
2024

Software
Engineering

Dr. Babasaheb Ambedkar Open University

4

Software Engineering

Course Writer:

Dr. Kamesh R. Raval

Assistant Professor,

Som-Lalit Institute of Computer Applications

Ms. Sejal Vaghela

Assistant Professor,

Lokmanya College of Computer Applications

Content Reviewer and Editor:

Prof. (Dr.) Nilesh K. Modi

Professor & Director School of Computer Science,

Dr. Babasaheb Ambedkar Open University

Copyright © Dr. Babasaheb Ambedkar Open University – Ahmedabad. 2024

ISBN No:

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad While all

efforts have been made by editors to check accuracy of the content, the representation of facts,

principles, descriptions and methods are that of the respective module writers. Views expressed

in the publication are that of the authors, and do not necessarily reflect the views of Dr.

Babasaheb Ambedkar Open University. All products and services mentioned are owned by

their respective copyrights holders, and mere presentation in the publication does not mean

endorsement by Dr. Babasaheb Ambedkar Open University. Every effort has been made to

acknowledge and attribute all sources of information used in preparation of this learning

material. Readers are requested to kindly notify missing attribution, if any

5

Software Engineering
Contents

BLOCK1: SOFTWARE DEVELOPMENT LIFE CYCLE AND MODELS

UNIT1 INTRODUCTION TO SOFTWARE ENGINEERING

Objectives, Software Engineering – Evolution and Impact, Software

products vs Programs, Importance of software engineering, Emergence

of software engineering, Let Us Sum Up

UNIT2 SOFTWARE DEVELOPMENT LIFE CYCLE

Objectives, Why to use life cycle models?, Entry and Exit phase criteria,

Phases of SDLC, Feasibility study, Requirement gathering and analysis,

Design phase, Coding, Testing, Maintenance, Let Us Sum Up

UNIT3 SOFTWARE DEVELOPMENT MODELS

Objectives, Introduction, Operators and Expressions, Special Operators,

Arithmetic Expressions, Operator precedence and associativity,

Mathematical functions, Let us Sum Up

BLOCK 2: MANAGEMENT OF SOFTWARE PROJECTS

UNIT 4 SOFTWARE PROJECT MANAGEMENT - I

Objectives, Role of Software Manager, Planning of the project, Project

size estimation metric, Software project size estimation techniques, Let

Us Sum Up

UNIT 5 SOFTWARE PROJECT MANAGEMENT - II

Objectives, Estimation of staff, Scheduling, Structure of organization,

staffing, Let Us Sum Up

UNIT 6 REQUIREMENT ENGINEERING PROCESS

Objectives, Requirement engineering process, Requirement elicitation,

Requirement analysis and negotiation, Requirement specification,

System modeling, Validation requirement, Requirements management,

Let Us Sum Up

6

BLOCK 3: SYSTEM ANALYSIS AND DESIGN

UNIT 7 STRUCTURED ANALYSIS MODELING

Objectives, Structured analysis, Data Flow Diagram (DFD), Example of

DFD, Entity Relationship Diagram, Types of relations, Example of ERD,

Let Us Sum Up

UNIT 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

Objectives, Basic terms of object-oriented analysis, UML diagrams,

Use-case diagram, Class diagram, Sequence diagrams, Requirement

management, Analysis modeling, Let Us Sum Up

UNIT 9 UML-DIAGRAM OF SYSTEM – A CASE STUDY

UNIT 10 SOFTWARE DESIGN

Objectives, Feature of good software design, Design concepts,

Cohesion and Coupling, Design modeling, Pattern based software

design, Let Us Sum Up

BLOCK 4: SOFTWARE TESTING

UNIT 11 SOFTWARE TESTING CONCEPTS

Objectives, Introduction, SDLC, SDLC models, Quality concepts,

Verification and Validation, Goals of software testing, Static and

Dynamic testing, Let Us Sum Up

UNIT 12 BLACK-BOX TESTING

Objectives, What is black-box?, Need for black-box testing, Advantages

and disadvantages of black-box testing, Boundary value analysis,

Equivalence class partitioning, Decision tables testing, Let Us Sum Up

UNIT 13 WHITE-BOX TESTING

Objectives, White-box testing, Need of white-box testing, Advantages

and disadvantages of white-box testing, Black-box vs White-box

testing, Logic coverage criteria, Basis path testing, Let Us Sum Up

UNIT 14 SOLVED PROGRAMS-III

Objectives, Unit testing, Integration testing, System testing,

Performance testing, Acceptance testing, Let Us Sum Up

7

Ambedkar
Open University

Software Engineering

BLOCK1: SOFTWARE DEVELOPMENT LIFE CYCLE MODELS

UNIT 1

INTRODUCTION TO SOFTWARE ENGINEERING 10

UNIT 2

SOFTWARE DEVELOPMENT LIFE CYCLE 20

UNIT 3

SOFTWARE DEVELOPMENT MODELS 30

Dr. Babasaheb BCAMA-501

8

BLOCK 1: SOFTWARE DEVELOPMENT

LIFE CYCLE MODELS

Block Introduction

In this block-1 of the Software Engineering, we have tried to emphasis on:

What is Software Engineering? And What is the importance of it? Basically, when

we are working on the large software products, then entire development process is

divided into number of phases which are called Software Development Life Cycle

(SDLC) phase. First an engineer has to evaluate feasibility study where project is

Economically, Operationally and Technically feasible or not is inspected. Then

information related to project has to be gathered and analyze. As an output of this

several documents are produced which will help a project manager to manage the

entire project which larger and complex.

We have also described, that the phases of SDLC in implemented in

different way depending on the type of the project, which called models of SDLC

implementation. For which type of project which model of SDLC has to be used in

served in the first block of Software Engineering.

Block Objective

The objective of the block is to explain what is an engineering approach to

build a large and complex software system. Students will able to learn that the

software development cannot be accomplished like small program development.

Detail study of requirement analysis is required to build software.

By learning this block of software engineering student will learn about

different phases of Software Development Life Cycle, and tasks which an engineer

has to perform during each phase of SDLC. Reader of this block, will know

software development is a complex process and cannot be accomplished in one go.

Using work break down structure, the entire development process is divided into

phase, phases are divided into several tasks, and further tasks into different

activities.

Different software projects have different challenges, depending upon

nature of the problem, SDLC phases has to be implemented in different ways which

are called models. This block servers detail knowledge of different types of models

and depending upon project type, which model has to be adopted or suitable.

We hope, this block will clear the idea of software engineering process, it’s

requirement so that student can become ready for industrial development.

9

Block Structure

BLOCK1: SOFTWARE DEVELOPMENT LIFE CYCLE AND MODELS

UNIT1 INTRODUCTION TO SOFTWARE ENGINEERING

Objectives, Software Engineering – Evolution and Impact, Software

products vs Programs, Importance of software engineering, Emergence

of software engineering, Let Us Sum Up

UNIT2 SOFTWARE DEVELOPMENT LIFE CYCLE

Objectives, Why to use life cycle models?, Entry and Exit phase criteria,

Phases of SDLC, Feasibility study, Requirement gathering and analysis,

Design phase, Coding, Testing, Maintenance, Let Us Sum Up

UNIT3 SOFTWARE DEVELOPMENT MODELS

Objectives, Introduction, Operators and Expressions, Special Operators,

Arithmetic Expressions, Operator precedence and associativity,

Mathematical functions, Let us Sum Up

10

Unit 1: Introduction to
Software Engineering 1

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Software Engineering – Evolution and Impact

1.4. Software Products vs Programs

1.5. Importance of Software Engineering

1.6. Emergence of Software Engineering

1.7. Let us Sum up

1.8. Check Your Progress: Possible Answers

1.9. Further Reading

11

1.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know about evolution and impact of software engineering

 Understand about software crisis

 Understand difference between software products and programs

 Learn Emergence of Software Engineering

 Understand the importance of Software Engineering

1.2 INTRODUCTION

Since last seventy years, computers have been used for commercial purposes.

Earlier computers were too slow and not much sophisticated. Slowly and gradually

speed and sophistication have increased and the price of computers have reduced

dramatically. Improvement in the speed, reliability and sophistication and reduction in

the cost, has given some technological breakthroughs on regular intervals.

Usually, faster computers can run more sophisticated programs. In every

aspect of hardware improvement, more reliable and complex and cost-effective

software programs are also expected. The responsibilities of providing large, complex

software systems into cost-effective and efficient manner is given to the software

engineers. Software engineers can provide cost-effective and efficient solution for

large complex software system by learning from the mistakes made in the past

projects. Which means software engineering is an engineering approach in the

development of software products.

Now, what is this engineering approach? To understand this, consider if a

person what to make a small house or needs some repairing work into the house, we

are calling to contractor and he can do the work in efficient way. But think, is he able

to make large buildings? Answer is no. He doesn’t have sufficient knowledge of the

portion of cement, concreate and send in the mixture (mortar), which will provide

sufficient strength to the large building. Or we can say, don’t have sufficient knowledge

to manage entire work of construction of a large building. If the instead of contractor

the same work is given to civil engineer, then that person can do proper planning,

space utilization, having proper knowledge of raw materials to be used which provide

12

necessary strength to the building which will not be collapse for longer period of time.

By this example, we mean to solve small sized problem any programmer can write the

program, by in the production of large and complex software system an engineering

approach is to be used, in which the following characteristics has to be there:

 More use of past experience. Past experience is systematically arranged and

used theoretical basis in the existing projects.

 During designing, for each complex problem or conflicts situations, several

alternative approaches may be proposed and optimal approach have been

chosen to solve the problem.

 To reduce the overall cost of the software system (as economical concern),

cost-effective alternative has to be chosen.

1.3 SOFTWARE ENGINERING – EVOLUTION AND IMPACT

In this section we will discuss how software industry has adopted the

engineering approach with respect to the time and impact of it on a software project.

1.3.1 Evolution of software engineering

Number of researchers and software professionals have given their contribution

in these evolutions, since last 70 years. The early programmers used an experimental

programming style. In that every programmer evolves his own development style from

guided by the organization, his past experience, impulses and desires. Usually,

students are doing the same thing while writing the program. This experimental

programming style is to be considered as art, which mostly guided by their

organization. This art is transformed into craft, where programmers have started to

learn from the mistakes they made in the past. Still, this point the past experience and

mistakes are unorganized. In modern software industry, an engineering approach is

used, where all past experiences and past mistakes are stored in the organized way

and used as theoretical concepts in the existing system development process.

The following figure, shows how our software industry is transformed from art

to craft and finally craft to engineering approach, which help to design more complex

software products in efficient and cost-effective manner.

13

Fig: 1.1 Development of Technology with Time

1.3.2 What is Software Crisis?

Compare to hardware, software products face many challenges. Software

products are difficult to alter (change), debug and enhance. They often fail to fulfill

user’s requirement and sometime uses resources in non-optimal way. When hardware

industries produce more powerful, optimal and cost-effective products day to day.

Because of the cost of hardware is decreasing day to day, software industry also has

to reduce the cost of the software products.

Fig: 1.2 Change in the relative cost of hardware and software over time

14

Today, when we brought any hardware product the essential software which

runs on it comes for free. If this trend continues, we might soon have a rather amusing

scenario. This effect where the prices of software products are being reduced day to

day is called software crisis. But what factors have contributed to the making of the

present software crisis? Unfortunately, there are many factors. Lack of necessary

training in the software engineering, low productivity improvement, larger problem size

increasing skill shortage are several reasons for this. But is the medicine to this

problem? It is believed that only customer satisfaction can possibly solve the present

software crisis problem. Software engineers need to use engineering approach with

further advancements in the software industry.

1.4 SOFTWARE PRODUCTS vs PROGRAMS

Programs are usually developed by individual for their personal use. Therefore,

programs are smaller in size and it should have some limited functionalities. Here, the

author of the program himself maintain his program and usually a program should not

have good user interface. Whereas, the software product has multiple users and

therefore it has good user interface, proper user manual and good quality of

documentation support is available. Because multiple users are using the software

product, it is systematically designed, carefully implemented and thoroughly tested. A

software product is usually having large size (more functionalities), it is developed by

group of developers and engineers as a team. The person who writes the code for the

program is called programmer and a person who develop a software product is called

software engineer. Because of the large software developed my many software

engineers as a team, they need to adopt systematic methodology. Otherwise, it will

become difficult to understand the work carried out by another person from the group.

1.5 IMPORTANCE OF SOFTWARE ENGINEERING

Let us now discuss what skill you could be acquiring after learning this course

of software engineering. The first and important skill you could be acquiring after

learning this course is, how develop large software products. In this course we will

learn, how the larger software product is decomposed into smaller and manageable

parts. A major part of problem lies in the exponential growth in the perceived

complexity and difficulty with program size if one attempts to write the program for a

15

problem without suitable decomposition the problem. This will increase the efforts of

development, time to develop the software and finally cost of the software product.

After learning this course, you will understand the problem size in better way.

You can breakdown the larger problem into small manageable modules and further

you can estimate the size of the software, efforts to develop the software, time to

develop the software and cost of that software product. Not only that, this knowledge

of software engineering enables you to optimize effort, time and cost of the software.

As a being a software engineer, this knowledge helps you to produce better and

quality-oriented software products.

1.6 EMERGENCE OF SOFTWARE ENGINEERING

We have already discussed that software engineering techniques have

progressed over many years as an outcome of number of innovations and buildup of

experience of program writing. Let us discuss briefly, these innovations and

experiences of programming which have given their contribution in the software

engineering.

1.6.1 Early Computer Programming

Early commercial computers were too slow in speed and very basic compare

to our today’s computers. Even very simple processing activity took significant

computation time on those computers. Because of this fact, programs during that time

were very small in size and were not much sophisticated. Those programs were mostly

written in assembly programming language. The length of the program was few

hundreds of lines. Different programmers are writing their programs in their own way

and their own style. All programmers were developed their own style of writing their

programs. This type of ad hoc programing writing style is called exploratory

programming style.

1.6.2 High-Level Programming languages

Computers became more faster with the invention and use of the

semiconductors in the computers. When the more powerful computers are available,

that makes possible to write more complex and large programs. During this time, high-

level languages such as FORTRAN (FORmula TRANslation), COBOL (Common

16

Business Oriented Language) etc. are invented. This high-level programming

languages reduce the effort of the software development, because they are easy to

learn, instructions are mostly in the English language and they make possible where

one line of high-level instruction is same as two or three lines of low-level language

programming code.

1.6.3 Control or Flow-based programming

Exploratory programming style is not sufficient for the program having complex

logic and larger size. Programmers found that it is difficult to find the errors, and

difficulty in understanding the logic of the programs written by someone else. To deal

with this problematic situation senior programmers advised to their juniors to pay more

attention on the control flow of the program. A control flow structure of the program

indicates the sequence in which the program statements are executed. Flow-chart is

a technique developed during this time to represent the programming sequence in

pictorial way, which provides ease explanation about control flow sequence of the

program. Even today this technique is used to represent the algorithm logic in easy

way of representation.

In the earlier programming language, flow control was managed by either ‘goto’

statement or ‘jump’ statement. It is to be observed that these programs are not

readable as well as if we draw flow-chart for the same program then it will also become

more complex. Newer programming languages has adopted structured programming

syntax to manage flow-control of the program such as, if – then – else, do-while etc.

The programs written in this type of newer languages are more readable, their flow-

charts are easy to understand and the programs are more optimized in terms of

processing and memory utilization (compare to using unconditional jumps). This type

programming languages which uses structured way of programming flow-control are

called structured programming languages. PASCAL, MODULA, C-Language are

the examples of structured programming languages.

1.6.4 Data-Structure Oriented programing

When the ICs (Integrated Circuits) are invented and used in the computer

system, they become more powerful to solve the complex problem. Software

engineers where now expected to develop more complicated and large software

products which requires to write several tens of thousands of programming lines.

17

Programming languages based on control-flow would not be satisfactorily used to

handle these problems and more effective languages were needed.

Soon it was discovered that developing programs needs to pay much attention

to the design of the data structures of the program than to the design of the control-

flow of structure of programing. Design techniques based on this principle are called

data-structure oriented design technique. For example, in the programming

language like C, we can design our own data type like students, customer, employee

etc. using structure.

1.6.5 Data Flow-Oriented programing

When the VLSI (Very Large-Scale Integration Circuits) are implemented to the

computer systems, they become more powerful and still faster than its previous

generation. Some new architectural concepts, more complex and sophisticated

software products were needed to solve further challenging problems. Here, software

engineers were looking for more effective techniques for designing software products

and very soon data flow-oriented design was proposed. This design insists that the

major data items handled by a software product is identified first and then the

processing required on such data items has to be identified. The processes of a

software exchange data items, and its diagrammatic representation is called data flow

diagram.

DFD was considered to be a generic technique, which can be used in the

modeling of all different types of software. In the following example we have shown

Data Flow modeling for car assembly plant.

Fig: 1.3 Data flow model of a car assembly plant

18

In the above, diagram Engine Store, Chassis Store etc. are considered as a

data store from where we take the data, whereas Fit Engine, Fit Doors etc. (which are

denoted in the circle) are called processes.

1.6.6 Object-Oriented programing

In the next development, data flow design technique is evolved by Object-

Oriented design. In the Object-Oriented programming design, any real word entity is

represented in the form of objects, which can have some data associated with it is

called properties and actions which an object can perform is represented as methods.

The process of identifying properties and methods is called data abstraction. Object-

Oriented technique gain popularity because of its simplicity, reusability of design and

code, lesser development time and ease of maintenance.

Fig: 1.4 Software design technique and its evolution

The figure given above, summarize the evolution in the software industry. Here,

we have pictorially shown how the software design and programming technique

methodologies have been improved from Exploratory Design to Object-Oriented

design.

Check Your Progress:

1. In software design technique, programmers where used their own specific
style of writing the program.

2. In software design technique, use of goto reduced by if-then-else and loop
syntax.

3. In software design technique, real word entities and their properties and
methods are abstracted.

19

4. The problem, where the cost of the software products is decreased drastically is called
 .

5. In the data-flow diagram circles represents .

1.7 Let us sum up

In this chapter we have learnt how the software industry is evolved with time and new

techniques of software development is adopted by the industry. In this chapter we

have discussed that how we have migrated from Art to Craft and Craft to Software

Engineering in the software development. We have also discussed the difference

between Programs and Software products.

1.8 Check your progress: Possible Answers

Exercise: 1
1. Exploratory design
2. Control-flow oriented
3. Object-Oriented
4. Software crisis
5. Process

1.9 Further Reading

1. Software Engineering – A Practitioner’s Approach by Roger S. Pressman
(McGraw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)
3. System Analysis and Design Methods by Gary B. Shelly, Thomas J. Cashman,

Harry J. Rosenblatt (CENGAGE Learning)
4. “Software Engineering” by Dr. Ruchita Shah, Dr. Kamesh Raval, Mr. Nitin Shah.

ISBN No: 978-81-942146-4-9 From: Dr. Babasaheb Ambedkar Open University

20

Unit 2: Software Development
Life Cycle 2

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Why to use Life Cycle Models

2.3.1 Importance of documentation in Life Cycle Models

2.3.2 Entry and Exit phase Criteria

2.4 Phases of SDLC

2.4.1 Feasibility Study phase

2.3.2 Requirement Gathering, Analysis and Specification phase

2.4.3 Design phase

2.4.4 Coding phase

2.4.5 Testing phase

2.4.6 Maintenance phase

2.5 Let us Sum up

2.6 Check Your Progress: Possible Answers

2.7 Further Reading

21

2.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know various techniques to eliciting requirements

 Understand requirement analysis and negotiation

 Understand functional and non-functional requirements

 Learn how to document functional requirements

 Write good Software Requirement Specification (SRS)

 Represent complex logic using decision table and decision tree.

2.2 INTRODUCTION

In the previous chapter we have provided some preliminary information about

the software engineering. We also discussed how the software industry has been

evolved from exploratory programming style to software engineering approach.

Software engineering approach emphasize to use of a life cycle model in the building

of software product. In this chapter we will focus on life cycle models and the activities,

which will be carried out by each phase of software development life cycle model.

A software life cycle is the series of recognizable stages that a software product

passthrough during its lifetime. The first phase of the software life cycle model is a

feasibility study. Similarly, the subsequent phases are: requirement analysis and

specification, software design, coding, testing, system implementation and

maintenance. Each of these phases is called a software development life cycle phase.

A life cycle of the software can be represented as a time taken from initiation of

the software to it is being implemented. The entire development life span is divided

into the variance stages, which are called phases of the SDLC (Software Development

Life Cycle). In each phase of SDLC, some activities will be performed. The phase of

the SDLC will be executed in the sequential manner, that means the output of one

phase will be the input of the next phase.

Here, we need to distinguish between a process and a methodology. A process

covers all the activities starting from initiation of the product to its delivery or retirement.

Whereas, a methodology covers a single activity or at best a few individual steps in

the development.

22

2.3 WHY TO USE LIFE CYCLE MODEL?

In a modern software development, all organizations are using life cycle model

is universally accepted. But, why is it essential for the software developing

organizations to follow life cycle model? The main advantage of adopting life cycle

model is that it promotes, software development in a systematic manner. When a

program is developed by one programmer, he has the freedom to decide the exact

steps through which he will develop the program. But when the software product is

developed by a team, it is essential to have precise understanding among the

members of the team as to – when to do what. If the proper,

2.3.1 Importance of Documentation in the Life Cycle Model

Life cycle model provide common understanding for the project activities

between the software engineer and it helps to develop the software in disciplined and

systematic manner. Organizations which are developing the software products are

normally prepare documentation of the life cycle model. Documented life cycle models

provide misinterpretation that normally occurs in the different phases of life cycle

model between different software engineers. IT helps in finding inconsistencies in the

software project, data redundancies in the database design, and lapses in the

development process. Proper documentation of each phase of work also provides

better understanding about the project among the developers, and provide useful

knowledge to the management of developing organization. It is true that, person

cannot write if he is not clear about the particular idea. Proper documentation of the

project helps to identify, what are actual requirements, and where exactly the

necessary tailoring should be done. A properly documented life cycle model in the

essential part of the modern software developing organizations. Therefore, it is

important that not only development process follow well-defined process, but its

documentation is also adequately important.

2.3.2 Entry and Exit Phase criteria

In the life cycle model software development process is divided into different

phases. Before starting any development, the entire software project development life

cycle is divided into different phase. These phases have to be identified, when a

software development project is initiated.

23

Identification of the phases is not sufficient, but in a life cycle modes entry and

exit criteria for every phase should also defined, when a project is initiated. A particular

phase can begin only when the particular phase-entry criteria are fulfilled. Similarly, a

particular phase is considered to be completed when the particular phase-exit

condition. For example, for the phase ‘System Requirement Specification’ the exit

criteria are, SRS (System Requirement Specification) documentation should be ready,

it should be analyzed, review and approved by the customer. When the entry and exit

criteria of each phase are clear, then it will become easy to observer and monitor the

progress of the project.

If the entry and exit criteria of each phase are not clear or well define, then it

will be difficult to know about the progress of the software project. These normally

leads to the problem that is defined as 99% complete syndrome. This means every

time when you observe the progress of the project, every time you will feel like project

is 99% completed. Many different types of life cycle models have been developed.

Before we start our discussing on different types of models, let us understand different

phases of SDLC (Software Development Life Cycle).

2.4 Phases of SDLC

The software industry considers software development as a process.

According to Rumbaugh and Booch, “A process defines who is doing what, when and

how to reach a certain goal?” Software engineering is an arena which combines

methods, process, and tools for the software development. In the software

engineering approach, the concept of process is the main step. That means, a

software process is nothing but a set of activities. Here all activities are performed in

specific sequence in harmony with ordering constraints, the anticipated results are

produced. Roughly, software development project needs two types of activities.

Those are System development and project management activities. These activities

together contain of a software process. As number of activities are being performed

in the software development process, these activities are categorized into groups

called phases. Each phase has its own well-defined activities.

The various phases which are accepted in the development of this process are

together termed as Software Development Life Cycle or SDLC. The different phases

of SDLC are discussed below. Normally, these phases are performed linearly or in a

24

circular fashion. It also can be changed according to project as well. Here, software

is also considered as a product and its development of it, as a process. Thus, these

phases can be termed as Software Process Technology. In general, different phases

of SDLC are defined as following:

1. Feasibility Study phase

2. Requirement Gathering, Analysis and Specification phase

3. Design phase

4. Coding phase

5. Software Testing phase

6. Maintenance phase

Now, step by step we will discuss the actives has to perform in each phase of SDLC

given above.

2.4.1 Feasibility Study phase

In this phase, it is to be determined that the proposed project is feasible to do

or not. Obviously, we will start working on the project if it observed that the project is

feasible. During the feasibility study we need to observe that the project is

Economically (financially), Technically and Operationally feasible or not. We have to

ensure that the cost incurred in the project should be lesser than the benefits served

by the project, which means the project is Economically feasible. We also have to

ensure the all-technical resources needed to run the software project is available or

not, which is called technical feasibility. Similarly, we also have to ensure that the

once the software project becomes ready and implemented, then sufficient computer

literate employees are there or not, which called as operational feasibility. Once the

software project passed from all the feasibility tests then and then we need to start

work on its development. If the software project found to be not feasible (either

economical, technical or operational), that project should be abandoned in this phase.

2.4.2 Requirement Gathering, Analysis and Specification phase

The main aim of the requirement gathering activity is to collect all necessary

and relevant information about the project from the customer, so that we can

understand the project properly. To collect the information from customer different

techniques are used like questionnaire, personal interview, onsite observation etc. If

the customer is not clear about requirement, then the prototype (toy implementation of

25

the software which contains only design not code) is prepared and shown to the

customer. This phase of the SDLC is very important because unless we cannot gather

requirement properly, we should not come to know actually what to do in the project.

And suppose if we are not clear with the functional requirements of the customer, we

cannot make proper estimation about the time to develop the software and estimation

about the cost of the software product under development.

Requirements describe the “What” of a system. The objectives which are to be

attained in Software process development are the requirements. In the requirements

analysis phase, the requirements should be properly defined and noted down. The

outcome of this phase is SRS (Software Requirements Specification) document

written in natural language. As per IEEE, requirements analysis may be defined as

(1) the process of studying user’s needs to arrive at a definition of system hardware

and software requirements (2) the process of studying and refining system hardware

or software requirements.

The important component of the SRS document is functional, non-functional

requirements and the objective of implementation. Functional requirements are those

requirements which we need to serve into the software project. Usually, functional

requirements have to be collected from the customer during requirement gathering

techniques. Non-functions requirements are like, security, performance, load of the

system etc. Generally, SRS document serves as a contact between the customer and

development team.

2.4.3 Design phase

In this phase, a logical system is prepared which achieves the given requirements.

Design phase of SDLC deals with transforming the customer’s requirements into

a logically functional system. Normally, in the design phase following two steps

has to be performed:

i) Primary Design Phase: In the Primary Design phase, the system is

designed at block level. The blocks are created on the basis of analysis done

on the functional requirement gathered from the customer. Different blocks

are designed for different functions by more emphasis is put on minimizing

the flow of information between blocks. Thus, all activities which needs more

interaction are kept in one block.

26

ii) Secondary Design Phase: In the secondary design phase the detailed

design of every block is done.

The input to the design phase is the SRS document and the output of the

design phase is Software Design Document (SDD). The common tasks involved

in the design phase are the following:

i) Design various blocks of the system for overall system processes.

ii) Design smaller, manageable, compact, and workable modules in each block.

iii) Design required database structures.

iv) Specify details of programs to achieve anticipated functionality.

v) Design the inputs and outputs forms of the system.

vi) Write documentation of the design.

vii) System reviews.

The Software design is the core of the software engineering process. It is

also the first activity of three important technical activities like design, coding, and

testing that are necessary to build software. The design should be done keeping

the following points in mind.

i) It should correctly and completely describe the system.

ii) It should exactly describe the system. It should be comprehensible to the

software developer.

iii) It should be done at the right level.

iv) It should be maintainable.

Make sure, while designing the system we have to take care of:

i) Practicality the system has to be stable and can be operated by a person of

average intelligence.

ii) Efficiency which includes accuracy, timeliness and comprehensiveness

should be there in the output of the system.

iii) Flexibility allows use the system should be modifiable depending upon

changing needs of the customer. Such provisions should be possible with

minimum changes.

iv) Security which is an important aspect of design and should cover areas of

27

hardware reliability, security of data and provision for fraud detection.

2.4.4 Coding phase

SDD document generated in the earlier (design) phase, will be considered to

be input for the coding phase. In this phase, the design document is coded according

to the functional requirement of the module specification. This phase converts the

SDD document into a high-level language code. At present most software

companies follow to some well specified and standard style of coding called coding

standards.

Good coding standards improve the readability and understanding of code.

Once a module is developed, a check is carried out to ensure that coding standards

are followed. Coding standards normally give the guidelines about the following:

i) Name of the module

ii) Internal and External documentation of source code

iii) Modification history

iv) Uniform appearance of codes.

2.4.5 Testing phase

Testing is the process of checking the software with manually created inputs

(test cases) with the intention to find errors in the software. In the process of testing,

an effort is made to detect errors, to correct the errors in order to develop error free

and quality-oriented software. The testing is performed by keeping the user’s

requirements in mind and before the software is actually run on a real system, and it

is tested. Testing is the process of executing a program with the intention of finding

bugs or error.

