A software that respects users' freedom and community is called Free software. It

means that the users have the freedom to study, run, change, copy, distributeand

improve the software. Thus,free software is a matter of liberty, it is not about price. It

is about freedom.

According to GPL (General Public Licence) a software is called free software if its

users have following freedom:

9

 The freedom to run the software for any purpose.

 The freedom to study the source code and change the software for any

purpose.

 The freedom to share the software with others.

 The freedom to share your own modified versions of the software with others.

2.4 SOURCE AVAILABLE SOFTWARE

Source-available software is software released through a source code distribution

model that includes arrangements where the source can be viewed, and in some

cases modified, but without necessarily meeting the criteria to be called open-

source. [Source: Wiki]

Check your progress - 2:

1. What is the difference between free software and source available software?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

2.5 SUGGESTED ANSWERS FOR CHECK YOUR
PROGRESS

Check Your Progress - 1:

refer section 2.2

Check Your Progress - 2:

refer section 2.3 and 2.4

10

Unit 3: Linux Administration 3

Unit Structure

3.1 Learning Objectives

3.2 Linux Administration

3.3 Configuring the bash shell

3.4 Finding Files

3.5 Managing Users and Groups

3.6 Suggested answers for check your progress

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the job of Linux administration

 Configure bash shell

 Manage users and groups

3.2 LINUX ADMINISTRATION

Linux system administration is a process of setting up, configuring, and managing a

computer system in a Linux environment. System administration involves various

tasks such as: creating and managing user accounts, taking reports, performing

backup, updating configuration files, documentation, and performing recovery

actions. System administrator is the person who manages the server, fixes

configuration issues, recommends new software updates, and updates the

document.

11

In this unit we will learn some of the system administration tasks such as managing

users, groups and permissions, managing processes, finding files and so on.

3.3 CONFIGURING THE BASH SHELL

A Shell is a command that provides command line interface for Linux OS. Bash shell

reads the Linux commands and execute them.

If you want to check the available shell in your system you can use:

cat /etc/shells

Changing from other shell to Bash

to change from any shell to the bash, type following:

bash

it will change the shell to bash shell.

chsh (change shell) command is used to change your default shell.

chsh -s /bin/bash

the above command will change the default shell to bash shell for current user.

We can also change the default shell of other users using chsh command. Example:

chsh -s /bin/shkali

it will change the default shell of the user kali to /bin/sh. We need to login as root
user.

If you want to know the default shell for a user you can use grep command. Grep is

an essential Linux command which is used to search text and strings from a given

file.

grep kali /etc/passwd

the above command will find the default shell of user named kali.

12

Check your progress 1:

How can you change the shell in Linux?

…………………………………………………………………………………………………
….………………………………………………………………………………………………
………………………………………………………………………………………………….

3.4 FINDING FILES

The find command in Linux is used to find a file. You can use the find command to

search for a file or directory on your file system.

find expressions take the following form:

find options starting/path expression

 The options attribute will control the find process’s behaviour and optimization

method.

 The starting/path attribute will define the top-level directory where find begins

filtering.

 The expression attribute controls the tests that search the directory hierarchy

to produce output.

find . -name testfile.txt Find a file called testfile.txt in current and sub-directories.

find /home -name *.jpg Find all .jpg files in the /home and sub-directories.

Check your progress 2:

How can you find files in Linux?

…………………………………………………………………………………………………
….………………………………………………………………………………………………
………………………………………………………………………………………………….

3.5 MANAGING USERS & GROUPS

13

To create a secure environment in Linux, it is essential to learn about user groups

and their permissions. User permissions are like you want someone to access the

file but can’t modify it.

Creating User Accounts:

We can create a new user account by using the following command:

there are two ways to make sure that the new user account has been successfully

created:

1. With the use of id command.

.

it will print output like this

This will print details like the user id and the groups of that user, usually a new group

with the same username is assigned to the user.

2. By opening the following file: /etc/passwd.

So, we can use cat /etc/passwd and we canconfirm that the new user has been

created.

After creating the user using the command above, you may notice that no user

directories have been created inside /home directory, which creates problem that the

user cannot log in to his account. Hence it is required to create new user directory.

To create a new user with its directories, we can use following:

id newuser

sudouseraddnewuser

uid=1000(newuser) gid=1000(newuser) groups=1000(newuser)

sudouseradd -m -s /bin/bash newuser

14

If you look into the /home directory, you can see that a new directory with the

name newuser is created now.

To set a new password for the newuserexecutes the following:

After creating a new user and setting a password to it, newuser can login through

GUI or by terminal

Deleting a user

If you want to delete the user then you can use userdel command of linux.

userdel command will delete the newuser but the user directory will not be deleted.

You need to delete it by yourself.

You can use following command to do all this at once:

Managing User groups

A group is a collection of users. The primary purpose of creating the groups is to

define a set of privileges like read, write, or execute permission for a given resource

that can be shared among the users within the group.

Create a group

Before creating the group, if you want to see all the groups you can do it like:

now Let’s create a new group with the name newgrp as:

sudo passwd newuser

sudouserdelnewuser

sudodeluser –remove-home newuser

cat /etc/group

15

it will create new group called newgrp

Adding user to a group

After creating the group, lets add our user newuser into the group newgrp:

Deletingthe user from the group

You can delete the user from the group using the following:

it will delete the user newuser from the group newgrp.

Delete a group

If you want to delete a group then you can do it as:

sudogroupdelnewgrp

Check your progress 3:

How can you manage users and groups in Linux?

…………………………………………………………………………………………………
….………………………………………………………………………………………………

3.6 SUGGESTED ANSWERS FOR CHECK YOUR
PROGRESS

Check your Progress 1:

Refer section 3.3

Check your Progress 2:

Refer section 3.4

Check your Progress 3:

Refer section 3.5

sudogroupaddnewgrp

sudousermod -aGnewgrpnewuser

sudogpasswd -d newusernewgrp

16

17

Unit 4: Manage File Permissions
and Processes 4

Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3 Managing File Permissions

4.4 Managing Processes

4.5 System Administration Tools

4.6 Suggested answers for check your progress

4.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Manage permissions

 Manage processes in Linux

 Aware about various system administration tools

4.2 INTRODUCTION

As we know that Linux is a multi-user operating system and hence it can be

accessed by many users simultaneously. It is also be used in mainframes and

servers without any modifications. But this may lead to security issuessuch that a

user with malafide intention can do anything like he/she can corrupt, alter or remove

important data. Hence Linux divides authorization into two levels for effective

security:

1. Ownership

2. Permission

18

In this unit we will understand these two levels in brief.

4.3 MANAGE FILE PERMISSIONS

Let’s start by discussing about the ownership in Linux files. It is as below:

1. User: the owner of the file (person who has created the file).

2. Group: the collection of users, group can contain multiple users. Therefore, all

users in same group will have the same permissions.

3. Other: any person has access to that file, who has neither created the file, nor

are they in any group which has access to that file.

If you want to see file permissions you can use following command:

it will display file information along with permissions as below:

-rw-r – r --

Lets descuss what it means.

These characters indicate different permissions like:

 r - read.

 w - write.

 x - execute.

 - no permission.

-rw-r -- r --

File

User Group Other

ls -l

19

As you can see in the above image, the first part denotes file or directory. empty first

part means itit is a file. It would be the letter ‘d’ if it was directory. The second part

means that the user ‘Home’ has both read and write permissions but he does not

have the execute permission. The group and others have only the read permission.

If you want to change the permissions then use chmod command.

it will add the write permission to other users onmyfile.txt text file. Here ‘o’ means to

others, ‘g’ means group, ‘u’ means user and ‘a’ means all. Now the other users have

both read and write permissions. If you execute ls -l again then you can see the

permissions like -rw-r--rw-.

Now let’s add the execute permission to the user with following command:

now the permissions looks like -rwxr--rw-.

If you want to remove the permission, you can use the same command but with ‘-‘

instead of ‘+’.

For example, let’s remove the write permission from the others:

And the permissions now look like: -rw-r—r--.

Instead of using character symbols, you can use Symbolic Mode to modify

permissions like the following:

Number Permission

0 No permission

1 Execute

chmodo+w myfile.txt

chmodu+x myfile.txt

chmod o-w myfile.txt

20

Number Permission

2 Write

3 Execute and Write

4 Read

5 Read and Execute

6 Read and Write

7 Read, Write and Execute

For example, let’s give every permission for all usersas:

chmod 777 myfile.txt

here first 7 is for user, second 7 is for group and third 7 is for other. It means all

users have all permissions.

Now the permissions look like

-rwxrwxrwx

Check your progress 1:

What is file permission and how can you change it in Linux?

…………………………………………………………………………………………………

…..………………………………………………………………………………………………

…………………………………………………………………………………………………

4.4 MANAGING PROCESSES

A process is a set of instructions loaded into memory. The Linux kernel tracks every

aspect of a process by its PID under /proc/PID.

Listing All Processes

The ps command is used to view the information about process. By Default, it shows

processes from the current terminal. The options that can be used with ps are:

21

 a: Shows processes from all the terminals.

 x: Shows all the processes owned by you, or shows all the processes when

used together with an option (such as: psax) Including processes that are not

controlled by a terminal Such as Daemon processes.

 u: prints process owner information.

 f: Shows process parentage

 o: Shows custom information.

If you want a list of all the processes running on your system, you can run ps aux

command.

Tracking system activities

Top command tells the user about all the running processes on the Linux machine.

Kill command is used to terminate all the running processes.

Syntax: kill pid

Where pid is the process id that you want to terminate.

Process Status

Every process has a state property, which describes whether the process is actively

using the CPU (Running), in memory but not doing anything (Sleeping), waiting for a

resource to become available (Uninterruptable Sleep) or terminated but not flushed

from the process list (Zombie).

We can check the state of the process by executing commands like top and ps.

Setting Priority of the Process

There are hundreds of processes running in a system at given point of time, which

are created mostly by the Linux operating system and some of them are created by

the logged-in user. Each running process has a priority assigned to it and this priority

determines how fast the process is executed by the system. High priority processes

are executed early then the low priority processes.

22

You can change the priority of the process with the use of nice and renice

commands in Linux.

The nice value ranges from -20 to 19. Default value is 0. Where -20 denotes Highest

priority and 19 denotes Lowest priority.

We can use ps or top command to check the nice value of the process. Nice value is

represented under NI column header.

Example:

nice -5 gnome-terminal

to set the negative priority, use double hyphen. You need to have root privilege to

assign negative priority to process like:

nice --5 gnome-terminal

you can use renice command to change the priority of running process.

renice -n 10 -p 7210

it will set the new priority 10 to the process having id 7210.

Check your Progress 2:

How can you change the priority of the running process in Linux?

…………………………………………………………………………………………………

…..………………………………………………………………………………………………

…………………………………………………………………………………………………

4.5 SYSTEM ADMINISTRATION TOOLS

The job of Linux system administrator includes OS installation, upgrade, and

monitoring system performance. There are some tools that makes administrator job

easy. Few of such popular tools are explained here. You can visit their official web

pages to get more insights about their detailed functionality.

23

Webmin:it is a web-based interface for Unix system administrators. It helps

sysadmin to configure and modify various system internals.

Zenmap: it is a free and open-source tool which is used to scan for network issues.

It is the GUI version of Nmap Security.

Shorewall:it is a free and open-source GUI for configuring firewalls, creating and

managing blacklists, gateways, VPNs, and controlling traffic.

Cockpit: it is widely used for regular server administration tasks. It is best suited for

Red Hat OS.

PHPMyAdmin:it is an open-source PHP based web app that allows users to create

andmanage MySQL databases using a web browser. It provides user friendly GUI to

manage MySQL databases.

MySQLWorkbench: MySQL Workbench is a graphical tool for working with MySQL

servers and databases. The main functionality includes: server administration, data

migration, SQL development, data modelling etc.

Nmap: it is a network scanner widely used by network admins to monitor network

and to detect vulnerabilities.

Check your Progress 3:

List out various system administration tools in Linux.

…………………………………………………………………………………………………

…..………………………………………………………………………………………………

…………………………………………………………………………………………………

4.6 SUGGESTED ANSWERS FOR CHECK YOUR
PROGRESS

24

Check your Progress 1:

Refer section 4.3

Check your Progress 2:

Refer section 4.4

Check your Progress 3:

Refer section 4.5

25

Block-2

Database Management Using
MySQL

26

Unit 1: Introduction to Relational
Database Management System

and MySQL

1

Unit Structure

1.1. Learning Objectives and Outcome

1.2. Introduction

1.3. Introduction to Relational Database Management System

1.4. Introduction to MySQL

1.5. Why MySQL?

1.6. MySQL Installation and Configuration

1.7. MySQL Datatypes

1.8. Check Your Progress

1.9. Check Your Progress: Possible Answers

27

1.1 LEARNING OBJECTIVES AND OUTCOME

After studying this unit student will be able to:

 Introduction to Relational Database Management System and MySQL

 Understand basic concepts of database and table

 MySQL/Maria datatypes

 Concepts of unique key, primary key, foreign key and table constraints.

Outcome:

 Install, manage and work with MySQL

 Understand and explain the roles RDBMS

 MySQL datatypes and unique key, primary key, foreign key and table

constraints.

1.2 INTRODUCTION

In a simple word Database is a repository where you can store your data or you can

say a database is a set of data stored in a computer. This data is usually structured

in a way that makes the data easily accessible and controlled redundancy. Database

Management System (DBMS) is application software that allows you to create,

update, and administer the database.

A relational database is a type of DBMS. RDBMS stands for Relational Database

Management Systems. Most relational database management systems use the

Structure Query Language (SQL) to access the database. IBM developed the SQL

language in mid-1979. All communication with the clients and the RDBMS or

between RDBMS is via SQL. Whether the client is a basic CUI SQL engine or a

disguised GUI engine, report writer or one RDBMS talking to another, SQL

statements pass from the client to the server. The server responds by processing the

SQL and returning the results. The advantage of this approach is that the only

network traffic is the initial query and the resulting response. The processing power

of the client is reserved for running the application. SQL open standard language to

work similarly with most the databases. SQL consist of three built-in sub-languages:

Data definition language (DDL), Data manipulation language (DML) and Data control

28

language (DCL). SQL is a fourth generation language. SQL has many more features

and advantages. Let us discuss the SQL in more detail in this chapter.

1.3 INTRODUCTION TO RELATIONAL DATABASE
MANAGEMENT SYSTEM

RDBMS stands for Relational Database Management Systems. All modern

database management systems like MySQL, MS SQL Server, IBM DB2, ORACLE,

and Microsoft Access are based on RDBMS. It is called Relational Data Base

Management System (RDBMS) because it is based on relational model introduced

by E.F. Codd. During 1970-1972, E.F. Codd published a paper to propose the use of

relational database model. RDBMS is originally based on that E.F. Codd's relational

model invention.

A relational database is a type of DBMS. It uses a structure that allows us to identify

and access data in relation to another piece of data in the database. In RDBMS, data

is organized into tables. Each table has its own primary key. Tables can grow large

and have a multitude of columns and records. Data is represented in terms of tuples

(rows) in table. Due to a collection of organized set of tables, data can be accessed

easily in RDBMS. In RDBMS terminology, database also known as schema.

The RDBMS database uses tables to store data. A table is a collection of related

data entries and contains rows and columns to store data. The RDBMS database

may contains one or more tables.

Let's examine the Employee table.

Employee_ID Name Designation Date_of_Join

1 Ramesh Manager 12-12-2018

2 Rajesh Sr. Supervisor 02-12-2013

3 Vijay Worker 01-03-2015

29

Tuple/Row/Record:

Figure 1: Table Example

In RDBMS terminology a row of a table is also known as tuple or record. It contains

the specific data of each individual entry in the table. It is a horizontal entity in the

table. For example: The above Employee table contains 3 records and four columns.

Field/Column:

Field is a homogenous entity of the table that contains specific data about every

tuple/row in the table. A field/column is a vertical entity in the table. For example,

Employee_ID, Name, Designation and Date_of_Join are knows as fields or columns.

Here, column called Employee_ID may have type INTEGER (representing the type

of data it is meant to hold).

The Name and Designation column store character data types, whereas

Date_of_Join store date data type.

Data Integrity

There are the following categories of data integrity exist with each RDBMS:

Entity integrity: It specifies that there should be no duplicate rows in a table.

E.g. in Figure-1, Employee_ID value must be unique.

Domain: Domain means it is a pool of legal values

E.g. in Figure-1, Name is domain of employee’s name. So legal values of employee

name are “Ramesh”, “Vijay” etc... While, “Rajesh123” is illegal employee name.

30

Domain integrity: It enforces valid entries for a given column by restricting the type,

the format, or the range of values.

E.g. here employee name contain 20 character alphabets only.

Referential integrity: It specifies that rows cannot be deleted, which are used by

other records.

User-defined integrity: It enforces some specific business rules that are defined by

users. These rules are different from entity, domain or referential integrity.

Primary Key: A primary key is a single field or combination of fields that contains a

unique record. It must be filled. None of the field of primary key can contain a null

value. A table can have only one primary key.

Foreign Key: A foreign key is a field or a column that is used to establish a link

between two tables. In simple words you can say that, a foreign key in one table

used to point primary key in another table.

Unique Key: A unique key is a set of one or more than one fields/columns of a table

that uniquely identify a record in a database table.

DBMS and RDBMS both are used to store information in physical database but there

are some remarkable differences between them.

Why RDBMS?

 RDBMS applications store data in a database

 Database contains one or more tables.

 Normalization is present in RDBMS.

 RDBMS defines the integrity constraint for the purpose of ACID (Atomocity,

Consistency, Isolation and Durability) property.

 RDBMS system supports a tabular structure of the data and a relationship

between them to access the stored information

 In RDBMS, the tables have an identifier called primary key and the data

values are stored in the form of tables.

31

 In RDBMS, data values are stored in the form of tables, so

a relationship between these data values will be stored in the form of a table

as well.

 RDBMS supports distributed database.

 RDBMS is designed to handle large amount of data. It supports multiple

users.

1.4 INTRODUCTION TO MySQL

MySQL is a fast, easy to use, and open source relational database management

system. MySQL Community Edition is the freely downloadable version of the open

source version of MySQL database. It is available under the GPL license and is

supported by a huge and active community of open source developers. It is very

commonly used in conjunction with PHP scripts to create powerful and dynamic

server-side applications.

1.5 WHY MySQL?

MySQL is becoming so popular because of these following reasons:

o MySQL (CE-Community Edition) is an open-source database that is free to

use and you can download it from MySQL official website.

https://www.mysql.com/products/community/

o It is a relational database management system.

o It is customizable because it is an open source database and the open-source

GPL license facilitates programmers to modify the SQL software according to

their requirement.

o It is a very powerful; it come with a large set of functionality.

o It is quicker than other databases.

o It supports many operating systems and many languages like PHP, PERL, C,

C++, JAVA, etc.

o It uses a standard form of the well-known SQL data language.

http://www.mysql.com/products/community/

32

o It is very friendly with PHP, the most popular language for web development.

o It supports large databases.

o It supports Transitions Management

1.6 HOW TO INSTALL AND CONFIGURE MySQL

Following section describes a basic installation of a MySQL database server on

Ubuntu Linux. You might need to install other packages to let applications use

MySQL, like extensions for PHP. Check your application documentation for details.

MySQL Installation Steps:

Install the MySQL server by using the Ubuntu package manager:

Step -1 to install MySQL, open terminal window by pressing ctrl + Alt + T key and run

following commands

sudo apt-get update

sudo apt-get install mysql-server

33

Press ‘Y’ to start installation. The installer installs MySQL and all

dependencies.

After installation is complete, the mysql_secure_installation utility runs. This utility

prompts you to define the mysql root password and other security related

options, including removing remote access to the root user and setting the

root password.

Step-2 Start the MySQL Service

After the installation is complete, you can start the database service by

running the following command. If the service is already started, a message

informs you that the service is already running:

systemctl start mysql

34

Step-3 Launch at boot/startup

To ensure that the database server launches after a reboot, run the following

command:

systemctl enable mysql

Step-4 Start MySQL shell

There is more than one way to work with a MySQL server, but this article focuses on

the most basic and compatible approach, the mysql shell.

1. At the command prompt, run the following command to launch the mysql shell and

enter it as the root user:

/usr/bin/mysql -u root

2. When you’re prompted for a password, enter the one that you set at Ubuntu

installation time, or if you haven’t set one, press Enter to submit no password.

The following MySQL shell prompt should appear:

mysql>

At MySQL shell prompt you can run various SQL statements

35

1.7 MySQL DATATYPES

A Data Type denoting a particular type of data, like integer, floating points, Boolean

etc. It also identifies the possible values that the type can holds, the operations that

can be performed on that type and the way the values of that type are stored.

MySQL data types mainly divide into three categories: numeric, date and time, and

string.

Numeric Data Types:

Data type Description

INT A normal-sized integer that can be signed or unsigned. If signed,

the allowable range is from -2147483648 to 2147483647. If

unsigned, the allowable range is from 0 to 4294967295. You can

specify a width of up to 11 digits.

TINYINT A very small integer that can be signed or unsigned. If signed, the

allowable range is from -128 to 127. If unsigned, the allowable

range is from 0 to 255. You can specify a width of up to 4 digits.

SMALLINT A small integer that can be signed or unsigned. If signed, the

allowable range is from -32768 to 32767. If unsigned, the

allowable range is from 0 to 65535. You can specify a width of up

to 5 digits.

MEDIUMINT A medium-sized integer that can be signed or unsigned. If signed,

the allowable range is from -8388608 to 8388607. If unsigned, the

allowable range is from 0 to 16777215. You can specify a width of

up to 9 digits.

BIGINT A large integer that can be signed or unsigned. If signed, the

allowable range is from -9223372036854775808 to

9223372036854775807. If unsigned, the allowable range is from 0

to 18446744073709551615. You can specify a width of up to 20

digits.

FLOAT(m,d) A floating-point number that cannot be unsigned. You can define

36

 the display length (m) and the number of decimals (d). This is not

required and will default to 10,2, where 2 is the number of

decimals and 10 is the total number of digits (including decimals).

Decimal precision can go to 24 places for a float.

DOUBLE(m,d) A double precision floating-point number that cannot be unsigned.

You can define the display length (m) and the number of decimals

(d). This is not required and will default to 16,4, where 4 is the

number of decimals. Decimal precision can go to 53 places for a

double. Real is a synonym for double.

DECIMAL(m,d) An unpacked floating-point number that cannot be unsigned. In

unpacked decimals, each decimal corresponds to one byte.

Defining the display length (m) and the number of decimals (d) is

required. Numeric is a synonym for decimal.

Date and Time Data Type:

Data Type Maximum Size Explanation

DATE Values range from '1000-01-01' to

'9999-12-31'.

Displayed as 'yyyy-mm-

dd'.

DATETIME Values range from '1000-01-01

00:00:00' to '9999-12-31 23:59:59'.

Displayed as 'yyyy-mm-

dd hh:mm:ss'.

TIMESTAMP(m) Values range from '1970-01-01

00:00:01' UTC to '2038-01-19

03:14:07' TC.

Displayed as 'YYYY-

MM-DD HH:MM:SS'.

TIME Values range from '-838:59:59' to

'838:59:59'.

Displayed as

'HH:MM:SS'.

YEAR[(2|4)] Year value as 2 digits or 4 digits.

37

Data Type Maximum Size Explanation

CHAR(size) Maximum size of 255

characters.

Where size is the number of

characters to store. Fixed-length

strings. Space padded on right to

equal size characters.

VARCHAR(size) Maximum size of 255

characters.

Where size is the number of

characters to store. Variable-length

string.

TINYTEXT(size) Maximum size of 255

characters.

Where size is the number of

characters to store.

TEXT(size) Maximum size of

65,535 characters.

Where size is the number of

characters to store.

MEDIUMTEXT(size) Maximum size of

16,777,215

characters.

Where size is the number of

characters to store.

LONGTEXT(size) Maximum size of 4GB

or 4,294,967,295

characters.

Where size is the number of

characters to store.

BINARY(size) Maximum size of 255

characters.

Where size is the number of binary

characters to store. Fixed-length

strings. Space padded on right to

equal size characters.

VARBINARY(size) Maximum size of 255

characters.

Where size is the number of

characters to store. Variable-length

string.

38

Large Object Data Types (LOB) Data Types:

Data Type Maximum Size

TINYBLOB Maximum size of 255 bytes.

BLOB(size) Maximum size of 65,535 bytes.

MEDIUMBLOB Maximum size of 16,777,215 bytes.

LONGTEXT Maximum size

1.8 CHECK YOUR PROGRESS

1) What is RDBMS?

2) What is database?

3) Which MySQL version is free to use and open source

4) How to shutdown MySQL server

1.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1) A Relational Database Management System (RDBMS) is a software that

 Allow you to implement a database with tables, columns and indexes.

 Guarantees the Referential Integrity between rows of various tables.

 Updates the indexes automatically.

 Interprets an SQL query and combines information from various tables.

2) Database is a collection of tables, with related data or in other word it is

repository of data.

3) MySQL Community Edition

4) sudomysqladmin -u root -p shutdown

39

Unit 2: Structured Query
Language 2

Unit Structure

2.1 Learning Objectives and Outcome

2.2 Introduction

2.3 What is SQL?

2.4 SQL Commands

2.5 Check your Progress

2.6 Check your Progress: Possible Answers

40

2.1 LEARNING OBJECTIVES AND OUTCOME

After studying this unit student will be able to:

 Understand SQL and SQL syntax used with MySQL

 Concepts of unique key, primary key, foreign key and table constraints.

 How to retrieve and manipulates data from one or more tables through

queries

 How to filter data based upon filter conditions

Outcome:

 Install, manage and work with MySQL

 Understand and explain the roles RDBMS

 Understand and use of the Structured Query Language (SQL)

 Write DDL statement to Create, modify and delete database/ schema, tables,

and indexes

 MySQL datatypes and unique key, primary key, foreign key and table

constraints.

 Write DML statement to create, modify and delete tables and Retrieve data

from the tables through queries and sub-queries.

2.2 INTRODUCTION

SQL is an open standard language to work similarly with most the databases.

SQL consist of three built-in sub-languages: Data definition language (DDL), Data

manipulation language (DML) and Data control language (DCL). SQL is a fourth

generation language. SQL has many more features and advantages. Let us discuss

the SQL in more detail in this chapter.

2.3 WHAT IS SQL?

SQL (Structured Query Language) is a programming language used to

communicate with a relational database management system. SQL syntax is similar

to the English language, which makes it relatively easy to write, read, and interpret.

Many RDBMSs use SQL (and variations of SQL) to access the data in tables. For

41

example, SQLite is a relational database management system. SQLite contains a

minimal set of SQL commands (which are the same across all RDBMSs). Other

RDBMSs may use other variants.SQL is often pronounced in one of two ways. You

can pronounce it by speaking each letter individually like “S-Q-L”, or pronounce it

using the word “sequel”. SQL open standard language. All the relational systems

support SQL, thus allowing migration of database from one DBMS to another. This

feature is commonly referred to as portability. Although, SQL is portable but SQL

syntax may differ slightly depending on which RDBMS you are using.

Some of the important features of SQL are:

 SQL is a non procedural language.

 SQL is open standard language.

 SQL is an English-like language.

 SQL can process a single record as well as sets of records at a time.

 SQL is different from a third generation language

 SQL is a data sub-language consisting of three built-in languages: Data

definition language (DDL), Data manipulation language (DML) and Data

control language (DCL).

 It insulates the user from the underlying structure and algorithm of databases.

SQL has facilities for defining database views, security, integrity constraints,

transaction.

2.4 SQL COMMANDS

There are three types of built-in SQL commands: Data definition language (DDL),

Data manipulation language (DML) and Data control language (DCL). SQL

commands are instructions to RDBMS. It is used to communicate with the database.

It is also used to perform specific tasks, functions, and queries of data. SQL can

perform various operations like create a table, add data to tables, drop the table,

modify the table, and set permission for users.

42

2.4.1 DATA DEFINITION LANGUAGE (DDL)

As discussed in the previous section, the basic storage unit of a relational database

management system is a database/schema, within database data is organized into

tables. Each table has its own primary key. Tables can grow large and have a

multitude of columns and records. Data is represented in terms of tuples (rows) in

table. Due to a collection of organized set of tables, data can be accessed easily in

RDBMS. In RDBMS terminology, database also known as schema.

The Data definition language (DDL) defines a set of commands used in the creation

and modification of schema and objects such as tables, indexes, views etc. These

commands provide the ability to create, alter and drop these objects. These

commands are related to the management and administrations of the databases.

Before and after each DDL statement, the current transactions are implicitly

committed, that is changes made by these commands are permanently stored in the

databases. Let us discuss these commands in more detail:

Create a database in MySQL:

There is a difference between a database server and a database, even though those

terms are often used interchangeably. MySQL is a database server, meaning it

tracks databases and controls access to them. The database stores the data, and it

is the database that applications are trying to access when they interact with MySQL.

List of DDL Statements/Commands:

DDL Command Description

CREATE To create database / objects in the database

ALTER To alters the structure of the database

DROP To delete database / objects from the database

TRUNCATE To remove all records from a table, including all spaces allocated

for the records are removed

COMMENT To add comments to the data dictionary

RENAME rename an object

43

To create a database, log in to the mysql shell and run the following command,

replacing <database-name> with actual name of the database that you want to create:

CREATE DATABASE <database-name>;

Example: Create database hrms;

Here, Create database is a command to create a database and hrms is a database

name

Naming Conventions for MySQL/MariaDB

MySQL database identifiers that you can name include databases, tables, columns,

other database objects, and alias. They follow these naming conventions.

 Names must be from 1 to 255 characters long. All other identifier names must be

from 1 to 64 characters long.

 Database names can use any character that is allowed in a directory name

except for a period, a backward slash (\), or a forward slash (/).

 By default, MySQL encloses column names and table names in quotation marks.

 Table names can use any character that is allowed in a filename except for a

period or a forward slash.

 Column names and alias names allow all characters.

 Embedded spaces and other special characters are not permitted unless you

enclose the name in quotation marks.

 Embedded quotation marks are not permitted.

44

 Case sensitivity is set when a server is installed. By default, the names of

database objects are case sensitive on UNIX and not case sensitive on Windows.

For example, the names CUSTOMER and Customer are different on a case-

sensitive server.

 A name cannot be a reserved word in MySQL unless you enclose the name in

quotation marks. See the MySQL documentation for more information about

reserved words.

 Database names must be unique. For each user within a database, names of

database objects must be unique across all users. For example, if a database

contains a department table that User A created, no other user can create a

department table in the same database.

Note: MySQL does not recognize the notion of schema, so tables are automatically

visible to all users with the appropriate privileges. Column names and index names

must be unique within a table. For detailed information about naming conventions,

see your MySQL documentation.

After the database is created, you can verify its creation by run a query show

databases to list all databases. The following example shows the query and

example output:

SHOW databases;

45

Create Table:

The CREATE TABLE statement is used to create a new table in a database.

CREATE TABLE <<tablename>> (

column1 datatype,

column2 datatype,

column3 datatype,

....

);

The column parameters specify the names of the columns of the table.

The datatype parameter specifies the type of data the column can hold (e.g. varchar,

integer, date, etc.).

Rules for creation of table:

• Table name should start with an alphabet.

• In table name, blank spaces and single quotes are not allowed.

• Reserve words of that DBMS cannot be used as table name.

• Proper data types and size should be specified.

• Unique column name should be specified.

Column Constraints: NOT NULL, UNIQUE, PRIMARY KEY, CHECK, DEFAULT,

REFERENCES

For example,

CREATE TABLE hrms.employees (emp_id int PRIMARY KEY, emp_name

varchar(15) NOT NULL, job_name varchar(10), manager_id int, hire_date date,

salary decimal(10,2), commission float(7,2), dep_id int);

The command above creates a table. Primary key constraint (Discussed in data

integrity section od chapter-1) ensures that emp_id is not null and unique (both are

the properties of primary key). Varchar basically is variable length character type

46

subject to a maximum specified in the declarations. We will use them at most of the

places.

To view Structure of table:

Query for view/describe table structure as follows:

Desc <databasename>.<tablename>;

Example,

Desc hrms.employee;

Similarly, create another table department in hrmsdatabase :

CREATE TABLE hrms.department (dep_id int, dep_name varchar(20),

dep_location varchar(15));

ALTER TABLE: This SQL statement is used for modification of existing structure of

the table in the following situation:

• When a new column is to be added to the table structure.