Normally, while developing the software code, the developer also performs

some testing. This process is known as debugging. This extracts the defects that must

be removed from the program. Testing and debugging are separate processes.

Testing is intended for finding the existence of defects while debugging means

locating the place of errors and correcting the errors during the process of testing. The

following are some strategies for testing:

i) Test the modules carefully, cover all the possible paths of the program, and

28

generate enough data (test cases) to cover all the access paths arising from

conditional statements.

ii) Test the modules by intentionally passing wrong data.

iii) Specifically create test cases for conditional statements. Enter data in test file

whichwould satisfy the condition and again test the script.

iv) Test for locking by invoking multiple concurrent processes.

Different types of testing are there which are discussed in the Block-4 of this

subject in the greater details.

2.4.6 Maintenance

Maintenance of the software products requires more effort than the effort required to

develop the product. According to the studies carried out in the past, indicate that the

effort required to develop the software and effort required to maintain the software is

in the ration of roughly 40:60. Mainly maintenance requires to perform following three

types of activity.

1. Correcting the uncovered errors, which are not detected during software

development or software testing.

2. Improving the process of implementation of the system, and enhancing the

functionalities according to user’s requirements.

3. In the case of changing the environment, porting the software into the new

environment.

Check Your Progress:

1. SDLC stands for .
2. In phase of the SDLC, we need to gather details from the customer.
3. In feasibility study, we determine that the software is feasible in the financial

term.
4. Testing phase has to be performed after completion of phase of SDLC.
5. SRS document is the output of phase of SDLC.
6. phase of a SDLC required highest effort among all.
7. SDD is the output of SDLC phase.

2.5 Let us sum up

In this chapter we have learnt about how the Software Development Life Cycle is

divided into number of phases. Initially we need to determine that the software product

is economically, technically and operationally feasible or not. Once we confirm the

29

product is feasible, then we try to gather functional requirements of the customer, we

analyse those requirements and prepare SRS document. Once the software

development organization and customer are agreed upon SRS document, Software

will be design and then coding will be written. After coding, the software is tested

carefully and then it is implemented at customer’s end. After implementation we need

to provide maintenance for the software.

2.6 Check your progress: Possible Answers

Exercise: 1
1. Software Development Life Cycle
2. Requirement Gathering, Analysis and Specification
3. Economical
4. Coding
5. Requirement Gathering, Analysis and Specification
6. Maintenance
7. Design

2.7 Further Reading

1. Software Engineering – A Practitioner’s Approach by Roger S. Pressman
(McGraw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)
3. System Analysis and Design Methods by Gary B. Shelly, Thomas J. Cashman,

Harry J. Rosenblatt (CENGAGE Learning)
4. “Software Engineering” by Dr. Ruchita Shah, Dr. Kamesh Raval, Mr. Nitin Shah.

ISBN No: 978-81-942146-4-9 From: Dr. Babasaheb Ambedkar Open University

30

Unit 3: Software Development
Models 3

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Build and Fix model

3.4 Classical and Iterative Waterfall Models

3.3.1 Classical Waterfall Model

3.3.2 Iterative Waterfall Model

3.5 Evolutionary Model

3.6 Prototyping Model

3.7 Spiral Model

3.8 Comparison of different SDLC Models

3.9 Let us Sum up

3.10 Check Your Progress: Possible Answers

3.11 Further Reading

31

3.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know about How SDLC phases can be used in different models

 Understand Classical and Iterative models

 Understand Evolutionary and Prototyping models

 Learn Spiral model

 Understand which model can be used in which situation by comparing them

3.2 INTRODUCTION

In the Unit:2 we have learn about SDLC and how entire SDLC process is

divided in the number of phases. We also have discussed about the different activities

which has to be performed in each phase. In this Unit we will focus on how the SDLC

can be applied on the Software Development Life Cycle.

Here you do not have to confuse yourself. See, each project is unique product

and therefore each project should have different needs and requirements. For

example, in some projects you will find that the customer is not clear about his

functional requirement and you are facing problem in requirement gathering. In some

project more activities are there in which some risk factors are involved. Some projects

are time critical and you do not get sufficient development time to perform all SDLC

phases for entire software in one go.

So, as per the different requirements, the way of implementation of SDLC

phases gets change in each software project, and it is called software modeling.

Software model is nothing but the way of implementing SDLC phases into software

development project. In this unit we will discuss about different types of SDLC models.

3.3 BUILD AND FIX MODEL

This is very simple model performed in just two phases. In the first phase, the

developer is developing the design and code and in the second phase if any error is

there then that errors have to be fixed. Usually, this model is suitable for very small

project which is developed by one developer or two developers. The following figure

represents the Build-and-Fix model.

32

Fig: 3.1 Build and Fix model

3.4 CLASSICAL AND ITERATIVE WATEFALL MODELS

3.4.1 Classical Waterfall Model:

Classical waterfall model is the simplest, oldest and most broadly used process

model. In this model, each phase of the SDLC is completed before the start of a new

phase. It is actually the first engineering approach of software development. As

discussed, in the classical waterfall model it is mandatory to complete the phase,

before entering into the next phase of SDLC. Classical waterfall mode is depicted in

the following figure:

Fig: 3.2 Classical waterfall model

As depicted in the figure, once it is to be realized that the project is feasible after

feasibility study, all other phases of the SDLC are performed in a sequential manner.

The waterfall model provides a systematic and sequential approach to the

development of software and, it is also better than the build and fix model. But, the

problem in this model is, we need complete requirements have to be available at the

33

time of beginning of the project, but in in reality, the requirements keep on instigating

during different phases. The water fall model can includes the new requirements only

in requirement gathering and analysis phase. Additionally, it does not include any kind

of risk assessment. Because of in the classical waterfall model, there is not backward

path is there (we cannot go towards the phases which we have completed), in reality

is difficult to use practically in the development of the software. In this model, there is

no methods to judge the problems of software between different phases.

3.4.2 Iterative Waterfall Model:

A slight change in the waterfall model is a model with feedback. Once software

is developed, implemented and is operational, then the feedback to various phases

may be given. The main difference between classical waterfall model and iterative

waterfall model, is just of feedback path to the previously performed SDLC phases.

Iterative model allows us to go in the backward direction for example, from coding

phase to requirement gathering and analysis phase, or to design phase if it is to be

observed that there is some requirement is missing or problem in the design during the

coding phase. Iterative waterfall mode is mostly used in wide variety of software

development project, because of it is simple in nature and more practical model

compare to classical waterfall mode. Iterative waterfall mode is depicted in the

following figure:

Fig: 3.3 Iterative waterfall model

34

3.5 EVOLUTIONARY MODEL

This model is also known as iterative enhancement model. Here, the entire

software product is delivered in the different parts (deliverables). To deliver each

deliverable SDLC will be followed. This model was developed to remove the limitations

of waterfall model. In this model, the phases of SDLC remain the same, but the

construction anddelivery is done in the iterative mode. In the first iteration, a less

capable product is developed and delivered for use. This product satisfies only few or

limited requirements of the customer. In the next iteration, a product with incremental

features is developed. Every iteration consists of all phases of the waterfall model. The

complete product is divided into releases or versions and the developer delivers the

product release by release.

Fig: 3.4 Evolutionary model

As shown in the above figure, in each iteration one or more deliverables should

be produces and implemented. In very succussing iteration product will becomes more

capable and includes more user functional requirements. The following figure

demonstrate how the product will be incrementally deliver to the customer.

Fig: 3.5 Deliveries of functional requirements successive iteration in

Evolutionary model

This model of the software development is also known as successive versions

model or sometimes as the incremental model. This model is suitable when the

customer needs software as early as possible and don’t provide or wait till the time, in

35

which actual development process gets completed. In this situation, what we can do

is the core functionalities (module) will be created in the first iteration and implemented

at the customer site (so that the customer can start work with core functionalities).

Slowly and gradually the other functionalities will be prepared in the successive

iterations (versions) and it will be delivered.

3.6 PROTOTYPING MODEL

The prototyping model suggests that before starting actual development of the

software, a working prototype of the system should be prepared. Prototype is nothing

but a toy implementation of the system. Prototype system should have limited

functional capabilities, less reliability and inefficient performance. A prototype is

usually built if the customer is not clear with his functional requirements or not having

sufficient knowledge about GUI (Graphical User Interface). The concepts of the

prototyping are used to gather all functional requirements from the customer.

Developing a working prototype of the software in the first phase overcomes

the disadvantage of the waterfall model where the reporting about serious errors is

possible, only after completion of software development. The working prototype is

given to the customer for operation. After using it, customer gives the feedback.

Analyzing the feedback given by the customer, the software developer refines the

requirements, adds the requirements and prepares the final SRS document. Once

the prototype becomes finalized and operational, the actual product is developed

using the normal waterfall model. The following represents the features prototyping

model:

(i) It helps in understanding and determining user requirements more deeply.

(ii) At the time of actual product development, the customer feedback is available.

(iii) It also considers any types of risks in the initial level.

The figure given below describe the, working of protype model in more detail.

First, we need to build the prototype of the software and we need to present it to the

customer. We need to refine the customer’s requirement and again need to work on

the prototype. The process needs to be executed till the prototype is accepted by the

customer and we understand all functional requirements deeply. Once the prototype

is accepted by the customer then and then other SDLC phases will be performed.

36

Fig: 3.6 Working of Prototype model

3.7 SPIRAL MODEL

This model can be considered as the model, which combines the strengths of

various other models. Orthodox software development processes don’t take risk or

uncertaintiesinto account. Many important software projects have failed because of

unforeseen risks.

The other models we have seen so far, view the software process as a linear

activity whereas spiral model considers it as a spiral process. This is made by

representing the iterative development cycle as an expanding spiral.

The activities discussed below are to be considered as primary activities in the

spiral model:

 Finalizing Objective: For each phase objectives are to be set or finalized.

 Risk Analysis: The risks are identified for each phase or activity to the extent possible.

37

Risks are identified, analyzed and necessary action is to be taken to avoid or resolve

risk.

 Development: Based on the risks that are identified, proper SDLC model is chosen

and is followed.

 Planning: During planning, the work done till this time is reviewed. Based on the

review, a decision regarding whether to go through the loop of spiral again or not will

be decided. If there is need to go, then planning is done accordingly.

The phases discussed above are followed iteratively in spiral manner, in the spiral

model. The following depicts the Boehm’s Spiral Model (IEEE, 1988).

Fig: 3.7 Spiral model

3.8 COMPARISION OF DIFFERENT SDLC MODELS

The classical model which we have discussed first is to be considered as the

basic model and all other SDLC models are its superfluities of this model. In fact, it is

very difficult to use the classical waterfall model to use, as this model do not support

mechanism to handle errors (there no feedback path towards previous phase). This

problem is overcome by iterative waterfall model. The iterative waterfall model is

probably most widely used SDLC model as it is simple to understand and easy to

implement. Iterative model can be implemented on those software development

38

projects, where problem areas are clearly defined or well understood. Iterative model

doesn’t focus on risk assessment, is one of the down side of it.

The prototyping model is suitable to use in the area where the technical

requirements are not clear or well understood. This model is very popular to resolve

issues related to user interface.

For the large size of problem, usually evolutionary model is suggested, which

actually decompose a large problem into small, manageable sub components. It

actually reduces the complexity. This model is more preferable when the development

is done using object-oriented approach.

Finally, we have discussed spiral model, which is considered as a meta model.

It includes the features of all other SDLC models. The spiral model is good candidate

for those projects in which certain amount of risk is involved. The spiral model is more

suitable for development of technically challenging projects that are prone to certain

kinds of risks.

Check Your Progress:

1. model is the basic model for software development.
2. In model the problem related to feedback path of classical waterfall model is

resolved.
3. For large and complex software development project, SDLC model is

suitable.
4. model of SDLC consider risk in account.
5. If the customer is not clear with functional requirements, then SDLC model is

advised.
6. SDLC model is called meta model, includes features of all other models.
7. For the object-oriented product development, model is suggested.
8. SDLC model is ideal to understand requirements related to user interface.

3.9 Let us sum up

In this chapter we have learnt how the Software Life Cycle phase can be

implemented in the form of software models, pertaining to the type of software project.

We have discussed basic model that is classical waterfall model, Iterative waterfall

model which has feedback problem of classical waterfall model has been resolved.

We have also discussed how the evolutionary model helps to manage large and

complex project, how interface related problem or suppose user is not clear with

39

technical functional requirement then prototype model helps. Finally, we have ended

our discussion with spiral model which has cover the benefits of all other model (meta

model), and how it helps in risk assessment and relevance.

3.10 Check your progress: Possible Answers

Exercise: 1
1. Classical waterfall
2. Iterative waterfall
3. Evolutionary model
4. Spiral
5. Prototyping model

6. Spiral
7. Evolutionary
8. Prototyping model

3.11 Further Reading

1. Software Engineering – A Practitioner’s Approach by Roger S. Pressman
(McGraw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)
3. System Analysis and Design Methods by Gary B. Shelly, Thomas J. Cashman,

Harry J. Rosenblatt (CENGAGE Learning)
4. “Software Engineering” by Dr. Ruchita Shah, Dr. Kamesh Raval, Mr. Nitin Shah.

ISBN No: 978-81-942146-4-9 From: Dr. Babasaheb Ambedkar Open University

40

Dr. Babasaheb BSc(IT)-303

Ambedkar
Open University

Software Engineering

BLOCK 2: SOFTWARE PROJECT MANAGEMENT

UNIT 4

SOFTWARE PROJECT MANAGEMENT - I 43

UNIT 5

SOFTWARE PROJECT MANAGEMENT - II 56

UNIT 6

REQUIREMENT ENGINEERING PROCESS 70

41

BLOCK 2: SOFTWARE PROJECT

MANAGEMENT

Block Introduction

In this block-2 of the Software Engineering, we have tried to emphasis on:

How as a project manager a large size and complex project can be managed. Very

important thing which a project manger has to do after Requirement gathering and

analysis phase is Estimation. After analyzing all functional requirement from the

customer, project manager need to estimate certain project parameter such as size

of the project, Effort estimation, estimation about time duration required to

complete the project and finally cost of the project. In this block we have discussed

several formulations given by some researchers, to do estimation.

After estimation, the entire project has to broken down into number of task

and number of tasks has to broken down into number of activities. In this block we

have discussed about Work Breakdown Structure (WBS) and on the basis of it, how

can we plan the project activity is discussed in this block in details.

Block Objective

Objective of this block is to explain how the large project is divided into

number of tasks and further in the activities, how to estimate time duration and

how to manage the project so that project can be completed in designated time

duration and estimated cost.

After learning this block, reader of this block will be able to perform WBS

for the project, Estimate various project parameters such as size, effort, cost, and

time. Learner of this block will also learn organizational structure and staffing in

the organization. In short, reader will be able to learn how software project is

management by a developing organization as per IT industry standards.

42

Block Structure

BLOCK 2: SOFTWARE PROJECT MANAGEMENT

UNIT 4 SOFTWARE PROJECT MANAGEMENT – I

Objectives, Role of Software Manager, Planning of the project, Project

size estimation metric, Software project size estimation techniques, Let

Us Sum Up

UNIT 5 SOFTWARE PROJECT MANAGEMENT – II

Objectives, Estimation of staff, Scheduling, Structure of organization,

staffing, Let Us Sum Up

UNIT 6 REQUIREMENT ENGINEERING PROCESS

Objectives, Requirement engineering process, Requirement elicitation,

Requirement analysis and negotiation, Requirement specification,

System modeling, Validation requirement, Requirements management,

Let Us Sum Up

43

Unit 4: Software Project
Management-1 4

Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3 Role of Software Manager

4.3.1 Skill requires in software project manager

4.3.2 Job responsibilities of software project manager

4.4 Planning of the Project

4.5 Project size estimation metric

4.5.1 Line of Code (LOC)

4.5.2 Function Point metric (FP)

4.5.3 Feature Point metric

4.5.4 Other types of metrics

4.6 Software project size estimation techniques

4.6.1 Empirical estimation

4.6.2 Heuristic estimation

4.6.3 Analytical estimation

4.7 Let us Sum up

4.8 Check Your Progress: Possible Answers

4.9 Further Reading

44

4.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know about important parameters of the software project

 Understand about the estimation of project size

 Understand Empirical, Heuristic and Analytical estimation technique

 Learn Expert judgement and Delphi cost estimation technique

 Understand COCOMO model

4.2 INTRODUCTION

In the previous unit:3, we have learnt about different software engineering

models in details. In this unit, we will focus on software project management. In the

software project management, mainly we need to focus on two things:[1] Estimating

various attributes like, duration to develop a particular software, Efforts required to

develop the software and finally estimated cost of the software product and [2]

Planning and Managing various activities such as making arrangement of staff,

monitoring project activities etc.

Therefore, we have divided “Software Project Management” into two parts. In

this unit we will focus only on estimating techniques and in the next unit we will focus

on other software project management activities.

As being a software project manager, after gathering all functional requirements

from the customer, you need analyze all functional requirements and you need to

compute or estimate how much time is required to develop this software, you also

have to estimate the efforts required to build this software. Once you have estimated

the effort required to develop the software then you need to estimate cost which

incurred to develop the software and staff required to build the project. After learning

this unit, you will be able to learn several formulations, which will help you out to

estimate these project attributes (duration, effort and cost).

4.3 ROLE OF SOFTWARE PROJECT MANAGER

Here we will discuss about the Job responsibilities of the project manager, and

the essential skills which are required in the management of the project.

45

4.3.1 Skill requires in Software Project Management:

To manage the software project, a project manager should have enough

theoretical knowledge of different types of project management techniques. A good

project manager should have following skills:

 To manage the project decision making capabilities and good qualitative

judgements are essential skills.

 A project manager should have good grasping of latest software project

management like time duration estimation, effort and cost estimation etc.

 A project manage should also have good communication skill.

 A project manager should have enough controlling and leadership skills to

handle team of employees.

 A project manager should also have skill to monitor or track the progress of the

software project.

 A project manager should also have skills like, sound knowledge about the

project; making, managing, controlling and leading the project team;

interactions with customer; and resource utilization.

4.3.2 Job responsibilities of a Software Project Manager:

The main responsibility of a project manager is to lead a project successfully.

This is surely a very hazy job description. A project manager has to gather all functional

requirements from the customer and has to determine that the software project is worth

in terms of economical, technical and operational feasible. A project manager needs

to estimate size of the software, and from the size other attributes like effort, duration

and cost of the software.

A project manager needs to divide the entire project development process into

various phase and phase will be further dived into activities. A project manager has to

schedule all project activities and also has to allot staff and required resources to each

development activities. A project manager has to create team for design, coding,

testing etc. and has to assign duties to these teams.

During the project development, a project manager has to monitor and control

all development activities, so that each activity should perform in time as planned.

During the development, a project manager has to produced different types of

46

documentations like SRS (Software Requirement Specifications), SPMP (Software

Project Management Plan) and different types of test reports.

4.4 PLANNING OF THE PROJECT

After doing feasibility study, when the software project is to be found feasible,

then project planning activity will be started and it has to completed before any

development activity is started. Project planning consists of following activities:

1. Project manager has to estimate various attributes of the project like:

 Size: What will be the size of the project in terms of number of lines of

code or number of input and output functionalities?

 Duration: What will be the duration within that the entire software will be

developed?

 Effort: How much effort is required in the development of the software?

 Cost: How much cost will it take to develop the entire software?

2. Arrangement of human and other resources

3. Staffing and assigning responsibilities to them

4. Identification risks and making strategies to avoid it.

5. Making other plans like Testing of software, configuration management and

Quality assurance plan etc.

In the following, figure it is demonstrated that project manager needs to do

proper estimation about the size as the other attributes like duration and effort is based

on size. If the project is large, obviously that takes more effort and more time duration

to complete. Once the effort and duration are estimated then based on it, project

manager can estimate staff required to develop the software.

If the project staffing is known then project manager can make a schedule for

each activity and phase of the project. Similarly, if the effort is computed and known

then, project manager can estimate about the development cost of the project.

47

Fig: 4.1 Sequence of project estimating activities

4.5 PROJECT SIZE ESTIMATION METRICS

It important to estimate accurate problem size, if we want to estimate effort,

time duration and cost of the software product. In order to estimate problem size, we

need to define some metrics (units) so that we can express the problem size. But,

before learning different metrics, we try understand that what is the term “problem size”

means. The problem size does not mean number of bytes which is acquired by the

source code of the software product. The problem size is a measure of the complexity

of the program in terms of time and effort required to develop the software product.

Usually, there are two metrics are there to estimate the size of the software: [1]

Line of Code (LOC) and [2] Functions Point (FP).

4.5.1 Line of Code (LOC):

Line of Code or LOC is the simplest metric among all available metrics to

estimate project size. LOC is very popular and easy to use. In this metric, the size of

the project is estimated by counting the number of lines of source code, which is written

by the software developer. Obviously, in counting of LOC, comments written by the

programmer as well as header files included is not counted (ignored).

When the development process is completed then determining line of code is

very simple job, but estimating LOC in the beginning of the project is more difficult. To

48

estimate LOC in the beginning of the project, entire project is divided into various

modules, modules are further divided into various sub-modules and sub-modules are

in the classes or functions. Then for each low-level function, the number of lines is

estimated and finally LOC for sub-module, module and finally for entire project is

estimated. Even though, LOC metric is simple and easy to use, there are several

limitations are there:

 LOC gives numeric value to the particular problem size, which can vary

programmer to programmer because different programmer writes the source

code in their own way. It is possible that one programmer writes several

instructions where other programmer write a single instruction of the same

task.

 LOC consider the effort of writing the code, but not the complexity. Obviously,

writing complex program requires more effort than the simple program. LOC

matric consider only number of lines but not give reward for writing complex

program.

 LOC metric does not consider quality, efficiency and performance of the code

into account. It is true that better quality and higher efficiency code should be

rewarded but it doesn’t happen in the case of LOC.

 LOC penalize the use of high-level programming language and reusability of

code (as in both number of lines of code will reduce).

 Estimating accurate LOC is possible only after the software product is fully

developed, therefore LOC metric has limited use for the manager of the project

in project planning.

4.5.2 Function Point metric (FP):

Albrecht in 1983 has proposed Function Point metric. FP metric overcomes

many shortcomings of the Line of Code metric, due to this reason FP metric has slowly

gain popularity. The main advantage of using FP metric is, it is easy to estimate the

size of the product directly from its specifications. The basic idea of the Function Point

metric is the size of the software product is directly depending on the number of

functions and features that it supports. If a software product has large number of

supporting features, should have large size. Function Point metric considers number

of input and output data values to the software as it gives some indications of the

number of functions supported by the software. Along with the number of input and

49

output data values, the size of the software product is also depending on the number

of files and number of interfaces.

The size of the product in Function Points (FPs) can be represented as the

weighted sum of five properties of the problem. FP is computed in two steps. In the

first step Unadjusted Function Point (UFP) is computed using the following formula:

UFP = (Number of External Inputs) *4 + (Number of External Outputs) *5 +

(Number of External Inquiries) *4 + (Number of Internal logical Files) *10 +

(Number of External Interfaces) *10

 External inputs: A process by which data crosses the borderline of the system

to take input into the system.Data may be used to update one or more logical

files. By mean of data here, we have to understand either business or control

information.

 External outputs: A process by which data crosses the borderline of the system

to give data to external file or device. It can be a user report or a system log

report.

 External user inquires: A count of the process in which both input and output

results in data retrieval from the system. These are basically system inquiry

processes.

 Internal logical files: A group of logically related data files that resides entirely

within the boundary of the application software and is maintained through

external input as described above.

 External interface files: A group of logically related data files (it can be tables

of the database system) that are used by the system for reference purposes

only. These data files remain outside completely from the borderline and are

maintained by external applications.

Once the unadjusted function point (UFP) is calculated, the next step is to calculate

Technical Complexity Factor (TCF). The TCF can be calculated by considering 14

other factors like high transaction rates, response time requirements, throughput etc.

Each of these factors are assigned a numerical value from 0 (no influence or not

present) to 6 (highly influence). We have to sum of numerical values (from 0 to 6)

assigned to these 14 factors, which known as degree of influence (DI). DI can be varied

50

from 0 to 70. Now, TCF can be (varied from 0.65 to 1.35) calculated using following

formula:

TCF = 0.65 + (0.01 *DI)

Once the Technical Complexity Factor (TCF) and Unadjusted Function Point (UFP) is

calculated then finally Function Points (FPs) can be calculated using following formula.

FP = UFP * TCF

Benefits of Using Function Points

 Function points can be used to estimate the size of a software application

correctlyirrespective of technology, language and development methodology.

 User understands the basis on which the size of software is calculated as these

arederived directly from user required functionalities.

 Function points can be used to track and monitor projects.

 Function points can be calculated at various stages of software

developmentprocess and can be compared.

4.5.3 Feature Point metric:

The limitation of the function point (FP) metric is that it does not consider the

complexity of an algorithm. That means that FP metric assumes that the effort required

to develop two functionalities of the system is same. But in reality, we know that the in

the development process efforts required to solve more complex function is higher than

the effort required to develop a function which is either easy or less complex.

To solve this problem of Function Point metric, an extension of it, Feature Point

metric is introduced. In Feature Point metric one more parameter is added, which

nothing but the algorithm complexity. This parameter ensures that the function points

of the more complex program will be higher than that of less complex program.

4.5.4 Other types metric:

Other types of metrics used for various purposes are quality metrics which

include the following:

 Defect metrics: These metrics measure the number of defects in a software product.

51

This may include the number of changes required in the design, number of errors which

are detected during testing, etc.

 Reliability metrics: These metrics measure mean time to failure of the software

product. This can be done by gathering data over a period of time.

4.6 SOFTWARE PROJECT SIZE ESTIMATION TECHNIQUES

The estimation of various parameters of the project like size, effort, duration,

cost etc. is a part of basic planning activity. These estimation helps to quote to the

customer along with that it also helps to the manager to allocate resources and

preparing project scheduling. Software project size estimation techniques are broadly

classified into three categories:

[1] Empirical estimation

[2] Heuristic estimation

[3] Analytical estimation

4.6.1 Empirical estimation

In an empirical estimation technique, an educated guess is made about the

important project parameters. In this technique, prior development experience of

similar type of software is used to make estimation. Empirical estimation is done by

experience and common sense, but it also has many different activities to be

performed which are formalized over the years. These activities are:

(i) Expert Judgement Estimation Technique.

(ii) Delphi Cost Estimation Technique.

[1] Expert Judgement Estimation

Expert Judgement is one of the most broadly used technique for software

project estimation. In this technique, an expert guess about the size of the problem

based on knowledge and past experiences of working on similar type of project. In this

technique, an expert divides the project into multiple components, then for each

components size and cost estimations are made and finally the size and cost

estimation are made for overall software product.

52

Expert judgement technique is subject to individual bias and human errors. Also,

it is possible that the expert may overlook some of the factor of the software product

unintentionally. It is also possible that the expert makes estimation of the software

product, but expert may not have experience or knowledge about all features of the

software project.

[2] Delphi Cost Estimation Technique:

In the expert judgement technique server problems need to face, which result

in wrong estimation, because of only one person (expert) is making the estimation.

This problem is rectified in the Delphi cost estimation, where the software estimation

is done by group of experts and a coordinator.

The coordinator prepares and distribute the functional requirements of the

project to various experts in the team. All expert gets some time duration, and based

upon information supplied, each expert makes an estimate and then all the results are

compared. If the estimates are reasonably close, they can be averaged and used as

an estimate. Otherwise, the estimates are distributed back to the experts, who discuss

the differences and then make another estimate.

The main advantage in Delphi cost estimation, group of experts are making

their estimation which may be more reliable an accurate than a single expert’s

estimation.

4.6.2 Heuristic Estimation Techniques

Rather than doing guess work about the estimation as we have seen in the

empirical estimation technique, a Heuristic technique relate the different project

parameters using suitable mathematical expressions. Once the independent (basic)

parameters are known, the dependent (other) parameters can be computed by using

some mathematical expression. In short, a Heuristic Estimation Technique use

mathematical modeling to compute other related parameters of the software project

on the basis of known parameters.

[1] COCOMO – HEUTISTIC ESTIMATION TECHNIQUE

COCOMO which stand for Constructive Cost estimation Model was proposed

by Boehm in 1981. As per Boehm, the process of the development can be categorized

53

as: Organic, Semidetached, and Embedded. Usually, data processing programs are

considered as Application programs. Interpreters, Linkers and Compilers are

considered as utility programs and Operating system like software are considered as

system programs.

In 1975 Brooks has stated that the complexity of Application programs, utilities

and system programs are 1:3:9. In 1981 Boehm has defined Organic, Semidetached

and embedded systems are as follows:

 Organic: Small size project. A simple software project where the development

team has good experience of the application

 Semi-detached: An intermediate size project and project is based on rigid and

semi-rigid requirements.

 Embedded: The project developed under hardware, software and operational

constraints. Examples are embedded software, flight control software.