• When the existing column definition has to be changed, i.e., changing the width of

the data type or the data type itself.

• When integrity constraints have to be included or dropped.

• When a constraint has to be enabled or disabled.

47

Following are various syntax of it.

ALTER TABLE <table name> ADD (<column name><data type>…);

ALTER TABLE <table name> MODIFY (<column name><data type>…);

ALTER TABLE <table name> ADD CONSTRAINT <constraint name> (field name);

ALTER TABLE <table name> DROP<constraint name>;

ALTER TABLE <table name> ENABLE/DISABLE <constraint name>;

The structure of department table is:

Now, if we want to make primary key to dep_id then,

Alter table hrms.department Add constraint Primary Key (dep_id);

After executing above command the structure of department table changed as:

48

DROP TABLE:

When an existing table is not required for further use, it is always better to remove it

from the database. To delete the existing table from the database the following

command is used.

DROP TABLE <table name>;

Drop table hrms.department;

2.4.2 DATA MANIPULATION LANGUAGE

Data manipulation language (DML) defines a set of commands that are used to

query and modify data within existing database tables. In this case commit is not

implicit that is changes are not permanent till explicitly committed. DML statements

consist of SELECT, INSERT, UPDATE and DELETE statements

List of DML Statements/Commands:

DML Command Description

SELECT To retrieve data from the a database

INSERT To insert data into a table

DELETE To deletes all or specific records from a table

UPDATE To updates existing data within a table

INSERT INTO Statement:

This SQL statement is used for inserting data into existing table.

This statement used in the following situation:

• Values can be inserted for all columns or for the selected columns.

• Values can be given through sub query.

• In place of values parameter substitution can also be used with insert.

49

• If data is not available for all the columns, then the column list must be

included following the table name.

INSERT INTO <tablename>(column1, column2, column3,...columnN) VALUES

(value1, value2, value3,...valueN);

For example, insert data into employee table

OR

If you want to insert some fields than you must have to specify filed list.

Finally, table contains following records

Populate one table using another table

You can populate the data into a table through the select statement over another

table; provided the other table has a set of fields, which are required to populate

the first table.

Here is the syntax:

INSERT INTO first_<tablename> [(column1, column2, ... columnN)] SELECT

column1, column2, ...columnN

FROM second_<tablename> [WHERE condition];

50

UPDATE Statement:

The SQL UPDATE Query is used to update the existing records in a table. You can

use the WHERE clause with the UPDATE query to update the selected rows,

otherwise all the rows would be affected.

UPDATE <<tablename>> SET column1 = value1, column2 = value2...., columnN =

valueNWHERE [condition];

The following query will update the salary for a employee whose emp_id is 68319 in

the table.

Now,

DELETE Statement:

The SQL DELETE Query is used to delete the existing records from a table. You can

use the WHERE clause with a DELETE query to delete the selected rows, otherwise

all the records would be deleted.

The basic syntax of the DELETE queries with the WHERE clause is as follows:

DELETE FROM <tablename> WHERE [condition];

You can combine N number of conditions using AND or OR operators.

51

SQL Operators:

With the SQL statement you also use operators. An operator used with WHRE

clause to perform operation(s) in SQL, e.g. comparisons and arithmetic operators.

SQL Operators are:

Arithmetic Operators:

Operators Meaning

+ Addition (E.g. a + b)

- Subtraction (E.g. a - b)

* Multiplication (E.g. a * b)

/ Division (E.g. a / b)

% Modulus (E.g. a % b)

Comparison operators:

Operators Meaning

= equal to (E.g. a = b)

!=

<>

not equal to (E.g. a !=b or a <> b)

> greater than (E.g. a > b)

> less than (E.g. a < b)

>= greater than or equal (E.g. a >= b)

<= (less than or equal (E.g. a <= b)

For example, employee tables contains following data

52

Now we want summation of salary and commission then,

Now if you want to calculate 20% income tax on salary then

Logical and other operators:

Operators Meaning

ALL This operator is used to compare a value to all values in

another value set.

AND AND – This operator allows the existence of multiple conditions

in an SQL statement's WHERE clause.

ANY ANY - This operator is used to compare a value to any

applicable value in the list as per the condition

BETWEEN This operator is used to search for values that are within a set

of values, given the minimum value and the maximum value.

EXISTS This operator is used to search for the presence of a row in a

specified table that meets a certain criterion.

53

IN This operator is used to compare a value to a list of literal

values that have been specified.

LIKE This operator is used to compare a value to similar values

using wildcard operators.is used to compare a value to a list of

literal values that have been specified.

NOT This operator reverses the meaning of the logical operator with

which it is used. Eg: NOT

NOT BETWEEN,

NOT IN, etc.

This is a negate operator

OR This operator is used to combine multiple conditions in an SQL

statement's WHERE clause

IS NULL This operator is used to compare a value with a NULL value

UNIQUE This operator searches every row of a specified table for

uniqueness (no duplicates).

SELECT Statement:

The SELECT statement is used for retrieving information from the databases tables.

It can be used with many clauses.

Note: Discuss the other SQL operators in with more detail later in this chapter.

Simple SELECT statement:

SELECT * FROM<tablename>;

Here, * means all fields. To fetch all the fields available in the field, then you can

use *

54

SELECT column1, column2....columnN FROM <tablename>;

Here, column1, column2... are the fields of a table whose values you want to fetch

SELECT DISTINCT:

The DISTINCT keyword is used in conjunction with the SELECT statement to

eliminate all the duplicate records and fetching only unique records

SELECT DISTINCT column1, column2,columnN FROM <tablename>;

SELECT with WHERE clause:

WHERE clause is used to specify a condition while fetching the data from a single

table or by joining with multiple tables. You should use the WHERE clause to filter

the records and fetching only the necessary records.

The WHERE clause is also used with INSERT, UPDATE and DELETE statements.

SELECT column1, column2....columnN FROM<tablename> WHERE

[condition];

55

SELECT with WHERE clause and logical operators:

SELECT column1, column2....columnN FROM <tablename> WHERE

CONDITION-1 {AND|OR} CONDITION-2;

The AND & OR operators are used to combine multiple conditions to narrow result

data in SQL statement. These two operators are called as the conjunctive

operators.

Consider the employees table having the following records:

The AND operator allows the existence of multiple conditions with WHERE clause.

Following is an example, which would fetch the all the fileds from the employee

table, where the salary is greater than 6000 and the department id (dept_id) is

equals to 1001

The following example has a query, which would fetch the all fields from the

employees table, where the department id (dept_id) is equals to 1001 OR the salary

is greater than 6000

SELECT with WHERE IN clause:

SELECT column1, column2....columnN FROM<tablename> WHERE

column_name IN (val-1, val-2,...val-N);

56

The following example has a query, which would fetch the record of employees who

are the part of the department (1001, 1003)

LIKE clause:

SELECT column1, column2....columnN FROM<tablename> WHERE

column_name LIKE { PATTERN };

The LIKE clause is used to compare a value to similar values using wildcard

operators. There are two wildcards used in conjunction with the LIKE operator.

 The percent sign (%)

 The underscore (_)

The percent sign represents zero, one or multiple characters. The underscore

represents a single number or character. These symbols can be used in

combinations.

Syntax of % and _ is as follows

SELECT FROM <tablename>WHERE column LIKE 'XXXX%'

SELECT FROM <tablename>WHERE column LIKE '%XXXX%'

SELECT FROM <tablename>WHERE column LIKE 'XXXX_'

SELECT FROM <tablename> WHERE column LIKE '_XXXX'

SELECT FROM <tablename> WHERE column LIKE '_XXXX_'

57

ORDER BY clause:

The ORDER BY clause is used to sort the data in ascending or descending order,

based on one or more columns. Most of databases sort the query results in an

ascending order by default.

SELECT column1, column2....columnN FROM<tablename> WHERE CONDITION

ORDER BY column_name {ASC|DESC};

The following example display all the record in ascending order of employee name

of employees table

The following query display all the record in descending order of employee name of

employees table

GROUP BY clause:

GROUP BY clause is used in association with the SELECT statement to arrange

identical data into groups. This GROUP BY clause follows the WHERE clause in a

SELECT statement and precedes the ORDER BY clause.

SELECT SUM(column_name) FROM <tablename> WHERE CONDITION GROUP BY

column_name;

58

For example, if you want to know the total salary pay to department then the

GROUP BY query would be as follows

HAVING Clause:

The HAVING Clause enables you to specify conditions that filter which group results

appear in the results.

The WHERE clause places conditions on the selected columns, whereas the

HAVING clause places conditions on groups created by the GROUP BY clause.

SELECT COUNT(column_name) FROM <tablename> WHERE CONDITION; SQL

HAVING Clause

SELECT SUM(column_name) FROM <tablename> WHERE CONDITION GROUP BY

column_name HAVING (arithematic function condition);

Following is an example, which would display total no of employees are working in it

2.5 CHECK YOUR PROGRESS

1) What is SQL?

2) What are the usages of SQL?

3) Create a department tables table in hrms with following fields

4) In department table declare dep_id as primary key

59

5) What is the difference between DELETE and TRUNCATE statement in SQL?

6) What are the advantages of SQL?

2.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1) SQL stands for the Structured Query Language. SQL is a open standard

query language used for maintaining the relational database and perform

many different operations, like data manipulation on tables. It is a database

language used for database creation, deletion, fetching rows and modifying

rows, etc. sometimes it is pronounced as 'sequel.'

2) Usages of SQL:

SQL performs following operation on database

o execute queries against a database

o retrieve data from a database

o inserts, updates and/or delete records from a database

o create new databases

o create new tables, views etc. in a database

o Perform complex operations on the database.

3) Create a department tables :

Create table hrms.department (dep_id int, dep_name varchar(20),

dep_location varchar(20));

4) Alter table hrms.department Add Add constraint Primary Key (dep_id);

5) DELETE is a DML statement while TRUNCATE is DDL statement.

In DELETE we can user WHERE clause while in TRUNCATE we cannot use

WHERE clause.

DELETE statement use to delete one or more row from table While in

TRUNCATE remove all rows from table.

60

DELETE is slower then TRUNCATE

You can rollback/undo data after using DELETED statement while rollback is

not possible after using TRUNCATE

6) Advantages of SQL:

 A standard for database query languages

 Easy to learn

 Portability

 SQL standard exists

 Both interactive and embedded access

 Can be used by specialist and non-specialist

61

Unit 3: SQL Sub Languages 3

Unit Structure

3.1 Learning Objectives and outcome

3.2 Introduction

3.3 SQL Sub Languages

3.4 MySQL Functions

3.5 Check your Progress

3.6 Check your Progress: Possible Answers

62

3.1 LEARNING OBJECTIVES AND OUTCOME

After studying this unit student will be able to:

 How to retrieve and manipulates data from one or more tables through

queries and sub-queries

 How to Grant and Revoke privileges on database objects

 Built-in MySQL functions

Outcome:

 Write DCL statement to undo work or permanently save work to database.

 Control Transactions

 Write DML statement to create, modify and delete tables and Retrieve data

from the tables through queries and sub-queries

 Work with MySQL built-in functions.

3.2 INTRODUCTION

SQL open standard language to work similarly with most the databases. SQL consist

of three built-in sub-languages: Data definition language (DDL), Data manipulation

language (DML) and Data control language (DCL). SQL is a fourth generation

language. Sometimes we need to generate a result by combining two or more tables.

In this condition join and sub-queries help us. DCL commands are used to establish

user access to the database. SQL commands directly affect the base tables, which

contain the raw data, or they may affect database view, which has been created.

TCL commands can only use with DML commands like INSERT, DELETE and

UPDATE only. Sometimes Transaction Control Language (TCL) is consideras fourth

type of SQL command.

3.3 SQL SUB LANGUAGES

3.3.1 DATA CONTROL LANGUAGE(DCL)

DCL commands are used to establish user access to the database. SQL commands

directly affect the base tables, which contain the raw data, or they may affect

63

database view, which has been created. DCL commands are used to grant and take

back authority from any database user.

There are two DCL commands:

 Grant

 Revoke

Grant Statement:

GRANT SELECT, UPDATE… ON <tablename>|<database>.*

TO <someuser>, <anotheruser>;

For example,

Grant Select, Update, Delete ON hrms.employees To hrmanager

Revoke Statement:

It is used to take back permissions from the user.

REVOKE SELECT, UPDATE,… ON <tablename>|<database>.*

TO <someuser>, <anotheruser>;

For example,

Revoke Select, Update, Delete ON hrms.employees To hrmanager

3.3.2 TRANSACTION CONTROL LANGUAGE (TCL)

TCL commands can only use with DML commands like INSERT, DELETE and

UPDATE, While DCL command’s operations are automatically committed in the

database that's why they cannot be used while creating tables or dropping them.

What is Transaction?

A transaction is a unit of work that is performed with a database. Transactions are

units or sequences of work accomplished in a logical order, whether in a manual

fashion by a user or automatically by application program. For example, if you are

64

creating a record or updating a record or deleting a record from the table, then you

are performing a transaction on that table. It is important to control these

transactions to ensure the data integrity and to handle database errors.

Transaction Control Language statements/commands (TCL) are:

TCL Statement Description

COMMIT to save the changes parentally in database

ROLLBACK to roll back the changes

SAVEPOINT creates points within the groups of transactions in which

to ROLLBACK.

SET TRANSACTION Places a name on a transaction

RELEASE SAVEPOINT The RELEASE SAVEPOINT command is used to remove

a SAVEPOINT that you have created.

COMMIT Statement:

The COMMIT command is the transactional command used to save changes made

by a transaction to the database. By default in MySQL, data are saved permanently,

that means autocommit is always true.

Syntax of commit statement is as follows:

Mysql> COMMIT;

For examples, employees table contains following data

65

Following is an example which would insert records into the table and then COMMIT

the changes in the database.

Mysql> Insert into employees values (66931,'Ramesh','CLERK',68320,'2003-05-

05',3000.00,000.00,1002);

Mysql> Commit;

Thus, the new row would be inserted and the SELECT statement would produce the

following result.

ROLLBACK Statement:

Syntax of commit statement is as follows:

Mysql> ROLLBACK;

The ROLLBACK command is the transactional command used to undo transactions

that have not already been saved to the database.This command can only be used

to undo transactions since the last COMMIT or ROLLBACK command was issued.

Following is an example, which would delete records from the table which have the

emp_id = 66931

66

It deletes a record, now we execute ROLLBACK command then it will undo changes

in the database.

SAVEPOINT statement:

A SAVEPOINT is a marking point in a transaction where you can rollback the

transaction to a point without rolling back the entire transaction.

The syntax for a SAVEPOINT statement is as follows:

SAVEPOINT SAVEPOINT_NAME;

Example: SAVEPOINT A2;

If you want to rollback the transaction then, use following command:

Rollback To SAVEPOINT_NAME;

Example: ROLLBACK To A2;

RELEASE SAVEPOINT Statement;

The syntax for a RELEASE SAVEPOINT statement is as follows:

RELEASE SAVEPOINT SAVEPOINT_NAME;

Example: RELEASE SAVEPOINT A2;

3.3.3 JOIN QUERY

The Joins is used to combine records from two or more tables in a database. A

JOIN is a means combine two or more tables is based on common field between

them.

67

There are different types of joins available in SQL

Join

Type

Description

Inner

Join

Left

Join

Returns records that have matching values in both tables.

Class table

ID Name

1 Abhi

2 Rajesh

3 Ramesh

4 Vijay

Class_info table

ID Address

1 Ahmedabad

2 Baroda

3 Bhavnagar

Inner Join

 ID Name ID Address

1 Abhi 1 Ahmedabad

2 Rajesh 2 Baroda

 3 Ramesh 3 Bhavnagar

Returns all rows from the left table, even if there are no matches in the

right table.

68

 Class table

ID Name

1 Abhi

2 Rajesh

3 Ramesh

4 Vijay

Class_info table

ID Address

1 Ahmedabad

2 Baroda

3 Bhavnagar

Left Join

 ID Name ID Address

1 Abhi 1 Ahmedabad

2 Rajesh 2 Baroda

3 Ramesh 3 Bhavnagar

4 Vijay Null Null

Right

Join

Returns all rows from the right table, even if there are no matches in the

left table.

Class table

 ID Name

1 Abhi

2 Rajesh

3 Ramesh

4 Vijay

5 Anu

69

Class_info table

ID Address

1 Ahmedabad

2 Baroda

3 Bhavnagar

7 Amreli

8 Rajkot

Right Join

 ID ID Address

1 Abhi 1 Ahmedabad

2 Rajesh 2 Baroda

3 Ramesh 3 Bhavnagar

Null Null 7 Amreli

 Null Null 8 Rajkot

Full

Join

Returns rows when there is a match in one of the tables. In other word,

Return all records when there is a match in either left or right table

Class table

ID Name

1 Abhi

2 Rajesh

3 Ramesh

4 Vijay

5 Anu

70

Class_info table

ID Address

1 Ahmedabad

2 Baroda

3 Bhavnagar

7 Amreli

8 Rajkot

Full Join

 ID Name ID Address

1 Abhi 1 Ahmedabad

2 Rajesh 2 Baroda

3 Ramesh 3 Bhavnagar

4 Vijay Null Null

5 Anu Null Null

Null Null 7 Amreli

Null Null 8 Rajkot

Self-

Join

Used to join a table to itself as if the table were two tables, temporarily

renaming at least one table in the SQL statement.

Consider following table and data for further study

71

INNER JOIN/EQUIJOIN

The most important and frequently used of the joins is the INNER JOIN. It is also

known as an EQUIJOIN. The INNER JOIN produce a new result table by combining

column values of two tables (table1 and table2) based upon the join-predicate.

SELECT table1.column1, table2.column2 FROM <table1>, <table2> WHERE

table1.column_field = table2.column_field;

The following SQL statement selects all employees and department they belong.

Select department.*,employees.* from department, employees where

department.dep_id = employees.dep_id;

Outer Join:

In the SQL outer JOIN all the content of the both tables are integrated together either

they are matched or not. There are two types of Outer join - Left Join and Right

Join.

Left Join: It returns all rows from the left table, even if there are no matches in the

right table.

SELECT table1.column1, table2.column2 FROM <table1> LEFT JOIN

<table2> ON table1.column_field = table2.column_field;

Select department.*,employees.* from department LEFT JOIN employees ON

department.dep_id = employees.dep_id;

72

Right Join: It returns all rows from the right table, even if there are no matches in

the left table.

SELECT table1.column1, table2.column2 FROM <table1> RIGHT JOIN

<table2> ON table1.column_field = table2.column_field;

Select department.*,employees.* from department RIGHT JOIN employees ON

department.dep_id = employees.dep_id;

Full Join: The SQL full join is the result of combination of both left and right outer

join and the join tables have all the records from both tables. It puts NULL on the

place of matches not found.

SELECT table1.column1, table2.column2 FROM <table1> LEFT JOIN

<table2> ON table1.column_field = table2.column_field;

UNION

SELECT table1.column1, table2.column2 FROM <table1> RIGHT JOIN

<table2> ON table1.column_field = table2.column_field;

Select department.*,employees.* from department LEFT JOIN employees ON

department.dep_id = employees.dep_id;

73

UNION

Select department.*,employees.* from department RIGHT JOIN employees ON

department.dep_id = employees.dep_id;

3.3.4 SUBQUERY/INNER QUERY/NESTED QUERY:

A Subquery or Inner query or a Nested query is a query within another SQL query

and embedded within the WHERE clause. A subquery is used to return data that

will be used in the main query as a condition to further restrict the data to be

retrieved. Subqueries can be used with the SELECT, INSERT, UPDATE, and

DELETE statements along with the operators like =, <, >, >=, <=, IN, BETWEEN,

etc.

SELECT column_name [, column_name] FROM <tablename1> [,<

tablename2>] WHERE column_name OPERATOR (SELECT column_name

[, column_name] FROM <tablename1> [, <tablename2 >] [WHERE

condition])

74

Subqueries with the INSERT Statement:

Subqueries also can be used with INSERT, UPDATE and DELETE statements.

The syntax is as follows.

INSERT INTO <tablename> [(column1 [, column2])] SELECT [*|column1 [,

column2] FROM <tablename1> [, <tablename2>] [WHERE condition]

UPDATE table SET column_name = new_value [WHERE OPERATOR [VALUE]

(SELECT COLUMN_NAME FROM <tablename>) [WHERE condition)]

DELETE FROM TABLE_NAME [WHERE OPERATOR [VALUE] (SELECT

COLUMN_NAME FROM <tablename>) [WHERE condition)]

3.4 MYSQL FUNCTIONS

Here is the list of all important MySQL functions and describe their peruse.

Numeric Functions:

MySQL numeric functions are used primarily for numeric manipulation and/or

mathematical calculations. The following table details the numeric functions

Function Description

ABS Returns the absolute value of a number

ACOS Returns the arc cosine of a number

ASIN Returns the arc sine of a number

ATAN Returns the arc tangent of one or two numbers

ATAN2 Returns the arc tangent of two numbers

AVG Returns the average value of an expression

CEIL Returns the smallest integer value that is >= to a number

CEILING Returns the smallest integer value that is >= to a number

https://www.w3schools.com/sql/func_mysql_acos.asp
https://www.w3schools.com/sql/func_mysql_asin.asp
https://www.w3schools.com/sql/func_mysql_atan.asp
https://www.w3schools.com/sql/func_mysql_atan2.asp
https://www.w3schools.com/sql/func_mysql_avg.asp
https://www.w3schools.com/sql/func_mysql_ceil.asp
https://www.w3schools.com/sql/func_mysql_ceiling.asp

75

COS Returns the cosine of a number

COT Returns the cotangent of a number

COUNT Returns the number of records returned by a select query

DEGREES Converts a value in radians to degrees

DIV Used for integer division

EXP Returns e raised to the power of a specified number

FLOOR Returns the largest integer value that is <= to a number

GREATEST Returns the greatest value of the list of arguments

LEAST Returns the smallest value of the list of arguments

LN Returns the natural logarithm of a number

LOG Returns the natural logarithm of a number, or the logarithm of a

number to a specified base

LOG10 Returns the natural logarithm of a number to base 10

LOG2 Returns the natural logarithm of a number to base 2

MAX Returns the maximum value in a set of values

MIN Returns the minimum value in a set of values

MOD Returns the remainder of a number divided by another number

PI Returns the value of PI

POW Returns the value of a number raised to the power of another

number

https://www.w3schools.com/sql/func_mysql_cos.asp
https://www.w3schools.com/sql/func_mysql_cot.asp
https://www.w3schools.com/sql/func_mysql_count.asp
https://www.w3schools.com/sql/func_mysql_degrees.asp
https://www.w3schools.com/sql/func_mysql_div.asp
https://www.w3schools.com/sql/func_mysql_exp.asp
https://www.w3schools.com/sql/func_mysql_floor.asp
https://www.w3schools.com/sql/func_mysql_greatest.asp
https://www.w3schools.com/sql/func_mysql_least.asp
https://www.w3schools.com/sql/func_mysql_ln.asp
https://www.w3schools.com/sql/func_mysql_log.asp
https://www.w3schools.com/sql/func_mysql_log10.asp
https://www.w3schools.com/sql/func_mysql_log2.asp
https://www.w3schools.com/sql/func_mysql_max.asp
https://www.w3schools.com/sql/func_mysql_min.asp
https://www.w3schools.com/sql/func_mysql_mod.asp
https://www.w3schools.com/sql/func_mysql_pi.asp
https://www.w3schools.com/sql/func_mysql_pow.asp

76

POWER Returns the value of a number raised to the power of another

number

RADIANS Converts a degree value into radians

RAND Returns a random number

ROUND Rounds a number to a specified number of decimal places

SIGN Returns the sign of a number

SIN Returns the sine of a number

SQRT Returns the square root of a number

SUM Calculates the sum of a set of values

TAN Returns the tangent of a number

TRUNCATE Truncates a number to the specified number of decimal places

Examples:

The sqrt() function return square root of a number

Mysql> SELECT SQRT(49);

+ +

|

+

SQRT(49) |

+

| 7 |

+

+

https://www.w3schools.com/sql/func_mysql_power.asp
https://www.w3schools.com/sql/func_mysql_radians.asp
https://www.w3schools.com/sql/func_mysql_rand.asp
https://www.w3schools.com/sql/func_mysql_round.asp
https://www.w3schools.com/sql/func_mysql_sign.asp
https://www.w3schools.com/sql/func_mysql_sin.asp
https://www.w3schools.com/sql/func_mysql_sqrt.asp
https://www.w3schools.com/sql/func_mysql_sum.asp
https://www.w3schools.com/sql/func_mysql_tan.asp
https://www.w3schools.com/sql/func_mysql_truncate.asp

77

The power() or pow() functions return the value of X raised to the power of Y.

mysql> SELECT POWER(3,3);

+ +

| POWER(3,3) |

+ +

| 27 |

+ +

Date & Time Functions:

MySQL date & time functions are used primarily for create, play and manipulating

date and time value. The following table details the date & time functions

Function Description

ADDDATE Adds a time/date interval to a date and then returns

the date

ADDTIME Adds a time interval to a time/datetime and then

returns the time/datetime

CURDATE Returns the current date

CURRENT_DATE Returns the current date

CURRENT_TIME Returns the current time

CURRENT_TIMESTAMP Returns the current date and time

CURTIME Returns the current time

DATE Extracts the date part from a datetime expression

DATEDIFF Returns the number of days between two date values

DATE_ADD Adds a time/date interval to a date and then returns

the date

https://www.w3schools.com/sql/func_mysql_addtime.asp
https://www.w3schools.com/sql/func_mysql_curdate.asp
https://www.w3schools.com/sql/func_mysql_current_date.asp
https://www.w3schools.com/sql/func_mysql_current_time.asp
https://www.w3schools.com/sql/func_mysql_current_timestamp.asp
https://www.w3schools.com/sql/func_mysql_curtime.asp
https://www.w3schools.com/sql/func_mysql_date.asp
https://www.w3schools.com/sql/func_mysql_datediff.asp
https://www.w3schools.com/sql/func_mysql_date_add.asp

78

DATE_FORMAT Formats a date

DATE_SUB Subtracts a time/date interval from a date and then

returns the date

DAY Returns the day of the month for a given date

DAYNAME Returns the weekday name for a given date

DAYOFMONTH Returns the day of the month for a given date

DAYOFWEEK Returns the weekday index for a given date

DAYOFYEAR Returns the day of the year for a given date

EXTRACT Extracts a part from a given date

FROM_DAYS Returns a date from a numeric datevalue

HOUR Returns the hour part for a given date

LAST_DAY Extracts the last day of the month for a given date

LOCALTIME Returns the current date and time

LOCALTIMESTAMP Returns the current date and time

MAKEDATE Creates and returns a date based on a year and a

number of days value

MAKETIME Creates and returns a time based on an hour, minute,

and second value

MICROSECOND Returns the microsecond part of a time/datetime

MINUTE Returns the minute part of a time/datetime

MONTH Returns the month part for a given date

MONTHNAME Returns the name of the month for a given date

https://www.w3schools.com/sql/func_mysql_date_format.asp
https://www.w3schools.com/sql/func_mysql_date_sub.asp
https://www.w3schools.com/sql/func_mysql_day.asp
https://www.w3schools.com/sql/func_mysql_dayname.asp
https://www.w3schools.com/sql/func_mysql_dayofmonth.asp
https://www.w3schools.com/sql/func_mysql_dayofweek.asp
https://www.w3schools.com/sql/func_mysql_dayofyear.asp
https://www.w3schools.com/sql/func_mysql_extract.asp
https://www.w3schools.com/sql/func_mysql_from_days.asp
https://www.w3schools.com/sql/func_mysql_hour.asp
https://www.w3schools.com/sql/func_mysql_last_day.asp
https://www.w3schools.com/sql/func_mysql_localtime.asp
https://www.w3schools.com/sql/func_mysql_localtimestamp.asp
https://www.w3schools.com/sql/func_mysql_makedate.asp
https://www.w3schools.com/sql/func_mysql_maketime.asp
https://www.w3schools.com/sql/func_mysql_microsecond.asp
https://www.w3schools.com/sql/func_mysql_minute.asp
https://www.w3schools.com/sql/func_mysql_month.asp
https://www.w3schools.com/sql/func_mysql_monthname.asp

79

NOW Returns the current date and time

PERIOD_ADD Adds a specified number of months to a period

PERIOD_DIFF Returns the difference between two periods

QUARTER Returns the quarter of the year for a given date value

SECOND Returns the seconds part of a time/datetime

SEC_TO_TIME Returns a time value based on the specified seconds

STR_TO_DATE Returns a date based on a string and a format

SUBDATE Subtracts a time/date interval from a date and then

returns the date

SUBTIME Subtracts a time interval from a datetime and then

returns the time/datetime

SYSDATE Returns the current date and time

TIME Extracts the time part from a given time/datetime

TIME_FORMAT Formats a time by a specified format

TIME_TO_SEC Converts a time value into seconds

TIMEDIFF Returns the difference between two time/datetime

expressions

TIMESTAMP Returns a datetime value based on a date or datetime

value

TO_DAYS Returns the number of days between a date and date

"0000-00-00"

WEEK Returns the week number for a given date

https://www.w3schools.com/sql/func_mysql_now.asp
https://www.w3schools.com/sql/func_mysql_period_add.asp
https://www.w3schools.com/sql/func_mysql_period_diff.asp
https://www.w3schools.com/sql/func_mysql_quarter.asp
https://www.w3schools.com/sql/func_mysql_second.asp
https://www.w3schools.com/sql/func_mysql_sec_to_time.asp
https://www.w3schools.com/sql/func_mysql_str_to_date.asp
https://www.w3schools.com/sql/func_mysql_subdate.asp
https://www.w3schools.com/sql/func_mysql_subtime.asp
https://www.w3schools.com/sql/func_mysql_sysdate.asp
https://www.w3schools.com/sql/func_mysql_time.asp
https://www.w3schools.com/sql/func_mysql_time_format.asp
https://www.w3schools.com/sql/func_mysql_time_to_sec.asp
https://www.w3schools.com/sql/func_mysql_timediff.asp
https://www.w3schools.com/sql/func_mysql_timestamp.asp
https://www.w3schools.com/sql/func_mysql_to_days.asp
https://www.w3schools.com/sql/func_mysql_week.asp

80

WEEKDAY Returns the weekday number for a given date

WEEKOFYEAR Returns the week number for a given date

YEAR Returns the year part for a given date

YEARWEEK Returns the year and week number for a given date

Examples of Date and Time functions:

The CURDATE() function Returns the current date as a value in 'YYYY-MM-DD' or

YYYYMMDD format, depending on whether the function is used in a string or

numeric context.

mysql> SELECT CURDATE();

+ +

| CURDATE() |

+ +

| 1997-12-15 |

+ +

The CURTIME() function returns the current time as a value in 'HH:MM:SS' or

HHMMSS format, depending on whether the function is used in a string or numeric

context. The value is expressed in the current time zone.

mysql> SELECT CURTIME();

+ +

| CURTIME() |

+ +

| 23:50:26 |

+ +

https://www.w3schools.com/sql/func_mysql_weekday.asp
https://www.w3schools.com/sql/func_mysql_weekofyear.asp
https://www.w3schools.com/sql/func_mysql_year.asp
https://www.w3schools.com/sql/func_mysql_yearweek.asp

81

Advanced Functions:

Function Description

BIN Returns a binary representation of a number

BINARY Converts a value to a binary string

CASE Goes through conditions and return a value when the first

condition is met

CAST Converts a value (of any type) into a specified datatype

COALESCE Returns the first non-null value in a list

CONNECTION_ID Returns the unique connection ID for the current connection

CONV Converts a number from one numeric base system to another

CONVERT Converts a value into the specified datatype or character set

CURRENT_USER Returns the user name and host name for the MySQL

account that the server used to authenticate the current client

DATABASE Returns the name of the current database

IF Returns a value if a condition is TRUE, or another value if a

condition is FALSE

IFNULL Return a specified value if the expression is NULL, otherwise

return the expression

ISNULL Returns 1 or 0 depending on whether an expression is NULL

LAST_INSERT_ID Returns the AUTO_INCREMENT id of the last row that has

been inserted or updated in a table

MD5 Returns digest of the given string

NULLIF Compares two expressions and returns NULL if they are

https://www.w3schools.com/sql/func_mysql_binary.asp
https://www.w3schools.com/sql/func_mysql_case.asp
https://www.w3schools.com/sql/func_mysql_cast.asp
https://www.w3schools.com/sql/func_mysql_coalesce.asp
https://www.w3schools.com/sql/func_mysql_connection_id.asp
https://www.w3schools.com/sql/func_mysql_conv.asp
https://www.w3schools.com/sql/func_mysql_convert.asp
https://www.w3schools.com/sql/func_mysql_current_user.asp
https://www.w3schools.com/sql/func_mysql_database.asp
https://www.w3schools.com/sql/func_mysql_if.asp
https://www.w3schools.com/sql/func_mysql_ifnull.asp
https://www.w3schools.com/sql/func_mysql_isnull.asp
https://www.w3schools.com/sql/func_mysql_last_insert_id.asp
https://www.w3schools.com/sql/func_mysql_nullif.asp

82

equal. Otherwise, the first expression is returned

SESSION_USER Returns the current MySQL user name and host name

SYSTEM_USER Returns the current MySQL user name and host name

USER Returns the current MySQL user name and host name

VERSION Returns the current version of the MySQL database

For example:

Mysql> Select md5("password");

+ +

| md5("password") |

+ +

| 5f4dcc3b5aa765d61d8327deb882cf99 |

+ +

Similarly, there many functions are available in MySQL like, string function,

aggregate functions etc.…

3.4 CHECK YOUR PROGRESS

1) What is the difference between a sub-query and a join? Under what

circumstances would you not be able to use a sub-query?

2) Consider the following Relational database.

Employees (eno, ename, address, basic_salary)

Projects (pno, Pname, enos-of-staff-alotted)

Workin (pno, eno, pjob)

i) Write a query to find names of employees who are working on all

projects

https://www.w3schools.com/sql/func_mysql_session_user.asp
https://www.w3schools.com/sql/func_mysql_system_user.asp
https://www.w3schools.com/sql/func_mysql_user.asp
https://www.w3schools.com/sql/func_mysql_version.asp

83

ii) Write a query to find names of the projects which are currently not

being worked upon.

3) Write a query to find total number of records stored in employee table

3.5 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1) With a sub-query, the columns specified in the SELECT list are restricted to

only one table. Thus, cannot use a sub-query if the SELECT list contains

columns from more than one table. But with a join operation SELECT list

contains columns from more than two tables.

2) Related to Relational database:

i) Query to find names of employees who are working on all projects

SELECT ename FROM employees WHEREeno IN (SELECT eno

FROM workin

GROUP BY eno HAVING COUNT (*) = (SELECT COUNT (*) FROM

projects));

ii) Query to find names of the projects which are currently not being

worked upon.

SELECT Pname FROM projects WHERE Pno IN (SELECTPno FROM

projects

MINUS GROUP BY eno (SELECT DISTINCT Pno FROM workin));

3) Query to find total number of records stored in employee table

Select Count(*) from employee;

84

Block-3

PHP Programming

85

Unit 1: Getting started with PHP 1

Unit Structure

1.7. Learning Objectives

1.8. Introduction

1.9. Getting with PHP

1.10. PHP Comments

1.11. Working with variables

1.12. Working with constants

1.13. Working with simple expression

1.14. Working with operators

86

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand basics of PHP

 Understand declaration, initialization and implementing variable in PHP

 Understand various operators and expression in PHP

1.2 INTRODUCTION

PHP: Hypertext Preprocessor, it is originally stood for "Personal Home Page"

PHP started out as a open source project. It was founded by Rasmus Lerdorf

unleashed the first version of PHP way back in 1994.

 PHP is a server-side scripting language, it is embedded to HTML. It is used to

manage content dynamically, databases, session management etc., even you

can build entire e-commerce sites.

 Using PHP you can connect and manipulate various databases likes

MariaDB/MySQL, PostgreSQL, Oracle, Sybase, Informix, IBM-DB2and Microsoft

SQL Server2008 V2.

 PHP is enjoyably lively in its execution, especially when compiled as an Apache

module on the LINUX side also call LAMP Technology. The MySQL/MariaDB

server, once started, executes even very complex queries with huge result sets in

record-setting time.

 It’s also knownas:

o LAMP: Linux Apache MariaDB/MySQL PHP

o WAMP:Windows Apache MariaDB/MySQL PHP

o XAMPP: X-AnyPlatform Apache MariaDB/MySQL PHP Perl

 PHP supports major protocols such as POP3, IMAP, LDAP and PHP6 etc.

(Added support for Java and distributed object architectures and making n-tier or

MVC development is possible.)

 PHP is forgiving: PHP scripting language tries to be as forgiving as possible.

 PHP Syntax similar like CPrograming

87

 The standard PHP interpreter, powered by the Zend Engine

 PHP is free software released under the PHP License and PHP has been widely

ported and can be deployed on most web servers on almost every operating

system and platform.(you can download form http://www.php.net).

PHP code may be executed with a command line interface (CLI), embedded into

HTML code, or it can be used in combination with various web template systems,

Web CMS.content management systems, and web frameworks.

PHP code is usually processed by a PHP interpreter implemented as a module in a

web server or as a Common Gateway Interface (CGI) executable.

The main characteristics of PHP are:

 PHP is web-specific and open source

 Scripts are embedded into static HTML files

 Fast execution of scripts

 Fast access to the database tier of applications

 Supported by most web servers and operating systems

 Supports many standard network protocols libraries available for IMAP,

NNTP, SMTP, POP3

 Supports many database management systems libraries available for UNIX

DBM, MySQL, Oracle

 Dynamically generated output like text, HTML, XHTML and any other XML

fileAlso Dynamic generate images as a response, PDF files and even Flash

animation movies.

 Text processing features, from the POSIX Extended or Perl regular

expressions to parsing XML documents

 A fully featured programming language suitable for complex systems

development

Three main uses of PHP

Server-side scripting: This is the most traditional and main use for PHP. You need

three things to make this work:

 The PHP parser (CGI or server module),

 A web server: needs a connected PHP installation

https://en.wikipedia.org/wiki/Zend_Engine
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/PHP_License
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Computing_platform

88

 A web browser: access PHP page through URL

Command Line Scripting: You can make a PHP script to run without any server or

browser. You only need the PHP parser to use as Command line Scripting.

Client-side GUI applications: PHP is probably not the very best language to write

windowing(GUI) applications, but PHP-GTK (PHP Graphics Tool Kit) can be used to

write such programs.

PHP Usage

PHP is a general-purpose scripting language that is especially suited to server-side

web development where PHP generally runs on a web server. Any PHP code in a

requested file is executed by the PHP runtime, usually to create dynamic web page

content or dynamic images used on Web sites or elsewhere. It can also be used for

command-line scripting and client-side graphical user interface (GUI) applications.

PHP can be deployed on most Web servers, many operating systems and platforms,

and can be used with many relational database management systems (RDBMS). It

is available free of charge, and the PHP Group provides the complete source code

for users to build, customize and extend for their own use.

PHP acts primarily as a filter, taking input from a file or stream containing text and/or

PHP instructions and outputting another stream of data; most commonly the output

will be HTML. Since PHP 4, the PHP parser compiles input to produce bytecode for

processing by the Zend Engine, giving improved performance over its interpreter

predecessor. PHP current versionis7.1.29 and it is released od dated 02-May-2019.

Originally designed to create dynamic Web pages, PHP now focuses mainly on

server-side scripting, and it is similar to other server-side scripting languages that

provide dynamic content from a Web server to a client, such as Microsoft's

ASP.NET, Sun Microsystems' JavaServer Pages, and mod_perl. PHP has also

attracted the development of many frameworks that provide building blocks and a

design structure to promote rapid application development (RAD). Some of these

include CakePHP, Symfony, CodeIgniter, Yii Framework, and Zend Framework,

offering features similar to other web application frameworks.

The LAMP architecture has become popular in the Web industry as a way of

deploying Web applications. PHP is commonly used as the P in this bundle

alongside Linux, Apache and MySQL,Similar packages are also available for

89

Windows and OS X, then called WAMP and MAMP, with the first letter standing for

the respective operating system.

Popular Implementation of PHP

As of April 2007, over 20 million Internet domains had Web services hosted on

servers with PHP installed and mod_php was recorded as the most popular Apache

HTTP Server module. PHP is used as the server-side programming language on

75% of all Web sites. Web content management systems written in PHP include

MediaWiki, Joomla, eZ Publish, SilverStripe, WordPress, Drupal and Moodle. All

Web sites created using these tools are written in PHP, including the user-facing

portion of Wikipedia, Facebook, and Digg.

Security in PHP

About 30% of all vulnerabilities listed on the National Vulnerability Database are

linked to PHP. These vulnerabilities are caused mostly by not following best practice

programming rules: technical security flaws of the language itself or of its core

libraries are not frequent (23 in 2008, about 1% of the total). Recognizing that

programmers make mistakes, some languages include taint checking to detect

automatically the lack of input validation which induces many issues. Such a feature

is being developed for PHP, but its inclusion in a release has been rejected several

times in the past.

There are advanced protection patches such as Suhosin and Hardening-Patch,

especially designed for Web hosting environments.

PHPIDS adds security to any PHP application to defend against intrusions. PHPIDS

detects attacks based on cross-site scripting (XSS), SQL injection, header injection,

directory traversal, remote file execution, remote file inclusion, and denial-of-service

(DoS).

1.3 GETTING STATED WITH PHP

PHP development was began in 1994 when Rasmus Lerdorf wrote several Common

Gateway Interface (CGI) programs in C.

(As we have already setup PHP execution environment in the Block no 1.)

Characteristics of PHP:

90

 Simplicity

 Efficiency

 Security

 Flexibility

 Familiarity

The PHP differentiate PHP scripting code from other elements in the page. The

mechanism for doing so is known as 'escaping to PHP.'

Canonical PHP tags: The most universally effective PHP tag style is:

<?php ?>

If you use this style, you can be positive that your tags will always be correctly

interpreted as PHP Script codeand file extenstion is <<file_Name>>.php or .php,

.php3, php4, php5, .phps, .phpt, .phtml

Now it’s time to write your first PHP script. PHP is a server-side scripting

language.To create a PHP file,following the belowstepsfor creating or repeat a PHP

File:

1. Open Notepad/Notepad++ or any editor

2. Write content in the file as below

<?php echo "Welcome BAOU"; ?>

3. Save file into <<Apps_Name>>/index.php into www folder of lamp or wamp

server (Assume <<Apps_Name>> = BAOU)

4. Let’s run our first php code, open any browser

5. Type :http://localhost/baou/index.php

6. Output will generated as below

Figure 2 file name: index.php, Hello BAOU output

http://localhost/baou/index.php

91

PHP Syntax

The above PHP script run at only server side, it will response only in client script

format. e.g. HTML, Plain text, pdf, etc. and the plain HTML result is sent back to the

browser(Client system). The PHP syntax and semantics are the format (syntax) and

the related meanings (semantics) of the text and symbols in the PHP programming

language. They form a set of rules that define how a PHP program can be written

and interpreted. The PHP processor only parses code within its delimiters (the

trigger symbols). Anything outside its delimiters is sent directly to the output and not

parsed by PHP. There are four ways of including PHP in a web page.

Method 1:

<?phpecho("Hello world"); ?>

This method is clear and unambiguous.

Method 2:

<script language = "php">

echo("Hello world");

</script>

This method is useful in environments supporting mixed scripting languages in the

same HTML file (most do not).

Method 3:

<? echo("Hello world"); ?>

Another short opening tags (<?=) are also available for use. This method depends

on the server configuration.

Method 4:

<% echo("Hello world"); %>

Another short opening tags (<%=) are also available for use. This method depends

on the server configuration.

We can also use print instead of echo in the methods both functions are nearly

identical.The major difference between them is print is slower than echo because the

92

former will return a status indicating if it was successful or not in addition to text to

output, whereas the latter does not return a status and only returns the text for

output.

1.4 PHP COMMENTS

A comment is the part of a program that exists only for the developer reader and

exclude for displaying/executing the programs result. There are two types of

commenting formats in PHP.

Single line comment:it is generally used for short explanations or notes relevant to

the local code. below code is examples of single line comments

Example of Single line Comment:

<?php

// This is a First line comment using double slash ()

This is a second line comment using hash,

echo "Welcome BAOU";

?>

Multi-line comment:It is generally used for multiple line code remarks or notes,

below code is examples of multi-line comments

Example of Multi-line Comment:

<?php

/* This is a multi-line comment or remark note, …………………………...................

This is a second line comment or remark note, apply comment using star and

slash symbol combination */

echo "Welcome BAOU";

?>

93

1.5 WORKING WITH VARIABLES IN PHP

The main way to store information in the middle of a PHP program is by using a

variable.

PHP Variables:A variable can have a short name (like a and b) or a more

descriptive name like age, surname,total_volume.PHP is a loosely typed scripting

programming language

$_1name=” BAOU”; // Valid Variable in PHP

$1_name=” BAOU”; // Invalid Variable in PHP – Start with number not allow

Basic rules for PHP variables:

 A variable always starts with the $ sign, followed by the name of the variable

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and underscores
(A-z, 0-9, and _)

 Variable names are case-sensitive ($age and $AGE are two different
variables)

Here are the most important things to know about variables in PHP:

 Variables are assigned with the = operator (It is called as assignment

operator), with the variable on the left-hand side andthe expression to be

evaluated on the right.

o $name=”M.Sc-IT”;

o $sem=3;

 Variables can, but do not need, to be declared before assignment.

 Variables in PHP do not have inherent types - a variable does not know in

advancewhether it will be used to store a number or a string of characters.

 Variables used before they are assigned have default values.

 PHP automatically converting data types from one to another whennecessary.

94

 In other languages such as C, C++, and Java, the programmer must declare

the name and type of the variable before using it.

Datatype PHP has a total of eight data types which we use to construct declare our

variables:

Sr. No Datatype Description

1 Integers It is whole numbers, without a decimal point, like 4195.

Example : $a=10; $b=2104;

2 Double It is floating-point numbers, like 3.14159 or 49.1.

Example : $a=5.3; $b=21.04;

3 Booleans It has only two possible values either true or false.

Example : $a=true; $b=false;

4 NULL It is a special type that only has one value: NULL.

Example : $a=null; $b=NULL;

5 Strings It is asequences of characters, like PHP supports string

operations.

Example : $a=’BAOU’; $b=”BAOU”;

6 Arrays It is a namedarray() and indexed collections of other values.

Example :$courses = array(“M.Sc.-

IT”,”BCA”, “MCA”, “PGDCA”)

7 Objects It is instances of user-defined classes, which can

packupbothother kinds of values and functions that are

specific to the class.

Example : $program = new Course();

8 Resources It is special variables that hold references to resources

external to PHP (such as database connections).

Example :$open_todo_file = fopen("todo_list.txt", "r");

95

The first five are simple types, and the next two (arrays and objects) are compound

type.Thecompound types can package up other uninformed values of subjective

type, whereas the simpletypes cannot.

Kindly remember that PHP variable names are case-sensitive!

Example: $age=”BAOU”, $AGE=”BAOU”; $age and $AGE are two different

variables

Note: When you assign a text value to a variable, put quotes around the text

Note: Unlike other programming languages, PHP has no command for declaring a

variable. It is created the moment you first assign a value to it.

PHP has a useful function named var_dump() that prints the current type and value

for one or more variables. Arrays and objects are printed recursively with their values

indented to show structure.

Integers

They are whole numbers, without a decimal point, like 3011. They are the simple

type. Theycorrespond to simple whole numbers, both positive and negative. Integers

can be assigned tovariables, or they can be used in expressions, like

$int_var = 12345;

$another_int = -12345 + 12345;

Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base 16)

format. Decimal format is the default, octal integers are specified with a leading 0,

and hexadecimals have a leading 0x. (as per mention in Table-1)

Doubles

They like 3.14159 or 49.1. By default, doubles print with the minimum number of
decimal places needed. For example, the code:

$many = 2.2888800;

96

$many_2 = 2.2111200;

$few = $many + $many_2;

print(.$many + $many_2 = $few
.);

It produces the following browser output:

2.28888 + 2.21112 = 4.5

Boolean

They have only two possible values either true or false. PHP provides a couple of

constants especially for use as Booleans: TRUE and FALSE, which can be used like

so:

if (TRUE)
print("This will always print
");

else
print("This will never print
");

Interpreting other types as Booleans

Rules for determine the "truth" of any value not already of the Boolean type:

 If the value is a number, it is false if exactly equal to zero and true otherwise.

 If the value is a string, it is false if the string is empty (has zero characters) or

is the string "0", and is true otherwise.

 Values of type NULL are always false.

 If the value is an array, it is false if it contains no other values, and it is true

otherwise. For an object, containing a value means having a member variable

that has been assigned a value.

 Valid resources are true (although some functions that return resources when

they aresuccessful will return FALSE when unsuccessful).

 Don't use double as Booleans.

Each of the following variables has the truth value embedded in its name when it is

used in a Boolean context.

$true_num = 3 + 0.14159;

$true_str = "Tried and true"

$true_array[49] = "An array element";

97

$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = "";

NULL

NULL is a special type that only has one value “NULL”. To assign a NULL value to

the variable, simply assign it like this:

$my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case

insensitive, you could just as well have typed:

$my_var = null;

A variable that has been assigned NULL has the following properties:

 It evaluates to FALSE in a Boolean context.

 It returns FALSE when tested with Isset() function.

Strings

They are sequences of characters, like "PHP supports string operations". Following

are valid examples of string

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_21 = "This string has twenty-one characters";

$string_0 = ""; //a string with zero characters

Singly quoted strings are treated almost literally, whereas doubly quoted strings

replace variables with their values as well as specially interpreting certain character

sequences.

<?
$variable = "BAOU";

$literally = 'My $variable will not print!\\n';

print($literally);

$literally = "My $variable will print!\\n";

print($literally);

98

?>

This will produce following result:

My $variable will not print!\n

My name will print

There are no artificial limits on string length - within the bounds of available memory,

you ought to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the

following two ways by PHP:

 Certain character sequences beginning with backslash (\) are replaced with

special characters

 Variable names (starting with $) are replaced with string representations of

their values.

The escape-sequence replacements are:

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

 \t is replaced by the tab character

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

 \\ is replaced by a single backslash (\)

String as Document

You can assign multiple lines to a single string variable using here document:

<?php

// Save code as multiline.php

$channel =<<<_XML_

<channel>

<title>What is for lunch</title>

<link>http://www.baou.edu.in/ </link>

<description>Choose what to eat today in BAOU Canteen.</description>

http://www.baou.edu.in/

99

</channel>

XML;

echo "
";

echo <<<END

This uses the "here document" syntax to output multiple lines with variable

interpolation. Note that the here document terminator must appear on a line with

just a semicolon. no extra whitespace!

END;

echo "
";

print $channel;

?>

This will produce following result:

Figure 3 : (multiline.php) Multiline output using generate using XML also page title change

Arrays

PHP has essentially one type of array – the associative array (i.e., hash table). Each

element in the array has a key and a corresponding value. Standard arrays (i.e.,

indexed arrays) can be used in PHP as well; they are simply associative arrays with

integer-indexed keys.

There are three ways to populate an array. The first method is to use the array()

function:

First Method :

$courses = array(“M.Sc.-IT”,”BCA”, “MCA”, “PGDCA”)

The second method is to access the elements directly using the array operator []:

100

$courses[0] = "M.Sc.-IT";

$courses[1] = "BCA";

$courses[2] = "MCA";

$courses[3] = "PGDCA";

The third method is to use the array operator with no key provided:

for ($i=0; $i< 10; $i++)

$nums[] = $i+1;

This syntax is used less frequently, and has the effect of appending the given value

to the array.

Arrays are heterogeneous, meaning that the data stored in the array does not need

to be of the same type. For example, $mixedbag contains a string, floating-point

value, and a boolean value. To get the number of elements in an array, use the

count() function.

Associative Arrays

Associative arrays work much like their indexed counterparts, except that associative

arrays can have non-numeric keys (e.g., strings). The same three methods for

populating indexed arrays apply, except for the array() function:

$file_ext = array(".c" => "C",

".cpp" => "C++",

".php" => "PHP",

".java" => "Java");

The value to the left of the => operator is the key, and right of => operator in the

corresponding value of key.

Multidimensional Arrays

Multidimensional arrays in PHP can be indexed or associative, and are

heterogeneous. Consider thefollowing code which constructs a multidimensional

array.

$proglangs['scripted'] = array("Perl", "Python", "PHP");

$proglangs['compiled'] = array("C", "Java", "FORTRAN");

$proglangs['fun'] = array("PHP" => "Web programming", "Java" => "Nice for

object-oriented code.");

The variable $proglangs is a multidimensional associative array. The first two

statements createindexed arrays of strings, and the last statement creates another

associative array.

101

Objects

Object Oriented Programming (OOP) promotes clean modular design, simplifies

debugging, maintenance and assists with code reuse.

Classis the unit of object-oriented design. A class is a definition of a structure that

contains properties (variables) and methods (functions). Classes are defined with the

class keyword.

Example (Object file) : PHP_Object.php

<?php

class Person

{

var $name = '';

function name ($newname = NULL)

{

if (! is_null($newname))

{

$this->name = $newname;

}

return $this->name;

}

}

?>

Once a class is defined, any number of objects can be made from it with the new
keyword, the properties and methods can be accessed with the -> construct:

<?php

$ed = new Person;

$ed->name("Riya");

printf("Hello, %s\n", $ed->name);

$tc = new Person;

$tc->name('Happy Boy');

printf("
Look out below %s\n", $tc->name); ?>

Figure 4 Output of Object variable code

102

Use the is_object() function to test whether a value is an object:

if (is_object($x))

{

// $x is an object

}

Resources

Many modules provide several functions for dealing with the outside world. For

example, every database extension has at least a function to connect to the

database, a function to send a query to the database, and a function to close the

connection to the database,because you can have multiple database connections

open at once, the connect function gives you something by which to identify that

connection when you call the query and close functions: a resource.

Resources are really integers under the surface. Their main benefit is that they are

garbage collected when no longer in use. When the last reference to a resource

value goes away, the extension that created the resource is called to free any

memory, close any connection, etc. for that resource:

$res = database_connect(); // fictitious function

database_query($res);

$res = "boo"; // database connection automatically closed

The benefit of this automatic cleanup is best seen within functions, when the

resource is assigned to a local variable. When the function ends, the variable's value

is reclaimed by PHP:

function search()

{

$res = database_connect();

$database_query($res);

}

When there are no more references to the resource, it is automatically shut down.

That said, most extensions provide a specific shutdown or close function, and it's

considered good style to call that function explicitly when needed rather than to rely

on variable scoping to trigger resource cleanup.

Use the is_resource() function to test whether a value is a resource:

103

if (is_resource($x))
{

// $x is a resource
}

Variable Variables

You can reference the value of a variable whose name is stored in another variable.

For example:

$foo = 'bar';

$$foo = 'baz';

After the second statement executes, the variable $bar has the value "baz".

Variable References

In PHP, references are how you create variable aliases. To make $black an alias for

the variable

$white, use

$black =& $white;

The old value of $black is lost.

Functions can return values by reference (for example, to avoid copying large strings

or arrays):

function &ret_ref() // note the &
{
$var = "PHP";
return $var;
}
$v =&ret_ref(); // note the &

PHP Variables Scope:

In PHP script writing, the variables can be declared anywhere in the script.

The scope of a variable is the part of the script where the variable can bereferenced

or used.

PHP has four different variable scopes:

1. Local variables
2. Global variables
3. Static variables

104

4. Function parameters

1. Local Variables

A variable declared in a function is considered local; that is, it can be referenced

solely in that function. Any assignment outside of that function will be considered to

be an entirely different variable from the one contained in the function –

<?php

$a = 5; // global scope

function myTest()

{

echo $a; // local scope

}

myTest();

echo $a;// Inside or outside scope of variable

?>

The script above will not produce any output because the echo statement refers to

the local scope variable $a, which has not been assigned a value within this scope.

You can have local variables with the same name in different functions, because

local variables are only recognized by the function in which they are declared.

Local variables are deleted as soon as the function is completed.

2. Global variables

Global scope refers to any variable that is defined outside of any function.

Global variables can be accessed from any part of the script that is not inside a

function.

To access a global variable from within a function, use the global keyword:

<?php // Script save as global_var.php

$a = 15;

$b = 6;

function myTest()

{

global $a, $b;

$b = $a + $b;

}

105

myTest();

echo “Global Variable output is”.$b;

?>

The script above will output 21.

Figure 5 Global Variable output

PHP also stores all global variables in an array called $GLOBALS[index]. Its index is

the name of the variable. This array is also accessible from within functions and can

be used to update global variables directly.

The example above can be rewritten as this:

<?php // Script save as global_var_2.php

$a = 6;

$b = 15;

function myTest()

{

$GLOBALS['b'] = $GLOBALS['a'] + $GLOBALS['b'];

}

myTest();

echo “Global Variable output is”.$b;

?>

3. Static variables

When a function is completed, all of its variables are normally deleted. However,

sometimes if you want to delete a local variable, it cannot be deleting.

To do this, use the static keyword when you first declare the variable.

static $rememberMe;

Then, each time the function is called, that variable will still have the information it

contained from the last time the function was called.

Note: The variable is still local to the function.

4. Function Parameters

Function parameters are declared after the function name and inside parentheses.

They are declared much like a typical variable would be, A parameter is a local

variable whose value is passed to the function by the calling code.

106

Parameters are declared in a parameter list as part of the function declaration:

function myTest($para1,$para2,...)

{

// function code

}

Parameters are also called arguments.

1.6 WORKING WITH CONSTANTS IN PHP

A constant is a name or an identifier for a simple value. A constant value cannot

change during the execution of the script. By default, a constant is case-sensitive. By

convention, constant identifiers are always uppercase. A constant name starts with a

letter or underscore, followed by any number of letters, numbers, or underscores. If

you have defined a constant, it can never be changed or undefined.

To define a constant you have to use define() function and to retrieve the value of a

constant, you have to simply specifying its name. Unlike with variables, you do not

need to have a constant with a $. You can also use the function constant() to read a

constant's value if you wish to obtain the constant's name dynamically.

1.7 WORKING WITH SIMPLE EXPRESSIONS IN PHP

Regular expressions are powerful pattern matching algorithm that can be performed

in a single expression.

Regular expressions use arithmetic operators such as (+,-,^) to create complex

expressions.

Regular expressions help you accomplish tasks such as validating email addresses,

IP address etc.

Why to use regular expressions

 Regular expressions simplify identifying patterns in string data by calling a

single function. This saves us coding time.

 When validating user input such as email address, domain names, telephone

numbers, IP addresses, etc… Highlighting keywords in search results

107

When creating a custom HTML template. Regular expressions can be used to

identify the template tags and replace them with actual data.

In this unit, you will learn-

 Regular expressions in PHP

 Preg_match

 Preg_split

 Preg_replace

 Meta characters

 Explaining the pattern

Regular expressions in PHP

PHP has built in functions that allow us to work with regular functions. Let’s now look

at the commonly used regular expression functions in PHP.

 preg_match – this function is used to perform a pattern match on a string. It

returns true if a match is found and false if a match is not found.

 preg_split – this function is used to perform a pattern match on a string and

then split the results into a numeric array

 preg_replace – this function is used to perform a pattern match on a string

and then replace the match with the specified text.

Below is the syntax for a regular expression function such as preg_match,preg_split

or preg_replace.

<?php

function_name('/pattern/',subject);

?>

HERE,

 "function_name(...)" is either preg_match, preg_split or preg_replace.

 "/.../" The forward slashes denote the beginning and end of our regular

expression

 "'/pattern/'" is the pattern that we need to matched

 "subject" is the text string to be matched against

PHP Preg_match

The first example uses the preg_match function to perform a simple pattern match

for the word baou in a given URL.

108

The code below shows the implementation for the above example.

<?php // script save as preg_match_simple.php
$my_url = "www.baou.edu.in";
if (preg_match("/baou/", $my_url))
{

}
else
{

}

?>

echo "the url $my_url contains baou";

echo "the url $my_url does not contain baou";

Figure 6 PHP Preg_match script output

 "preg_match(...)" is the PHP regular expression function

 "'/baou/'" is the regular expression pattern to be matched

 "$my_url" is the variable containing the text to be matched against.

PHP Preg_split

Let’s now look at another example that uses the preg_split function.

We will take a string phrase and explode it into an array; the pattern to be matched is

a single space.

The text string to be used in this example is "I Love Regular Expressions".

The code below illustrates the implementation of the above example.

<?php // script save as preg_split.php

$my_text="I am pursuing M.Sc-IT in BAOU, This is Regular Expressions

example";

$my_array =preg_split("/ /", $my_text);

echo "<pre>";

print_r($my_array);

echo "</pre>";

?>

http://www.baou.edu.in/

109

PHP Preg_replace

Figure 7Preg_split script output

Let’s now look at the preg_replace function that performs a pattern match and then

replaces the pattern with something else.

The code below searches for the word baou in a string.

It replaces the word baou with the word baou surrounded by css code that highlights

the background colour.

<?php // script save as Preg_replace.php

$text = "You at BAOU for education for all. www.baou.edu.com";

$text= preg_replace("/BAOU/", '<span

style="background:yellow">BAOU', $text);

echo $text;

?>

Meta characters

Figure 8Preg_replace script output

The above examples used very basic patterns; metacharacters simply allow us to

perform more complex pattern matches such as test the validity of an email address.

Let’s now look at the commonly used metacharacters.

http://www.baou.edu.com/

110

Meta_Char Description Example

. Matches any single character except

a new line

/./ matches anything that has a

single character

 ̂ Matches the beginning of or string /

excludes characters

/^PH/ matches any string that

starts with PH

$ Matches pattern at the end of the

string

/com$/ matches

google.com,yahoo.com Etc.

* Matches any zero (0) or more

characters

/com*/ matches computer,

communication etc.

+ Requires preceding character(s)

appear at least once

/yah+oo/ matches yahoo

\ Used to escape meta characters /yahoo+\.com/ treats the dot

as a literal value

[...] Character class /[abc]/ matches abc

a-z Matches lower case letters /a-z/ matches cool, happy etc.

A-Z Matches upper case letters /A-Z/ matches WHAT, HOW,

WHY etc.

0-9 Matches any number between 0 and

9

/0-4/ matches 0,1,2,3,4

The above list only gives the most commonly used metacharacters in regular

expressions.

<?php // Script save as email_pattern.php

$my_email = "drashishparejiya@gmail.com";

if(preg_match("/^[a-zA-Z0-9._-]+@[a-zA-Z0-9-]+\.[a-zA-

Z.]{2,5}$/",$my_email))

{

}

else

{

}

?>

echo "$my_email is a valid email address";

echo "$my_email is NOT a valid email address";

mailto:drashishparejiya@gmail.com

111

Figure 9 email pattern script output

lets understand the pattern "[/^[a-zA-Z0-9._-]+@[a-zA-Z0-9-]+\.[a-zA-Z.]{2,5}$/]" as

below

 "'/.../'" starts and ends the regular expression

 "^[a-zA-Z0-9._-]" matches any lower or upper case letters, numbers between

0 and 9 and dots, underscores or dashes.

 "+@[a-zA-Z0-9-]" matches the @ symbol followed by lower or upper case

letters, numbers between 0 and 9 or dashes.

 "+\.[a-zA-Z.]{2,5}$/" escapes the dot using the backslash then matches any

lower or upper case letters with a character length between 2 and 5 at the end

of the string.

As you can see from the above example breakdown, metacharacters are very

powerful when it comes to matching patterns.

 A regular expression is a pattern match algorithm

 Regular expressions are very useful when performing validation checks,

creating HTML template systems that recognize tags etc.

 PHP has built in functions namely preg_match,preg_split and preg_replace

that support regular expressions.

 Metacharacters allow us to create complex patterns

1.8 Working with operatorsin PHP

Operators are used to perform operations on variables and values.

PHP divides the operators in the following groups:

1. Arithmetic operators

2. Assignment operators

3. Comparison operators

4. Increment/Decrement operators

5. Logical operators

6. String operators

112

7. Array operators

8. PHP Type Operator

1. Arithmetic Operators

The PHP arithmetic operators are used with numeric values to perform common

arithmetical operations, such as addition, subtraction, multiplication etc.