As per Boehm, software cost estimation should be done in three stages. [A] Basic

COCOMO [B] Intermediate COCOMO [C] Complete COCOMO

[A] Basic COCOMO Model :

Basic COCOMO model provides an approximate estimate of the project

parameters. As per COCOMO model Effort and Time to develop software can be

computed using following formula.

Effort = a1 * (KLOC)a2 PM

Tdev = (Effort)b2 Months

Here, KLOC means Kilo Line of Code. 1000 lines of the source code will be

considered as 1 KLOC, a1, a2, b1, b2 are constants and its values are depending

upon the type of software that is Organic, Semidetached, or Embedded. The unit of

measuring effort is PM (person month) and unit for measuring (Tdev) Time to develop

software product is months.

As per COCOMO model Effort can be computed for three categories of software

product are as given below:

Organic : Effort = 2.4 * (KLOC)1.05 PM

Semidetached : Effort = 3.0 * (KLOC)1.12 PM

54

Embedded : Effort = 3.6 * (KLOC)1.20 PM

And Tdev (Time to develop software) can be computed using COCOMO model is:

Organic : Tdev = 2.5 * (Effort)0.38 Months

Semidetached : Tdev = 2.5 * (Effort)0.35 Months

Embedded : Tdev = 2.5 * (Effort)0.32 Months

[B] Intermediate COCOMO Model :

This model computes development cost and effort asa function of program

size (LOC) and a set of cost drivers.

[C] Complete COCOMO Model :

This model computes development effort and cost which incorporates all

properties of intermediate level with assessment of cost implication on each step of

development (analysis, design, testing etc.).

4.6.3 Analytical estimation

Analytical estimations are made on the basis of certain assumptions regarding

the project. Compare to Empirical and Heuristic techniques Analytical estimation

techniques use scientific basis. Halstead’s Software Science metric is an analytical

estimation method (which is outside of the scope of the book).

Check Your Progress:

1. LOC stands for .
2. metric is enhanced version of the function point metric.
3. FP = * TCF.
4. In estimation technique, we use guess work about the parameters of the

software.
5. COCOMO stands for .
6. In estimation of Empirical estimation technique, estimation is done by

group of experts about the important software parameters.
7. In COCOMO model, if the problem is well-understood and experience staff members

then, it is considered as type of project.
8. Unit of measure for Effort is .

55

4.8 Let us sum up

In this chapter we have learnt how the estimation about important project

parameter can be made. We have discussed the size of the project can be measured

by counting Line Of Code (LOC) or by Function Point (FP). Based on the project size

we need to compute Effort and Time to develop a software. To compute these different

approaches can be used like Empirical Technique, Heuristic or Analytical estimation

technique. In Empirical approach Effort and Time to develop software is guessed by

an expert (Expert Judgement Technique) or Group of experts (Delphi Cost estimation

Technique). In Heuristic estimation technique we use COCOMO model to estimate

parameter by using some formula.

4.9 Check your progress: Possible Answers

Exercise: 1
1. Line of Code
2. Feature Point
3. UFP
4. Empirical
5. COnstructive COst MOdel
6. Delphi cost
7. Organic
8. PM (Person Month)

4.10 Further Reading

1. Software Engineering – A Practitioner’s Approach by Roger S. Pressman
(McGraw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)
3. System Analysis and Design Methods by Gary B. Shelly, Thomas J. Cashman,

Harry J. Rosenblatt (CENGAGE Learning)
4. “Software Engineering” by Dr. Ruchita Shah, Dr. Kamesh Raval, Mr. Nitin Shah.

ISBN No: 978-81-942146-4-9 From: Dr. Babasaheb Ambedkar Open University

56

Unit 5: Software Project
Management-2 5

Unit Structure

5.1 Learning Objectives

5.2 Introduction

5.3 Estimation of staff

5.4 Scheduling

5.4.1 Work Breakdown Structure (WBS)

5.4.2 Critical Path Method (CPM)

5.4.3 Gantt Chart

5.4.4 Project Evaluation and Review Technique (PERT)

5.5 Team structure in organization

5.5.1 Structure of Software Development Organization

5.5.2 Structure of team

5.6 Staffing

5.6.1 Skills required to be a good software engineer

5.7 Let us Sum up

5.8 Check Your Progress: Possible Answers

5.9 Further Reading

57

5.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know about how to estimate staff for the software development project

 Understand preparing schedule for project

 Understand CPM, Gantt and PERT charting techniques

 Learn Organization and Team structures

 Understand staffing and choosing good software engineer in the team

5.2 INTRODUCTION

In the previous unit:4, we have learnt about how can we estimate different

important project parameters like project size, efforts required to develop the project,

time required to develop the project and so on. In this chapter we will learn about, what

the project manager should do after estimating all these parameters.

Obviously, once the size, effort and time to develop is estimated then a project

manager has to estimate staffing level. Initially we will start our discussion with how a

project manager can estimate the human resources required for the project and then

we will discuss how to prepare project schedule. During the discussion, we will learn

about Work Break down Structure (WBS), we will also learn how can we make different

activity diagrams like Critical Path Method (CPM), PERT and Gantt charts.

5.3 ESTIMATION OF STAFF

After determining effort requires to develop the software, it is important to

estimate the staffing requirement for the project. Putnam has studied this problem first

and what should be pattern for the staffing of the project is formulated. He has

extended the work done by Norden who has formulated staffing pattern for his

Research and Development (R&D) department. Let us first understand the work done

by Norden to solve staffing requirement estimation problem.

58

5.3.1 Norden’s estimation for staffing:

Norden has studied patterns of staff for several R&D projects. He found that the

pattern of the staff can be approximated by Rayleigh distribution curve. Norden has

represented the formula for Rayleigh curve is as follows:

𝐸 =

𝐾

𝑡𝑑
2

−𝑡2

× 𝑡 × 𝑒2𝑡𝑑
2

In the above equation, E is the effort required at time t. E represent the number

of engineers or staff required at any particular time of the project. K is the area covered

by the curve, and td is the time at which the curve reaches its maximum value.

Fig: 5.1 Rayleigh curve

5.3.2 Putnam’s Work:

Putnam considered the staffing of the software projects and found that staffing

problem for the software development projects has similar types of characteristics,

similar to the Norden’s R&D staffing work. Putnam also has used Norden-Rayleigh to

relate Line of Code required to develop a software with effort. Putnam has derived the

following expression:

1 4

𝐿 = 𝐶𝑘 × 𝐾3 × 𝑡𝑑3

In the above equation, K is the total effort (in PM) expanded and L is the software

product size in KLOC, td represents time of system in integration and testing, Ck is the

59

constant represent the development environment. If the value of Ck=2 then poor

development environment and Ck=11 then it represents excellent development

environment.

5.4 SCHEDULING

Scheduling is the main project tasks and very important in project planning

activity. It contains deciding which tasks would be performed when. To prepare the

schedule for the software project, a manager needs to perform the following activities:

1. Recognize all the tasks needed to complete the project.

2. All tasks of the software project need to dived into number of small activities.

3. Identify the dependency among different activities.

4. Identification risks and making strategies to avoid it.

5. Establish the most likely estimates for the duration of time required to complete

each activity.

6. Assign required resources to all activities.

7. Decide starting and completion dates for all activities.

8. Determine the critical path. A critical path is the sequence of activities that

determine the duration of the project.

In the first step of the scheduling a project is divided into number of tasks which

are essential to complete the entire project. A deep knowledge of the particulars of the

software project and development process, helps manager to recognize important

tasks of the project. In the next step project manager has to take each task of the

project one by one and has to split into number of activities, which are essential to

complete that particular task.

Dividing entire project into different task and each task into number of activities

is called Work Break down Structure (WBS). Once each task of the project is divided

into number of activities, then a project manager has to identify which activities are

dependent (dependent activities has to be performed sequentially that means after

completion of first activity, another activity can be started) or independent activities

(activities which can be performed parallelly).

60

Project manager now has to determine the time duration to complete each

activity and based on that project manager has to choose the start date and end date

for each activity. The start date and end date should be assigned based on the

activities are dependent or independent. Project manager has to allocate resources

that can be human resource, hardware resource or any other required resource to

each activity.

Finally, project manager prepared Critical Path Method (CPM) or Project

Evaluation and Review Technic (PERT) charts and find critical path which gives

estimation of the time duration in which project development will be completed. Project

manager will also prepare a Gantt chart, which represent schedule (from which date

to which date particular activity has to perform).

This entire process is called project scheduling. Once the project is scheduled,

all PERT, CPM and Gantt charts has been prepared then project manager has to

manage and monitor the project activity as per the schedule is prepared.

5.4.1 Work Breakdown Structure (WBS):

Work Breakdown Structure is used to decompose the entire project into number

of tasks and then each task into smaller and manageable activities. This actually

makes a hierarchical (tree like) structure. The root node of this tree, is labeled as the

name of the project, all the child nodes are the different tasks which are essential to

perform to complete the project successfully. All these nodes should be labelled with

the name of the task like Requirement Specification, Design, Code, Test etc. If

required then each task should also be broken down into number of activities which

will becomes child nodes under that task for example design task should further

decomposed into activities like database design and Graphical User Interface (GUI)

design. The Work Breakdown structure of a Library System is given in the figure 5.2

below.

Work breakdown allows manager to divide complex and larger tasks into

smaller subtasks so that manager can take some hard decision. Once the tasks are

broken into number of smaller activities then project manager can distribute these

activities to a large number of engineers.

61

Fig: 5.2 Work Breakdown Structure for Library Management System

5.4.2 Critical Path Method (CPM):

WBS converts the entire project into activities, which can be represented in the

activity network, depending upon on which time, which activity is scheduled by

manager. Managers can easily estimate the time duration for different activities and

tasks different ways as discussed in the previous unit. To represent activity network

diagram a method called Critical Path Method (CPM) is used. Consider the following

example in which, we have described to activity network diagram for a Library

Management System.

Fig: 5.3 Activity network diagram for Library Management System

62

After preparing activity diagram and estimating time duration for each activity,

a project manager needs to compute critical path. Critical path is the longest path of

activity diagram, and that represent the time duration to complete the entire project.

Following analysis can be made from the activity network diagram:

1. Minimum Time (MT): It is a time to complete the project, which the maximum of

all paths (critical path) from start to finish.

2. Earliest Start time (ES): It is a time of a task is the maximum of all paths from

the start to this task.

3. Latest Start time (LS): It is a difference between MT and the maximum of all

paths from this task to finish.

4. Earliest Finish time (EF): It is time when the particular activity will finish. It is

sum of ES and time duration of that particular activity.

5. Latest Finish time (LF): It a time of a task which is obtained by subtracting

maximum of all paths from this task to finish from MT.

6. Slack Time: It is a time duration which represent a delay. It can be simply

computed by LS – EF.

7. Critical tasks: A task having slack time 0 is called critical tasks.

The computation of above parameters from the activity network diagram is shown

in the following table:

Task ES EF LS LF ST

Requirement Specification 0 15 0 15 0

Database Design 15 60 15 60 0

GUI Design 15 45 90 120 75

Database Code 60 165 60 165 0

Form Interface Code 45 90 120 165 75

Integration and Testing 165 285 165 285 0

Preparing use manual 15 75 225 285 210

The critical paths are those paths whose duration is equal to MT. The critical

path in denoted with darken arrow lines in the Figure 5.3.

63

5.4.3 Gantt Chart:

The main purpose of Gantt chart is plan resource allocation to the different

activities. The resources which need to assigned to different activities by the project

manager can be human resource, hardware or software. Gantt chart is developed by

Henry Gantt. In the Gantt chart activities are represented as bars with respect to time

duration. Each bar has two parts, a shaded part and white part. A shaded part length

of the bar represents estimated time duration of that activity, whereas the length of

white part or a bar represents slack time, which the latest time by which a task must

be finished. For, our library management System, Gantt chart is represented as show

below:

Fig: 5.4 Gantt chart for Library Management System

5.4.4 PERT Chart:

Project Evaluation and Review Technique (PERT) chart, consists of a network of boxes

and arrows. The box in the PERT chart represents activity and arrow denotes dependency. In

the CPM manager represent single estimate for number of days to complete the particular

activity, whereas in PERT chart, manager put three estimates of time duration to complete

each activity. These three different estimates for each activity are: optimistic estimate, most

likely estimate and pessimistic estimate. The PERT chart for the library management system

is shown in the following figure:

64

Fig: 5.5 PERT activity network diagram for Library Management System

The values 12, 15 and 20 in the activity ‘Specification’ represent, if everything done

well and work done smoothly then this activity will be completed in it optimistic time which

12days. If during this activity, if challenges are faced, the work becomes difficult then it will

take long (pessimistic) time to complete that is 20 days, otherwise the activity will be completed

within it most likely (usual) time duration that is 15 days. So, here for each activity project

manager takes three estimates about the time duration to complete particular activity.

5.5 TEAM STRUCTURES IN THE ORGANIZATION

Generally, most software development organization handles multiple projects

at the same time. Software development organizations assign different teams of the

engineers to handle different projects. So, one question can be arrived in the mind that

how the whole software development organization is structured? Or how are

individuate teams of software engineers structured? Let us discuss:

5.5.1 Structure of Software Development Organization:

There are mainly two ways in which software organization is structured. [1]

Project format and [2] Functional Format

In the project format, a several engineers are assigned to the particular project

when the project starts and they have to continue their work till their project is not

completed. Thus, the same team carries out all the activities of the life cycle. After

competition of the project, the team is dissolved and engineers are placed in the

different teams, where they assigned some other project.

65

In the functional format, different tasks of a project will be performed by different

teams of the software engineers, and also one team is also working on multiple

projects. In this format, the staff is divided into functional groups based on their ability,

specialization and interest.

5.5.2 Structure of team:

Structure of team addresses the issue of the development organization of the

individual project teams. Here, we are discussing how an individual software engineer

perform in the team. Usually, it is seen that the team structure can be divided into three

categories. [1] Democratic team structure [2] Chief programmer team structure or [3]

Mixed team structure.

[1] Democratic Team Structure:

In the democratic team structure, as the name suggests, team member follows

democratic structure. That means they does not follow any formal hierarchy of team.

The democratic organization leads to higher job satisfaction and morale. Accordingly,

democratic structure suffers from less workforce turnover. This type of democratic

team structure is usually suitable for less understood problems, where a group of

engineers can find better solutions together rather than single individual that is group

leader. See the following figure, which represent democratic team structure, here team

members are coordinating with each other and there no central authority is there in the

team.

Fig: 5.6 Project coordination in Democratic Team Structure

66

[2] Chief programmer Team Structure:

In this type of team structure, senior engineer provides a role as technical leader

for their team and is elected as chief programmer. The chief programmer decomposes

the task given to his team into number of small activities and assign these activities to

other team members. Other team members need to report periodically to their chief

programmer about their progress in work. Chief programmer team structure is shown

in the following figure. Darken circle is represent chief programmer, whereas white

circles represent other team members.

Fig: 5.7 Project coordination in Chief Programmer Team Structure

[3] Mixed Team Structure:

As the name implies, in the mixed team organization, team structure is formed

by taking the idea from democratic team structure as well as chief programmer team

structure. In the following figure, we have shown the mixed team structure. You can

see in the figure, that mixed team structure forms a hierarchical structure. Here,

different development teams need to report their senior engineer and similarly senior

engineers needs to report to their project manager, which is shown as a solid line in

the figure (as we have seen in the Chief programmer structure).

Not only that, withing the team junior programmers are also allowed to

coordinate with each other, and in the same way senior engineers are also permitted

to coordinate the project activities with each other, which is shown as dotted line in the

figure (as we have seen in the Democratic team structure).

67

Fig: 5.8 Mixed Team Structure

5.6 STAFFING

Generally, project manager is responsible to choose development team.

Therefore, they need to choose good developers and engineers for project success. It

is observed that, in practical a worst engineer may decrease the overall productivity of

the project. Therefore, it is essential to choose good engineers into the development

team. But as a project manager, how can we identify good engineers? What are the

qualities are there to becomes good software engineer? Well, we have mentioned

some attributes of good software engineer below:

5.6.1 Skill required to be a good Software Engineer.

Several studies on the past software development projects, have be taken into

the consideration to determine the skills in good Software Engineer. As per the study,

a good Software Engineer should have following skills:

(i) Software engineer should be familiar with software engineering principles and

systematic techniques

(ii) Software engineer should have good technical knowledge as well as knowledge

of the project domain

(iii) Engineer should have good programming abilities

(iv) Software engineer should have good oral, interpersonal and writing skills

(v) Engineers should have high motivation factor

68

(vi) Software Engineer has to be intelligent

(vii) A good software engineer must have ability to work in a team

(viii) Discipline is obviously one attribute of good software engineer.

Check Your Progress:

1. Norden’s and Putnam’s work is related to .
2. WBS stand for .
3. CPM stands to .
4. In CPM, is the longest path, represent estimate time duration to complete

the project.
5. In project manager annotated three optimistic, most likely and pessimistic

estimates of time duration to each task of the project.
6. PERT stand for .
7. In team structure all developers and engineers need to report to the senior

project manager.
8. choose the team members for software development in his/her team.

5.7 Let us sum up

In this chapter we have learnt how the estimation about staff can be made. Also,

in this unit we have focus on how Work Breakdown Structure (WBS) helps in dividing

project into number of tasks and project task into number of small and manageable

activities. WBS also helps the manager to do planning and resource allocation for the

software development project. We have also learnt how CPM chart, Gantt chart and

PERT charts are useful in the scheduling of each activity, task and for entire project

and also how can we prepare it. Finally in the unit we have discussed about how

organization and team of the staff is organized within the organization. Finally, we have

end up our discussion with what qualities should be there in a good software engineer,

so that as manager you can select proper person (software engineer) into your team.

5.8 Check your progress: Possible Answers

Exercise: 1
1. Staff estimation
2. Work Breakdown Structure
3. Critical Path Method
4. Critical Path
5. PERT
6. Project Evaluation and Review Techniques
7. Chief Programmer
8. Project manager

69

5.9 Further Reading
1. Software Engineering – A Practitioner’s Approach by Roger S. Pressman

(McGraw-Hill international edition).
2. Fundamentals of Software Engineering by Rajib Mall (PHI)
3. System Analysis and Design Methods by Gary B. Shelly, Thomas J. Cashman,

Harry J. Rosenblatt (CENGAGE Learning)
4. “Software Engineering” by Dr. Ruchita Shah, Dr. Kamesh Raval, Mr. Nitin Shah.

ISBN No: 978-81-942146-4-9 From: Dr. Babasaheb Ambedkar Open University

70

Unit 6: Requirement
Engineering Process 6

Unit Structure

6.1. Learning Objectives

6.2. Introduction

6.3. Requirement Engineering Process

6.4. Requirement Elicitation

6.5. Requirement Analysis and Negotiation

6.6. Requirement Specifications

6.7. System Modeling

6.8. Validating Requirements

6.9. Requirement management

6.10. How to represent complex logic?

6.11. Let’s sum up

6.12. Check your Progress: Possible Answers

6.13. Further Reading

6.14. Activities

71

6.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know various techniques to eliciting requirements

 Understand requirement analysis and negotiation

 Understand non-functional and functional requirements

 Learn documentation of functional requirements

 Understand how to write good Software Requirement Specification (SRS)

 Learn different methods of representing complex logic

6.2 INTRODUCTION

The main objective of the Software Engineering is to develop, methodology or

procedure for developing a software product for complex and large systems with

superior quality, in minimum cost or designated time period. As we know Software

engineering is a sequence of tasks, which focuses on different elements like analyzing,

designing, implementing and organizing those elements into the form of system. It can

be a product, technology or services. Software Engineering is a methodology

which ensures engineer to build, produce and deliver right things, in right way

and in right time. As we know the entire process has to be done in various phases of

SDLC, which starts from the feasibility study of the project, software requirement

gathering and analysis, designing, coding, testing, implementing and providing support

or maintenance. In this unit we will focus on software requirement analysis part. When

the requirement for any software project is initiated, software engineer has to do detail

feasibility study i.e. ‘Whether the project is economical feasible? Is it technically

feasible? And is it operationally feasible?’, if answer is yes then software engineer has

to gather required information (functional requirement of the project) and after

analyzing all these functional requirements software engineers has to document these

requirements into some proper and designated format. All other SDLC phases like

design, coding, testing is strictly following this documentation, it called project

management. So, if any mistake is made by the software engineer during requirement

analysis, or if anything missed out by the software engineer during this phase then all

other phases like designing, coding and testing will be affected.

72

Requirement gathering is also challenging task for the software engineers,

especially when the customer is not aware with the computer software system.

Usually, customer cannot give detail description of the various functional requirements

of the project, that is just because of, lack of the technical knowledge or maturity level

or do not having comprehensive knowledge. Systematic approach is needed by the

software engineer to decrease the complexity in the area of requirement

analysis, it is called Requirement Engineering.

6.3 REQUIREMENT ENGINEERING PROCESS

Requirements Engineering is the systematic use of verified principles,

techniques and tools which delivers cost effective analysis, documentation, on-going

assessments of customer’s need and the specification of external behavior of the

system to satisfy necessity of the customer. Requirement Engineering Process can be

defined as a discipline, which addresses requirements of different objects of system

development process.

Computer-based specification or a software product, which is described at

various level is the output of the system requirement specification. The requirement

engineering process can be performed with the following steps:

 Requirement elicitation

 Requirement analysis and negotiation

 Software Requirement Specification (SRS)

 System modelling

 Requirement validation

 Requirement management

6.4 REQUIREMENT ELICITATION

Requirement elicitation or gathering is an art. It seems to be easy process of

asking the user, stakeholders or customers of the system about the various functional

requirements of the system. But it is not that much easy enough and number of

problems involved in this process. Due to this problem requirement gathering is

becomes complex and need more attention of the engineer. The problems might face

by a software engineer are discussed below:

73

 Project Scope: The boundary limits of the project is not clear and sometime it

may happen that customer specify those details which is not there in the project

scope.

 Useless technical details: Instead of providing clear and precise information,

customer provides too much technical details which may create misperception

and surge complexity.

 Problematic understanding: If the customer is not clear with particular task, or

having weak or incomplete details, then it will mislead to software engineer.

 Requirement volatility: Problem of volatility (frequent changes) in requirement

occurs when the project requirements change over the time.

Software engineer who gathers information from the customer should have

knowledge of what, when and how to gather functional requirements and by using

which resources. The information is collected for the organization which comprises its

objectives, policies, organizational structure, all stakeholders and staff of the

organization.

The following tools are helpful to the software engineer in gathering of all functional

requirements about the project.

A. Review of the Records: Software engineer need to review the various

recorded documents of the organization. Different transaction books in

which transactions are recorded, several procedures, forms etc. are studied

to gain knowledge of different formats and functions of existing system. This

is time consuming method.

B. On site observation: Here the software engineer needs to visit the actual

site to get closely observe and understand the system correctly.

C. Questionnaire: This method provides effective way to gather the information

with fewer effort, so that an engineer can produce written SRS document

about requirements. This method examines large number of respondents

parallelly and get their customized responses. It gives adequate time to the

respondents to select the proper answer of the questions.

D. Interview: In this method Software Engineer takes a personal interview with

each stakeholder of the project and identify their needs (requirements). It

requires experience of placing the interview, setting the stage, avoiding

arguments and assessing the outcome.

74

The outcome produces by the requirement elicitation process can differ

depending on the scope of the system or type of the product to be produced. In most

of the case the output document covers following points.

 Statement for the system requirement and its feasibility study.

 Scope or boundary of the system or product. (Functions which are

included and functions which are not covered in the system).

 List of stakeholders participated in the requirement elicitation process.

 Details of the technical environment.

 List of the functional requirements.

 In some cases, prototype is built to perform requirement elicitation in a

better way.

6.5 REQUIREMENT ANALYSIS AND NEGOTIATION

The outcome produced of the requirement gathering done earlier will be the

input of the requirement analysis. In the requirement analysis each requirement which

is recorded earlier will be observed sensibly and categories them into related sets. To

classify requirements into different sets the relation between the requirements is

studied. At this stage each requirement is observed whether requirement is correct,

or has some mistake and it is ambiguous.

Requirements can be classified in to three types depends on their priority.

1. Requirements which are absolutely met

2. Requirements which are highly needed but not essential

3. Requirements which are possible to implement but could be abolished

Explicit & Implicit Requirements:

Explicit Requirements are those, which are stated by the customer. Those

requirements which customer can easily stipulate and able to give broad description

are called explicit requirements. For example, in the development of online banking

application ‘deposit’ or ‘withdraw’ requirements will be explicit and an engineer gets

complete particulars that is input, process and output about the requirements from the

customer. Whereas, some requirements will not be mentioned or explained by the

customer, but they should be specified in the requirement specification documentation

by software engineer by their ability or skill, it is called implicit requirements. In the

75

Online banking application, it is a responsibility of the software engineer to validate the

input data and give correct and suitable validation messages, while customer of that

bank is filling online form. Software engineer can specify that ‘Account Number’ should

be generated automatically by the system when new account is created, Email

address and phone number must be validated by OTP methods and so on. Such

requirements may not be denoted by the customer. These requirements are written by

the software engineer to behave the system properly.

Source of Information

Source of information plays vital role in the requirement specification. Software

engineer has to visit various stakeholders of the system to acquire requirements.

Different stakeholders of the system will describe different requirements and also

sometime, the same requirement in a different way. While writing the requirement

specifications software engineer has to reference the source of the requirement. So,

in future, in any phase, of the life cycle any confusion is occurs, then we can easy

resolve that confusion, if we know the source. In such case, we can visit to that

particular source (stakeholder of the system), we can get more detailed clarification

about the requirements and so it’s implementation in the system.

Types of Requirements:

On the basis of functionality, requirements can be classified into following two types:

1) Functional Requirements: In the functional requirements various aspects like

input-output formats of the system, their structures of data storage,

computational abilities, timing of the task completion and synchronization are

measured. Functional requirements cover set of transaction in series which can

easily expressed in the term of function. For example, finding of a book in the

Library Management System, or cash withdrawal from the ATM system can be

measured in this category.

2) Non-functional requirements: In the non-functional requirements various

issues like security, performance, quality, efficiency, usability, reliability and

probability is considered. Because of the non-functional requirements deals

with the characteristics of the system, they cannot be expressed in the form of

functions. Non-functional requirements focus on security issues, reliability

issues, accuracy of the result and interfacing between computer and human.

76

How to write Functional Requirements?

To prepare documentation of the functional requirement into the SRS, software

engineer has to postulate set of functionalities supported by the software system. For

each task or function what data is crucial to input, what information is generated as an

output and description about that process i.e., how an input data is processed to

generate output. Some examples are given below to clarify how functional

requirements can be documented in the SRS.

Example:1 Online Sales

Requirement: 1 Sales

Description: The sales function first shows the numerous categories of the product.

When user selects particular category then all the products come under that category

should be displayed. When user selects any particular product then detailed

description about that product such as product features, price, rating and reviews of

that particular product is shown. When customer selects option ‘place order’, then

stock of the product is verified. If product is not available in the stock, then give proper

message otherwise show payment options to the user. After payment is made

generate and produce invoice to the customer.

Requirement 1.1 Select category

Input: Category name

Output: All products belong to selected category is shown

Requirement 1.2 Select product

Input: Product name/code

Output: Details description of product like features, price, rating, feedback and buy
option

Requirement 1.3 Select Buy option

Input: Product name/code

Output: Check stock availability of the product. Give suitable message if product is not
in the stock. Provide payment options if product is available.

Requirement 1.4 Select Payment option

77

Input: Payment details (Types of Payment, Card details, OTP, etc.)

Output: If payment is made successfully, show invoice details else display proper error
message.

Example:2 Find Availability of Library book

Requirement: 2 find books

Description: When the user selects the option ‘find book’, user would be prompted to

enter keywords. When user click on find button after entering keywords, system would

search for the book in the library database and all the books whose title or author name

is matched with the keyword given by the user, details are displayed to the user. The

book details include title of the book, name of the author(s), it’s ISBN number, catalog

number and position (place) in the library.

Requirement 2.1 Select option find

Input: ‘find’ option

Output: user is instructed to input keywords

Requirement 2.2 Find

Input: Keywords

Output: Title of the book, Author’s name(s), it’s ISBN number, Catalog number,
position of the book in the library

Negotiation:

It is also possible that different stakeholders of the system, suggest different

requirements because they always work with limited business resources and it is also

not possible for an engineer to fulfil all the requirements. The system engineer must

resolve such types of conflicts by a process call negotiation. Customer or the

stakeholder of the system are asked to rank their requirements on the basis of priority

and on the basis of it conflicts in the requirements can be discussed or negotiated.

78

6.6 REQUIREMENT SPECIFICATIONS

In the software system, specification means different things for different people.

A System Requirement Specification (SRS) can be a written document, diagrams, a

mathematical model, prototype or combination of any of these.

Some software engineers believe that the requirement specification has to be

written using the specific predefined format and several standard templets

(predetermined formats) has to be there, so that SRS will become precise, clear, easy

to understand and consistent. But sometime it is also necessary to be flexible in it. The

system requirement specification (SRS document) is the final outcome produce by

software engineer after doing requirement gathering and analysis. System designer

will use this documentation to design the system. Not only in the system design but

the SRS document will also helpful in the coding of the system. In fact, this document

is also important in system implementation and testing and maintaining the system. If

any disagreement occurs in the future related to the accomplishment of the

requirement, then it can be resolved using this document.

As this is very important document, used in all future SDLC phases of the

system and covers all the functional and non-functional requirements of the customer,

it should be concise, correct, consistent, clear, unambiguous and complete document.

The format or template of the SRS document is given below:

1. Introduction

1.1. Purpose

1.2. Scope

1.3. Definition, acronyms and abbreviations

1.4. References

1.5. Overview

2. Overall description of the Product

2.1. Description of product

2.2. Environmental characteristics

2.2.1. Hardware

2.2.2. Software

2.2.3. People

79

2.3. Functions of the product

2.4. Characteristics of the user

2.5. Constraints if any

2.6. Dependencies and Assumptions made any

2.7. Goal of implementation

3. Requirement Specification

3.1. Input output interfaces

3.2. Functional and non-functional requirements

3.3. Performance requirements

3.4. Logical database requirements

3.5. Design constraints

3.6. Software system attributes

3.7. Behavioral Description

3.7.1. System states

3.7.2. Events and actions

3.8. Organizing the specific requirements

3.9. Additional comments

4. Supporting information

4.1. Index or Table of contents

4.2. Appendixes

Characteristics of Writing Good SRS:

In fact, writing good SRS document is talent and can be achieved by experience. If

the analyst keeps the following characteristics of SRS in mind, then decent quality of

SRS can be written.

1) Conciseness: SRS document has to be complete, unambiguous, and concise.

Conflicting and irrelevant information should be removed so that the document

should be readable.

2) Well-structuredness: SRS document has to be well structured and it has to be

in specific format as we have deliberated above. Structured SRS is always

easy to understand.

3) Black-box viewing: Analyst has to write only black-box view of the events,

which only highlight on what system has to do and not how system will do. Only

the input data available and output information to be produced is deliberated.

80

This property asserts analyst has to write only external view of function and not

coding.

4) Verifiable: The analyst has to verify; implementation of each requirement is

whether it is feasible or not. Those requirements which are impossible to

implement are listed distinctly in the goal of implement section of the SRS

document.

Problems in writing good SRS

There are several problems, from which SRS document may suffer, which are

conversed below:

1. Over-specification: If too much specification details are given to specific

functionality, which makes document more lengthy, complex and ambiguous.

This problem will occur when analyst also includes ‘how to’ aspects of the

problem.

2. Forward referencing: While writing the SRS document, an engineer should

avoid too much forward referencing (Reference to the points are discussed

much later). This makes document boring and decreases readability of the

document.

6.7 SYSTEM MODELING

Assume for a while, if all the essential components, parts and instruments are

given to an automobile engineer, in this case an engineer will simply arrange the

related components and parts together and prepare model of a vehicle. It is nothing

but a blueprint or 3D modeling which describes position of each instrumental part or

component of a vehicle. System modelling is similar to this. Once requirement

gathering and analyzing is performed then, a system model is prepared which shows

how the requirements will fit into the system. Here the relations between different

requirements are absorbed and model of the system will be prepared.

6.8 VALIDATING REQUIREMENTS

In the validation of requirements, those requirements which are gathered and

analyzed are evaluated for quality. In this process each requirement is inspected the

81

specification to confirm that all system requirements have been specified in the SRS

are valid or not. By mean of requirement validation, any unpredictable, unclear,

unrealistic or unfeasible requirements filtered out and resolved. As outcome of

requirement validation, we have only clear-cut requirements in the SRS document. To

validate requirements following questions has to be asked:

 Are requirements described clearly? Can they be misinterpreted?

 Is requirement source identifiable? Outcome has been examined against the

source?

 Can we bound the requirements to quantitative terms?

 Is any requirement violating any domain constraints?

 Can we test the requirement?

 Is the requirement traceable to any system model or objective?

 Is the requirement do affect the system performance?

 Is the requirement described in the proper format?

Checklist of the above given questions for each requirement mentioned in the SRS

document will help software engineer to validate all requirements.

6.9 REQUIREMENT CHANGE MANAGEMENT

During the SDLC of the computer-based software system, it is possible that

requirements may change frequently and that also desire to change in the SRS

document. Requirement management is a set of activities that help the software

engineer to identify, control and track requirements and changes to

requirements at any time as the project proceeds.

6.10 HOW TO REPRESENT COMPLEX LOGIC

If the SRS is sensibly designed, then all the conditions will be properly

considered in it. However, some conditions have complex logic, and more interactions

and processing sequences are required. It is difficult to describe complex conditions

into the textual data format. It is also not possible to check large number of alternatives

if the complex condition is written in plain text data format. In such cases, decision

82

tables or decision trees can be used. Decision table and Decision tree is supportive to

describe such complex conditions having large number of alternatives.

Decision Tree:

Decision tree is a pictorial representation of the complex conditions with all its

alternatives and action taken corresponding to each alternative in hierarchical (tree

shaped) manner. Decision tree show the logic structure in a horizontal form that look

like a tree with the root at the left and branches to the right. Similar to flowchart,

decision tree is also useful way to represent complex functions of the system. Decision

table and decision tree represent the similar thing. Just decision tree represents all

alternatives in hierarchical way, which becomes easier for the programmer to

understand.

Decision Table

Decision table represents a complex logical structure, with all possible

circumstances, and resulting action in the tabular form. It represents the policymaking

logic and its corresponding action taken in the matrix form. The upper row of the

decision table shows conditions (condition stub) to be evaluated and the lower rows

represent actions (action stub) to be taken. Column of the table is known as rule. If the

condition is TRUE then rule will be enforced and if it is FALSE then rule will not be

enforced.

Consider the following example given below. Based on the situation described in it,

we draw the decision tree and make decision table.

Example: 1

Consider SALES POLICY of the ABC company. Company offers 2% discount to its

non-prime customers. If the customer is of prime category, then 5% discount will be

given. If any prime customer gives order of more than Rs. 5000 then 10% discount is

given. If any prime customer places the order of more than Rs 5000 and making the

payment using credit card then addition 2% discount (12% discount) will be provided.

83

Figure: 6.1 Decision Tree for the sales policy of ABC company

Table:6.1 Decision Table for the sales policy of ABC company

Exercise:1 Fill in the blanks

1. represents graphical representation of the complex logic structure.
2. In the decision table upper rows represent and lower rows represents .
3. After requirement gathering and analyzing, work flow is used to prepare a

blueprint or 3D rendering of the system.
4. is used to resolve conflicting requirements.
5. work flow is a process, in which analyst will check each requirement whether

its implementation is possible or not.

6.11 Let us sum up

In this chapter we have learnt how requirement can be gather from the
customer, how can we analyse and validate them. We have also discussed that what
are functional and non-functional requirement and how can we write functional
requirements. We have seen what is SRS document? What is the user of SRS
documents and attributes of good SRS document? Finally, we have learnt how to
represent complex logic using decision tree and decision table. We hope, now student
will have sufficient idea of how to gather, analyse, document requirement in proper
format.

 1 2 3 4 5 6 7 8

Prime Customer
Order more than Rs. 5000
Payment made by card?

Y
Y
Y

Y
Y
N

Y
N
Y

Y
N
N

N
Y
Y

N
Y
N

N
N
Y

N
N
N

2% Discount
5% Discount
10%Discount
Additional 2% Discount

X
X

X

X X
X X X X

84

6.12 Check your progress: Possible Answers

Exercise: 1

1. Decision Tree
2. Conditions, Actions
3. System Modeling
4. Negotiation
5. Requirement Validation

6.13 Further Reading

1. Software Engineering – A Practitioner’s Approach by Roger S. Pressman
(McGraw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)
3. System Analysis and Design Methods by Gary B. Shelly, Thomas J.

Cashman, Harry J. Rosenblatt (CENGAGE Learning)
4. “Software Engineering” by Dr. Ruchita Shah, Dr. Kamesh Raval, Mr. Nitin Shah.

ISBN No: 978-81-942146-4-9 From: Dr. Babasaheb Ambedkar Open University

6.14 Activities

1. Consider a library automation system, where number of books are there in the
library and various library members can borrow books (not more than 3 books
at a time). Members can keep the book with them for maximum 3 weeks, and
they have to return the book(s) within this period. If any member fails to return
the book(s) within designated time then Rs.1/- per day fine has to pay as penalty
by the library member. Fine amount should not be more than 5000/-. Every
member needs to renew the membership with Rs. 1500/- per year basis. Initial
membership and Registration charge will be 2500/-. Write functional
requirements for the case discussed above. Make suitable assumption when
needed.

2. prepare SRS document for any online shopping website system. Make suitable
assumptions for the various functional requirements of the system.

85

Dr. Babasaheb BSc(IT)-303

Ambedkar
Open University

Software Engineering

BLOCK 3: SYSTEM ANALYSIS AND DESIGN

UNIT 7

STRUCTURED ANALYSIS MODELING 88

UNIT 8

OBJECT-ORINETED ANALYSIS AND DESIGN 109

UNIT 9

UML-DIAGRAM OF SYSTEM – A CASE STUDY 126

UNIT 10

SOFTWARE DESIGN 144

86

BLOCK 3: SYSTEM ANALYSIS AND

DESIGN

Block Introduction

In this block-3 of the Software Engineering, we are discussing how the

requirement analysis can be represented in the various standard forms. There are

two approaches are there to represent the system analysis: (1) Structural Analysis

and (2) Object-Oriented analysis.

In this block we have discussed how structural analysis can be done by

preparing Data Flow Diagram (DFD) and Entity Relationship Diagram (ERD).

Similarly, when Object-Oriented methodology is used in the requirement analysis

then several diagrams like use-case diagram, sequence diagram, collaboration

diagram, activity diagram, state chart diagrams are drawn to represent different

activities and to represent interactions of different user with the system. To

represent back-end in the object-oriented analysis class diagram or object diagram

has to be draw. How, an engineer can draw all these diagrams? What are the rules

for drawing of all these diagrams? – is discussed briefly in this block.

Block Objective

The objective of the block is to explain doing structured and object-

oriented analysis for the system. The main aim to explain how an engineer or

project manager can depict his/her analysis by making of DFD and ERD in the

case of structured analysis and use-case diagram, sequence diagram, class

diagram, object diagram, state chart diagram and activity diagram kind of UML

diagram in the system requirement specification documentation.

This block, has details discussion which clear reader’s concept on

structured and object-oriented analysis. Reader of this block, will learn rules for

preparing different diagrams, and basic terms related to analysis. In this block, we

have also mention case studies so that reader can understand how to apply the

rules discussed for each diagram discussed can be applied on any real or

hypothetical system.

87

Block Structure

BLOCK 3: SYSTEM ANALYSIS AND DESIGN

UNIT 7 STRUCTURED ANALYSIS MODELING

Objectives, Structured analysis, Data Flow Diagram (DFD), Example of

DFD, Entity Relationship Diagram, Types of relations, Example of ERD,

Let Us Sum Up

UNIT 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

Objectives, Basic terms of object-oriented analysis, UML diagrams,

Use-case diagram, Class diagram, Sequence diagrams, Requirement

management, Analysis modeling, Let Us Sum Up

UNIT 9 UML-DIAGRAM OF SYSTEM – A CASE STUDY

UNIT 10 SOFTWARE DESIGN

Objectives, Feature of good software design, Design concepts,

Cohesion and Coupling, Design modeling, Pattern based software

design, Let Us Sum Up

88

Unit 7: Structured Analysis
Modeling 7

Unit Structure

7.1. Learning Objectives

7.2. Introduction

7.3. Structured Analysis

7.4. Data Flow Diagram (DFD)

7.5. Example of DFD

7.6. Entity Relationship Diagram (ERD)

7.7. Types of relationships

7.8. Example of ERD

7.9. Let’s sum up

7.10. Check your Progress: Possible Answers

7.11. Further Reading

7.12. Activities

89

7.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know different methods of analysis

 Understand details of Structured analysis

 Draw system Data Flow Diagram (DFD)

 Learn important terms of database management system

 Understand different types of cardinalities between entity sets

 Draw Entity Relationship Diagram (ERD) of a system

7.2 INTRODUCTION

As we have seen in the previous unit that modeling is a method of transforming

textual description about the problem into the graphical representation. After the

requirement elicitation, analysis and validation, an engineer have all clear, concise,

non-conflicting and implementable requirements in the textual format. In the analysis

model those requirements are transform or represented into the graphical model in the

form of different diagrams.

Analysis modeling can be performed by two methods:

1. Structured Analysis

2. Object Oriented Analysis

7.3 STRUCTURED ANALYSIS

Structed Analysis is a classical method of analysis modeling. Structured analysis

follows function-oriented methodology to carry out top-down approach to decompose

the set of high-level function characterized in the problem definition and represents

them graphically. In this method, system is divided into various functions. That is,

each function which system performs is analyzed and decomposed into more

comprehensive functions. For example, function ‘Sales management’ can be divided

into ‘Order, ‘Sales’, ‘Payment’ and ‘Product return’. In the implementation of Structured

Analysis following principles are essential.

 Structed Analysis follows Top-down decomposition approach of the system.

90

 It uses a principle of divide and conquer, as each function is independently

decomposed.

 Outcome of the structured analysis is Data Flow Diagram (DFD).

7.4 DATA FLOW DIAGRAM (DFD)

A Data Flow Diagram (DFD) is as hierarchical graphical model, which represents

the whole system, and its decomposition into number of functions. In the DFD each

function is a process, and the flow of data between entity and process, as well as flow

of data between process and data stored are characterized in the graphical form. DFD

is also known and bubble chart. DFD uses few symbols which are denoted in the

following table.

Sr.
No.

Symbol
(De Marco &

Yourdon
Notation)

Symbol
(Gane &
Sarson
Notation)

Explanation

1

0

Process

0

Process

Process symbol is used to receive input

data, process it and generate output.

Output may be processed data

(information) in the desire format or

content. Process may be simple or

complex (can be decomposed further).

Process contains business idea or

business logic. Process name appears in

the circle in Yourdon notation or Rounded

rectangle in Gane & Sarson notation.

Process denotes functionality or action so

usually its name should be verb. For

example, manage purchase, return book,

deposit money etc.

2 The rectangle int Yourdan notation and

shaded rectangle in Gane & Sarson

notation is used to represent entity. Entity

name should be represented inside the

rectangle/shaded rectangle. DFD shows

91

External

Entity

External

Entity

only external entities which directly

interacting with system and provides input

data to the system or receives information

from the system. For example, Member,

Supplier, Customer, Teacher, Student

etc. are the examples of the entities. Entity

is also called terminator because it is an

original source of the data or it will be the

final destination which receives

processed data (information).

3

Data Store

D1 Data Store

DFD also uses data stores to represent

the database table in the system for future

use of data. If a process stores the data in

data store, then that can be used by the

same or another process(es). Data stores

represent a kind of data tables of the

database. For example, in the online

examination system, response of each

student is recorded in the user_response

data table, which will be retrieved and

matched with correct options in result

generation process.

4

Data flow indicates path of the data to

move from one end of the system to

another end. Data flows are indicated in

the DFD by arrows, and which data is

flowing by the arrow is denoted by a label

on it. Usually, data are noun, and

therefore the caption or label on the arrow

has to be noun. For example, student

details, customer details, product details

or book details etc.

92

In the DFD, for each process, which data takes by a process as input and what

is generated by that particular process as an output is described. But how the data is

being processed or logic of the process is not illustrated, so DFD represents a black-

box view of the system.

How to draw DFD:

DFD model represent flow of the data graphically and in hierarchical manner of

the levels. DFD always starts with most abstracted view (low level) of the system and

then at each higher level more details are introduced successively. When most

abstracted view of the system is presented in the DFD, it is called context level DFD

diagram.

1. Context DFD Diagram: The context level DFD represent most abstracted view

of the whole system, which has only one process that represents entire system.

All the entities which interact or communicate with the system are shown in the

DFD and their communications with the system are shown by data flow arrows.

The context diagram is also called as 0 level diagram. Because of context level

DFD is at most abstracted level and represents whole system, all entities and

their interactions, it becomes more complex. So, in the context level of DFD, no

data store is present.

2. 1st Level DFD: To develop the 1st level DFD, we need to examine the high-level

requirement functions. If there are 3 to 7 high-level functional requirements are

there, then that can be denoted in the 1st level DFD. If more than 7 high-level

functional requirements are there, then similar types of functional requirements

are merged into one function and that can be decomposed in the 2nd level DFD.

3. 2nd Level DFD: Those functional requirements which can be separated in the

1st level but due to the constraint that maximum 3 to 7 processes can be shown

in the 1st level DFD are separated or decomposed in the 2nd level.

So, we can assume that context level DFD is nothing but a black-box view of

whole system. In the 1st level DFD we divide the entire system into 3 to 7 different

modules, and each module represented in the 1st level can be again decomposed

into number of forms and reports in the 2nd level.

93

Process Numbering:

It is necessary to number the different processes of DFD to consistently to

identify all processes uniquely. The process at context level is generally assigned the

number 0, to denote, it is 0-Level DFD. Processes at 1st level DFD are numbered as

0.1, 0.2, 0.3 and so on. Suppose process 0.2 of 1st level DFD is further divided in to 3

more processes at 2nd level DFD then, it should be numbered as 0.2.1, 0.2.2 and 0.2.2

and so on.

Rules of drawing DFD:

1. Context level DFD must have only one process that represents whole system.

All entities must be present in the context level DFD, and context level DFD

must not have any data store.

2. Name of the processes are mostly verb as processes are indicating functionality

(which perform some action) and name of the data flow (arrow) must be noun

as it is indicating what type of data is flowing.

3. There is no data flow has to there from one entity to another entity directly.

Those transaction which are performed between entity and system is not

involved in it should not be presented in the DFD.

4. DFD also should not have data flow from entity to data store. Generally, entity

give the data to the process and process will store that data in the data tables.

5. No process should be there in the DFD, which has only outgoing edges. If the

process has only outgoing edges and no incoming edge then it is called a

problem Spontaneous generation.

INVOICE SALES DETAILS

6. No process should be there in the DFD, which has only incoming edges. If the

process has only incoming edges and no outgoing edge then it is called a

problem Black hole.

WORKING DAYS EMPLOYEE DETAILS

94

CALCULATE

7. If the process of the DFD has one incoming and one outgoing edge, but the

input data to process is not sufficient to produce output then that problem is

called Gray hole problem. Such type of process should not be there in the DFD.

DATE OF BIRTH FINAL GRADE

8. When we change the level of the DFD then data flow in to the particular process

and data flow out from the particular process should be same. This means when

we draw the 2nd (next) level DFD then number of data items in and number of

data items out should match with the 1st (parent) process. Number of in and out

data elements should not be increased or decreased while changing the level.

It is also called balancing of DFD.

9. DFD has to be concise and clear. Arrows (data flow) should not cross each

other. Otherwise, it makes DFD more confusing.

10. We can repeat the Entity or Data table to avoid crossing of data flows (arrows),

but these repeated objects have highlighting cross line on the top-left side.

7.5 DFD OF A SCHOOL MANAGEMENT SYSTEM

In this section we have denoted a Data-Flow Diagram (DFD) of the school

management system. Students are getting enrolment in the school by filling

registration form. Student needs to pay the fees on regular interval (semester basis).

Fees details are managed by the clerk in the school office. Student gives examination

and which will be evaluated and result will be prepared by the teachers. School also

has small library in the campus, from which students can issue the books. Library

system handles by the school librarian. School also provides Transportation facility.

Entire system managed by Administrator, and administrator have full access of this

system.

95

Context diagram of the school management system is shown above. Which has 6

entities Student, Faculty, Admin, Librarian, Driver, and Clerk. They interact with school

management system.

Note: Generally, all the first level processes of the system have to be drawn as
a single diagram, where only one instance of each entity and data table is
placed. But, because of it increases complexity and degrade printing clarity we
have shown each first-level process disjointedly. If the system is smaller and all

96

first level processes can be lodged in a page then it is preferable that you draw
a single first level DFD which accommodate all the 1st level processes in a
diagram.

Login & Rights Allocation (1st – LEVEL):

The above figure shows the 1st process of the 1st Level DFD. Different users

like administrators, faculty, librarian etc. can log into the system and based on their

role, system will give privileges (authorization) to the user. The process is complex

and its 2nd level decomposition is needed. Its 2nd level DFD is shown in the next figure.

97

Expansion of Login & Rights Allocation (2nd LEVEL):

The entire login process of 1st Level, we have decomposed into Create user,

allocate rights, verify login details and change password sub-processes. Next process

in the DFD, is to record master details for all master tables in the database. The

process is very simple; hence second level transformation is not necessary.

Master Maintenance (1st – LEVEL):

98

The following process is Admission process at 1st level of DFD, which we have

further decomposed at 2nd level, into Registration, and Student enrolment processes.

99

Admission (1st – LEVEL):

Admission Expansion (2nd – LEVEL):

Another two processes are Record attendance, and Record fees. The Process

is simple enough and no further expansion in 2nd level DFD is required. So, we keep

this process at 1st level only.

100

Record Fees (1st – LEVEL):

Record Student Attendance (1st – LEVEL):

Next process in the sequence is ‘Manage Library’. Because this process is

complex, it requires to be decomposed into ‘Check availability’, ‘Book Issue’ and ‘Book

Return’ sub-processes in the 2nd level of DFD.

101

Manage Library (1st – LEVEL):

Expansion of Manage Library (2nd - LEVEL):

102

Next process in the 1st level, is to ‘Record Marks’ in which, Faculty members of

the school will be entered the marks obtained by the students in the examination. Here

faculty members need to refer the Student, Subject and Exam data tables and marks

will be recorded in the Result table.

Record Marks (1st – LEVEL):

In the same way, one process for ‘making schedule’ of the exam and class, and

one more process for ‘producing reports’ can be made. We hope by studying this Data-

Flow Diagram (DFD), students will have sufficient knowledge of how to prepare DFD.

In our example demonstrated above, we have followed Gane & Sarson Notations. But

if you want to use Nordan notations too. Make sure, you are not allowed to use mixed

notations in your Data-Flow Diagram.

7.6 ENTITY RELATIONSHIP DIAGRAM

Data-Flow Diagram represents the black-box view of the front-end system. It

represents the application or interface part of the system. To denotes the back-end

part (Database) in the structured analysis of the system, we use Entity Relationship

Diagram (ERD). ER-diagram is detailed logical representation of the data for an

organization. ERD represents data-oriented model, while DFD denotes function-

103

oriented model of the system. ER-diagram is used to represent data while DFD is used

to represents flow of the data.

Before going into the detail of how an ER-diagram can be organized or prepared,

we will discuss several terms related to the ER-diagram, which makes ERD learning

process much easier.

1. Data: Data is unstructured row material and unstructured facts, which provides

necessary input to the computer system.

2. Attributes: Attributes are characteristics or properties of an entity. It is

represented by an oval symbol in the ER-diagram.

3. Entity: It is an important elementary item of an organization about which data

is to be maintained. In the ER-diagram entities are represented by rectangular

box.

4. Data table / Entity set: In the Database, data having similar attributes are

stored as single unit called data table. Data table is composed of multiple rows

(tuples). Each tuple or row of the data table represent one entity, so and so forth

data tables are also known as entity sets. For example, Customer is an entity,

where Customer code, name, address, date of birth, email are attributes. When

data is entered in the table like (1, “Shiv Narayan Joshi”, “45, Vrindavan

society”, 22/08/1976, shivnarayan@gmail.com), then it is called record. Each

value in the record is called property and Shiv Narayan Joshi is the entity.

Because we can store multiple records (rows or tuples) in a datable table it is

also called an entity set. In the Relational Database Management System

(RDBMS) data table can be an entity or relation between two entities.

5. Master Table: The term is used for those types of data tables which stores data

of the permanent type of nature. Master tables are those tables, in which data

are used frequently but updated or changed (insert, update, delete) very rarely.

For example, “Employee” table is a master table, which store information like

Employee code, name, address, date of birth, email, mobile number etc.

6. Transaction Table: Transaction tables those database tables, which record

those data which are not of permanent type, it is generally useful to store day

to day transactions. Transaction tables are those which are used rarely but

update frequently. For example, “Salary” table where we store all particulars of

the salary given to employee every month are stored.

104

7. Primary Key: Primary key is a key column of the data table which is uniquely

identifying each row of the table. Once the primary key is given on any particular

field or column of the table then it will not accept duplicate or null value.

8. Foreign key: Foreign key is a key column which must be primary key of another

table or relation.

9. Composite key: When the primary key given on more than one field is called

composite key. Here two or more fields collectively, uniquely identify each and

every tuple (row) in the database table.

10. Relationship: In RDBMS, entities are connected to each other by relationships.

It represents how two entities are associated with each other. In ER-diagram a

diamond notation is used to represent relationship, and name of that relation is

specified in the diamond. Number of entity types which are participated in

relationship is called degree of the relationship.

11. Cardinality: The cardinality simply represents the relationship between two

entities. If we focus on the relationship between state and city, then it is one-to-

many relation, as there are many cities in one state. Here, cardinality of a

relation is the number of instances of entity city that can be associated with

each instance of entity state. In the situation where there can be no instance of

second entity, then it is called optional relation.

7.7 CARDINALITY OF RELATIONSHIPS

There are three types of relationships are there:

1. One-to-One (1: 1)

2. One-to-Many (1: M)

3. Many-to-Many (M: N)

A One-to-One or 1:1 cardinality exists when exactly one entity of first entity set relate

with maximum one entity of the other entity set. For example, if we consider county as

first entity and capital to be a second entity then, the relation or cardinality is one-to-

one, which means that one country has only one capital.

105

A One-to-Many or 1: M exists when one entity of first entity set relates with two or

more entities of another entity set. For example, one department of an organization

has many employees. In this example DeptCode is common attribute. DeptCode is

primary key in Department table and foreign key in the Employee table.

In this example cardinality is one department has zero or more employees. In

the above diagram relationship with dotted line indicates weak entity relationship.

Consider another one-to-many relation between Employee and Salary. All employees

get salary every month (one-to-many). Here ‘EmpCode’ is a common attribute

between Employee and Salary tables. EmpCode is primary key in Employee table and

foreign key in the Salary table, not only that but in the Salary table EmpCode, Month,

Year fields are act as a composite primary key. That means that duplication in these

three fields is not allowed. Either EmpCode or Month or Year any one attribute has to

be differed (One employee in the same month and year cannot get more than one

salary).

A Many-to-Many relationship (M: N) exists when one entity of first entity set

can relate with many entities of second entity set, as well as one entity of second entity

set can also relate with many entities of the first entity set then it is called as many-to-

Employee

PK EmpCode

EmpName

Address

PHNo
FK1 DeptCode

Department

PK DeptCode

 DeptName

Employee

PK EmpCode

FK1

EmpName

Address

PHNo

DeptCode

Department

PK DeptCode

 DeptName

Salary

PK,FK1

PK

PK

EmpCode

Month

Year

 Basic

HRA
DA

106

many cardinality. For example, Book and Author is the example of many-to-many

relationship. One author can write many books as well as it is also possible that one

book may be written by more than one authors.

Book_Author

PK,FK1

PK,FK2

BookCode

AuthorID

In the one-to-one cardinality we can merge two tables into one. For example,

in the example of Country and Capital, both tables can be merged into one i.e., Country

(CountryCode, CountryName, Capital). In the one-to-many cardinality two tables are

needed. Similarly, in many-to-many relation three tables should be there, in which two

tables represents entities and third table act as bridge table.

7.8 EXAMPLE OF ER-DIAGRAM

Consider an application of ‘Online Sales’. Company sales different category of

products. One category should have many products. One product should have many

features. Similarly, one feature should be there in the many products. Customer can

place many orders and also one sales order can have multiple products. We are

limiting our discussion up to here to make the example easier, simpler and having less

complexity. Readers of this book can include supplier and purchase details, product

feedback, rating, sales and purchase return etc. as per their own assumptions and

knowledge.

Title
Price
Year

BookCode PK

Book Author

PK AuthorID

AuthorName
Country
Qualification

107

Cat_Code

Exercise:1 Fill in the blanks

1. Primary keys applied on more than one field is called .
2. Relationship between Country and State is .
3. Types of the relationships are , , and .
4. In the DFD, Entity can be denoted by symbol.
5. symbol is used to denote process in the DFD in Yourdon notation.
6. In the ER-Diagram attributes can be represented by .

7.9 Let us sum up

In this unit we have seen that requirement analysis can be done in two ways.

(1) Structured analysis and (2) Object-oriented analysis. In the structured analysis, an

engineer depicts data flow diagram to represent the flow of the data, and Entity

Relationship diagram to represent database structure. We hope, after learning this unit

student can prepare ER-diagram and DFD of any given system.

Category

PK Cat_Code

 Cat_Name

Cat_Image

Customer

PK CustometID

Name

Address

Phone

Email

SalesDetails

PK

PK,FK2

InvoiceNo

ProductCode

FK1

Price

Qty

CustometID

Product_Feature

PK,FK2

PK,FK1

ProductCode

FeatureID

 FeatureValue

Sales

PK InvoiceNo

FK1

CustomerID

Invoice_Date

CustometID

108

7.10 Check your progress: Possible Answers

Exercise: 1

1. Composite key
2. One-to-Many
3. One-to-One, One-to-Many, Many-to-Many
4. rectangle
5. Circle
6. oval

7.11 Further Reading

1. Software Engineering – A Practitioner’s Approach by Roger S. Pressman
(McGraw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)
3. System Analysis and Design Methods by Gary B. Shelly, Thomas J.