Operator Name Description

a+b Addition Sum of variables a and b, for example 2+3=5

a-b Subtraction Difference of a and b, for example 5-2=3

a*b Multiplication Product of a and b, for example 5*2=10

a/b Division Quotient of a and b, for example 10/2=5

a%b Modulus Remainder of a divided by b, for example 3%2=1

-a Negation Opposite of x, for example -5

a.b Concatenation Used to concat, for example

$a=”Ashish”; $b=”Parejiya”;

echo $a.$b; // output is AshishParejiya

2. Assignment Operators

The PHP assignment operators are used with numeric values to write a value to a

variable.

The basic assignment operator in PHP is "=". It means that the left operand gets set

to the value of the assignment expression on the right.

Operator Same as Description

a=b a=b The left operand gets set to the value of the expression

on the right $b=10; $a=$b; $a get value 10 from $b.

a=a+b a+=b Addition

a=a-b a-=b Subtraction

a=a*b a*=b Multiplication

a=a/b a/=b Division

a=a%b a%=b Modulus

a=a.b a.=b Concatenate

https://www.journaldev.com/1477/php-operators#type-operators

113

3. Comparison Operators

The PHP comparison operators are used to compare two values (number or string):

Operator Name Example Result

== Equal $x == $y Returns true if $x is equal to $y

=== Identical $x === $y Returns true if $x is equal to $y, and they
are of the same type

!= Not equal $x != $y Returns true if $x is not equal to $y

<> Not equal $x <> $y Returns true if $x is not equal to $y

!== Not identical $x !== $y Returns true if $x is not equal to $y, or
they are not of the same type

> Greater than $x > $y Returns true if $x is greater than $y

< Less than $x < $y Returns true if $x is less than $y

>= Greater than
or equal to

$x >= $y Returns true if $x is greater than or equal
to $y

<= Less than or
equal to

$x <= $y Returns true if $x is less than or equal to
$y

4. Increment / Decrement Operators

The PHP increment operators (++) are used to increment a variable's value.

The PHP decrement operators (--) are used to decrement a variable's value.

Operator Name Description

++$x Pre-increment Increments $x by one, then returns $x

$x++ Post-increment Returns $x, then increments $x by one

--$x Pre-decrement Decrements $x by one, then returns $x

$x-- Post-decrement Returns $x, then decrements $x by one

5. Logical Operators

The PHP logical operators are used to combine conditional statements.

Operator Name Example Result

and And $x and $y True if both $x and $y are true

or Or $x or $y True if either $x or $y is true

xor Xor $x xor $y True if either $x or $y is true, but not both

&& And $x && $y True if both $x and $y are true

|| Or $x || $y True if either $x or $y is true

! Not !$x True if $x is not true

6. String Operators

PHP has two operators that are specially designed for strings.

114

Operator Name Example Result

. Concatenation $txt1 . $txt2 Concatenation of $txt1 and $txt2

.= Concatenation
assignment

$txt1 .= $txt2 Appends $txt2 to $txt1

7. Array Operators

The PHP array operators are used to compare arrays.

Operator Name Example Result

+ Union $x + $y Union of $x and $y

== Equality $x == $y Returns true if $x and $y have the same
key/value pairs

=== Identity $x === $y Returns true if $x and $y have the same
key/value pairs in the same order and of
the same types

!= Inequality $x != $y Returns true if $x is not equal to $y

<> Inequality $x <> $y Returns true if $x is not equal to $y

!== Non-identity $x !== $y Returns true if $x is not identical to $y

8. PHP Type Operator

instanceof is the type operator used to determine if a PHP variable is an instantiated

object of a class or not.

<?php // script save as PHP_Type_Operator.php

class MyClass{}

class OtherClass{}

$var = new MyClass;

var_dump($var instanceofMyClass); // prints bool(true)

var_dump($var instanceofOtherClass); // prints bool(false)

?>

115

Unit 2: Control and Looping
Statements 2

Unit Structure

2.1. Learning Objectives

2.2. Introduction

2.3. Control Statement: IF, IF_ELSE

2.4. Control Statement: IF…ELSEIF…ELSE, Nested IF

2.5. Control Statement: Switch Statement

2.6. Looping Statement: For Loop, While, Do … While, Foreach

2.7. PHP break, continue statements

2.8. Breaking Out of Nested Loops

2.9. Advance Program Flow statement

116

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand various control Structure statements

 Understand various Looping statements

 Understand advance program flow statements

2.2 INTRODUCTION

PHP Control, looping statements and Advance ProgramFlowstatement

One of the main reasons for using scripting languages such as PHP is to build logic

and intelligence into the creation and deployment of web-based data. In order to be

able to build logic into PHP based scripts, it is necessary for the script to be able to

make decisions and repeat tasks based on specified criteria.

For example, it may be necessary to repeat a section of a script a specified number

of times, or perform a task only if one or more conditions are found to be true (i.e.

only let the user log in if a valid password has been provided).

The if, if…else and if…elseif…else construct is one of the most important features of

many languages. These conditional statements provide us different actions for the

different conditions. When we write code, we perform different actions for different

decisions. Like any other languages, PHP is built out of a series of control

statements. The control statement can be an assignment, a function call, a loop, a

conditional statement or even a statement that does nothing or an empty statement.

In programming terms this is known as flow control and looping. In the simplest

terms this involves some standard scripting structures provided by languages such

as PHP to control the logic and overall behaviour of a script. Each of these structures

provides a simple and intuitive way to build intelligence into scripts. These PHP

structures can be broken down into a number of categories as follows:

Conditional Statements

 if statements: it is a control statement, we execute some code only if a

specified condition is true.

117

 if ... else ... statements: We use this control statement to execute some code if

a condition is true and another code if the condition is false.

 if…elseif…. else statement – We use this control statement to select one of

the several blocks of code to be executed

 switch statement – We use this control statement to select one of many

blocks of code to be executed

Looping Statements

 For loops

 while loops

 do ... while loops

In this unit we will explore each of these conditional statements and create some

examples of that, demonstrate how to implement these control statements.

2.3 CONTROL STATEMENT: IF, IF_ELSE

What Is a Control Statement?

In simple terms, a control Statement allows you to control the flow of code execution

in your application. Generally, a program is executed sequentially, line by line, and a

control structure allows you to alter that flow, usually depending on certain

conditions.

Control structures are core features of the PHP language that allow your script to

respond differently to different inputs or situations. This could allow your script to

give different responses based on user input, file contents, or some other data.

The following flowchart explains how a control structure works in PHP.

118

Figure 10 Simple Control Structure with single action

As you can see in the above diagram, first a condition is checked. If the condition is

true, the conditional code will be executed. The important thing to note here is that

code execution continues normally after conditional code execution.

Let's consider the following example.

Figure 11 Control Structure with two action redirect

In the above example, the program checks whether or not the user is logged in.

Based on the user's login status, they will be redirected to either the Login page or

the My Account page. In this case, a control structure ends code execution by

redirecting users to a different page. This is a crucial ability of the PHP language.

The if Statement(also called as control statement)

119

Use the if statement to execute some code only if a specified condition is true.

The expression is evaluated to its Boolean value. If expression evaluates to TRUE,

PHP will execute statement, and if it evaluates to FALSE – it’ll ignore if part

Syntax of If:

if (condition) {

code to be executed if condition is true;

}

The following example would display” A is bigger than B” if $a is bigger than $b:

<?php // Script save as if_condi.php

$a=10; $b=5;

if ($a > $b)

{

echo "A is bigger than B";

}

?>

The if…else Statement:

Figure 12 Output of if condition

If…else, as its name suggests, is a combination of if and else. Like else, it extends

an if statement to execute a different statement in case the original if mathematical

expression evaluates to FALSE. However, unlike else, it will execute that alternative

expression only if the elseif conditional expression evaluates to TRUE.

Syntax of If-else:

if (condition) {

code to be executed if condition is true;

}

120

else {

code to be executed if condition is false;

}

For example, the following code would display a is bigger than b or a is smaller than

b:

<?php // Script save as if_else_codition.php

$a=21;

$b=12;

if ($a > $b) {

echo "a is bigger than b";

}

else {

}

?>

echo " a is smaller than b ";

Figure 13 Output of If - else Condition

2.4 IF…ELSEIF…ELSE, NESTED IF

The if…elseif…. else Statement

Use the if…. elseif…else statement to select one of several blocks of code to be

executed.We can create multiple branches using the elseif keyword.

The elseif keyword tests for another condition if and only if the previous condition

was not met. Note that we can use multiple elseifkeywords in our tests.

Syntaxif…elseif….else:

if (condition) {

code to be executed if this condition is true;

} elseif (condition) {

code to be executed if this condition is true;

} else {

code to be executed if all conditions are false;

}

121

For example, the following code would display a is bigger than b, a equal to b or a is

smaller than b:

<?php // Script save as if_elseif_condition.php

$a=21;

$b=12;

if ($a > $b) {

echo "a is bigger than b";

} elseif ($a == $b) {

echo "a is equal to b";

} else {

echo "a is smaller than b";

}

?>

Note: Note that elseif and else if will only be considered exactly the same when

using curly brackets as in the above example. When using a colon to define your

if/elseif conditions, you must not separate else if into two words, or PHP will fail with

a parse error.

Nested if statements in PHP

Nested if statements mean an if block inside another if block. Shortly a control

structure inside another control structure.

Syntax of Nested If:

if (expression 1)

{

if (expression 2)

{

}

else

{

}

else

{

}

// statements 1

// Statements 2

if (expression 2)

{

122

}

else

{

}

}

// Statements 3

// Statements 4

Here we can see another if ... else structure inside the if block and else block. Like

this we can add any number of nested if else statements.

Nested if statements will make the PHP codes more comples and lengthy. To avoid

Nested statements, we can opt for elseif statements

To write the code let's assume that any gender type person is mature or not for

wedding as per Indian law, usually laws saysa man must be 21 and a woman 18.

Below is the code for this situation-

<?php // Script save as if_else_condition_Nested.php

$age=18;

$gen="F";

echo "Age = $age, Gender=$gen
";

if($age>=21)

{

}

Else

{

$msg="Mature";

if($age>=18)

{

if($gen=="m"||$gen=="M")

$msg="Male Not Mature, He's age below <21";

($gen=="f"||$gen=="F")

$msg="Female Mature";

}

123

else{

if($gen=="m"||$gen=="M")

$msg="Male Not Mature, He's age below <21";

if($gen=="f"||$gen=="F")

$msg="Female Mature, She's age below <18";

}

}

echo "$msg"

?>

Figure 14if_else_condition_Nested output

2.5 CONTROL STATEMENT: SWITCH STATEMENT

The Switch Statement:

The switch statement is a selection control flow statement. It allows the value of a

variable or expression to control the flow of program execution via a multiway

branch. It creates multiple branches in a simpler way than using the if, elseif

statements.

The switch statement works with two other keywords: case and break. The case

keyword is used to test a label against a value from the round brackets. If the label

equals to the value, the statement following the case is executed. The break

keyword is used to jump out of the switch statement. There is an optional default

statement. If none of the labels equals the value, the default statement is executed.

In example script, we have a $domains_country_extension variable. It has the 'in'

string. We use the switch statement to test for the value of the variable. There are

several options. If the value equals to 'au' as a string,the'Australia' string is printed to

the console.

<?php // script save as PHP_Switch_domain.php

$domain_Name = 'www.baou.edu.in';

$domain = 'in';

124

echo "$domain_Name domain extension is $domain
Switch

Case output is : ";

switch ($domain) {

case 'in':

echo "India\n";

break;

case 'us':

echo "United States\n";

break;

case 'de':

echo "Germany\n";

break;

case 'au':

echo "Australia\n";

break;

case 'ca':

echo "Canada\n";

break;

default:

echo "Unknown\n";

break;

}

?>

Figure 15PHP_Switch-Case_domain output

If we changed the $domains variable to 'ca' then we get 'Canada'. If we changed

the $domains variable to 'ms', we would get 'Unknown'.

2.6 LOOPING STATEMENT: WHILE, DO … WHILE, FOR,
FOREACH

125

Loops:

Often when you write code, you want the same block of code to run over and over

again in a row. Instead of adding several almost equal code-lines in a script, we can

use loops to perform a task like this.

In PHP, we have the following looping statements:

 while: loops through a block of code as long as the specified condition is true

 do...while: loops through a block of code once, and then repeats the loop as

long as the specified condition is true

 for: loops through a block of code a specified number of times

 foreach: loops through a block of code for each element in an array

Loop statements are the primary mechanism for telling a computer to perform the

same task over and over again until a set of criteria are met. This is

where for, while and do ... while loops are of use.

When wewrite the code, some time we require to write the same code many times.

For example, if we have an array with 10 elements and we want to print a message

for each element. Then we will have to write the same code 10 times. Loops are the

replacement of it. By using loops, we don't require the same code again and again.

Which Is already mentioned above.

The while Loop

The while is a control flow statement that allows code to be executed repeatedly

based on a given boolean condition. The while loop executes a block of code as long

as the specified condition is true.

Syntax of while loop:

while (condition is true) {

code to be executed;

}

126

The while loop executes the statement when the expression is evaluated to true. The

statement is a simple statement terminated by a semicolon or a compound

statement enclosed in curly brackets. See below example :

<?php // Script save as PHP_While_loop.php

$a = 1;

While($a <= 4) {

echo "BAOU: M.Sc. - IT Semester: $a
";

$a++;

}

?>

The example above first sets a variable $a to 1 ($a = 1). Then, the while loop will

continue to run as long as $a is less than, or equal to 4 ($a<= 4). $x will increase by

1 each time the loop runs ($a++) output generate as below.

The do...while Loop

Figure 16PHP_While_loop Output

The do...while loop will always execute the block of code once, it will then check the

condition, and repeat the loop while the specified condition is true. Do While Loop is

very similar to while loop. The difference is, it check the condition at the end of the

block and while loop check the condition at the beginning of the block. It means do-

while will execute the condition at least once, even the condition is true or false.

Syntax of do...while Loop

do {

code to be executed;

} while (condition is true);

The do while loop is a version of the while loop. The difference is that this version is

guaranteed to run at least once.

See below example-

127

<?php // Script save as PHP_Do_While_Example.php

$a = 1;

do {

echo "The number is: $a
";

$a++;

} while ($a <= 5);

?>

The example above first sets a variable $a to 1 ($a = 1). Then, the do while loop will

write some output, and then increment the variable $a with 1. Then the condition is

checked (is $a less than, or equal to 5?), and the loop will continue to run as long as

$a is less than, or equal to 5:

Figure 17 PHP Do ... While loop example output

Note: Notice that in a do while loop the condition is tested AFTER executing the

statements within the loop. This means that the do while loop would execute its

statements at least once, even if the condition is false the first time.

The for Loop

For loop in PHP is the most complicated loop. We use this loop when we know how

many times the code should run.

Syntax of for Loop

for (Init counter; Test counter; Increment/Decrement counter) {

code to be executed;

}

Parameters:

 Init counter: Initialize the loop counter value ($i=1)

128

 Test counter: Evaluated for each loop iteration. If it evaluates to TRUE, the

loop continues. If it evaluates to FALSE, the loop ends. ($i<=5)

 Increment/Decrement counter: Increases/Dacres the loop counter value ($i++)

The example below displays the numbers from 1 to 5:

<?php //Script save as PHP_For_Loop_Example.php

echo "for loop output as below:
";

for ($i=1; $i<=5; $i++)

{

echo "$i ";

}

?>

In the above code value of $i was set to 1 and printed. Each time it was printed,

increased by 1 and checked whether it is <= 5.

The Foreach Loop

Figure 18 PHP For Loop Example Output

The Foreach loop is used for an array and objects or the foreach loop works only on

arrays, and is used to loop through each key/value pair in an array.Also its used in

when you don’t know the no of iteration in advance of an array at that time foreach

loop help for print all element of array without length calculation. (Majority it Is used

in print select query result set operation)

Syntax of foreach loop is as below:

foreach (array_expression as $value)
{

Statement
}

At each iterance the value of current element is assigned to the $value and internal

array pointer is increased by one.

For every loop iteration, the value of the current array element is assigned to $value

and an array pointer is moved by one, until it reaches the last array element.

129

The following example demonstrates a loop that will output the values of the given

array ($course):

<?php // script save as PHP_foreach_example.php

$course = array("BCA", "M.Sc-IT", "PGDCA", "PGDMAD");

foreach ($course as $value) {

echo "BAOU Offer $value Course
";

}

?>

The usage of the foreach statement is straightforward. The $course is the array that

we iterate through. The $value is the temporary variable that has the current value

from the array. Theforeach statement goes through all the course and prints them to

the response output as below.

Figure 19 PHP foreach example output

2.7 PHP BREAK, CONTINUE STATEMENTS

break statements

The break statement is used to terminate the loop. The continue statement is used to

skip a part of the loop and continue with the next iteration of the loop.

<?php // Script save as PHP_Break.php

while (true) {

$val = rand(1, 30);

echo $val." ";

if ($val == 22) {

break;

}

}

echo "\n";?>

130

We define an endless while loop. There is only one way to jump out of a such loop—

using the break statement. We choose a random value from 1 to 30 and print it. If the

value equals to 22, we finish the endless while loop.

Figure 20 PHP Break statement example output (No. 22 is end point as per condition)

We might get something like this. (Output may different because of random number

function used in code)

PHP continue Statement

Sometimes a situation arises where we want to take the control to the beginning of

the loop (for example for, while, do while etc.) skipping the rest statements inside the

loop which have not yet been executed.

The keyword continue allow us to do this. When the keyword continue executed

inside a loop the control automatically passes to the beginning of loop. Continue is

usually associated with the if.

Example:

In the following example, the list of odd numbers between 1 to 10 have printed. In

the while loop we test the remainder (here $x%2) of every number, if the remainder

is 0 then it becomes an even number and to avoid printing of even numbers continue

statement is immediately used and the control passes to the beginning of the loop.

<?php // Script Save as PHP_Continue_Example.php

$x=1;

echo 'List of odd numbers between 1 to 10
';

while ($x<=10)

{

if (($x % 2)==0)

{

}

else

{

$x++;

continue;

echo $x.'
';

131

$x++;

}

}

?>

Figure 21 Continue statement example output all contents are only odd number

2.8 BREAKING OUT OF NESTED LOOPS

Breaking Out of Nested Loops

One problem that can arise using the break statement involves breaking from a loop

that is nested inside another loop. In the following example the break will break out

of the inner loop, but not the outer loop:

<?php //Script PHP_Breaking_Nested_Loops.php

for ($i = 0; $i< 100; $i++)

{

for ($x = 0; $x < 100; $x++)

{

if ($x == 10)

{

echo " Call break @ $x : ";

break;

}

echo "$x, ";

}

echo "Loop counter : $i
";

if ($i == 10)

{

break;

}

}

?>

In the above example the break will break out of the inner loop when $x is equal to

10 but the outer for loop will continue to run. This is fine if that is the desired

behaviour, but is a problem if the outer loop needs to also be broken at this point.

132

This problem can be resolved using the break statement followed by the number of

loops you from which you wish to break out. The syntax for this type of break is:

break n;

where n represents the number of loop levels from which to break. With this

knowledge we can modify our previous example to break out of both loops using a

break 2; statement:

<?php

for ($i = 0; $i< 1000; $i++)

{

for ($x = 0; $x < 100; $x++)

{

if ($x == 10)

{

break 2

}

}

}

?>

Skipping Statements in Current Loop Iteration

The break statement, when encountered in a loop breaks skips all remaining

statements in the loop body and breaks the loop. The continue statement also skips

all remaining statements in the loop for the current iteration, but returns to the top of

the loop and allows it to continue running.

2.9 ADVANCE PROGRAM FLOW STATEMENT

Try Catch Example: Exception & Error Handling

What is an Exception?

Error is an unexpected program result that cannot be handled by the program itself.

Errors are resolved by fixing the program. An example of an error would be an

infinite loop that never stops executing.

Exception is unexpected program result that can be handled by the program itself.

Examples of exception include trying to open a file that does not exist.

133

This exception can be handled by either creating the file or presenting the user with

an option of searching for the file.

In this chapter, you will learn-

 Why handle exception?

 PHP Error handling

 Error handling examples

 Difference between Errors and Exception

 Multiple Exceptions

 Testing the code

Why handle exception?

Avoid unexpected results on our pages which can be very annoying or irritating to

our end users

Improve the security of our applications by not exposing information which malicious

users may use to attack our applications

Php Exceptions are used to change the normal flow of a program if any predictable

error occurs.

PHP Error handling

When an error occurs, depending on your configuration settings, PHP displays the

error message in the web browser with information relating to the error that occurred.

PHP offers a number of ways to handle errors.

We are going to look at three (3) commonly used methods:

 Die statements:The die statement combines the echo and exit function in

one. It is very useful when we want to output a message and stop the script

execution when an error occurs.

 Custom error handlers:These are user defined functions that are called

whenever an error occurs.

134

 Error reporting:The error message depending on your PHP error reporting

settings. This method is very useful in development environment when you

have no idea what caused the error. The information displayed can help you

debug your application.

Error handling examples

Let’s now look at some simple examples with error handling routines.

Let’s suppose that we have developed an application that uses text files to store

data. We might want to check for the file’s existence before we attempt to read data

from it.

The code below implements the above example.

<?php // Script save as PHP_simple_exception_error.php

$denominator = 0;

echo 2 / $denominator;

?>

Figure 22 PHP simple exception error output as warning

As you can see from the above results, it makes our application look unprofessional

and can be annoying to the user.

let’s, we will modify the above code and write an error handler for the application

<?php // Script save as PHP_simple_exception_error_handling.php

$denominator = 0;

if ($denominator != 0) {

echo 2 / $denominator;

} else {

echo "cannot divide by zero (0)";

}

?>

135

Figure 23 PHP simple exception error handling output

Custom error handling examples

Let’s discuss at another example that uses a custom error handler. The custom error

handler will be set as the default PHP error handling function and will basically

display an error number and message.

The code below illustrates the implementation of the above example

<?php // Script save as PHP_exception_custom_error_handler.php

function my_error_handler($error_no, $error_msg)

{

echo "Opps, something went wrong:";

echo "Error number: [$error_no]";

echo "Error Description: [$error_msg]";

}

set_error_handler("my_error_handler");

echo (5 / 0);

?>

Figure 24 PHP exception custom error handler message output

As you can see from the above example, custom error handlers are powerful in the

sense that

 They allow us to customize the error messages.

 The custom error handler can also include error logging in a file/database,

emailing the developer etc.

PHP Error reporting

Let’s now look at the third type of error handling. We will be using the PHP built in

function error_reporting function. It has the following basic syntax

136

<?php

?>

error_reporting($reporting_level);

 “error_reporting” is the PHP error reporting function

 “$reporting_level" is optional, can be used to set the reporting level. If no

reporting level has been specified, PHP will use the default error reporting

level as specified in the php.ini file.

Reporting Level Description Example

E_WARNING Displays warning messages only. Does

not halt the execution of the script

error_reporting(E

_WARNING);

E_NOTICE Displays notices that can occur during

normal execution of a program or could be

an error.

error_reporting(E

_ NOTICE);

E_USER_ERROR Displays user generated errors i.e. custom

error handler

error_reporting(E

_

USER_ERROR);

E_USER_WARNI

NG

Displays user generated warning

messages

error_reporting(E

_USER_WARNI

NG);

E_USER_NOTIC

E

Displays user generated notices error_reporting(E

_USER_NOTICE

);

E_RECOVERAB

LE_ERROR

Displays error that are not fatal and can be

handled using custom error handlers

error_reporting(E

_RECOVERABL

E_ERROR);

E_ALL Displays all errors and warnings error_reporting(E

_ ALL);

Difference between Errors and Exception

 Exceptions are thrown and intended to be caught while errors are generally

irrecoverable.

 Exceptions are handled in an object oriented way.

137

This means when an exception is thrown; an exception object is created that

contains the exception details.

The table below shows the exception object methods

Method Description Example

getMessage() Displays the exception’s

message

<?php

echo $e->getMessage();

?>

getCode() Displays the numeric code

that represents the exception

<?php

echo $e->getCode();

?>

getFile() Displays the file name and

path where the exception

occurred

<?php

echo $e->getFile();

?>

getLine() Displays the line number

where the exception occurred

<?php

echo $e->getLine();

?>

getTrace() Displays an array of the

backtrace before the

exception

<?php

print_r($e->getTrace());

?>

getPrevious() Displays the previous

exception before the current

one

<?php

echo $e->getPrevious();

?>

getTraceAsString() Displays the backtrace of the

exception as a string instead

of an array

<?php

echo $e-
>getTraceAsString();
?>

 toString() Displays the entire exception

as a string

<?php

echo $e-> toString();

?>

Below is the basic syntax for throwing an exception.

<?php // Script save as PHP_Throw_exception.php

throw new Exception("This is an exception example");

138

?>

Figure 25 PHP Throw exception output

We are now going to look at an example that implements the throw and catch

exceptions.

We will modify the above example and include the try, throw and catch.

Syntax of try – catch:

<?php

try {

}

//code goes here that could potentially throw an exception

catch (Exception $e) {

//exception handling code goes here

}

?>

 “try{…}” is the block of code to be executed that could potentially raise an

exception

 “catch(Exception $e){…}” is the block of code that catches the thrown

exception and assigns the exception object to the variable $e.

The code below shows the basic exception example with the try, throw and catch

exception implemented.

The program deliberately throws an exception which it then catches.

139

<?php // Script save as PHP_Try_Catch_Example.php

try {

$var_msg = "This is an exception example";

throw new Exception($var_msg);

}

catch (Exception $e) {

echo "Message: " . $e->getMessage();

echo "";

echo "getCode(): " . $e->getCode();

echo "";

echo " toString(): " . $e-> toString();

}?>

It’s also possible to create multiple exceptions for one php try statement depending

on the type of exception thrown.

Multiple Exceptions

Multiple exception uses multiple try catch blocks to handle the thrown exceptions.

Multiple exceptions are useful when,

 You want to display a customized message depending on the exception

thrown.

 You want to perform a unique operation depending on the exception thrown.

The flowchart below illustrates the how multiple exceptions work

PHP Exception Handle in PHP

140

Figure 26 PHP Multiple Exception Handling Flow

Let’s discuss at an example that uses multiple exceptions.

We will modify the code that divides a number by the passed in denominator.

We expect two types of exceptions to occur;

 Division by zero

 Division by a negative number

For simplicity’s sake, we will only display the exception type in our catch blocks.

The PHP built in Exception class is used to throw exceptions.We will create two

classes that extend the exception class and use them to throw exceptions.

The code below shows the implementation of multiple exception.

<?php // Script Save as PHP_Multiple_Exception_Handling.php

class DivideByZeroException extends Exception {};

class DivideByNegativeException extends Exception {};

function process($denominator)

{

try

{

if ($denominator == 0)

{

throw new DivideByZeroException();

141

}

else if ($denominator < 0)

{

}

else

{

}

}

throw new DivideByNegativeException();

echo 25 / $denominator;

catch (DivideByZeroException $ex)

{

echo "DIVIDE BY ZERO EXCEPTION!";

}

catch (DivideByNegativeException $ex)

{

echo "DIVIDE BY NEGATIVE NUMBER EXCEPTION!";

}

catch (Exception $x)

{

echo "UNKNOWN EXCEPTION!";

}

}

process(0);

?>

Figure 27 PHP Multiple Exception Handling output

Errors are unexpected results produced by PHP code

 Error handling improves the application performance

 PHP has built in functions that can be used to customize the way PHP reports

errors

 Exceptions are like errors, but they can be caught using the catch block when

thrown.

 Displaying error messages that show error information is considered a bad

security practice.

142

Unit 3: Working with Functions 3

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. PHP Function

3.4. User Defined function

3.5. Built in function

3.6. Math/Numeric function

3.7. String function

3.8. Date function

3.9. File Inclusion function

3.10. File I/O operation function

143

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand various user defined and built in functions

 Understand mathematical and string function

 Perform I/O operation on file

3.2 INTRODUCTION

PHP Functions

A function is a block of code written in a program to perform some specific task. We

can relate functions in programs to employees in a office in real life for a better

understanding of how functions work. Suppose the boss wants his employee to

calculate the annual budget. So how will this process complete? The employee will

take information about the statics from the boss, performs calculations and calculate

the budget and shows the result to his boss. Functions works in a similar manner.

They take information as parameter, executes a block of statements or perform

operations on these parameters and returns the result.

Types of functions:

 Built-in functions: PHP provides us with huge collection of built-in library

functions. These functions are already coded and stored in form of functions.

To use those we just need to call them as per our requirement like, var_dump,

fopen(), print_r(), gettype() and so on.

 User Defined Functions: Apart from the built-in functions, PHP allows us to

create our own customised functions called the user-defined functions.

Using this we can create our own packages of code and use it wherever necessary

by simply calling it.

Why should we use functions?

 Reusability: If we have a common code that we would like to use at various

parts of a program, we can simply contain it within a function and call it

whenever required. This reduces the time and effort of repetition of a single

144

code. This can be done both within a program and also by importing the PHP

file, containing the function, in some other program

 Easier error detection: Since, our code is divided into functions, we can

easily detect in which function, the error could lie and fix them fast and easily.

 Easily maintained: As we have used functions in our program, so if anything

or any line of code needs to be changed, we can easily change it inside the

function and the change will be reflected everywhere, where the function is

called. Hence, easy to maintain.

While creating a user defined function we need to keep few things in mind:

1. Any name ending with an open and closed parenthesis is a function.

2. A function name always begins with the keyword function.

3. To call a function we just need to write its name followed by the parenthesis

4. A function name cannot start with a number. It can start with an alphabet or

underscore.

5. A function name is not case-sensitive.

In fact, you hardly need to create your own PHP function because there are already

more than 1000 of built-in library functions created for different area and you just

need to call them according to your requirement.

PHP is very rich in terms of Buil-in functions. Here is the list of various important

function categories. There are various other function categories which are not

covered here. (https://www.php.net/manual/en/language.functions.php)

 Array Functions

 Calendar Functions

 Class/Object Functions

 Character Functions

 Date & Time Functions

 Directory Functions

 Error Handling Functions

https://www.php.net/manual/en/language.functions.php

145

 File System Functions

 MySQL Functions

 Network Functions

 ODBC Functions

 String Functions

 SimpleXML Functions

 XML Parsing Functions

3.3 PHP FUNCTION

What is a Function?

A function is a reusable piece or block of code that performs a specific action.

Functions can either return values when called or can simply perform an operation

without returning any value.

In this Chapter, you will learn:

 Why use Functions?

 Built in Functions

 String Functions

 Numeric Functions

 Date Function

 Why use User Defined Functions?

Why use Functions?

 Better code organization: functions allow us to group blocks of related code

that perform a specific task together.

 Reusability: once defined, a function can be called by a number of scripts in

our PHP files. This saves us time of reinventing the wheel when we want to

perform some routine tasks such as connecting to the database

 Easy maintenance: updates to the system only need to be made in one

place.

146

Built in Functions

Built in functions are functions that exist in PHP installation package.

These built in functions are what make PHP a very efficient and productive scripting

language.

The built-in functions can be classified into many categories. Below is the list of the

categories.

3.4 USER DEFINED FUNCTION

About user Defined Functions:

 A function is a block of statements that can be used repeatedly in a program.

 A function will not execute immediately when a page loads.

 A function will be executed by a call to the function.

Why use User Defined Functions?

General purpose of use define function.

 you have routine tasks in your application such as adding data to the

database

 performing validation checks on the data

 Authenticating users in the system etc.

These activities will be spread across a number of pages.

Creating a function that all these pages can be calling is one of the features that

make PHP a powerful scripting language.Before we create our first user defined

function, let’s discuss at the rules that we must follow when creating user defigning

functions.

Rules for creating user defining function:

 Function names must start with a letter or an underscore but not a number

 The function name must be unique across then entire project development

 The function name must not contain spaces

 A function name can start with a letter or underscore (not a number).

 Functions can optionally accept parametrics and non-parametrics function

and return values too.

147

Let’s now discuss How to create a User Defined Function in PHP?

A user-defined function declaration starts with the word “function”:

Syntax of User Define Package:

functionFunction_Name () {

code to be executed;

}

Note: Give the function a name that reflects what the function does!,Function names

are NOT case-sensitive.

How to create User Define function:

It’s very easy to create your own PHP function. Suppose if you want to create a PHP

function which will simply write a simple message on your browser. Following

example creates a function called PrintBAOU() and then calls it just after creating it.

Note that while creating a function its name should start with keyword function and

all the PHP code should be put inside { Business Logic } braces as shown in the

following example below:

Example of User Define function:

<?php // Script save as PHP_User_Define_Function_Example.php

function PrintBAOU () {

echo "Welcome to BAOU, User Define function demo code";

}

PrintBAOU(); // call the function

?>

In the above example, we create a function named "PrintBAOU()". The opening curly

brace ({) indicates the beginning of the function code and the closing curly brace (})

indicates the end of the function. The function outputs "Welcome to BAOU, User

Define function demo code ". To call the function, just write its name:

148

Figure 28 PHP User Define Function Example Output

User Define function type:

 No parameter No return value

 No parameter Get return value

 Pass parameter No return value

 Pass parameter Get return value

PHP Function No parameter, No return value

Function can be display value as per business logical code, let’s discuss the

example of above type.

Example ofNPNR - No parameter No return value as below:

<?php // Script save as PHP_User_Define_Function_NPNR.php

function NPNR() {

echo "Function Call :- No parameter No return value as below ";

}

NPNR(); // call the function

?>

Figure 29 User Define Function NPNR output

PHP Function No parameter Get return value

Function can be return value after execute business logical code using return

keyword, let’s discuss the example of above user define function type.

Example ofNPGR - No parameter Get return value code as below:

149

<?php // Script save as PHP_User_Define_Function_NPGR.php

function NPGR() {

/* Business Logic Code 1

……………

……………

Business Logic Code 2 */

return ("Function Call :- No parameter No return value as below");

}

$return_value=NPGR(); // call the function

echo "Display function return value: ".$return_value;

?>

Figure 30 PHP User Define Function NPGR output

PHP Function Arguments/Parameter (PANR - Pass parameter No return value)

Information can be passed to functions through arguments. An argument is just like a

variable.

Arguments are specified after the function name, inside the parentheses. You can

add as many arguments as you want, just separate them with a comma.

The following example has a function with one argument ($FirstName). When the

DisplayName() function is called, we also pass along a name (e.g. Riya), and the

name is used inside the function, which outputs several different first names, but an

equal last name:

Example ofPPNR - Pass parameter No return value code as below:

<?php // Script save as PHP_User_Define_Function_PPNR.php

function DisplayName ($FirstName) {

echo "Your first name is : $FirstName
";

}

DisplayName("Riya");

DisplayName("Lina");

DisplayName("Jiyan");

DisplayName("Jills");

150

?>

Figure 31 PHP User Define Function PPNR.php

PHP Function PAGR - Pass parameter Get Return value

A function can return a value using the return statement in conjunction with a value

or object. return stops the execution of the function and sends the value back to the

calling code.

Following example takes two string parameters and concate them together and then

returns their full name to the calling program. Note that return keyword is used to

return a value from a function.

<?php // Script save as PHP_User_Define_Function_PPGR.php

function Disp_Full_Name($First_Name, $Last_Name) {

$Full_Name = $First_Name." ".$Last_Name;

return $Full_Name;

}

$Get_Ret_Full_Name = Disp_Full_Name("Riya", "Parejiya");

echo "Returned value from the Disp_Full_Name function:

$Get_Ret_Full_Name";

?>

Figure 32 PHP User Define Function PPGR.php

Setting Default Values for Function Parameters

You can set a parameter to have a default value if the function's caller doesn't pass

it.

Following function prints “print Default Param value as text” in case use does not

pass any value to this function.

<?php // Script save as PHP_User_Define_Function_Default_Param.php

151

function printMe($param = "print Default Param value as text") {

echo $param."
";

}

printMe("Print : Test argument from function as text");

printMe();

?>

Figure 33 PHP User Define Function Default Parameter output

3.5 BUILT IN FUNCTION

The PHP Internal (Built-in) functions

Built in functions are functions that exist in PHP installation package.PHP comes

standard with many functions and constructs. There are also functions that require

specific PHP extensions compiled in, otherwise fatal "undefined function" errors will

appear.

These built in functions are what make PHP a very efficient and productive scripting

language.

The built-in functions can be classified into many categories. Let’s we discuss

internal (Built-In) function is the next section along with various categories.

3.6 MATH/NUMERIC FUNCTION

Numeric functions are function that return numeric results.

Numeric php function can be used to format numbers, return constants, perform

mathematical computations etc.

Let’s we understand common PHP numeric/math functions

152

Function Description Example Output

is_number Accepts an argument

and returns true if its
numeric and false if it’s
not

<?php FALSE

if(is_numeric("BAOU"))

{

echo "true";

}

else

{

echo "false";

}

?>

<?php TRUE

if(is_numeric (123))

{

echo "true";

}

else

{

echo "false";

}

?>

number_fo Used to formats a <?php 2,509,663

number_format(2509663)

rmat numeric value using
digit separators and
decimal points

echo

;

?>

rand Used to generate a <?php Random
 random number. echo rand(); number

 ?>

round Round off a number <?php 3
 with decimal points to

 the nearest whole
number.

echo rand();

 ?>

sqrt Returns the square root <?php 10

 of a number echo sqrt(100);

 ?>

cos Returns the cosine <?php 0.52532199
 echo cos(45);

153

 ?>

sin Returns the sine <?php 0.85090352
 echo sin(45);

 ?>

tan Returns the tangent <?php 1.61977519

echo tan(45);

 ?>

pi Constant that returns
the value of PI

<?php 3.14159265

 echo pi();

 ?>

3.7 STRING FUNCTION

What is a string?

A string is a collection of characters. String is one of the data types supported by

PHP.

The string variables can contain alphanumeric characters. Strings are created when;

 You declare variable and assign string characters to it

 You can directly use them with echo statement.

 String are language construct; it helps capture words.

 Learning how strings work in PHP and how to manipulate them will make you

a very effective and productive developer.

Let’s Define PHP strings variable with value:

Creating Strings Using Single quotes: The simplest way to create a string is to use

single quotes.

Let’s look at an example that creates a simple string in PHP.

Using Single Quotes: <?php $str=’M.Sc-IT’; ?>

Using Double Quotes: <?php $str= ”M.Sc-IT”; ?>

154

<?php

// Script Save as PHP_String_Datatype.php

var_dump("M.Sc-IT"); //

var_dump(21);

var_dump(21.5);

?>

Figure 34 Output of PHP_String_Datatype script

PHP Create Strings Using Double quotes:

The double quotes are used to create relatively complex strings compared to single

quotes. Variable names can be used inside double quotes and their values will be

displayed. Let’s look at an example.

<?php

// Script save as PHP_String_DoubleQuotes.php

$Uni_Name='BAOU';

echo "$Uni_Name :Dr. Babasaheb Ambedkar Open University";

?>

The above example we create a simple string with the value of “BAOU”. The variable

name is then used in the string created using double quotes and its value is

interpolated at run time.

Figure 35PHP_String_DoubleQuotes output

In addition to variable interpolations, the double quote string can also escape more

special characters such as “\n for a linefeed, \$ dollar for the dollar sign” etc.

155

PHP Heredoc:

 This heredoc methodology is used to create fairly complex strings as

compared to double quotes.

 The heredoc supports all the features of double quotes and allows creating

string values with more than one line without php string concatenation.

 Using double quotes to create strings that have multiple lines generates an

error.

 You can also use double quotes inside without escaping them.

 The example below illustrates how the Heredoc method is used to create

string values.

<?php // Script save as PHP_Heredoc.php

$baby_name = "Riya";

echo <<<EOT

My name is $baby_name,

I like to eat "APPLE" every day.

EOT;

?>

<<<EOT is the string delimiter. EOT is the acronym for end of text. It should be

defined in its on line at the beginning of the string and at the end.

Note: you can use anything you like in place of EOT

PHP Nowdoc

Figure 36 Output of PHP_Heredoc script

156

 The Nowdoc string creation method is similar to the heredoc method but

works like the way single quotes work.

 No parsing takes place inside the Nowdoc.

 Nowdoc is ideal when working with raw data that do not need to be parsed.

 The code below shows the Nowdoc implementation

It’s never printed any variable values as part of code as double quotas,

PHP string functions: allare used to manipulate string values.

We are now going to look at some of the commonly used string functions in PHP

Function Description Example Output

strtolower Used to convert all
string characters to
lower case letters

echo
strtolower('BaOU');

baou

strtoupper Used to convert all
string characters to
upper case letters

echo
strtoupper('Ahmedaba
d');

AHMEDABAD

strlen The string length
function is used to
count the number of
character in a string.
Spaces in between
characters are also
counted

echo strlen('Riya'); 4

explode Used to convert strings
into an array variable

$settings = explode(';',
"host=localhost;
db=baou; uid=root;
pwd=demo");
print_r($settings);

Array ([0] =>
host=localhost [1]
=>db=sales [2]
=>uid=root [3]
=>pwd=demo)

substr Used to return part of
the string. It accepts
three (3) basic
parameters. The first
one is the string to be
shortened, the second
parameter is the
position of the starting
point, and the third
parameter is the
number of characters
to be returned.

$my_var = 'This is a
really long sentence
that I wish to cut
short';echosubstr($my
_var,0, 12).'...';

This is a re...

157

str_replace Used to locate and
replace specified string
values in a given
string. The function
accepts three
arguments. The first
argument is the text to
be replaced, the
second argument is
the replacement text
and the third argument
is the text that is
analyzed.

echo str_replace ('the',
'that', 'the mobile is
very expensive');

that mobile is very
expensive

strpos Used to locate the and
return the position of a
character(s) within a
string. This function
accepts two arguments

echo strpos('PHP
Programing','Pro');

4

sha1 Used to calculate the
SHA-1 hash of a string
value

echo sha1('password'); 5baa61e4c
9b93f3f0
682250b6cf8331b
7ee68fd8

md5 Used to calculate the
md5 hash of a string
value

echo md5('password'); 9f961034ee
4de758
baf4de09ceeb1a7
5

str_word_c
ount

Used to count the
number of words in a
string.

echo str_word_count
('This is a really long
sentence that I wish to
cut short');

12

ucfirst Make the first
character of a string
value upper case

echo ucfirst('ashish'); Ashish

lcfirst Make the first
character of a string
value lower case

echo
lcfirst('UNIVERSITY');

Outputs
uNIVERSITY

Function list with Description for self-Study:

Function Description

addcslashes() Returns a string with backslashes in front of the
specified characters

addslashes() Returns a string with backslashes in front of
predefined characters

bin2hex() Converts a string of ASCII characters to hexadecimal
values

https://www.w3schools.com/php/func_string_addcslashes.asp
https://www.w3schools.com/php/func_string_addslashes.asp
https://www.w3schools.com/php/func_string_bin2hex.asp

158

chop() Removes whitespace or other characters from the
right end of a string

chr() Returns a character from a specified ASCII value

chunk_split() Splits a string into a series of smaller parts

convert_cyr_string() Converts a string from one Cyrillic character-set to
another

convert_uudecode() Decodes a uuencoded string

convert_uuencode() Encodes a string using the uuencode algorithm

count_chars() Returns information about characters used in a string

crc32() Calculates a 32-bit CRC for a string

crypt() One-way string hashing

echo() Outputs one or more strings

explode() Breaks a string into an array

fprintf() Writes a formatted string to a specified output stream

get_html_translation_table() Returns the translation table used by
htmlspecialchars() and htmlentities()

hebrev() Converts Hebrew text to visual text

hebrevc() Converts Hebrew text to visual text and new lines (\n)
into

hex2bin() Converts a string of hexadecimal values to ASCII
characters

html_entity_decode() Converts HTML entities to characters

htmlentities() Converts characters to HTML entities

htmlspecialchars_decode() Converts some predefined HTML entities to
characters

htmlspecialchars() Converts some predefined characters to HTML
entities

implode() Returns a string from the elements of an array

join() Alias of implode()

https://www.w3schools.com/php/func_string_chop.asp
https://www.w3schools.com/php/func_string_chr.asp
https://www.w3schools.com/php/func_string_chunk_split.asp
https://www.w3schools.com/php/func_string_convert_cyr_string.asp
https://www.w3schools.com/php/func_string_convert_uudecode.asp
https://www.w3schools.com/php/func_string_convert_uuencode.asp
https://www.w3schools.com/php/func_string_count_chars.asp
https://www.w3schools.com/php/func_string_crc32.asp
https://www.w3schools.com/php/func_string_crypt.asp
https://www.w3schools.com/php/func_string_echo.asp
https://www.w3schools.com/php/func_string_explode.asp
https://www.w3schools.com/php/func_string_fprintf.asp
https://www.w3schools.com/php/func_string_get_html_translation_table.asp
https://www.w3schools.com/php/func_string_hebrev.asp
https://www.w3schools.com/php/func_string_hebrevc.asp
https://www.w3schools.com/php/func_string_hex2bin.asp
https://www.w3schools.com/php/func_string_html_entity_decode.asp
https://www.w3schools.com/php/func_string_htmlentities.asp
https://www.w3schools.com/php/func_string_htmlspecialchars_decode.asp
https://www.w3schools.com/php/func_string_htmlspecialchars.asp
https://www.w3schools.com/php/func_string_implode.asp
https://www.w3schools.com/php/func_string_join.asp
https://www.w3schools.com/php/func_string_implode.asp

159

lcfirst() Converts the first character of a string to lowercase

levenshtein() Returns the Levenshtein distance between two strings

localeconv() Returns locale numeric and monetary formatting
information

ltrim() Removes whitespace or other characters from the left
side of a string

md5() Calculates the MD5 hash of a string

md5_file() Calculates the MD5 hash of a file

metaphone() Calculates the metaphone key of a string

money_format() Returns a string formatted as a currency string

nl_langinfo() Returns specific local information

nl2br() Inserts HTML line breaks in front of each newline in a
string

number_format() Formats a number with grouped thousands

ord() Returns the ASCII value of the first character of a
string

parse_str() Parses a query string into variables

print() Outputs one or more strings

printf() Outputs a formatted string

quoted_printable_decode() Converts a quoted-printable string to an 8-bit string

quoted_printable_encode() Converts an 8-bit string to a quoted printable string

quotemeta() Quotes meta characters

rtrim() Removes whitespace or other characters from the
right side of a string

setlocale() Sets locale information

sha1() Calculates the SHA-1 hash of a string

sha1_file() Calculates the SHA-1 hash of a file

similar_text() Calculates the similarity between two strings

https://www.w3schools.com/php/func_string_lcfirst.asp
https://www.w3schools.com/php/func_string_levenshtein.asp
https://www.w3schools.com/php/func_string_localeconv.asp
https://www.w3schools.com/php/func_string_ltrim.asp
https://www.w3schools.com/php/func_string_md5.asp
https://www.w3schools.com/php/func_string_md5_file.asp
https://www.w3schools.com/php/func_string_metaphone.asp
https://www.w3schools.com/php/func_string_money_format.asp
https://www.w3schools.com/php/func_string_nl_langinfo.asp
https://www.w3schools.com/php/func_string_nl2br.asp
https://www.w3schools.com/php/func_string_number_format.asp
https://www.w3schools.com/php/func_string_ord.asp
https://www.w3schools.com/php/func_string_parse_str.asp
https://www.w3schools.com/php/func_string_print.asp
https://www.w3schools.com/php/func_string_printf.asp
https://www.w3schools.com/php/func_string_quoted_printable_decode.asp
https://www.w3schools.com/php/func_string_quoted_printable_encode.asp
https://www.w3schools.com/php/func_string_quotemeta.asp
https://www.w3schools.com/php/func_string_rtrim.asp
https://www.w3schools.com/php/func_string_setlocale.asp
https://www.w3schools.com/php/func_string_sha1.asp
https://www.w3schools.com/php/func_string_sha1_file.asp
https://www.w3schools.com/php/func_string_similar_text.asp

160

soundex() Calculates the soundex key of a string

sprintf() Writes a formatted string to a variable

sscanf() Parses input from a string according to a format

str_getcsv() Parses a CSV string into an array

str_ireplace() Replaces some characters in a string (case-
insensitive)

str_pad() Pads a string to a new length

str_repeat() Repeats a string a specified number of times

str_replace() Replaces some characters in a string (case-sensitive)

str_rot13() Performs the ROT13 encoding on a string

str_shuffle() Randomly shuffles all characters in a string

str_split() Splits a string into an array

str_word_count() Count the number of words in a string

strcasecmp() Compares two strings (case-insensitive)

strchr() Finds the first occurrence of a string inside another
string (alias of strstr())

strcmp() Compares two strings (case-sensitive)

strcoll() Compares two strings (locale based string
comparison)

strcspn() Returns the number of characters found in a string
before any part of some specified characters are
found

strip_tags() Strips HTML and PHP tags from a string

stripcslashes() Unquotes a string quoted with addcslashes()

stripslashes() Unquotes a string quoted with addslashes()

stripos() Returns the position of the first occurrence of a string
inside another string (case-insensitive)

stristr() Finds the first occurrence of a string inside another
string (case-insensitive)

https://www.w3schools.com/php/func_string_soundex.asp
https://www.w3schools.com/php/func_string_sprintf.asp
https://www.w3schools.com/php/func_string_sscanf.asp
https://www.w3schools.com/php/func_string_str_getcsv.asp
https://www.w3schools.com/php/func_string_str_ireplace.asp
https://www.w3schools.com/php/func_string_str_pad.asp
https://www.w3schools.com/php/func_string_str_repeat.asp
https://www.w3schools.com/php/func_string_str_replace.asp
https://www.w3schools.com/php/func_string_str_rot13.asp
https://www.w3schools.com/php/func_string_str_shuffle.asp
https://www.w3schools.com/php/func_string_str_split.asp
https://www.w3schools.com/php/func_string_str_word_count.asp
https://www.w3schools.com/php/func_string_strcasecmp.asp
https://www.w3schools.com/php/func_string_strchr.asp
https://www.w3schools.com/php/func_string_strcmp.asp
https://www.w3schools.com/php/func_string_strcoll.asp
https://www.w3schools.com/php/func_string_strcspn.asp
https://www.w3schools.com/php/func_string_strip_tags.asp
https://www.w3schools.com/php/func_string_stripcslashes.asp
https://www.w3schools.com/php/func_string_stripslashes.asp
https://www.w3schools.com/php/func_string_stripos.asp
https://www.w3schools.com/php/func_string_stristr.asp

161

strlen() Returns the length of a string

strnatcasecmp() Compares two strings using a "natural order"
algorithm (case-insensitive)

strnatcmp() Compares two strings using a "natural order"
algorithm (case-sensitive)

strncasecmp() String comparison of the first n characters (case-
insensitive)

strncmp() String comparison of the first n characters (case-
sensitive)

strpbrk() Searches a string for any of a set of characters

strpos() Returns the position of the first occurrence of a string
inside another string (case-sensitive)

strrchr() Finds the last occurrence of a string inside another
string

strrev() Reverses a string

strripos() Finds the position of the last occurrence of a string
inside another string (case-insensitive)

strrpos() Finds the position of the last occurrence of a string
inside another string (case-sensitive)

strspn() Returns the number of characters found in a string
that contains only characters from a specified charlist

strstr() Finds the first occurrence of a string inside another
string (case-sensitive)

strtok() Splits a string into smaller strings

strtolower() Converts a string to lowercase letters

strtoupper() Converts a string to uppercase letters

strtr() Translates certain characters in a string

substr() Returns a part of a string

substr_compare() Compares two strings from a specified start position
(binary safe and optionally case-sensitive)

substr_count() Counts the number of times a substring occurs in a
string

https://www.w3schools.com/php/func_string_strlen.asp
https://www.w3schools.com/php/func_string_strnatcasecmp.asp
https://www.w3schools.com/php/func_string_strnatcmp.asp
https://www.w3schools.com/php/func_string_strncasecmp.asp
https://www.w3schools.com/php/func_string_strncmp.asp
https://www.w3schools.com/php/func_string_strpbrk.asp
https://www.w3schools.com/php/func_string_strpos.asp
https://www.w3schools.com/php/func_string_strrchr.asp
https://www.w3schools.com/php/func_string_strrev.asp
https://www.w3schools.com/php/func_string_strripos.asp
https://www.w3schools.com/php/func_string_strrpos.asp
https://www.w3schools.com/php/func_string_strspn.asp
https://www.w3schools.com/php/func_string_strstr.asp
https://www.w3schools.com/php/func_string_strtok.asp
https://www.w3schools.com/php/func_string_strtolower.asp
https://www.w3schools.com/php/func_string_strtoupper.asp
https://www.w3schools.com/php/func_string_strtr.asp
https://www.w3schools.com/php/func_string_substr.asp
https://www.w3schools.com/php/func_string_substr_compare.asp
https://www.w3schools.com/php/func_string_substr_count.asp

162

substr_replace() Replaces a part of a string with another string

trim() Removes whitespace or other characters from both
sides of a string

ucfirst() Converts the first character of a string to uppercase

ucwords() Converts the first character of each word in a string to
uppercase

vfprintf() Writes a formatted string to a specified output stream

vprintf() Outputs a formatted string

vsprintf() Writes a formatted string to a variable

wordwrap() Wraps a string to a given number of characters

 A string is a set of characters

 single quotes are used to specify simple strings

 double quotes are used to create fairly complex strings

 heredoc is used to create complex strings

 Nowdoc is used to create strings that cannot be parsed.

3.8 DATE FUNCTION

What is PHP Date Function?

PHP date function is an in-built function that simplify working with date data types.

The PHP date function is used to format a date or time into a human readable

format. It can be used to display the date of article, news, blogs and update was

published. record the last updated date and time or timestamp a data in a database.

PHP Date Syntax & Example

<?php

date (format, [timestamp]);

?>

Let’s understand the syntax and parameters

https://www.w3schools.com/php/func_string_substr_replace.asp
https://www.w3schools.com/php/func_string_trim.asp
https://www.w3schools.com/php/func_string_ucfirst.asp
https://www.w3schools.com/php/func_string_ucwords.asp
https://www.w3schools.com/php/func_string_vfprintf.asp
https://www.w3schools.com/php/func_string_vprintf.asp
https://www.w3schools.com/php/func_string_vsprintf.asp
https://www.w3schools.com/php/func_string_wordwrap.asp

163

 “date(…….)” is the function that returns the current time on the server.

 “format” is the general format which we want our output to be i.e.;

 “Y-m-d” for PHP date format YYYY-MM-DD

 “Y” to display the current year

 “[timestamp]” is optional. If no timestamp has been provided, PHP will get the

use the php current date time on the server.

Let’s look at a basic example that displays the current year.

<?php

echo date("Y");

?>

Output:2018

What is a TimeStamp?

A timestamp is a numeric value in seconds between the current time and value as at

1st January, 1970 00:00:00 Greenwich Mean Time (GMT).

 The value returned by the time function depends on the default time zone.

 The default time zone is set in the php.ini file.

 It can also be set programmatically using date_default_timezone_set function.

 The code below displays the current time stamp

<?php // Script save as PHP_TimeStamp.php

echo time();

?>

OUT PUT: 1556108567

Note: the value of the timestamp is not a constant. It changes every second.

Getting a list of available time zone identifiers :

Before we look at how to set the default time zone programmatically, let’s look at

how to get a list of supported time zones.

164

<?php // Script save as PHP_TimeZone.php

$timezone_identifiers = DateTimeZone::listIdentifiers();

foreach($timezone_identifiers as $key => $list){

echo $list . "
";

}

?>

Figure 37 : output of PHP_TimeZone world time zone list, scroll down and find India time zone
as (Asia/Kolkata)

 “$timezone_identifiers = DateTimeZone::listIdentifiers();” calls the

listIdentifiers static method of the DateandTime Zone built in class.

 The listIdentifiers method returns a list of constants that are assigned to the

variable $timezone_identifiers.

 “foreach{…}” iterates through the numeric array and prints the values.

PHP set Timezone Programmatically

The date_default_timezone_set function allows you to set the default time zone from

a PHP script.

The set time zone will then be used by all date php function scripts. It has the
following syntax.

165

<?php

date_default_timezone_set(string $timezone_identifier);

?>

 “date_default_timezone_set()” is the function that sets the default time zone

 “string $timezone_identifier” is the time zone identifier

The script below displays the time according to the default time zone set in php.ini.

It then changes the default time zone to Asia/Calcutta and displays the time again.

<?php// Script save as PHP_SetTimeZone.php

echo "The time in " .date_default_timezone_get() . " is " . date("H:i:s");

date_default_timezone_set("Asia/Calcutta");

echo "The time in " .date_default_timezone_get() . " is " . date("H:i:s");

?>

Figure 38 : PHP_SetTimeZone output

PHP Mktime Function:

The mktime function returns the timestamp in a Unix format.

<?php

mktime(hour, minute, second, month, day, year, is_dst);

?>

Brief about mktimeparameters :

 “mktime(…)” is the make php timestamp function

 “hour” is optional, it is the number of hour

 “minute” is optional, it is the number of minutes

166

 “second” is optional, it is the number of seconds

 “month” is optional, it is the number of the month

 “day” is optional, it is the number of the day

 “year” is optional, it is the number of the year

 “is_dst” is optional, it is used to determine the day saving time (DST). 1 is for

DST, 0 if it is not and -1 if it is unknown.

PHP Time parameters

Parameter Description Example

“r” Returns the full date and time <?php

echo date("r");

?>

“a”,”A” Returns whether the current time is am or
pm, AM or PM respectively

<?php

echo date("a");

echo date("A");

?>

“g”,”G” Returns the hour without leading zeroes
[1 to 12], [0 to 23] respectively

<?php

echo date("g");

echo date("G");

?>

“h”,”H” Returns the hour with leading zeros [01 to
12],[00 to 23] respectively

<?php

echo date("h");

echo date("H");

?>

“i”,”s” Returns the minutes/seconds with leading
zeroes [00 to 59]

<?php

echo date("i");

echo date("s");

?>

Day parameters

Parameter Description Example

“d” Returns the day of the month with leading
zeroes [01 to 31]

<?php

echo date("d");

?>

“j” Returns the day of the month without
leading zeroes [1 to 31]

<?php

echo date("j");

?>

“D” Returns the first 3 letters of the day name
[Sub to Sat]

<?php

echo date("D");

?>

167

“l” Returns day name of the week [Sunday
to Saturday]

<?php

echo date("l");

?>

“w” Returns day of the week without leading
zeroes [0 to 6] Sunday is represent by
zero (0) through to Saturday represented
by six (6)

<?php

echo date("w");

?>

“z” Returns the day of the year without
leading spaces [0 through to 365]

<?php

echo date("z");

?>

Month Parameters

Parameter Description Example

“m” Returns the month number with leading

zeroes [01 to 12]

<?php

echo date("m");

?>

“n” Returns the month number without
leading zeroes [01 to 12]

<?php

echo date("n");

?>

“M” Returns the first 3 letters of the month
name [Jan to Dec]

<?php

echo date("M");

?>

“F” Returns the month name [January to
December]

<?php

echo date("F");

?>

“t” Returns the number of days in a month
[28 to 31]

<?php

echo date("t");

?>

Year Parameters

Parameter Description Example

“L” Returns 1 if it’s a leap year and 0 if it is
not a leap year

<?php

echo date("L");

?>

“Y” Returns four digit year format <?php

echo date("Y");

?>

“y” Returns two (2) digits year format (00 to
99)

<?php

echo date("y");

?>

In the date function we learned,

168

 The date function is used to format the timestamp into a human desired

format.

 The timestamp is the number of seconds between the current time and

1st January, 1970 00:00:00 GMT. It is also known as the UNIX timestamp.

 All date functions use the default time zone set in the php.ini file

 The default time zone can also be set programmatically using PHP scripts.

3.9 FILE INCLUSION FUNCTION

There are two PHP functions which can be used to included one PHP file into

another PHP file.

 Theinclude() Function

 The require() Function

The include (or require) statement takes all the text/code/markup that exists in the

specified file and copies it into the file that uses the include statement.

Including files is very useful when you want to include the same PHP, HTML, or text

on multiple pages of a website.

This is a strong point of PHP which helps in creating functions, headers, footers, or

elements that can be reused on multiple pages. This will help developers to make it

easy to change the layout of complete website with minimal effort. If there is any

change required then instead of changing thousands of files just change included

file.

It is possible to insert the content of one PHP file into another PHP file (before the

server executes it), with the include or require statement.

The include and require statements are identical, except upon failure:

 require will produce a fatal error (E_COMPILE_ERROR) and stop the script

 include will only produce a warning (E_WARNING) and the script will continue

169

So, if you want the execution to go on and show users the output, even if the include

file is missing, use the include statement. Otherwise, in case of FrameWork, CMS, or

a complex PHP application coding, always use the require statement to include a

key file to the flow of execution. This will help avoid compromising your application's

security and integrity, just in-case one key file is accidentally missing.

Including files saves a lot of work. This means that you can create a standard

header, footer, or menu file for all your web pages. Then, when the header needs to

be updated, you can only update the header include file.

Syntax:

include 'filename';

or

require 'filename';

Theinclude() Function:

Theinclude() function takes all the text in a specified file and copies it into the file that

uses the include function. If there is any problem in loading a file then

the include() function generates a warning but the script will continue execution.

Assume you want to create a common menu for your website. Then create a file

BAOU_menu.php with the following content.

<!--// save script as BAOU_Menu.php -->

Home -

About BAOU -

Courses -

Contact us

Now create as many pages as you like and include this file to create header. For

example, now your PHP_Inclide.php file can have following content.

<html><?php // Script save as PHP_include.php ?>

170

<body>

<?php include("BAOU_Menu.php"); ?>

<p>This is an example to show how to include PHP file!</p>

</body>

</html>

Figure 39PHP_include script output

It will produce the following result –

The require() Function

The require() function takes all the text in a specified file and copies it into the file

that uses the include function. If there is any problem in loading a file then

the require() function generates a fatal error and halt the execution of the script.

So there is no difference in require() and include() except they handle error

conditions. It is recommended to use the require() function instead of include(),

because scripts should not continue executing if files are missing or misnamed.

You can try using above example with require() function and it will generate same

result. But if you will try following two examples where file does not exist then you will

get different results.

Now lets try same example with require() function.

<html><?php // Script save as PHP_Require.php ?>

<body>

171

<?phprequire("BAOU_Menu.php "); ?>

<p>This is an example to show how to include wrong PHP file!</p>

</body>

</html>

Note:

 Use require when the file is required by the application.

 Use include when the file is not required and application should continue

when file is not found.

3.10 FILE I/O OPERATION FUNCTION

What is a File?

A file is simply a resource for storing information on a computer.Files are usually

used to store information such asConfiguration settings of a program, Simple data

such as contact names against the phone numbers, Images, Pictures, Photos, etc.

Basic File functions:

 PHP File Formats Support

 PHP files Functions

 PHP File_exists Function

 PHP Fopen Function

 PHP Fwrite Function

 PHP Fclose Function

 PHP Fgets Function

 PHP Copy Function

 Deleting a file

 PHP File_get_contents Function

File Formats Support a wide range of file formats that include;

File.txt, File.log, File.custom_extensioni.e.file.xyz, File.csv, File.gif, file.jpg etc

172

Files provide a permanent cost effective data storage solution for simple data

compared to databases that require other software and skills to manage DBMS

systems.

You want to store simple data such as server logs for later retrieval and analysis,

store program settings i.e. program.ini

PHP files Functions

PHP provides a convenient way of working with files via its rich collection of built in

functions.

Operating systems such as Windows and MAC OS are not case sensitive while

Linux or Unix operating systems are case sensitive.

Adopting a naming conversion such as lower case letters only for file naming is a

good practice that ensures maximum cross platform compatibility.

Let’s now look at some of the most commonly used PHP file functions.

PHP File_exists Function

This function is used to determine whether a file exists or not.It comes in handy

when we want to know if a file exists or not before processing it.You can also use

this function when creating a new file and you want to ensure that the file does not

already exist on the server.

The file_exist function has the following syntax.

<?php

file_exists($filename);

?>

Explanation:

 “file_exists()” is the PHP function that returns true if the file exists and false if it

does not exist.

 “$file_name” is the path and name of the file to be checked

173

The code below uses file_exists function to determine if the file my_settings.txt

exists.