Cashman, Harry J. Rosenblatt (CENGAGE Learning)
4. “Software Engineering” by Dr. Ruchita Shah, Dr. Kamesh Raval, Mr. Nitin Shah.

ISBN No: 978-81-942146-4-9 From: Dr. Babasaheb Ambedkar Open University

7.12 Activities

1. Draw a data flow diagram of ‘Online Sales Management system’.
2. Prepare ER-Diagram for school management system. Make suitable

assumptions if required.

109

Unit 8: Object Oriented
Analysis and Design 8

Unit Structure

8.1. Learning Objectives

8.2. Introduction

8.3. Basic terms of Object-oriented analysis

8.4. UML Diagrams

8.5. Use-case diagrams

8.6. Class diagrams

8.7. Sequence diagrams

8.8. Requirement management

8.9. Analysis Modeling

8.10. Let’s sum up

8.11. Check your Progress: Possible Answers

8.12. Further Reading

8.13. Activities

110

8.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know how software system can be analyse with object-oriented approach

 Understand object-oriented analysis related basic terms

 Understand UML diagram of object-oriented analysis and design

 How to draw different types of UML diagrams?

 Know how the quality software product can be determined

8.2 INTRODUCTION

In the previous unit we have seen that an engineer can do the analysis of the

system using any of the method from (1) Structured analysis or (2) Object-oriented

analysis. In the previous unit, we have seen that, if structured analysis is chosen then

data flow diagram (DFD) and entity relationship diagram (ER diagram) are the basic

tools. In this unit we will focus on object-oriented analysis.

Object-oriented analysis and design are extremely popular now a days. In this

section we will emphasis on some basic ideas of object-oriented analysis. We will

emphasis on UML (Unified Modeling Language) which can be understood as a

standard for object-oriented systems. Before we start doing object-oriented analysis,

and learn how to design UML diagrams, first we will give attention on some important

concepts of object-oriented system.

8.3 BASIC TERMS OF OBJECT-ORIENTED ANALYSIS

OBJECT:

Object is a tangible or physical entity of the real world. Generally, object can

have its own data, which is known as property of the object, and in the same way

object can also perform some actions, which known as methods of an object. Normally,

one object cannot have privileges to access the data of another object. Object itself

can have privilege to use its own private data. Object can be anything, any real entity

which has something (called as properties or attributes) and it can do something

(called as methods). For example, person XYZ is a customer of ABC Bank is an object.

111

Customer Identification number (CID), Name, Account No, Balance in the account are

the properties of the customer object, where the customer can perform some actions,

like withdraw the money or deposit the money are the methods of the customer. Similar

to customer, teachers, students, accountants are some of the examples of object.

CLASS:

Similar objects collectively create a class. Those objects having similar

properties and possessing similar behavior create a class. Class can be thought like

a template, which represents multiple objects. Class has variables (properties or

attributes) and functions (methods). Object is an instance of the class. When the object

is created or initiated, from the class then variables declared in the class will become

properties of the object and functions specified in the class will becomes methods of

that particular object. Classes are also known as Abstract Data Types (ADTs).

ABSTRACTION:

Abstraction is the process of identifying characteristics and methods of an

object. Abstraction is the discriminatory examination of certain features of a problem

while ignoring the remaining aspects of the problem. In short, we can say that,

abstraction is the process by which we concentrate on those aspects of the problem

which are relevant and ignore those aspects which are not relevant.

ENCAPSULATION:

Encapsulation is a method in which variables (attributes) of the class and

functions (methods) are club or packaged together as a single unit, and data can be

accessible by the outsiders through its methods only. Encapsulation provides black-

box view to the class, where non-member functions of the class (outsiders) are not

permitted to access the data directly. Generally, in the class variables (attributes or

data) are declared in the private sections, so that only member functions of that class

(those methods written in the class) can access it. If any other function (non-member

function) wants to access it, they need to call any member function (method of the

class), which verify the request is proper or not. If the request is proper and valid then

and then the data will be provided by the method to the requested non-member

function. So essentially, encapsulation enforces security to the data elements of the

class from the outside world.

112

POLYMORPHISM:

Polymorphism is Greek word, which means more forms of the same thing. An

operation may show different behaviors in different instances. Features like function

overloading and operator overloading in an object-oriented programming language is

type of Polymorphism. If two or more functions with same name, can be separated by

a system at execution time by looking to number of arguments passed to it or datatype

of arguments passed. In function overloading, we have different functions but having

same name, which is an example of polymorphism. Polymorphism is increasing

readability of the program. For example, if we have two functions to do sum, first

function to do sum of integer numbers and another function to do sum of float numbers.

Because of the nature of the function is same (computing sum) we can give same

name ‘sum’ to both the functions in object-oriented programming languages like Java,

C#, C++ etc., and we do not have to choose different names like sum and sum1 to

different functions like in C-language.

INHERITANCE:

Inheritance is the process by which developer (programmer) can derive a new

class from the existing class (es). Existing class will act as parent or base class, and

newly generated class from the parent class is called child or derived class. Derived

class receives properties and methods automatically from its base class, so we do not

have to repeatedly define those properties and methods which are already present in

the base class. Inheritance offers reusability of the code (Code specified in the parent

class can be accessible by the child class).

8.4 OBJECT ORIENTED ANALYSIS AND DESIGN

Object-oriented analysis:

Object-oriented analysis is focusing on examine at the problem domain, with the

main purpose of producing a conceptual model of the information gathered in the

preliminary investigation, feasibility study and requirement gathering and analysis

phases of the SDLC, are being studied. Analysis model do not concentrate on

implementation part, or how system is to be prepared. Analysis has to be performed

before the design.

113

Written problem statement or formal vision document is the source of the analysis.

A system may have divided into multiple domains, representing different business,

technologies, or other interest areas. The result of the object-oriented analysis is

functional requirements in the conceptual model.

Object-oriented design:

If we consider analysis to be a definition of the problem, then obviously design

is the process of defining the solution of the problem. Object-oriented design process

describes the components like classes, objects, properties, methods and interfaces

which fulfills functional requirement of the system. OOD converts the conceptual level

model produced by analysis into the technical or environmental model.

8.5 UML DIAGRAMS:

Unified Modeling Language (UML) consists of different types of diagrams which

represent object-oriented analysis. Each diagram focuses on different aspect to

describe and examine the system. These diagrams are:

1. Class diagram: Class diagram is used represents different classes of the

system and relationships among them. Class consists of properties and

methods.

2. Object diagrams: Objects are the instances of the class. Object diagram

represents the relationships among the various system objects. Single class-

diagram can have multiple object diagrams.

3. Use-case diagram: Similar to DFD in structured analysis, use-case represents

external behavior in object-oriented analysis of the system. A use-case diagram

consists of several actions known as use-cases, and their interactions with

different actors (people).

4. Sequence diagram: Sequence diagram represents exchanges between actors

(users) over time period. A sequence diagram is detail behavior with respect to

the time of each use-case (action) of use-case diagram. That means for each

case denoted in the use-case diagram, a separate sequence diagram has to

be designed.

114

5. Collaboration diagram: Collaboration diagram represents the exchanges of

objects of the system with respect to the relationships among the objects.

6. State chart diagram: State chart diagram represents various states of the

software system in response to the different events triggered by the user. A

state chart diagram shows, how the state of the system changes in response to

any internal or external events.

7. Activity diagram: Activity diagram represents explanation of the behavior of

the system. Activity diagram shows details performance of the single function.

8.6 USE CASE DIAGRAM

Use-case diagram provides a fast and simple and efficient way to describe the

purpose of the project. Recently many software engineers are using it for their ongoing

projects, to record high-level purposes of the project in its early phase of development.

Use-case diagram is used to recognize different processes (use-cases) as well

as primary elements (actors) of the system. The primary elements are also identified

as actors and processes of the system are identified as use-cases. Use-case diagram

represents how the different actors of the system are interacting with the different use-

cases of the system.

Use-case diagram concentrates on functional requirements of the system. It

represents the graphical vision of the system functions (use-cases) and users (actors).

ELEMENTS OF USE-CASE DIAGRAM:

It is easier to draw use-case diagram, if you have proper knowledge of its

different components. The components of the use-case diagrams are:

1. Actors

2. Use-Case

3. Relationship between Actor and Use-case

4. Relationship between Use-cases

5. Relationship between Actors

6. System boundary.

115

Sr.

No.

Symbol Description

1

Customer

Actors: An actor can be a user or role (group of users) which

directly interact with the system by invoking different use-

cases (functions) of the system. Generally, Actor can be

human, a hardware device, any department or another system

which operates or communicate with the system. Actors are

always external to the system (outside of system boundary).

Actor can provide data or obtain information from the system

by interacting with different use-cases in use-case diagram.

2

Place Order

Use-Cases: Use-Cases in the Use-Case diagram, represents

set of sequences of actions that system performs. A use-case

describes what a system, sub-system, class or interface does,

but not describe how it does.

3 Relationship between Actor and Use-cases: Relationship between the

Actor and Use-case is communication between the instance of Actor and

instance of the Use-case. It is demonstrated by a straight line between the

contributing Actor and requested Use-case.

Place Order

* *

Customer

Customer place order

4 Relationship between Use-cases: There are two types of relationship are

there between Use-Cases:

[1] Uses / Includes: A Uses / Include relationship between two use-cases

describe that the sequence of actions described in the sub use-case is

included in the sequence of the base use-case. A sub use-case is called

included and base use-case is called including use-cases. For example,

customer can ‘Withdraw’ or ‘Deposit’ money in cash, but in both the cases

account has to be reflected.

116

Withdraw Cash «uses»

*

Update Account

*
* «uses»

Customer Deposite Cash

*

Use-cases Withdraw Cash and Deposit Cash includes Use-case Update Account

Note: Uses / Includes enforce compulsion. In the case of withdraw or deposit

account must be compulsorily (mandatorily) updated.

[2] Extends: Extend is normally used to extend the functionality if one Use-

case by another. For example, in the case of authentication process, if any

error occurs then, it must be logged into log files. Make sure here the sub

use-case will perform if error occurs. If the process of Authentication done

positively then sub use-case ‘log error’ should not performed. Thus,

extended Use-cases represents optional activities.

Log Errors

«extends»

Authentication

* *

Customer

Use-case ‘Authentication’ extends sub use-case ‘Log Errors’

5 Relationships between Actors: Some time different Actors of the system

has to be generalized into one generalized Actor. It is useful while the roles

of different actors are overlapped.

117

Employee

Clerk Manager

Generalization

6 System Boundary: System boundary is a rectangular box, which denote

whole system. All the Use-cases has to be placed inside this rectangle box,

to denote Use-cases are in the system. Actors are the external entities, so

they are placed outside of the rectangle (system).

8.7 CLASS DIAGRAMS

Depending upon the purpose, class diagram can be planned of two ways: (1)

Analysis oriented class-diagram or (2) Design oriented class-diagram. Analysis model

provides just overview of the class, that is names of the attributes and functions.

Whereas, Design model represents attributes with its data type, and functions with

arguments and its return type. So, Design oriented class-diagram is more detailed

version of the class diagram.

Analysis Class Diagram Design Class Diagram

Order

-OrderID

-OrderDate

-DeliveryDate

+CalculateTotal()

+CalculateGST()

Order

-OrderID : Integer

-OrderDate : Date

-DeliveryDate : Date

+CaculateTotal() : Single

+CalulateGST(in Total : Integer) : Single

118

ELEMENTS OF CLASS DIAGRAM:

1. Class: As depicted in the figure given above, in a class-diagram, class has to

be represented in rectangular shape divided into three sections. First section

represents the name of the class. Second section lists all the attributes of the

class and third section list all the methods of the class.

2. Relationships: One class can relate with another class in the class-diagram,

with different types of relationships. The types of relationships in the class

diagram are discussed below with examples:

[A] Association:

Conceptual or physical connections between the classes can be demonstrated

as association (simple line). In the class-diagram association relationship should

be labeled as verb. For example, teaches, work for, manages etc. can be valid

names for the association relationship. Association relationship can be

unidirectional, bidirectional or reflexive.

[B] Generalization:

Generalization is the process of generating base class, If two or more classes have

common attributes or methods. Common attributes and method are placed in the

119

generalized class (super or base class). For example, if student class has attributes

like, Name, Date of Birth, Address, Email, Phone number, Roll No, course etc. and

Faculty class has attributes like, Name, Date of Birth, Address, Phone number,

Department, Salary etc. Then generalized class Person can be formed with common

attribute. Here, base class (Person) and derived classes (Student, Faculty) have ‘is a’

type of relationship. For example, each student or each faculty is a person.

Generalization can be represented by symbol:

Generalization relationship symbol

Person

-Name : String

-DOB : Date

-Address : String

-Email : String

-PhoneNo : Long

 Faculty

-Department : String

-Salary : Integer

Generalization relationship in class-diagram

[C] Aggregation:

The relationship between aggregated object and its components can be described

as aggregation. Aggregation is a kind of association. Aggregation can be

represented by symbol:

Aggregation relationship

Example of Aggregation relationship (Car made by While Engine etc.)

[D] Composition:

-RollNo : Integer

-Course : String

Student

120

When multiple instances of the same class represent another class then

composition is used. The difference between Aggregation and Composition is in

aggregation multiple instances of different class represent another class, whereas in

composition multiple instances of same class. It is represented by:

Composition Relation

Example of Composition

[E] Multiplicity:

Multiplicity notation is placed near ends of the relationship. It shows how the

instances of one class are linked instances of another class.

Indicator Meaning

0..1 Zero or one

1 One only

0..* Zero or more

* Zero or more

1..* One or more

3 Three only

0..5 Zero to Five

5..15 Five to Fifteen

2,4 Two or Four

For example, one company can have one or more employees can be represented as:

8.8 SEQUENCE DIAGRAM

A sequence diagram is used to express each Use-case in details with respect to time.

A sequence diagram represents the sequence of actions occurs in a Use-case, and

order of each action with respect to time.

ELEMENTS OF SEQUNCE DIAGRAM:

The following elements are used to draw the sequence diagram.

121

Life Lines:

Lifeline represents role or instances which participate in the sequence of interactions.

Lifelines are drawn as a rectangle with a dashed vertical line from the center of the

rectangle. Inside the rectangle name of the class, name of the instance or both can be

specified.

Messages:

.

Lifeline of the Sequence diagram

Message defines a kind of integration between instances (Actor or Lifeline).

Communication (message passing) can invoke by mean of function calls. It is shown

in the following figure:

Message passing between Lifelines

The condition placed in the sequence diagram, that is the balance is less than 100 the

call function ‘debitcharges()’ is called guard condition.

Activation:

Activation is represented as vertical thin boxes on the dotted lines of the

Lifelines, which represents the time an object takes to complete the task. Following

diagram shows the activation.

122

Objects:

There are four different types of objects are the, who interact with each other in the

sequence diagram. All these objects are described below:

Actor

Actor

Actor object initiate the task. Actor is an instance of

the class and it is external entity. The role of the actor

is same as in Use-case diagram.

Boundary

Instance of the boundary class is used to model the

communication between system and external objects

like Actor.

Controller

Controller is used to control the behavior specific use-

case. It represents logic. Generally, it comes between

boundary and entity.

Entity

Entity object is used to store the associated behavior

or model information. It represents stores of

information in the system.

8.9 Analysis Modeling

Analysis modeling can be organized by it four elements – scenario-based

modeling, flow-oriented modeling, class based modeling and behavioural modeling.

123

1. Scenario based modeling: In the scenario-based model, we draw the use case

diagram, Activity diagram and Swimlane diagram.

Use-Case: Use case is used to represent the various scenarios by the user’s

(Actor) point of view. Use-case diagram is a simple and relatively easier approach

to represent what is outside of the system (like Actors) and what system should be

performed (use-cases). We have already discussed how to prepare the use-case

diagram in section 8.6

Activity Diagram: In the activity diagram we concentrate on main tasks or

functions (use-cases) of the use-case diagram, and represents what Actor can

obtains, produces or change in the system. Detailed communications of the different

users of the system (Actors) and tasks of the system (use-cases) can be

represented by activity diagrams.

Swimlane Diagram: It is nothing but the useful variation in the activity diagram and

allows the modeler to represent the flow of activities described by the user-case

and at the same time indicate which actor or analysis class has responsibility for

the action described by an activity rectangle.

Responsibilities are represented as parallel segments that divide the diagram

vertically, like the lanes in a swimming pool.

2. Flow-oriented modeling: Flow-oriented modeling represents flow of the data in

the system. It Represents how data objects are transformed as they move through

the system. We have already discussed Data Flow Diagram (DFD), which shows

the transitions of the data in the system. To draw the DFD, we need to identify

Entity, Process, Data stores and transition of the data among them are represented

by arrow. In the Unit:6, we have already discussed the notations and rules of how

to draw DFD.

3. Class-based modeling: Class based modeling is also known as Object-Oriented

Analysis. We have seen in that object-oriented analysis begins by identifying

classes. Once the classes are recognized then its attributes and methods are

identified. Classes are represented with their relations with the other classes. In this

process basic fundamentals of the object-oriented analysis such as Abstraction,

Encapsulation, Polymorphism and Inheritance is used. The elements of the class

diagram are already discussed in the section 8.7.

124

4. Behavioral Model: It indicate how system will behave or respond to the event

triggered by the external entities or actors of the system. To create the model, the

analyst must perform the following steps:

1. Evaluate all use-cases to fully understand the sequence of interaction

within the system.

2. Identify events that drive the interaction sequence and understand how

these events relate to specific objects.

3. Create a sequence for each use-case.

4. Build a state diagram for the system.

5. Review the behavioral model to verify accuracy and consistency.

To represents the various changing states of the system, state chart diagram is used.

The States of a System

 State—a set of observable circumstances that characterizes the behavior of a

system at a given time

 State transition—the movement from one state to another

 Event—an occurrence that causes the system to exhibit some predictable form

of behavior

 Action—process that occurs as a consequence of making a transition

Exercise:1 Fill in the blanks

1. In the Use-case diagram user is called .
2. diagram is used to show changes in the state of the system.
3. In the Sequence diagram is the interface between user and system.
4. In the class diagram if the construction of the object made by the instance if different

classes then and if construction is done by the multiple instances of the same
class the is used.

5. In the class diagram process of making new class from two or more classes having
common attributes is called .

6. In the sequence diagram is message is passed on the basis of condition then condition
is known as condition.

7. In the sequence diagram validation is done by .

8.10 Let us sum up

In this chapter we have learnt how can we do object-oriented analysis and
design using UML diagram. We have seen the rules, symbols and components of Use-

125

case diagram, Class diagram, Sequence diagram and so on. At the end we have seen
the fundamental concept of designing good and quality system. We hope now student
can draw UML diagrams of any system if clear and concise requirements are given.

8.11 Check your progress: Possible Answers

Exercise: 1
1. Actor
2. State-chart diagram
3. boundary
4. aggregation, composition
5. generalisation
6. guard
7. controller

3.12 Further Reading

1. Software Engineering – A Practitioner’s Approach by Roger S. Pressman
(McGraw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)
3. System Analysis and Design Methods by Gary B. Shelly, Thomas J.

Cashman, Harry J. Rosenblatt (CENGAGE Learning)
4. Magnifying object-oriented analysis and design by Arpita Gopal and Netra

Patil (PHI)
5. Object-oriented modeling and design by James Rumbaugh, Michael Blaha,

William Premerlani, Frederick Eddy, William Lorensen (PHI)
6. “Software Engineering” by Dr. Ruchita Shah, Dr. Kamesh Raval, Mr. Nitin Shah.

ISBN No: 978-81-942146-4-9 From: Dr. Babasaheb Ambedkar Open University

3.13 Activities

1. Draw UML diagrams for online library management system. Make suitable
assumptions.

126

Unit 9: UML Diagram of System
A Case Study 9

Unit Structure

9.1 Learning Objectives

9.2 Introduction

9.3 UML diagrams – A Case Study

9.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know how to prepare Use-Case diagram

 Understand how to draw sequence diagram

 Understand how to represent class and object diagrams

 How to draw activity and state-chart diagrams

9.2 INTRODUCTION

In the previous unit we have seen that how can a software engineer can do

object-oriented analysis of the system and represent his/her work with the help of

different UML diagrams. We have discussed the methodology and rules to develop

different types of UML diagram. Now, in this unit we will try to draw all those diagrams

by taking a hypothetical case study.

127

9.3 UML DIAGRAMS – A Case Study

A Shri Shiv-Shakti Glass Traders (SSGT) is a glass-based product selling

company, wants to develop website, so that the company can facilitates its customers,

to select different types of glasses and place the order online. They also do the work

related to partitioning of cabins in the hall using glasses and frames of aluminium.

They need a web-based application, so that customer can specify their requirements,

by viewing different types of glasses, their thickness, designs on the glass and prices.

SSGT wants to send their quotes of the customer’s requirements online through the

new web-site to be develop. Customer should also place the order online through the

website. Day-to-day the administrator of the website, should checks for the customers’

requirements and if any requirement is there, administrator will prepare the quotation

based on the requirements specified by the customer, and send it to the customer.

Once payment is made then Invoice should be generated. Customer should log-in to

the system and should also check past transactions with the company.

This online web-application also helps the company to manage their purchases,

and purchase return transactions of different raw materials from the supplier. System

has to produces different types of reports and helps company (SSGT) to manage

schedule of the worker.

Draw the various UML diagrams for the system described above.

128

Use-Case diagram of the SSGT system

129

Object Diagram of Login and User Category

130

Object Diagram of Sales

131

 Registration

 Login

SEQUENCE DIAGRAMS

132

 Manage Profile

 Manage Product

133

 View Product

 Search Product

134

 Select Product

 Quotation

135

 Purchase

 Purchase Return

136

 Sales Order

 Manage Profile

137

 Manage Product

 View Product

138

 Search Product

 Select Product

139

 Quotation

 Purchase

140

 Purchase Return

 Sales Order

141

Collaboration Diagrams

142

Activity Diagram activity Purchase

Activity Diagram

143

State-chart diagram for administrator user

144

Unit 10: Software Design 10

Unit Structure

10.1 Learning Objectives

10.2 Introduction

10.3 Features of good software design

10.4 Design concepts

10.5 Cohesion and coupling

10.6 Design modeling

10.7 Pattern based software design

10.8 Let’s sum up

10.9 Check your Progress: Possible Answers

10.10 Further Reading

145

10.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know – “What is design modeling”

 Understand the method of preparing design model using analysis model.

 Understand rules of preparing good modular design of software

 Understand meaning of coupling and cohesion

 Use patterns in the software design

10.2 INTRODUCTION

The main purpose of the Software Design phase is to convert the requirements of

the customer, as stated in the SRS document, in the form of implementable using any

programming language. To implement design straightforwardly into any programming

language, following items are desired in the design phase:

 Different modules are needed to identified and implement design resolution

 Relationships among these identified modules are required.

 Interfacing between various modules is also needed. Interface classifies the

exact data values communicated between the modules.

 Declaring data structures for each module.

 Algorithm needed to implement/code each module.

Remember that the design process of software takes software requirement

specification (SRS) document as an input and produce the documents mentioned

above. A good software design is rarely to achieve in a single-step procedure, and it

requires several iterations. Software design can broadly categorize into two important

phases:

 Preliminary or High-Level design

 Detailed or Low-Level design

In the Preliminary design we need to recognize different modules, relationships

between these modules, identifies and defines interfaces (method of data exchange)

between the modules. The outcome generated by Preliminary design is program

structure which also known as system architecture. In the detailed (low-level) design,

146

data structures and algorithms for different modules are prepared. There are large

number of methodologies exists to make good software design. We will discuss only

few of them, but before discussing that we should understand what is good software

design?

10.3 FEATURES OF GOOD SOFTWARE DESIGN

It is very difficult to feature-out good software design for large number of problems.

For different types of application software, the term “Good software design” can varies,

and it is dependent on the targeted application. However, many researchers and

software engineers approved on few required characteristics, which are discussed

below:

 Correctness: In ‘Good software design’ all the functionalities of the system

should be implemented correctly. If all the functionalities are not properly

implemented or should have errors in it then, software design will become

worthless. So, it is very essential that the software design should be error-free

and acceptable.

 Efficiency: A software design should also be efficient.

 Maintainability: A software design should easily adopt new features, any

updates, or any kind of changes in the system.

 Understandability: A ‘Good software design’ is such, which can be easily

understandable. If the software design is simple and easy to understand, it will

also be easy to implement. If the system design very complex to understand,

maintainability of system will become tedious and it increases the efforts.

For ‘Good software design’, having all the features discussed above, a software

engineer has to take care for the following things:

 Different design components should have meaningful and reliable names. It

should increase the readability and easy to understand.

 The ‘Good software design’ should be modular in nature. By mean of

modularity, the larger software has to be divided in to clean set of sub-programs

called modules.

147

 The ‘Good software design’ should not be complex. The modules of the system

should be arranged in layered approach in hierarchical (tree shaped) diagram.

It is also called well-ordered arrangement of all the modules.

10.4 DESIGN CONCEPTS

In this section we will discuss the concepts of designing the system:

Abstraction: At the uppermost-level of abstraction, solution of the problem situation

is described in the detail manner. At lower-level of the abstraction, details solution of

the problem is provided. As we move in different levels of the abstraction from

uppermost-level to lower-level, we are producing the procedural (sequence of

instructions) form of the abstraction. In general, abstraction is the process of identifying

attributes and methods. Data abstraction is a named group of data elements that

represent a data object.

Information hiding: The term information hiding is related to controlled interfaces.

Hiding means that effective modularity can be achieved by defining by a set of

independent modules that interconnects with one another in such a way that only

required information can be exchanged between them. The different types of data are

encapsulated as a single unit which cannot accessible directly by other modules.

Modularity: Large and complex system has to be divided into number of small and

manageable sub-components which are individually named and referenceable. The

small and manageable sub-components are called modules. Larger program

developed as a single unit or module is not readable, also difficult to manage and

tough to implement. Rather than handling the whole software as a single unit, it is

easier to solve a lengthy and complex problem, by breaking it into controllable pieces

– “Divide and conquer”. Modularity reduces the complexity and enhances readability

of the problem.

Clean decomposition: The concept of clean decomposition is focused on separation

of different modules. How two modules can be separated from each other? Obviously,

the answer of this particular question is – by their functionalities. The identifications of

different modules have to done by detecting their functionality. Module should have

many functions, which are strong enough to perform the job either independently or

148

with the support of other functions from the same module. Function calls outside the

module (external functions) is not a good design. In the software design modules

should be high cohesion and low coupling. It means modules should more self-

dependent and less interdependence on each other. Consider the following

figure:10.1, to distinguish the good software design and bad software design, in which

M1, M2, M3 …etc. are the modules, and their dependencies are denoted by arrows.

[I] Good software modular design [II] Poor software modular design

Figure:10.1 Modular designs

Functional Independence: Functional independence is a key concept for good

software design, and good design is the key concept for quality software product.

Function independence represents the strength of the function. The function has to be

robust enough and it should not be reliant on other functions of other modules. The

module decomposition should have high cohesion and low coupling. Cohesion and

coupling are discussed in the next topic (9.5) in greater details.

A module having high coherence and low coupling is said to be a functional

independence of other modules.

Module arrangement: In a good design of software, the modularity should have

following features:

 Layered solution

 Low fan-out

 Abstraction

Patterns: Design pattern brings the spirit of a proven design solution to a recurrent

problem within a certain situation within computing concerns. A design pattern

149

provides a design structure that solves a particular design problem within the specific

situation, and within “forces” that may have an impact on the manner in which the

pattern is applied. The commitment of each design pattern is to deliver a description

that enables a designer to determine:

[1] Is pattern can be applicable to the current work?

[2] Is the patter reusable?

[3] Are the pattern serves as a guide for developing a similar, but structurally or

functionally different pattern?

10.5 COHESION AND COUPLING

We have discussed above that the “Good Software Design” suggests clean

decomposition of the modules of the given problem. To obtain this, arrangement of the

module is most needed. The terms cohesion and coupling are related to the

arrangement of modules. In the arrangement of the modules, we have to follow thumb

rule – “High cohesion and Low coupling”. Cohesion is a measure of the functional

strength of a module (function of one module should not be dependent on other

functions of other modules) and coupling is a measure of the degree of interaction or

interdependence between the modules. High cohesion and low coupling means

modules have to be functionally independent of other modules. Cohesive module

performs single task of function. It should not be depended on the functions of other

modules. Functionally independent module has less interaction with other modules.

If the modules are functionally independent then, that design is considered to

be a – “Good software design” and it helps us in following ways:

Reusability: It allows us to reuse the module, because each module has well-defined

and precise functions, which are not dependent to other modules. Therefore, cohesive

module can easily be taken out from one project and can easily reuse it into the other

projects when it is needed.