<?php //Script save as PHP_file_check.php

if (file_exists(‘baou_intro.txt'))

{

echo 'file found!';

}

else

{

echo 'my_settings.txt does not exist';

}

?>

PHP Fopen Function

Figure 40 Output of PHP_file_Check.php

The fopen function is used to open files. It has the following syntax

<?php

fopen($file_name,$mode,$use_include_path,$context);

?>

Explanation:

 “fopen” is the PHP open file function

 “$file_name” is the name of the file to be opened

 “$mode” is the mode in which the file should be opened, the table below

shows the modes

Mode Description

174

r Read file from beginning.

 Returns false if the file doesn’t exist.

 Read only

r+ Read file from beginning

 Returns false if the file doesn’t exist.

 Read and write

w Write to file at beginning

 truncate file to zero length

 If the file doesn’t exist attempt to create it.

 Write only

w+ Write to file at beginning, truncate file to zero length

 If the file doesn’t exist attempt to create it.

 Read and Write

a Append to file at end

 If the file doesn’t exist attempt to create it.

 Write only

a+ Php append to file at end

 If the file doesn’t exist attempt to create it

 Read and write

 “$use_include_path” is optional, default is false, if set to true, the function

searches in the include path too.

 “$context” is optional, can be used to specify the context support.

PHP Fwrite Function is used to write files.

<?php

fwrite($handle, $string, $length);

?>

Explanation:

 “fwrite” is the PHP function for writing to files

 “$handle” is the file pointer resource

175

 “$string” is the data to be written in the file.

 “$length” is optional, can be used to specify the maximum file length.

PHP FcloseFunctionis used to close a file in php which is already open

<?php

fclose($handle);

?>

Explanation:

 “fclose” is the PHP function for closing an open file

 “$handle” is the file pointer resource.

 Let’s now look at an example that creates baou_intro.txt.

We will use the following functions.

Fopen, Fwrite, fclose

The code below “PHP_BAOU_FILE-IO.php” implements the above example.

<?php //Script save as PHP_BAOU_FILE-IO.php

$fh = fopen("baou_intro.txt", 'w') or die("Failed to create file");

$text = "BAOU File IO Operation Testing Code";

fwrite($fh, $text) or die("Could not write to file");

fclose($fh);

echo "File 'baou_intro.txt' written successfully";

?>

Figure 41 Output of PHP_BAOU_FILE-IO.php

Note: if your disk is full or you do not have permission to write files, you will get an

error message. Kindly refresh the same URL.

PHP Fgets Function is used to read php files line by line. It has the following basic

syntax. fgets($handle)

Explanation:

 “$fgets” is the PHP function for reading file lines

 “$handle” is the file pointer resource.

176

Let’s now look at an example that reads baou_intro.txt file using the fopen and fgets

functions.

<?php //Script Save as fileread_baou_intro.php and self tested code

$fh = fopen("baou_intro.txt", 'r') or die("File does not exist or you lack

permission to open it");

$line = fgets($fh);

echo $line; fclose($fh);

?>

 “fopen” function returns the pointer to the file specified in the file path

 “die()” function is called if an error occurs. It displays a message and exists

execution of the script

PHP Copy Function

The PHP copy function is used to copy files. It has the following basic syntax.

copy($file,$copied_file);

 “$file” specifies the file path and name of the file to be copied.

 “copied_file” specified the path and name of the copied file

The code below illustrates the implementation

<?php //Script Save as copyfile_baou_intro.php and self-tested code

copy(baou_intro.txt', ‘baou_intro_clone.txt') or die("Could not copy file");

echo "File successfully copied to ‘baou_intro_clone.txt'";

?>

Deleting a file: The unlink function is used to delete the file. The code below

illustrates the implementation.

<?php // Script save as filedelete_baou_intro_clone.php and self-tested code

if (!unlink('baou_intro _clone.txt'))

{
echo "Could not delete file";

}
else
{

echo "File 'baou_intro _clone.txt' successfully deleted";
}

?>

PHP File_get_contentsFunctionis used to read the entire file contents.

177

The code below illustrates the implementation.

The difference between file_get_contents and fgets is that file_get_contentsreturns

the file data as a string while fgets reads the file line by line.

<?php// Script save as file_get_content_baou.php and self-tested code

echo "<pre>"; // Enables display of line feeds

echo file_get_contents("baou_intro.txt ");

echo "</pre>"; // Terminates pre tag

?>

Conclusion of File I/O function:

 A file is a resource for storing data

 PHP has a rich collection of built in functions that simplify working with files.

 Common file functions include fopen, fclose, file_get_contents

 The table below shows a summary of the functions covered

Function Description

File_exists Used to determine if a file exists or not

fopen Used to open a file. Returns a pointer to the opened file

fwrite Used to write to files

fclose Used to open closed files

fgets Used to read a file line by line

copy Used to copy an existing file

unlink Used to delete an existing file

file_get_contents Used to return the contents of a file as a string

178

Unit 4: Working with Arrays 4

Unit Structure

4.1. Learning Objectives

4.2. Introduction

4.3. Storing data in arrays using PHP

4.4. Numeric/Indexed Arrays

4.5. PHP Associative Array

4.6. PHP Multi-dimensional arrays

4.7. PHP Array operators

4.8. Manipulating arrays.

4.9. PHP Array Constants

4.10. List of Functions

179

4.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand one dimensional and multi dimensional array

 Understand manipulation of array

 Understand array constant,operator and function

1.2 INTRODUCTION

What is a PHP Array?

An array is a data structure that stores one or more similar type of values in a single

value. For example, if you want to store 100 numbers then instead of defining 100

variables it’s easy to define an array of 100 length.

A PHP array is a variable that stores more than one piece of related data in a single

variable. Think of an array as a box of chocolates with slots inside.

The box represents the array itself while the spaces containing chocolates represent

the values stored in the arrays.

4.3 STORING DATA IN ARRAYS USING PHP

PHP storing value in same structural format which is define as below

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of course names, for example), storing the course in

single variables could look like this:

$course1 = "BCA";

$course2 = "MCA";

$course3 = "M.Sc-IT";

Above example is show variable name is common along with numeric index, if we

want to store 100+ course name of BAOU then strongly recommended, we should

go with Array concept only rather then individual variable define and store value.

180

$course = [“BCA”,”MCA”,”M.Sc-IT”];

This is the simplest way to define array and store value on it.

print_r($course);

print_r in-built function show array out on screen in structural manner.

4.4 NUMERIC/INDEXED ARRAY

These arrays can store numbers, strings and any object but their index will be

represented by numbers. By default, array index starts from zero.

 Numeric arrays use number as access keys.

 An access key is a reference to a memory slot in an array variable.

 The access key is used whenever we want to read or assign a new value an

array element.

 Numeric array also known as Indexed array

Below is the syntax for creating numeric array in php. Array Example

<?php

?>

$variable_name[n] = value;

Or

<?php

?>

$variable_name = array(n => value, …);

Explanation:

 “$variable_name…” is the name of the variable

 “[n]” is the access index number of the element

 “value” is the value assigned to the array element.

Suppose we have to create 5 (1,2, …)numeric value base array that we want to store

in array variables or 5 numeric as text (One, Two, …) value.

181

We can use the example shown below to do as per above assumption.we have

used array() function to create array.

<?php // Script save as PHP_ARRAY_BASIC.PHP

/* First method to create array. */

$numbers = array(1, 2, 3, 4, 5);

foreach($numbers as $value) {

echo "Array Value is $value
";

}

/* Second method to create array. */

$numbers[0] = "One";

$numbers[1] = "Two";

$numbers[2] = "Three";

$numbers[3] = "Four";

$numbers[4] = "Five";

foreach($numbers as $value) {

echo "Array (As text) Value is $value
";

}

?>

182

Figure 42 Output of PHP_ARRAY_BASIC.PHP

If we want separate index value form numeric array then need to following method,

let’s assume array contain is text (One, Two, …)

<?php//Script save as PHP_ARRAY_INDEX_VALUE.PHP

$numbers = array("ZERO","ONE", "TWO","THREE","FOUR","FIVE");

echo $numbers[2];

echo "
";

echo $numbers[5];

?>

Figure 43 Output of PHP_ARRAY_INDEX_VALUE

This is the simplest way to implement numeric/indexed array in PHP.

183

4.5 ASSOCIATIVE ARRAY

The associative arrays are very similar to numeric arrays in term of functionality but

they are different in terms of their index. Associative array will have their index as

string so that you can establish a strong association between key and values.

Below is the syntax for creating associative array in php.

<?php

$variable_name['key_name'] = value;

$variable_name = array('keyname' => value);

?>

Explanation:

 “$variable_name…” is the name of the variable

 “['key_name']” is the access index number of the element

 “value” is the value assigned to the array element.

Let’s suppose that we have a group of persons, and we want to assign the gender of

each person against their names.

We can use an associative array to do that.The code below helps us to do that.

<?php // Script save as PHP_ASSO_ARRAY.PHP

$persons = array("Lina" => " Female ", "Ashish" => "Male", "Riya" =>

"Female");

echo "<PRE>";

print_r($persons);

echo "</PRE>";

echo "Riya is a " . $persons["Riya"];

?>

184

Figure 44 Output of PHP_ASSO_ARRAY.PHP

Associative array is also very useful when retrieving data from the database.

The field names are used as id keys.

4.6 MULTI-DIMENSIONAL ARRAYS

A multi-dimensional array each element in the main array can also be an array. And

each element in the sub-array can be an array, and so on. Values in the multi-

dimensional array are accessed using multiple index. or alternate way to say

multidimensional is that contain other nested arrays.

The advantage of multidimensional arrays is that they allow us to group related data

together.

Let’s now look at a practical example that implements a php multidimensional array.

let’s create a two-dimensional array to store marks of three students in three

subjects −This example is an associative array, you can create numeric array in the

same fashion.

<?php // Script save as PHP_MULTI_DIME_ARRAY.PHP

$marks = array(

"ASHISH" => array (

"HTML" => 98,

"JAVA" => 78,

"PHP" => 96

),

"LINA" => array (

"HTML" => 75,

"JAVA" => 86,

"PHP" => 72

185

),

"RIYA" => array (

"HTML" =>rand(1,100),

"JAVA" =>rand(1,100),

"PHP" =>rand(1,100)

)

);

// In nested array of Riya's all marks are random range is 1 to 100

/* Accessing multi-dimensional array values */

echo "Marks for ASHISH in PHP: “;

echo $marks['ASHISH']['PHP'] . "
";

echo "Marks for LINA in JAVA: ";

echo $marks['LINA']['JAVA'] . "
";

echo "Marks for RIYA in HTML: “;

echo $marks['RIYA']['HTML'] . "
";

?>

Figure 45 Output of PHP_MULTI_DIME_ARRAY.PHP using Riya's marks as random

Using this method data can be stored in multidimensional arrays, PHP understands

multidimensional arrays that are two, three, four, five, or more levels deep. However,

arrays more than three levels deep are hard to manage for most people.

4.7 PHP ARRAY OPERATORS

The PHP array operators are used to compare arrays.

186

Operator Name Example Result

+ Union $x + $y Union of $x and $y

== Equality $x == $y Returns true if $x and $y have the same
key/value pairs

=== Identity $x === $y Returns true if $x and $y have the same
key/value pairs in the same order and of
the same types

!= Inequality $x != $y Returns true if $x is not equal to $y

<> Inequality $x <> $y Returns true if $x is not equal to $y

!== Non-identity $x !== $y Returns true if $x is not identical to $y

4.8 MANIPULATING ARRAYS

Joining the Arrays

The best way to merge two or more arrays in PHP is to use the array_merge()

function. Items of arrays will be merged together, and values with the same string

keys will be overwritten with the last value:

<?php //Script Save as PHP_Array_Join.php

$array1 = ['a' => 'a', 'b' => 'b', 'c' => 'c'];

$array2 = ['m' => 'M', 'n' => 'N', 'o' => 'O'];

echo "Array 1:-";

print_r($array1);

echo "
Array 2:-";

print_r($array2);

$merge = array_merge($array1, $array2);

echo "
<hr> Result after mearge of Array1 & Array2";

echo "<pre>";

print_r($merge);

echo "</pre>";

?>

187

Figure 46 output of PHP_Array_Join.php

To remove array values from another array (or arrays), use array_diff(). To get

values which are present in given arrays, use array_intersect(). The next examples

will show how it works:

<?php //Script Save as PHP_Array_diff_inter.php

$array1 = [1, 2, 3, 4];

$array2 = [3, 4, 5, 6];

echo "Array 1:-";

print_r($array1);

echo "
Array 2:-";

print_r($array2);

echo "
<hr> Result after array difference of Array1 & Array2";

$diff = array_diff($array1, $array2);

echo "<pre>";

print_r($diff); // [0 => 1, 1 => 2]

echo "</pre>";

188

echo "<hr> Result after array intersection of Array1 & Array2";

$intersect = array_intersect($array1, $array2);

echo "<pre>";

print_r($intersect); // [2 => 3, 3 => 4]

echo "</pre>";

?>

Figure 47 Output of PHP_Array_diff_inter.php

sizeof($arr) :

This function returns the number of elements in an array. Use this function to find out

how many elements an array contains; this information is most commonly used to

initialize a loop counter when processing the array.

<?php

$data = array("red", "green", "blue");

echo "Array has " .sizeof($data) . " elements";

?>

Output:Array has 3 elements

array_values($arr):

189

This function accepts a PHP array and returns a new array containing only its values

(not its keys). Its counterpart is the array_keys() function.

Use this function to retrieve all the values from an associative array.

<?php

$data = array("hero" => "Holmes", "villain" => "Moriarty");

print_r(array_values($data));

?>

Output:

Array

(

)

array_keys($arr):

[0] => Holmes

[1] => Moriarty

This function accepts a PHP array and returns a new array containing only its keys

(not its values). Its counterpart is the array_values() function.

Use this function to retrieve all the keys from an associative array.

<?php

?>

$data = array("hero" => "Holmes", "villain" => "Moriarty");

print_r(array_keys($data));

Output:

Array

(

[0] => hero

[1] => villain

)

190

array_pop($arr):

This function removes an element from the end of an array.

<?php

$data = array("Donald", "Jim", "Tom");

array_pop($data);

print_r($data);

?>

Output:

Array

(

[0] => Donald

[1] => Jim

)

array_push($arr, $val):

This function adds an element to the end of an array.

<?php

$data = array("Donald", "Jim", "Tom");

array_push($data, "Harry");

print_r($data);

?>

Output:

Array

(

191

[0] => Donald

[1] => Jim

[2] => Tom

[3] => Harry

)

array_shift($arr):

This function removes an element from the beginning of an array.

<?php

$data = array("Donald", "Jim", "Tom");

array_shift($data);

print_r($data);

?>

Output:

Array

(

[0] => Jim

[1] => Tom

)

array_unshift($arr, $val):

This function adds an element to the beginning of an array.

<?php

$data = array("Donald", "Jim", "Tom");

array_unshift($data, "Sarah");

192

print_r($data);

?>

Output:

Array

(

[0] => Sarah

)

each($arr):

[1] => Donald

[2] => Jim

[3] => Tom

This function is most often used to iteratively traverse an array. Each time each() is

called, it returns the current key-value pair and moves the array cursor forward one

element. This makes it most suitable for use in a loop.

<?php

$data = array("hero" => "Holmes", "villain" => "Moriarty");

while (list($key, $value) = each($data)) {

echo "$key: $value \n";

}

?>

Output:

hero: Holmes

villain: Moriarty

sort($arr):

193

This function sorts the elements of an array in ascending order. String values will be

arranged in ascending alphabetical order.

Note: Other sorting functions include asort(), arsort(), ksort(), krsort() and rsort().

<?php

$data = array("g", "t", "a", "s");

sort($data);

print_r($data);

?>

Output:

Array

(

[0] => a

[1] => g

[2] => s

[3] => t

)

array_flip($arr):

The function exchanges the keys and values of a PHP associative array.

Use this function if you have a tabular (rows and columns) structure in an array, and

you want to interchange the rows and columns.

<?php

$data = array("a" => "apple", "b" => "ball");

print_r(array_flip($data));

?>

194

Output:

Array

(

[apple] => a

[ball] => b

)

array_reverse($arr):

The function reverses the order of elements in an array.

Use this function to re-order a sorted list of values in reverse for easier processing—

for example, when you're trying to begin with the minimum or maximum of a set of

ordered values.

<?php

?>

$data = array(10, 20, 25, 60);

print_r(array_reverse($data));

Output:

Array

(

[0] => 60

[1] => 25

[2] => 20

[3] => 10

)

array_merge($arr):

This function merges two or more arrays to create a single composite array. Key

collisions are resolved in favor of the latest entry.

195

Use this function when you need to combine data from two or more arrays into a

single structure—for example, records from two different SQL queries.

<?php

$data1 = array("cat", "goat");

$data2 = array("dog", "cow");

print_r(array_merge($data1, $data2));

?>

Output:

Array

(

[0] => cat

[1] => goat

[2] => dog

[3] => cow

)

array_rand($arr):

This function selects one or more random elements from an array.

Use this function when you need to randomly select from a collection of discrete

values—for example, picking a random color from a list.

<?php

$data = array("white", "black", "red");

echo "Today's color is " . $data[array_rand($data)];

?>

Output:

Today's color is red

196

array_search($search, $arr):

This function searches the values in an array for a match to the search term, and

returns the corresponding key if found. If more than one match exists, the key of the

first matching value is returned.

Use this function to scan a set of index-value pairs for matches, and return the

matching index.

<?php

$data = array("blue" => "#0000cc", "black" => "#000000", "green" =>

"#00ff00");

echo "Found " .array_search("#0000cc", $data);

?>

Output:

Found blue

array_slice($arr, $offset, $length):

This function is useful to extract a subset of the elements of an array, as another

array. Extracting begins from array offset $offset and continues until the array slice is

$length elements long.

Use this function to break a larger array into smaller ones—for example, when

segmenting an array by size ("chunking") or type of data.

<?php

$data = array("vanilla", "strawberry", "mango", "peaches");

print_r(array_slice($data, 1, 2));

?>

Output:

Array

197

(

[0] => strawberry

[1] => mango

)

array_unique($data):

This function strips an array of duplicate values.

Use this function when you need to remove non-unique elements from an array—for

example, when creating an array to hold values for a table's primary key.

<?php

$data = array(1,1,4,6,7,4);

print_r(array_unique($data));

?>

Output:

Array

(

[0] => 1

[3] => 6

[4] => 7

[5] => 4

)

array_walk($arr, $func):

This function "walks" through an array, applying a user-defined function to every

element. It returns the changed array.

Use this function if you need to perform custom processing on every element of an array—

for example, reducing a number series by 10%.

<?php

198

function reduceBy10(&$val, $key) {

$val -= $val * 0.1;

}

$data = array(10,20,30,40);

array_walk($data, 'reduceBy10');

print_r($data);

?>

Output:

Array

(

[0] => 9

[1] => 18

[2] => 27

[3] => 36

)

All above methods are help for manipulate array.

4.9 PHP ARRAY CONSTANTS

These functions allow you to interact with and manipulate arrays in various ways.

Arrays are essential for storing, managing, and operating on sets of variables.

Constant Description

CASE_LOWER Used with array_change_key_case() to convert array

keys to lower case

CASE_UPPER Used with array_change_key_case() to convert array

keys to upper case

199

SORT_ASC Used with array_multisort() to sort in ascending order

SORT_DESC Used with array_multisort() to sort in descending

order

SORT_REGULAR Used to compare items normally

SORT_NUMERIC Used to compare items numerically

SORT_STRING Used to compare items as strings

SORT_LOCALE_STRING Used to compare items as strings, based on the

current locale

And other normal constants are as below, for more detail and detail example
you can refer php.net

COUNT_NORMAL,
COUNT_RECURSIVE,
EXTR_OVERWRITE,
EXTR_SKIP,
EXTR_PREFIX_SAME,
EXTR_PREFIX_ALL,

EXTR_PREFIX_INVALID,
EXTR_PREFIX_IF_EXISTS,
EXTR_IF_EXISTS,
EXTR_REFS

4.10 LIST OF ARRAY FUNCTIONS

Function Description

array() Creates an array

array_change_key_case() Changes all keys in an array to lowercase or
uppercase

array_chunk() Splits an array into chunks of arrays

array_column() Returns the values from a single column in the input
array

array_combine() Creates an array by using the elements from one
"keys" array and one "values" array

array_count_values() Counts all the values of an array

array_diff() Compare arrays, and returns the differences
(compare values only)

200

array_diff_assoc() Compare arrays, and returns the differences
(compare keys and values)

array_diff_key() Compare arrays, and returns the differences
(compare keys only)

array_diff_uassoc() Compare arrays, and returns the differences
(compare keys and values, using a user-defined key
comparison function)

array_diff_ukey() Compare arrays, and returns the differences
(compare keys only, using a user-defined key
comparison function)

array_fill() Fills an array with values

array_fill_keys() Fills an array with values, specifying keys

array_filter() Filters the values of an array using a callback
function

array_flip() Flips/Exchanges all keys with their associated
values in an array

array_intersect() Compare arrays, and returns the matches (compare
values only)

array_intersect_assoc() Compare arrays and returns the matches (compare
keys and values)

array_intersect_key() Compare arrays, and returns the matches (compare
keys only)

array_intersect_uassoc() Compare arrays, and returns the matches (compare
keys and values, using a user-defined key
comparison function)

array_intersect_ukey() Compare arrays, and returns the matches (compare
keys only, using a user-defined key comparison
function)

array_key_exists() Checks if the specified key exists in the array

array_keys() Returns all the keys of an array

array_map() Sends each value of an array to a user-made
function, which returns new values

array_merge() Merges one or more arrays into one array

array_merge_recursive() Merges one or more arrays into one array

201

 recursively

array_multisort() Sorts multiple or multi-dimensional arrays

array_pad() Inserts a specified number of items, with a specified
value, to an array

array_pop() Deletes the last element of an array

array_product() Calculates the product of the values in an array

array_push() Inserts one or more elements to the end of an array

array_rand() Returns one or more random keys from an array

array_reduce() Returns an array as a string, using a user-defined
function

array_replace() Replaces the values of the first array with the values
from following arrays

array_replace_recursive() Replaces the values of the first array with the values
from following arrays recursively

array_reverse() Returns an array in the reverse order

array_search() Searches an array for a given value and returns the
key

array_shift() Removes the first element from an array, and
returns the value of the removed element

array_slice() Returns selected parts of an array

array_splice() Removes and replaces specified elements of an
array

array_sum() Returns the sum of the values in an array

array_udiff() Compare arrays, and returns the differences
(compare values only, using a user-defined key
comparison function)

array_udiff_assoc() Compare arrays, and returns the differences
(compare keys and values, using a built-in function
to compare the keys and a user-defined function to
compare the values)

array_udiff_uassoc() Compare arrays, and returns the differences
(compare keys and values, using two user-defined
key comparison functions)

202

array_uintersect() Compare arrays, and returns the matches (compare
values only, using a user-defined key comparison
function)

array_uintersect_assoc() Compare arrays, and returns the matches (compare
keys and values, using a built-in function to compare
the keys and a user-defined function to compare the
values)

array_uintersect_uassoc() Compare arrays, and returns the matches (compare
keys and values, using two user-defined key
comparison functions)

array_unique() Removes duplicate values from an array

array_unshift() Adds one or more elements to the beginning of an
array

array_values() Returns all the values of an array

array_walk() Applies a user function to every member of an array

array_walk_recursive() Applies a user function recursively to every member
of an array

arsort() Sorts an associative array in descending order,
according to the value

asort() Sorts an associative array in ascending order,
according to the value

compact() Create array containing variables and their values

count() Returns the number of elements in an array

current() Returns the current element in an array

each() Returns the current key and value pair from an array

end() Sets the internal pointer of an array to its last
element

extract() Imports variables into the current symbol table from
an array

in_array() Checks if a specified value exists in an array

key() Fetches a key from an array

krsort() Sorts an associative array in descending order,
according to the key

203

ksort() Sorts an associative array in ascending order,
according to the key

list() Assigns variables as if they were an array

natcasesort() Sorts an array using a case insensitive "natural
order" algorithm

natsort() Sorts an array using a "natural order" algorithm

next() Advance the internal array pointer of an array

pos() Alias of current()

prev() Rewinds the internal array pointer

range() Creates an array containing a range of elements

reset() Sets the internal pointer of an array to its first
element

rsort() Sorts an indexed array in descending order

shuffle() Shuffles an array

sizeof() Alias of count()

sort() Sorts an indexed array in ascending order

uasort() Sorts an array by values using a user-defined
comparison function

uksort() Sorts an array by keys using a user-defined
comparison function

usort() Sorts an array using a user-defined comparison
function

204

Block-4

Processing Web Forms and
Handling Database in PHP

205

Unit 1: Working with Forms in
PHP 1

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Working with forms in PHP

1.4. Validating input data

1.5. using magic quotes

1.6. Storing form data in file

1.7. Saving form data using cookies

1.8. saving form data using sessions

206

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 understand dynamic web site creation using form

 understand validation controls to provide validation on input

 understand saving data using cookie and session

1.2 INTRODUCTION

Dynamic Websites: The Websites provide the functionalities that can use to store,

update, retrieve, and delete the data in a database.

What is the Form?

A Document that containing black fields, that the user can fill the data or user can

select the data and Casually the data will store in the database, file and session.

PHP Data Collection method is: GET, POST, REQUEST

It is time to apply the knowledge you have obtained thus far and put it to real use. A

very common application of PHP is to have an HTML form gather information from a

website's visitor and then use PHP to do process that information. In this lesson we

will simulate a small business's website that is implementing a very simple order

form.

Imagine we are an education community store that participant personal information,

education detail and communication. To gather order information from our

prospective students or participant we will have to make a page with an HTML form

to gather the participant’s information for the events.

1.3 WORKING WITH FORMS IN PHP

We first create an HTML form that will collectstudent’s basic information eg. Name,

email, education. When the user fills out the form above and clicks

the submit button,the form data is sent for processing to a PHP file named

"baou_form.php" using action attribute value. The form data is sent with the HTTP

GET method.

207

If you need a refresher on how to properly make an HTML form, recall the HTML

Form tags before continuing to create PHP from.

The example below displays a simple HTML form with threeinput fields and a submit

button:

<html>

<body>

<!—file save as form_demo.html ->

<h1> HTML From demo in PHP </h1><hr>

<form action="baou_form.php" method="post">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

Education:

<select name="edu">

<option selected>select Education</option>

<option selected>M.Sc-IT</option>

<option selected>BCA</option>

<option selected>PGDCA</option>

<option selected>B.Sc-IT</option>

</select>

<input type="submit">

</form>

</body>

</html>

Figure 48 output of form_demo.html (Only HTML as response)

To display the submitted data you could simply echo all the variables. The

"baou_form.php" looks like this:

208

<html>

<body>

Welcome <?php echo $_POST["name"]; ?>,

Your email address is: <?php echo $_POST["email"]; ?>

Your Education is: <?php echo $_POST["edu"]; ?>

</body>

</html>

As you probably noticed, the name in $_POST['name'] corresponds to the name that

we specified in our HTML form.

Figure 49 output of form_demo.html &baou_form.php

Note: In the above example you can passing same data using GET method,

The GET Method:

GET is used to request data from a specified resource.GET is one of the most

common HTTP methods.

Note that the query string (name/value pairs) is sent in the URL of a GET request:

/test/form_demo.php?name1=value1&name2=value2

 GET requests can be cached

 GET requests remain in the browser history

 GET requests can be bookmarked

 GET requests should never be used when dealing with sensitive data

 GET requests have length restrictions(maximum URL length is 2048

characters)

 GET requests is only used to request data (not modify)

209

The POST Method:

Information sent from a form with the POST method is invisible to others (all

names/values are embedded within the body of the HTTP request. POST is used to

send data to a server to create/update a resource.The data sent to the server with

POST is stored in the request body of the HTTP request: (in chrome press

F12>network>all you can see below output)

POST /test/form_demo.php HTTP/1.1

Host: baou.edu.in

name1=value1&name2=value2

 POST is one of the most common HTTP methods for parsing large amount of

data.

 POST requests are never cached

 POST requests do not remain in the browser history

 POST requests cannot be bookmarked

 POST requests have no restrictions on data length

Moreover POST supports advanced functionality such as support for multi-part

binary input while uploading files to server.

The following table compares the two HTTP methods: GET and POST.
 GET POST

BACK

button/Reload

Harmless Data will be re-submitted (the

browser should alert the user

that the data are about to be

re-submitted)

Bookmarked Can be bookmarked Cannot be bookmarked

Cached Can be cached Not cached

Encoding

type

application/x-www-form-

urlencoded

application/x-www-form-

urlencoded or multipart/form-

data. Use multipart encoding

for binary data

History Parameters remain in browser

history

Parameters are not saved in

browser history

210

Restrictions

on data length

Yes, when sending data, the

GET method adds the data to

the URL; and the length of a

URL is limited (maximum URL

length is 2048 characters)

No restrictions

Restrictions

on data type

Only ASCII characters allowed No restrictions. Binary data is

also allowed

Security GET is less secure compared

to POST because data sent is

part of the URL

Never use GET when sending

passwords or other sensitive

information!

POST is a little safer than

GET because the parameters

are not stored in browser

history or in web server logs

Visibility Data is visible to everyone in

the URL

Data is not displayed in the

URL

1.4 VALIDATING INPUT DATA

What is Validation?

Validation means check the input submitted by the user. There are two types of

validation are available in PHP. Mentioned as below

 Client-Side Validation: Validation is performed on the client machine web

browsers.

 Server-Side Validation: After submitted by data, the data has sent to a

server and perform validation checks in server machine.

Required field will check whether the field is filled or not in the proper way. Most of

cases we will use the * symbol for required field.

Some of Validation rules for field

Field Validation Rules

Name Should required letters and white-spaces

211

Email Should required @ and .

Website Should required a valid URL

Radio Must be selectable at least once

Check Box Must be checkable at least once

Drop Down menu Must be selectable at least once

Validate Name :The code below shows a simple way to check if the name field only

contains letters and whitespace. If the value of the name field is not valid, then store

an error message:

$name = test_input($_POST["name"]);

if (!preg_match("/^[a-zA-Z]*$/",$name)) {

$nameErr = "Only letters and white space allowed";

}

Valid URLBelow code shows validation of URL:

$website = input($_POST["site"]);

if(!preg_match("/\b(?:(?:https?|ftp):\/\/|www\.)[-a-z0-9+&@#\/%?=~_|!:,.;]*[-a-z0-

9+&@#\/%=~_|]/i",$website)) {

$websiteErr = "Invalid URL";

}

Above syntax will verify whether a given URL is valid or not. It should allow some

keywords as https, ftp, www, a-z, 0-9,..etc..

Valid EmailBelow code shows validation of Email address:

$email = input($_POST["email"]);

if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

$emailErr = "Invalid format and please re-enter valid email";

}

212

Above syntax will verify whether given Email address is well-formed or not.if it is not,

it will show an error message.

Let’s discuss the example of form fields validation:

<!—Script save as form_validate.php ->

<html>

<head>

<style>

.error {color: #FF0000;}

</style>

</head>

<body>

<?php

// define variables and set to empty values

$nameErr = $emailErr = $genderErr = $websiteErr = "";

$name = $email = $gender = $comment = $website = "";

if ($_SERVER["REQUEST_METHOD"] == "POST") {

}else {

if (empty($_POST["name"])) {

$nameErr = "Name is required";

$name = test_input($_POST["name"]);

}

}else {

if (empty($_POST["email"])) {

$emailErr = "Email is required";

$email = test_input($_POST["email"]);

213

// check if e-mail address is well-formed

if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

$emailErr = "Invalid email format";

}

}

if (empty($_POST["website"])) {

$website = "";

}else {

$website = test_input($_POST["website"]);

}

if (empty($_POST["comment"])) {

}else {

$comment = "";

$comment = test_input($_POST["comment"]);

}

}else {

}

if (empty($_POST["gender"])) {

$genderErr = "Gender is required";

$gender = test_input($_POST["gender"]);

}

function test_input($data) {

$data = trim($data);

$data = stripslashes($data);

$data = htmlspecialchars($data);

return $data;

214

}

?>

<h2>Absolute classes registration</h2>

<p>* required field.</p>

<form method = "post" action = "<?php

echo htmlspecialchars($_SERVER["PHP_SELF"]);?>">

<table>

<tr>

<td>Name:</td>

<td><input type = "text" name = "name">

* <?php echo $nameErr;?>

</td>

</tr>

<tr>

<td>E-mail: </td>

<td><input type = "text" name = "email">

* <?php echo $emailErr;?>

</td>

</tr>

<tr>

<td>Time:</td>

<td><input type = "text" name = "website">

<?php echo $websiteErr;?>

</td>

</tr>

215

<tr>

<td>About you:</td>

<td><textarea name = "comment" rows = "5" cols = "40"></textarea></td>

</tr>

<tr>

<td>Gender:</td>

<td>

<input type = "radio" name = "gender" value = "female">Female

<input type = "radio" name = "gender" value = "male">Male

<input type = "radio" name = "gender" value =

"others">others

* <?php echo $genderErr;?>

</td>

</tr>

<td>

<input type = "submit" name = "submit" value = "Submit">

</td>

</table>

</form>

<?php

echo "<h2>Your entered values are:</h2>";

echo $name;

echo "
";

echo $email;

echo "
";

echo $website;

216

echo "
";

echo $comment;

echo "
";

echo $gender;

?>

</body>

</html>

Figure 50 First output of form_validate.php (When access first time)

Figure 51 Click on submit button without entering data, it is shows * marks fields are required

217

Figure 52 output of entered sample data

1.5 USING MAGIC QUOTES

PHP - magic quotes:Prior to PHP 6 there was a feature called magic quotes that

was created to help protect newbie programmers from writing bad form processing

code. Magic quotes would automatically escape risky form data that might be used

for SQL Injection with a backslash \. The characters escaped by PHP include: quote

', double quote ", backslash \ and NULL characters.