Understandability: If the modules are arranged with high cohesion and low coupling,

have simpler and less complex design which is easier to understand. This makes error

separation much simpler.

150

Isolation of Errors: If the modules are dependent on each other, then error of one

module, will be propagated into other modules. If the modules are independent then

chances of propagating error will be reduced. It is easier to find the error and eliminate

it from the function.

10.6 DESIGN MODELING

A design model is an object-based picture(s) that represent the use cases for a

system, or represent it in another way. It represents the system implementation and

source code in a diagrammatic fashion. The couple of advantages of the design

models are:

1. Representation is much simpler that it represented by words.

2. Any person can see the diagrammatic representation and quickly get the

general idea of the system.

As we know, the design modeling is based on the analysis, it also involves number

of steps:

1. Data design elements

The data design element produced a model of data that represent a high level of

abstraction. This model is then more refined into more implementation specific

representation, which is processed by the computer-based system. The structure of

data is the most important part of the software design.

2. Architectural design elements

The architecture design elements provide us overall view of the system. The

architectural design element is generally represented as a set of interconnected

subsystems that are derived from analysis packages in the requirement model.

The architecture model is derived from following sources:

 The information about the application domain to build the software.

 Requirement model elements like data flow diagram or analysis classes,

relationship and collaboration between them.

 The architectural style and pattern as per availability.

151

3. Interface design elements

The interface design elements for software represents the information flow within it and

out of the system. They communicate between the components defined as part of

architecture.

Following are the important elements of the interface design:

1. The user interface

2. The external interface to the other systems, networks etc.

3. The internal interface between various components.

4. Component level diagram elements

The component level design for software is similar to the set of detailed

specification of each room in a house. The component level design for the software

completely describes the internal details of each software component. The processing

of data structure occurs in a component and an interface which allows all the

component operations. In a context of object-oriented software engineering, a

component shown in a UML diagram. The UML diagram is used to represent the

processing logic.

5. Deployment level design elements

The deployment level design element shows the software functionality and sub-

system that allocated in the physical computing environment which support the

software. The components arrived at during the component level design step are

groped for the purpose of delivery to their final destination.

10.7 PATTERN BASED SOFTWARE DESIGN

Developing software is challenging task, and developing a software that can be

easily reused in the other projects is even harder. The designs for the various sections

of the software coding, should be general enough so that it can be utilized in the future

problems. Pattern are useful in designing the software in determining the appropriate

granularity and in designing the system architecture that can be reused in the future

projects as well as easy to update or change in the future. At a design level, patterns

152

allow large-scale reuse of software architectures by capturing the expert’s knowledge

of pattern-based software development.

DESIGN OF PATTERN TEMPLETE:

Name of the Pattern: Describes the essence of the pattern in a short but expressive

name.

Intent: Describe pattern and what it does.

Also-known as: List of the similar words to the pattern.

Motivation: Describe the example of the problem

Applicability: Record design solutions in which the pattern can be applied.

Structure: Describe the structure of class to implement pattern

Participants: Describe the responsibility of the class, we have designed into the

implementation of pattern.

Collaboration: Describes collaboration of the participants to carry responsibilities.

Consequences: Focuses on the considerable potential trade-offs, in the

implementation of pattern.

Related patterns: Provides references to the related pattern designs.

DESCRIBING PATTERN DESIGN:

1. Good designers of any field have ability to see patterns that characterized a

problem and related pattern that can be implement to create a solution.

2. Description of the pattern design can be considered a set of design forces.

a. All non-functional requirements (e.g., portability, ease of maintainability)

associated the software for which the pattern is to be applied, is

described by Design forces.

b. Design forces describes conditions and environment, that may exist in

the pattern design.

c. Design forces also describes the constraints that may restrict the manner

in which the design pattern is to be implemented.

3. To accommodate a variety of problems, the attributes of the patterns (classes,

collaborations etc.) are adjusted.

153

4. The attributes which represent the characteristics of the pattern may store in

the data base, so that based on the attributes we can search the pattern.

5. Guidance related to any complications should be provided in the pattern design.

6. Pattern design should have appropriate name.

HOW TO USE PATTERNS IN DESIGN?

After developing the analysis model, software designer can examine detailed

representation of the problem to be solved. Also designed has to focused on the

contrarians that are imposed by the problem. Design patterns can be used throughout

the software design. Examination of the problem description at each level of

description opens one or more different types patterns, which are discussed below:

Architectural patterns: Architectural pattern defines the overall structure of the

software. The overall structure of the software indicates components (subsystems) or

the software, relationship between subsystems, and rules which specifies relation

among packages, classes, components, or subsystem of the architecture.

Design patterns: Design pattern addresses a specific element of the design such as

an aggregation of components to solve some design problems, relationships among

components, or the mechanisms for effecting component-to-component

communication.

Idioms: Idioms are also known as coding patterns, these language-specific patterns

generally implement an algorithmic element of a component, a specific interface

protocol, or a mechanism for communication among components.

Exercise: 1

1. is a measure of the functional strength of a module.
2. between two modules is a measure of the degree of interdependence

or interaction between the two modules.
3. A module having high and low is said to be a functional

independence of other modules.
4. design concept suggests to divide the large unmanageable system,

into number of manageable sub-systems.
5. system analysis model, focuses on events, state and state transitions.

154

10.8 Let us sum up

In this chapter we have learnt how can we make design model from the analysis
model. We have discussed that design modeling is prepared from the analysis model.
Each abstraction level of analysis modeling is translated in the design modeling where
the components of the software such as packages, classes, and relationship among
them is prepared. We hope student can now understand design modeling and its use
in software production.

10.9 Check your progress: Possible Answers

Exercise: 1
1. Cohesion
2. Coupling
3. Cohesion, Coupling
4. Modularity
5. Behavioral Model

10.10 Further Reading

1. Software Engineering – A Practitioner’s Approach by Roger S. Pressman
(McGraw-Hill international edition).

2. Fundamentals of Software Engineering by Rajib Mall (PHI)
3. System Analysis and Design Methods by Gary B. Shelly, Thomas J. Cashman,

Harry J. Rosenblatt (CENGAGE Learning)
4. Magnifying object-oriented analysis and design by Arpita Gopal and Netra Patil

(PHI)
5. Object-oriented modeling and design by James Rumbaugh, Michael Blaha,

William Premerlani, Frederick Eddy, William Lor
6. “Software Engineering” by Dr. Ruchita Shah, Dr. Kamesh Raval, Mr. Nitin Shah.

ISBN No: 978-81-942146-4-9 From: Dr. Babasaheb Ambedkar Open University

155

Dr. Babasaheb BSc(IT)-303

Ambedkar
Open University

Software Engineering

BLOCK 4: SOFTWARE TESTING

UNIT 11

SOFTWARE TESTING CONCEPTS 158

UNIT 12

BLACK-BOX TESTING 176

UNIT 13

WHITE-BOX TESTING 191

UNIT 14

LEVELS OF TESTING 206

156

BLOCK 4: SOFTWARE TESTING

Block Introduction

In this block-4 of the Software Engineering, we have discussed about

software testing. We will discuss What is software testing? Why software testing is

important for producing quality software products? How many types of testing?

And What are the level of the testing?

With the advancement in software industry, demand of quality products has

been increasing significantly. To develop quality products software testing plays an

important role. Before anyone else is finding error or bug from the software, it is

essential to find out the bugs and eliminate it from the software product become

essential. Study software testing explain different methodology so that an engineer

can find the bugs from the software product.

In this block, we will learn how software testing can be done and also what

different types of approaches are used to find out bugs from the software in the

software industry.

Block Objective

The main objective of the block is to explain importance of software testing

and how different types of testing like black-box and white-box testing can be done.

Now a days, software testing is done as a separate phase of SDLC, but it is included

in each phase of SDLC.

Mainly software testing is divided into two categories: [1] Static testing and

[2] Dynamic Testing. Inspection, Walkthrough are the methods of static testing.

Where as Dynamic testing can be divided in two categories. [1] Black-Box testing

where the code to implement software is not considered and [2] White-Box testing

where the code to implement software functionality is considered in testing.

Different methods are used in the black-box and white-box testing are used in the

industry. Few widely used methods are explained in this block.

Testing process for the software is also done on different level for example

unit testing, integration testing, system testing, acceptance testing. This block aim

to give brief idea about all these different types of testing techniques.

157

Block Structure

BLOCK 4: SOFTWARE TESTING

UNIT 11 SOFTWARE TESTING CONCEPTS

Objectives, Introduction, SDLC, SDLC models, Quality concepts,

Verification and Validation, Goals of software testing, Static and

Dynamic testing, Let Us Sum Up

UNIT 12 BLACK-BOX TESTING

Objectives, What is black-box? Need for black-box testing, Advantages

and disadvantages of black-box testing, Boundary value analysis,

Equivalence class partitioning, Decision tables testing, Let Us Sum Up

UNIT 13 WHITE-BOX TESTING

Objectives, White-box testing, Need of white-box testing, Advantages

and disadvantages of white-box testing, Black-box vs White-box

testing, Logic coverage criteria, Basis path testing, Let Us Sum Up

UNIT 14 SOLVED PROGRAMS-III

Objectives, Unit testing, Integration testing, System testing,

Performance testing, Acceptance testing, Let Us Sum Up

158

Unit 11: Software Testing
Concepts 11

Unit Structure

11.1. Learning Objectives

11.2. Introduction

11.3. Software Testing Concepts

11.4. Software Development Life Cycle (SDLC)

11.5. SDLC Models

11.6. Quality Concepts

11.7. Verification and Validation

11.8. Goals of Software Testing

11.9. Software Testing Life Cycle

11.10. Static and Dynamic Testing

11.11. Let’s sum up

11.12. Check your Progress: Possible Answers

11.13. Further Reading

11.14. Activities

159

11.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know various testing concepts

 Understand SDLS

 Learn how different SDLC models works

 Learn different quality management terms

11.2 INTRODUCTION

Testing is the process of demonstrating that there are no errors. The purpose

of testing is to show that the software performs its required functions correctly. It is a

method to check whether the actual software product matches expected requirements

and to ensure that software product is Defect free. It involves execution of

software/system components using manual or automated tools to evaluate one or

more properties of interest. The purpose of software testing is to identify errors, gaps

or missing requirements in contrast to actual requirements. Testing is not an intuitive

activity rather than a process. Therefore, testing should be performed in a planned

way. Testing is the process of executing a program with the intent of finding errors. It

is a concurrent lifecycle process of engineering, using and maintaining test-ware in

order to measure and improve the quality of the being tested. Software testing should

be effective, not exhaustive.

11.3 SOFTWARE TESTING CONCEPTS

 Software Testing: Software testing is the process of demonstrating that there

are no errors.

 Errors: Whenever a development team member makes a coding mistake then

errors are produced.

 Fault: When error exists, fault occurs. A fault, also known as a bug or defect,

is a result of an error which can cause system to fail.

160

 Failure: It is an inability of a system or component to perform a required

function according to specification.

11.4 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

SDLC is a process followed for a software project, within a software

organization. It consists of a detailed plan describing how to develop, maintain, replace

and alter or enhance specific software. The life cycle defines a methodology for

improving the quality of software and the overall development process. It is a pictorial

and diagrammatic representation of the software life cycle.

Implementation
& maintenance

Requirement
Analysis

Testing
Feasibility

Study

Coding Design

Activities covered by SDLC are,

 Requirement Analysis

 Feasibility study

 Design

 Coding

 Testing

 Implementation and Maintenance

161

Requirement Analysis:

The requirement is the first stage in the SDLC process. It is conducted by the

senior team members with inputs from all the stakeholders and domain experts in the

industry. This activity gives the view of scope of the entire project. Requirements

Gathering stage need teams to get detailed and precise requirements. This helps

companies to finalize the necessary timeline to finish the work of that system.

Feasibility Study:

Feasibility study is the series of tests that defines whether to proceed further to

develop a system or not. It is performed by the project team. If the system is feasible

with all criteria, then the organization accepts the system to be developed. Feasibility

study can be,

o Economical feasibility looks into number of expenses and income.

o Technical feasibility checks for required hardware, software and network

resources to develop a system.

o Operational feasibility ensures that the system will be easily operatable

once it is developed.

o Schedule feasibility ensures that the system will be developed within the

specified time duration.

Design:

In this third phase, the system and software design documents are prepared as

per the requirement specification document. This helps define overall system

architecture. In the initial stage of design, basic outline plan for the entire system is

created. Once the basic architecture is designed, detailed design of the system is

started in which each module is designed in detail.

Coding:

Once the system design phase is over, the next phase is coding. In this phase,

developers start building the entire system by writing code using the chosen

programming language. In the coding phase, tasks are divided into units or modules

and assigned to the various developers. It is the longest phase of the Software

162

Development Life Cycle process. They also need to use programming tools like

compiler, interpreters, debugger to generate and implement the code.

Testing:

Once the software is complete, and it is deployed in the testing environment.

The testing team starts testing the functionality of the entire system. This is done to

verify that the entire system works according to the customer requirement. Individual

modules are tested first. After that, all modules are integrated together and entire

system is being tested.

Implementation and Maintenance:

Once the software testing phase is over and no bugs or errors left in the system

then the final deployment process starts. Based on the feedback given by the project

manager, the final software is released and checked for deployment issues if any. The

software is delivered to the client and installed on the specified hardware platform and

also provides maintenance services

11.5 SDLC MODELS

There are different software development life cycle models used in software

development process. Each process model follows a series of phase unique according

to its type in the step of software development.

 Waterfall Model

 Spiral Model

 V-process model

11.5.1 Waterfall Model:

The waterfall model is the most commonly used software development process

model. It consists of series of activities with some arrows pointing downwards and

some pointing upwards. A project starts with an initial phase and once it is completed,

it moves to the next phase. The down arrow indicates that when one activity is

163

completed, next activity can be started. The back arrow indicates that if any changes

are required than it can be performed only in the previous activity.

Waterfall Model

 Requirement Gathering: During this phase, requirements from the client are

collected. There are various requirements gathering techniques through which

customers’ requirement are collected.

 Analysis: Once the requirements are collected, there are analysed and SRS is

generated from it. Different flow graphs are prepared.

 System Design: During this phase, basic outline plan for the entire system is

prepared. And then each module and forms are designed in detail with proper

validations.

 Coding: After completion of design phase, the programmers write code with

the specified programming language.

 Testing: Testing is the activity in which different modules are tested first (unit

test). Once unit testing is done, the testing process proceeds to the integrated

164

system in which all modules are combined and the entire system is tested

again.

 Implementation: This is the last phase of waterfall model where the system is

deployed onto some hardware platform.

Advantages:

 Simple and easy to understand and use

 Works well for smaller projects where requirements are very well understood.

 Phases are processed and completed one at a time.

Disadvantages:

 High amounts of risk and uncertainty.

 Cannot accommodate changing requirements.

11.5.2 Spiral Model:

The spiral model is an iterative model in which the requirement gathering,

design, coding and testing are performed iteratively till all requirements are met. A

software project repeatedly passes through these phases in iterations called Spirals.

Using the spiral model, the software is developed in a series of incremental releases.

During the early iterations, the additional release may be a paper model or prototype.

During later iterations, more and more complete versions of the engineered system

are produced. The spiral model has four phases.

165

Advantages:

 Changing requirements can be accommodated.

 Requirements can be captured more accurately.

 Development can be divided into smaller parts and the risky parts can be

developed earlier which helps in better risk management.

Disadvantages:

 Not suitable for small or low risk projects and could be expensive for small

projects.

 Process is complex

 Spiral may go on indefinitely.

11.5.3 V-Process Model:

V-Model also referred to as the Verification and Validation Model. In this, each

phase of SDLC must complete before the next phase starts. It follows a sequential

design process same as the waterfall model.

166

There are the various phases of V-model:

 Requirement gathering: This is the first step where product requirements

understood from the customer's side. This phase contains detailed

communication to understand customer's expectations and exact

requirements.

 System Design: In this stage system engineers analyse and interpret the

business of the proposed system by studying the user requirements document.

 Architecture Design: The baseline in selecting the architecture is that it should

understand all which typically consists of the list of modules, brief functionality

of each module, their interface relationships, dependencies, database tables,

architecture diagrams, technology detail, etc. The integration testing model is

carried out in a particular phase.

 Module Design: In the module design phase, the system breaks down into small

modules. The detailed design of the modules is specified, which is known as

Low-Level Design

 Coding: After designing, the coding phase is started. Based on the

requirements, a suitable programming language is decided. There are some

guidelines and standards for coding.

167

Advantages:

 Simple and easy to understand and use.

 Works well for small plans where requirements are easily understood.

Disadvantages:

 Not suitable for a complex project.

 Once an application is in the testing stage, it is difficult to go back and change

its functionality.

11.6 Quality Concepts

Quality: Quality is all about meeting the needs and expectations of customers with

respect to functionality, design, reliability, durability, & price of the product.

Software Quality: Quality software refers to software which is reasonably bug or

defect free, is delivered in time and within the specified budget, meet the requirements

and/or expectations, and is maintainable. In the software engineering context,

software quality reflects both functional quality as well as structural quality.

Software Functional Quality − It reflects how well it satisfies a given design, based

on the functional requirements or specifications.

Software Structural Quality − It deals with the handling of non-functional

requirements that support the delivery of the functional requirements, such as

robustness or maintainability, and the degree to which the software was produced

correctly.

Quality Assurance – It is defined as a procedure to ensure the quality of software

products or services provided to the customers by an organization. Quality assurance

focuses on improving the software development process and making it efficient and

effective as per the quality standards defined for software products. Quality Assurance

is popularly known as QA Testing.

168

Quality Control - Quality control popularly abbreviated as QC. It is a Software

Engineering process used to ensure quality in a product or a service. It does not deal

with the processes used to create a product; rather it examines the quality of the “end

products” and the final outcome.

11.7 VERIFICATION AND VALIDATION

Verification:

Verification is a process of checking documents, design, code, and program in

order to check if the software has been built according to the requirements or not. The

main goal of verification process is to ensure quality of software application, design,

architecture etc. Verification activities are performed at the end of each phase of

SDLC. It is also known as static testing, where we are ensuring that "we are

developing the right product or not". The verification process involves activities like

reviews, walk-through and inspection.

Validation:

Validation is a dynamic mechanism of testing and validating if the software

product actually meets the exact needs of the customer or not. The process helps to

ensure that the software fulfills the desired use in an appropriate

environment. Validation activities are performed at the end of one cycle of SDLC.

Validation testing is also known as dynamic testing, where we are ensuring that "we

have developed the product right." The validation process includes activities like

black box testing, white-box testing.

11.8 GOALS OF SOFTWARE TESTING

Software testing is the process of finding errors. It helps in finalizing the software

application or product against business and user requirements. The goals of software

testing may be classified into three major categories:

169

11.8.1) Short-term or immediate goals:

These goals are immediate results after performing testing. These goals may be set

in the individual phases of SDLC.

Bug discovery: The immediate goal of testing is to find errors at any stage of software

development. More the bugs discovered at an early stage, better will be the success

rate of software testing.

11.8.2) Long-term goals:

These goals affect the product quality in the long run when one cycle of the SDLC is

complete. Some of them are discussed here.

 Quality: Since the software is also a product, its quality is primary from the

users' point of view.

 Reliability: Reliability is a matter of confidence that the software will not fail,

and this level of confidence increases with rigorous testing. The confidence in

the reliability, in turn, increases the quality

 Customer satisfaction: the prime concern of testing is customer satisfaction

only. Testing should be complete in the sense that it must satisfy the user for

all the specified requirements mentioned in the user manual, as well as for the

unspecified requirements, which are otherwise understood. A complete testing

process achieves reliability, which enhances the quality, and quality, in turn,

increases customer satisfaction

170

 Risk management: Risk is the probability that undesirable events will occur in

a system. Software testing may act as a control, which can help in eliminating

or minimizing risks.

11.8.3) Post-implementation goals:

These goals are important after the product is released.

 Reduced maintenance cost: The maintenance cost' of any software product

is not its physical cost, as the software does not wear out. If testing has been

done effectively, then the chances of failure are minimized and, in turn, the

maintenance cost is reduced.

 Improved software testing process: A testing process for one project may

not be successful and there may be scope for improvement. Thus, the long-

term post-implementation goal is to improve the testing process for future

projects.

 Bug prevention: It is the consequent action of bug discovery. Though errors

cannot be prevented to zero, they can be minimized. Thus, bug prevention is a

superior goal of testing.

11.9 SOFTWARE TESTING LIFE CYCLE (STLC)

Software Testing Life Cycle (STLC) is a sequence of specific activities conducted

during the testing process to ensure software quality goals are met. STLC involves

both verification and validation. This systematic execution of each step will result in

saving time and effort. The major contribution of STLC is to involve the testers at early

stages of development. The STLC also helps the management in measuring specific

milestones.

STLC consists of following phases:

 Requirement Analysis

 Test Planning

 Test Design

 Test execution

 Test reviews

171

1. Requirement Analysis: When the SRD is ready and shared with the stakeholders,

the testing team starts high level analysis concerning the AUT (Application under

Test). System requirements include functional and non-functional specifications, both

of which present opportunities to test and validate. Requirement analysis often

includes brainstorming sessions, identifying blind spots or unclear areas in the

requirements, and prioritizing certain assessments.

2. Test Planning: The goal of test planning is to take into account the important issues

of testing strategy like resources, schedules, responsibilities, risks and priorities.

Following activities are performed during test planning.

2.1 Defining the test strategy

2.2 Estimating number of test cases, their duration and cost

2.3 Planning the resources required like tools and documents required

2.4 Identifying areas of risks

2.5 Defining the test completion criteria

After test planning, test plan and effort estimation document will be the deliverables.

3. Test Design: One of the major activities in testing is the design of test cases. It is

a well-planned process. It involves the creation, verification and rework of test cases

& test scripts after the test plan is ready. A good test case is one that has been

designed keeping in view the criticality and high-risk requirements in order to place a

greater priority. Thus, the test design phase includes developing test objectives,

identifying test cases and creating their specifications and then developing test case

procedure specification.

After test design, test cases and test data will be the deliverables.

4. Test Environment Setup: The test environment provides the setting where the

actual testing occurs. This is crucial software testing life cycle phase, and it requires

help from other members of the organization. Testers must have access to bug

Requirement
analysis

Test Planning

Test Design
Test

Environment
setup

Test execution

Test review

172

reporting capabilities, as well as the application architecture to support the product.

Without these elements, testers might not be able to do their jobs.

After this stage, smoke test (a software testing process that determines whether the

deployed software build is stable or not.) results are deliverables.

5. Test Execution: In this phase, all test cases are executed including verification and

validation. Verification test cases start at the end of each phase of SDLC. Validation

test cases start after the completion of a module. The process consists of test script

execution, test script maintenance and bug reporting. If bugs are reported then it is

reverted back to development team for correction and retesting will be performed.

After test execution, defect reports, test log, summary reports are deliverables.

6. Test Reviews/Test Closure: This phase is completion of test execution which

involves several activities like test completion reporting, collection of test completion

matrices and test results. Testing team members meet, discuss and analyze testing

artifacts to identify strategies that have to be implemented in future.

After test closure, test closure (summary) report and test metrics are deliverables.

11.10 STATIC AND DYNAMIC TESTING

Static Testing:

Static Testing is a type of software testing in which software application is

tested without code execution. It is called as static because we never execute the code

in this method. Manual or automated reviews of code, requirement documents and

document design are done in order to find the errors. The main objective of static

testing is to improve the quality of software applications by finding errors in early

stages of software development process. Static testing can be done manually or with

the help of tools to improve the quality of the application by finding the error at the

early stage of development; that why it is also called the verification process. The

documents review, high and low-level design review, code walkthrough take place in

the verification process.

Advantages of static testing:

 It is a fast and easy way to find and fix the errors

173

 With automated tools, it is quick and easy to review the software

 It finds errors at the early stage of SDLC which reduces cost also

 With automated tools, it takes less time to check the system

Disadvantages of static testing:

 It is time consuming process if done manually

 Automated tools may work with few programming languages as well as only

scan the code

Dynamic Testing:

Dynamic Testing, a code is executed. It checks for functional behavior of

software system, memory/CPU usage and overall performance of the system. The

main objective of this testing is to confirm that the software product works in

conformance with the business requirements. This testing is also called validation

testing. It executes the software and validates the output with the expected outcome.

It is performed at all levels of testing and it can be either black or white box testing. It

is used to check whether the application or software is working fine during and after

the installation of the application without any error.

Advantages of dynamic testing:

 It finds bugs which are not discovered during static testing

 It identifies vulnerabilities in a runtime environment

 It can be applied with any application

Disadvantages of dynamic testing:

 It requires time and cost to check the system

Difference between static and dynamic testing:

 Static Testing Dynamic Testing

1. Code is not executed Code is executed

2. It means review and examine software It means running and testing the

software

3. It performs verification process It performs validation process

4. It is performed before compilation It is performed after compilation

174

5. It is about prevention of defects It is about finding and fixing defects

6. It takes less time to check the system It takes more time to check the system

7. It is done at early stage of SDLC It is done after completion of one cycle

of SDLC

8. It is more cost-effective method It is less cost-effective method

9. Inspection, walkthroughs and code

reviews are methods of static testing

Black-box and white-box testing are

methods of dynamic testing

Exercise:1 Fill in the blanks

1. Testing is the process of errors.
2. testing checks the system without executing the code.
3. testing requires knowledge of a programming language.
4. activities are performed at the end of one cycle of SDLC.
5. Bug discovery is the goal of software testing.

11.11 Let us sum up

In this chapter we have learnt basic concepts of software testing. We have also

seen how the software development life cycle is used in software development. Along

with these, we have seen different terms related to software quality. We learnt goals

of software testing. We have seen how STLC is used in software testing.

11.12 Check your progress: Possible Answers

Exercise: 1
1. Waterfall Model
2. Software development life cycle
3. Verification, Validation
4. Long-term goals of software testing
5. Static & dynamic testing

11.13 Further Reading

1. Software Testing: Principles and Practices by Naresh Chauhan (OXFORD)
2. Software Testing: Principles and Practices by Srinivasan Desikan,

Gopalaswamy Ramesh(PEARSON)
3. Software Engineering: A Practitioner's Approach by Roger S. Pressman(Mc

Graw Hill Education)

175

11.14 Activities
1. Give difference between Verification and Validation.
2. Differentiate Waterfall and spiral model.

176

Unit 12: Black-Box Testing 12
Unit Structure

12.1. Learning Objectives

12.2. Introduction

12.3. What is black-box testing

12.4. Need for black-box testing

12.5. Advantages & limitations of black-box testing

12.6. When to do black-box testing

12.7. Boundary Values Analysis

12.8. Equivalence Class Partitioning

12.9. Decision table-based testing

12.10. Difference between BVA and equivalence class testing

12.11. Let’s sum up

12.12. Check your Progress: Possible Answers

12.13. Further Reading

12.14. Activities

177

12.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know about black-box testing

 Know why, when and how black-box testing is done

 Understand black-box testing methods

 Learn how to create test cases using different methods

12.2 INTRODUCTION

Black-box technique is one of the major techniques in dynamic testing for

designing effective test cases. This method considers only the functional requirements

of the software or a module. That’s why it is also called functional testing. It is obvious

that in black-box testing, test cases are designed based on the functional

specifications. Input test data is given to the system, which is a black-box to the tester,

and results are checked against expected outputs after executing the software. In this

method, tester selects a function and gives input value to examine its functionality,

and checks whether the function is giving expected output or not. If the function

produces correct output, then it is passed in testing, otherwise failed. The test team

reports the result to the development team and then tests the next function. After

completing testing of all functions if there are severe problems, then it is given back to

the development team for correction.

12.3 WHAT IS BLACK-BOX TESTING

Black-box testing is one type of dynamic testing, taking no notice of its internal

structure. It only focuses on the expected output. So, to implement black-box testing,

knowledge of programming language is not required. So, it is also called Closed-box

technique. Black-box testing is done from the customer’s viewpoint. Black Box Testing

mainly focuses on input and output of software applications and it is entirely based on

software requirements and specifications. This makes it possible to identify how the

178

system responds to expected and unexpected user actions. It is also known as

Behavioral Testing or functional testing.

Example:

Let us consider the login screen of any website. It includes two fields’ username

and password. The tester would check these two fields with the required set of inputs

and outputs only. The tester would not check any logic behind this screen that how it

is implemented. That is called black-box testing.

12.4 NEED FOR BLACK-BOX TESTING

Black box testing helps in the overall functionality verification of the system

under test. It helps in identifying any incomplete, inconsistent requirements as well as

any issues involved when the system is tested. It also addresses the stated

requirements as well as implied requirements. Black-box testing handles valid and

invalid inputs. Because it is not sufficient to simply handle valid inputs. It encompasses

the end user perspectives as it is integral part of black-box testing. The tester may or

may not know the technology or the internal logic of the product. However, knowing

the technology and system internals helps in constructing test cases specific to the

error prone areas.

Finally, we can summarize that black-box testing considers following aspects,

 It is done based on requirements

 It addresses stated as well as implied requirements

 It handles valid and invalid inputs

 It is done from the end user perspectives

179

12.5 ADVANTAGES & LIMITATIONS OF BLACK-BOX
TESTING

Advantages of Black-box testing:

 Test cases can be designed as soon as the functional specifications are

complete.

 Tests will be done from an end user's point of view, because the end user

should accept the system.

 Tester can be non-technical.

 No knowledge of programming language is required.

 Efficient when used on large systems.

 Since the tester and developer are independent of each other, testing is

balanced

 Code access is not required.

Disadvantages of Black-box testing:

 Test cases are difficult to design without having clear functional specifications.

 It is difficult to identify all possible inputs in limited testing time. As a result,

writing test cases may be slow and difficult.

 It is difficult to identify tricky inputs if the test cases are not developed based on

specifications.

 It is not possible to test all the functionalities of the application with the help of

black box testing.

12.6 WHEN TO DO BLACK BOX TESTING

Black-box testing activities require involvement of the testing team from the

beginning of the software project life cycle. Testers can get involved right from the

requirements gathering phase for the system under test. Test scenarios and test data

are prepared during the test construction phase of the test cycle, when the software is

in the design phase.

180

Once the code is ready and delivered for testing, test execution can be done.

All the test scenarios developed during the construction phase are executed. Since,

only the functional requirements are tested, black box testing is started after the

system or a module is designed.

Once the system is designed, black-box testing can be carried out by using

various techniques. The following sections defines different methods of black-box

testing.

12.7 BOUNDARY VALUE ANALYSIS (BVA)

An effective test case design requires test cases to be designed such that they

increase the probability of finding errors. Boundary value analysis solves this issue. It

has been observed that test cases designed with boundary input values have a high

chance to find errors. BVA is applicable when the module to be tested is a function of

several independent variables. BVA is considered a technique that uncovers bugs at

the boundary of input values. Here, boundary means the minimum and maximum

value taken by the input domain.

For example, if A is an integer between the range 10 to 100, then boundary

checking can be done on 10(9,10,11) and on 100(99,100,101).

Boundary Value Analysis offers several methods to design test cases.

12.7.1 Boundary value checking (BVC):

One of the methods of BVA is Boundary Value Checking (BVC). In BVC, the

test cases are designed by holding one variable at its extreme value and the other

variable at its nominal value in the input domain. The variables can consider values

at:

o Minimum value (Min)

o Value just above the minimum value (Min+)

o Nominal value

o Maximum value (Max)

o Value just below the maximum value (Max-)

181

It can be generalized that for n input variables in a module, 4n+1 test-case can be

designed using Boundary Value Checking method.

Example:

A program reads an integer number within range [1,100] and checks whether it is odd

number or even. So, the boundary value checking can be performed as follows:

Since there is only one variable, the total number of test cases will be 4n+1=5.

The set of minimum and maximum values can be,

Minimum value (Min) = 1

Above the minimum value (Min+) = 2

Maximum value (Max) = 100

Value below maximum value (Max-) = 99

Nominal value = 50 – 55

Boundary Value Analysis

Minimum
(Min, Min+)

Nominal Maximum
(Max, Max-)

1,2 50-55 100, 99

Using these values, following test cases can be designed using BVC.

Test case Id Integer variable Expected output

1 1 Odd Number

2 2 Even Number

3 99 Odd number

182

4 100 Even number

5 52 Even number

12.7.2 Robustness Testing Method:

The idea of BVC can be extended such that the boundary values can be selected as,

o Value just below the minimum value(Min-)

o Minimum Value(Min)

o Value just above the minimum value(Min+)

o Nominal value

o Maximum value(Max)

o Value just below the maximum value(Max-)

o Value just above the maximum value(Max+)

It can be generalized that for n input variables in a module, 6n+1 test-case can be

designed using robustness testing method.

Example: A program reads an integer number within range [1,100] and checks

whether it is odd number or even. So, the robustness testing can be performed as

follows:

Since there is only one variable, the total number of test cases will be 6n+1=7.

The set of minimum and maximum values can be,

Minimum value (Min) = 1

Above the minimum value (Min+) = 2

Below the minimum value (Min-) = 0

183

Maximum value = 100

Value below maximum value = 99

Value above maximum value = 101

Nominal value = 50 – 55

Boundary Value Analysis

Invalid
(min-1)

Valid
(min, min+, max-, max)

Invalid
(max+)

0 1,2,99,100 101

Using these values, following test cases can be designed using robustness testing.

Test case Id Integer variable Expected output

1 0 Invalid input

2 1 Odd number

3 2 Even number

4 99 Odd number

5 100 Even number

6 101 Invalid input

7 52 Even number

12.8 EQUIVALENCE CLASS PARTIONING

Equivalence partitioning is a method for deriving test cases where classes of

input conditions called equivalence classes are identified such that each member of

the class causes the same kind of processing and output to occur. So, instead of

testing every input, only one test case from each class can be executed. It means only

one test case in the equivalence class is sufficient to find errors. If one test case in

equivalence class detects a defect, then all other test cases in that class have the

same probability of finding defects. So, instead of taking every value in one domain,

184

only one test case is selected from one class. In this way, it reduces the total number

of test cases. Similarly, it is a way to find maximum errors with the small number of

test cases.

Equivalence class partitioning method has following two goals:

o Completeness: we can complete the testing domain without executing all the

test cases.

o Non-redundancy: The goal of equivalence partitioning method is to reduce

redundant test cases.

Two types of classes can be identified.

 Valid equivalence class: These classes consider valid inputs to the program.

 Invalid equivalence class: These classes consider invalid inputs that will

generate error conditions.

Guidelines for forming equivalence classes:

o If the requirement is a range of values, then derive the test case for one

valid and two invalid inputs.

o If the requirement is a set of values, then derive the test case for one

valid and two invalid inputs.

o If the requirement id Boolean (true/false), then derive the test case for both

true/false values.

o Boundary value analysis can help in identifying the classes.

Advantages of equivalence class testing:

 With the help of equivalence class testing, the number of test cases greatly

reduces maintaining the same test coverage.

185

 This testing technique helps in delivering a quality product within a minimal time

period.

 It is perfectly suitable for software projects with time and resource constraints.

 It is process-oriented.

Disadvantages of equivalence class testing:

 In the case of complex applications, it is very difficult to identify all set of

equivalence classes

 All necessary inputs may not cover.

 The whole success of equivalence class testing relies on the identification of

equivalence classes.

Example:

A program accepts 10-digit mobile numbers n from user and prints the success

of error message. Design test cases using equivalence class testing.

Here, we have three different test scenarios.

Equivalence Class testing

Invalid
(Number n < 10)

Valid
(Number = 10)

Invalid
(Number n >10)

Class A1 = {<n>: n<10}

Class A2 = {<n>: n=10}

Class A3 = {<n>: n>10}

The test cases designed using equivalence class partitioning method are,

Test Case Id Input variable n Expected Output Class covered

1 123456789 Error!!! A1

2 1234567890 Success A2

3 1234567890123 Error!!! A3

186

12.9 DECISION TABLE BASED TESTING

Boundary value analysis and equivalence class testing methods do not

consider combinations of input conditions. There may be some critical behaviour to be

tested when some combinations of input conditions are considered.

Decision table is another useful method to represent the information in a tabular

format. Decision table helps to check all possible combinations of conditions for testing

and testers can also identify missed conditions easily. This is a systematic approach

where the different input combinations and their corresponding system behaviour

(Output) are captured in a tabular form. That is why it is also called as a Cause-

Effect table where Cause and effects are captured for better test coverage.

Decision Table Testing is Important because it helps to test different

combinations of conditions and provides better test coverage for complex business

logic. When testing the behaviour of a large set of inputs where system behaviour

differs with each set of input, decision table testing provides good coverage and the

representation is simple so it is easy to interpret and use.

12.9.1 Advantages of Decision table-based testing:

 The representation of decision table is simple so that it can be easily

interpreted.

 It helps to make effective combinations and can ensure a better coverage for

testing.

 Any complex business conditions can be easily turned into decision tables

 Decision table testing is the most preferred black box testing and requirements

management.

 Decision tables guarantee coverage of all possible combinations of condition

values.

 Decision tables are easy to understand.

 Multiple conditions, scenarios and results can be viewed and analysed on the

same page by both developers and testers.

187

12.9.2 Disadvantages of decision table-based testing:

 Decision tables only present a partial solution

 Do not depict the flow of logic of a solution

 Decision tables are quite far away from high level languages

 When there are too many alternatives, decision table cannot list them all.

12.9.3 Formation of decision table:

A decision table is composed of following components.

 Condition Stub: It is a list of conditions upon which decisions are depend. It

displays different input conditions.

 Action Stub: It is a list of resulting actions performed based on the input

condition.

 Case 1 Case 2 Case 3 Case 4 -------

Condition

Stub

Condition 1 True False False True

Condition 2 False False True True

Action

Stub

Action 1  

Action 2  

 Condition Entry: It is a specific entry in the table based on the condition. It

takes only two values – TRUE or FALSE which is called a Case or a Rule.

 Action Entry: It is the entry in a table for the resulting actions performed when

one rule is satisfied.

12.9.4 Guidelines to develop a decision table:

To create a decision table, following rules are followed:

 Define all conditions in the condition stub.

 Define all the actions in the action stub.

 Associate specific sets of conditions with specific actions.

 Define rules by indicating list of actions for the set of conditions.

188

12.9.5 Test case design using decision table:

While creating test cases, following interpretation should be done:

 Condition stub interprets as input for the test case

 Action stub interprets as output for the test case

 Rule or Case becomes the test case itself

Example:

A program accepts username and password. If both are correct than home

page is displayed. If one of them is wrong then error message should be generated.

Design decision table and test cases for the given case.

Solution: The condition here is that the user will be redirected to the homepage if he

enters the correct username and password, and an error message will be displayed if

the input is wrong.

 Case 1 Case 2 Case 3 Case 4

Condition

Stub

Username=”abc” T T F F

Password = “xyz” T F T F

Action

Stub

Home Page 

Error Message   

Decision Table Interpretation:

Case 1: Username and Password both are wrong, and the user is shown

an error message.

Case 2: Username is correct, but the password is wrong, and the user is shown an

error message,

Case 3: The username is wrong, but the password is correct, and the user is shown

an error message.

Case 4: Username and password both are correct, and the user is taken to the

homepage.

189

Test cases:

Test case Id Username Password Expected output

1 Abc Xyz Home Page

2 Abc abc Invalid input

3 Xyz Xyz Invalid input

4 Xyz abc Invalid input

12.10 DIFFERENCE BETWEEN BVA & EQUIVALENCE
CLASS TESTING

Boundary Value Analysis Equivalence Class Testing

Boundary values are those that contain

the upper and lower limit of a variable.

It is a technique where the input data is

divided into partitions of valid and invalid

values.

It will help decrease testing time due to a

lesser number of test cases

The Equivalence partitioning will reduce

the number of test cases

The Boundary Value Analysis is often

called a part of the Stress and Negative

Testing.

The Equivalence partitioning can be

suitable for all the software testing levels

such as unit, integration, system.

It it suitable for large applications It is suitable for applications which have

time and resources constraints

BVA can be performed using boundary

value checking and robustness testing

Equivalence class can be performed

using valid and invalid input classes.

Exercise:1 Fill in the blanks

1. testing does not check internal structure of the system.
2. Using , valid and invalid input classes are created.
3. Black-box testing is also called .
4. test cases are there in BVC if there are 5 variables in a module.
5. Condition stub and action stub are components of .

190

12.11 Let us sum up

In this chapter we have learnt about black-box testing. We have seen how it is

performed and different methods to implement black-box testing. We have also

discussed about test cases and how to create a test case using black-box testing

methods.

12.12 Check your progress: Possible Answers

Exercise: 1
1. Boundary Value Analysis
2. Equivalence class partitioning
3. Decision table based testing
4. Robustness testing method

12.13 Further Reading

1. Software Testing: Principles and Practices by Naresh Chauhan (OXFORD)
2. Software Testing: Principles and Practices by Srinivasan Desikan,

Gopalaswamy Ramesh(PEARSON)
3. Software Testing: A Craftsman's Approach by Paul C. Jorgensen (AUERBACH)

12.14 Activities

1. A program reads an integer numbers A within the range [1, 50] and checks
whether the number is prime or not. Design test cases using BVC and
robustness testing method.

2. A program calculates the total salary of an employee with the condition that the
working hours are less than or equal to 8 then give normal salary. For the hours
over 8, the salary is calculated at the rate of 1.25 of the salary. Design test
cases using decision table-based testing.

3. A program reads an integer number A within the range [1, 50] and checks for
the positive, negative or zero number. Design test cases using equivalence
class partitioning.

191

Unit 13: White-Box Testing 13
Unit Structure

13.1. Learning Objectives

13.2. Introduction

13.3. White-Box Testing

13.4. Need for white-box testing

13.5. How it is performed?

13.6. Advantages & disadvantages of white-box testing

13.7. Difference between black-box and white-box testing

13.8 Logic Coverage Criteria

13.9. Basis Path Testing

13.10. Graph Matrices

13.11. Let’s sum up

13.12. Check your Progress: Possible Answers

13.13. Further Reading

13.14. Activities

192

13.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know about white-box testing

 Understand need of white-box testing

 Know different methods of white-box testing

 Learn to create test cases using white-box testing methods

13.2 INTRODUCTION

Black-box testing does not check internal logic of the program. It has various

limitations because there are some bugs which are not revealed by black-box testing.

Black-box testing requires testing the functionality of the system. But, to implement

black-box testing, first that functionality should be coded and tested. Thus, the test

cases for black-box testing can be designed earlier than white-box testing, but they

cannot be executed until the code is produced and checked using white-box testing.

13.3 WHITE-BOX TESTING

White-box testing is another effective method of dynamic testing. White Box

Testing is software testing technique in which internal structure, design and coding of

software are tested to verify flow of input-output.

In white box testing, code is visible to testers so it is also called Clear box

testing, open box testing, transparent box testing, Code-based testing and Glass box

testing. The tester chooses inputs to exercise paths through the code and determine

the expected outputs. In white-box testing, structure means the logic of the program,

which has been implemented in the language code. The purpose is to test the logic of

the system. It ensures that the internal parts of the software are also tested.

193

13.4 NEED OF WHITE-BOX TESTING

White-box testing is an essential part of software testing. The supporting

reasons for white-box testing are as follows:

1. Some typographical errors are not observed and detected and are not covered by

black-box testing techniques. White-box testing methods help to detect such errors.

2. Errors that come from the design phase will also be reflected in the code and

therefore, we must execute white-box test cases for code verification.

3. One primary goal of White Box Testing is to verify the working of an application.

4. It is executed at early stages and does not wait for GUI (Graphical User Interface)

availability.

5. We often believe that a logical path is not likely to be executed but it may be

executed on a regular basis. White-box testing explores these paths too.

6. Since white-box testing is complementary to black-box testing, there are categories

of bugs that can be revealed by white-box testing but do not through black-box testing.

There may be portion of code that are not checked during executing the test cases,

but these will be tested by white-box testing.

7. White-box testing is not an alternative but an essential stage of software testing

because without testing code, its functionalities cannot be tested means we cannot

perform black-box testing first without performing white-box testing.

13.5 HOW TO DO WHITE-BOX TESTING

Testers employing white box testing typically understand the source code and create

test cases and execute. Understanding the source code involves a good working

knowledge of the programming languages used in the software that is being tested.

Besides, the tester should be aware of the secure coding practices as well, in order to

identify security issues and prevent attacks. Also, the tester would develop tests for

each process. This is often done by the developer as it requires a strong command

194

over the code. Other methods employed are Manual Testing and trial and error testing.

It is performed in the following manner:

 Examine each source code in a program.

 Create a flow graph from the given code

 Identify possible paths and design test cases

 Execute test cases with the required input and expected output

13.6 ADVANTAGES, DISADVANTAGES OF WHITE-BOX
TESTING

Advantages of white-box testing:

 It allows a finding of hidden errors, to find internal errors because it checks and

works by internal functionality.

 Testing can start even without the graphic user interface

 Ease of automation is present in White Box testing.

 It can be started at an earlier stage in SDLC as it doesn’t require any interface

 It requires internal knowledge to do testing that's why it helps in maximum

coverage of the code.

 It helps to find issues and optimize code to adopt different techniques of White

Box Testing to test a developed application or website.

Disadvantages of white-box testing:

 It is complex, expensive, and time-consuming.

 It requires professional resources and in-depth knowledge of software.

 It cannot be performed without knowledge of programming language.

 If code changes, then the test cases need to be redesigned again.

13.7 BLACK-BOX TESTING VS. WHITE-BOX TESTING

Though both black-box and white-box testing methods are type of dynamic testing,

both have following differences.

195

White-box testing Black-box testing

It is a technique to test internal code of

the system.

It is a technique to test the functionality

of the system.

The tester must have knowledge of the

programming language.

It does not require knowledge of the

programming language.

White-box testing is performed by

software developers.

Black-box testing is performed by

software testers.

It is time-consuming process. It is less time-consuming process.

It is also called clear-box or glass-box

testing.

It is also called closed-box testing.

It is generally implemented to lower

levels of testing like unit, integration

testing.

It is generally implemented to higher

levels of testing like system and

acceptance testing.

It is more exhaustive testing. It is less exhaustive testing.

White-box testing techniques are Code

coverage, path testing.

Black-box testing techniques are

boundary value analysis, equivalence

class and decision table-based testing

13.8 CODE COVERAGE CRITERIA

The code coverage criteria consider the program code based on the logic of the

program such that every element of the logic is covered. Therefore, the intention in

white-box testing is to cover the whole logic. The basic forms of code coverage are,

13.8.1 Statement coverage:

In a programming language, a statement is nothing but the line of code or instruction

for the computer to understand and act accordingly. A statement becomes an

executable statement when it gets compiled and converted into the object code and

performs the action when the program is in a running mode.

Hence “Statement Coverage”, as the name itself suggests, it is the method of

validating whether each and every line of the code is executed at least once.

196

Example:

Scanf(“%d”,&x);

Scanf(“%d”,&y);

While(x!=y)

{

if(x>y)

else

}

x=x-y;

y=y-x;

Printf(x);

Printf(y);

In the above program segment, if we want to cover every statement then following test

cases must be designed:

Test case 1: x=y=n

Test case 2: x=n, y=n’

Test case 3: x<y

Test case 4: x>y

13.8.2 Branch Coverage:

Branch Coverage is a white box testing method in which every outcome from a code

module (statement or loop) is tested. The purpose of branch coverage is to ensure

that each decision condition from every branch is executed at least once. It helps to

measure fractions of independent code segments and to find out sections having no

branches.

Example:

Branch (int a) {

If (a> 0)

Printf (“Positive”);

Else

Printf (“Negative”);

197

}

In the above code segment, following test cases are designed:

Test case 1: a>0

Test case 2: a<0

13.8.3 Condition Coverage:

Condition Coverage or expression coverage is a testing method used to test and

evaluate the variables or sub-expressions in the conditional statement. The goal of

condition coverage is to check individual outcomes for each logical condition.

Condition coverage offers better sensitivity to the control flow than decision coverage.

In this coverage, expressions with logical operands are only considered.

Example:

If(A&&B)

For the above condition, following test cases are designed:

Test case 1: A = true, B=true

Test case 2: A=true, B=False

Test case 3: A= False, B=True

Test case 4: A=False, B=False

Advantages of code coverage criteria:

 It helps to evaluate a quantitative measure of code coverage

 It allows to create extra test cases to increase coverage

 It allows to find the areas of a program which is not exercised by a set of test

cases

Disadvantages of code coverage criteria:

 Code coverage is also not telling how much and how well you have covered

your logic

198

 In the case when the specified function hasn’t implemented, or a not included

from the specification, then structure-based techniques cannot find that issue.

 It is not possible to determine whether we tested all possible values of a feature

with the help of code coverage

13.9 BASIS PATH TESTING

Basis path testing is the oldest structural testing method. It is based on the control

structure of the program. Based on the control structure, flow graph is prepared. Path

coverage is more general and useful for detecting errors. Basis path testing is the

technique of selecting the paths that provide a basis set of execution paths through

the program.

13.9.1 Control flow graph:

It is a graphical representation of control structure of a program. Flow graph is a

directed graph. A directed graph (V, E) consists of set of vertices V and set of edges

E. Following terms are used for a flow graph.

 Node – It represents one or more procedural statements and represented by a

circle with number or label.

 Edges – It represents the flow of control in a program and denoted by an arrow.

 Decision node – It is a node with more than one arrow leaving.

 Junction node - It is a node with more than one arrow entering.

 Region – Areas bounded by nodes and edges are called region.

199

13.9.2 Path Testing Terms:

 Path:

A path is a sequence of instructions that starts at the entry node and

completes at the exit node.

In the above flow graph, paths can be 1-2-4-5, 1-3-4-5 and 1-4-5.

 Segment:

Path consists of segments. The smallest segment is a link which displays

single process between two nodes.

In the above flow graph, if we consider the path 1-2-4-5 then the process

between 1-2, 2-4 or 4-5 is called a segment.

 Path segment:

A path segment is a succession of adjacent links that belongs to some

path.

In the above flow graph, if we consider the path 1-2-4-5 then the path 1-

2, 2-4 or 4-5 is called a path segment.

 Length of path:

The length of path is number of links in a path.

In the above flow graph, if we consider the path 1-2-4-5 then length of

the path will be 3.

 Independent path:

An independent path is any path through the graph that has at least one

set of processing statement.

200

In the above flow graph, 1-2-4-5 , 1-3-4-5 and 1-4-5 all are the

independent paths.

13.9.3 Cyclomatic Complexity:

Cyclomatic complexity is used to find number of independent paths in a given

flow graph. An independent path is any path through a program that introduces at least

one new set of processing statements (i.e., a new node) or a new condition (i.e., a

new edge). The number of independent paths is given by,

V(G) = e – n + 2

This is called the cyclomatic number of a program.

Example:

For the above flow graph, number of nodes are 6 and number of edges are 7. So, the

cyclomatic complexity can be,

V(G) = e – n + 2

= 7 – 6 + 2

= 3

Thus, as the cyclomatic number is 3, this flow graph will have 3 independent paths.

Independent paths = 1-2-3-5-6

1-2-4-5-6

1-5-6

201

13.9.4 Guidelines for Basis Path Testing:

Following steps should be performed for designing test cases using basis path testing.

 Draw flow graph using the given code.

 Calculate cyclomatic complexity from the flow graph.

 Find independent paths from the cyclomatic number.

 Based on independent path, design test cases such that each path is executed.

13.9.5 Advantages of basis path testing:

 It helps to reduce the redundant tests

 It focuses attention on program logic

 All program statements are executed and tested at least once.

 It guarantees complete branch coverage.

Example: Consider the following program segment.

1. int n=45;

2. if(n>18)

3. print “Eligible”

Else

4. print “Not Eligible”

5. print n

6. End

a) Draw the flow graph for the program.

b) Calculate cyclomatic complexity

c) List all independent paths.

d) Design test cases

Solution:

a) Flow graph:

202

b) Cyclomatic Complexity:

Here, total number of nodes is 6 while the edges are 7. Therefore,

V(G) = e-n+2

= 7 – 6 + 2

= 3

c) Independent Paths:

From the above cyclomatic number, number of independent paths will be,

P1 = 1-2-3-5-6

P2 = 1-2-4-5-6

P3 = 1-5-6

d) Test Cases:

Test Case Id Input number n Expected output Path Covered

1 45 45 P3

2 10 Not Eligible P2

3 20 Eligible P1

203

13.10 GRAPH MATRICES

Flow graph is an effective method of path testing. However, path testing with

the use of flow graph may be time consuming activity. As the size of graph increases,

manual path tracing becomes difficult and lead to errors. So, the idea is to develop a

software tool, which will help in basis path testing.

Graph matrix is the solution that can assist in developing a tool for automation of path

tracing because the properties of graph matrices are test tool building.

Graph matrix:

A graph matrix is a square matrix whose rows and columns are equal to the

number of nodes in a flow graph. Each row and column identify a particular node and

matrix entries represent a connection between the nodes.

Example:

Consider the following graph and represent it in the form of a graph matrix.

Solution:

The graph matrix for the given flow graph is as follows.

 1 2 3 4

1 a b c

2 d

3 e

4

In the above graph matrix, the weight for each edge is denoted by its label. We can

also create graph matrix by assigning 1 for weight.

204

 1 2 3 4

1 1 1 1

2 1

3 1

4

Exercise:1 Fill in the blanks

1. White-box testing is also called .
2. A node with more than one arrow leaving is called .
3. Areas bounded by nodes and edges are called .
4. The number of independent paths can be given by .
5. White box testing is a type of testing.

13.11 Let us sum up

In this chapter we have learnt about white-box testing. Along with these, we

have seen different types of white-box testing techniques and their concepts. We have

seen different statements of code coverage criteria. We learnt how basis path testing

works. We have discussed how to create a test case using any one of the testing

methods. Finally, we have seen how we can convert a flow graph into graph matrix.

13.12 Check your progress: Possible Answers

Exercise: 1
1. Code coverage criteria
2. Basis path testing
3. Cyclomatic complexity
4. Comparison of black box and white box
5. Graph matrix

13.13 Further Reading

1. Software Testing: Principles and Practices by Naresh Chauhan (OXFORD)
2. Software Testing: Principles and Practices by Srinivasan Desikan,

Gopalaswamy Ramesh(PEARSON)
3. Software Testing: A Craftsman's Approach by Paul C. Jorgensen (AUERBACH)

13.14 Activities

1. Consider the following program segment.

205

1. Int a=31;
2. If(a%2==0)
3. Print “Number is even”;

4. Else
5. Printf “Number is odd”;
6. Print a;
7. End

a. Draw flow graph for the program.
b. Calculate cyclomatic complexity of the program.
c. List all independent paths.
d. Design test cases from all independent paths.

2. Consider the following graph, derive its graph matrix.

206

Unit 14: Levels of Testing 14
Unit Structure

14.1. Learning Objectives

14.2. Introduction

14.3. Unit Testing

14.4. Integration Testing

14.5. System Testing

14.6. Performance Testing

14.7. Acceptance Testing

14.8. Test Reporting

14.9. Let’s sum up

14.10. Check your Progress: Possible Answers

14.11. Further Reading

207

14.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

 Know different levels of testing

 Learn different methods of testing

 Learn how to create test cases using levels of testing

 Understand how reports are used in testing

14.2 INTRODUCTION

Software testing is a process of testing of software or product to ensure that the

software or product is bug-free. Levels of software testing are process in which every

component or small unit of software is tested. There are different levels of software

testing; each has its features, advantages, and disadvantages. These different levels

of software testing are designed to test the software performance and behaviours of

the software at different stages. Testing levels prevent overlap and repetition

between the development life cycle phases. There are different stages in the

software development lifecycle like requirements, design, coding development, and

execution. Levels of software testing are used to find those missing areas between

these stages of the software development lifecycle.

14.3 UNIT TESTING

Unit is the smallest building block of the software system. It is the first part of the

system to be validated. Before testing entire software, units or modules are tested first.

Unit test ensures that the software meets at least a baseline level of functionality. The

main objective of unit testing is to isolate written code to test and determine if it works

as intended. Unit tests can be performed manually or automated. A manual method

may have an instinctual document made detailing each step in the process; however,

automated testing is the more common method to unit tests

While testing the module, all its interfaces must be simulated if the interfaced

modules are not ready at the time of testing. The types of interface modules which

208

must be simulated, if required, to test a module can be either a driver or a stub.

14.3.1 Driver:

A driver can be defined as a software module which is used to invoke a module under

test and provide test inputs, control and monitor execution and report test results or

line of code that calls a method. Suppose, the module is to be tested where some

inputs are to be received from another module which is under development. In such

situation, we need to simulate the inputs required in the module to be tested. This

module where the required inputs for the module under test are simulated for the

purpose of module is called driver module.

Example:

• Suppose module B is under test.

• In the hierarchy, module A is super module of module B.

• Suppose, module A is not ready and B has to be unit tested.

209

• In this case, module B needs input from module A.

• So, a driver module is needed which will simulate module A.

14.3.2 Stubs:

The module under testing may also call some other module, which is not ready at the

time of testing. So, dummy modules are prepared for sub-ordinate modules. These

dummy modules are called stubs. A stub can be defined as a piece of software that

works similar to a unit and it is much simpler than the actual unit.

Example:

• In above example, module B under test needs to call module D and module E.

• They are not ready so stubs are designed for module D and E.

Characteristics of stubs:

• It doesn’t perform any action of its own.

• We may include a display instruction as a message in the body of stub.

• It is a place holder for the actual module to be called.

• Stub may simulate exceptions and abnormal conditions.

14.3.3 Advantages and disadvantages of unit testing

Advantages:

 The earlier a problem is identified; the fewer compound errors occur.

 Costs of fixing a problem early can quickly outweigh the cost of fixing it later.

 Debugging processes are made easier.

 Developers can quickly make changes to the code base.

210

 Developers can also re-use code, migrating it to new projects.

Disadvantages:

 Tests will not uncover every bug.

 Unit tests only test sets of data and its functionality—it will not catch errors in

integration.

 More lines of test code may need to be written to test one line of code—creating

a potential time investment.

 Unit testing may have a steep learning curve, for example, having to learn how

to use specific automated software tools.