However, this newbie protection proved to cause more problems than it solved and

is not in PHP 6. If your PHP version is any version before 6 then you should use this

topicsto learn more about how magic quotes can affect you.

magic quotes - are they enabled?

First things first, you need to check to see if you have magic quotes enabled on you

server. The get_magic_quotes_gpc function will return a 0 (off) or a 1 (on). These

boolean values will fit nicely into an if statement where 1 is true and 0 is false.

PHP Code:

if(get_magic_quotes_gpc())

echo "Magic quotes are enabled";

else

echo "Magic quotes are disabled";

218

Output:

Magic quotes are enabled

If you received the message "Magic quotes are enabled" then you should definitely

continue reading this topic, if not feel free to learn about it in case you are developing

for servers that might have quotes on or off.

magic quotes in action: Now let’s make a simple form processor to show how

machines with magic quotes enabled will escape those potentially risky characters.

This form submits to itself, so you only need to make one file, "magic-quotes.php" to

test it out.

magic-quotes code:

<!-- Script save as magic-quotes.php ->

<?php

echo "Altered Text: ".$_POST['question'];

?>

<form method='post' action=”#”><! -- # char is return page itself value ->

Question: <input type='text' name='question'/>

<input type='submit'>

</form>

This simple form will display to you what magic quotes is doing. If you were to enter

and submit the string: Sandy said, "It's a beautiful day outside and I like to use \'s."

You would receive the following output.

Output:

Figure 53 Magic quotes are enable and display output.

Magic quotes did a number on that string, didn't it? Notice that there is a backslash

before all of those risky characters we talked about earlier. After magic quotes:

219

A backslash \ becomes \\

A quote ' becomes \'

A double-quote " becomes \"

Now say that you wanted to remove the escaping that magic quotes puts in, you

have two options: disable magic quotes or strip the backslashes magic quotes adds.

removing backslashes - stripslashes()

Before you use PHP's backslash removal function stripslashes it's smart to add

some magic quote checking like our "Are They Enabled?" section above. This way

you won't accidentally be removing slashes that are legitimate in the future if your

PHP's magic quotes setting changes in the future.

magic-quotes.php Code:

<?php

echo "Removed Slashes: ";

// Remove those slashes

if(get_magic_quotes_gpc())

echo stripslashes($_POST['question']);

else

echo $_POST['question'];

?>

<form method='post'>

Question: <input type='text' name='question'/>

<input type='submit'>

</form>

You can run above code and generate same output with magic quotes enable and

disabled base.

220

Magic Quotes is a process that automatically escapes incoming data to the PHP

script. This feature has been DEPRECATED as of PHP 5.3.0 and REMOVED as of

PHP 5.4.0. It’s preferred to code with magic quotes off and to instead escape the

data at runtime, as needed.

You can enable/disable magic_quotes_gpc in php.ini & .htaccess depending on how

php/apache are compiled.

1. Enable/disable using php.ini.

Copy server’s php.ini under your public_html. Find for magic_quotes_gpc. Set it to

On OR Off as required.

Now, open .htaccess and add “SetEnv PHPRC /home/user/public_html”. Doing

this, the php.ini will be used by all files & directories. Not just the main directory.

2. Enable/disable using .htaccess.

Adding the following line will disable it. Change from off to on if you want it to be

enabled.

1.6 STORING FORM DATA IN FILE

In this topic you will learn essential task, storing from data in text file or row file, how

can be easily done with Core PHP and HTML form.Sometimes it happens that we

need to store some data in local storage file rather than making it complex using the

database. Yes, it’s a fact that in many cases we don’t want to store our text data in

database always.

Here is an example, suppose you have an HTML form and you want to store the

data submitted by the user in a text file so that you can easily access it later from

that file without opening your database.

PHP Program to store HTML Form data in a .txt File

Below I have provided the PHP code to store the form data in a text file. Just took a

glance at this code.

For easy understanding after the code, below provided the explanation and how to

use this code step by step.

Example:

<?php

221

// Script save as store_form_data_to_text.php

if(isset($_POST['textdata']))

{

$data=$_POST['textdata'];

$fp = fopen('data.txt', 'a');

fwrite($fp, $data);

fclose($fp);

}

?>

Here ‘textdata’ is the name of our HTML form field that is provided below.data.txt is

a file that we have to create for storing our form submission data in it.$data is a PHP

variable to store the form field data entered by the user.Now the HTML part

<!DOCTYPE html>

<html>

<head>

<title>Store form data in .txt file</title>

</head>

<body>

<form method="post">

Enter Your Text Here:

<input type="text" name="textdata">

<input type="submit" name="submit">

</form>

</body>

</html>

Figure 54 Output of store_form_data_to_text.php> Data.txt file will create and store contain
BAOU store in same directory of application

222

1.7 SAVING FORM DATA USING COOKIES

Cookies are text files stored on the client computer and they are kept of use tracking

purpose. PHP transparently supports HTTP cookies.

There are three steps involved in identifying returning users :

 Server script sends a set of cookies to the browser. For example: name, age,

or identification number etc.

 Browser stores this information on local machine for future use.

 When next time browser sends any request to web server then it sends those

cookies information to the server and server uses that information to identify

the user.

A cookie is a small file with the maximum size of 4KB that the web server stores on

the client computer.Once a cookie has been set, all page requests that follow return

the cookie name and value.A cookie can only be read from the domain that it has

been issued from. For example, a cookie set using the domain www.baou.edu.in

cannot be read from the domain www.student.baou.edu.in.

Most of the websites on the internet display elements from other domains such as

advertising. The domains serving these elements can also set their own cookies.

These are known as third party cookies.A cookie created by a user can only be

visible to them. Other users cannot see its value.Most web browsers have options for

disabling cookies, third party cookies or both.If this is the case then PHP responds

by passing the cookie token in the URL.

Cookie is created at server side and saved to client browser. Each time when client

sends request to the server, cookie is embedded with request. Such way, cookie can

be received at the server side.

http://www.baou.edu.in/
http://www.student.baou.edu.in/

223

In short, cookie can be created, sent and received at server end.

This chapter you will learn,

 how to set cookies?

 how to access them?

 how to delete or remove them.

The Anatomy of a Cookie

Cookies are usually set in an HTTP header (although JavaScript can also set a

cookie directly on a browser). A PHP script that sets a cookie might send headers

that look something like this −

HTTP/1.1 200 OK

Date: Fri, 04 Feb 2000 21:03:38 GMT

Server: Apache/1.3.9 (UNIX) PHP/4.0b3

Set-Cookie: name=xyz; expires=Friday, 04-JUN-1921:03:38 GMT;

path=/; domain=www.baou.edu.in

Connection: close

Content-Type: text/html

As you can see, the Set-Cookie header contains a name value pair, a GMT date, a

path and a domain. The name and value will be URL encoded. The expires field is

an instruction to the browser to "forget" the cookie after the given time and date.

If the browser is configured to store cookies, it will then keep this information until the

expiry date. If the user points the browser at any page that matches the path and

domain of the cookie, it will resend the cookie to the server.The browser's headers

might look something like this −

GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.6 (X11; I; Linux 2.2.6-15apmac ppc)

http://www.baou.edu.in/

224

Host: test.demon.co.in:1126

Accept: image/gif, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: name=xyz

A PHP script will then have access to the cookie in the environmental variables

$_COOKIE or $HTTP_COOKIE_VARS[] which holds all cookie names and values.

Above cookie can be accessed using $HTTP_COOKIE_VARS["name"].

Why and when to use Cookies?

 Http is a stateless protocol; cookies allow us to track the state of the

application using small files stored on the user’s computer.

 The path were the cookies are stored depends on the browser.

 Internet Explorer usually stores them in Temporal Internet Files folder.

 Personalizing the user experience – this is achieved by allowing users to

select their preferences.

 The page requested that follow are personalized based on the set

preferences in the cookies.

 Tracking the pages visited by a user

Setting Cookies with PHP

PHP provided setcookie() function to set a cookie. This function requires upto six

arguments and should be called before <html> tag. For each cookie this function has

to be called separately.

Syntax

bool setcookie(string $name [, string $value [, int $expire = 0 [, string $path

[, string $domain [, bool $secure = false [, bool $httponly = false]]]]]])

Example

 setcookie(name, value, expire, path, domain, security);

 setcookie("CookieName", "CookieValue");/* defining name and value only*/

 setcookie("CookieName", "CookieValue", time()+1*60*60);//using expiry in 1 h

our(1*60*60 seconds or 3600 seconds)

225

 setcookie("CookieName", "CookieValue", time()+1*60*60, "/mypath/", "mydom

ain.com", 1);

Here is the detail of all the arguments description:

Name: This sets the name of the cookie and is stored in an environment variable

called HTTP_COOKIE_VARS. This variable is used while accessing cookies.

Value: This sets the value of the named variable and is the content that you actually

want to store.

Expiry: This specify a future time in seconds since 00:00:00 GMT on 1st Jan 1970.

After this time cookie will become inaccessible. If this parameter is not set then

cookie will automatically expire when the Web Browser is closed.

Path:This specifies the directories for which the cookie is valid. A single forward

slash character permits the cookie to be valid for all directories.

Domain: This can be used to specify the domain name in very large domains and

must contain at least two periods to be valid. All cookies are only valid for the host

and domain which created them.

Security: This can be set to 1 to specify that the cookie should only be sent by

secure transmission using HTTPS otherwise set to 0 which mean cookie can be sent

by regular HTTP.

Following example will create two cookies name and age these cookies will be

expired after one hour.

<?php

// Script save as set_cookie.php

setcookie("name", "BAOU Visit", time()+3600, "/","", 0);

setcookie("age", "36", time()+3600, "/", "", 0);

?>

<html>

<head>

<title>Setting Cookies with PHP</title>

</head>

<body>

<?php echo "Set Cookies"?>

</body>

</html>

226

Figure 55 output of set_cookie.php file

Accessing Cookies with PHP

PHP provides many ways to access cookies. Simplest way is to use either

$_COOKIE or $HTTP_COOKIE_VARS variables. Following example will access all

the cookies set in above example.

<!-- Script save as access_cookie.php -->

<?php

echo "Cookie set value: ".$_COOKIE["name"]. "
";

/* is equivalent to */

//echo $HTTP_COOKIE_VARS["name"]. "
";

echo "Cookie Set value: ".$_COOKIE["age"] . "
";

/* is equivalent to */

//echo $HTTP_COOKIE_VARS["age"] . "
";

?>

<hr>You can use isset() function to check if a cookie is set or not.<hr>

<html>

<head>

<title>Accessing Cookies with PHP</title>

</head>

<body>

<?php

if(isset($_COOKIE["name"]))

echo "
Welcome " . $_COOKIE["name"] . "
";

else

echo "
Sorry... Not recognized" . "
";

?>

</body>

</html>

227

Figure 56 Output of access_cookie.php cookie set and access same value

Deleting or removing Cookie with PHP:

Officially, to delete a cookie you should call setcookie() with the name argument only

but this does not always work well, however, and should not be relied on.

It is safest to set the cookie with a date that has already expired:

<?php

setcookie("name", "", time()- 60, "/","", 0);

setcookie("age", "", time()- 60, "/","", 0);

?>

<html>

<head>

<title>Deleting Cookies with PHP</title>

</head>

<body>

<?php echo "Deleted Cookies" ?>

</body>

</html>

Figure 57 Output of delete_cookie.php

Note: You should pass exactly the same path, domain, and other arguments that

you have used when you first created the cookie in order to ensure that the correct

cookie is deleted.

1.8 SAVING FORM DATA USING SESSIONS& TRACKING

What is a PHP Session?

228

When you work with an application, you open it, do some changes, and then you

close it. This is much like a Session. The computer knows who you are. It knows

when you start the application and when you end. But on the internet, there is one

problem: the web server does not know who you are or what you do, because the

HTTP address doesn't maintain state.

Session variables solve this problem by storing user information to be used across

multiple pages (e.g. username, favoritecolor, etc). By default, session variables last

until the user closes the browser.

So; Session variables hold information about one single user, and are available to all

pages in one application.

 A session is a global variable stored on the server.

 Each session is assigned a unique id which is used to retrieve stored values.

 Whenever a session is created, a cookie containing the unique session id is

stored on the user’s computer and returned with every request to the server.

If the client browser does not support cookies, the unique php session id is

displayed in the URL

 Sessions have the capacity to store relatively large data compared to cookies.

 The session values are automatically deleted when the browser is closed. If

you want to store the values permanently, then you should store them in the

database.

 Just like the $_COOKIE array variable, session variables are stored in the

$_SESSION array variable. Just like cookies, the session must be started

before any HTML tags.

Note: A session is a way to store information (in variables) to be used across

multiple pages. Unlike a cookie, the information is not stored on the user’s computer.

An alternative way to make data accessible across the various pages of an entire

website is to use a PHP Session.

229

A session creates a file in a temporary directory on the server where registered

session variables and their values are stored. This data will be available to all pages

on the site during that visit.

The location of the temporary file is determined by a setting in the php.ini file called

session.save_path. Before using any session, variable make sure you have setup

this path.

When a session is started following things happen:

 PHP first creates a unique identifier for that particular session which is a

random string of 32 hexadecimal numbers such as

3c7foj34c3jj973hjkop2fc937e3443.

 A cookie called PHPSESSID is automatically sent to the user's computer to

store unique session identification string.

 A file is automatically created on the server in the designated temporary

directory and bears the name of the unique identifier prefixed by sess i.e.

sess_3c7foj34c3jj973hjkop2fc937e3443.

When a PHP script wants to retrieve the value from a session variable, PHP

automatically gets the unique session identifier string from the PHPSESSID cookie

and then looks in its temporary directory for the file bearing that name and a

validation can be done by comparing both values.

A session ends when the user loses the browser or after leaving the site, the server

will terminate the session after a predetermined period of time, commonly 30

minutes duration.

Why and when to use Sessions?

 You want to store important information such as the user id more securely on

the server where malicious users cannot temper with them.

 You want to pass values from one page to another.

 You want the alternative to cookies on browsers that do not support cookies.

 You want to store global variables in an efficient and more secure way

compared to passing them in the URL

 You are developing an application such as a shopping cart that has to

temporary store information with a capacity larger than 4KB.

230

Start a PHP Session

A session is started with the session_start() function. Session variables are set with

the PHP global variable: $_SESSION.

Now, let's create a new PHP page called "baou_start_session.php" and we start a

new PHP session and set some session variables:

Start session Example:
<?php
// Script save as baou_start_session.php

session_start();// Start the session

?>

<html>

<body>

<?php

// Set session variables

$_SESSION["favcolor"] = "green";

$_SESSION["favanimal"] = "cat";

echo "Session variables are set.";

?>

</body>

</html>

Figure 58 output of baou_start_session.php

Get PHP Session Variable Values

Next, we create another page called "demo_session2.php". From this page, we will

access the session information we set on the first page ("demo_session1.php").

Notice that session variables are not passed individually to each new page, instead

they are retrieved from the session we open at the beginning of each page

(session_start()).

Also notice that all session variable values are stored in the global $_SESSION

variable:

Get PHP Session Variable

<?php

session_start();

?>

<html>

231

<body>

<?php

?>

// Echo session variables that were set on previous page

echo "Favoritecolor is " . $_SESSION["favcolor"] .".
";

echo "Favorite animal is " . $_SESSION["favanimal"] . ".";

/// or Print all session variable as an array

<?php

echo “Print all session variable as an array”;

print_r($_SESSION);

?>

</body>

</html>

Figure 59 output of baou_get_session.php (Individual & Array)

Destroying Session Variables:

The session_destroy() function is used to destroy the whole Php session variables.

If you want to destroy only a session single item, you use the unset () function.

The code below illustrates how to use both methods.

<?php

?>
<?php

?>

session_destroy(); //destroy entire session

unset($_SESSION['product']); //destroy product session item

Session_destroy removes all the session data including cookies associated with the

session. Unset only frees the individual session variables. Other data remains intact.

Every PHP session has a timeout value — a duration, measured in seconds —

which determines how long a session should remain alive in the absence of any user

activity. You can adjust this timeout duration by changing the value of

session.gc_maxlifetime variable in the PHP configuration file (php.ini).

232

Unit 2: File and directory access
in PHP

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 File Handling Functions

2.4 Directory Handling Functions

2.5 Suggested Answer for Check your Progress

2.1 LEARNING OBJECTIVES

After completion of this unit students will be able to

 Read data from file.

 Write data to file.

 Read and Write data from random position.

 Handle directories

2.2 INTRODUCTION

There are occasions where we need to interact with the file and directory in web

applications. You might have some data available in text file or csv file and you need

to read that data in your web application to have some analysis on it. These requires

to open file and perform some reading and writing operations on it. PHP provides

different functions to interact with file and directories.PHP has several functions for

creating, reading, writing, updating and uploading files. In this unit we will learn all

these functions with examples.

2.3 FILE HANDLING

To perform any reading or writing operation on the file we need to open it first. PHP

provides fopen() to open the file.

2

233

fopen(filename,mode) – is used to open the file for different operation. Filename is

the name of file that we want to open and mode decides which operation we want to

perform on the file. Different modes are:

• r - open a file for reading only. File pointer starts from the beginning of the file.

• w - open a file for write only. Deletes the contents of the file if already exist or

creates a new file if it doesn't exist. File pointer starts at the beginning of the

file.

• a - Open a file for write only. The existing data in file is not deleted if file

already exist. File pointer starts at the end of the file. Creates a new file if the

file doesn't exist.

• x - creates a new file for write only. Returns FALSE and an error if file already

exists.

• r+ - open a file for read/write. File pointer starts at the beginning of the file

• w+ - open a file for read/write. Erases the contents of the file or creates a new

file if it doesn't exist. File pointer starts at the beginning of the file

• a+ - open a file for read/write. The existing data in file is not deleted. File

pointer starts at the end of the file. Creates a new file if the file doesn't exist

• x+ - creates a new file for read/write. Returns FALSE and an error if file

already exists.

fclose(filepointer) – This function is used to close the opened file.

Example: $fp=fopen(“Myfile.txt”,”r”);

fclose($fp)

The above example opens the file Myfile.txt in read mode. If the file is available in

the same directory, then there is no need to mention full path, else we need to write

full path of the file. $fp is a file pointer which holds the file which is opened. The next

statement closes the file which is pointed by $fp.

fread(filepointer, length) - Read the contents from the file and stops when it

reaches to end of file or at specified length which comes first.

Example:

$fp=fopen(“Myfile.txt”,”r”);

234

echo fread($fp,filesize(“Myfile.txt”));

it will read all the contents from Myfile.txt because instead of specifying length of

bytes to be read we have used filesize function which will return the size of Myfile.txt

in bytes. If we write 5 as second argument then it will read first 5 bytes of data from

Myfile.txt file.

fgetc(filepointer) – it is used to read single character from the file.

fgets(filepointer) – it is used to read single line from the file.

fputs(filepointer,string) – it is used to write single line into the file.

fwrite(filepointer,string,length) - fwrite is used to write string into file. length is

optional. if length is specified then that number of bytes will be written into the file. If

reaches to the end of file then stops writing. It returns the number of bytes written

into the file.

Example:

$fp1=fopen("write.txt","w");

fwrite($fp1,"I am learning PHP");

The above statements will write I am learning PHP text into write.txt file.If write.txt file

has some contents already written into it then they are erased because w mode

starts writing from the beginning of the file. If you want to preserve the old contents

and want to add the new contents at the end of the file then instead of w mode use a

(append) mode.

file_exist(file) – it is used to check that specified file exists or not. Return true on

success and false on failure.

Example:

if(file_exists("myfile.txt"))

{

$fp=fopen(“myfile.txt”,”r”);

echo fread($fp,5);

}

else

Contents of myfile.txt
Hello How Are You?

Output
Hello

235

echo "
 file not exist";

Above code first checks that the file myfile.txt exists in the current directory or not? If

it exists then it will read first 5 characters of that file and print it. If the file is not

available in the current directory, then the code will print the message that file not

exist.

Example of fgets and fputs

$fp=fopen("read.txt","r");

$fp1=fopen("write.txt","a");

while(!feof($fp))//feof checks for end of file. Returns true if file pointer reaches to end

of file.

{

$read=fgets($fp);

fputs($fp1,$read);

}

fclose($fp);

Above code reads the contents from read.txt file and writes it into write.txt file.

Reading the data from Random position

In the above examples we read or write data from beginning or end but sometimes

we need to read or write data from random position of the file. To read or write data

from random position, we need to set the file pointer to desire position. In PHP we

have fseek() function to set file pointer at random position.

fseek(file , offset , whence) - fseek function moves the file pointer from its current

position to a new position, forward or backward, specified by the number of bytes. It

is used for random location reading and writing in file. File position starts with 0.

• offset specifies the new position of the pointer. It is measured in bytes.

• whence can be SEEK_SET, SEEK_CUR, SEEK_END

• SEEK_SET - It sets position equal to offset.

• SEEK_CUR - It sets position to current location plus offset.

Content of read.txt
PHP is Easy to use.

PHP is Easy to Learn.
Contents of write.txt

PHP is Easy to use.
PHP is Easy to Learn.

236

• SEEK_END - It sets position to EOF plus offset. To move to a position before

EOF, the offset must be a negative value.

Example 1:

$fp=fopen(“random.txt”,”r”);

fseek($fp,0); // Sets the pointer to beginning of the file.

fseek($fp,7); // Sets the file pointer to 7th position.

$str=fread($fp,4); // read next 4 bytes from 7thposition and assign them to $str

variable.

echo "
".$str;

Example 2:

$fp=fopen(“random.txt”,”r”);

fseek($fp,7,SEEK_SET); // Sets the file pointer to 7th position and read from there.

$str=fgets($fp);

echo "
Seek Set: ".$str;

fseek($fp,7);

fseek($fp,8,SEEK_CUR);// Sets the file pointer to 7th position and then move 8

position in forward direction and read from the new position which is 15.

$str=fgets($fp);

echo "
Seek Cur: ".$str;

fseek($fp,0);

Content of random.txt
Hello. This is sample file to test fseek function.

Output
Seek Set: This is sample file to test fseek function.

fseek($fp,-10,SEEK_END); // Sets
S
f i

e
le

ek
po

C
in
u

t
r
e
:
r
s
t
a
o
m

la
p
s
l
t
e

a
f
n
i l

d
e

r
t
e
o
a

t
d
e
1
st
0

f
c
s
h
e
a
e
r
k
s

f
r
u
e
n
v
c
e
t
r
i
s
o
e
n
.
.

Seek End: function
$str=fgets($fp);

echo "
Seek end: ".$str;

Check your Progress – 1:

1. What is the difference between ‘w’ mode and ‘a’ mode in fopen()?

Content of random.txt

Hello. This is sample file to test fseek function.
Output

This

237

...

...

..

...

2. What arevarious file reading and writing functions available in PHP?

...

..

...

..

2.4 DIRECTORY HANDLING

The directory functions in PHP allow you to retrieve information about directories and

to manipulate them. There are different functions available in PHP to work with

directories. In this section we are going to discuss important directory handling

functions of PHP.

getcwd() - this function is used to get the current working directory. It returns the

current working directory on success and returns false in case of failure.

<?php

echo getcwd();

?>

Output: C:\wamp64\www\PHP Programs

chdir(directory) -The chdir() function is used to change the current directory.

Directory is the name of directory that we need to change.

<?php

echo getcwd();

chdir("Images");

echo “
”;

echo getcwd();

?>

Output:

C:\Xampp64\www\PHP Programs

238

C:\Xamp64\www\PHP Programs\Images

opendir() – it opens the directory handle. You need to specify the path of the

directory which you want to open.

closedir(dir) –it is used to close the directory handle resource specified by dir.

readdir($dir) - It returns the name of the next file from the opened directory. $dir is

the directory handle resource opened with opendir(). It returns the name of the file on

success or it returns FALSE on failure.

Example:

<?php

$d = opendir("Images");

$i=1;

while($file = readdir($d))

{

echo "
"."file$i:".$file;

$i++;

}

closedir($d);

?>

Output:

file1:.

file2:..

file3:product1.jpg

file4:product2.jpg

file5:product3.jpg

Above code will open Images directory and then read files one by one from it.

Check your Progress – 2:

1. How can you counttotal files of particular directory in PHP?

...

... ..

...

...

239

2.5 Suggested Answers for Check your Progress

Check your progress – 1:

1. w - open a file for write only. Deletes the contents of the file if already exist or

creates a new file if it doesn't exist. File pointer starts at the beginning of the

file.

a - Open a file for write only. The existing data in file is not deleted if file

already exist. File pointer starts at the end of the file. Creates a new file if the

file doesn't exist.

2. Various file reading and writing functions available in PHP:

fread(), fwrite(), fgetc(),fgets(), fputs() and fseek().

Check your progress – 2:

1. Following code will count total number of files from Images directory.

<?php

$d = opendir("Images");

$i=0;

while($file = readdir($d))

{

echo "
"."file:".$file;

$i++;

}

echo “total files available in Image folder are:”.$i;

closedir($d);

?>

Unit 3: Working and formatting
with strings

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3

240

3.3 Difference between Single and Double Quoted Strings

3.4 String Handling Functions

3.5 Suggested Answer for Check your Progress

3.1 LEARNING OBJECTIVES

After completion of this unit students will be able to

 Understand the difference between single and double quoted strings.

 Handle the string data in PHP.

 Format the string data as per requirements.

3.2 Introduction

In web applications, there are certain occasions where we need to store text data for

further processing such as to store name of person, city, address, name of product,

description etc. to store all these types of information, strings are used.

PHP string is a sequence of characters which is used to store and manipulate text.

Normally PHP string is represented using single and double quoted string.

Example:
$name=“Rahul Kumar”;

Or

$name=‘Rahul Kumar’;

Both is valid representation.

3.3 Difference between Single and Double Quoted Strings

However, there is a difference between single and double quoted strings in PHP

where we are combining string with variable to print any message. Consider the

following example:

$name=“Rahul”;

Echo “My name is $name”;

Output: My name is Rahul

241

$name=“Rahul”;

Echo ‘My name is $name’;

Output: My name is $name

In double quoted string the variable is replaced with its value but it is not replaced in

single quoted string.

3.4 String Handling Functions

Sometimes we need to perform certain operations on the string values for better

results such as converting the name of person into lower or upper case, concating

two strings, replacing certain parts of string, counting number of characters and

words of the string etc. All these tasks require certain string handling functions. Let’s

us discuss some of the important string handling functions in brief.

strlen() – returns the length (number of characters) of the string.

$name=“Hello”;

$len=strlen($name);

echo “Length of the string is $len”;

str_word_count() – It counts the number of word of the given string.

$name=“Hello How Are You”;

$count=str_word_count($name);

echo “Total words of the string is $count”;

strtolower() – It converts the string in to lowercase. It Returns the lowercased string.

Original string will remain unchanged.

$name=“HELLO”;

echo strtolower($name);

strtoupper() – Converts the string in to upper case. This function is useful where

you want to store all the names of persons in upper case. Consider the scenario

where you have designed customer registration page where user is supposed to

enter his or her name in upper case but some of the users are still entering their

names in lower case. Here you can convert the names in to upper case with the use

of strtoupper() before storing them in to your data base.

Output
Length of the string is 5

Output
Total words of the string

is 4

Output
hello

242

$name=“hello”;
echo strtoupper($name);

ucfirst() – Converts the first character of the string in to uppercase.

$name=“hello”;
echo ucfirst($name);

lcfirst() – It converts the first character of the string in to lower case.

$name=“Hello”;
echo lcfirst($name);

ucwords() – Converts the first character of the each word of string in to uppercase.

$name=“my name is rahul”;
echo ucwords($name);

strrev() – Reverse the string.

$name=“rahul”;
echo strrev($name);

strcmp() – compares two strings. Returns 0 if both the strings are same. It is case

sensitive (rahul and Rahul are not same)

$name1=“rahul”;
$name2=“rahul”;
if(strcmp($name1,$name2)==0)
echo "
 Both are same ";
else
echo "
 both the strings are different ";

strcasecmp() – compares two strings. Returns 0 if both the strings are same. It is

case insensitive (rahul and Rahul are same)

$name1=“rahul”;
$name2=“Rahul”;

Output
HELLO

Output

Hello

Output
hello

Output
My Name Is Rahul

Output
luhar

Output
Both are same

Output
Both are same

243

if(strcasecmp($name1,$name2)==0)
echo "
 Both are same";
else
echo "
 Both the strings are different ";

strstr() – finds the first occurrence of the string inside the string and return rest of the

string. It is case sensitive.

$name=“My name is Rahul”;
$find=“is”;
echo strstr($name,$find);

In the above example we need to find ‘is’ from the string ‘My name is Rahul’. It
searches ‘is’ from the string and when finds it returns the rest of the string starting
from the search string ‘is’.

stristr() – finds the first occurrence of the string inside the string and return rest of

the string. It is case insensitive.

$name=“My name is Rahul”;
$find=“Is”;
echo stristr($name,$find);

ltrim() – remove space or characters from the left side of the string and returns new

string.

$name=“ My name is Rahul”;
echo ltrim($name);

$str = "Hello World!";
echo ltrim($str,"Hello");

Here in the first example ltrim has removed white spaces from the left side of the
string and in second example it has removed the word hello from the string.

rtrim() – remove space or characters from the right side of the string.

$name=“My name is Rahul ”;

Output
is Rahul

Output
is Rahul

Output
My name is Rahul

Output
World!

Output
My name is Rahul

echo rtrim($name);

244

$str = "Hello World!";
echo rtrim($str,“World!");

trim() – remove space or characters from both the side of the string

$name=“ My name is Rahul ”;
echo trim($name);

str_replace() – Replace the characters from the string.

Parameters:

• Find – the value to find. [Required Argument]

• Replace – the value to replace with the find value. [Required Argument]

• String – the string to be searched. [Required Argument]

• Count – variable that counts the number of replacements. [Optional

Argument]

$url=“http://www.mca.baou.ac.in”;

echo str_replace("mca","mscit",$url,$count);

echo $count

Output : http://www.mscit.baou.ac.in

count:->1

Here mca is replaced with mscit and total one replacement is done so count equals
1.

substr_replace() – It replaces a part of a string with another string.

Parameters:

• string – the string to check. [Required Argument]

• Replacement – specifies the string to insert. [Required Argument]

• Start – Specifies where to start replacing in the string. [Required Argument]

• length – Specifies how many characters should be replaced. [Optional

Argument]

$string="ramnagar";

echo "
".substr_replace($string,"pur",3);

Output :rampur

Output
Hello

Output
My name is Rahul

http://www.mca.baou.ac.in/
http://www.mscit.baou.ac.in/

245

Here it places the pointer to the 3rd position and replace all the characters from 3rd

position to the end because we have not specified the length.