14.4 INTEGRATION TESTING

Integration is the activity of combining the module together when all the

modules have been prepared. It is a type of testing where software modules are

integrated logically and tested as a group. Integration testing is done after performing

unit testing. A typical software project consists of multiple software modules, coded

by different programmers. The purpose of this level of testing is to expose defects in

the interaction between these software modules when they are integrated.

Methods of integration testing:

 Top-down Integration

 Bottom-up Integration

14.4.1 Top-down Integration:

Top-down Integration Testing is a method in which integration testing takes

place from top to bottom following the control flow of software system. The higher-

level modules are tested first and then lower-level modules are tested and integrated

in order to check the software functionality. Stubs (Dummy modules) are used for

testing if some modules are not ready.

Example:

211

In the above example, the integration starts with testing the interface between

Component 1 and Component 2. To complete the integration testing, all interfaces

covering all the arrows have to be tested together.

Step Interfaces tested

1 1-2

2 1-3

3 1-4

4 1-2-5

5 1-3-6(7)

6 (1-2-5)-(1-3-6-(3-7))

7 1-4-8

8 (1-2-5)-(1-3-6-(3-7))-(1-4-8)

Advantages:

 Very few drivers are needed.

 Using this approach, major design flows found first.

 It is easy to localize fault.

 It is possible to obtain early prototype.

Disadvantages:

 As it is top-down approach, more stubs are needed.

212

 Bottom-level modules may not be tested to the expected level or may not be

tested to the requirements.

14.4.2 Bottom-up Integration:

Bottom-up Integration Testing is a strategy in which the lower-level modules

are tested first. These tested modules are then further used to facilitate the testing of

higher-level modules. The process continues until all modules at top level are tested.

Once the lower-level modules are tested and integrated, then the next level of modules

are formed.

Example:

The navigation in bottom-up integration starts from component 1 covering all

sub-systems, till component 8 is reached.

Step Interfaces tested

1 1-5

2 2-6, 3-6

3 2-6-(3-6)

4 4-7

5 1-5-8

6 2-6-(3-6)-8

7 4-7-8

213

8 (1-5-8)-(2-6-(3-6)-8)-(4-7-8)

Advantages:

 Stubs are not required.

 Logical modules are tested thoroughly.

 Testing can be parallel with implementation

 It is easy to localize fault.

Disadvantages:

 Drivers are necessary to call the high-level modules.

 If the software system contains more and more small but complex modules, it

may take more time for the completion of the software testing process.

 The process of testing does not finish till all the modules of both the top and the

bottom levels are included and tested.

14.5 SYSTEM TESTING

System Testing is a level of testing that validates the complete and fully

integrated software product. The purpose of a system test is to evaluate the end-to-

end system specifications. It is process of demonstrating a program and a system that

fulfills the requirement and objectives. The software is interfaced with other

software/hardware systems. It tests the fully integrated applications including external

peripherals in order to check how components interact with one another and with the

system as a whole. System testing done by a professional testing agent on the

completed software product before it is introduced to the market.

214

Types of system testing:

14.5.1 Reliability testing:

Since software is an important part of any field, the importance of reliability

testing has also increased. It is a method to detect those failures earlier which are

likely to appear during actual operation. The purpose of Reliability testing is to assure

that the software product is bug free and reliable enough for its expected purpose.

Software reliability testing includes Feature Testing, Load Testing and Regression

Testing.

a) Feature Test: The purpose of feature test is to ensure that each functionality

of all the modules in the software are tested.

b) Load Test: The purpose of load test is to check the software under maximum

load and breakdown.

c) Regression Test: The purpose of regression test is to recheck the software

functionality whenever there is a change in it.

14.5.2 Recovery Testing:

Recovery is the ability of a system to restart the operation after the integrity of

application has been lost. The purpose of recovery testing is to show that the recovery

functions work properly. Recovery testing is the activity of testing how well the software

is able to recover from hardware failure and other similar problems.

The time taken to recover depends upon:

 The number of restart points

 A volume of the applications

215

 Training and skills of people conducting recovery activities and tools available

for recovery.

When there are a number of failures then instead of taking care of all failures, the

recovery testing should be done in a structured fashion which means recovery testing

should be carried out for one segment and then another. It is done by professional

testers. Before recovery testing, adequate backup data is kept in secure locations.

This is done to ensure that the operation can be continued even after a disaster.

14.5.3 Security Testing:

Security testing is used to assure the customers that their data will be protected.

Security may include controlling access to data, encrypting data in communication.

The main goal of Security Testing is to identify the threats in the system and measure

its potential vulnerabilities. It also helps in detecting all possible security risks in the

system and helps developers to fix the problems through coding.

The basic elements of security testing are,

a) Integrity: Integrity ensures that the information has not been altered by anyone

other than the intended sender.

b) Confidentiality: Confidentiality protects against the disclosure of information to

users other than intended recipient.

c) Non-repudiation: non-repudiation is a measure to prevent the later denial that an

action happened.

d) Availability: Availability assures that the information will be ready for use when

expected.

e) Authentication: Authentication is a measure designed to establish the validity of a

message.

f) Authorization: It is a process of determining that the requester is allowed to receive

a service.

14.5.4 Stress testing:

Stress Testing is a type of software testing that verifies stability & reliability of

software application. The goal of Stress testing is measuring software on its

robustness and error handling capabilities under extremely heavy load conditions and

216

ensuring that software doesn’t crash under crunch situations. It even tests beyond

normal operating points and evaluates how software works under extreme conditions.

The goal of stress testing is to analyze the behavior of the system after a failure.

For stress testing to be successful, a system should display an appropriate error

message while it is under extreme conditions. To conduct Stress Testing, sometimes,

massive data sets may be used which may get lost during Stress Testing. Testers

should not lose this security-related data while doing stress testing. The main purpose

of stress testing is to make sure that the system recovers after failure which is called

as recovery.

14.5.5 Load Testing:

When a system is tested with a load that causes it to allocate its resources in

maximum amount is called load testing. Load testing is testing where we check an

application's performance by applying some load, which is either less than or equal to

the desired load. Load testing will help to detect the maximum operating capacity of

an application and any blockages or bottlenecks. It governs how the software

application performs while being accessed by several users at the same time.

The load testing is mainly used to test the Client/Server's performance and

applications that are web-based. In other words, we can say the load testing is used

to find whether the organization used for comparing the application is necessary or

not, and the performance of the application is maintained when it is at the maximum

of its user load.

14.5.6 Advantages of system testing:

 Verifies the system against the business, functional and technical requirements

of the end users.

 It helps in getting maximum bugs before acceptance testing.

 System testing increases the confidence level of the team in the product before

the product goes for acceptance testing.

 It is the first testing level in which the whole system is under test from end to

end. So, it helps in finding important defects which, unit and integration testing

could not detect.

217

 It is a black box testing hence testers does not need programming knowledge

to perform it.

14.5.7 Disadvantages of System testing:

 System test strategy is very crucial to the success of the testing.

 System testing starts late when all the components are ready. Hence, the cost

of fixing bugs is higher.

 The localization of the bugs is difficult as the entire system is participating in the

testing.

14.6 PERFORMANCE TESTING
Performance Testing is a software testing process used for testing the speed,

response time, stability, reliability, scalability and resource usage of a software

application under particular workload. The main purpose of performance testing is to

identify and eliminate the performance bottlenecks in the software

application. Performance Testing is done to provide stakeholders with information

about their application regarding speed, stability, and scalability. Performance Testing

uncovers what needs to be improved before the product goes to market. Since it is

non-functional testing which doesn't mean that we always use performance testing,

we only go for performance testing when the application is functionally stable.

The performance testing cannot be done manually because:

o We need a lot of resources, and it became a costlier approach.

o And the accuracy cannot maintain when we track response time manually.

Following factors are tested during performance testing:

1) Throughput: The capability of the system or the product in handling multiple

transactions is determined by a factor called throughput. Throughput represents

the number of transactions that can be handled by the server

2) Response Time: Response time can be defined as the delay between the point of

request and the first response from the product. response time represents the

delay between the request and response.

3) Latency: Latency is a delay caused by the application, operating system, and by

the environment that are calculated separately.

218

4) Tuning: Tuning is a procedure by which the product performance is enhanced by

setting different values to the parameters (variables) of the product, operating

system, and other components. Tuning improves the product performance without

having to touch the source code of the product.

5) Benchmarking: The type of performance testing wherein competitive products is

compared is called benchmarking.

6) Capacity Planning: The exercise to find out what resources and configurations are

needed is called capacity planning.

14.7 ACCEPTANCE TESTING

Acceptance testing is a formal testing conducted to determine whether a software

system satisfies its acceptance criteria and allows buyers to determine whether to

accept the system or not. It must take place at the end of the development process. It

consists of tests to determine whether the developed system meets the predetermined

functionality, performance, quality. Acceptance testing is carried out by end-users. It

is designed for the following reasons:

o During the development of a project if there are changes in requirements and it

may not be communicated effectively to the development team.

o Developers develop functions by examining the requirement document on their

own understanding and may not understand the actual requirements of the

client.

o There are maybe some minor errors which can be identified only when the

system is used by the end user in the actual scenario so, to find out these minor

errors, acceptance testing is essential.

Acceptance test might be supported by the testers. A well-defined acceptance plan

will help development teams to understand users’ need. The acceptance test plan

must be created or reviewed by the customer.

14.7.1 Methods of Acceptance testing:

There are two types of acceptance testing:

 Alpha testing:

219

Alpha is the test period during which the product is complete and usable in a

test environment but not necessarily bug free. The main objective of alpha

testing is to refine the software product by finding and fixing the bugs that were

not discovered through previous tests. This testing is referred to as an alpha

testing only because it is done early on, near the end of the development of the

software.

Alpha testing is typically done for the two purposes:

o It gives confidence that the software is in a ready state but not released

and reviewed by the customer.

o Any other major defects or performance issues should be discovered in

this stage.

Since alpha testing is performed at the development site, testers and users

together perform this testing.

Advantages of alpha testing:

 Better insight about the software’s reliability at its early stages

 Free up your team for other projects

 Reduce delivery time to market

 Early feedback helps to improve software quality

Disadvantages of alpha testing:

 Alpha testing does not involve in-depth testing of the software.

 The difference between the tester's tests the data for testing the software and

the customer's data from their perspective may result in the discrepancy in the

software functioning.

 The lab environment is used to simulate the real environment. But still, the lab

cannot furnish all the requirement of the real environment such as multiple

conditions, factors, and circumstances.

 Beta Testing:

Once the alpha phase is complete, development enters the beta phase. Beta

is the test period during which the product should be complete and usable. The

220

software is released to group of people so that further testing can be ensuring

the product has few or no bugs. Beta testing is the last phase of the testing,

which is carried out at the client's or customer's site.

Beta testing reduces the risk of failure and provides the quality of the product

through customer validation. It is the final testing before shipping the product to

the customers. Beta testing obtains direct feedback from the customers. It helps

in testing to test the product in the customer's environment.

Advantages of Beta testing:

 Beta testing focuses on the customer's satisfaction.

 It helps to reduce the risk of product failure via user validations.

 Beta testing helps to get direct feedback from users.

 It helps to detect the defect and issues in the system, which is

overlooked and undetected by the team of software testers.

 Beta testing helps the user to install, test, and send feedback regarding

the developed software.

Disadvantages of Beta testing:

 A software engineer has no control over the process of the testing, as

the users in the real-world environment perform it.

 This testing can be a time-consuming process and can delay the final

release of the product.

 Beta testing does not test the functionality of the software in depth as

software still in development.

 It is a waste of time and money to work on the feedback of the users

who do not use the software themselves properly.

14.7.3 Difference between Alpha and Beta testing:

Alpha testing Beta testing

Alpha testing performed by Testers and

customers

Beta testing is performed by Clients or

End Users

Alpha Testing performed at developer’s

site

Beta testing is performed at a client

location or end user of the product

221

Alpha testing involves both the white box

and black box techniques

Beta Testing typically uses Black Box

Testing

Alpha testing is performed before beta

testing

Beta testing is performed after alpha

testing.

Alpha testing is the last chance to modify

the system by customer

Beta testing is the phase in which the

product is ready and usable

Alpha testing is more time consuming Beta testing takes less time to test the

system

Reliability and Security Testing are not

performed in Alpha Testing

Reliability and Security Testing are

performed in Beta Testing

14.8 TEST REPORTING

Test Report is a document which contains a summary of all test activities and final

test results of a testing project. Test report is an assessment of how well the testing is

performed. Based on the test report, stakeholders can evaluate the quality of the

tested product and make a decision on the software release. Testing requires constant

communication between the test team and other teams. There are three types of

reports or communication that are required,

• Test incident reports

• Test cycle report

• Test summary reports

14.8.1 Test Incident reports:

Test incident report is a document/report generated after the culmination of

software testing process, wherein the various incidents and defects are reported and

logged by the team members to maintain transparency among the team members and

to take important steps to resolve these issues. A test incident report is a

communication that happens through the testing cycle as and when defects are

encountered. A test incident report is an entry made in the defect repository. Each

defect has a unique ID and this is used to identify the incident.

222

14.8.2 Test Cycle reports:

A test cycle report, at the end of each cycle, gives information like,

o A summary of the activities carried out during that cycle;

o Defects that were uncovered during that cycle,

o Progress from the previous cycle to the current cycle in terms of defects

fixed;

o Outstanding defects that are yet to be fixed in this cycle; and

o Any variations observed in effort or schedule

14.8.3 Test Summary reports:

A report that summarizes the results of a test cycle is the test summary report. Also

known as a Test Closure Report.

There are two types of test summary reports.

o Phase-wise test summary, which is produced at the end of every phase

o Final test summary reports which have all the details of all testing done by all

phases and teams, also called as “release test report”.

A summary report should present,

• A summary of the activities carried out during the test cycle or phase

• Variance of the activities carried out from the activities planned.

• Summary of results should include

• Comprehensive assessment and recommendation for release should include

“Fit for release Assessment”.

Exercise:1 Fill in the blanks

1. testing requires minimum 2 modules to test.

2. testing assures that the software product is bug free and reliable enough for
its expected purpose.

3. is the last level of testing.
4. testing is the next level of acceptance testing.
5. can be defined as the delay between the point of request and the first
response from the product.

14.9 Let us sum up

In this chapter, we have seen different levels of testing and how it is useful in

entire testing process. We have also discussed how testing is performed step by step.

In last, we have seen types of reports created during testing process.

223

14.10 Check your progress: Possible Answers

Exercise 1:

1. Role of drivers and stub
2. Integration testing
3. Categories of system testing
4. Factors affecting performance testing
5. Acceptance testing

14.11 Further Reading

1. Software Testing: Principles and Practices by Srinivasan Desikan,
Gopalaswamy Ramesh(PEARSON)

2. Software Testing: A Craftsman's Approach by Paul C. Jorgensen (AUERBACH)

	Dr. Kamesh R. Raval
	Ms. Sejal Vaghela
	Prof. (Dr.) Nilesh K. Modi
	ISBN No:
	BLOCK1: SOFTWARE DEVELOPMENT LIFE CYCLE AND MODELS
	BLOCK 3: SYSTEM ANALYSIS AND DESIGN
	BLOCK 4: SOFTWARE TESTING
	Software Engineering
	BLOCK 1: SOFTWARE DEVELOPMENT LIFE CYCLE MODELS
	BLOCK1: SOFTWARE DEVELOPMENT LIFE CYCLE AND MODELS
	Unit Structure
	1.1 LEARNING OBJECTIVES
	1.2 INTRODUCTION
	1.3 SOFTWARE ENGINERING – EVOLUTION AND IMPACT
	1.3.1 Evolution of software engineering
	1.3.2 What is Software Crisis?
	1.4 SOFTWARE PRODUCTS vs PROGRAMS

	1.5 IMPORTANCE OF SOFTWARE ENGINEERING
	1.6 EMERGENCE OF SOFTWARE ENGINEERING
	1.6.1 Early Computer Programming
	1.6.2 High-Level Programming languages
	1.6.3 Control or Flow-based programming
	1.6.4 Data-Structure Oriented programing
	1.6.5 Data Flow-Oriented programing
	1.6.6 Object-Oriented programing
	Check Your Progress:
	1.7 Let us sum up
	1.8 Check your progress: Possible Answers
	1.9 Further Reading
	Unit Structure

	2.1 LEARNING OBJECTIVES
	2.2 INTRODUCTION
	2.3 WHY TO USE LIFE CYCLE MODEL?
	2.3.1 Importance of Documentation in the Life Cycle Model
	2.3.2 Entry and Exit Phase criteria
	2.4.1 Feasibility Study phase
	2.4.2 Requirement Gathering, Analysis and Specification phase
	2.4.3 Design phase
	2.4.4 Coding phase
	2.4.5 Testing phase
	2.4.6 Maintenance
	Check Your Progress:
	2.6 Check your progress: Possible Answers
	2.7 Further Reading
	Unit Structure

	3.1 LEARNING OBJECTIVES
	3.2 INTRODUCTION
	3.3 BUILD AND FIX MODEL
	3.4 CLASSICAL AND ITERATIVE WATEFALL MODELS
	3.4.1 Classical Waterfall Model:
	3.4.2 Iterative Waterfall Model:

	3.5 EVOLUTIONARY MODEL
	3.6 PROTOTYPING MODEL
	3.7 SPIRAL MODEL
	3.8 COMPARISION OF DIFFERENT SDLC MODELS
	Check Your Progress:
	3.10 Check your progress: Possible Answers
	3.11 Further Reading

	Software Engineering

	BLOCK 2: SOFTWARE PROJECT MANAGEMENT
	BLOCK 2: SOFTWARE PROJECT MANAGEMENT
	Unit Structure
	4.1 LEARNING OBJECTIVES
	4.2 INTRODUCTION
	4.3 ROLE OF SOFTWARE PROJECT MANAGER
	4.3.1 Skill requires in Software Project Management:
	4.3.2 Job responsibilities of a Software Project Manager:

	4.4 PLANNING OF THE PROJECT
	4.5 PROJECT SIZE ESTIMATION METRICS
	4.5.1 Line of Code (LOC):
	4.5.2 Function Point metric (FP):
	UFP = (Number of External Inputs) *4 + (Number of External Outputs) *5 + (Number of External Inquiries) *4 + (Number of Internal logical Files) *10 + (Number of External Interfaces) *10
	TCF = 0.65 + (0.01 *DI)

	Benefits of Using Function Points
	4.5.3 Feature Point metric:
	4.5.4 Other types metric:

	4.6 SOFTWARE PROJECT SIZE ESTIMATION TECHNIQUES
	4.6.1 Empirical estimation
	[1] Expert Judgement Estimation
	[2] Delphi Cost Estimation Technique:
	4.6.2 Heuristic Estimation Techniques
	[1] COCOMO – HEUTISTIC ESTIMATION TECHNIQUE
	4.6.3 Analytical estimation
	Check Your Progress:

	4.8 Let us sum up
	4.9 Check your progress: Possible Answers
	4.10 Further Reading
	Unit Structure

	5.1 LEARNING OBJECTIVES
	5.2 INTRODUCTION
	5.3 ESTIMATION OF STAFF
	5.3.1 Norden’s estimation for staffing:
	5.3.2 Putnam’s Work:

	5.4 SCHEDULING
	5.4.1 Work Breakdown Structure (WBS):
	5.4.2 Critical Path Method (CPM):
	5.4.3 Gantt Chart:
	5.4.4 PERT Chart:

	5.5 TEAM STRUCTURES IN THE ORGANIZATION
	5.5.1 Structure of Software Development Organization:
	5.5.2 Structure of team:
	[1] Democratic Team Structure:
	[2] Chief programmer Team Structure:
	[3] Mixed Team Structure:

	5.6 STAFFING
	5.6.1 Skill required to be a good Software Engineer.
	Check Your Progress:
	5.7 Let us sum up
	5.8 Check your progress: Possible Answers
	5.9 Further Reading
	Unit Structure

	6.1 LEARNING OBJECTIVES
	6.2 INTRODUCTION
	6.3 REQUIREMENT ENGINEERING PROCESS
	6.4 REQUIREMENT ELICITATION
	6.5 REQUIREMENT ANALYSIS AND NEGOTIATION
	How to write Functional Requirements?
	Example:2 Find Availability of Library book

	Negotiation:

	6.6 REQUIREMENT SPECIFICATIONS
	Characteristics of Writing Good SRS:
	Problems in writing good SRS

	6.7 SYSTEM MODELING
	6.8 VALIDATING REQUIREMENTS
	6.9 REQUIREMENT CHANGE MANAGEMENT
	6.10 HOW TO REPRESENT COMPLEX LOGIC
	Decision Tree:
	Decision Table
	Example: 1

	6.12 Check your progress: Possible Answers
	6.13 Further Reading
	6.14 Activities

	Software Engineering

	BLOCK 3: SYSTEM ANALYSIS AND DESIGN (1)
	BLOCK 3: SYSTEM ANALYSIS AND DESIGN
	Unit Structure
	7.1 LEARNING OBJECTIVES
	7.2 INTRODUCTION
	7.3 STRUCTURED ANALYSIS
	7.4 DATA FLOW DIAGRAM (DFD)
	How to draw DFD:
	Process Numbering:
	Rules of drawing DFD:

	7.5 DFD OF A SCHOOL MANAGEMENT SYSTEM
	Login & Rights Allocation (1st – LEVEL):
	Expansion of Login & Rights Allocation (2nd LEVEL):
	Master Maintenance (1st – LEVEL):
	Admission (1st – LEVEL):
	Record Fees (1st – LEVEL):
	Manage Library (1st – LEVEL):
	7.6 ENTITY RELATIONSHIP DIAGRAM
	7.7 CARDINALITY OF RELATIONSHIPS
	7.8 EXAMPLE OF ER-DIAGRAM
	7.10 Check your progress: Possible Answers
	7.11 Further Reading
	7.12 Activities
	Unit Structure

	8.1 LEARNING OBJECTIVES
	8.2 INTRODUCTION
	8.3 BASIC TERMS OF OBJECT-ORIENTED ANALYSIS
	OBJECT:
	CLASS:
	ABSTRACTION:
	ENCAPSULATION:
	POLYMORPHISM:
	INHERITANCE:

	8.4 OBJECT ORIENTED ANALYSIS AND DESIGN
	Object-oriented analysis:
	Object-oriented design:

	8.5 UML DIAGRAMS:
	8.6 USE CASE DIAGRAM
	ELEMENTS OF USE-CASE DIAGRAM:

	8.7 CLASS DIAGRAMS
	ELEMENTS OF CLASS DIAGRAM:
	[A] Association:
	[B] Generalization:
	[C] Aggregation:
	[D] Composition:
	[E] Multiplicity:

	8.8 SEQUENCE DIAGRAM
	ELEMENTS OF SEQUNCE DIAGRAM:
	Life Lines:
	Messages:
	Activation:
	Objects:
	The States of a System

	8.11 Check your progress: Possible Answers
	3.12 Further Reading
	3.13 Activities
	Unit Structure

	9.1 LEARNING OBJECTIVES
	9.2 INTRODUCTION
	Unit Structure

	10.1 LEARNING OBJECTIVES
	10.2 INTRODUCTION
	10.3 FEATURES OF GOOD SOFTWARE DESIGN
	10.4 DESIGN CONCEPTS
	Figure:10.1 Modular designs

	10.5 COHESION AND COUPLING
	10.6 DESIGN MODELING
	1. Data design elements
	2. Architectural design elements
	The architecture model is derived from following sources:
	3. Interface design elements
	Following are the important elements of the interface design:
	4. Component level diagram elements
	5. Deployment level design elements

	10.7 PATTERN BASED SOFTWARE DESIGN
	HOW TO USE PATTERNS IN DESIGN?
	Exercise: 1

	10.8 Let us sum up
	10.9 Check your progress: Possible Answers
	10.10 Further Reading

	Software Engineering

	BLOCK 4: SOFTWARE TESTING (1)
	BLOCK 4: SOFTWARE TESTING
	Unit Structure
	11.1 LEARNING OBJECTIVES
	11.2 INTRODUCTION
	11.3 SOFTWARE TESTING CONCEPTS
	11.4 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)
	Requirement Analysis:
	Feasibility Study:
	Design:
	Coding:
	Testing:
	Implementation and Maintenance:

	11.5 SDLC MODELS
	11.5.1 Waterfall Model:
	11.5.2 Spiral Model:
	11.5.3 V-Process Model:

	11.7 VERIFICATION AND VALIDATION
	Verification:
	Validation:

	11.8 GOALS OF SOFTWARE TESTING
	11.8.1) Short-term or immediate goals:
	11.8.2) Long-term goals:
	11.8.3) Post-implementation goals:

	11.9 SOFTWARE TESTING LIFE CYCLE (STLC)
	11.10 STATIC AND DYNAMIC TESTING
	Advantages of static testing:
	Disadvantages of static testing:
	Advantages of dynamic testing:
	Disadvantages of dynamic testing:
	Difference between static and dynamic testing:
	11.11 Let us sum up
	11.12 Check your progress: Possible Answers
	11.13 Further Reading
	11.14 Activities
	Unit Structure

	12.1 LEARNING OBJECTIVES
	12.2 INTRODUCTION
	12.3 WHAT IS BLACK-BOX TESTING
	12.4 NEED FOR BLACK-BOX TESTING
	12.5 ADVANTAGES & LIMITATIONS OF BLACK-BOX TESTING
	Advantages of Black-box testing:
	Disadvantages of Black-box testing:

	12.6 WHEN TO DO BLACK BOX TESTING
	12.7 BOUNDARY VALUE ANALYSIS (BVA)
	12.7.1 Boundary value checking (BVC):
	12.7.2 Robustness Testing Method:

	12.8 EQUIVALENCE CLASS PARTIONING
	Guidelines for forming equivalence classes:
	Advantages of equivalence class testing:
	Disadvantages of equivalence class testing:

	12.9 DECISION TABLE BASED TESTING
	12.9.1 Advantages of Decision table-based testing:
	12.9.2 Disadvantages of decision table-based testing:
	12.9.3 Formation of decision table:
	12.9.4 Guidelines to develop a decision table:
	12.9.5 Test case design using decision table:
	Decision Table Interpretation:

	12.10 DIFFERENCE BETWEEN BVA & EQUIVALENCE CLASS TESTING
	Exercise:1 Fill in the blanks
	12.11 Let us sum up
	12.12 Check your progress: Possible Answers
	12.13 Further Reading
	12.14 Activities
	Unit Structure

	13.1 LEARNING OBJECTIVES
	13.2 INTRODUCTION
	13.3 WHITE-BOX TESTING
	13.4 NEED OF WHITE-BOX TESTING
	13.5 HOW TO DO WHITE-BOX TESTING
	13.6 ADVANTAGES, DISADVANTAGES OF WHITE-BOX TESTING
	Advantages of white-box testing:
	Disadvantages of white-box testing:

	13.7 BLACK-BOX TESTING VS. WHITE-BOX TESTING
	13.8 CODE COVERAGE CRITERIA
	13.8.1 Statement coverage:
	13.8.2 Branch Coverage:
	13.8.3 Condition Coverage:
	Advantages of code coverage criteria:
	Disadvantages of code coverage criteria:

	13.9 BASIS PATH TESTING
	13.9.1 Control flow graph:
	13.9.2 Path Testing Terms:
	 Segment:
	 Path segment:
	 Length of path:
	 Independent path:
	13.9.3 Cyclomatic Complexity:
	V(G) = e – n + 2
	13.9.4 Guidelines for Basis Path Testing:
	13.9.5 Advantages of basis path testing:

	13.10 GRAPH MATRICES
	Graph matrix:
	Exercise:1 Fill in the blanks
	13.11 Let us sum up
	13.12 Check your progress: Possible Answers
	13.13 Further Reading
	13.14 Activities
	Unit Structure

	14.1 LEARNING OBJECTIVES
	14.2 INTRODUCTION
	14.3 UNIT TESTING
	14.3.1 Driver:
	14.3.2 Stubs:
	Characteristics of stubs:
	14.3.3 Advantages and disadvantages of unit testing Advantages:
	Disadvantages:

	14.4 INTEGRATION TESTING
	14.4.1 Top-down Integration:
	Advantages:
	Disadvantages:
	14.4.2 Bottom-up Integration:
	Advantages: (1)
	Disadvantages: (1)

	14.5 SYSTEM TESTING
	Types of system testing:
	14.5.2 Recovery Testing:
	14.5.3 Security Testing:
	14.5.4 Stress testing:
	14.5.5 Load Testing:
	14.5.6 Advantages of system testing:
	14.5.7 Disadvantages of System testing:

	14.6 PERFORMANCE TESTING
	14.7 ACCEPTANCE TESTING
	14.7.1 Methods of Acceptance testing:
	 Alpha testing:
	Advantages of alpha testing:
	Disadvantages of alpha testing:
	 Beta Testing:
	Advantages of Beta testing:
	Disadvantages of Beta testing:

	14.8 TEST REPORTING
	14.8.1 Test Incident reports:
	14.8.2 Test Cycle reports:
	14.8.3 Test Summary reports:
	Exercise:1 Fill in the blanks
	14.10 Check your progress: Possible Answers
	14.11 Further Reading