$string="Uttarpradesh";

echo "
".substr_replace($string,"Madhya",0,5);

Output :Madhyapradesh

Here we have specified the length so it places the pointer to the 0th position and

replace first five characters only.

substr() – it returns the part of the string. If we want to return any part of the string

with its position then we can use this function,

Parameters:

• string – the string to check. [Required Argument]

• Start – Specifies where to start in the string. [Required Argument]

• length – Specifies the length of the returned string. [Optional Argument]

$name=“My name is Rahul”;

echo "
 substr: ".substr($name,11,5);

Output : Rahul

So, these are some of the important string handling functions used to perform

actions on the string data in PHP.

Check your progress – 1:

1. How can you convert the given string into upper, lower and initcap?

……………………………………………………………………………………….

……………………………………………………………………………………….

……………………………………………………………………………………….

3.5 Suggested Answer for Check Your Progress

Check your progress – 1:

To convert the given string into upper, lower and initcap following functions are used.

strtolower() – Converts the string in to lowercase. It Returns the lowercased string.

Original string will remain unchanged.

246

strtoupper() – Converts the string in to upper case. This function is useful where

you want to store all the names of persons in upper case.

ucwords() – Converts the first character of the each word of string in to uppercase.

247

Unit 4: Handling Databases in
PHP

Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3 Connecting PHP with MySQL

4.4 Database Manipulation Operations – Insert, Update, Delete

4.5 Retrieving Records from Database

4.6 Suggested Answer for Check your Progress

4.1 LEARNING OBJECTIVES

After completion of this unit students will be able to

 Connect PHP with MySQL.

 Perform database manipulation operations like Insert, Update and Delete in

PHP.

 Retrieve data from tables and represent them in readable format.

4.2 Introduction

Data is any important entity for any web site and hence it should be properly

organised and retrieved when needed. In web applications we need to store various

kinds of data such as if we are building online shopping site then we may need to

store data such as customer details, supplier details, products, orders, invoice details

etc. For these we have to design a form to collect data from various stake holders of

the web site and then to store these data in the proper table. To do so we have to

connect PHP with database application. In this unit we are going to learn that how

can we connect PHP with MySQL and how can we perform various database

operations on it.

4

248

4.3 Connecting PHP with MySQL

The most common and popular database used with most of the PHP web

applications is MySQL database because the connectivity of PHP with MySQL

database is very easy.

To connect PHP 5 and later versions with database we can use:

 MySQLi extension (‘i’ stands for improved)

 PDO (PHP Data Objects)

Earlier versions use MySQL extension which was deprecated in 2012.

MySQLi Extension: To connect PHP with MySQL database, the MySQLi extension is

used. Following function is used to connect PHP with MySQL.

mysqli_connect($servername,$username,$password,$databasename)

• $servername – Name or IP address of server/host.

• $username – MySQL username

• $password – MySQL Password

• $databasename – Database name to be used.

For example

$con=mysqli_connect("localhost","root","","student");

The above function establish connection with MySQL database called student. In the

server name we have mentioned localhost because our database is located in the

local server. Here root is default username of MySQL database and default

password is blank. If you have set another user name and password then you need

to mention that username and password.Student is the name of database that we

want to connect with. We need to create student database first in MySQL. The

function returns the object representing the connection to MySQL server. It returns

False on failure.

If there is no error means we have established a successful connection with MySQL

database called student.

Example:

$con = mysqli_connect("localhost","root","","student");

if ($con)

{

echo(“Database connection successful);

}

249

else

{

die("Can't Connect. Connection

Error:".mysqli_connect_errno()."".mysqli_connect_error());

}

The above code will establish the connection of PHP with MySQL student database.

If there is no error than it prints the message Database connection successful else in

case of failure it shows error with error number and description with the use of

functions like mysqli_connect_errno() and mysqli_connect_error().

Check Your Progress – 1:

1. Which function is used to connect PHP with MySQL database? What are the

parameters of it?

...

..

..

...

... ...

4.4 Database Manipulation Operations – Insert, Update,
Delete

To perform any database manipulation operations like inserting a record, updating

the record or deletion of record requires to execute respective queries.

mysqli_query() function is used to execute any SQL query in PHP. We can use it as:

$result=mysqli_query($con,$query);

The above function is used to perform SQL query on the mentioned database table.

$con is the connection object that we set using mysqli_connect(). $query is aSQL

query that we want to execute on the database table.

On successful select queries it returns mysqli_result object. For other queries it

returns True on success and False on failure.

PHP-MySQL connection example – Inserting record in table:

Following example shows how we can insert record in student_master table located

under student database. The structure of the student_master table is:

student_master

Field name Field Type

250

sno Integer

name Varchar

city Varchar

pin Integer

You need to create student database in MySQL and then create student_master

table under it. To create database and table we can use phpMyAdmin, a web

interface to handle MySQL. Just type localhost/phpmyadmin in the browser address

bar to open it. You can create database and tables over there.

$con = mysqli_connect("localhost","root","","student");

if (!$con)

{

die("Can't Connect. Connection Error:".mysqli_connect_errno()."

".mysqli_connect_error());

}

$sno=1001;

$name=“Ram";

$city="Ahmedabad";

$pin=383240;

$query = "insert into student_master values($sno,'$name','$city',$pin)";

$result = mysqli_query($con, $query);

if($result)

{

echo "Record inserted successfully";

}

else

{

echo "Record not inserted
";

echo "error no is:".mysqli_errno($con)."Error is:".mysqli_error($con);

}

mysqli_close($con);

The above code inserts one record in the student_master table. Here we have

directly specified the values of the fields. We can also design input form to enter all

those details. Let’s see how we can do that. We have created two files – one is input

design form named as insert.html and other is PHP file where connection code is

written which is named as insertrecord.php

Insert.html

251

<html>

<body>

<form method="post" action="insertrecord.php">

<table border="1" align="center">

<tr><td colspan=2 align="center">Record Insert</td></tr>

<tr>

<td>Enter Your Eno </td>

<td><input type="text" name="eno"></td>

</tr>

<tr>

<td>Enter Your Name </td>

<td><input type="text" name="name"></td></tr>

<tr>

<td>Enter Your City </td>

<td><select name="city">

<option>Mehsana</option>

<option>Surat</option>

<option>Ahmedabad</option>

<option>Rajkot</option>

<option>Bharuch</option>

</select></td></tr>

<tr>

<td>Enter Your Pin </td>

<td><input type="number" name="pin"></td></tr>

<tr>

<td colspan=2 align="center"><input type="submit" value="Insert"></td></tr>

</table>

</body>

</html>

Insertrecord.php:

<?php

$con = mysqli_connect("localhost","root","","student");

if (!$con)

{

die("Can't Connect. Connection Error:".mysqli_connect_errno()."

".mysqli_connect_error());

}

$sno=$_POST['eno'];

$name=$_POST['name'];

$city=$_POST['city'];

252

$pin=$_POST['pin'];

$query = "insert into student_master values($sno,'$name','$city',$pin)";

$result = mysqli_query($con, $query);

if($result)

{

echo "Record inserted successfully";

}

else

{

echo "Record not inserted
";

echo "error no is:".mysqli_errno($con)."Error is:".mysqli_error($con);

}

mysqli_close($con);

insert.html file is executed first. After adding fields press insert button that redirect us

to insertrecord.php file where we have collected all the entered information with

$_POST[] super global array. mysqli_query() executes insert query and add record

in student_master table. We can cross verify by opening student_master table in

MySQL.

Delete operation

Sometimes we need to delete the records from the MySQL table. There are multiple

reasons of delete such as duplicate record, unwanted entry, wrong entry etc. To

delete the record we need to execute delete query in mysqli_query(). Following

example shows the delete operation.

Delete.html

<html>

<body>

<form method="post" action="deleterecord.php">

<table border="1" align="center">

<tr><td colspan=2 align="center">Record Delete</td></tr>

<tr>

<td>Enter Eno you want to delete </td>

<td><input type="text" name="eno"></td>

</tr>

<tr>

<td colspan=2 align="center"><input type="submit" value="Delete"></td></tr>

</table>

253

</body>

</html>

This file is created to ask for the student enrolment number that we want to delete

from student_master table.

deleterecord.php

<?php

$con = mysqli_connect("localhost","root","","student");

if (!$con)

{

die("Can't Connect. Connection Error:".mysqli_connect_errno()."

".mysqli_connect_error());

}

$eno=$_POST['eno'];

$query = "delete from student_master where sno=$eno";

$result = mysqli_query($con, $query);

if(mysqli_affected_rows($con) >= 1)

{

echo "Record deleted successfully";

}

else

{

echo "Record not deleted
";

echo "error no is:".mysqli_errno($con)."Error is:".mysqli_error($con);

}

mysqli_close($con);

Here to confirm that the record is deleted or not we have used

mysqli_affected_rows() function. The mysqli_affected_rows() function returns the

number of affected rows in the tableby the SELECT, INSERT, UPDATEor DELETE

queries. If it returns one means one row is affected by the executed query. Here in

the given example if the return value of the function is one or greater equal one

means at least one record is deleted.

Update Operation

Like insert and delete records, update record is also an important operation required

to be performed on the database. We need to perform update operation in case -

254

Entries which are inserted wrong or the entries whose value is now changed (city of

the student is changed now or mobile number is changed). Following example

shows how we can perform update operation on tables in PHP.

Update.html

<html>

<body>

<form method="post" action="update.php">

Enter enrollment no to update: <input type="text" name="num1">

<input type="submit" value="Search">

</body>

</html>

update.php

<form name="fname" method="post" action="updaterecord.php">

<?php

$link = mysqli_connect("localhost","root","","student");

if (!$link)

{

die('Connect Error: ' . mysqli_connect_errno().mysqli_connect_error());

}

$no=$_POST['num1'];

$query = "select * from student_master where sno='$no'";

$result = mysqli_query($link, $query);

if(!$result)

{

echo "error no is:".mysqli_errno($link)."Error is:".mysqli_error($link);

}

else

{

while($row = mysqli_fetch_row($result))

{

?>

<table border="1">

255

<tr><td>Sno</td><td><input type="text" name="num" value="<?php echo $row[0];

?>">

</td></tr>

<tr><td>Sname</td><td><input type="text" name="sname" value="<?php echo

$row[1]; ?>">

</td></tr>

<tr><td>Scity</td><td><input type="text" name="scity" value="<?php echo $row[2];

?>">

</td></tr>

<tr><td>Pin</td><td><input type="text" name="pin"value="<?php echo $row[3];

?>"></td></tr>

<tr><td colspan="2" align="center"><input type="submit" value="Update"></td></tr>

<?php

}

}

mysqli_close($link);

?>

This file is created to show the existing records of the student to the user before

update. Here we have fetched the records from the database and put these values in

the textboxes in edit mode so that user can change them. To retrieve records from

the table we have used mysqli_fetch_row() method of data fetching. Kindly refer next

section to understand various data fetching methods. In this file user sees the

existing records, update them and then press update button which redirects it to the

updaterecord.php file.

updaterecord.php

<?php

$link = mysqli_connect("localhost","root","","student");

if (!$link)

{

die('Connect Error: ' . mysqli_connect_errno().mysqli_connect_error());

}

$no=$_POST['num'];

$name=$_POST['sname'];

$city=$_POST['scity'];

$pin=$_POST['pin'];

256

$query = "update student_master set sno=$no, name='$name', city='$city', pin=$pin

where sno='$no'";

$result = mysqli_query($link, $query);

if(!$result)

{

echo "error no is:".mysqli_errno($link)."Error is:".mysqli_error($link);

}

else

{

echo "record updated successfully";

}

mysqli_close($link);

?>

Check Your Progress – 2:

1. What is the use of mysqli_query()?

...

... ..

...

.. .

..

2. Write SQL query to update the city of the student from Gandhinagar to

Ahmedabad whose sno is 1002.

..

...

..

4.5 Retrieving Records from Database

After inserting and updating the records, retrieving of records from database is

equally important. In web applications we need to retrieve the data stored in

database tables for various purposes such as if we consider online shopping site

then we require to fetch the data from tables to generate customer bill, to view

products, to view suppliers and customers, to find out the monthly sales of a product,

to search particular product, to display shopping cart etc.

257

PHP supports different data fetching methods which are used to fetch records from

tables. These methods are:

 mysqli_fetch_row()

 mysqli_fetch_assoc()

 mysqli_fetch_array()

 mysqli_fetch_object()

In this section we are going to learn these methods in detail.

mysqli_fetch_row(result)–it fetches one row from a result-set and returns it as an

indexed array. Returns NULL in case of no rows in result set.

Result is an identifier returned by mysqli_query(). Let’s take an example where we

need to search student by its enrolment number.

Example:

Searchbox.php

<html>

<body>

<form method="post" action="search.php">

Enter enrolment no to search: <input type="text" name="no">

<input type="submit" value="Search">

</body>

</html>

Above code will ask the user to enter the enrolment number of student whom we are

searching the details. By clicking the search button, it will redirect to search.php file.

search.php

$link = mysqli_connect("localhost","root","","student");

$no=$_POST[‘no’];

$query = "select * from student_master where sno=’$no’";

$result = mysqli_query($link, $query);

if(mysqli_affected_rows($link) == 0)

{

echo “Record not found”;

}

else

{

258

while($row = mysqli_fetch_row($result)) // here $row becomes any index array and

size of array = total fields in table.

{

echo “Sno:”.$row[0]; // retrieve first field value which is sno

echo “Sname:”.$row[1]; // retrieve second field value which is student name.

echo “City:”.$row[2]; // retrieve third field value which is student city.

echo “Pin:”.$row[3]; // retrieve forth field value which is pincode.

}

}

Above script will perform select query in student_master table to retrieve the details

of the student whose enrolment number is entered by user in searchbox.php file.

mysqli_fetch_row() method will fetch the details in the form of indexed array and

hence $row now becomes an index array whose size is equivalent to number of

fields in the table. Here in student_master table we have total 4 fields (sno, name,

city, pin) so the $row array size is 4. Though it is an index array its values are

retrieved by integer index like $row[0], $row[1], $row[2], $row[3]. We put

mysqli_fetch_row() in while loop so if there multiple records are retrieved then the

loop will continue and it gets the details of next records.

mysqli_fetch_assoc(result)–it fetches a result row as an associative array. Returns

NULL in case of no rows in result set.Result is an identifier returned by

mysqli_query().

The difference between mysqli_fetch_row and mysqli_fetch_assoc is the return type.

First one returns index array while the second one returns associative array.

Lets take the same example and retrieve the student record using

mysqli_fetch_assoc(). Searchbox.php will remain same. We need to change the

code of search.php file.

search.php

$link = mysqli_connect("localhost","root","","student");

$no=$_POST[‘no’];

$query = "select * from student_master where sno=’$no’";

$result = mysqli_query($link, $query);

if(mysqli_affected_rows($link) == 0)

{

echo “Record not found”;

}

else

{

259

while($row = mysqli_fetch_assoc($result))

{

echo “Sno:”.$row["sno"];

echo “Sname:”.$row[“name”];

echo “City:”.$row[“city”];

echo “Pin:”.$row[“pin”];

}

}

if you observe the difference between these two methods then it states that in

previous method, we use integer index to retrieve records and, in this method, we

use table field names as array index because here the method returns associative

array and in associative array the values are retrieved by its key. Here fields names

are keys for the array $row.

mysqli_fetch_array(result,returntype)–it fetches a result row as an associative

array, a numeric array, or both. Returns NULL in case of no rows in result set.Result

is an identifier returned by mysqli_query().

returntype is used to select the return type of array. Possible values are

 MYSQLI_NUM – if you want to return only index array.

 MYSQLI_ASSOC – if you want to return associative array.

 MYSQLI_BOTH (this is default) – Both type of array will be returned.

mysqli_fetch_array() returns both index as well as associative array by default and

hence you can use integer index or key to retrieve values. Let’s continue the same

example using mysqli_fetch_array().

search.php

$link = mysqli_connect("localhost","root","","student");

$no=$_POST[‘no’];

$query = "select * from student_master where sno=’$no’";

$result = mysqli_query($link, $query);

if(mysqli_affected_rows($link) == 0)

{

echo “Record not found”;

}

else

{

while($row = mysqli_fetch_array($result))

{

echo “Sno:”.$row[0]; // retrieve student number by index array

echo “Sname:”.$row[1]; // retrieve student name by index array

echo “City:”.$row[“city”]; // retrieve student city by the key city.

260

echo “Pin:”.$row[“pin”]; // retrieve student pin code by the key pin.

}

}

mysqli_fetch_object(result)–it returns the current row of a result-set, as an object.

Returns NULL in case of no rows in result set.Result is an identifier returned by

mysqli_query(). Apart from this method, all three methods that we learn so far return

either index array, associative array or both but mysqli_fetch_object() returns current

row as an object. Fields names are used along with object to retrieve data from

tables.

Lets now retrieve data from student_master table using mysqli_fetch_object()

Example:

Search.php

$link = mysqli_connect("localhost","root","","student");

$no=$_POST[‘no’];

$query = "select * from student_master where sno=’$no’";

$result = mysqli_query($link, $query);

if(mysqli_affected_rows($link) == 0)

{

echo “Record not found”;

}

else

{

while($row = mysqli_fetch_object($result))

{

echo “Sno:”.$row->sno;

echo “Sname:”.$row->name;

echo “City:”.$row->city;

echo “City:”.$row->pin;

}

}

in the above code we have used mysqli_fetch_object() which returns object and so

$row is now object and to retrieve records we use table field names along with $row

object.

In this unit we have discussed all the data fetching methods with example. You can

use any of these methods according to the need of an application. You can use

these methods while you are retrieving records from database.

Check Your Progress – 3:

261

1. What is the difference between mysqli_fetch_row() and mysqli_fetch_assoc()?

...

... ..

...

...

4.6 Suggested Answer for Check your Progress:

Check your Progress 1:

1. mysqli_connect() is used to connect PHP with MySQL

mysqli_connect($servername,$username,$password,$databasename)

it takes following parameters

• $servername – Name or IP address of server/host.

• $username – MySQL username

• $password – MySQL Password

• $databasename – Database name to be used.

Check your Progress 2:

1. mysqli_query() function is used to execute any SQL query in PHP. We can use it

as:

$result=mysqli_query($con,$query);

2. update student_master set city=”Ahmedabad” where sno=1002

Check your Progress 3:

1. mysqli_fetch_row() and mysqli_fetch_assoc() methods are used to retrieve

records from database. First one returns index array whereas the second one

returns associative array.

BAOU
Education
for All

Website : www.baou.edu.in | Email : office.scs@baou.edu.in

http://www.baou.edu.in/
mailto:oﬃce.scs@baou.edu.in

	UNIT-2
	UNIT-3
	UNIT-4
	UNIT-1
	UNIT-2 (1)
	UNIT-3 (1)
	Unit Structure

	1.1 LEARNING OBJECTIVE
	1.2 INTRODUCTION OF OPEN-SOURCE SOFTWARE
	Check your progress - 1:

	1.3 OPEN-SOURCE PRODUCTS
	Check your progress - 2:

	1.4 OPEN-SOURCE SOFTWARE DEVELOPMENT PHILOSOPHY
	1.5 PROS AND CONS OF OPEN-SOURCE SOFTWARE
	Pros:
	Cons:
	Check your progress - 3:

	1.6 SUGGESTED ANSWERS FOR CHECK YOUR PROGRESS
	Check Your Progress - 1:
	Check Your Progress - 2:
	Check Your Progress - 3:
	Unit Structure

	2.1 LEARNING OBJECTIVE
	2.2 OPEN-SOURCE Vs CLOSED SOURCE SOFTWARE
	Check your progress - 1:

	2.3 FREE SOFTWARE
	2.4 SOURCE AVAILABLE SOFTWARE
	Check your progress - 2:

	2.5 SUGGESTED ANSWERS FOR CHECK YOUR PROGRESS
	Check Your Progress - 1:
	Check Your Progress - 2:
	Unit Structure

	3.1 LEARNING OBJECTIVE
	3.2 LINUX ADMINISTRATION
	3.3 CONFIGURING THE BASH SHELL
	Changing from other shell to Bash
	Check your progress 1:

	3.4 FINDING FILES
	find options starting/path expression
	Check your progress 2:

	3.5 MANAGING USERS & GROUPS
	Creating User Accounts:
	Deleting a user
	Managing User groups
	Create a group
	Adding user to a group
	Deletingthe user from the group
	Delete a group
	Check your progress 3:

	3.6 SUGGESTED ANSWERS FOR CHECK YOUR PROGRESS
	Check your Progress 1:
	Check your Progress 2:
	Check your Progress 3:
	Unit Structure

	4.1 LEARNING OBJECTIVE
	4.2 INTRODUCTION
	4.3 MANAGE FILE PERMISSIONS
	-rw-r -- r --
	Check your progress 1:
	4.4 MANAGING PROCESSES
	Listing All Processes
	Tracking system activities
	Process Status
	Setting Priority of the Process
	Example:
	Check your Progress 2:

	4.5 SYSTEM ADMINISTRATION TOOLS
	Check your Progress 3:

	4.6 SUGGESTED ANSWERS FOR CHECK YOUR PROGRESS
	Check your Progress 1:
	Check your Progress 2:
	Check your Progress 3:
	Unit Structure

	1.1 LEARNING OBJECTIVES AND OUTCOME
	1.2 INTRODUCTION
	1.3 INTRODUCTION TO RELATIONAL DATABASE MANAGEMENT SYSTEM
	Tuple/Row/Record:
	Field/Column:
	Data Integrity
	1.4 INTRODUCTION TO MySQL
	1.5 WHY MySQL?
	1.6 HOW TO INSTALL AND CONFIGURE MySQL
	1.7 MySQL DATATYPES

	1.8 CHECK YOUR PROGRESS
	1.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS
	Unit Structure

	2.1 LEARNING OBJECTIVES AND OUTCOME
	2.2 INTRODUCTION
	2.3 WHAT IS SQL?
	2.4 SQL COMMANDS
	2.4.1 DATA DEFINITION LANGUAGE (DDL)
	List of DDL Statements/Commands:
	Create Table:
	Rules for creation of table:
	To view Structure of table:
	Desc <databasename>.<tablename>; Example,
	Following are various syntax of it.
	DROP TABLE:

	2.4.2 DATA MANIPULATION LANGUAGE
	List of DML Statements/Commands:
	Populate one table using another table
	Here is the syntax:
	UPDATE Statement:
	DELETE Statement:
	SQL Operators:
	Logical and other operators:
	Simple SELECT statement:
	SELECT column1, column2....columnN FROM <tablename>;
	SELECT DISTINCT:
	SELECT DISTINCT column1, column2,columnN FROM <tablename>;
	SELECT with WHERE IN clause:
	LIKE clause:
	Syntax of % and _ is as follows
	ORDER BY clause:
	SELECT column1, column2....columnN FROM<tablename> WHERE CONDITION ORDER BY column_name {ASC|DESC};
	GROUP BY clause:
	SELECT SUM(column_name) FROM <tablename> WHERE CONDITION GROUP BY column_name;
	HAVING Clause:
	SELECT COUNT(column_name) FROM <tablename> WHERE CONDITION; SQL HAVING Clause

	2.5 CHECK YOUR PROGRESS
	2.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS
	Unit Structure

	3.1 LEARNING OBJECTIVES AND OUTCOME
	3.2 INTRODUCTION
	3.3 SQL SUB LANGUAGES
	3.3.1 DATA CONTROL LANGUAGE(DCL)
	Grant Statement:
	Revoke Statement:

	3.3.2 TRANSACTION CONTROL LANGUAGE (TCL)
	What is Transaction?
	COMMIT Statement:
	ROLLBACK Statement:
	SAVEPOINT statement:

	3.3.3 JOIN QUERY
	Join Type
	Class_info table
	Class table
	INNER JOIN/EQUIJOIN
	Outer Join:

	3.3.4 SUBQUERY/INNER QUERY/NESTED QUERY:
	SELECT column_name [, column_name] FROM <tablename1> [,< tablename2>] WHERE column_name OPERATOR (SELECT column_name [, column_name] FROM <tablename1> [, <tablename2 >] [WHERE condition])

	3.4 MYSQL FUNCTIONS
	Numeric Functions:
	Date & Time Functions:
	Advanced Functions:

	3.4 CHECK YOUR PROGRESS
	3.5 CHECK YOUR PROGRESS: POSSIBLE ANSWERS
	Unit Structure

	1.1 LEARNING OBJECTIVE
	1.2 INTRODUCTION (1)
	The main characteristics of PHP are:
	Three main uses of PHP
	PHP Usage
	Popular Implementation of PHP
	Security in PHP

	1.3 GETTING STATED WITH PHP
	Characteristics of PHP:
	PHP Syntax
	Method 1:
	Method 3:
	Method 4:

	1.4 PHP COMMENTS
	// This is a First line comment using double slash () # This is a second line comment using hash,
	/* This is a multi-line comment or remark note, …………………………...................

	1.5 WORKING WITH VARIABLES IN PHP
	Basic rules for PHP variables:
	Here are the most important things to know about variables in PHP:
	Kindly remember that PHP variable names are case-sensitive!
	Integers
	Doubles
	Boolean
	NULL
	Strings
	String as Document
	Arrays
	Associative Arrays
	Multidimensional Arrays
	Objects
	Resources
	Variable Variables
	Variable References
	PHP Variables Scope:
	1. Local Variables
	2. Global variables
	3. Static variables
	Note: The variable is still local to the function.

	1.6 WORKING WITH CONSTANTS IN PHP
	1.7 WORKING WITH SIMPLE EXPRESSIONS IN PHP
	Regular expressions in PHP
	PHP Preg_match
	PHP Preg_split
	PHP Preg_replace
	Meta characters
	1.8 Working with operatorsin PHP
	1. Arithmetic Operators
	2. Assignment Operators
	3. Comparison Operators
	4. Increment / Decrement Operators
	5. Logical Operators
	6. String Operators
	7. Array Operators
	8. PHP Type Operator

	Unit Structure

	2.1 LEARNING OBJECTIVE
	2.2 INTRODUCTION (1)
	Conditional Statements
	Looping Statements

	2.3 CONTROL STATEMENT: IF, IF_ELSE
	What Is a Control Statement?
	Syntax of If:
	The if…else Statement:
	Syntax of If-else:

	2.4 IF…ELSEIF…ELSE, NESTED IF
	The if…elseif…. else Statement
	Syntaxif…elseif….else:
	Nested if statements in PHP
	Syntax of Nested If:

	2.5 CONTROL STATEMENT: SWITCH STATEMENT
	The Switch Statement:

	2.6 LOOPING STATEMENT: WHILE, DO … WHILE, FOR, FOREACH
	Loops:
	The while Loop
	Syntax of while loop:
	The do...while Loop
	Syntax of do...while Loop
	The for Loop
	Syntax of for Loop
	The Foreach Loop
	Syntax of foreach loop is as below:

	2.7 PHP BREAK, CONTINUE STATEMENTS
	break statements
	PHP continue Statement
	Example:

	2.8 BREAKING OUT OF NESTED LOOPS
	Breaking Out of Nested Loops
	Skipping Statements in Current Loop Iteration

	2.9 ADVANCE PROGRAM FLOW STATEMENT
	Try Catch Example: Exception & Error Handling
	Why handle exception?
	PHP Error handling
	Error handling examples
	Custom error handling examples
	PHP Error reporting
	Difference between Errors and Exception
	Syntax of try – catch:
	Multiple Exceptions
	Unit Structure

	3.1 LEARNING OBJECTIVE
	3.2 INTRODUCTION (1)
	PHP Functions
	Types of functions:
	Why should we use functions?

	3.3 PHP FUNCTION
	What is a Function?
	Why use Functions?
	Built in Functions

	3.4 USER DEFINED FUNCTION
	About user Defined Functions:
	Why use User Defined Functions?
	Rules for creating user defining function:
	How to create User Define function:
	Example of User Define function:
	PHP Function No parameter, No return value
	PHP Function No parameter Get return value
	PHP Function Arguments/Parameter (PANR - Pass parameter No return value)
	PHP Function PAGR - Pass parameter Get Return value
	Setting Default Values for Function Parameters

	3.5 BUILT IN FUNCTION
	The PHP Internal (Built-in) functions

	3.6 MATH/NUMERIC FUNCTION
	3.7 STRING FUNCTION
	What is a string?
	Let’s Define PHP strings variable with value:
	PHP Heredoc:
	PHP Nowdoc

	3.8 DATE FUNCTION
	What is PHP Date Function?
	What is a TimeStamp?
	PHP set Timezone Programmatically
	PHP Mktime Function:

	3.9 FILE INCLUSION FUNCTION
	The include and require statements are identical, except upon failure:
	Theinclude() Function:
	The require() Function
	Note:

	3.10 FILE I/O OPERATION FUNCTION
	PHP files Functions
	PHP File_exists Function
	PHP Fopen Function
	PHP Fwrite Function is used to write files.
	PHP Copy Function
	Unit Structure

	4.1 LEARNING OBJECTIVE
	1.2 INTRODUCTION (2)
	4.3 STORING DATA IN ARRAYS USING PHP
	4.4 NUMERIC/INDEXED ARRAY
	4.5 ASSOCIATIVE ARRAY
	4.6 MULTI-DIMENSIONAL ARRAYS
	4.7 PHP ARRAY OPERATORS
	4.8 MANIPULATING ARRAYS
	Joining the Arrays
	sizeof($arr) :
	array_values($arr):
	array_keys($arr):
	array_pop($arr):
	array_push($arr, $val):
	array_shift($arr):
	array_unshift($arr, $val):
	each($arr):
	sort($arr):
	array_flip($arr):
	array_reverse($arr):
	array_merge($arr):
	array_rand($arr):
	array_search($search, $arr):
	array_slice($arr, $offset, $length):
	array_unique($data):
	array_walk($arr, $func):

	4.9 PHP ARRAY CONSTANTS
	Unit Structure

	1.1 LEARNING OBJECTIVE (1)
	1.2 INTRODUCTION (3)
	What is the Form?

	1.3 WORKING WITH FORMS IN PHP
	The GET Method:
	The POST Method:

	1.4 VALIDATING INPUT DATA
	What is Validation?

	1.5 USING MAGIC QUOTES
	magic quotes - are they enabled?
	PHP Code:
	Output:
	magic-quotes code:
	Output: (1)

	1.6 STORING FORM DATA IN FILE
	PHP Program to store HTML Form data in a .txt File

	1.7 SAVING FORM DATA USING COOKIES
	There are three steps involved in identifying returning users :
	The Anatomy of a Cookie
	Why and when to use Cookies?
	Setting Cookies with PHP
	Syntax
	Example
	Here is the detail of all the arguments description:
	Accessing Cookies with PHP
	Deleting or removing Cookie with PHP:

	1.8 SAVING FORM DATA USING SESSIONS& TRACKING
	What is a PHP Session?
	Why and when to use Sessions?
	Start a PHP Session
	Get PHP Session Variable Values
	Get PHP Session Variable
	Destroying Session Variables:

	Unit 2: File and directory access
	Unit Structure
	2.1 LEARNING OBJECTIVES
	2.2 INTRODUCTION
	2.3 FILE HANDLING
	Example of fgets and fputs
	Reading the data from Random position
	Check your Progress – 1:

	2.4 DIRECTORY HANDLING
	Check your Progress – 2:
	2.5 Suggested Answers for Check your Progress
	Check your progress – 1:
	Check your progress – 2:

	Unit 3: Working and formatting with strings
	Unit Structure
	3.1 LEARNING OBJECTIVES
	3.2 Introduction
	3.3 Difference between Single and Double Quoted Strings
	3.4 String Handling Functions
	Parameters:
	Output :rampur
	Output :Madhyapradesh
	Parameters: (1)
	Output : Rahul
	Check your progress – 1:

	3.5 Suggested Answer for Check Your Progress
	Check your progress – 1:

	Unit 4: Handling Databases in PHP
	Unit Structure
	4.1 LEARNING OBJECTIVES
	4.2 Introduction
	4.3 Connecting PHP with MySQL
	Check Your Progress – 1:

	4.4 Database Manipulation Operations – Insert, Update, Delete
	PHP-MySQL connection example – Inserting record in table:
	Insert.html
	Insertrecord.php:
	Delete operation
	Delete.html
	deleterecord.php
	Update Operation
	Update.html
	update.php
	updaterecord.php
	Check Your Progress – 2:

	4.5 Retrieving Records from Database
	Example:
	search.php
	search.php (1)
	search.php (2)
	Example: (1)
	Check Your Progress – 3:

	4.6 Suggested Answer for Check your Progress:
	Check your Progress 1:
	Check your Progress 2:
	Check your Progress 3:

