
2024

Object Oriented Concepts &
Programming-II (Advanced Java)

Dr. Babasaheb Ambedkar Open University

Object Oriented Concepts & Programming-II (Advanced Java)

Expert Committee

Prof. (Dr.) Nilesh K. Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Chairman)

Prof. (Dr.) Ajay Parikh
Professor and Head, Department of Computer Science
Gujarat Vidyapith, Ahmedabad

(Member)

Prof. (Dr.) Satyen Parikh
Dean, School of Computer Science and Application
Ganpat University, Kherva, Mahesana

(Member)

M. T. Savaliya
Associate Professor and Head
Computer Engineering Department
Vishwakarma Engineering College, Ahmedabad

(Member)

Mr. Nilesh Bokhani
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member)

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member Secretary)

Course Writer

Dr. Vinod L Desai Associate Professor,

Department of Computer Science and Technology,

Sardar Patel University,

Vallabh Vidyanagar - Gujarat

Content Reviewer

Prof. (Dr.) Nilesh K. Modi Professor and Director,

School of Computer Science,

Dr. Babasaheb Ambedkar Open University,

Ahmedabad - Gujarat

Content Editor

Mr. Nilesh Bokhani Assistant Professor,

School of Computer Science,

Dr. Babasaheb Ambedkar Open University,

Ahmedabad - Gujarat

Copyright © Dr. Babasaheb Ambedkar Open University – Ahmedabad, 2024.

ISBN -

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad While all efforts
have been made by editors to check accuracy of the content, the representation of facts, principles,
descriptions and methods are that of the respective module writer. Views expressed in the publication are
that of the authors, and do not necessarily reflect the views of Dr. Babasaheb Ambedkar Open University.

Dr. Babasaheb
Ambedkar Open
University

BCAMA-401

Object Oriented Concepts & Programming-II
(Advanced Java)

BLOCK-1: Swing, Event Handling and Networking

UNIT-1
GUI PROGRAMMING USING SWING 01

UNIT-2
BACKT EVENT HANDLING AND LAYOUT 22

UNIT-3
JAVA NETWORKING 48

UNIT-4
JAVA.NET PACKAGE 60

BLOCK-2: JDBC, STORED PROCEDURE AND
FUNCTIONS

UNIT-1
INTRODUCTION TO JDBC 83

UNIT-2
EXPLORING JAVA.SQL PACKAGE 94

UNIT-3
CONNECTING WITH DATABASE 110

UNIT-4
WORKING WITH STORED PROCEDURES AND FUNCTIONS 126

BLOCK-3: Web APPLICATION, SERVLETS AND
SESSION MANAGEMENT

UNIT-1
BASICS OF WEB APPLICATION 147

UNIT-2
SERVLETS 159

UNIT-3
SERVLET COLLABORATION AND CONFIGURATION 175

UNIT-4
SESSION MANAGEMENT 194

BLOCK-4: JSP, EXPRESSION LANGUAGE AND
JSTL

UNIT-1
BASICS OF JSP 219

UNIT-2
JSP OBJECTS AND DIRECTIVES 231

UNIT-3
JSP EXPRESSION LANGUAGE (EL) 255

UNIT-4
JSTL 283

BLOCK 1: Swing, Event Handling and Networking

Block Introduction

Through Swing user can design a GUI application as per their requirements.

Swing supports feature rich components to design the GUI application. It also has

various event handling classes and interfaces to deal with.

Through Java Networking two or more computing devices or machines

together can communicate and share resources. Java Database Connectivity,

which is a standard Java API for database-independent connectivity between the

Java programming language and a wide range of databases.

In this block, we will cover in detail about the Basics of GUI programming

using Swing components, its superiority on AWT, event handling with swing

components and arranging these components on the containers with the help of

Layout Manger. We will also discuss the fundamentals of Networking, different

kinds of Protocols and difference between TCP and UDP. The block also focuses

on the study and understanding of networking classes of network package

available in JDK. The students will be given an idea on creating Client and Server

program with the help of Sockets programs. The concept related to working and

implementing of connection oriented and connection-less client-server programs,

multicasting the data are also explained practically.

Block Objective

After learning this block, you will be able to understand:

 Importance of GUI application

 Designing desktop GUI application

 The use of different controls to accept input

 Designing interactive GUI application

 Defining event handlers for various kinds of events

 To arrange component on containers using layout manager

 about Networking Protocols

 Difference between TCP and UDP

 Different Networking Classes available in JDK

 Concept of Sockets, IP Address and Port numbers in Networking

 Qualities of creating Client and Server Program using Sockets

 Qualities of creating Client and Server Program using DatagramSocket &

DatagramPacket

 Qualities of creating Client and Server Program using MulticastSockets

 Idea about running Client Server Programs

Block Structure

Unit 1: GUI Programming using Swing

Unit 2: Event handling and Layout

Unit 3: Java Networking

Unit 4: Java.net Package

Block Summary

In this block, students have learnt and understand about GUI programming

using SWING. They also learnt designing and developing event driven

programming using Delegation Event Model. They learnt that java networking

helps to connect two or more machines to make communication. This block has

explored various functionality of java.awt, javax.swing, java.awt.event and

java.net class library of JDK. The students were well explained the concepts of

creating and designing GUI application along with event listeners and event

handlers. The concept related to TCP, UDP, Socket, ServerSocket along with

INetAddress and MulticastSocket were discussed with its applications.

Block Assignment

Short Answer Questions:

1. Discuss the importance of GUI application.

2. “Swing components are lightweight”. Justify.

3. Define event.

4. Write short note on INetAddress class.

5. Define URI and URL.

6. Which method does MouseMotionListener handles?

Long Answer Questions:

1. Discuss different steps required for connecting client and server using TCP.

2. Write short notes on URLConnection.

3. Write short note on MulticastSocket.

4. Write note on Event Delegation Model.

5. Explain various methods of Key Listener.

6. Dicuss about URLClassLoader, URLDecoder, URLEncoder and URLStreamHandler.

1

UNIT 1: GUI PROGRAMMING USING SWING

Unit Structure

1.0 Learning Objectives

1.1 Introduction

1.2 Differences between Swing and AWT

1.3 Swing Containers

1.4 Basics of Swing Program

1.5 Working with Swing Component

1.6 Let us sum up

1.7 Answer for Check Your Progress

1.8 Glossary

1.9 Assignment

1.10 Activities

1.11 Case Study

1.12 Further Readings

2

1.0 Learning Objectives

After learning this Unit, you will be:

 Able to design desktop GUI application

 Able to use different controls to accept input

1.1 Introduction

GUI stands for Graphical User Interface, is a user-friendly visual display for Java

applications. It consists of graphical controls like buttons, labels, containers etc. through

which users can interact with an application. A GUI consists of an array of user interface

elements which are displayed when a user is interacting with an application. Swing was

designed with a dynamic architecture to make the elements customizable and easy to render

as plug-and-play. Swing is a lightweight GUI toolkit. It is a part of the JFC (Java Foundation

Classes). It is build on top of the AWT API and purely written in java. It is platform

independent unlike AWT.

There are generally three Java APIs used for graphics programming in java like AWT

(Abstract Windowing Toolkit), Swing and JavaFX.

I. AWT API was introduced in JDK 1.0. Many of the AWT UI components have become

obsolete and replaced by newer Swing UI components.

II. Swing API extends the AWT, was introduced as part of Java Foundation Classes (JFC)

after the release of JDK 1.1. JFC consists of Swing, Accessibility, Java2D, Pluggable Look-

and-Feel and Internationalization APIs. JFC was integrated into core Java since JDK 1.2.

III. The JavaFX is integrated into JDK 8. Its main purpose was to replace Swing. JavaFX was

moved out from the JDK in JDK 11, but it is still available as a separate module.

1.2 Differences between Swing and AWT

AWT stands for Abstract Window Toolkit. It is a platform-dependent API to develop GUI

(Graphical User Interface) or window-based applications in Java. It was developed by Sun

Microsystems In 1995. The major differences between AWT and Swing are following.

API Package: The AWT Component classes are contained in the java.awt package while the

Swing component classes are contained in the javax.swing package.

Platform dependency: The AWT components are mainly dependent on the operating

system. The Swing components are purely written in java hence not dependent on the

operating system.

3

Weightiness: The AWT is heavy weight since it uses the resources of the operating system.

The Swing Components are built on the top of AWT and doesn't need any operating system

resources for processing. So, The Swing is mostly lightweight.

Appearance: The Appearance of AWT Components is mainly depends on the operating

system's look and feels. The Swing Components are mainly support pluggable look and feel.

Number of Components: The Java AWT provides a smaller number of components. Java

Swing provides a greater number of components than AWT, like list, scroll panes, tree,

spinners, tables, color choosers etc.

Full-Form: Java AWT stands for Abstract Window Toolkit. Java Swing is referred as

Java Foundation Classes (JFC).

Memory: Java Swing needs less memory space as compared to Java AWT.

Time: AWT is slower than swing in terms of execution time while Swing is faster than the

AWT.

MVC pattern: MVC pattern is not supported by AWT. MVC pattern is supported by Swing.

2D Graphics Rendering: AWT doesn’t support it while Swing supports it.

1.3 Swing Containers

Container classes are classes that can contain other components on it. Java Swing Framework

contains a large set of these components with rich functionalities and allows high level of

customization. They all are derived from JComponent class and are lightweight components.

This class provides some common functionality like pluggable look and feel, support for

accessibility, drag and drop, layout etc. A container provides a space where a component can

be managed and displayed. Containers are of two types:

Top level Containers:

It inherits Component and Container of AWT. It cannot be contained within other containers.

Heavyweight container includes JFrame, JDialog and JApplet.

Lightweight Containers:

It inherits JComponent class. It is a general purpose container. It can be used to organize

related components together. JPanel is a Lightweight Container.

Like AWT application, a Swing application requires a top-level container. There are three top-

level containers in Swing:

 JFrame: It is used for the application's main window. A Frame provides the main

window for GUI application. It has a title bar (containing an icon, a title, the

4

minimize, maximize/restore-down and close buttons), an optional menu bar and the

content display area.

 JDialog: It is a secondary pop-up window used for interacting with the users.

A Dialog has a title-bar (containing an icon, a title and a close button) and a content

display area.

 JApplet: It is used for the applet's display-area (content-pane) inside a browser’s

window. JApplet is the top-level container for an applet, a java program running

inside a browser. Applet is no longer supported in most of the browsers.

There are secondary containers (such as JPanel) which can be used to group and layout

relevant components. It is a rectangular box used to layout a set of related GUI components

in pattern such as grid or flow.

The JComponents shall not be added directly onto the top-level container (e.g., JFrame)

because they are lightweight components. The JComponents must be added onto the content-

pane of the top-level container. Content-pane is in fact a java.awt.Container that can be used

to group and layout components.

Check your progress 1

1. Which of the following architecture does the Swing framework use?

a. MVC

b. MVP

c. Layered architecture

d. Master-Slave architecture

2. A is the abstract foundation class for SWING's non-menu user interface

controls?

a. Container

b. Jcomponent

c. Component

d. AWT

3. A is the basic class for all SWING UI components?

a. Container

b. Jcomponent

c. Component

5

1.4 Basics of Swing Program

To create a GUI in Swing first create a class that represents the main GUI. This class will

extend a top container which will hold all the other components to be displayed. In most of

the classes, the main container is a frame, i.e., the JFrame class in javax.swing package. A

frame is just like a window which is displayed whenever a user opens an application. Frame

has a title bar, menu bar and buttons such as minimize, maximize and close along with other

features.

The JFrame class has simple constructors such as JFrame() and JFrame(String). The frame’s

title bar in the JFrame() constructor remains empty, whereas the JFrame(String) constructor

places the title bar with a specified text represented by string argument. Apart from the title,

the size of the frame can also be customized by implementing the setSize(int, int) method by

providing the width and height desired for the frame as an argument in pixels. For example,

calling setSize(500,300) would create a frame that would be 500 pixels wide and 300 pixels

long. Generally, frames are invisible at the time of their creation. To make them visible a user

has to implement the frame’s setVisible(boolean) method by passing the value ‘true’ as an

argument. The general template of Swing program is shown below.

Swing Template:

d. AWT

4. Which class is the base class for all Swing components?

a. java.awt.Component

b. java.awt.Container

c. javax.swing.JComponent

d. javax.swing.JPanel

5. Which of the following is not a Swing container?

a. JFrame

b. JDialog

c. JButton

d. JTabbedPane

import java.awt.*; // For AWT layouts

import java.awt.event.*; // For AWT event classes and listener interfaces

import javax.swing.*; // For Swing components and containers

// A Swing GUI application inherits from top-level container javax.swing.JFrame

6

After creating the GUI with top level container as a frame user can add components like

buttons, text fields etc. to the frame.

public class SwingTemplate extends JFrame

{

// Private instance variables

//

// Constructor to setup the GUI components and event handlers

public SwingTemplate() {

// Get the top-level content-pane from JFrame

Container cp = getContentPane();

// Content-pane sets layout

cp.setLayout(new Layout());

// Create the GUI components

//

// Content-pane adds components

cp.add(....);

// Source object adds listener

//

}

// The entry main() method

public static void main(String[] args)

{

//create JFrame object with SwingTemplate

JFrame jframe = new SwingTemplate ();

// Exit the program when the close-window button clicked

jframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// sets title of JFrame

Jframe.setTitle(“ ”);

//set size of GUI screen

jframe.setSize(400,400);

jframe.setVisible(true);

}

}

7

1.5 Working with Swing Component

To create a component in Java, the user is required to create an object of that component’s

class. Following are the widely used swing components.

JButton:
One such important component to implement is JButton. The button can include some text or

images on it. It yields an event when clicked and double-clicked. To implement a JButton in

the application its constructors can be used.

Constructor Syntax:

1. JButton btn = new JButton(“ClickMe”);

This constructor returns a button with the text ClickMe on it.

2. JButton btn = new JButton(Icon);

This constructor returns a button with a Icon on it.

3. JButton btn = new JButton(Icon, “ClickMe”);

This constructor returns a button with the icon and text as “ClickMe”.

Example: SwingComponent.java

Check your progress 2

1. Which of the following methods is used to add a component to a container?

a. addComponent()

b. addContainer()

c. addComponentToContainer()

d. add()

2. Which of the following methods is used to set the size of a container?

a. setSize()

b. setPreferredSize()

c. setBounds()

d. setMinimumSize()

3. Which of the following methods is used to set the layout manager of a container?

a. setLayoutManager ()

b. setLayout()

c. setContainerLayout()

d. setComponentLayout()

import java.awt.*;

import javax.swing.*;

8

The setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) method is used Exit the

application. After successful compilation, it will have following GUI when we execute above

program:

Figure 1. JButton Example

JLabel

public class SwingComponent extends JFrame

{

public SwingComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JButton bt1 = new JButton("Yes");

JButton bt2 = new JButton("No");

cp.setLayout(new FlowLayout());

cp.add(bt1);

cp.add(bt2);

}

public static void main(String[] args)

{

JFrame jframe = new SwingComponent ();

jframe.setTitle("JButton");

jframe.setSize(250,200);

jframe.setVisible(true);

}

}

9

JLabel class is used to render a read-only text label or images on the UI. It does not generate

any event.

Syntax:

JLabel textLbl = new JLabel(“Name:”);

This constructor returns a label with specified text.

JLabel imgLbl = new JLabel(Icon);

This constructor returns a label with a specified icon.

The JLabel Contains four constructors. They are as follows:

1. JLabel()

2. JLabel(String str)

3. JLabel(Icon i)

4. JLabel(String str, Icon i, int horizontalAlignment)

JTextField:

JTextField is used for taking input of single line of text from user. It is most widely used text

component. It has three constructors,

1. JTextField(int cols)

2. JTextField(String txt, int cols)

3. JTextField(String txt)

In above constructors, cols represent the number of columns in text field and txt represents

the default text to be displayed in text field.

Example: SwingComponent.java

import java.awt.*;

import javax.swing.*;

public class SwingComponent extends JFrame

{

public SwingComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JLabel msg=new JLabel("Message:"); // Label for TextField

JTextField jtf = new JTextField("Welcome to BAOU",20);

cp.setLayout(new FlowLayout());

cp.add(msg);

cp.add(jtf);

}

public static void main(String[] args)

{

JFrame jframe = new SwingComponent();

10

After successful compilation, it will have following GUI when we execute above program:

JCheckBox

Figure 2. JTextField Example

The JCheckBox renders a check-box with a label. This control allows user to select multiple

items. The check-box has two states, i.e., on and off. On selecting, the state is set to "on," and

a small tick is displayed inside the box.

Syntax:

CheckBox chkBox = new JCheckBox(“BAOU”, true);

It returns a checkbox with the label BAOU. Notice the second parameter in the constructor. It

is a boolean value indicates the default state of the check-box. True means the default

selection i.e. the "on" state.

Example: SwingComponent.java

jframe.setTitle("JTextField");

jframe.setSize(320,200);

jframe.setVisible(true);

}

}

import java.awt.*;

import javax.swing.*;

public class SwingComponent extends JFrame

{

public SwingComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JCheckBox jcb = new JCheckBox("BAOU",true);

JCheckBox jcb1 = new JCheckBox("GTU");

JCheckBox jcb2 = new JCheckBox("NGU");

11

After successful compilation, it will have following GUI when we execute above program:

JRadioButton

Figure 3. JCheckBox Example

Radio button is a group of related button in which only one item can be selected.

JRadioButton class is used to create a radio button in Frames. It is a group of related buttons

from which user can select only one. Users can select one choice from the group. It should be

added in ButtonGroup to select only one radio button at a time.

Constructors:

1. JRadioButton(): It creates an unselected radio button with no text.

2. JRadioButton(String str): It creates an unselected radio button with specified text.

3. JRadioButton(String str, boolean state): It creates a radio button with the specified text and

selected status.

Example: SwingComponent.java

cp.setLayout(new FlowLayout());

cp.add(jcb);

cp.add(jcb1);

cp.add(jcb2);

}

public static void main(String[] args)

{

JFrame jframe = new SwingComponent();

jframe.setTitle("JCheckBox");

jframe.setSize(320,200);

jframe.setVisible(true);

}

}

import java.awt.*;

import javax.swing.*;

12

After successful compilation, it will have following GUI when we execute above program:

JComboBox:

Figure 4. JRadioButton Example

public class SwingComponent extends JFrame

{

public SwingComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JRadioButton rb1=new JRadioButton("Male");

JRadioButton rb2=new JRadioButton("Female");

ButtonGroup bg=new ButtonGroup();

bg.add(rb1);

bg.add(rb2);

cp.setLayout(new FlowLayout());

cp.add(rb1);

cp.add(rb2);

}

public static void main(String[] args)

{

JFrame jframe = new SwingComponent();

jframe.setTitle("JRadioButton");

jframe.setSize(320,200);

jframe.setVisible(true);

}

}

13

Combo box is a combination of text fields and drop-down list. JComboBox is used to show

popup menu of items. Item selected by user is shown on the top of a menu.

Constructors:

1. JComboBox(): It creates a JComboBox with a default data model.

2. JComboBox(Object[] items): It creates a JComboBox containing the elements in the

specified array.

3. JComboBox(Vector<?> items): It creates a JComboBox containing the elements in the

specified Vector.

Example: SwingComponent.java

After successful compilation, it will have following GUI when we execute above program:

import java.awt.*;

import javax.swing.*;

public class SwingComponent extends JFrame

{

public SwingComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

String player[]={"Ved","Het","Kalp","Moksh","Shrey"};

JComboBox cb=new JComboBox(player);

cp.setLayout(new FlowLayout());

cp.add(cb);

}

public static void main(String[] args)

{

JFrame jframe = new SwingComponent();

jframe.setTitle("JComboBox");

jframe.setSize(320,200);

jframe.setVisible(true);

}

}

14

Figure 5. JComboBox Example

JTextArea

A JTextArea Class is used for displaying multiple-line text. It allows editing of multiple line

text.

Declaration:

public class JTextArea extends JTextComponent

Constructor:

1. JTextArea(): It creates a text area that displays no text initially.

2. JTextArea(String str): It creates a text area that displays specified text initially.

3. JTextArea(int row, int column): It creates a text area with the specified number of rows

and columns that displays no text initially.

4. JTextArea(String str, int row, int column): It creates a text area with the specified number

of rows and columns that displays specified text.

Example: SwingComponent.java

import java.awt.*;

import javax.swing.*;

public class SwingComponent extends JFrame

{

public SwingComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JTextArea jtarea=new JTextArea("Welcome to BAOU");

cp.setLayout(new FlowLayout());

cp.add(jtarea);

}

public static void main(String[] args)

15

After successful compilation, it will have following GUI when we execute above program:

JPasswordField:

Figure 6. JTextArea Example

JPasswordField Class is specifically used for the password and we can edit it. The

JPasswordField has 4 constructors:

1. JPasswordField()

2. JPasswordField(int columns)

3. JPasswordField(String txt)

4. JPasswordField(String txt, int columns)

Example: SwingComponent.java

import java.awt.*;

import javax.swing.*;

public class SwingComponent extends JFrame

{

public SwingComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPasswordField jpd = new JPasswordField(20);

JLabel lbl=new JLabel("Password:");

{

JFrame jframe = new SwingComponent();

jframe.setTitle("JTextArea");

jframe.setSize(320,200);

jframe.setVisible(true);

}

}

16

After successful compilation, it will have following GUI when we execute above program:

Figure 7. JPasswordField Example

JMenuBar, JMenu and JMenuItem:

The JMenuBar class is used to display menubar on the window or frame. It may contain

several menus. The object of JMenu class is a pull down menu component which is displayed

from the menu bar. It inherits the JMenuItem class. The object of JMenuItem class adds a

simple menu item. The items used in a menu must belong to the JMenuItem or any of its

subclass.

Example: SwingComponent.java

cp.setLayout(new FlowLayout());

cp.add(lbl);

cp.add(jpd);

}

public static void main(String[] args)

{

JFrame jframe = new SwingComponent();

jframe.setTitle("JPasswordField");

jframe.setSize(320,200);

jframe.setVisible(true);

}

}

import java.awt.*;

import javax.swing.*;

public class SwingComponent extends JFrame

{

public SwingComponent()

{

17

After successful compilation, it will have following GUI when we execute above program:

JScrollBar :

Figure 8. JMenu Example

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JMenu menu;

JMenuItem op,sv;

menu = new JMenu("File");

JMenuBar jm = new JMenuBar();

op = new JMenuItem("Open");

sv = new JMenuItem("Save");

menu.add(op);

menu.add(sv);

jm.add(menu);

setJMenuBar(jm);

cp.setLayout(new FlowLayout());

}

public static void main(String[] args)

{

JFrame jframe = new SwingComponent();

jframe.setTitle("JMenu");

jframe.setSize(320,200);

jframe.setVisible(true);

}

}

18

In Java, Swing toolkit contains a JScrollBar class. It is under package javax.swing.JScrollBar

class. It is used for adding horizontal and vertical scrollbar.

Constructors:

1. JScrollBar()

2. JScrollBar(int orientation)

3. JScrollBar(int orientation, int value, int extent, int min, int max)

Example: SwingComponent.java

After successful compilation, it will have following GUI when we execute above program:

import java.awt.*;

import javax.swing.*;

public class SwingComponent extends JFrame

{

public SwingComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JScrollBar hjsBar=new JScrollBar(JScrollBar.HORIZONTAL);

JScrollBar vjsBar=new JScrollBar(JScrollBar.VERTICAL);

cp.setLayout(new FlowLayout());

cp.add(hjsBar);

cp.add(vjsBar);

}

public static void main(String[] args)

{

JFrame jframe = new SwingComponent();

jframe.setTitle("JScrollBar");

jframe.setSize(320,200);

jframe.setVisible(true);

}

}

19

Figure 9. JScrollBar Example

Check your progress 3

1. Which of the following components can display images?

a. JTextArea

b. JTable

c. JList

d. JLabel

2. Which of the following methods is used to set the title of a JFrame?

a. setTitle()

b. setLabel()

c. setText()

d. setCaption()

3. Which of the following methods is used to create a new JMenuBar object?

a. new JMenuBar()

b. createMenuBar()

c. makeMenuBar()

d. getMenuBar()

4. Which of the following methods is used to add a menu to a JMenuBar object?

a. addMenu()

b. createMenu()

c. makeMenu()

d. add()

5. To create swing components, which of the following is imported?

a. javax.awt.*

b. java.awt.*

20

1.6 Let Us Sum Up

Swing components are the fundamental building blocks of java GUI application. We have

discussed important swing components of Java swing classes with example. Using all the

components which comes with swing, it becomes easier for users to build optimized GUI

applications. Buttons and labels can be displayed with images instead of or in addition to text.

The borders around most Swing components can be changed easily. Swing components do

not have to be rectangular. For example, Buttons can be round. Swing also supports a

pluggable look and feels. Apart from the components discussed in this unit Swing provides

more powerful components such as JTable, JList, JColourChooser, JTabbedPane,

JFileChooser , JProgressBar, JSpinner etc.

1.7 Answer for Check Your Progress

Check your progress 1: 1. a 2. c 3. b 4. c 5. c

Check your progress 2: 1. d 2. a 3. b

Check your progress 3: 1. d 2. a 3. A 4. d 5. c 6. d

1.8 Glossary

1. Component: It is not a window. It is an abstract class underlying Buttons etc.

2. Container: These are the platforms on which all the other windows are built. They

manage the child Components and LayoutManager.

3. Dialog: It is a pop-up box to deliver an error message or alert. Temporary Window for

displaying information or requesting keystrokes. It needs a parent Frame, thus it cannot be

used inside an Applet which has no Frame. It can be modal, which means it blocks input to

all other Windows until it is dismissed. It requires having a Frame mentioned in the

constructor.

c. javax.swing.*

d. java.swing.*

6. Swing elements are preceded by the letter

a. S

b. A

c. X

d. J

21

4. Frame: It is a resizable, movable window with title bar and close button. Usually it

contains Panels.

5. Panel: It is an area internal to a Frame or another Panel. It is used for grouping

components together. It has no visible border. User can change background colour of a panel

to delimit it though. It is contained inside some enclosing Container.

1.9 Assignment

1. Define GUI. Discuss various advantages of GUI Application.

2. Differentiate Swing components from AWT components.

1.10 Activities

- Explore the JTable component and its various methods.

- Explore the JTree component and its various methods.

- Explore JTabbedPane component and its various methods.

1.11 Case Study

- Try and Understand Look & Feel mechanism of Swing.

1.12 Further Readings

- https://www.codingninjas.com/codestudio/library/swing-components-in-java

- https://www.mindprod.com/jgloss/swing.html

- https://www.educba.com/swing-components-in-java/

- https://www.javatpoint.com/java-swing

http://www.codingninjas.com/codestudio/library/swing-components-in-java
http://www.mindprod.com/jgloss/swing.html
http://www.educba.com/swing-components-in-java/
http://www.javatpoint.com/java-swing

22

UNIT 2: EVENT HANDLING AND LAYOUT

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 Event Delegation Model

2.3 Types of Events and Event Handlers

2.4 Working with Event Handling

2.5 Layout Manager

2.6 Let us sum up

2.7 Answer for Check Your Progress

2.8 Glossary

2.9 Assignment

2.10 Activities

2.11 Case Study

2.12 Further Readings

23

2.0 Learning Objectives

After learning this Unit, you will be:

 Able to design interactive GUI application

 Able to define event handlers for various kinds of events

 Able to arrange component on containers

2.1 Introduction

Any program that uses GUI (graphical user interface) such as Java application written for

windows, is event driven. Change in the state of an object is known as event i.e. event

describes the change in state of source. Events are generated as result of user interaction with

the GUI components. For example, clicking on a button, dragging the mouse, entering a

character via keyboard, selecting an item from list, scrolling the page are the activities that

causes an event to occur. The events can be broadly classified into two categories. First,

Foreground Events are those events that require the direct interaction of user. They are

generated as consequences of a person interacting with the graphical components in

Graphical User Interface. For example, clicking on a button, moving the mouse, entering a

character through keyboard, selecting an item from list, scrolling the page etc. Second,

Background Events are those events that don’t require the interaction of end user to generate

are known as background events. Operating system interrupts, hardware or software failure,

timer expires, an operation completion are the example of background events. In this unit we

are going to discuss various kinds of events and the mechanism to handle the events. We will

also discuss various types of Layout to arrange the component on the containers.

2.2 Event Delegation Model

Earlier in the Java 1.0, the event model for event processing was based on the concept of

containment. In this approach, whenever a user initiates an event, it is first sent to the

component in which the event has happened. But in case the event is not handled at this

component, it is automatically propagated to the container of that component. This process

continued until the event is handled or it reaches the top of the container hierarchy. The major

drawback in this approach is that events could be handled by the component that generated it

or by the container of that component. Another major problem is that events are frequently

sent to those components that cannot process them, thus wasting a lot of CPU cycles.

24

The advanced versions of Java ruled out the limitations of Java 1.0 event model. This model

is known as the Event Delegation Model which defines a logical approach to handle events.

It is based on the concept of source and listener. A source triggers an event and sends it to

one or more listeners. On receiving the event, listener handles the event and returns it. The

important feature of this model is that the source has a registered list of listeners which will

receive the notification as they occur. Only the listeners that have been registered actually

receive the notification when a specific event occurs.

For example, whenever the mouse is clicked on Button, an event will be generated. If

the Button has a registered listener to handle the event, this event notification will be send

to registered listener, event will be processed and the output will be returned to the user.

However, if it has no registered listener the event will not be propagated upwards to the

container i.e. Panel or Frame. Three important aspects of Event Delegation Model are:

Event Source:

An event source is an object that is responsible to generate a particular kind of event. An

event is generated when the internal state of the event source is changed. A source may

generate more than one type of event. Every source must register a list of listeners that are

interested to receive the event notifications regarding the type of event. Generally, the event

source is a button or the other component that the user can interact but any Swing component

can be an event source. The task of the event source is to accept registrations, get events

from the user and call the concerned listener’s event handling method. Event source provides

methods to add or remove listeners. The general form of method to register (add) a listener

is:

 public void addTypeListener(TypeListener eventlistener)

Similarly, the general form of method to unregister (remove) a listener is:

 public void removeTypeListener(TypeListener eventlistener)

where,

Type is the name of the event and eventlistener is a reference to the event listener.

Event Listener:

An event listener is an object which receives notification when an event occurs. As already

said, only registered listeners will receive event notification from sources about specific type

of events. The main task of an event listener is to implement the interface, register with the

source and provide the event handling mechanism.

25

Event Handler:

An event handler is a function or method that executes program logic in response to an event.

A software program that processes activities such as keystrokes or mouse movements is what

an event handler is.

2.3 Types of Events and Event Handlers

As we discussed in Event Delegation Model, source is responsible for generating an event.

There are various sources who generates different kinds of events. For such events there are

various kinds of corresponding event handlers to handles those events. The below table lists

the various event classes within the java.awt.event package, their listener interface, methods

and the components associated with each of them.

No Event Class Listener Interface Event Handlers / Methods Descriptions

1 ActionEvent ActionListener actionPerformed() When a button is

clicked or a list item is

double-clicked, an

ActionEvent is

triggered.

2 AdjustmentEvent AdjustmentListener adjustmentValueChanged() when the scroll bar is

manipulated

3 ComponentEvent ComponentListener componentResized(),

componentMoved(),

componentShown() and

when a component is

hidden, moved, resized,

or made visible

Check your progress 1

1. To manage events, Java employs the ?

a. Custom-based Event Model

b. Retired Event Model

c. Delegation Event Model

2. How many types of events are there?

a. 5

b. 3

c. 2

d. 4

3. Which of the following type of events requires direct interaction with the user?

a. Foreground events

b. Background events

26

componentHidden()

4 ContainerEvent ContainerListener componentRemoved() and

componentAdded()

when a component is

added or removed from

a container

5 FocusEvent FocusListener focusLost() and

focusGained()

when a component

gains or losses

keyboard focus

6 ItemEvent ItemListener itemStateChanged() An event that indicates

whether an item was

selected or not.

7. KeyEvent KeyListener keyPressed(), keyReleased(),

and keyTyped().

The Key event is

triggered when the

character is entered

using the keyboard.

8 MouseEvent MouseListener and

MouseMotionListener

mouseClicked(),

mousePressed(),

mouseEntered(),

mouseExited() and

mouseReleased() are the

mouseListener methods.

mouseDregged() and

mouseMoved() are the

MouseMotionListener

methods.

This event indicates a

mouse action occurred

in a component

9. MouseWheelEve

nt

MouseWheelListener mouseWheelMoved() generated when the

mouse wheel is rotated

10 TextEvent TextListener textChanged() When the value of a

textarea or text field is

changed

11. WindowEvent WindowListener windowActivated(),

windowDeactivated(),

windowOpened(),

windowClosed(),

windowClosing(),

windowIconfied() and

windowDeiconified().

The object of this class

represents the change in

the state of a window

and are generated when

the window is activated,

deactivated, deiconified,

 iconified,

opened or closed

2.4 Working with Event Handling

The following steps are required to perform event handling in Java:

 Implement appropriate interface in the class:

The first step is to implement an appropriate interface in the class.

27

 Register the component with the listener:

Once the implementation of the interface in the class is done, the second step is to register the

created components with listeners, which can be done using inbuilt functions.

Now, we will see different event handling mechanism with the help of examples.

The ActionListener Interface

The ActionListener listener interface is used for receiving action events. Any class interested

in processing action events should implement this interface. An object created with the class

is registered with a component using that component's addActionListener() method. When

the action event occurs on the component we have registered,

the actionPerformed(ActionEvent e) method of the object is invoked.

Example: SwingComponent.java

In the following example two buttons and one Label component are created. Label

component text changes each time the button is clicked.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class SwingComponent extends JFrame implements ActionListener

{

JLabel status;

JButton yes,no;

public SwingComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

yes = new JButton("Yes");

no = new JButton("No");

status=new JLabel();

cp.setLayout(new FlowLayout());

cp.add(yes);

cp.add(no);

cp.add(status);

yes.addActionListener(this); // Listener Registration

no.addActionListener(this); // Listener Registration

28

In the above program we have created a frame and a button and registered the button with the

invoking object (this), which is our implementation class i.e SwingComponent. We then

implement the only method within the ActionListener interface which

is actionPerformed(ActionEvent e). Every time we press the button this method is invoked

and its message is displayed in the label’s text, so we can see it change each time. Similarly

we can implement different listeners for various components and its corresponding events.

After successful compilation, it will have following output when we execute above program:

}

public void actionPerformed(ActionEvent ae) // Event Handler

{

String command = ae.getActionCommand();

// code to check which button is pressed

if(command.equals("Yes"))

{

status.setText("Yes Button clicked.");

}

else

{

status.setText("No Button clicked.");

}

}

public static void main(String[] args)

{

JFrame jframe = new SwingComponent ();

jframe.setTitle("ActionEvent Example");

jframe.setSize(300,200);

jframe.setVisible(true);

}

}

29

Figure 1. ActionEvent Example

The AdjustmentListener Interface

The AdjustmentListener listener interface is used for receiving adjustment events. Any class

interested in processing adjustment events should implement this interface. A component

created with the class is registered using component's addAdjustmentListener() method.

When the adjustment event occurs on the component we have registered,

the adjustmentValueChanged(AdjustmentEvent e) method of the object is invoked.

Example: SwingAdjustmentListener.java

In the following example we have created a text area on the left of the frame to receive

messages when the scrollbar on the right of the Jframe is interacted with.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class SwingAdjustmentListener extends JFrame implements AdjustmentListener

{

JTextArea ta;

public SwingAdjustmentListener()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

ta = new JTextArea("Welcome to BAOU JTextArea.");

cp.setLayout(new FlowLayout());

ta.setEditable(false);

ta.setLineWrap(true);

ta.setWrapStyleWord(true);

30

The following figure 2 shows the results of compiling and running

the OurAdjustmentListener class and scrolling the right scrollbar a few times. We

implements the AdjustmentListener on SwingAdjustmentListener class. We then creates a

scrollbar and text area. We then add a scroll bar to container and register it with the invoking

object (this), which is our SwingAdjustmentListener. After this we implements the only

method of AdjustmentListener interface which is adjustmentValueChanged(AdjustmentEvent

ae). Every time we press or move the scroll bar this method is invoked and it append some

text to the text area on the left. After successful compilation, it will have following output

when we execute above program:

// Create and register a JScrollbar

JScrollBar vbar = new JScrollBar(JScrollBar.VERTICAL, 0, 50, 0, 220);

cp.add(ta);

cp.add(vbar);

vbar.addAdjustmentListener(this);

}

// Implement the method of AdjustmentListener Interface

public void adjustmentValueChanged(AdjustmentEvent e)

{

ta.append("This text is Appended. ");

}

public static void main (String[] args)

{

JFrame jframe = new SwingAdjustmentListener();

jframe.setTitle("AdjustmentEvent Example");

jframe.setSize(350,250);

jframe.setVisible(true);

}

}

31

Figure 2. AdjustmentEvent Example

The ItemListener Interface

The ItemListener listener interface is used for receiving item selection events. Any class

interested in processing item selection events should implement this interface. An object

created with the class is registered with a component using that

component's addItemListener() method. When an item selection event occurs on the

component we have registered, the itemStateChanged(ItemEvent e) method of the object is

invoked.

Example: SwingItemListener.java

In the following example we create a text area on the left of the frame to receive messages

when the radio buttons are interacted with.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class SwingItemListener extends JFrame implements ItemListener

{

JRadioButton jrb1,jrb2,jrb3,jrb4;

JTextArea ta;

public SwingItemListener()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

ta = new JTextArea("Welcome to BAOU JTextArea.",1,30);

32

cp.setLayout(new FlowLayout());

ta.setLineWrap(true);

ta.setWrapStyleWord(true);

// Create some radio buttons

jrb1 = new JRadioButton("Ahmedabad");

jrb2 = new JRadioButton("Vallabh Vidyanagar");

jrb3 = new JRadioButton("Vadodara");

jrb4 = new JRadioButton("Gandhinagar");

// Group the buttons so only one can be selected at a time

ButtonGroup bg = new ButtonGroup();

bg.add(jrb1);

bg.add(jrb2);

bg.add(jrb3);

bg.add(jrb4);

JPanel panel = new JPanel();

panel.add(jrb1);

panel.add(jrb2);

panel.add(jrb3);

panel.add(jrb4);

cp.add(ta);

cp.add(panel);

// Register the radio buttons with our ItemListener object

jrb1.addItemListener(this);

jrb2.addItemListener(this);

jrb3.addItemListener(this);

jrb4.addItemListener(this);

}

public void itemStateChanged(ItemEvent e)

{

Object o = e.getSource();

if (o instanceof JRadioButton)

33

The following figure 3 shows the results of compiling and running

the SwingItemListener class. We implement the ItemListener on our SwingItemListener

class. We then created a text area and some radio buttons which we put in a button group so

that only one can be selected at a time. We also grouped all the radio buttons in one panel.

We registered all the radio buttons with the invoking object (this), which is

our SwingItemListener. After this we implemented the method of the ItemListener interface

which is itemStateChanged(ItemEvent e). Every time we select a radio button this method is

invoked and we append some text to the text area. The text appended gets duplicated because

as we change radio buttons two events are triggered, one for the radio button being deselected

and another for the radio button being selected. After successful compilation, it will have

following output when we execute above program:

{

// Downcast Object to JRadioButton so we can use methods of JRadioButton

class

ta.append("You selected: " + ((JRadioButton)o).getText() + "\n");

}

}

public static void main (String[] args)

{

JFrame jframe = new SwingItemListener();

jframe.setTitle("ItemEvent Example");

jframe.setSize(500,250);

jframe.setVisible(true);

}

}

34

Figure 3. ItemEvent Example

The MouseListener Interface

Mouse event happens when a mouse related activity is performed on a component such as

clicking, dragging, pressing, moving, dragging or releasing a mouse etc. Objects

representing mouse events are created from MouseEvent class. There are two listener

interfaces corresponding to the MouseEvent Class. These are MouseListener and

MouseMotionListener interface.

Example: SwingMouseComponent.java

In the following example we created a text area and implemented various mouse related

methods.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class SwingMouseComponent extends JFrame implements MouseListener

{

JLabel lblmsg;

JTextArea txtvalues;

SwingMouseComponent()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

cp.setLayout(new FlowLayout());

JPanel panel1 = new JPanel(new FlowLayout());

35

JPanel panel2 = new JPanel(new FlowLayout());

lblmsg = new JLabel("Press,Release or Click the Mouse on the txtarea to display

x,y Coordinates");

txtvalues = new JTextArea(10,30);

panel1.add(lblmsg);

panel2.add(txtvalues);

cp.add(panel1);

cp.add(panel2);

txtvalues.addMouseListener(this);

}

public void mousePressed(MouseEvent e)

{

String s= "x-Corrdinate = " + e.getX() + "y-Coordinate = " + e.getY();

System.out.println("Mouse Pressed");

txtvalues.setText(s);

}

public void mouseReleased(MouseEvent e)

{

String s = "x-Coordinate = " + e.getX() + "y-Coordinate = " + e.getY();

System.out.println("Mouse Released");

txtvalues.setText(s);

}

public void mouseClicked(MouseEvent e)

{

String s= "X-Corrdinate = " + e.getX() + " y-Coordinate = " + e.getY();

System.out.println("Mouse Clicked");

txtvalues.setText(s);

}

public void mouseEntered(MouseEvent e)

{

System.out.println("Mouse Entered");

}

36

The following figure 4 shows the results of compiling and running

the SwingMouseComponent class. We have implemented the MouseListener on

our SwingMouseComponent class. Whenever a mouse is Pressed and clicked on the text area,

its x & y co-ordinate values will be displayed in the text area along with event messages on

the command prompt. After successful compilation, it will have following output when we

execute above program:

Figure 4. MouseEvent Example

Similarly we can implement MouseMotionListener interface if mouse is moved or dragged.

public void mouseExited(MouseEvent e)

{

System.out.println("Mouse Exited");

}

public static void main(String[] args)

{

JFrame jframe = new SwingMouseComponent ();

jframe.setTitle("MouseEvent Example");

jframe.setSize(450,200);

jframe.setVisible(true);

}

}

37

Check your progress 2

1. Which of the following events is fired when a component gains focus?

a. mouseClicked

b. mouseEntered

c. focusGained

d. focusLost

2. Which of the following events is fired when a button is clicked?

a. mousePressed

b. mouseReleased

c. actionPerformed

d. keyPressed

3. Which of the following methods is used to add an ActionListener to a JButton

object?

a. addAction()

b. addActionListener()

c. addListener()

d. addEventHandler()

4. An is a change in the state of an item?

a. Spinner

b. Event

c. Occurrence

d. Activity

5. Which of the following events is generated when the size, position or visibility

of a component is changed?

a. Key Event

b. Component Event

c. Container Event

d. Focus Event

6. Which event is generated when a checkbox or a list item is clicked or when a

check menu item is selected or deselected?

a. Container Event

b. Mouse Event

38

2.5 Layout Manager

Layout Managers is used for arranging the components on the container in order.

LayoutManager is an interface that is implemented by all the classes of layout managers. It is

the class that is responsible for determining the size and position of each component within a

container based on a set of rules. The layout manager in java takes into consideration the size

of the container and the preferred size of the components.

Types of the Layout Manager

Java provides various built-in layout managers that can be used to arrange components within

a container. Important Layout Mangers are discussed below:

Flow Layout:

A FlowLayout arranges components in a row, adding additional rows as needed when the

width of the container is exceeded. From left to right, the components are added, with the

next component being added directly to the right of the one before it. There are 3 types of

constructor in the Flow Layout. They are as following:

1. FlowLayout()

2. FlowLayout(int align)

3. FlowLayout(int align, int hgap, int vgap)

Example: flowLayout.java

In the following example we have demonstrated the use of FlowLayout Manager.

c. Focus Event

d. Item Event

import javax.swing.*;

import java.awt.*;

public class flowLayout extends JFrame

{

public flowLayout()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

cp.setLayout(new FlowLayout());

JPanel panel = new JPanel();

panel.add(new JButton("Java"));

39

The following figure 5 shows the results of compiling and running the flow layout. We have

added five buttons in the class and they were positioned using flow layout. Note that by

default, the FlowLayout layout manager centers components horizontally in the container. To

change this behaviour, you can use the setAlignment() method on the layout manager. After

successful compilation, it will have following output when we execute above program:

Border Layout:

Figure 5. FlowLayout Example

The BorderLayout divides the container’s five regions into the NORTH, SOUTH, EAST,

WEST and CENTER. Whenever a component is added to the container, it is put in one of

these regions and fills the entire region. The old component is replaced by the new one if a

component is added to a region that already has one.

panel.add(new JButton("DBMS"));

panel.add(new JButton("C++"));

panel.add(new JButton("DotNet"));

panel.add(new JButton("Python"));

cp.add(panel);

}

public static void main(String[] args)

{

JFrame jframe = new flowLayout();

jframe.setTitle("FlowLayout Example");

jframe.setSize(500,200);

jframe.setVisible(true);

}

}

40

Example: borderLayout.java

In the following example we have demonstrated the use of BorderLayout Manager.

The following figure 6 shows the results of compiling and running the border layout. We

have created a JPanel and set the layout manager of the panel to BorderLayout. We then

created and added five buttons to the panel, each in a different region of the container (north,

south, west, east and center). Note that the Center component takes up all the remaining space

in the container after the other components have been placed. After successful compilation, it

will have following output when we execute above program:

import javax.swing.*;

import java.awt.*;

public class borderLayout extends JFrame

{

public borderLayout()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.add(new JButton("Java"),BorderLayout.NORTH);

panel.add(new JButton("DBMS"),BorderLayout.SOUTH);

panel.add(new JButton("C++"),BorderLayout.EAST);

panel.add(new JButton("DotNet"),BorderLayout.WEST);

panel.add(new JButton("Python"),BorderLayout.CENTER);

cp.add(panel);

}

public static void main(String[] args)

{

JFrame jframe = new borderLayout();

jframe.setTitle("BorderLayout Example");

jframe.setSize(500,200);

jframe.setVisible(true);

}

}

41

Grid Layout:

Figure 6. BorderLayout Example

The GridLayout arranges elements in a grid of rows and columns. The layout manager is

created with a specified number of rows and columns, and components are added one at a

time, filling each grid cell from left to right and from top to bottom. There are 3 types of

constructor in Grid Layout. They are as following:

1. GridLayout()

2. GridLayout(int rows, int columns)

3. GridLayout(int rows, int columns, inthgap, int vgap)

Example: gridLayout.java

In the following example we have demonstrated the use of GridLayout Manager.

import javax.swing.*;

import java.awt.*;

public class gridLayout extends JFrame

{

public gridLayout()

{

Container cp = getContentPane();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel = new JPanel();

panel.setLayout(new GridLayout(3,3));

panel.add(new JButton("Java"));

panel.add(new JButton("DBMS"));

panel.add(new JButton("C++"));

panel.add(new JButton("DotNet"));

panel.add(new JButton("Python"));

42

The following figure 7 shows the results of compiling and running the grid layout. We have

created a JPanel and set the layout manager of the panel to GridLayout. We have created a

JPanel and set the layout manager of the panel to GridLayout with three rows and three

columns. We then created and added nine buttons to the panel. When we run the program, we

can see a window with the buttons arranged in a 3×3 grid. After successful compilation, it

will have following output when we execute above program:

Card Layout:

Figure 7. GridLayout Example

CardLayout is a layout manager just like a tabbed pane that enables switching between

multiple components while keeping them in the same container by using functions like next()

and previous (). A single component can be seen at a time, and the CardLayout can be used to

panel.add(new JButton("Cloud"));

panel.add(new JButton("ML"));

panel.add(new JButton("Data Science"));

panel.add(new JButton("SQL"));

cp.add(panel);

}

public static void main(String[] args)

{

JFrame jframe = new gridLayout();

jframe.setTitle("GridLayout Example");

jframe.setSize(500,200);

jframe.setVisible(true);

}

}

43

switch between various views of the same data or to create an interface that looks like a

wizard. There are 2 types of constructor in the Card Layout. They are as following:

1. CardLayout()

2. CardLayout(inthgap, intvgap)

Example: cardLayout.java

In the following example we have demonstrated the use of CardLayout Manager.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class cardLayout extends JFrame implements ActionListener

{

CardLayout CL;

JButton card1,card2,card3;

Container cp;

cardLayout()

{

cp=getContentPane();

CL=new CardLayout(20,20);

cp.setLayout(CL);

card1=new JButton("Java");

card2=new JButton("Cloud");

card3=new JButton("DBMS");

card1.addActionListener(this);

card2.addActionListener(this);

card3.addActionListener(this);

cp.add("First",card1);

cp.add("Second",card2);

cp.add("Third",card3);

}

public void actionPerformed(ActionEvent e)

{

CL.next(cp);

}

44

The following figure 8 shows the results of compiling and running the card layout. We have

created a JPanel and set the layout manager of the panel to GridLayout. We have created a

JPanel and set the layout manager of the panel to GridLayout with three rows and three

columns. We then created and added nine buttons to the panel. When we run the program, we

can see a window with the buttons arranged in a 3×3 grid. After successful compilation, it

will have following output when we execute above program:

Figure 8. CardLayout Example

When we click on Java button it will show next card as shown in figure 9. Likewise we can

swap to next and previous cards.

public static void main(String[] args)

{

JFrame obj =new cardLayout();

obj.setSize(300,200);

obj.setTitle("CardLayout Example");

obj.setVisible(true);

obj.setDefaultCloseOperation(EXIT_ON_CLOSE);

}

}

45

GridBag Layout:

Figure 9. CardLayout Example

A GridBagLayout arranges elements in a versatile grid of rows and columns. As opposed to

GridLayout, components can span multiple rows or columns and be positioned in specific

places within the grid. Because of this, GridBagLayout is not only more capable and flexible

than other layout managers but also trickier to use.

Group Layout:

GroupLayout layout manager enables programmers to specify a container’s layout by

building a nested hierarchy of groups. To regulate the size and placement of the components

within the container, the developer can specify constraints for each group, which each group

can contain other groups or components. Although GroupLayout is a more capable and

adaptable layout manager than other layout managers, it is also trickier to use.

Check your progress 3

1. Which layout manager arranges components in a grid?

a. BorderLayout

b. FlowLayout

c. GridLayout

d. CardLayout

2. What is the purpose of the GroupLayout layout manager?

a. To arrange components in a grid

b. To arrange components in a circular layout

c. To arrange components in a nested layout

d. To arrange components based on their preferred sizes

46

2.6 Let Us Sum Up

The benefit of event handling mechanism is that the user interface logic is completely

separated from the logic that generates the event. The user interface element is able to

delegate the processing of an event to the separate piece of code. In this mechanism, Listener

needs to be registered with the source object so that the listener can receive the event

notification. This is an efficient way of handling the event because the event notifications are

sent only to those listeners that are interested to receive them. Event handling in Java is

controlling an event and taking appropriate action if one occurs. Events handling makes web

pages and mobile applications live. LayoutManager makes the task easy for application GUI

designer in arranging the components on the containers.

2.7 Answer for Check Your Progress

Check your progress 1: 1. c 2. c 3. a

Check your progress 2: 1. c 2. c 3. b 4. b 5. b 6. d

Check your progress 3: 1. c 2. d

2.8 Glossary

1. Listener Interface: It is an interface which contains methods that the listener must

implement and the source of the event invokes when the event occurs.

2. Event Handling: Event Handling is the mechanism that controls the event and decides

what should happen if an event occurs.

3. Layout Manager: The Layout Managers are used to arrange components in a particular

manner.

2.9 Assignment

1. Define Event. Explain Event handling mechanism of java.

2. Discuss the various Listener interfaces.

3. Discuss the importance of different layout managers.

2.10 Activities

- Explore the mechanism of key event handling using KeyListener.

47

- Explore the mechanism of window event handling using WindowListener.

2.11 Case Study

- Try and understand the different situation of layout manager applicability.

2.12 Further Readings

- https://www.tutorialspoint.com/swing/swing_event_handling.htm

- https://www.scaler.com/topics/event-handling-in-java/

- https://server2client.com/javaswing/eventhandling.html

- https://www.javatpoint.com/java-layout-manager

http://www.tutorialspoint.com/swing/swing_event_handling.htm
http://www.scaler.com/topics/event-handling-in-java/
http://www.javatpoint.com/java-layout-manager

48

UNIT 3: JAVA NETWORKING

Unit Structure

3.0 Learning Objectives

3.1 Introduction

3.2 Java Networking Terminology

3.3 Common Network Protocols

3.4 Socket Programming

3.5 Client-Server Communication

3.6 Advantages and Disadvantages of Java Socket Programming

3.7 Let Us Sum Up

3.8 Answer for Check Your Progress

3.9 Glossary

3.10 Assignment

3.11 Activities

3.12 Case Study

3.13 Further Readings

49

3.0 Learning Objectives

After learning this Unit, you will be able to:

 Define various Networking Terminology

 Define various Networking Protocols

 Differentiate among TCP and UDP

 Write TCP server and client program

3.1 Introduction

The concept network programming is associated with writing programs that will execute over

various computer devices connected with each other to share resources using a network. One

important aspects of java is that it incorporates an easy-to-use, cross-platform model for

network communications. Java Networking allows us to connect two or more computing

devices together to share resources. Java program communicates over the network at

the application layer. Java.net package contains all the useful Java networking related classes

and interfaces. In this unit we will discuss various networking related terminology, protocols

and client-server programming using socket. The data that is sent back and forth over a socket

can be anything.

3.2 Java Networking Terminology

The widely used java networking terminologies are given below:

 IP Address:

The IP address is a unique number assigned to a system of a network e.g. 192.168.0.5. It

distinguishes a device on the internet or a local network. It is composed of octets and can be

changed. It is referred to as a logical address. For example, each time you access the network,

your device will be assigned a new IP address by the server through DHCP (dynamic host

configuration protocol). This address will be used to route your data through the network

from the source device to the desired destination. It exists at the network layer. IP address is

divided in classes from A to E. The IP address 127.0.0.1 is special, and is reserved to

represent the loopback or localhost address. The range of the IP Address is from 0.0.0.0 to

255.255.255.255.

 Protocol:

Protocol defines the rules and conventions for communication between network devices,

including ways devices can identify and make connections with each other. They are the

50

reason through which a user can easily communicate with other users across the world and

thus play a critical role in modern digital communications. Examples of protocol are TCP,

FTP, Telnet, SMTP, POP etc.

 Port Number:

The port number helps in uniquely identifying different applications. It behaves as a

communication endpoint between applications. Along with an IP Address the port number

is used to communicate between two applications. Port works at the transport layer. Port

numbers 1 to 255 are reserved by IP for well-known services. If user tries to connect to port

80 of a host, for example, may expect to find an HTTP server. On unix machines, ports less

than 1024 are privileged and can only be bound by the root user.

 MAC Address:

The MAC address is the physical address of the system (e.g. network interface card). It is

fixed and each device in the world has a unique MAC address. MAC addresses works at the

data-link layer. It contains a 48 bit or 64-bit address, combined with the network adapter. It

can be in hexadecimal composition. Simply, a MAC address is a unique number that is used

to track a device in a network.

 Connection-Oriented and Connection-Less Protocol:

In the connection-oriented protocol, user must establish a connection before starting the

communication. Once data is send, the acknowledgment is sent by the receiver. So it is

reliable but slow. The example of a connection-oriented protocol is TCP. But, in the

connection-less protocol, the data is communicated in one route from source to destination

without verifying that the destination is there or not. Authentication is not needed in the

connectionless protocol. Here, the acknowledgment is not sent by the receiver. So it is not

reliable but fast. The example of a connection-less protocol is UDP.

 Socket:

A socket in Java is one endpoint of a two-way communication link between two programs

running on the network. Socket classes are used to create a connection between a client

program and a server program. A socket is tied to a port number so that the TCP layer can

identify the application where the data is supposed to be sent.

3.3 Common Network Protocols

Networking protocols are sets of established rules that describe how to format, transmit and

receive data from servers and routers to endpoints so computer network devices can

51

communicate regardless of the differences in their underlying infrastructures, designs or

standards.

Devices on both sides of a communication must accept and follow protocol rules to

successfully send and receive information. The java.net package provides the networking

support. All the classes for making a network program are defined in the java.net package.

Through TCP we can communicate over the network. Typically a client opens a TCP/IP

connection to a server. The client then starts to communicate with the server. When the client

finishes its task, it closes the connection again.

If there are more round trips in your protocol, it makes the protocol slower as the latency is

high. The HTTP protocol consists of only a single request and a single response to perform

its service involving a single roundtrip. The SMTP protocol on the other hand, consists of

several roundtrips between the client and the server before an email is sent. There are other

protocols used in network programming like Telnet, FTP, POP, HTTPS etc. The java.net

package provides the functionality for two common protocols.

TCP (Transmission Control Protocol)

TCP is a connection based protocol that provides a reliable flow of data between two devices.

It allows secure communication between different applications. TCP is a connection-oriented

protocol which means that once a connection is established, data can be transmitted in two

directions. It is typically used over the Internet Protocol. This protocol provides the reliable

connections between two applications to communicate easily.

UDP (User Datagram Protocol)

UDP protocol sends independent packets of data, called datagram from one computer to

another with no guarantee of arrival. It is connection less protocol. It is a simply Internet

protocol in which error-checking and recovery services are not required. In UDP, the data is

continuously sent to the recipient whether they receive it or not.

Difference between TCP & UDP:

The important differences between TCP and UDP are discussed in table 1:

Parameter TCP UDP

Service type

It is a connection-oriented protocol.

It is a connection-less

protocol.

Reliability

TCP is reliable as it guarantees the

delivery of data to the destination.

The delivery of data to the

destination cannot be

52

Parameter TCP UDP

guaranteed.

Error checking

mechanism

TCP provides extensive error-

checking mechanisms.

UDP has only the basic error-

checking mechanism using

checksums.

Acknowledgment

An acknowledgment segment is

present.

No acknowledgment segment.

Sequence

Sequencing of data is a feature of

Transmission Control Protocol

(TCP). It means that packets arrive in

order at the receiver.

There is no sequencing of data

in UDP. If the order is

required, it has to be managed

by the application layer.

Speed

TCP is comparatively slower than

UDP.

UDP is faster, simpler, and

more efficient than TCP.

Retransmission

Retransmission of lost packets is

possible in TCP, but not in UDP.

There is no retransmission of

lost packets in the User

Datagram Protocol (UDP).

Broadcasting TCP doesn’t support Broadcasting. UDP supports Broadcasting.

Protocols

TCP is used by HTTP,

HTTPs, FTP, SMTP and Telnet.

UDP is used by DNS, DHCP,

TFTP, SNMP, RIP and VoIP.

Applications

email, web surfing and military

services.

VoIP, game streaming, video

and music streaming, etc.

Table 1: TCP v/s UDP

Check your progress 1

1. Which of these package contains classes and interfaces for networking?

a. java.io

b. java.util

c. java.net

d. javax.swing

2. Which of the following protocol follows connection less service?

a. UDP

53

3.4 Socket Programming

Sockets implement the communication tool between two devices using TCP. Java Socket

programming can either be connection-oriented or connection-less. In Socket Programming,

Socket and ServerSocket classes are used for connection-oriented socket programming.

However, DatagramSocket and DatagramPacket classes are used for connection-less socket

programming. A client program creates a socket on its end of the communication and

connects that socket with a server. When the connection is established, the server creates an

object of socket class on its communication end. Now, the client and the server can

communicate by sending to and receiving from the socket.

The java.net.Socket class describes a socket, and the java.net.ServerSocket class implements a

tool for the server program. Following are the steps to establish a TCP connection between

two computing devices using Socket Programming

1. The server creates a ServerSocket object, showing the port number on which

communication will takes place.

2. After creating the ServerSocket object, the server requests the accept() method of the

ServerSocket class. This program will pause until a client connects to the server on the given

port.

b. TCP/IP

c. TCP

d. HTTP

3. Which of the following protocols is/are used for splitting and sending packets to

an address across a network?

a. TCP/IP

b. FTP

c. SMTP

d. UDP

4. TCP, FTP, Telnet, SMTP, POP etc. are examples of?

a. Socket

b. IP Address

c. Protocol

d. MAC Address

54

3. Once the server goes to the idle state, a client instantiates an object of Socket class,

defining the server name and the port number to connect to.

4. The constructor of the Socket class attempts to connect the client to the designated server

and the port number.

5. On the server-side, the accept() method returns a reference to a new socket on the server

connected to the client’s socket.

After the connections are estabilized, communication can happen using I/O streams. Every

object of a socket class has both an OutputStream and an InputStream. The client’s

OutputStream is combined to the server’s InputStream, and the client’s InputStream is

combined with the server’s OutputStream. Transmission Control Protocol (TCP) is a two-way

communication protocol. Hence information can be transmitted over both streams at the

corresponding time.

Socket Class

This class is used to create socket objects that help the users in implementing all fundamental

socket operations such as sending, reading data and closing connections. Each Socket object

created using java.net.Socket class has been connected specifically with 1 remote host. If a

user wants to connect to another host, then a new socket object must be created.

ServerSocket Class

This class is used for providing system-independent implementation of the server-side of a

client/server Socket Connection. The constructor for ServerSocket class throws an exception

if it can’t listen on the specified port. For example, it will throw an exception if the port is

already being used.

3.5 Client-Server Communication

Creating Server:

To create the server application, we need to create the instance of ServerSocket class. Here,

we are using 1234 port number for the communication between the client and server. You

may also choose any other port number. The accept() method waits for the client’s request. If

client connects with the given port number, it returns an instance of Socket.

ServerSocket ss=new ServerSocket(2222);

Socket s=ss.accept(); //establishes connection and waits for the client

Creating Client:

55

To create the client application, we need to create the instance of Socket class. Here, we need

to pass the IP address or hostname of the Server and a port number to connect. Here, we are

using “localhost” as our server is running on same system.

Socket s=new Socket(“localhost”, 2222);

Let's see a simple Java socket programming where client sends a text message and server

reads it and then prints it.

Server Program: SockServerApp.java

Client Program: SockClientApp.java

import java.io.*;

import java.net.*;

public class SockServerApp {

public static void main(String[] args)

{

Socket s = null;

ServerSocket ss = null;

DataInputStream dis = null;

try

{

ss=new ServerSocket(2222);

s=ss.accept(); //establishes connection

dis=new DataInputStream(s.getInputStream());

String str=(String)dis.readUTF();

System.out.println("Data Read is= "+str);

ss.close();

}catch(Exception e){System.out.println(e);}

}

}

import java.io.*;

import java.net.*;

public class SockClientApp

{

public static void main(String[] args)

{

Socket s = null;

DataOutputStream dout = null;

try{

s=new Socket("localhost",2222);

dout=new DataOutputStream(s.getOutputStream());

dout.writeUTF("Welcome to BAOU @ Ahmedabad-Gujarat");

dout.flush();

dout.close();

56

After successfully compiling both the programs, first run the server program. It waits until

client request comes. As soon as client sends requests, server will listen, read and print the

data received from client. Following figure shows it in sequence.

Figure 1. Running Server program

Now, run the client program from another prompt as shown in figure 2:

Figure 2. Running Client program

As soon as the client sends the requests, server receives it and displays the message as shown

in figure 3.

Figure 3. Server program with clients message

s.close();

}catch(Exception e){System.out.println(e);}

}

}

Check your progress 2

1. The server listens for a connection request from a client using which of the

following statement?

57

3.6 Advantages and Disadvantages of Java Socket Programming

Java Socket programming has been used in a wide range of applications across the world over

the years. It bears following advantages and disadvantages:

a. Socket st = new Socket(ServerName, port);

b. Socket st = serverSocket.accept();

c. Socket st = serverSocket.getSocket();

d. Socket st = new Socket(ServerName);

2. The client requests a connection to a server using which of the following

statement?

a. Socket st = new Socket(ServerName, port);

b. Socket st = serverSocket.accept();

c. Socket st = serverSocket.getSocket();

d. Socket st = new Socket(ServerName);

3. To connect to a server running on the same machine with the client, which of

the following can't be used for the hostname?

a. “localhost”

b. "127.0.0.1"

c. InetAddress.getLocalHost()

d. "127.0.0.0"

4. To create an InputStream on a socket, say st, which of the following statement

is necessary?

a. InputStream ins = new InputStream(st);

b. InputStream ins = st.getInputStream();

c. InputStream ins = st.obtainInputStream();

d. InputStream ins = st.getStream();

5. Which classes are used for connection-oriented socket programming?

a. Socket

b. ServerSocket

c. Both a & b

d. None of the above

58

No
Advantages

Disadvantages

1 Socket programming is flexible & powerful to

implement.

It increases complexity, cost and

high-Security restrictions.

2

Efficient socket based programming can be

easily implemented for general communications

to send data in byte and message streams.

Socket-based communications allow

only to send packets of raw data

between applications.

3

Updated information will be send only between

connected devices.

Communication can be established

with the machine requested not with

another machine.

4

If it is implemented efficiently then it causes

Low network traffic.

Both ends i.e. Source and

Destination should have the ability

to intercept the data.

3.7 Let Us Sum Up

In this unit we have learnt that Java Networking connects two or more computing devices

together in order to share resources. Java Sockets are a powerful tool for creating network-

based applications in the Java programming language. Java has easy-to-use built-in

networking API for network programming. It allows communicating using TCP/IP sockets or

UDP sockets over the internet. Java Sockets offer many advantages, such as platform

independence, ease of use, scalability and built-in support for secure communication. User

Datagram Protocol is connectionless protocol above IP that provides unreliable packet

delivery and provides user-level access to low-level IP hardware.

3.8 Answer for Check Your Progress

Check your progress 1: 1. c 2. a 3. a 4. c

Check your progress 2: 1. b 2. a 3. d 4. b 5. c

3.9 Glossary

1. DHCP: Dynamic Host Configuration Protocol (DHCP) is a network protocol used

to automate the process of configuring devices on IP networks, allowing them to use

59

network services like DNS and any communication protocol based on UDP or TCP. A

DHCP server dynamically assigns an IP address and other network configuration

parameters to each device on a network so they can communicate with other IP

networks. .

2. SMTP: The Simple Mail Transfer Protocol (SMTP) is an Internet standard

communication protocol for sending and receiving electronic mail (e-mail).

3. Latency: Network latency is the delay in network communication. It shows the time

that data takes to transfer across the network. Low latency is always accepted and

associated with a positive user experience.

4. FTP: File Transfer Protocol allows users to transfer files from one machine to another.

5. HTTPS: HTTPS is abbreviated as Hyper Text Transfer Protocol Secure is a standard

protocol to secure the communication among two computers one using the browser and

other fetching data from web server.

6. Telnet: Telnet is a collection of rules designed for connecting one system with another.

The connection process here is referred as remote login. The system which requests for

connection is the local computer, while the system which accepts the connection is the

remote computer.

3.10 Assignment

1. Explain various terminology used in Java Networking Programming.

2. Explain various Java Networking Protocols.

3. Discuss the role of ServerSocket and Socket class in network programming.

3.11 Activities

Develop UDP Client and Server Program.

3.12 Case Study

Explore the services of server by developing Client Server applications.

3.13 Further Readings

- Java: The Complete Reference, Eleventh Edition by Herbert Schildt

- https://www.edureka.co/blog/java-networking/

- https://www.tutorialspoint.com/java/java_networking.htm

- https://www.studytonight.com/java/networking-in-java.php

http://www.edureka.co/blog/java-networking/
http://www.tutorialspoint.com/java/java_networking.htm
http://www.studytonight.com/java/networking-in-java.php

60

UNIT 4: JAVA.NET PACKAGE

Unit Structure

4.0 Learning Objectives

4.1 Introduction

4.2 Networking Classes

4.3 Networking Interfaces and Exceptions

4.4 Let Us Sum Up

4.5 Answer for Check Your Progress

4.6 Glossary

4.7 Assignment

4.8 Activities

4.9 Case Study

4.10 Further Readings

61

4.0 Learning Objectives

After learning this Unit, you will be able to:

 List and define various Networking classes

 List and define various Networking interfaces

 Handle various Socket related exceptions

4.1 Introduction

Java.net is a package that provides a powerful infrastructure in the form of classes as well as

interfaces for implementing networking applications. This package can be roughly divided

into Low Level API and High Level API. Low Level API deals with Addresses, Sockets and

Interfaces while High Level API deals with the URIs, URLs and Connections. As already

discussed in previous unit, the java.net package is helpful in Java networking. It supports two

protocols i.e. TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). In

order to perform several operations on these protocols, java.net package provides various

classes and interfaces. In the below sections, the different classes, interfaces and exceptions

of the java.net package are discussed.

4.2 Networking Classes

The java.net package provides the classes and interfaces required for network programming.

Some of the important classes are listed in following table 1.

Class Name Description

Authenticator This class is very essential to get or fetch the connection authentication

for networking applications in a network. Authenticator class objects

help in getting this authentication.

CacheRequest This class helps in storing the ResponseCache resources.

CacheResponse This class helps in retrieving the ResponseCache resources.

Socket This class implements the sockets that are associated with the client-

side.

ServerSocket This class helps in server socket implementation.

62

ContentHandler ContentHandler class is the superclass of the particular classes which

are chosen for reading the URL connection objects.

CookieHandler This class object offers a callback mechanism to HTTP protocol

handler with the HTTP state management policy implementation.

CookieManager This class extends or implements the CookieHandler class.

DatagramSocket In a network, to transfer datagram packets, an entity socket is required.

DatagramPacket DatagramPacket class renders the datagram packet.

InetAddress This class represents the IP Address.

DatagramSocketImpl This class helps as a parent class in the implementation of sockets as

well as a datagram.

InterfaceAddress This class represents the network interface address.

JarURLConnection This class does URL connection establishment to the JAR files.

MulticastSocket This class helps to Multicast IP packets transfer.

Inet4Address This class represents the IP version 4 Address.

Inet6Address This class represents the IP version 6 Address.

HttpURLConnection This class helps in getting URL connections that have HTTP features.

HttpCookie This class helps in representing HTTP cookies which carries state

information between client-server.

NetPermission This class offers several network-related permissions.

networkInterface This class helps in representing the network interface.

PasswordAuthentication This class acts as a data holder by the authenticator.

Proxy This class helps in proxy related settings.

ProxySelector This class helps in proxy server selection.

ResponseCache This class represents the caches that are associated with the URL

63

connections.

SocketPermission This class does network access provision by using sockets.

URI This class represents a Uniform Resource Identifier.

URL This class represents Uniform Resource Locator.

URLConnection This class acts as a parent class for the classes that communicate

between the application & a URL.

URLClassLoader Loading of certain classes and resources mentioned with the search

path is done using this class.

URLDecoder The decoding of HTML forms are done by using this class.

URLEncoder The encoding of HTML forms are done by using this class.

URLStreamHandler This is a class that acts as a parent class for Stream Protocol Handlers.

Table 1. Java.net package classes

InetAddress Class

This class represents the IP Address. It is denoted as public final class InetAddress extends

Object implements Serializable. Various important methods of the InetAddress class are

listed in table 2.

Method Description

Boolean equals(Object obj) It compares this object against the specified object.

byte[] getAddress() It returns the raw IP address of this InetAddress object.

String getHostAddress() It returns the IP address string in textual presentation form.

Int hashCode() It returns a hashcode for this IP address.

Boolean isAnyLocalAddress() It is a utility routine to check if the InetAddress is a wildcard

address.

Boolean isLinkLocalAddress() It is a utility routine to check if the InetAddress is an link local

address.

Boolean isLoopbackAddress() It is a utility routine to check if the InetAddress is a loopback

64

 address.

Boolean isMCGlobal() It is a utility routine to check if the multicast address has global

scope.

Boolean isMCLinkLocal() It is a utility routine to check if the multicast address has link scope.

Boolean isMCNodeLocal() It is a utility routine to check if the multicast address has node

scope.

Boolean isMCOrgLocal() It is a utility routine to check if the multicast address has

organization scope.

Boolean isMCSiteLocal() It is a utility routine to check if the multicast address has site scope.

Boolean isMulticastAddress() It is a utility routine to check if the InetAddress is an IP multicast

address.

Boolean isSiteLocalAddress() It is a utility routine to check if the InetAddress is a site local

address.

Table 2. InetAddress methods

Example: InetAddressExample.java

In the following example we have used various methods of INetAddress class.

import java.io.*;

import java.net.*;

public class InetAddressExample

{

public static void main(String[] args)

{

try

{

InetAddress ip=InetAddress.getByName("www.baou.edu.in");

System.out.println("Host Name is: "+ip.getHostName());

System.out.println("\nIP Address is: "+ip.getHostAddress());

System.out.print("\nisAnyLocalAddress : " +ip.isAnyLocalAddress());

System.out.print("\nisLinkLocalAddress : " +ip.isLinkLocalAddress());

System.out.print("\nisLoopbackAddress : " +ip.isLoopbackAddress());

System.out.print("\nisMCGlobal : " +ip.isMCGlobal());

System.out.print("\nisMCLinkLocal : " +ip.isMCLinkLocal());

http://www.baou.edu.in/

65

After successful compilation, it will have following output when we execute above program:

Figure 1. INetAddress Class Example

Socket Class

This class implements the sockets that are associated with the client-side. Class Declaration is

public abstract class Socket extends Object implements Cloaseable. Every server or programs

executes on the different systems that has a socket and is bound to the specific port number.

Socket provides an endpoint of two way communication link using TCP protocol. Java socket

can be connection oriented or connection less. The java.net.Socket class is used to create a

socket so that both the client and server can communicate with each other easily.

System.out.print("\nisMCNodeLocal : " +ip.isMCNodeLocal());

System.out.print("\nisMCOrgLocal : " +ip.isMCOrgLocal());

System.out.print("\nisMCSiteLocal : " +ip.isMCSiteLocal());

System.out.print("\nisMulticastAddress : " +ip.isMulticastAddress());

System.out.print("\nisSiteLocalAddress : " +ip.isSiteLocalAddress());

System.out.print("\nhashCode is: " +ip.hashCode());

}

catch(Exception e)

{

System.out.println(e);

}

}

}

66

Various constructors of the Socket class are listed in table 3.

Constructor Description

Socket() It creates an unconnected socket, with the

system-default type of SocketImpl.

public Socket(InetAddress address, int port) It creates a stream socket with specified IP

address to the specified port number.

public Socket(InetAddress host, int port,

boolean stream)

It uses the DatagramSocket.

public Socket(InetAddress address, int port,

InetAddress localAddr, int local port)

It creates a connection with specified remote

address and remote port.

public Socket(Proxy, proxy) It creates a connectionless socket specifying

the type of proxy.

protected Socket(SocketImpl impl) It creates a connectionless Socket with a

user-specified SocketImpl.

Table 3. Socket constructors

Various important methods of the Socket class are listed in table 4.

.

Method Description

public InputStream getInputStream()
It returns the InputStream attached with this

socket.

public OutputStream getOutputStream()
It returns the OutputStream attached with this

socket.

public synchronized void close() It closes this socket

InetAddress getInetAddress()
It returns the InetAddress that is associated

with the socket object.

int getPort()
It returns the port number on which the socket

is connected

int getLocalPort()
It returns the local port number on which the

socket is created

boolean isBound() It returns the binding state of the socket.

boolean isClosed() It returns the closed state of the socket.

boolean isConnected() It returns the connection state of the socket.

Table 4. Socket methods

ServerSocket Class

This class helps in server socket implementation. Class Declaration is public abstract class

ServerSocket extends Object implements Cloaseable. Socket class is used to create socket

67

and send the request to the server. Java ServerSocket class waits for a request to come over

the network. It works on the basis of request and then returns a result to the request.

Various constructors of the ServerSocket class are listed in table 5.

Constructor Description

ServerSocket() It creates an unbound server socket.

ServerSocket(int port) It creates a server socket, bound to the specified

port.

ServerSocket(int port, int backlog) It creates a server socket, bound to the specified

port, with specified local port.

ServerSocket(int port, int backlog,

inetAddress bindAddrs)

It creates a server socket, bound to specified port,

listen backlog, and IP address.

Table 5. ServerSocket constructors

Various important methods of the ServerSocket class are listed in table 6.

Method Description

public Socket accept()
It returns the socket and establishes a connection

between server and client.

public synchronized void close() It closes the server socket.

int getLocalPort()
It returns the port number on which the server socket is

listening.

void bind(SocketAddress endpoint, int

backlog)

It binds the ServerSocket to a specific address (IP

address and port number).

void bind(SocketAddress endpoint)
It binds the ServerSocket to a specific address (IP

address and port number).

InetAddress getInetAddress() It returns the local address of the ServerSocket.

boolean isBound() It returns the binding state of the ServerSocket.

boolean isClosed() It returns the closed state of the ServerSocket.

Table 6. ServerSocket methods

Example: Socket and ServerSocket class example is discussed in previous unit.

DatagramPacket and DatagramSocket are the two main classes that are used to implement a

UDP client/server application. DatagramPacket is a data container and DatagramSocket is a

mechanism to send and receive DatagramPackets.

DatagramPacket

In UDP’s terms, data transferred is encapsulated in a unit called datagram. A datagram is an

independent, self-contained message sent over the network whose arrival, arrival time, and

68

content are not guaranteed. The java.net.DatagramPacket class represents a datagram packet.

They are used to implement a connectionless packet delivery service. We can create a

DatagramPacket object by using one of the following constructors:

Various constructors of the DatagramPacket class are listed in table 7.

Constructor Description

DatagramPacket(byte[] buf, int

length)

It constructs a DatagramPacket for receiving packets of

length.

DatagramPacket(byte[] buf, int

length, InetAddress address, int

port)

It constructs a datagram packet for sending packets of length

to the specified port number on the specified host.

DatagramPacket(byte[] buf, int

offset, int length)

It constructs a DatagramPacket for receiving packets of

length, specifying an offset into the buffer.

DatagramPacket(byte[] buf, int

offset, int length, InetAddress

address, int port)

It constructs a datagram packet for sending packets of length

with offset to the specified port number on the specified host.

DatagramPacket(byte[] buf, int

offset, int length, SocketAddress

address)

It constructs a datagram packet for sending packets of length

with offset to the specified port number on the specified host.

DatagramPacket(byte[] buf, int

length, SocketAddress address)

It constructs a datagram packet for sending packets of length

to the specified port number on the specified host.

Table 7. DatagramPacket class constructors

Various important methods of the DatagramPacket class are listed in table 8.

Method Description

InetAddress getAddress()

This method returns the IP address of the machine to which this

datagram is being sent or from which the datagram was

received.

69

byte[] getData() This method returns the data buffer.

int getLength()
This method returns the length of the data to be sent or the

length of the data received.

int getOffset()
This method returns the offset of the data to be sent or the offset

of the data received.

int getPort()

This method returns the port number on the remote host to

which this datagram is being sent or from which the datagram

was received.

SocketAddress

getSocketAddress()

This method gets the SocketAddress (usually IP address + port

number) of the remote host that this packet is being sent to or is

coming from.

void setAddress(InetAddress

iaddr)

This method sets the IP address of the machine to which this

datagram is being sent.

void setData(byte[] buf) This method sets the data buffer for this packet.

void setData(byte[] buf, int

offset, int length)

This method sets the data buffer for this packet.

void setLength(int length) This method sets the length for this packet.

void setPort(int iport)
This method sets the port number on the remote host to which

this datagram is being sent.

void

setSocketAddress(SocketAddress

address)

This method sets the SocketAddress (usually IP address + port

number) of the remote host to which this datagram is being sent.

Table 8. DatagramPacket class methods

DatagramSocket

We use DatagramSocket to send and receive DatagramPackets. DatagramSocket represents a

UDP connection between two computers in a network. We use DatagramSocket for both

client and server. There are no separate classes for client and server like TCP sockets.

So we can create a DatagramSocket object to establish a UDP connection for sending and

receiving datagram, by using one of the following constructors:

Various constructors of the DatagramSocket class are listed in table 9.

Constructor Description

DatagramSocket() It constructs a datagram socket and binds it to any available port

on the local host machine.

70

DatagramSocket(int port) It Constructs a datagram socket and binds it to the specified port

on the local host machine.

DatagramSocket(int port,

InetAddress laddr)

It creates a datagram socket, bound to the specified local

address.

Table 9. DatagramSocket class Constructors

These constructors can throw SocketException if the socket could not be opened, or the

socket could not bind to the specified port or address. So we have to catch or re-throw this

checked exception.

Various important methods of the DatagramSocket class are listed in table 10.

Method Description

Void close() It closes this datagram socket.

InetAddress getLocalAddress() It gets the local address to which the socket is bound.

Int getLocalPort() It returns the port number on the local host to which this

socket is bound.

Int getReceiveBufferSize() It get value of the SO_RCVBUF option for this socket,

that is the buffer size used by the platform for input on

the this Socket.

Int getSendBufferSize() It get value of the SO_SNDBUF option for this socket,

that is the buffer size used by the platform for output on

the this Socket.

Int getSoTimeout() It retrieve setting for SO_TIMEOUT. 0 returns implies

that the option is disabled (i.e.

void receive(DatagramPacket p) It receives a datagram packet from this socket.

void send(DatagramPacket p) It sends a datagram packet from this socket.

void

setReceiveBufferSize(int size)

It sets the SO_RCVBUF option to the specified value

for this DatagramSocket.

void setSendBufferSize(int size) It sets the SO_SNDBUF option to the specified value

for this DatagramSocket.

void setSoTimeout(int timeout) It enable/disable SO_TIMEOUT with the specified

71

 timeout, in milliseconds.

Table 10. DatagramSocket class methods

These methods may throw Exception like IOException, PortUnreachableException,

SocketTimeoutException. So we have to catch or re-throw them.

Let's see a simple Java program where client sends a text message and server reads it and

then prints it.

datagramReceiver.java

datagramSender.java

After successfully compiling both the programs, first run the server program. It waits until

client request comes. As soon as client sends requests, server will listen, read and print the

data received from client. Following figure shows it in sequence.

// program to receive datagram packets using DatagramSocket class

import java.net.*;

public class datagramReceiver

{

public static void main(String[] args) throws Exception

{

DatagramSocket dgsocket = new DatagramSocket(2000);

byte[] buff = new byte[1024];

DatagramPacket dgpacket = new DatagramPacket(buff, 1024);

dgsocket.receive(dgpacket);

String str = new String(dgpacket.getData(), 0, dgpacket.getLength());

System.out.println(str);

dgsocket.close();

}

}

//program to send datagram packets using DatagramSocket class

import java.net.*;

public class datagramSender

{

public static void main(String[] args) throws Exception

{

DatagramSocket dgsocket = new DatagramSocket();

String str = "Welcome to BAOU @ Ahmedabad-2023";

InetAddress ipaddr = InetAddress.getByName("127.0.0.1");

DatagramPacket dgpacket = new DatagramPacket(str.getBytes(), str.length(), ipaddr, 2000);

dgsocket.send(dgpacket);

dgsocket.close();

}

}

72

Figure 1. Running Receiver program

Now, run the client program from another prompt as shown in figure 2:

Figure 2. Running Sender program

As soon as the client sends the requests, server receives it and displays the message as shown

in figure 3.

Figure 3. Server program with clients message

URLConnection Class

The URLConnection class is used for accessing the attribute of remote resource.

URLConnection is the superclass of all the classes that represent a communication link

between application and a URL.

Various important methods of the URLConnection class are listed in table 11.

Methods Description

Object getContent() It retrieves the contents of this URL connection.

int getContentLength() It returns the size in byte of content associated with

resource.

String getContentType() It returns type of content found in the resource. If the

content is not available, it returns null.

long getDate() It returns the time and date of the response.

long getExpiration() It returns the expiry time and date of the resource. If the

expiry date is unavailable, it return zero.

long getLastModified() It returns the time and date of the last modification of the

resource.

73

InputStream getInputStream()

throws IOException()

It returns an InputStream that is linked to the resource.

String

getRequestProperty(String key)

It returns the value of the named general request property

for the given connection.

abstract void connect() It opens a communications link to the resource referenced

by this URL, if such a connection has not already been

established.

long getLastModified() It returns the value of the last-modified header field.

Permission getPermission() It returns a permission object representing the permission

necessary to make the connection represented by this

object.

URL getURL() It returns the value of this URLConnection's URL field.

InputStream getInputStream() It returns an input stream that reads from this open

connection.

OutputStream

getOutputStream()

It returns an output stream that writes to this connection.

Table 11. URLConnection class methods

Let's see a simple java program where the URL variable is created to add the specific website

/ blog URL using the URL command. Then URLConnection is used to open a connection to

the above-mentioned URL. Then Map is used to get all fields map of the specific HTTP

header. To print all the fields of website URL and their values for loop is used.

URLConnclass.java

import java.net.*;

import java.util.*;

public class URLConnclass

{

public static void main(String[] args)

{

try

{

URL url = new URL("https://www.baou.edu.in");

URLConnection urlcon = url.openConnection();

Map<String, List<String>> header = urlcon.getHeaderFields();

for (Map.Entry<String, List<String>> mp : header.entrySet())

{

System.out.print(mp.getKey() + " : ");

System.out.println(mp.getValue().toString());

}

}

catch (Exception e1)

{

System.out.println(e1);

}

}

http://www.baou.edu.in/

74

After successfully compiling above programs it will display following output.

Figure 4. URLConnection Class

MulticastSocket

In broadcasting packets are sent to all nodes in the network, irrespective of whether they are

interested in receiving the communication or not. This leads to wastage of resources. While in

Multicasting packets are sent to only those consumers who are interested. Multicasting is

based on a group membership concept, where a multicast address represents each group.

MulticastSocket is used to receive packets sent to a multicast IP.

Various important Constructor of MulticastSocket class are listed in table 12.

Constructors Description

public MulticastSocket() It creates a multicast socket. Using this

constructor, we have to explicitly set all the fields

such as group address, port number etc.

public MulticastSocket(int portnum) It creates a multicast socket bound on the port

specified.

public MulticastSocket(SocketAddress

bindsocketaddr)

It creates a multicast socket and binds it to

specified socket address. It will create an unbound

socket if address is null.

Table 12. MulticastSocket class Constructor

Various important methods of MulticastSocket class are listed in table 13.

}

Methods Description

public InetAddress getInterface() throws

SocketException

It returns the address of the network interface used

for outgoing multicast packets.

getTTL public byte getTTL() throws

IOException

It returns The time-to-live (TTL) value for this

socket.

public void joinGroup(InetAddress This method is used to join a multicast group.

75

mcstaddr) throws IOException

public void leaveGroup(InetAddress

mcstaddr) throws IOException

This method is used to leave a multicast group.

public synchronized void

send(DatagramPacket dp, byte bttl)

throws IOException

This method sends a packet from this socket using

the given TTL value. The packet data, packet

length, destination address and destination port

number are specified by the given

DatagramPacket.

public void setInterface(InetAddress

inadd) throws SocketException

This method is used to set the address that is used

for outgoing multicast packets.

public void setTTL(byte bttl) throws

IOException

This method is used to set the TTL value of the

socket. The TTL value is the number of hops an

outgoing packet can traverse before it is

discarded.

Table 13. MulticastSocket class methods

Let's see a simple Java program where client receives a text message when server multicasts

it and then prints it.

MultiCastClient.java

import java.net.*;

import java.util.*;

import java.io.*;

public class MultiCastClient {

MulticastSocket Multisocket;

public MultiCastClient(String ip, int port) throws IOException {
// important that this is a multicast socket

Multisocket = new MulticastSocket(port);

// join by ip

Multisocket.joinGroup(InetAddress.getByName(ip));

}

public void display() throws IOException{

// make datagram packet to recieve

byte[] message = new byte[256];

DatagramPacket packet = new DatagramPacket(message, message.length);

// recieve the packet

Multisocket.receive(packet);

76

MultiCastServer.java

System.out.println(new String(packet.getData()));

}

public void close(){

Multisocket.close();

}

public static void main(String[] args) {

try {

String ip = args[0];

int port = Integer.parseInt(args[1]);

MultiCastClient Multiclient = new MultiCastClient(ip, port);

Multiclient.display();

Multiclient.close();

} catch (IOException ex) {

ex.printStackTrace();

}

}

}

import java.net.*;

import java.util.*;

import java.io.*;

public class MultiCastServer

{

DatagramSocket dgserverSocket;

String ip;

int port;

public MultiCastServer(String ip, int port) throws SocketException, IOException{

this.ip = ip;

this.port = port;

// socket used to send

dgserverSocket = new DatagramSocket();

}

public void send() throws IOException{

// make datagram packet

byte[] message = ("Welcome to BAOU @ Ahmedabad").getBytes();

DatagramPacket packet = new DatagramPacket(message, message.length,

InetAddress.getByName(ip), port);

77

Here, the client must subscribe to the IP before it can start receiving any packets. If you start

the server and call the send() method, and then make a client (call display()) then nothing will

happen because the client connected after the message was sent.

After successfully compiling and running both the programs with specific IP address and port

number the following output will be displayed in sequence.

Figure 5. Running Client program

Now, run the client program from another prompt as shown in figure 2:

// send a packet

dgserverSocket.send(packet);

}

public void close(){

dgserverSocket.close();

}

public static void main(String[] args)

{

try {

String ip = args[0];

int port = Integer.parseInt(args[1]);

MultiCastServer server = new MultiCastServer(ip, port);

server.send();

System.out.println("Sent a multicast message.");

server.close();

}

catch (IOException ex)

{

ex.printStackTrace();

}

}

}

78

Figure 6. Running Server program

As soon as the client sends the requests, server receives it and displays the message as shown

in figure 3.

Figure 7. Client program with Server message

Check your progress 1

1. Which constructor of DatagramSocket class is used to creates a datagram socket

and binds it with the given Port Number?

a. DatagramSocket(int port)

b. DatagramSocket()

c. DatagramSocket(int port, InetAddress address)

d. None of the above

2. Which of these class is used to encapsulate IP address and DNS?

a. DatagramPacket

b. URL

c. InetAddress

d. ContentHandler

3. In InetAddress class which method it returns the host name of the IP Address?

a. public String getHostName()

b. public String getHostAddress()

c. public static InetAddress getLocalHost()

d. None of the above

4. Which classes are used for connection-less socket programming?

a. DatagramSocket

79

4.3 Networking Interfaces and Exceptions

Some important interfaces in the java.net package are:

1. ContentHandlerFactory

The ContentHandlerFactory interface provides a method that creates and returns an

appropriate ContentHandler object for a given MIME type.

2. CookiePolicy

The java.net package's CookiePolicy interface provides various classes for implementing

various networking applications. It decides which cookies are accepted and which are

rejected. There are 3 pre-defined policy implementations in CookiePolicy:

 ACCEPT_ALL

 ACCEPT_NONE

 ACCEPT_ORIGINAL_SERVER.

3. CookieStore

A CookieStore is an interface that specifies a cookie storage space. CookieManager adds

cookies to the CookieStore with each HTTP response and retrieves cookies from the

CookieStore with each HTTP request.

4. DatagramSocketImplFactory

This interface illustrates a factory for datagram socket implementations. It is used by the

classes DatagramSocket to create actual socket implementations.

5. FileNameMap

b. DatagramPacket

c. Both a & b

d. None of the above

5. The URLConnection class can be used to read and write data to the specified

resource referred by the URL?

a. True

b. False

6. The java.net.InetAddress class represents an?

a. MAC Address

b. IP Address

c. Protocol

d. Socket

80

The FileNameMap interface is a simple interface that implements a tool for highlighting a file

name and a MIME type string. FileNameMap reads a data file and charges a filename map.

6. ProtocolFamily

This interface defines a communication protocol family. The ProtocolFamily interface

includes a name() method that returns the protocol family's name.

7. SocketImplFactory

The SocketImplFactory interface defines a SocketImpl instance factory. The socket class uses

it to create socket implementations that implement several policies.

8. SocketOption

The SocketOption interface allows users to control how the socket will behave. It is

frequently necessary to develop necessary features in Sockets. SocketOption allows the user

to configure a variety of standard options.

9. URLStreamHandlerFactory

The URLStreamHandlerFactory interface defines a method that creates a URLStreamHandler

object for a specific protocol. The interface is implemented by classes that select

URLStreamHandler subclasses to process particular protocol types.

Exceptions:

Some important exceptions needs to be taken care while working with Socket are:

1. SocketException

The java.net.SocketException represents a generic socket error, which can represent a range

of specific error conditions i.e the subclasses listed below.

2. BindException

The java.net.BindException represents failure to bind a socket to a local port. The most

common reason for this is that the local port is already in use.

3. ConnectException

The java.net.ConnectException occurs when a socket can't connect to a specific remote host

and port. The reasons behind this will be the remote server does not have a service bound to

that port, or that it is so swamped by queued connections, it cannot accept any further ones.

4. NoRouteToHostException

The java.net.NoRouteToHostException is thrown when, due to a network error, it is

impossible to find a route to the remote host. The reason for this may be local (i.e., the

network on which the application is running), a temporary gateway or router problem or the

fault of the remote network to which the socket is trying to connect. Second common reason

for this is that firewalls and routers are blocking the client software.

81

5. InterruptedIOException

The java.net.InterruptedIOException occurs when a read operation is blocked for sufficient

time to cause a network timeout.

4.4 Let Us Sum Up

In this unit we have discussed important classes and interfaces of java.net package. If user

wants to work with URL manipulation then there are classes like URI, URl and

URLConnection. We also discussed that if user wants to communicate data using UDP

protocvol then there are DatagramSocket and DatagramPacket classes are there. The

HttpCookie class helps to carry state information between client-server. Apart from this there

are various classes and interfaces which user can use as per their requirements.

4.5 Answer for Check Your Progress

Check your progress 1: 1. c 2. c 3. a 4. c 5. a 6. b

Check your progress 2: 1. c 2. a 3. a

4.6 Glossary

Check your progress 2

1. In CookiePolicy, which of the following is not pre-defined policy

implementations.

a. ACCEPT_ALL

b. ACCEPT_NONE

c. ACCEPT_ALL_ORIGINAL_SERVER

d. ACCEPT_ORIGINAL_SERVER

2. The SocketException is an exception in Java that is thrown to indicate that an

error was encountered while creating or accessing a Socket.

a. true

b. false

3. A BindException is thrown if you try to construct a Socket or ServerSocket object

on a local port that is in use.

a. true

b. false

82

1. Addresses: It is an IP addresses as a numerical label assigned to each device connected to

a computer network that uses the Internet Protocol version 4 (32 bits) or version 6 (128

bits).

2. Sockets: It is an abstraction of a bi-directional communication channel between hosts,

input and output streams are used to send and receive data.

3. Interfaces: It is a point of interconnection between a computer and a network. It can be

Hardware Interface i.e Network Interface Card and Software Interface i.e Loopback

Interface (lo0).

4. URI: It is a Uniform Resource Identifier, a sequence of characters that identifies a logical

or physical resource.

5. URL: It is a Uniform Resource Locator, a reference to a web resource that specifies its

location on a network, a special kind of URI. For example: https://www.google.com/

6. Connection: It represents a connections to the resource pointed to by URLs.

4.7 Assignment

1. Discuss the role of Authenticator, CookieManager and InterfaceAddress classes of

java.net package in detail.

2. Discuss about Proxy and ProxySelector class

4.8 Activities

Develop a program to multicast the message using java.net package.

4.9 Case Study

Explore different URL related classes of java.net package.

4.10 Further Readings

- https://docs.oracle.com/javase/8/docs/api/java/net/package-summary.html

- https://www.codejava.net/java-se/networking/

- https://developer.android.com/reference/java/net/Socket

http://www.google.com/
http://www.codejava.net/java-se/networking/

BLOCK 2: JDBC, Stored Procedure and Functions

Block Introduction

Through Java Database Connectivity user can develop a database

application and manipulate the records of the database. JDBC provides a standard

Java API for database-independent connectivity between the java program and a

wide range of databases.

In this block, we will discuss about accessing data from database through

Java application. Here, we are discussing various types of JDBC drivers used in

JDBC applications based on requirements. In this block, students are practically

demonstrated the connection establishment with database, accessing data from

database using different interfaces and classes of SQL package of JDK. Students

were also made clear regarding the exception to be handled while writing the

database application. Students will also learn to create and call stored procedure

and function practically.

Block Objective:

After learning this block, you will be able to:

 Differentiate various JDBC drivers and their applications

 Explain the various steps of writing JDBC Program

 Use various JDBC Statements

 Define Prepared Statements

 Create and call a Stored Procedure from database

 Create and call a Stored Procedure from database

 Decide which class and their methods to use from java.sql package

Block Structure

Unit 1: Introduction to Java Database Connectivity (JDBC)

Unit 2: Exploring Java.sql Package

Unit 3: Connecting with Database

Unit 4: Working with Stored Procedures and Functions

Block Summary

In this block, students have learnt and understand about Java Database

Connectivity concept to connect a java program with underlying database. This

block has explored various functionality of class library in JDK along with

querying of database. The students were well explained on the concepts of Java

Database Connectivity using ResultSet, Prepared Statement, Callable Statement

interface practically. The concept related to stored procedure and functions were

also discussed practically with its applications. Students were also made aware

about the exception they need to handle while accessing the database.

Block Assignment

Short Answer Questions:

1. Define Database and it component.

2. Differentiate stored procedure and function.

3. Explain the functionality of ResultSet object.

4. What is the use of JDBC DriverManager?

5. Define metadata.

Long Answer Questions:

1. Discuss different steps required for connecting Java application with database.

2. Discuss different JDBC drivers.

3. Discuss various types of Statements.

4. Write a short note on ResultsetMetadata.

5. Explain various methods of statement interface.

6. Write a JDBC program to navigate records of students database.

83

UNIT 1: INTRODUCTION TO JDBC

Unit Structure

1.0 Learning Objectives

1.1 Introduction

1.2 Call Level Interface (CLI)

1.3 Implementation of JDBC

1.4 JDBC Architecture

1.5 JDBC Drivers

1.6 Let Us Sum Up

1.7 Answer for Check Your Progress

1.8 Glossary

1.9 Assignment

1.10 Activities

1.11 Case Study

1.12 Further Readings

84

1.0 Learning Objectives

After learning this Unit, user will be:

 Able to define CLI

 Able to explain JDBC architecture

 Able to discuss different JDBC drivers

 Able to establish database connection

 Able to define different JDBC statements

 Able to access data using Result Sets

1.1 Introduction

JDBC is same as ODBC but it is particularly designed for JAVA while ODBC is language

independent. Java Database Connectivity (JDBC) is the universally industry accepted

standard for database independent connection between Java applications and different SQL

databases. All the benefits of java are equally applicable to JDBC. The JDBC API defines

various java classes and interfaces that represent database connections, SQL statements,

result sets and database metadata. JDBC provides following functionality to a Java

programmer:

 To make a connection with a database

 Write SQL statements

 Process the results

The JDBC API is implemented through a driver manager which will support various drivers

allowing the user to connect application with different databases. JDBC meta-data access

allows the developer to develop sophisticated applications which requires to understand the

functionality of the specific database connection. JDBC allows users to reap the benefits of

Internet-standard URLs to recognize database connections. JDBC is available anywhere as

being a core part of the Java Platform. It means with java applications user can truly write

database applications once and manipulate the data anywhere it is required.

1.2 Call Level Interface (CLI)

It was developed in the early 1990’s and defined only for the programming languages C and

COBOL. Call Level Interface (CLI) is a database programming interface from the SQL

Access Group (SAG). CLI is an attempt towards standardizing the SQL language for

accessing database. Microsoft's ODBC also follows and works in line to the CLI along with

adding its own extensions. Using CLI, SQL statements are directly passed to the server

85

without recompilation. It is also known as the callable Structured Query Language (SQL)

programming interface. Along with being an application programming interface (API), it is a

software standard to embed Structured Query Language (SQL) code in a host program. The

Call Level Interface defines a mechanism for a program regarding submission of a SQL

queries to the database system (DBMS) and accessing the returned records in a consistent

manner. CLI supports and encourages a rich set of client - server tools which enable access to

databases through dynamic-link libraries (DLL). Best example of the use of the CLI standard

is the Open Database Connectivity (ODBC) specification, which allows applications to

transparently access different database systems from different vendors. ANSI C, C#, Visual

Basic .NET (VB.NET), Java, Pascal and Fortran languages are the examples that support Call

Level Interface.

1.3 Implementation of JDBC

ODBC is not suitable for a direct use from the Java programming language because it uses a

C interface hence platform dependent. The JDBC API was developed after ODBC and being

a Java API, it supports a natural java interface for working with SQL. JDBC provides a “pure

Java” solution for application development. All modern relational DBMSs (Database

Management Systems) support SQL. With the help of JDBC it is possible to write a single

database application that can run on different platforms and interact with various underlying

DBMSs. The JDBC API includes following objects:

DataSource object: This object is used to establish connections. We can also use the Driver

Manager to establish a connection. To establish a connection through a DataSource object is

more preferred method.

Check your progress 1

1. JDBC stands for?

a. Java Database Connect

b. Java Database Connectivity

c. Json Database Connectivity

d. Json Database Connect

2. What is the full form of CLI?

a. Control Line Interface

b. Central Line Interface

c. Command Line Interface

d. Code Line Interface

86

Connection object: This object handles the connection with the database. To create the

statements an application uses the connection object.

Statement: Statement, PreparedStatement and CallableStatement objects are used for

executing SQL statements. A PreparedStatement object is used to execute precompiled

statements. This object can be executed multiple times with different parameter values

provided for each execution. A CallableStatement is used to call stored procedures that return

values.

ResultSet: This object contains the results of a SQL query. Whenever a SQL query executed

by a statement object it returns a ResultSet to an application. Once the ResultSet is retrieved,

user can use various methods of it to iterate through the results of the query.

SQL Exception: This class will help us to handle for any kind of errors that occur in a

database application during execution.

1.4 JDBC Architecture

The JDBC driver manager is an established and reliable way of the JDBC architecture, which

specifies objects for connecting Java applications to a JDBC driver. The JDBC architecture

supports two-tier and three-tier working models for accessing a database.

1. Two-tier Model (Client-Server)

In this model, a Java applet or application interacts directly to the data source. The JDBC

driver enables interaction between the application and the data source. When a user sends a

query to the data source, the data in the form of results for these queries are sent back to the

user. In this model, the data source used may be located on local machine or on a remote

machine on a network to which a user is connected. So, this model is known as a client -

Check your progress 2

1. What are the major components of the JDBC?

a. DriverManager, Driver, Connection and Statement

b. DriverManager, Driver, Connection, Statement and ResultSet

c. DriverManager, Statement and ResultSet

d. DriverManager, Connection, Statement and ResultSet

2. Which is responsible for getting a connection to the database?

a. Statement

b. Connection

c. Driver

d. ResultSet

87

server environment where the user’s machine will work as a client and the machine where the

data source running will work as a server. The network connection can be either intranet or

Internet.

Figure 1: Two-tier Model (Client-Server)

2. Three-tier Model

In this model having one more layer as middle tier where the user’s commands or queries are

first sent to middle-tier services, which subsequently transmit the commands to the data

source. The data source sends the results back to the middle tier, and then the middle tier

passes it to the user. In this model application deployment becomes very easy and also

provides performance benefits. Generally, the middle tier is developed in C or C++ language.

This model is complex and more secured.

Figure 2: Three-tier Model

Check your progress 3

1. The JDBC API supports processing models for database access

a. Two-tier

b. Three-tier

c. Both a & b

d. None of these

2. JDBC Architecture consists of layers.

88

1.5 JDBC Drivers

Whenever user wants to connect a database from a Java program, it is compulsory to use a

JDBC driver made specifically for the database to which user wants to connect. Every vendor

provides a custom-built JDBC driver to serialize SQL queries back and forth from the Java

application to their specific database. JDBC is a standard specification; a Java program that

uses the JDBC API can connect to any database management system (DBMS) for which

there is a JDBC driver available. There are 4 types of JDBC drivers:

Type 1: JDBC-ODBC bridge driver

A type 1 JDBC driver consists of a Java part that translates the JDBC interface calls to

ODBC calls. An ODBC bridge then calls the ODBC driver of the given database i.e. the

driver converts JDBC method calls into ODBC function calls. Sun provides a JDBC-ODBC

Bridge driver: sun.jdbc.odbc.JdbcOdbcDriver. This driver is native code and not Java, and is

closed source. This JDBC drivers are not recommended for production systems. JDBC-

ODBC Bridge driver is not multi threaded. JDBC-ODBC Bridge can open only one

Statement object per connection at a time. This type of driver is not considered a deployment-

level driver and is generally used for development and testing purposes only.

Note: In Java 8 version, the JDBC-ODBC Bridge has been removed.

Advantage of JDBC-ODBC bridge driver

 This driver is easy to use.

 This driver allows easy connectivity to all database supported by the ODBC Driver.

Disadvantage JDBC-ODBC bridge driver

 The performance gets degraded because JDBC method call is converted into the

ODBC function calls.

 The ODBC driver needs to be installed on the each client machine.

 Execution time remains slow.

 It is dependent on ODBC Driver.

 This type of driver uses Java Native Interface (JNI) to make ODBC call.

Type 2: Native-API Driver (partially java driver)

a. 1

b. 2

c. 3

d. 4

89

A type 2 JDBC driver is like a type 1 driver, except the ODBC part is replaced with a native

code part instead. The native code part is targeted at a specific database product i.e. uses the

client-side libraries of the database product. The Native API driver uses the client-side

libraries of the database. The driver converts JDBC method calls into native calls of the

database native API. It is not written entirely in java. These API are written in C and C++.

This driver is used in situations where a type 3 or type 4 driver is not available.

Advantage of Native-API Driver (partially java driver)

 Here the performance gets upgraded compare to JDBC-ODBC bridge driver.

 This driver contains additional features.

Disadvantage of Native-API Driver (partially java driver)

 The Native driver needs to be installed on the each client machine.

 The Vendor client library needs to be installed on client machine.

Type 3: Network protocol driver (fully java driver)

A type 3 JDBC driver is an all Java driver that sends the JDBC interface calls to an

intermediate server. The intermediate server then connects to the database on behalf of the

JDBC driver. The middle-tier (application) server translates JDBC calls directly or indirectly

into the vendor-specific database protocol. It is fully written in java. If the Java application is

accessing multiple types of databases at the same time, type 3 is the best preferred driver.

Advantage Network protocol driver (fully java driver)

 No client side library is required because of application server that can perform many

tasks like load balancing, auditing , logging etc.

 Database Independency.

 Provide facility to switch over from one database to another database.

Disadvantage Network protocol driver (fully java driver)

 Network support is required on client machine.

 Requires database-specific coding to be done in the middle tier.

 Maintenance of Network Protocol driver becomes costly because it requires database-

specific coding to be done in the middle tier.

Type 4: Pure Java driver (Thin driver)

The JDBC type 4 driver, also known as the Direct to Database Pure Java Driver, is a database

driver implementation that converts JDBC calls directly into a vendor-specific database

protocol. That is why it is known as thin driver. It is fully written in Java language. It is

90

implemented for a specific database product. Today, most JDBC drivers are type 4 drivers. If

you are accessing Oracle, Sybase, or IBM type of database then the preferred driver type is 4.

Advantage of Pure Java driver

 It provides better performance than all other drivers.

 No software requirement at client side or server side.

 It does not require any native library.

 It does not require any Middleware server.

Disadvantage of Pure Java driver

 This driver is dependent on the database.

Note: Type 4 driver is fastest JDBC driver written in JAVA.

The following table contains various JDBC supported database drivers.

Relational Database Driver Name

Oracle com.oracle.jdbc.Driver

MySQL com.mysql.jdbc.Driver

IBM DB2 App com.ibm.db2.jdbc.app.DB2Driver

IBM DB2 Net com.ibm.db2.jdbc.net.DB2Driver

Sybase com.sybase.jdbc.SybDriver

Microsoft SQL Server com.microsoft.sqlserver.jdbc.SQLServerDriver

Postgre org.postgresql.Driver

JDBC-ODBC Bridge sun.jdbc.odbc.JdbcOdbcDriver

Teradata com.teradata.jdbc.TeraDriver

Table 1: JDBC Supported Database Drivers

Check your progress 4

1. Mainly how many types of JDBC drivers are there?

a. 1

b. 2

c. 3

d. 4

91

1.6 Let Us Sum Up

In this unit, we have learnt that Java Database Connectivity, is a standard Java API for database-

independent connectivity. JDBC is the data access mechanism used in java applications. It is a

part of the Java standard edition. JDBC helps the programmer to query the data from the

database and to update the data in the database. It is used in relational databases like MySQL,

Oracle, PostgreSQL etc. Today, there are various types of JDBC versions available to connect

JAVA API to the database. There are total seven types of JDBC version available like JDBC

1.2, JDBC 2.1, JDBC 3.0, JDBC 4.0, JDBC 4.1, JDBC 4.2 and JDBC

4.3. JDBC 4.3 is the latest stable version of JDBC. We have also discussed that JDBC

architecture is mainly divided into 5 main components such as DriverManager, Driver,

Connection, Statement and ResultSet. Different interfaces and classes of JDBC API are used

to establish a connection and interact with databases. The JDBC architecture in Java is mainly

categorized in two types i.e. 2-tier model and 3-tier model.

1.7 Answer for Check Your Progress

Check your progress 1: 1. b 2. c

Check your progress 2: 1. b 2. c

Check your progress 3: 1. c 2. b

Check your progress 4: 1. d 2. d 3. d 4. b

2. Thin driver is also known as?

a. Type 3 Driver

b. Type-2 Driver

c. Type-1 Driver

d. Type-4 Driver

3. Which JDBC driver can be used in servlet and applet both?

a. Type 3

b. Type 4

c. Type 3 and Type 2

d. Both a & b

4. Which of the following driver is the fastest one?

a. JDBC-ODBC Bridge Driver

b. JDBC Net Pure Java Driver

c. Native API Partly Java Driver

d. Network Protocol Driver

92

1.8 Glossary

1. Java Database Connectivity: JDBC is the Standard Java API for database that involves

Java programming language with databases.

2. Driver: This interface helps to handles the communications with the database server.

3. Connection: This interface is used to contact the database with all its methods. The

connection object represents communication context, i.e., connection object allows all

communication with database.

4. Statement: The objects of this interface are used to submit the SQL statements to the

database. Some of the derived interfaces accept parameters in addition to executing stored

procedures.

5. ResultSet: This object contains data retrieved from a database after user executes an SQL

query using Statement objects. It acts as an iterator to allow user to traverse through its data.

6. SQLException: This class handles any errors that occur in a database application.

1.9 Assignment

1. Discuss various types of JDBC drivers and its applications.

2. Write short note on JDBC Architecture.

3. Explain the concept of Call Level Interface.

4. Discuss various benefits of JDBC.

1.10 Activities

Analyse and differentiate various JDBC drivers.

1.11 Case Study

Differentiate Java Database Connectivity (JDBC) from ODBC.

1.12 Further Readings

- Java: The Complete Reference, Eleventh Edition by Herbert Schildt

- https://docs.oracle.com / javase / tutorial / jdbc / overview / architecture.html

- https://www.herongyang.com / JDBC / Overview-JDBC-Version.html

- https://www.studytonight.com / java / introduction-to-jdbc.php

- https://www.educba.com / jdbc-architecture/

http://www.herongyang.com/
http://www.studytonight.com/
http://www.educba.com/

93

- https://www.progress.com / faqs / datadirect-jdbc-faqs / what-are-the-types-of-jdbc-

drivers

http://www.progress.com/

94

UNIT 2: EXPLORING JAVA.SQL PACKAGE

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 DriverManager Class

2.3 Connection

2.4 Statement

2.5 ResultSet

2.6 Metadata

2.7 Exceptions

2.8 Let Us Sum Up

2.9 Answer for Check Your Progress

2.10 Glossary

2.11 Assignment

2.12 Activities

2.13 Case Study

2.14 Further Readings

95

2.0 Learning Objectives

After learning this Unit, you will be:

 Able to use various classes and interfaces of jav.sql package

 Able to define different JDBC statements

 Able to retrieve data using Result Sets

 Able to define Scrollable and Updatable ResultSet

 Able to define Metadata

2.1 Introduction

JDBC API is divided into two main packages. Whenever we are using JDBC, we need to

import these packages to use classes and interfaces in our application. These packages are:

 java.sql

 javax.sql

java.sql package include various classes and interface to perform almost all JDBC operation

like creating and executing SQL Queries. The java.sql package contains the API for

manipulating data stored in a data source (generally a relational database) using the Java

programming language. The javax.sql package is also known as JDBC extension API. It

provides various classes and interface to access server-side data. The javax.sql package

provides the functionality of DataSource interface as an alternative to the DriverManager for

establishing a connection with a data source, Connection pooling and Statement pooling,

Distributed transactions and Rowsets. In this unit, we will discuss important classes and

interfaces of java.sql package in detail.

2.2 DriverManager Class

DriverManager class works as an intermediary between java application and the drivers of

the database, an application want to connect with. The Driver Manager is a very important

class that helps in defining an object which connects Java applications to a JDBC driver.

DriverManager is the backbone of the JDBC architecture. The main task of the JDBC

database driver is to load all the drivers found in the system. The DriverManager also helps in

selecting the most suitable driver from the previously loaded drivers when a new open

database is connected. This class works between the user and the drivers. The main

responsibility of this class is to keep track of the drivers that are available and establishing a

connection between a database and the suitable driver. It also keeps records of the driver

login time limits and printing of log and tracing messages. This class is mainly helpful for the

96

simple application. The getConnection() method is the most frequently used method of this

class. Various methods of the DriverManager Class are shown in below table 1.

Methods Details

public static synchronized void

registerDriver(Driver driver)

It is used to register

DriverManager class.

the given driver with

public static synchronized void

deregisterDriver(Driver driver)

It is used to drops the driver from the list of drivers

registered in the DriverManager class.

public static Connection

getConnection(String url) throws

SQLException

It tries to establish the connection to a given

database URL. This method is used to establish the

Connection of single-user database software like

microsoft-access.

public static Connection

getConnection(String url,String

userName,String password) throws

SQLException

It tries to establish the connection to a given

database URL. It is used to establish the Connection

of multiuser database software like Oracle, Sybase.

public static Driver getDriver(String url) It attempts to locate the driver by the given string.

pubic static int getLoginTimeout() This method returns the duration of time a driver is

allowed to wait in order to establish a connection

with the database.

pubic static void setLoginTimeout(int sec) The method provides the time in seconds. It is the

maximum time that a driver is allowed to wait in

order to establish a connection with the database.

public static Connection

getConnection(String URL, Properties prop)

throws SQLException

It tries to establish the connection to a given

database URL and its properties.

Table 1: Methods of the DriverManager Class

Code to get the connection with Oracle database using Oracle thin driver:

Code to get the connection with MySQL database:

Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:orcl", "username", "password");

// place your own url, username, password

Connection conn = DriverManager.getConnection(

"jdbc:mysql:///dbname","username","password");

// place your own url, username, password

97

2.3 Connection Interface

A Connection is a session between a Java application and a specific database. This interface

is a factory of Statement, PreparedStatement and DatabaseMetaData. This interface provides

many methods for transaction management like commit(), rollback(), setAutoCommit() and

setTransactionIsolation() etc. A Connection object's getMetaData method provides

information regarding its tables, supported SQL grammar, stored procedures, the capabilities

of this connection and so on. There are some common constant fields that are present in the

Connect interface. These fields are TRANSACTION_NONE,

TRANSACTION_READ_COMMITTED, TRANSACTION_READ_UNCOMMITTED,

TRANSACTION_REPEATABLE_READ and TRANSACTION_SERIALIZABLE.

Various commonly used methods of Connection interface are listed in below table 2.

Methods Details

public Statement createStatement() It creates a statement object that can be used to

execute SQL queries.

public Statement createStatement(int Creates a Statement object that will generate

resultSetType,int resultSetConcurrency)
ResultSet objects with the given type and

concurrency.

public void setAutoCommit(boolean status) It is used to set the commit s status. By default it is

true.

public void commit() It saves the changes made since the previous

commit/rollback permanent.

public void rollback() It drops all changes made since the previous

Check your progress 1

1. The method returns the object of java.lang.Class object.

a. Class.Name()

b. Class.forAttribute()

c. Class.Attributes()

d. Class.forName()

2. Which of the following method is static and synchronized in JDBC API?

a. prepareCall()

b. getConnection()

c. executeQuery()

d. executeUpdate()

98

commit/rollback.

public void close() It closes the connection and releases JDBC resources

immediately.

Table 2: Methods of the Connection Interface

2.4 Statement

This interface object is used for executing a static SQL statement and returning the results it

generates. Once a connection is established we can interact with the database. By default, at a

time only one ResultSet object per Statement object can be open. Therefore, if two ResultSet

object is interleaved with the reading of another, each must have been created by different

Statement objects. The JDBC Statement, CallableStatement and PreparedStatement interfaces

defines various methods and properties to send SQL or PL/SQL commands and receive data

from database. A java.sql.Connection object has methods to create a java.sql.Statement

object, which can be used to execute SQL queries against a database. Several methods on

java.sql.Statement object can be used to execute a SQL statement against the database. The

Statement interface provides various important methods as shown in below table 3.

Methods Description

public boolean execute(String sql) It executes the given SQL statement, which may

return multiple results.

public int[] executeBatch() It submits a batch of commands to the database for

execution and if all commands execute successfully,

returns an array of update counts.

public ResultSet executeQuery() It executes the given SQL statement, which returns a

single ResultSet object.

Public int executeUpdate(String sql) It executes the given SQL statement, which may be an

INSERT, UPDATE or DELETE statement or an SQL

statement that returns nothing, such as an SQL DDL

statement.

Table 3: Methods of Statement Interface

Syntax:

Create a statement using connection object:

 Statement statement = connection.createStatement();

Check your progress 2

99

2.5 ResultSet

The type of a ResultSet object determines the level of its functionality in two areas: the ways

in which the cursor can be manipulated, and how concurrent changes made to the underlying

data source are reflected by the ResultSet object.

The ResultSet interface provides various methods for retrieving and manipulating the results

of executed queries. ResultSet objects can have different functionality and characteristics.

These characteristics are a type and concurrency.

ResultSet Types:

The type of a ResultSet object determines the level of its functionality in two fields: First, the

ways in which the cursor can be manipulated, and the second, how concurrent changes made

to the underlying data source are reflected by the ResultSet object. The sensitivity of a

ResultSet object is categorized by one of three different ResultSet types:

 TYPE_FORWARD_ONLY

In this type, the result set cannot be scrolled; its cursor will move forward only, from before

the first row to after the last row.

 TYPE_SCROLL_INSENSITIVE

In this type, the result can be scrolled; its cursor can move both forward and backward

relative to the current position and it can move to an absolute position. The result set is

insensitive to updates made to the underlying data source while it is open.

 TYPE_SCROLL_SENSITIVE

In this type, the result can be scrolled; its cursor can move both forward and backward

relative to the current position, and it can move to an absolute position. The result set reflects

updates made to the underlying data source while the result set is open.

ResultSet Concurrency:

The concurrency of a ResultSet object decides the level of update functionality supported.

There are two concurrency levels:

1. method can be used for any SQL (Select and Update both) statements.

a. executeQuery

b. executeUpdate

c. execute

d. All of the above

2. Which of the following is not a valid statement in JDBC?

a. Statement

b. QueryStatement

c. PreparedStatement

d. CallableStatement

100

 CONCUR_READ_ONLY:

Here, the ResultSet object cannot be updated using the ResultSet interface.

 CONCUR_UPDATABLE:

Here, the ResultSet object can be updated using the ResultSet interface.

The default ResultSet type is TYPE_FORWARD_ONLY and the default ResultSet

concurrency is CONCUR_READ_ONLY.

The following line of code will create a scrollable and read only ResultSet object:

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY);

The following line of code will create a scrollable and updatable ResultSet object:

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

Various important methods of ResultSet interface are detailed in table 4.

Method Details

public boolean next() It is used to move the cursor to the one row next

from the current position.

public boolean previous() It is used to move the cursor to the one row

previous from the current position.

public boolean first() It is used to move the cursor to the first row in

result set object.

public boolean last() It is used to move the cursor to the last row in

result set object.

public boolean absolute(int

row)

It is used to move the cursor to the specified row

number in the ResultSet object.

public boolean

row)

relative(int It is used to move the cursor to the relative row

number in the ResultSet object, it may be positive

or negative.

public int

columnIndex)

getInt(int It is used to return the data of specified column

index of the current row as int.

public int

columnName)

getInt(String It is used to return the data of specified column

name of the current row as int.

public String

columnIndex)

getString(int It is used to return the data of specified column

index of the current row as String.

public String getString(String It is used to return the data of specified column

101

columnName) name of the current row as String.

Table 4: Methods of ResultSet interface

Using the Method next:

In order to access the records fetched in resultset object, we will go to each row and retrieve

the values according to their types. The method next moves a cursor to the next row and

makes that row available to operate. Initially the cursor is positioned just above the first row

of a ResultSet object, the first call to the method next moves the cursor to the first row and

makes it the current row. Successive invocations of the method next move the cursor down

one row at a time from top to bottom.

Using the getXXX Methods:

Here, XXX denotes the types of data we are trying to get from the underlying database. We

can use the getXXX method of the appropriate type to retrieve the value in each column. For

example, the first column in each row of resultset is studno, which stores a value of SQL type

int. We will use the method getInt() for retrieving a value of SQL type integer. The second

column in each row stores a value of student name of SQL type varchar, then getString()

method will be used to retrieve the values. The following code accesses the values stored in

the current row of ResultSet rs and prints a line with the employee number followed by name,

department and salary. Each time the method next is invoked, the next row becomes the

current row, and the loop continues until there are no more rows in rs.

String query = “SELECT * from employee”;

ResultSet rs = stmt.executeQuery(query);

while (rs.next())

{

int num= rs.getInt(“empdno”);

String s=rs.getString(“empname”);

String dept=rs.getString(“empdept”);

float n = rs.getFloat("empsalary");

System.out.println(num +” “ +s + “” + dept +“ “+ n);

}

Check your progress 3

1. What are the types of ResultSet in JDBC?

a. Forward ResultSet

b. Scrollable ResultSet

c. Only a

d. Both a and b

2. Which of the following is not a type of ResultSet object?

a. CONCUR_WRITE_ONLY

102

2.6 Metadata

DatabaseMetaData interface provides methods to get metadata like database product name,

database product version, driver name, name of a total number of tables, a name of a total

number of views of a database.

This interface is implemented by driver vendors to let users know the capabilities of a

Database Management System (DBMS) in combination with the driver based on JDBC

technology. DatabaseMetaData interface commonly used methods are listed in table 5.

Method Details

public String getDriverName() throws

SQLException

It returns the name of the JDBC driver.

public String getDriverVersion() throws

SQLException

It returns the version number of the JDBC

driver.

public String getUserName() throws

SQLException

It returns the username of the database.

public String getDatabaseProductName()

throws SQLException

It returns the product name of the database.

public String getDatabaseProductVersion()

throws SQLException

It returns the product version of the database.

public ResultSet getTables(String catalog,

String schemaPattern, String

tableNamePattern, String[] types) throws

SQLException

It returns the description of the tables of the

specified catalog. The table type can be

TABLE, VIEW, ALIAS, SYSTEM TABLE,

SYNONYM etc.

Table 5: DatabaseMetaData interface methods are listed in.

Example: DatabaseMetaData interface example

b. TYPE_FORWARD_ONLY

c. TYPE_SCROLL_INSENSITIVE

d. TYPE_SCROLL_SENSITIVE

import java.sql.Connection;;

import java.sql.DatabaseMetaData;

import java.sql.DriverManager;

import java.sql.SQLException;

public class DBMetaData

103

After successful compilation it will have a following output:

{

public static void main(String[] args)

{

try{

Class.forName("com.mysql.jdbc.Driver");

}

catch (Exception e)

{

System.err.println("Message: " + e.getMessage());

}

try{

Connection conn=

DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","");

DatabaseMetaData dbdata = conn.getMetaData();

System.out.println("Driver Name is: " + dbdata.getDriverName());

System.out.println("Driver Version is: " + dbdata.getDriverVersion());

System.out.println("UserName is: " + dbdata.getUserName());

System.out.println("Database Product Name is: " +

dbdata.getDatabaseProductName());

System.out.println("Database Product Version is: " +

dbdata.getDatabaseProductVersion());

}

catch (SQLException e)

{

e.printStackTrace(System.err);

System.err.println("SQLState: " + ((SQLException) e).getSQLState());

System.err.println("Error Code: " + ((SQLException) e).getErrorCode());

System.err.println("Message: " + e.getMessage());

}

}

}

104

Figure 1: DatabaseMetaData output

ResultSetMetaData object that can be used to get information about the types and properties

of the columns in a ResultSet object. Various important methods of ResultSetMetaData

interface are detailed in below table 6.

Method Details

String getColumnName(int column) It returns the column name of the particular

column

String getColumnTypeName(int column) It returns the datatype of the particular column

which we have passed as a parameter

String getTableName(int column) It returns the table name of the column

String getSchemaName(int column) It returns the schema name of the column’s table

int getColumnCount() It returns the number of columns of the

ResultSet

boolean isAutoIncrement(int Column) It returns true if the given column is Auto

Increment, else false

boolean isCaseSensitive(int Column) It returns true if the given Column is Case

Sensitive, else false

Table 6: ResultSetMetaData interface methods

Example:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.SQLException;

import java.sql.Statement;

public class RSMetaData {

private static final String QUERY = "select sno,sname,smob from student";

public static void main(String[] args) {

105

try{

}

Class.forName("com.mysql.jdbc.Driver");

catch (Exception e)

{

System.err.println("Message: " + e.getMessage());

}

try

{

Connection conn=

DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","");

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(QUERY);

ResultSetMetaData rsmd = rs.getMetaData();

System.out.println("1. Column count in student table is: " + rsmd.getColumnCount());

System.out.println("2. First column name in student table is: " +

rsmd.getColumnName(1));

System.out.println("3. Database name of student table' column id is: " +

rsmd.getCatalogName(1));;

System.out.println("4. Data type of column id is: " + rsmd.getColumnTypeName(1));

System.out.println("5. Table name of column id is: " + rsmd.getTableName(1));

}

catch (SQLException e)

{

e.printStackTrace(System.err);

System.err.println("SQLState: " + ((SQLException) e).getSQLState());

System.err.println("Error Code: " + ((SQLException) e).getErrorCode());

System.err.println("Message: " + e.getMessage());

}

}

}

After successful compilation it will have a following output:

106

Figure 2: ResultSetMetaData output

2.7 Exceptions

In java.sql package exception can be categorized in following ways:

 SQLException: It is thrown by most methods when there is a problem accessing data.

 SQLWarning: It is thrown to indicate a warning

 DataTruncation: It is thrown to indicate that data may have been truncated

 BatchUpdateException: It is thrown to indicate that not all commands in a batch

update executed successfully.

Whenever JDBC encounters an error during an interaction with a data source, it throws an

instance of SQLException. The SQLException instance contains the following information

that helps to determine the cause of the error:

Description of the error: We can retrieve the String object that contains this description by

calling the SQLException.getMessage() method.

SQLState code: These codes and their meanings are standardized by ISO/ANSI and Open

Group (X/Open), although some codes are reserved for database vendors to define for

themselves. This String object consists of five alphanumeric characters. We can retrieve this

code by calling the SQLException.getSQLState() method.

Error code: This is an integer value identifying the error that caused the SQLException

instance to be thrown. Its value and meaning are implementation-specific and might be the

Check your progress 4

DatabaseMetaData interface is used to get?????..?

a. Comprehensive information about the database as a whole.

b. Comprehensive information about the table as a whole.

c. Comprehensive information about the column as a whole.

d. Both b and c

107

actual error code returned by the underlying data source. We can retrieve the error by calling

the SQLException.getErrorCode() method.

A cause: A SQLException instance might consists of one or more Throwable objects that

caused the SQLException instance to be thrown. To navigate this chain of causes, we need to

recursively call the SQLException.getCause() method until a null value is returned.

A reference to any chained exceptions - If more than one error occurs, the exceptions are

referenced through this chain. Retrieve these exceptions by calling the method

SQLException.getNextException on the exception that was thrown.

Example: Let's consider the previous example code to retrieve the SQLState, error code, error

description and cause (if there is one) contained in the SQLException. As we know prevois

example was successfully executed. So, to get exception details we need to commit any

mistake in code. Here, we are wrongly typing a table column name i.e snno instead of sno in

the query as shown below.

After successful compilation, execute the program. It will have a following output:

Figure 3: Exception details output

SQLWarning objects are a subclass of SQLException that deal with database access

warnings. Unlike exceptions, Warnings do not stop the execution of an application; they

simply alert the user that something did not happen as expected.

The following subclasses of SQLException can also be thrown:

BatchUpdateException: It will be thrown when an error occurs during a batch update

operation. BatchUpdateException provides the update counts for all statements that were

executed before the error occurred.

private static final String QUERY = "select snno, sname, smob from student";

108

SQLClientInfoException: It will be thrown when one or more client information properties

could not be set on a Connection. SQLClientInfoException provides a list of client

information properties that were not set.

2.8 Let Us Sum Up

In this unit, we have discussed java.sql package. We learnt the importance of DriverManager

class. By using the getConnection method of DriverManager class application connect with

the database. Statement helps to execute SQL query, while the results returned by statement

will be fetched and manipulated with the help of ResultSet methods. At last we discussed

states, codes and other details regarding SQLExceptions.

2.9 Answer for Check Your Progress

Check your progress 1: 1. d 2. b

Check your progress 2: 1. c 2. b

Check your progress 3: 1. d 2. a

Check your progress 4: a

2.10 Glossary

1. Connection: This interface is used to connect a database. The connection object

represents communication with database.

2. Statement: The objects created from this interface is used to submit the SQL statements

to the database.

3. ResultSet: This object hold data retrieved from a database after you execute an SQL

query using Statement objects. It acts as an iterator to allow you to move through its data.

4. SQLException: This class handles any errors that occur in a database application.

2.11 Assignment

1. Discuss various methods of DriverManager class.

2. Write short note on SQLException.

3. What is Statement? Differentiate between execute, executeUpadate() and

executeQuery() methods.

2.12 Activities

Write a JDBC application to learn Statement Type and Mode parameter.

2.13 Case Study

109

Analyse and differentiate important methods of DatabaseMetadata and ResultSetMetadata.

2.14 Further Readings

- Java: The Complete Reference, Eleventh Edition by Herbert Schildt

- https://docs.oracle.com/javase/tutorial/jdbc/overview/index.html

- https://www.javatpoint.com/java-jdbc

- https://www.knowprogram.com/jdbc/jdbc-get-connection/

- https://www.studytonight.com/java/java-sql-package.php

http://www.javatpoint.com/java-jdbc
http://www.knowprogram.com/jdbc/jdbc-get-connection/
http://www.studytonight.com/java/java-sql-package.php

110

UNIT 3: CONNECTING WITH DATABASE

Unit Structure

3.0 Learning Objectives

3.1 Introduction

3.2 Steps to Connect a Database

3.3 JDBC Data Types

3.4 Connectivity with MySQL

3.5 Connectivity with Oracle

3.6 Let Us Sum Up

3.7 Answer for Check Your Progress

3.8 Glossary

3.9 Assignment

3.10 Activities

3.11 Case Study

3.12 Further Readings

111

3.0 Learning Objectives

After learning this Unit, you will be:

 Able to use different JDBC objects to establish database connection

 Able to write Java programs to connect with databases

 Able to perform DB operations.

3.1 Introduction

Java programs do not store data persistently. Data persistence is generally achieved through

relational databases such as Microsoft’s SQL Server, the most famous open source database

MySQL or NoSQL databases such as MongoDB and Cassandra etc. JDBC provides a

uniform API for accessing databases. This API simplifies the development and maintenance

of Java programs which interacts with databases. This API includes various classes and

interfaces for connecting to a database, running SQL commands and processing the results.

Irrespective of the underlying architecture, JDBC makes it possible for the Java programs to

communicate with a wide range of databases. In this unit we will discuss various steps

involved in database connection.

3.2 Steps to Connect a Database

There are 7 steps involved to connect any java application with the database by using JDBC.

They are as follows:

1. Import JDBC packages

2. Load and register the JDBC driver

3. Open a connection to the database

4. Create a statement object

5. Execute the statement and collect a query result

6. Process the result

7. Close the connection

1. Import JDBC Packages

The import statement will ensure that various JDBC API classes will be available to the

application program. The following import statement must be included in the program

irrespective of the JDBC driver being used:

import java.sql.*;

Import the other classes based on the functionality required in the program.

112

2. Load and Register the JDBC Driver

Before we proceed to write further code for connecting to the Database, we should load /

register the driver in the program. We need to register it only once per database in the

program. There are two ways to load the driver in the following ways:

1. Class.forName(): In this technique, the driver’s class file is loaded into the memory at

runtime. It will implicitly load the driver. While loading, the driver will be registered

with JDBC automatically.

2. DriverManager.registerDriver(): This technique will register the driver with the Driver

Manager. If the driver is already registered, then it will not take any action.

3. Connecting to a Database

Once the driver is loaded, the next step is to create and establish the connection with database.

After the required packages are imported, drivers are loaded and registered, we can proceed

for establishing a Database connection. This is achieved by using the getConnection() method

of the DriverManager class. The getConnection() requires three input parameters, namely, a

connect string (url), a username and a password. In the following code we are creating a

connection instance named con.

• Connection con = DriverManager.getConnection(url,user,password)

4. Create a Statement Object

After the connection is established, we will create the statement object to execute the query

with the connected database. We will use the createStatement method of the Connection

interface to create the query. A call to this method creates an object instance of the Statement

interface. The following line of code illustrates this:

• Statement stmt = con.createStatement();

createStatement method is defined in Connection interface and used to execute the sql

queries.

5. Executing the Query and collecting a ResultSet

Once a Statement object has been constructed, the next step is to execute the query. This is

done by using the executeQuery() method of the Statement object. A call to this method takes

a SQL SELECT statement as an argument and returns a JDBC ResultSet object that can be

used to get all the records of a table. The following line of code illustrates this using the stmt

object created earlier:

• ResultSet rs = stmt.executeQuery (“select empno, empname, empadd, empdept

from employee ORDER BY empname”);

Where, stmt is the instance of the Statement interface.

113

6. Processing the results

Once the query has been executed, there are two steps to be carried out:

- Processing the output resultset to fetch the rows

- Retrieving the column values of the current row

To iterate through the data in the ResultSet object, we will call the next() method in a while

loop. If there is no more record to read, it will return false.

We can get the data from ResultSet using the getter methods like getXXX() of the JDBC

ResultSet object. Here getXXX() corresponds to the getInt(), getString() etc with XXX being

replaced by a Java datatype. We have to pass the column index or column name as an

argument to get the values using Getter methods.

7. Close the connection

By closing connection object statement and ResultSet will be closed automatically. The

close() method of Connection interface is used to close the connection. The following code is

used to close the connection.

• con.close();

Where, con is the instance of the Connection interface.

Check your progress 1

1. JDBC classes are defined in which packages?

a. jdbc and javax.jdbc

b. java.sql and javax.sql

c. rdb and javax.rdb

d. jdbc and java.jdbc.sql

2. Which of the following method is static and synchronized in JDBC API?

a. getConnection()

b. prepareCall()

c. executeUpdate()

d. executeQuery()

3. Which methods are required to load a database driver in JDBC?

a. registerDriver()

b. forName()

c. getConnection()

d. Both a and b

114

3.3 JDBC Data Types

As we know that each column in the database table is assigned a SQL type. So, the JDBC

driver maps each SQL data type to a JDBC data type. Adapter service for JDBC then maps

each JDBC data type to one or more Java data types that are used as the input or output of the

adapter service. Generally, data types in JDBC are divided into two categories:

Java data types:

These are the data types supported by the Java programming language. Java data types

contain both the primitive (like int, float and double) and the non-primitive data types (like

String, Date etc.).

Database data types:

These are the data types supported by the database to which the java application is connected.

SQL data types (like int, varchar, date and so on) and NoSQL data types (like BSON, JSON

etc.) are the examples of database data types.

While working with JDBC application, we must ensure that the data types in our Java code

must match the data types in the database. If there is an int in the java code, we must use an

INT in the database. If the Java code contains a String, then we must use a VARCHAR in the

database. The below table illustrates some of the most widely used data types.

Java Data Types SQL Data Types

java.lang.string Varchar

java.math.BigDecimal Numeric

int Integer

java.sql.Timestamp Timestamp

java.sql.Ref Ref

java.sql.Clob Clob

java.sql.Time Date

java.sql.Date Time

java.sql.Blob Blob

Table 1: JDBC Data Types

Fortunately, the getXXX() methods of ResultSet perform automatic conversion in many

cases. This conversion happens between all numeric types (though you could lose precision in

115

the conversion) and between most types and String. The Blob type can't be converted

automatically to a String.

3.4 Connectivity with MySQL

After learning the connectivity steps now we will implement all the 7 basic steps to connect

with database using JDBC in Java program. We will use MYSQL database for this example.

Assume that we have a database named “mca” and table named “student” and sno, sname and

smob are the three fields in it.

To connect our Java application with MYSQL we need to have a MySQL Connector JAR

file. It is freely available to download. MySQL Connector/J is the official JDBC driver for

MySQL. MySQL Connector/J 8.0 is compatible with all MySQL versions starting with

MySQL 5.6. Once the MySQL Connector.jar (version may change) file is downloaded it is

required to load it for Java application through following ways. There are two ways to load

the jar file:

1. First, paste the mysqlconnector.jar file in jre/lib/ext folder and second,

2. Set classpath

There are two ways to set the classpath:

I. Set the temporary classpath by opening a command prompt and write:

• C:>set classpath=c:\folderName\mysql-connector-java-5.0.8-bin.jar;.;

Check your progress 2

1. What is blob in the following statement?

create table addImage(image blob);

a. Variable

b. Object

c. Data type

d. Class

2. Which data type is used to store files in the database table?

a. CLOB

b. BLOB

c. File

d. Both a and b

116

II. Set the permanent classpath. For that go to environment variable then click on new tab. In

variable name write classpath and in variable value paste the path as,

• C:\folderName\mysql-connector-java-5.0.8-bin.jar;.;

Now, create a java file and save it as MysqlCon.java.

MysqlConn.java

Load the Driver and connect with database:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.ResultSet;

import java.sql.Statement;

class MysqlConn

{

Connection con;

Statement stmt;

ResultSet rs;

MysqlConn()

{

try

{

// Load the Driver

Class.forName("com.mysql.jdbc.Driver");

System.out.println("Driver loaded Successfully");

// Establish the Connection

con=DriverManager.getConnection("jdbc:mysql://localhost:3306/mca","root","");

//here mca is database name, root is username and password is null

System.out.println("Connection is established Successfully");

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

117

Now, compile the application as shown below.

After successful compilation write a code for inserting records in database as shown below.

{

System.out.println(e);

}

}

public static void main(String args[])

{

MysqlConn m=new MysqlConn();

}

}

public void insRecord()

{

try{

stmt=con.createStatement();

stmt.executeUpdate("insert into student values (1001, 'Vinod', 13000)");

stmt.executeUpdate("insert into student values (1002, 'Dimpal', 14258)");

stmt.executeUpdate("insert into student values (1003, 'Ved', 15268)");

stmt.executeUpdate("insert into student values (1004, 'Mukesh', 15600)");

stmt.executeUpdate("insert into student values (1005, 'Jayram', 18524)");

stmt.executeUpdate("insert into student values (1006, 'Sujata', 17564)");

stmt.executeUpdate("insert into student values (1007, 'Aneri', 15268)");

stmt.executeUpdate("insert into student values (1008, 'Vishal', 18758)");

stmt.executeUpdate("insert into student values (1009, 'Darshana', 14258)");

stmt.executeUpdate("insert into student values (10010, 'Nihal', 15268)");

System.out.println("Record inserted Successfully");

}

118

Now, Compile and run the application as shown below.

As we can see that above image shows that records are inserted successfully. So, let’s query

the database to check the records. The required code to select the records is shown below.

public void selectRecord()

{

try{

stmt=con.createStatement();

rs=stmt.executeQuery("select * from student");

while(rs.next())

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getInt(3));

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In Insertion:"+e);

}

}

public static void main(String args[])

{

MysqlConn m=new MysqlConn();

m.insRecord();

}

119

After successful compilation run the application and check the output as shown below.

Now, we will try to update the records in the table by name based on students no. The

required code for the updation is shown below.

public void updRecord(String nam, int p)

{

try{

stmt=con.createStatement();

stmt.executeUpdate("update student set sname='"+nam+"'where sno="+ p

+"");

System.out.println("Record Updated Successfully");

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In selection:"+e);

}

}

public static void main(String args[])

{

MysqlConn m=new MysqlConn();

m.selRecord();

}

120

Compile and run the application as shown below.

We can see that student no 1001 is successfully updated in the records. Now, we will try to

delete the records in the table based on students no. The required code for the deletion is

shown below.

Public void delRecord(int p)

{

try{

stmt=con.createStatement();

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In Updation:"+e);

}

}

public static void main(String args[])

{

MysqlConn m=new MysqlConn();

m.updRecord(“Manish”,1001);

m.select();

}

121

Compile and run the application as shown below.

We can see that student no 1008 is successfully deleted from the records.

Check your progress 3

1. Identify the DSN in the following statement:

DriverManager.getConnection("jdbc:odbc:baou", "ahd", "guj")

a. jdbc

b. odbc

stmt.executeUpdate("delete from student where sno="+ p +"");

System.out.println("Record Deleted Successfully");

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In Deletion:"+e);

}

}

public static void main(String args[])

{

MysqlConn m=new MysqlConn();

m.delRecord(1008);

m.select();

}

122

3.5 Connectivity with Oracle database

To connect any java application with the oracle database, user needs to follow following

steps. In the following example, we are using Oracle 10g as the database. You need to load

ojdbc14.jar file for oracle driver. Few things to understand while using oracle database are:

 Driver class: The driver class for the oracle database is

oracle.jdbc.driver.OracleDriver.

 Connection URL: The connection URL for the oracle10G database is

jdbc:oracle:thin:@localhost:1521:orcl where jdbc is the API, oracle is the database,

thin is the driver, localhost is the server name on which oracle is running, we can also

use IP address 127.0.0.1, 1521 is the port number and orcl is the Oracle service name.

You can get all these information from the tnsnames.ora file.

 Username: The default username for the oracle database is system.

 Password: It is the password given by the user at the time of installing the oracle

database.

OracleConn.java

c. baou

d. ahd

2. Which of the following method is used to perform DML statements in JDBC?

a. executeUpdate()

b. executeResult()

c. executeQuery()

d. execute()

3. What should be the correct order to close the database resource?

a. Connection, Statements, ResultSet

b. ResultSet, Statements, Connection

c. ResultSet, Connection, Statements

d. Statements, ResultSet, Connection

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.ResultSet;

import java.sql.Statement;

123

public class OracleConn

{

public static void main(String args[])

{

try

{

//load the driver class

Class.forName("oracle.jdbc.driver.OracleDriver");

//create the connection object

Connection con=DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:orcl","system","baou");

//create the statement object

Statement stmt=con.createStatement();

//execute query

ResultSet rs=stmt.executeQuery("select * from student");

while(rs.next())

{

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getint(3));

}

//close the connection object

con.close();

}

catch (SQLException e)

{

System.err.format("SQL State: %s\n%s", e.getSQLState(), e.getMessage());

}

catch (Exception e)

{

e.printStackTrace();

}

}

}

124

3.6 Let Us Sum Up

In this unit, we have discussed various steps required to develop Java Database application.

We have also discussed different data types required to use while developing database

application. JDBC is one of Java's oldest APIs which provides an easy - to - use solution for

one of the pioneer requirement of Java application development. By just knowing just the few

JDBC call discusses in this unit will give you a platform to start using JDBC to connect to

virtually any database. Once you have clear understanding of these commands, you can easily

start to explore more advanced options that are available into JDBC. Today, as JDBC is

enough for simple applications, most developers are eventually looking towards the Jakarta

Persistence API to develop a more formal data access layer.

3.7 Answer for Check Your Progress

Check your progress 1: 1. b 2. a 3. d

Check your progress 2: 1. c 2. a

Check your progress 3: 1. c 2. a 3. b

Check your progress 4: a

3.8 Glossary

1. JDBC Adapter: The Java Database Connectivity (JDBC) adapter service enables the

translation service to communicate with JDBC - compliant databases. The adapter allows for

updating or retrieving data from a JDBC - compliant database as part of a business process

within the application.

2. BLOB: BLOB is used to hold the binary type of data. The storage size may vary based on

the databases. For example: images, voice, video.

3. CLOB: CLOB is used to hold the character type of data. Like BLOB, the storage space

may vary based on the DB. For example: files.

4. JAR: JAR file stands for Java ARchive file. Inspired by the popular zip files, Java

provides JAR files for accumulating all the components like class files and other

Check your progress 4

The default username for the oracle database is system?

a. True

b. False

125

corresponding metadata of all the files which are packaged, including the resources of an

application.

5. Thin driver

This driver converts JDBC calls directly into the vendor-specific database protocol. So, it is

also known as thin driver. It is fully written in Java language.

3.9 Assignment

1. Discuss various connection steps involved in JDBC applications.

2. Explain the connection string component in detail.

3. Explain various data types of JDBC.

4. Explain various steps of oracle database connectivity.

3.10 Activities

Develop a java database application with Oracle database.

3.11 Case Study

How Java Database Connectivity with MySql differs from MongoDB.

3.12 Further Readings

- Java: The Complete Reference, Eleventh Edition by Herbert Schildt

- https:// docs. oracle. Com / javase / tutorial / jdbc / overview / index. html

- https:// www. javatpoint. Com / java – jdbc

- https:// www. theserverside. com/ definition / Java-Database-Connectivity-JDBC

- https://intellipaat.com / blog / java – jdbc /

- https:// www.ibm.com / docs / en / b2b-integrator / 5.2 ? topic=l-java-database-

connectivity-jdbc-adapter-v520-522

- https:// www.scaler.com/ topics / jar-file-in-java/

http://www/
http://www/
http://www.ibm.com/
http://www.scaler.com/

126

UNIT 4: WORKING WITH STORED PROCEDURES

AND FUNCTIONS

Unit Structure

4.0 Learning Objectives

4.1 Introduction

4.2 Precompiled Statement and Stored Procedures

4.3 Transaction Management

4.4 Batch Processing

4.5 Let Us Sum Up

4.6 Answer for Check Your Progress

4.7 Glossary

4.8 Assignment

4.9 Activities

4.10 Case Study

4.11 Further Readings

127

4.0 Learning Objectives

After learning this Unit, you will be:

 Able to use precompiled statement

 Able to define and use stored procedures

 Able to define transaction

 Able to write batch processing

4.1 Introduction

In the previous unit we discussed and learnt various steps involved in database connectivity.

After establishing the database connectivity we performed various operation line Insert,

Update and Delete. In this unit we will focus on pre-compiled statements, working with and

calling stored procedures to perform various DML operation, transaction management and

batch processing.

4.2 Pre-compiled Statement and Stored Procedures

Pre-compiled Statement:

The java.sql.PreparedStatement extends java.sql.Statement and it is used for pre-compiling

SQL statements that might contain input parameters. By using java.sql.Statement object in

Java application, the SQL query will be fired to database software for multiple times and the

same SQL query will be parsed in Database software for multiple times. This will degrade the

performance of the application and takes a more time. This problem can be avoided by using

pre-compiled SQL query.

Pre-compiled SQL query is the SQL query that goes to database software without input values

and becomes parsed or compiled SQL query in database software irrespective of whether it

will be executed or not. PreparedStatement object represents this pre-compiled SQL query.

We can use this object to set input values to SQL query, to execute SQL query and to fetch

the output of SQL query for one or multiple times. PreparedStatement object is excellent

feature to execute the same SQL query for multiple times either with or without input values.

The PreparedStatement interface extends the Statement interface. It represents pre-compiled

SQL statements and stores it in a PreparedStatement instance. It improves the performance of

the application because the query is compiled only once. In the following code we can see a

parameterized query:

String sql=”insert into student values(?,?,?)”;

128

Here, the parameter (?) is passed for values which will be set by calling setter methods of

PreparedStatement interface. The important methods of PreparedStatement interface are listed

in table 1.

Method Details

public void setInt(int paramIndex, int

value)

It sets the integer value to the given parameter index.

public void setString(int paramIndex,

String value)

It sets the String value to the given parameter index.

public void setFloat(int paramIndex,

float value)

It sets the float value to the given parameter index.

public void setDouble(int

paramIndex, double value)

It sets the double value to the given parameter index.

public int executeUpdate() It executes the query. It is used for create, drop, insert,

update, delete etc.

public ResultSet executeQuery() It executes the select query. It returns an instance of

ResultSet.

Table 1: Methods of PreparedStatement Interface

Example: The following example demonstrates the use of PreparedStatement Interface for

Insert, Update and Delete operation. We have a created three column in database named

sno,sname and smob for CRUD operation.

Note: All the parameter / arguments are represented by “?” symbol and each parameter is

referred to by its original position.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.PreparedStatement;

class MysqlConnPreStmt

{

Connection con;

Statement stmt;

ResultSet rs;

129

MysqlConnPreStmt()

{

try

{

Class.forName("com.mysql.jdbc.Driver");

System.out.println("Driver loaded Successfully");

con=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","");

//here baou is database name, root is username and password is null

System.out.println("Connection is established Successfully");

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println(e);

}

}

public void select()

{

try{

stmt=con.createStatement();

rs=stmt.executeQuery("select * from student");

while(rs.next())

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getInt(3));

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In selection:"+e);

}

}

public void ins()

{

?, ?)");

try{

PreparedStatement ps = con.prepareStatement("insert into student values(?,

ps.setInt(1, 2001);

ps.setString(2, "Manish");

ps.setInt(3, 98989);

ps.executeUpdate();

System.out.println("Record inserted Successfully");

}

catch (SQLException se)

130

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In Insertion:"+e);

}

}

public void del(int p)

{

try{

where sno=?");

PreparedStatement stmt=con.prepareStatement("delete from student

stmt.setInt(1,p);

int i=stmt.executeUpdate();

System.out.println(i+" records deleted");

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In Insertion:"+e);

}

}

public void upd(String nam,int p)

{

try{

PreparedStatement stmt=con.prepareStatement("update student set

sname=? where sno=?");

stmt.setString(1,nam); //1 specifies the first parameter in the query i.e. name

stmt.setInt(2,p);

int i=stmt.executeUpdate();

System.out.println(i + " record updated");

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In Updation:"+e);

}

}

public static void main(String args[])

{

MysqlConnPreStmt m=new MysqlConnPreStmt();

m.select();

131

After successful compilation and execution, it will display following output on the prompt.

Figure 1: PreparedStatement Example

Limitation of PreparedStatement

 Using one simple statement object we can execute different types of SQL queries but

one after another.

 We can execute only one type of query using one PreparedStatement object for which

it is confined. At a time one PreparedStatement will have only one compiled query. To

execute multiple different types of queries one needs to take multiple prepared

statement objects.

CallableStatement:

Stored procedures are created with the help of a group of SQL statements that perform a

particular task. These procedures accept input and may return a value. Stored procedures are

useful when we want to reuse the command multiple times. The CallableStatement interface

is used to execute SQL stored procedures. The JDBC API provides a stored procedure SQL

escape syntax supports stored procedures to be called in a standard way for all RDBMSs. The

prepareCall(String SQL) method of the Connection interface creates a CallableStatement

object for calling database stored procedures. The CallableStatement object have various

methods for setting up its IN and OUT parameters along with methods for executing the call

to a stored procedure.

• We can invoke one of the following methods to call the stored procedure:

m.ins();

m.select();

m.upd("Naresh",2001);

m.select();

m.del(2001);

m.select();

}

}

132

- If the stored procedure does not return result sets use

CallableStatement.executeUpdate method.

- If the stored procedure returns one result set use CallableStatement.executeQuery

method.

- If the stored procedure returns multiple result sets use CallableStatement.execute

method.

We can use the CallableStatement.getXXX methods to retrieve values from the OUT

parameters or INOUT parameters. When this object is no more required then

CallableStatement.close method is called to close the CallableStatement object.

Example:

To understand the example we have created four stored procedures in our database named

Display, inStud, Modify and delet as shown in below figure 2.

Figure 2: MYSQL Stored Procedure

Steps to work with stored procedure in JDBC MySQL:

 First, open a connection to MySQL server by creating a new Connection object.

Connection conn = DriverManager.getConnection();

 Second, prepare a stored procedure call and create a CallableStatement object by

calling prepareCall() method of the Connection object.

String str = "{CALL inStud(?,?,?)}";

CallableStatement stmt = conn.prepareCall(str)

 Third, pass all the parameters to the stored procedure. Here, the inStud stored

procedure accepts only three IN parameter.

133

 At last, execute the stored procedure by calling the executeQuery() or

executeUpdate() method of the CallableStatement object.

// MysqlConnCallStmt.java

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.CallableStatement;

class MysqlConnCallStmt

{

Connection con;

Statement st;

CallableStatement stmt = null;

ResultSet rs;

MysqlConnCallStmt()

{

try

{

Class.forName("com.mysql.jdbc.Driver");

System.out.println("Driver loaded Successfully");

con=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","");

//here baou is database name, root is username and password is null

System.out.println("Connection is established Successfully");

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

134

System.out.println(e);

}

}

public void select()

{

try{

String str="{call Display()}";

stmt = con.prepareCall(str);

rs=stmt.executeQuery();

while(rs.next())

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getInt(3));

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In selection:"+e);

}

}

public void ins()

{

try{

String str="{call inStud(?,?,?)}";

stmt = con.prepareCall(str);

stmt.setInt(1, 2004);

stmt.setString(2, "Kalpesh");

stmt.setInt(3, 45663);

stmt.executeUpdate();

System.out.println("Record inserted Successfully");

135

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In Insertion:"+e);

}

}

public void del(int p)

{

try{

String str="{call delet(?)}";

stmt = con.prepareCall(str);

stmt.setInt(1, p);

stmt.executeUpdate();

System.out.println("Record deleted Successfully");

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In Insertion:"+e);

}

}

public void upd()

{

try{

String str="{call Modify(?,?)}";

136

Note: The MysqlConnCallStmt.java file inserts, updates and deltes the record in student table

in MySQL database using the stored procedure as shown in figure 3.

stmt = con.prepareCall(str);

stmt.setInt(1, 2002);

stmt.setString(2, "Mukesh");

stmt.executeUpdate();

System.out.println("Record Updated Successfully");

}

catch (SQLException se)

{

se.printStackTrace();

}

catch(Exception e)

{

System.out.println("In Updation:"+e);

}

}

public static void main(String args[])

{

MysqlConnCallStmt m=new MysqlConnCallStmt();

m.select();

m.ins();

m.select();

m.upd();

m.select();

m.del(2001);

m.select();

}

}

137

Figure 3: MYSQL Stored Procedure output

4.3 Transaction Management

Check your progress 1

1. Which of the following is efficient than a statement due to the pre-compilation of

SQL?

a. PreparedStatement

b. Statement

c. CallableStatement

d. None of these

2. Parameterized queries can be executed by?

a. ParameterizedStatement

b. PreparedStatement

c. CallableStatement and Parameterized Statement

d. All of these

3. Which interface facilitates to store images in the database?

a. PreparedStatement

b. ResultSetMetaData

c. DatabaseMetData

d. None of these

138

A transaction is a group of SQL statements that need to be either executed all successfully or

not at all. Failure to perform even one statement leads to an inconsistent and erroneous

database. Any database must satisfy the ACID properties (Atomicity, Consistency, Isolation,

and Durability) to guarantee regarding the successful execution of a database transaction.

1. Atomicity: It states that each transaction should be carried out as a whole part; if one part

of the transaction fails, then the whole transaction fails.

2. Consistency: It states that the database should be in a valid state before and after the

transaction is performed.

3. Isolation: It describes that each transaction must execute in complete isolation without

knowing the existence of other transactions.

4. Durability: It states that once the transaction is complete, the changes made by the

transaction are permanent.

Disabling Auto-Commit Mode

Initially, when a connection is created it is in auto-commit mode. This means that each

individual SQL statement is treated as a separate transaction and is automatically committed

after it is executed. The mechanism to allow two or more statements to be grouped into a

single transaction is to disable the auto-commit mode. This is shown in the following code,

where the conn is an active connection:

 conn.setAutoCommit(false);

Committing Transactions

After the auto-commit mode is disabled, no SQL statements are committed until the commit

method called explicitly. All statements executed after the previous call to the commit

method are included in the current transaction and committed together as a group. In JDBC

API, the Connection interface provides the setAutoCommit() , commit() and rollback()

methods to perform transaction management operation

The following steps are required to perform for transaction management in JDBC API.

 Disable auto-commit mode by passing the false value to the setAutoCommit()

method.

 Call the commit() method to commit the transaction if all statements are executed

successfully.

 Call the rollback() method to cancel the transaction if any one of statements fails.

Following example demonstrates the above steps.

139

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.PreparedStatement;

class JDBCTransaction

{ private static Connection conn;

public static void main(String args[])

{

try{

}

Class.forName("com.mysql.jdbc.Driver");

catch (Exception e)

{

System.err.println("Message: " + e.getMessage());

}

try

{

conn=

DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","");

// Disable auto commit mode

conn.setAutoCommit(false);

// Insert

PreparedStatement ps = conn.prepareStatement("insert into studen

values(?, ?, ?)");

ps.setInt(1, 2001);

ps.setString(2, "Manish");

ps.setInt(3, 98989);

ps.executeUpdate();

System.out.println("Record inserted Successfully");

140

// Update

PreparedStatement ps1 = conn.prepareStatement("update student se

sname = ? where sno = ?");

ps1.setInt(2, 2001);

ps1.setString(1, "Mukesh");

ps1.executeUpdate();

System.out.println("Record Updated Successfully");

// Commit insert and update statement

conn.commit();

System.out.println("Transaction is commited successfully.");

}

catch (SQLException e)

{

e.printStackTrace(System.err);

System.err.println("SQLState is: " + ((SQLException) e).getSQLState());

System.err.println("Error Code is: " + ((SQLException) e).getErrorCode());

System.err.println("Message is: " + e.getMessage());

System.err.println("Cause is: " + e.getCause());

if (conn != null)

{

try {

// Roll back transaction

System.out.println("Transaction is being rolled back.");

conn.rollback();

}

ex.printStackTrace();

}

}

}

}

}

catch (Exception ex)

{

Output:

141

Figure 4: Commit output

Now, suppose by mistake we makes a typing mistake in writing a “snamee” instead of

“sname” in update statement. So, after compilation when we execute the program it will

display output as shown in figure 5.

Figure 5: Rolled Back output

Check your progress 2

1. Transaction-related methods are supported in the Connection interface.

a. True

b. False

2. You can use setAutoCommit(false) to enable manual commits.

a. True

b. False

3. In Transaction Management the JDBC Transaction represents?

a. Single unit of work

b. Multiple unit of work

c. Both a & b

d. None of these

4. The ACID properties does not describes the transaction management well.

142

4.4 Batch Processing

Sometimes we need to run bulk queries of a similar type to a database. For example, loading

a bulk data from CSV files to the relational database table. As we know that Statement or

PreparedStatement are the options with us to execute queries. Apart from this JDBC provides

Batch Processing functionality through which we can execute the bulk of queries in one go

for a database. We can batch both SQL inserts, updates and deletes. It does not make any

sense to batch select statements. The Statement interface provides two methods to perform

batch operations:

 addBatch(String sql)

 executeBatch()

Statement.addBatch(String sql)

This method will add the given SQL command to the current list of commands for this

Statement object. The commands in this list will be executed as a batch by calling the method

executeBatch.

Statement.executeBatch()

This method will submit a batch of commands to the database for execution and if all

commands execute successfully it will return an array of update counts.

In the following example we have discussed batch processing for insert statement for the

Student database.

a. True

b. False

import java.sql.BatchUpdateException;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.Arrays;

class BatchprocExample

{

private static Connection conn;

143

public static void main(String args[])

{

try{

}

Class.forName("com.mysql.jdbc.Driver");

catch (Exception e)

{

System.err.println("Message: " + e.getMessage());

}

try

{

conn=

DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","");

Statement stmt = conn.createStatement();

conn.setAutoCommit(false);

stmt.addBatch("insert into student values(1,'Vraj',1254);");

stmt.addBatch("insert into student values(2,'Nirav',4587);");

stmt.addBatch("insert into student values(3,'Shrey',3698);");

stmt.addBatch("insert into student values(4,'Himanshu',4568);");

int[] updateCounts = stmt.executeBatch();

System.out.println(Arrays.toString(updateCounts));

conn.commit();

System.out.println("Records inserted Successfully");

}

catch (BatchUpdateException b)

{

System.err.println("BatchUpdateException");

System.err.println("SQLState is: " + b.getSQLState());

System.err.println("Message is: " + b.getMessage());

System.err.println("Vendor is: " + b.getErrorCode());

144

Output:

Figure 6: Batch Processing output

4.5 Let Us Sum Up

System.err.print("Update counts is: ");

}

catch (SQLException e)

{

e.printStackTrace(System.err);

System.err.println("SQLState is: " + ((SQLException) e).getSQLState());

System.err.println("Error Code is: " + ((SQLException) e).getErrorCode());

System.err.println("Message is: " + e.getMessage());

System.err.println("Cause is: " + e.getCause());

}

}

}

Check your progress 3

1. Which of the following interface provides the commit() and rollback()

methods?

a. Statement Interface

b. ResultSet Interface

c. Connection Interface

d. RowSet Interface

2. Which interfaces provide methods for batch processing in JDBC?

a. java.sql.Statement

b. java.sql.PreparedStatement

c. Both a & b

d. None of these

145

In this unit, we have discussed the importance and situation for the implementation and use of

Prepared Statement and callable statement. We also discussed the concept of transaction

management with reference to commit and rollback statement. In a transaction, if one

statement fails then all statements of the transaction gets cancelled or rolledback. If all

statements in a transaction are successfully executed, then only the transaction status changes

to successful means commit. A transaction always follows the principle of All or Nothing. At

last, we covered batch processing. It refers to running batch (set) jobs on a computer system.

Batch Processing allows to group related SQL statements into a group and submit them with

one call to the database system.

4.6 Answer for Check Your Progress

Check your progress 1: 1. a 2. b 3. a

Check your progress 2: 1. a 2. a 3. a 4. b

Check your progress 3: 1. c 2. c

4.7 Glossary

1. Prepared Statement: This statement is used to execute parameterized query.

2. Commit: This statement in SQL ends a transaction within a

relational database management system (RDBMS) and saves all changes and makes it visible

to other users.

3. ROLLBACK: This command causes all data changes to be discarded in the relational

database management. It restores a database to a previous state by cancelling a specific

transaction or set of transaction.

4.8 Assignment

1. Differentiate between Statement and PreparedStatement.

2. Explain the importance of CallableStatement with example.

3. Write a short note on commit and rollback with reference to transaction

management.

4.9 Activities

Analyse and differentiate important methods of PreparedStatements and CallableStatement.

4.10 Case Study

Analyse the various situations for the implementation of Batch Processing.

146

4.11 Further Readings

- https://www.tutorialspoint.com/jdbc/jdbc-batch-processing.htm

- https://docs.oracle.com/javase/tutorial/jdbc/overview/index.html

- https://javaee.github.io/tutorial/batch-processing001.html

- https://ecomputernotes.com/java/jdbc/jdbc-transaction

http://www.tutorialspoint.com/jdbc/jdbc-batch-processing.htm

BLOCK 3: Web Application, Servlets and Session

Management

Block Introduction

In this block, we will discuss in detail about the fundamental concept of

Java web application i.e. Servet along with its architecture and API. The student

will be demonstrated practically on how to configure and run Servlet in Apache

Tomcat 7.

The block focuses on client server environment, how they interact to

communicate, HTTP protocol to be used. Every web application has its own

implementation structure based on underlying language and server. Here, we have

also discussed the web application project structure to be deployed in apache

tomcat server. The student will also learn and understand about the basics of

configuring various parameters in web.xml file (deployment descriptor file) for

Servlets. The block also focuses on HTTP methods, request redirection and

various types of session handling mechanism to store the state of the application.

Block Objective

After learning this block, you will be able to:

 Define the concept and Architecture of the Servlet

 Configure, Compile and run Servlets in Apache Tomcat 7

 Configure deployment descriptor file

 Differentiate various HTTP methods

 Differentiate Servlet Config and Servlet Context

 Redirect the request to the specific servlet

 Maintain and work with Session handling mechanism

Block Structure

Unit 1: Basics of a Web Application

Unit 2: Servlets

Unit 3: Servlet Collaboration and Configuration

Unit 4: Session Management

Block Summary

In this block the Servlet API was discussed and focus was placed

specifically on Servlets. Servlets are the fundamental building block of server-side

Java programming. A Servlet is highly scalable and easily outperforms

traditional CGI with its simple life cycle i.e. initialization, service and destruction.

Commonly, the term Servlets actually refers to HTTP Servlets used on the World

Wide Web. Various HTTP methods are also discussed with specific emphasis on

GET and POST. The HttpServlet class is designed especially for simplifying

server-side Java support for HTTP. The students have been well explained on

compiling, configuring and executing Servlets in Apache Tomcat 7 practically.

Students have also been well explored by different Session tracking mechanisms

and their applications.

Block Assignment

Short Answer Questions:

1. Define Servlet and its life cycle.

2. Explain the Threading Issues in servlets.

3. Define servlet context.

4. Explain the functionality of request dispatcher.

5. Define Cookie.

6. Define HttpSession.

Long Answer Questions:

1. Discuss in detail about Architecture of the Servlet.

2. Explain the web application directory structure of Apache Tomcat 7.

3. Write a short note on configuring web.xml file for servlets.

4. Differentiate Http Get and Http Post method.

5. Write a program to explain state management using Http Session.

147

UNIT 1: Basics of a Web application

Unit Structure

1.0 Learning Objectives

1.1 Introduction

1.2 Web Application

1.3 Web Client and Web Server

1.4 HTTP Protocol

1.5 Web Container

1.6 Web application Project Structure

1.7 Let Us Sum Up

1.8 Answer for Check Your Progress

1.9 Glossary

1.10 Assignment

1.11 Activities

1.12 Case Study

1.13 Further Readings

148

1.0 Learning Objectives

After learning this unit, you will be:

 Able to define web application

 Able to discuss web client and web server

 Able to understand various protocols used in web application

 Able to understand tomcat server as container

1.1 Introduction

A web application is known as an application program which will be stored on a remote

server and delivered over the internet through a browser interface. Programmers develop

web applications for a various purpose and for different users including an organization or an

individual. Today we can finds various web applications on the internet including public

service application, online tax calculation or e-commerce applications. In this unit, you will

learn the basics of web application, various protocols used in web applications and the web

container which contains web applications.

1.2 Web Application

The World Wide Web (WWW or the Web) is an information space where all kinds of

documents and other web resources are available and accessed by Uniform Resource

Locators. These documents are interlinked by hypertext links and can be accessed through

Internet. World Wide Web was invented by english scientist Tim Berners-Lee in 1989. The

World Wide Web has been a heart core for the development of the information and is the

basic tool that people using to interact over the Internet. Web pages are basically a text

documents developed with the help of Hypertext Markup Language (HTML). These

documents contain formatted text, images, video, audio and other software components that

are rendered in the web browser as a logical group of multimedia content. Embedded

hyperlinks allow users to navigate between different web pages. Website is consisting of

multiple web pages with a common theme, a common domain name or both. The content on

the website is generally provided by the publisher or users contribute the content through

their interaction with the website. Websites can be categorized as informative, entertainment,

commercial, governmental or non-governmental organizational purposes.

A Uniform Resource Locator (URL) is the address of a document found on the WWW.

Browser fetches the URL and interprets the information in the URL in order to connect to the

http://www/

149

proper Internet server and to retrieve the desired document. Whenever a user clicks on a

hyperlink in a WWW document, it instructs browser to find the URL that is embedded within

the hyperlink.

The components in a URL are:

 Protocol://server's address/filename

The protocol may be Hypertext Protocol (http), File Transfer Protocol (ftp), Telnet Protocol

etc.

Another terminology with reference to Web Application access is Domain. Domains divide

World Wide Web sites into categories depending on the nature of their owner and they form

part of a website's address or uniform resource locator (URL).

In the internet address: https://www.google.com, the “.com” part is known as TLD (Top-

Level Domain). TLDs are basically classified into two categories: generic TLDs and country-

specific TLDs. Some examples of top-level domains are:

.com: commercial enterprises

.mil: military site

.org: organization site (non-profits, etc.)

.int: organizations established by international treaty .net-network

.biz: commercial and personal

.edu: educational site (universities, schools etc.)

.info: commercial and personal

.gov: government organizations

.us: United States

.ca: Canada

.uk: United Kingdom

.in: India

.au: Australia

Some common advantages of web applications include the following:

 Multiple users can access the same version of the application

 Users don't need to install the application at client side

 Cross platform compatibility can be achieved as users can access the application through

various platforms such as a desktop, laptop or mobile.

 Users can access the application through multiple browsers like Internet Explorer,

Firefox, Chrome and Safari.

http://www.google.com/

150

1.3 Web Client and Web Server

A web client is software program installed on the user’s device that accesses an internet to

send an HTTP request and processing the resulting HTTP response. A web client is a

software application that communicates to a web server using Hypertext Transfer Protocol

(HTTP). On the internet browser is the most commonly used web client. The most common

and widely used interface to the World Wide Web is a browser such as Chrome, Mozilla

Firefox, Netscape Navigator or Internet Explorer. The basic function of a web browser is to

render HTML, the language used to design or mark up webpages. Each time a browser loads

a web page, it processes the HTML containing text, links, references to images and other

Check your progress 1

1. WWW stands for .

a. Web World Wide

b. World Wide Web

c. World Web Wide

d. None of these

2. WWW is also known as .

a. W2

b. W4

c. W3

d. W1

3. is a network of interconnected hypertext documents that may be

accessed via the Internet.

a. World Wide Web

b. W3

c. Both a) and b)

d. None of these

4. A is a software program that is used to browse Web sites and serves as

a bridge between the user and the World Wide Web.

a. World Wide Web

b. Web Server

c. Web Browser

d. None of these

151

items like cascading style sheets and JavaScript functions. The browser processes all these

items and then renders them on the browser window.

All web browsers provide some standard features which aim to make internet browsing easier

for users. Generally, the web client should have some of the following features:

 Support for private or incognito browsing

 Support for VPN or Proxy support

 Support for Multiple tabs or windows

 Support for Back or Previous and Forward buttons

 Home, Refresh, Stop buttons

 Address bar for URL

 Maintain history and bookmark

As we all know that web clients cannot do much on their own. The data they display on

browsers screen is driven by web servers. So, Web servers are the computer that supplies

files or services to the requesting computer over the internet. So, web servers are systems

must be connected to the internet to serve the request and it store web pages. In addition to

this it sends requested data over the internet using HTTP. Simply, web servers are just like

collection of libraries for web pages responsible for storing, processing and delivering the

web resources to the client software.

The web server is responsible for storing files or documents and processing them. Today, all

modern web servers possess the following common features:

 Support standard protocols like HTTP, FTP, SMTP and SSH

 Can deliver static content as requested and dynamic content on demand

 Maintain logging data of client and requests

 Support virtual hosting

 Ability to authorize or deny website path traversal

 It must have support for large files and custom error pages

There are various types of server software available for delivering web content to end users.

Some of the popular web servers include Apache, Microsoft IIS (Internet Information

Services) and Nginx.

Web Servers and Web Clients Communication:

Whenever a user searches for a website, he / she type its URL in the browser. The browser

then translates the web address to its IP address. An IP address is a number that uniquely

identifies devices on the internet. This information is available and stored on DNS name

152

servers. The browser queries the DNS database for the IP address of users URL and retrieves

it. Once the IP address is traced or found, user’s web client sends an HTTP request to the

server’s IP address. Then the server will receive the request and sends an HTTP “200 OK”

message if the requested data is available. Then it sends back the requested data in small

chunks known as packets.

1.4 HTTP Protocol

HTTP means HyperText Transfer Protocol. HTTP is the underlying protocol used by the

World Wide Web and it defines how messages will be formatted and transmitted. It is an

application layer protocol. It is mainly used for the retrieval of information from websites

throughout the internet. It works on the top of TCP/IP protocol. HTTP uses a client-server

model where Web browser is the web client and it communicates with the web server which

is hosting the website. The request and response messages will carry data in the form of a

MIME like format.

The main features of the HTTP are:

 It is a connectionless protocol,

 It is media independent protocol,

 It is stateless protocol

Http Protocol uses two request-response methods between client and server such as GET and

POST to handle form submissions. GET Method requests data from a specified resource using

Check your progress 2

1. The computer provides services called .

a. Client

b. Server

c. Node

d. None of these

2. The computer uses the services which are provided from the server is called

.

a. Client

b. Server

c. Node

d. None of these

153

a given URI and POST Method request submits data to process to a specified resource to the

web server.

Figure 1: Client Server Communication through HTTP

Whenever a client makes a request for some information (or clicks on the hyperlink) to the

web server, the browser sends a request message to the HTTP server for the requested data.

After that the following process will takes place:

 The Connection will be opened between the client and the web server through the

TCP.

 Then after, the HTTP sends a request to the web server that mainly collects the

requested data.

 The response with the data is sent back to the client by HTTP

 At the end, HTTP closes the connection.

HTTPS: HTTPS stands for Hyper Text Transfer Protocol Secure. Basically, it is the secure

version of HTTP. Communications between the browser and website are encrypted by

Transport Layer Security (TLS) or its predecessor, Secure Sockets Layer (SSL).

Check your progress 3

1. On which port number does HTTP protocol works?

a. 23

b. 21

c. 25

d. 80

2. HTTP is a Stateless Protocol.

a. True

b. False

154

1.5 Web Container

In Java, a web container is the part of a web server that interacts with Java servlets. A web

container manages the life cycle of servlets object; it maps a URL to a particular servlet while

ensuring that the requester has relevant access-rights as per the deployment descriptor

(web.xml) file.

The web container implements the web component area of the java engineering structure. It

specifies a run time environment for various components like security, concurrency,

transaction and deployment.

Figure 2: Web Container

There are a various Servlet Containers like Jboss, Apache Tomcat, WebLogic. Apache

Tomcat is a open source Java servlet container that implements core java enterprise (now

Jakarta EE) specifications, which includs the Jakarta Servlet, Jakarta Server Pages,

and Jakarta WebSocket specifications. Initially, tomcat started as the reference

implementation for the original Java Servlet API and JavaServer Pages specification. Now, it

remains the most widely accepted Java application server, a well-tested and proved core

engine with good extensibility. You can download the latest version of Tomcat from the

following link:

 https://tomcat.apache.org/

After successfully installing and initialising Tomcat on your local machine, you can verify

whether the tomcat is running or not by entering the URL: http://localhost:8080.

The most significant benefit of using Tomcat are as follows:

 It is open-source

 It is incredibly lightweight

 It is highly flexible

 Today, it is one of the most stable platforms to build and run our applications.

155

 It provides us an extra level of security

 It is well documented

 It is one of the most widely used application servers

1.6 Web application Project Structure

The typical directory structure of a Tomcat installation consists of the following:

Figure 3: Tomcat Directory structure

Check your progress 4

1. Tomcat is an application server.

a. True

b. False

2. The default port for Tomcat is .

a. 8079

b. 8080

c. 8081

d.8088

3. Which of the following is not a Web Server.

a. Tornado

b. Jetty

c. Tomcat

d. BlueGriffon

156

bin: This directory contains startup, shutdown and other scripts and executables

lib: This directory contains required library in the form of jar files

conf: This directory contains XML files and related DTDs to configure Tomcat

logs: This directory contains Catalina and application logs

webapps: This directory contains the web applications

work: This directory contains temporary storage for files and directories

examples: This directory contains demo examples of servlet and jsp

common: This directory contains common classes that Catalina and web applications can use

In figure 3, we can see that BAOU is the Web application developed under the webapp

directory. So, all the web application goes inside the webapp directory. All the static files will

be stored in webapp directory but outside the WEB-INF directory. Tomcat hides the contents

of this directory from users for security reasons. This directory is the location where all Java

class files are stored in classes directory along with the web.xml file. This web.xml file

defines a number of parameters for the application including security information and the

mapping of user requests like URIs to servlets. Apart from classes and web.xml, this

directory contains another important directory called lib; which will have various jar files

required by tomcat to run the application.

1.7 Let Us Sum Up

Check your progress 5

1. The HTTP request line contains a method to request a documen

from the server.

a. GET

b. POST

c. COPY

d. None of these

2. What are the two types of connectors used in tomcat?

a. Http Connector and AJP connector

b. Http Connector and JSP connector

c. JSP Connector and AJP connector

d. None of these

157

In this unit we have learnt web application, its container and the role of WWW as a

pillar of client - server communication. The program user use to access the WWW is known

as a browser because it browses the WWW and requests these hypertext documents to the

web server. We also discussed the uniform resource locator (URL) and its structure.

Whenever a user enters a URL in browser (Web Client), Web Server fetches that request and

requested web page gets opened in browser. The Web Server uses a protocol called HTTP or

Hyper Text Transport Protocol to communicate with Web Client. The standard used for

creating hypertext documents for the WWW is Hyper Text Markup Language or HTML. We

have also discussed the importance of web container and how it helps the programmer to

deploy web application in container. We also discussed the tomcat server as a web container

and its directory hierarchy to deploy the web application. So, in this unit we learnt important

component of web application and container required to load java web application.

1.8 Answer for Check Your Progress

Check your progress 1: 1. b 2. c 3. c 4. c

Check your progress 2: 1. b 2. a

Check your progress 3: 1. d 2. a

Check your progress 4: 1. b 2. b 3. d

Check your progress 5: 1. a 2. a

1.9 Glossary

1. HTTP: It is the data communication protocol used to establish communication between

client and server.

2. Container: It is used in java for dynamically generating the web pages on the server side.

3. Content-Type: It is HTTP header that provides the description about what are you sending

to the browser.

4. URL: URL is the address of a document found on the WWW.

5. MIME: Multipurpose Internet Mail Extension (MIME) is a standard developed to expand

the limited capabilities of email by providing support for varying content types and multi-part

messages.

1.10 Assignment

1. Write short note on Client Server Environment.

2. Explain the role of HTTP in Client Server communication.

3. Explain the webapps directory of tomcat in detail.

http://www/

158

1.11 Activities

Collect and learn some information on Http Protocol.

1.12 Case Study

- Analyse various Web container functionality and specification.

1.13 Further Readings

- https://docs.oracle.com/javaee/5/tutorial/doc/bnafe.html

- https://www.javatpoint.com/what-is-tomcat

- https://tomcat.apache.org/download-10.cgi

- https://codegym.cc/groups/posts/302-part-6-servlet-containers

- https://ecomputernotes.com/servlet/intro/servlet-container

http://www.javatpoint.com/what-is-tomcat

159

UNIT 2: SERVLETS

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 Servlet Basics

2.3 Servlet API

2.4 Servlet Creation Tomcat

2.5 HTTP Methods

2.6 Differences between GET and POST

2.7 Let Us Sum Up

2.8 Answer for Check Your Progress

2.9 Glossary

2.10 Assignment

2.11 Activities

2.12 Case Study

2.13 Further Readings

160

2.0 Learning Objectives

After learning this Unit, you will be:

 Able to define servlet and its life cycle

 Able to discuss different types of servlet

 Able to write servlet application to service client request

 Able to use different HTTP methods

2.1 Introduction

Web application means a software system that provides an interface to the user through a web

browser. Examples of web applications include blogs, online e-commerce application, search

engines etc. Web applications can be simple consisting of either static web pages or dynamic

web pages and also interactive.

Initially, web server were using the CGI (Common Gateway Interface) to pass the request to

an external program and after executing the program the content was sent back to the client as

an output. Here in CGI, whenever the server receives a new request, it creates a new process

to run the CGI program; which lead to creation of a new process resulting in to requirement

of more server resources and time. Ultimately, it limits the number of requests that can be

served concurrently. CGI applications are platform dependent.

To overcome all these issues Servlet came in. Static web pages are stored in the file system

of web server usually displays the same information to all visitors. Whereas dynamic web

pages are constructed through a business logic (a program) that produce the HTML content.

This type of web application will provide personal information to the user and let them

personalize the information according to their preferences. In this unit, we will discuss the

Servlet as a web application development technique or language.

2.2 Servlet Basics

A Servlet is a java programming language used to extend the capabilities of servers that host

applications and accessed as a request - response programming structure. Although, Servlet is

a web component that is deployed on the web server to generate a dynamic web page based

on the request.

Java Servlet is a part of Java Enterprise Edition (Java EE).

The javax.servlet and javax.servlet.http package provides the various interfaces and classes

for writing Servlet program.

There are mainly two types of servlets:

1. Generic Servlet: Generic servlets extend javax.servlet.GenericServlet class. Generic

servlet is protocol independent servlet. It implements the Servlet and ServletConfig

161

interface. It may be directly extended by the servlet. Writing a servlet using

GenericServlet class is very easy. It has only init() and destroy() method of

ServletConfig interface in its life cycle. It implements the log method of

ServletContext interface.

2. Http Servlet: HTTP servlets extend javax.servlet.HttpServlet class. HttpServlet is

HTTP (Hyper Text Transfer Protocol) specific servlet. It provides an abstract class

HttpServlet to the programmers to extend and create their own HTTP specific

servlets.

Servlet Life Cycle

Every servlet has to pass through various life cycle stages. A servlet is basically a small Java

program that executes within a Web server. It receives requests from clients and returns the

responses back to the clients. The servlet life cycle is managed by the servlet container. The

whole life cycle of a servlet breaks up into 3 phases as shown in figure 1.

Figure 1. Servlet Lifecycle

Initialization stage: In this initial stage, a servlet is first loaded and initialized when it is

requested by the corresponding clients.

Service stage: After initialization, the servlet serves the clients request, implementing the

business logic of the web application. To serve the request, service methods invokes any one

of GET, POST, PUT, PATCH, DELETE, HEAD, OPTIONS, TRACE and CONNECT.

162

Destruction stage: After all the pending requests are processed and the servlets have been idle

for a specific amount of time, it is required to destroy them by the server and release all the

resources they are occupying.

The behavior of a servlet is depicted in javax.servlet.Servlet interface, where the following

methods are defined:

public void init(ServletConfig config) throws ServletException

This method is called once when the servlet is loaded into the servlet engine, before the

servlet process its first request. The init method has a ServletConfig parameter as an

argument. The servlet can read its initialization arguments through the ServletConfig object.

public void service(ServletRequest request, ServletResponse response) throws

ServletException, IOException

This method is invoked to process a request and service method invokes doGet, doPost,

doPut, doDelete etc. methods as and when required. So user have nothing to do with service()

method but user has to override either doGet() or doPost() method depending on the type of

request received from the client. This method can be called zero one or many times until the

servlet is unloaded. Once a servlet is loaded, it remains in the server’s memory as a single

object instance.

public void destroy():

This method is called only once thorough out the life cycle of servlet just before the servlet is

unloaded and taken out of service.

Check your progress 1

1. What is the lifecycle of a servlet?

a. Servlet class is loaded

b. Servlet instance is created

c. init, service, destroy method is invoked

d. All of these

2. What are the functions of Servlet container?

a. Lifecycle management

b. Communication support

c. Multithreading support

d. All of the above

3. The life cycle of a servlet is managed by

163

2.3 Servlet API

The Servlet API contains two important packages that provide all important classes and

interface.

These are as follows:

1. javax.servlet

2. javax.servlet.http

Classes and Interfaces of javax.servlet package:

Interfaces Classes

Servlet GenericServlet

ServletConfig HttpConstraintElement

ServletContext HttpMethodConstraintElement

ServletContextListner MultipartConfigElement

ServletRegistration ServletContextEvent

ServletRequest ServletInputStream

ServletRequestListner ServletOutputStream

ServletResponse ServletRequestAttributeEvent

ServletCookieConfig ServletRequestEvent

SingleThreadModel ServletRequestEvent

Filter ServletRequestWrapper

FilterConfig ServletResponseWrapper

FilterChain ServletSecurityElement

Classes and Interfaces of javax.servlet.http package:

Interfaces Classes

HttpServletRequest Cookie

HttpServletResponse HttpServlet

a. Servlet context

b. Servlet container

c. The supporting protocol

d. All of these

164

HttpSession HttpServletRequestWrapper

HttpSessionActivationListner HttpServletResponseWrapper

HttpSessionContext HttpSessionBindingEvent

HttpSessionAttributeListner HttpSessionEvent

HttpSessionIdListner HttpUtils

Servlet Interface

Servlet interface defines some methods that all the servlet classes must implement. This

method provides the following five methods. Out of these five methods, three methods are

Servlet life cycle methods.

Servlet Interface Methods

Following are the methods of Servlet Interface:

Methods Description

public void init(ServletConfig, config) It is one of the Servlet life cycle methods. It is

invoked by Servlet container after being initialized

by Servlet.

public void service (ServletRequest

req, ServletResponse res)

The service() method is called after successful

completion of init(). It is invoked by Servlet

container to respond to the requests coming from

the client.

public ServletConfig getServletConfig(

)

Returns a ServletConfig object, which contains

initialization and startup parameters for this

Servlet.

public String getServletInfo() Returns the information about the Servlet, such as

author, version, and copyright. This method

returns a string value.

public void destroy() Called by servlet container and it marks the end of

the life cycle of a servlet. It indicates that servlet

has been destroyed.

165

HttpServlet Class

The HttpServlet class extends the GenericServlet and implements Serializable interface. It is

an abstract class. The HttpServlet class reads the HTTP request from http, get, post, put,

delete etc. It calls one of the corresponding methods.

HttpServlet Class Methods

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 protected void doDelete(HttpServletRequest req, HttpServletResponse resp)

 protected void doHead(HttpServletRequest req, HttpServletResponse resp)

 protected void doPost(HttpServletRequest req, HttpServletResponse resp)

 protected void doPut(HttpServletRequest req, HttpServletResponse resp)

 protected void doTrace(HttpServletRequest req, HttpServletResponse resp)

 protected void service(HttpServletRequest req, HttpServletResponse resp)

GenericServlet Class

It is an abstract class that implements Servlet, ServletConfig and serializable interface. It

provides the implementation of all methods of these interfaces except the service method.

GenericServlet may be directly extended by Servlet. It provides simple versions of the life

cycle methods init() and destroy() methods.

GenericServlet Class Methods

Following are the important methods of GenericServlet Class:

Methods Description

public void destroy() Invoked by servlet container. It shows that the servlet is being

taken out of service.

public String

getInitParameter(String

name)

Returns a String containing the value of named parameter.

public String getServletInfo() Returns information related to Servlet like author, version etc.

public String

getServletName()

Returns the name of Servlet object.

public void init() It is a convenience method that can easily be overridden so

that we do not need to call super.init(config).

public void log(String msg) Writes the given message to a Servlet log file.

166

public abstract void

service(ServletRequest req,

ServletResponse res)

It is an abstract method, called by the servlet container to

allow the servlet to respond to a request.

2.4 Servlet Creation in Tomcat

To write a Servlet application we need to follow the certain steps. These steps are common

for all kinds of Web server. Apache Tomcat is an open source web server for testing servlets

and JSP technology. So, we will use Apache Tomcat to test all the Servlet and JSP

applications. Follow below mentioned steps to develop Servlet.

 Create directory structure for the application

 Create a Servlet

 Compile the Servlet

 Create the deployment descriptor of the application

 Start the server and deploy the application

Creating the Directory Structure

There is a unique directory structure that must be followed to create Servlet application. This

structure tells the developer regarding where to put different types of files.

Check your progress 2

1. Which packages represent interfaces and classes for servlet API?

a. javax.servlet

b. javax.servlet.http

c. Both a & b

d. None of these

2. Which type of ServletEngine is a server that includes built-in support for servlets?

a. Standalone ServletEngine

b. Embedded ServletEngine

c. Add-on ServletEngine

d. None of these

167

Figure 2. Directory Structure of Servlet Application

Create a Servlet

//ServletTest.java

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class ServletTest extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res) throw

ServletException, IOException

{

res.setContentType("text/html");

PrintWriter pw = res.getWriter();

pw.println("<html><body>");

pw.println("<h2>");

pw.println("You are welcome to BAOU, Ahmedabad");

pw.println("</h2>");

pw.println("</body></html>");

pw.close();

168

PrintWriter is an abstract class for writing to character streams. Methods to be implemented

are write(char[], int, int), flush() and close(). getWritet() method of HttpServletResponse

returns the PrintWriter. PrintWriter object will be used to send character text to the client.

Compile the Servlet program

Assuming the classpath and environment is setup properly.

Create a deployment descriptor

The deployment descriptor is an xml file. It is used to map URL to servlet class, defining error

page.

Web.xml

Save the web.xml file in <Tomcat-installation directoryt>/webapps/ROOT/WEB-INF/

 Now start the Tomcat server

}

}

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_9" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web

app_2_4.xsd">

<display-name>Servlet Example</display-name>

<servlet>

<servlet-name>BAOU</servlet-name>

<servlet-class>ServletTest</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>BAOU</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web

169

 Open browser and type

http://localhost:8080/

Click on /BAOU webApplication.

 It will execute our servlet and display following output in browser.

Figure 3. Tomcat output

2.5 HTTP Methods

HttpServlet class extends the GenericServlet class which is protocol-dependent. HttpServlet

class is in javax.servlet.http package. A subclass of HttpServlet must override a minimum one

method from the following methods:

Check your progress 3

1. method obtains a byte-based output stream that enables binary data

to be sent to the client.

a. sendRedirect()

b. getOutputStream()

c. getOutput()

d. getWirter()

2. method obtains a character-based output stream that enables text

data to be sent to the client.

a. getWirter()

b. getOutput()

c. getOutputStream()

d. sendRedirect()

170

1. public void service(ServletRequest req, ServletResponse res): This method will dispatch

the requests to the protected service method. Before dispatching request it converts the

request and response object into http type.

Syntax:

public void service(ServletRequest req, ServletResponse res) throws ServletException,

IOException

2. protected void service(HttpServletRequest req, HttpServletResponse res): This method

receives HTTP requests from the public service method and dispatches the request to the

doXXX methods defined in HTTP class.

Syntax:

protected void service(HttpServletRequest req, HttpServletResponse res) throws

ServletException, IOException

3. protected void doGet(HttpServletRequest req, HttpServletResponse res): This method is

called by web container for handling GET requests.

Syntax:

protected void doGet(HttpServletRequest req, HttpServletResponse res) throws

ServletException,IOException

4. protected void doPost(HttpServletRequest req, HttpServletResponse res): This method is

called by web container for handling POST requests.

Syntax:

protected void doPost(HttpServletRequest req, HttpServletResponse res) throws

ServletException,IOException

5. protected void doHead(HttpServletRequest req, HttpServletResponse res): This method is

called by web container for handling HEAD requests.

Syntax:

protected void doHead(HttpServletRequest req, HttpServletResponse res) throws

ServletException,IOException

6. protected void doOptions(HttpServletRequest req, HttpServletResponse res): This method

is called by web container for handling OPTIONS requests.

Syntax:

protected void doOptions(HttpServletRequest req, HttpServletResponse res) throws

ServletException,IOException

171

7. protected void doPut(HttpServletRequest req, HttpServletResponse res): This method is

called by web container for handling PUT requests.

Syntax:

protected void doPut(HttpServletRequest req, HttpServletResponse res) throws

ServletException,IOException

8. protected void doTrace(HttpServletRequest req, HttpServletResponse res): This method is

called by web container for handling TRACE requests.

Syntax:

protected void doTrace(HttpServletRequest req, HttpServletResponse res) throws

ServletException,IOException

9. protected void doDelete(HttpServletRequest req, HttpServletResponse res): This method is

called by web container for handling DELETE requests.

Syntax:

protected void doDelete(HttpServletRequest req, HttpServletResponse res) throws

ServletException,IOException

10. protected long getLastModified: This method returns the time the HttpServletRequest

object was last modified in milliseconds. It will return a negative number if time is unknown.

Syntax:

protected long getLastModified(HttpServletRequest req)

2.6 Differences between GET and POST

Check your progress 4

1. Which class can handle any type of request so that it is protocol-independent?

a. GenericServlet

b. HttpServle

c. Both a & b

d. None of these

2. What type of servlets use these methods doGet(), doPost(),doHead, doDelete()

and doTrace()?

a. HttpServlets

b. Genereic Servlets

c. All of these

d. None of these

172

The HTTP POST requests supply additional data from the client (browser) to the server in the

request body. While, GET requests include all required data in the URL. Forms in HTML can

use either of the method by specifying method=”POST” or method=”GET” in the <form>

element (“GET” is default). The method specified will determine how form data will be

submitted to the server. So, let’s understand the behaviour of both the methods through some

important features.

Security:

GET method is less secure compared to POST because data sent is part of the URL, So it’s

saved in browser history. POST method is a little safer than GET because the parameters are

not stored in browser history.

Re-submit behaviour:

GET requests are re-executed but may not be re-submitted to server if the HTML is stored in

the browser cache memory. While in POST, the browser usually alerts the user that data will

need to be re-submitted.

Form data type:

In GET, only ASCII characters allowed, while in POST No restrictions is there as binary data

is also allowed.

Usability:

GET method should not be used when sending password like or other sensitive information.

While, POST method can be used to send passwords or other sensitive information.

Visibility:

GET method is visible to everyone as it will be displayed in the browser's address bar and has

limits on the amount of information to send. While, POST method data are not displayed in

the URL.

Caching:

Get requests can be cached while POST requests can not be cached.

Check your progress 5

1. What type of servlets use doGet(), doPost(),doHead, doDelete(), doTrace() methods?

a. Genereic Servlets

b. HttpServlets

c. All of these

d. None of these

173

2.7 Let Us Sum Up

In this unit, we learnt that how a Servlet gets created and from which stages it passes

throughout its journey to serve the clients request. Apart from its life cycle, we also discussed

the steps to create a servlet and its deployment in the web server i.e Tomcat Server.

We also discussed various classes and interfaces of Servlet through its API. An HTTP Servlet

handles client requests through its service method which indirectly invokes required

getXXX() methods to serve the requests. At last, we discussed the important difference

between the GET and POST methods of HttpServlet.

2.8 Answer for Check Your Progress

Check your progress 1: 1. d 2. d 3. b

Check your progress 2: 1. c 2. a

Check your progress 3: 1. b 2. a

Check your progress 4: 1. a 2. a

Check your progress 5: 1. b 2. c 3. a

2.9 Glossary

1. HTTP: It is the data communication protocol used to establish communication between

client and server.

2. Deployment Descriptor: A web application's deployment descriptor is responsible to map

the http request with the specific servlets. Whenever the web server receives a request for the

2. Which HTTP Request method is non-idempotent?

a. GET

b. POST

c. Both a & b

d. None of the above

3. Which object is created by the web container at time of deploying the project?

a. ServletContext

b. ServletConfig

c. HttpServlet

d. None of these

174

application, it uses the deployment descriptor to map the URL of the request to the servlet

available to handle the request. The name of the deployment descriptor should be web.xml.

3. HTTP Requests: It is the request sent by the web client (browser) to a web server that

contains all sorts of resources.

4. CGI: The Common Gateway Interface (CGI) is one of the techniques used for generating

dynamic content in web applications.

2.10 Assignment

1. Write short note on different Http Methods.

2. Explain Servlet life cycle.

3. Differentiate between Get and Post method.

4. Discuss the importance of service() method of HttpServlet.

2.11 Activities

Write a servlet application to use serveltConfig and servletContext.

2.12 Case Study

- Anatomy of various HTTP methods.

- Analyse the HttpRequest and HttpResponse headers.

2.13 Further Readings

- https://docs.oracle.com/javaee/5/tutorial/doc/bnafe.html

- https://www.javatpoint.com/get-vs-post

- https://www.studytonight.com/servlet/

- https://www.scaler.com/topics/difference-between-get-and-post/

- https://www.w3schools.com/tags/ref_httpmethods.asp

http://www.javatpoint.com/get-vs-post
http://www.studytonight.com/servlet/
http://www.scaler.com/topics/difference-between-get-and-post/
http://www.w3schools.com/tags/ref_httpmethods.asp

175

UNIT 3: SERVLET COLLABORATION AND

CONFIGURATION

Unit Structure

3.0 Learning Objectives

3.1 Introduction

3.2 Servlet Config

3.3 Servlet Context

3.4 Request Dispatcher

3.5 Send Redirect

3.6 Working with Attributes

3.7 Let Us Sum Up

3.8 Answer for Check Your Progress

3.9 Glossary

3.10 Assignment

3.11 Activities

3.12 Case Study

3.13 Further Readings

176

3.0 Learning Objectives

After learning this Unit, you will be:

 Able to differentiate servletcontext and servletconfig

 Able to use servletcontext and servletconfig in applications

 Able to redirect request to other servlet

 Able to pass attributes to servlet in application

3.1 Introduction

As we have seen in previous unit that, a servlet allows us to provide a dynamic

programming in web application using Java. In this unit we are going to explore the

importance of ServletConfig and ServletContext to configure the servlet in an application. If

there are more than one servlet in a web application and they wants to communicate with

each other then we need a mechanism which allow us to do so. Request Dispatcher class will

allow us this functionality to make communication possible between different servlets in

web application. We have also discussed regarding setting and accessing attribute in servlet.

3.2 Servlet Config

ServletConfig is an interface contained in javax.servlet package as a part of servlet API. For

every Servlet class in web application, one ServletConfig object will be created by the web

container and this object will be passed as an argument to the public void init(ServletConfig

config) method of our Servlet class object by the web container. ServletConfig is an object

contains configuration information created by Servlet Container and will be passed to the

servlet during initialization. ServletConfig is meant for a specific servlet, means one can store

servlet-specific information in web.xml file. We can retrieve the initialization parameters

from web.xml through ServletConfig.getInitParam(“paramName”) method.

The below table shows various methods of the ServletConfig interface:

Methods Details

java.lang.String

getInitParameter(String name)

This method returns a String containing value of

specified name initialization parameter, or null if the

parameter does not exist.

java.util.Enumeration

getInitParameterNames()

This method returns

a java.util.Enumeration of String objects containing

177

 the servlet's initialization parameters names, or an

empty java.util.Enumeration if servlet has none.

ServletContext getServletContext() This method returns a reference to

the ServletContext in which the caller is executing.

java.lang.String getServletName() This method returns name of this servlet instance.

Example: In the following example we have passed the name and address in the web.xml

file. In the ServletTest file we are accessing those parameters using servletconfig object.

ServletTest.java

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class ServletTest extends HttpServlet

{

private ServletConfig config;

public void init(ServletConfig config)

{

this.config=config;

}

public void service(HttpServletRequest req, HttpServletResponse res)throws

ServletException, IOException

{

String username=config.getInitParameter("name");

String sarnamu=config.getInitParameter("address");

res.setContentType("text/html");

PrintWriter pw = res.getWriter();

pw.println("<html><body>");

pw.println("<h2>");

pw.println("You are welcome to BAOU, Ahmedabad");

pw.println("</h2>");

pw.println("<h2>" + "Servlet Example" + "</h2>");

pw.println("Welcome " + "" + username + " </br>");

pw.println("" + sarnamu + " </br>");

178

Web.xml:

Output:

pw.println("</body></html>");

pw.close();

}

}

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

id="WebApp_ID" version="4.0">

<display-name>Servlet Example</display-name>

<servlet>

<servlet-name>BAOU</servlet-name>

<servlet-class>ServletTest</servlet-class>

<init-param>

<param-name>name</param-name>

<param-value>ved</param-value>

</init-param>

<init-param>

<param-name>address</param-name>

<param-value>Gandhinagar</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>BAOU</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd

179

Figure 1: Use of ServletConfig to access initialization parameter

3.3 Servlet Context

ServletContext interface is used to provide the configuration information per web application

within the servlet container (like Tomcat, Glassfish). This interface can be used to provide

information for more than one servlet of web application from web.xml file. This context is

defined in javax.servlet.ServletContext interface in a Servlet API. Different servlets deployed

in the same webapp can share this information between them using the shared ServletContext

object.

For sharing this information from web.xml user need to pass it in <context-param> tag

having sub tags, <param-name> contains the name and <param-value> tag contains value.

This information can be retrieved through ServletConfig.getServletContext() method.

There are three ways to obtain an object of ServletContext interface:

Check your progress 1

1. Deployment Descriptor (DD) is used for initializing parameter.

a. True

b. False

2. When the Web Container initializes a servlet, it creates a object for

the servlet?

a. ServletConfig

b. ServletInit

c. ServletContext

d. None of these

180

Way 1:

 ServletConfig conf = getServletConfig();

 ServletContext context = conf.getServletContext();

In this approach, first obtain an object of ServletConfig interface and using it call

getServletContext() to get Context object.

Way 2:

In this approach, you need to just call getServletContext() method of GenericServlet class.

public class BAOU extends HttpServlet

{

public void doGet / doPost(HttpServletRequest req, HttpServletResponse res)

{

ServletContext context = getServletContext();

}

}

Way 3:

In this approach, you can get the object of ServletContext by making use of

HttpServletRequest object.

public class BAOU extends HttpServlet

{

public void doGet/doPost(HttpServletRequest req, HttpServletResponse res)

{

ServletContext context = req.getServletContext();

}

}

The table below shows the declarations of some of the more common methods in

the ServletContext interface we use on the site:

Methods Details

java.lang.Object

getAttribute(String name)

This method returns the attribute of specific

name.

java.util.Enumeration getAttributeNames() This method returns an

java.util.Enumeration containing all attribute

names available within this servlet context.

java.util.Enumeration

getInitParameterNames()

This method returns a java.util.Enumeration

of String objects containing the servlet

181

 context initialization parameters names, or an

empty java.util.Enumeration if servlet context

has none.

RequestDispatcher

getRequestDispatcher(String path)

This method returns a RequestDispatcher

object that works as a wrapper for the resource

located at specified path.

void removeAttribute(String name) With this method we can remove the attributes

of name using this method.

void setAttribute(String name,

Object object)

This method binds an object to a specified

name attribute in this servlet context.

Example: In the following example we have passed the Databse driver and databse name in

the context-param tag of web.xml file. In the ServletTest file we are accessing those

parameters using servletContext object.

ServletTest.java

import javax.servlet.http.*;

import javax.servlet.*;

import javax.servlet.ServletContext;

import java.io.*;

public class ServletTest extends HttpServlet

{

private ServletConfig config;

private ServletContext context;

public void init(ServletConfig config)

{

this.config=config;

}

public void doGet(HttpServletRequest req, HttpServletResponse res)throws

ServletException, IOException

{

context=req.getServletContext();

String dvr=context.getInitParameter("Driver");

String dbname=context.getInitParameter("Database");

res.setContentType("text/html");

PrintWriter pw = res.getWriter();

pw.println("<html><body>");

182

Web.xml:

pw.println("<h2>");

pw.println("You are welcome to BAOU, Ahmedabad");

pw.println("</h2>");

pw.println("<h2>" + "ServletContext Example" + "</h2>");

pw.println("Driver user: " + "" + dvr + " </br>");

pw.println("Database Name:" + "" + dbname + " </br>");

pw.println("</body></html>");

pw.close();

}

}

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

id="WebApp_ID" version="4.0">

<display-name>ServletContext Example</display-name>

<context-param>

<param-name>Driver</param-name>

<param-value>com.mysql.Driver</param-value>

</context-param>

<context-param>

<param-name>Database</param-name>

<param-value>MCA</param-value>

</context-param>

<servlet>

<servlet-name>BAOU</servlet-name>

<servlet-class>ServletTest</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>BAOU</servlet-name>

<url-pattern>/welcome</url-pattern>

http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd

183

Output:

Figure 2: Use of ServletContext to access initialization parameter

3.4 Request Dispatcher

RequestDispacther is an interface used to receive requests from the users and dispatches it to

other resource files like HTML file, Servlet file, JSP file etc. Servlet container is responsible

</servlet-mapping>

</web-app>

Check your progress 2

1. object is available to any servlet or JSPs that are part of the web

app and provides communication between servlets and JSPs.

a. Servlet

b. ServletConfig

c. ServletContext

d. HttpServletContext

2. Which object is created by the web container at time of deploying the project?

a. ServletConfig

b. ServletContext

c. Both a & b

d. None of these

184

to generate RequestDispatcher object. RequestDispacther provides forward() and include()

methods. These methods are used to call RequestDispacther.

This interface has following two methods:

 public void forward(ServletRequest request, ServletResponse response):

When this method is called then the request of current file is send forward to the

another resource such as servlet, JSP, HTML file etc. and the response of that file will

be provided by the server.

 public void include(ServletRequest request, ServletResponse response):

When this method is called then the content of current file such as HTML, Servlet,

JSP is included with the response.

Difference between forward() vs include() :

Include() Forward()

This method Includes another file in our

current file.

This method will forward the client request to the

forwarding page.

Control from client is temporary shifted . Control from client is permanently shifted to

forwarded file.

Once the control is returned to the client,

any activity such as calling another servlet

or another RequestDispatcher object can

be performed.

Once the control is returned to the client the output

can not be modified.

It is generally used to include other web

resource such as banner contents,

copyright information and so on.

It is generally used when further processing is

given to another web resource.

Speed of delivery to client is slower to

execute.

Speed of delivery to client is faster to execute.

Here, the client receives the response from

the same servlet which he has requested.

Here, the client actually receives the response from

a different servlet (which is not known to client)

It is used when static information is to be

included.

It is used when dynamic information is to be

included, where a Servlet has to play the role of a

controller to process the client input and deciding

the response to be returned.

185

Getting RequestDispatcher

RequestDispatcher can be obtained from a request object or from a servlet context.

 RequestDispatcher dispatcher = request.getRequestDispatcher(“ved.jsp”);

dispatcher.forward(request, response);

We can get the RequestDispatcher from the request object with the getRequestDispatcher()

method.

 RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher(“/ved.jsp”);

dispatcher.forward(request, response);

Here we get the RequestDispatcher from the servlet context. In this case, the path must begin

with a slash character.

Example:

In this example, we are using both the methods include and forward. Using include method,

we will be changing the content of current page and when we are ready to transfer the control

to the next page, we will use forward method. Here we are using index.html to get username

and password from the user, Validation Servlet will validate the password entered by the

user, if the user has entered username as “ved” and password “desai” then he will be

forwarded to WelcomeTest Servlet else the user will stay on the index.html page and an error

message will be displayed.

index.html:

Validation.java:

<html>

<form action="loginPage" method="post">

User Name:<input type="text" name="uname"/>

Password:<input type="password" name="upass"/>

<input type="submit" value="SUBMIT"/>

</form>

</html>

import java.io.*;

import java.io.*;

import javax.servlet.*;

186

WelcomeTest.java:

import javax.servlet.http.*;

public class Validation extends HttpServlet

{

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

String name=request.getParameter("uname");

String pass=request.getParameter("upass");

if(name.equals("ved") && pass.equals("desai"))

{

RequestDispatcher dis=request.getRequestDispatcher(“welcome”);

dis.forward(request, response);

}

else

{

pw.print(“User name or password is incorrect!”);

RequestDispatcher dis=request.getRequestDispatcher(“index.html”);

dis.include(request, response);

}

}

}

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class WelcomeTest extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

187

web.xml:

<web-app>

<display-name>BAOU-Ahmedabad</display-name>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

<servlet>

<servlet-name>Login</servlet-name>

<servlet-class>Validation</servlet-class>

</servlet>

<servlet>

<servlet-name>Welcome</servlet-name>

<servlet-class>WelcomeTest</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Login</servlet-name>

<url-pattern>/loginPage</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>Welcome</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

String name=request.getParameter("uname");

pw.print(“Hello”+name+"!");

pw.print(" Welcome to BAOU");

}

}

188

Output:

Entering wrong credentials:

Figure 3: Asking for credentials

Error screen:

Figure 4: Redirected to login page on wrong credentials

Welcome screen on entering correct user name and password:

Figure 5: Redirection to welcome page

Check your progress 3

1. Which method defined in the HttpServletRequest returns the object of

RequestDispatcher ?

a. getRequestDispatcher()

b. getDispatcher()

c. getRequest()

d. requestDispatcher()

2. Which statement is true about include() method of RequestDispatcher interface ?

a. forwards a request from a servlet to another resource on the server

189

3.5 Send Redirect

This method is exposed by HttpServletResponse interface. This method redirects the request

to completely other resource existing on different server or context. Its syntax is:

 public void sendRedirect(String path) throws java.io.IOException

It requires path as the url of the destination resource. The method is called using the

HttpServletResponse as shown below:

 response.sendRedirect(“https://www.spuvvn.edu/”);

When this method is called, the server sends back a HTTP status code of 302 (temporary

redirection) which forces the web browser creates a new HTTP GET request for the content

at the redirected path. It is generally used when user want to use an external resource

(available outside the server) to complete the processing of the request. This method should

be called before sending the response or otherwise it will throw an IllegalStateException.

The real time use case of this method is, when a customer makes a payment for items in e-

commerce website, the customer is always redirected to external merchant site for completing

the payment.

Following steps are the process flow of this method:

 First the client sends a HTTP request to some.jsp

 Then the server sends a HTTP response back with path: other.jsp in the header.

 Again the client sends a HTTP request to other.jsp (will be visible in the browser

address bar)

 At last, the server sends a HTTP response back with content of other.jsp

Example: In this example we are redirecting the user to the BAOU website.

b. includes the content of any resource inside the current servlet

c. includes the content of only servlet inside the current servlet

d. None

import javax.servlet.http.*;

import javax.servlet.*;

import javax.servlet.ServletContext;

import java.io.*;

public class ServletTest extends HttpServlet

{

http://www.spuvvn.edu/

190

3.6 Working with Attributes

An attribute is an object. Using this attribute user can share information in a web application.

Attribute provides functionality to Servlets to share information among themselves. The

servlet programmer can transmit information from one servlet to another servlet using

attributes. It is same as passing an object from one class to another class so that we can reuse

the same object.

We can SET and GET attributes from one of the following scopes:

 request

 session

 application

The syntax to SET and GET an Attribute in servlet is as follows:

public void doGet(HttpServletRequest req, HttpServletResponse res)throws

ServletException, IOException

{

res.setContentType("text/html;charset=UTF-8");

PrintWriter pw = res.getWriter();

res.sendRedirect("https://baou.edu.in/");

pw.println("<html><body>");

pw.println("You are redirected to BAOU, Ahmedabad");

pw.println("</body></html>");

pw.close();

}

}

Check your progress 4

Which method of HttpServletResponse is used to redirect an HTTP request to

another URL?

a. sendURL()

b. redirectURL()

c. sendRedirect()

d. getRequestDispatcher()

191

 public void setAttribute(String str, Object obj) method is used to SET an Attribute.

 public Object getAttribute(String str) method is used to GET an Attribute.

Example of Setting and getting an Attribute:

Output:

Figure 6: Set and Get Attribute in Servlet

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTest extends HttpServlet

{

protected void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

{

res.setContentType("text/html");

PrintWriter out = res.getWriter();

ServletContext context = getServletContext();

context.setAttribute("user","vinod");

String str = (String)context.getAttribute("user");

out.println("Welcome Mr.:" + str);

out.close();

}

}

Check your progress 5

From the following which types of objects can store attributes?

192

3.7 Let Us Sum Up

In this unit we have learnt that through ServletConfig and ServletContext we can configure

parameter for individual Servlet or for whole web application. RequestDispatcher is an

interface, which defines an object that can dispatch request to any resources on the server.

Basically, a forward request can be used if the operation can be safely repeated upon a

browser reload of the resulting web page; otherwise, redirect is preferable. Typically, if the

task require to perform an edit operation on the data store, then a redirect is preferable not a

forward method. If resources to be included in the same page then include method is

preferable. At last, we have discussed the setting and accessing attributes in the Servlet from a

particular scope.

3.8 Answer for Check Your Progress

Check your progress 1: 1. a 2. a

Check your progress 2: 1. c 2. b

Check your progress 3: 1. a 2. b

Check your progress 4: c

Check your progress 5: d

3.9 Glossary

1. ServletConfig: It is an object available one per Servlet component or class.

2. ServletContext: It is an object which is available one per web application.

3. Redirect: This terminology indicates that the response will be redirected to another

resources such as jsp, servlet, html file.

3.10 Assignment

1. What is difference between ServletConfig and ServletContext?

2. How do we call one servlet from another servlet?

a. ServletConfig

b. ServletResponse

c. RequestDispatcher

d. HttpServletRequest

193

3. How can we invoke another servlet in a different application?

4. What is difference between ServletResponse sendRedirect() and

RequestDispatcher forward() method?

3.11 Activities

- Explore different methods of ServletConfig and ServletContext and its working.

3.12 Case Study

- Anatomy of an RequestDispatcher forward() and include() methods.

3.13 Further Readings

- https://docs.oracle.com/javaee/5/tutorial/doc/bnafe.html

- https://www.geeksforgeeks.org/servletconfig-in-servlet/

- https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html

http://www.geeksforgeeks.org/servletconfig-in-servlet/

194

UNIT 4: SESSION MANAGEMENT

Unit Structure

4.0 Learning Objectives

4.1 Introduction

4.2 Session and its Importance

4.3 Information Passing between Client and Server

4.4 Cookies

4.5 URL Rewriting

4.6 Hidden Form Field

4.7 Http Session

4.8 Let Us Sum Up

4.9 Answer for Check Your Progress

4.10 Glossary

4.11 Assignment

4.12 Activities

4.13 Case Study

4.14 Further Readings

195

4.0 Learning Objectives

After learning this Unit, you will be:

 Able to define stateful and stateless object

 Able to define session

 Able to define cookie and HttpSession

 Able to write servlet to pass data between servlets

4.1 Introduction

HTTP protocol and Web Servers are stateless means that every request to a web server is a

new request to process and they can’t identify whether it’s coming from the same client or

not. But sometimes it becomes very important to know who the client is in the web

applications and process the request. Therefore, it is important to keep track of a client’s

current status to recognize them. The time interval in which the client and the server

communicate with each other is known as a session.

4.2 Session and its Importance

A session is a mechanism of keeping record of different activities across multiple requests

made by a single client. Today, Session management is a crucial feature of all modern web

applications which allows the server to track and remember its clients. By keeping a session

for each client, the Server can serve the client’s request in a much better way. It also helps in

safety, security and personalization of web applications. Today, all modern e-commerce

related web applications like Amazon, Flip Cart or e-bay manages session of every client to

store their activities since they logs in till logged out. We can have following benefits from

the application if session is maintained:

 It helps to maintain user status and data to all over the application.

 It can be easily implemented and allows for storing any kind of object like dataset.

 It allows for storing every client data separately.

 It is secure and transparent from user because session object is stored on the server.

Check your progress 1

Which of the following is wrong about session?

a. Default timeout value for session variable is 20 minutes

b. All users have same session variable

196

4.3 Information Passing between Client and Server

There are several ways through which we can pass information between client and server

through request and response. The Servlet application provides four unique session tracking

approaches. These are HttpSession, Cookies, Hidden Form Field and URL rewriting.

1. User Authentication: This is the very common way where we user can provide

authentication credentials from the login page and then we can pass the authentication

information between server and client to maintain the session. This is not very

effective method because it won’t work if the same user is logged in from different

browsers.

2. Hidden Form Field: We can create a unique hidden field in the HTML and when

user starts navigating, we can set its value unique to the user and keep track of the

session. This method can’t be used with links because it needs the form to be

submitted every time request is made from client to server with the hidden field. Also

it’s not secure because we can get the hidden field value from the HTML source and

use it to hack the session.

3. URL Rewriting: We can append a session identifier parameter with every request

and response to keep track of the session. This is very tedious because we need to

keep track of this parameter in every response and make sure it is not clashing with

other parameters. For example:

Original URL: http://server:port/baou/ServletName

Rewritten URL: http://server:port/baou/ServletName?sessionid=1234

This session tracking mechanism does not require any special support from the

browser. At the same time the drawback of this technique is, it is tedious to

implement for session tracking.

4. Cookies: Cookies are small piece of information that is sent by web server in

response header and gets stored in the browser cookies. When client make further

request, it adds the cookie to the request header and we can utilize it to keep track of

the session. A cookie has a name, a single value, expiration date and optional

attributes. A cookie's value can uniquely identify a client. Since a client can disable

cookies, this is not the most secure and fool-proof way to manage the session. We can

c. All users connect to the same session

d. New session cannot be created for a new user

197

maintain a session with cookies but if the client disables the cookies, then it won’t

work. If Cookies are disabled then we can fallback to URL rewriting to encode

Session id e.g. JSESSIOINID into the URL itself.

5. Session Management API: Session Management API is built on top of above

methods for session tracking. HttpSession object is used to store entire session with a

specific client. We can store, retrieve and remove attribute from HttpSession object.

Any servlet can have access to HttpSession object throughout the getSession() method

of the HttpServletRequestobject.

Some of the major disadvantages of all the above methods are:

 Most of the time we don’t want to only track the session, we have to store some data

into the session that we can use in future requests. This will require a lot of effort if

we try to implement this.

All the above methods are not complete in themselves; all of them will not work in a

particular scenario. So we need a solution that can utilize these methods of session tracking to

provide session management in all cases.

4.4 Cookies

Cookies are small piece of information on the client computer to store the client state. It is a

key value pair of information, sent by the server to the browser and then browser sends back

this identifier to the server with every subsequent request. There are two types of cookies:

Check your progress 2

1. Which of the below is not a session tracking method?

a. URL rewriting

b. History

c. Cookies

d. SSL sessions

2. Which of the following is stored at client side?

a. URL rewriting

b. Hidden form fields

c. SSL sessions

d. Cookies

198

1. Session or Non-persistent cookies are temporary cookies and are deleted as soon as

user closes the browser. They are valid for a single session only. The persistent

cookies are live till the browser is open.

2. Persistent cookies have expiry time. They remains valid for multiple sessions. They

are not deleted when user closes the browser. They are stored in primary memory of

the system. They are invalidated when user logs out or signs out.

Whenever a cookie is associated with the client request, server will associate it with

subsequent user session otherwise server will create a new unique cookie and send it back

with response. Following is the simple code to create a cookie with name “baou” and a value:

 Cookie cukie = new Cookie(“baou”, “value”);

The servlet sends cookies to the browser using following code:

 HttpServletResponse.addCookie(javax.servlet.http.Cookie)

The major disadvantage of this approach is that whenever a user disables cookie support in a

browser in that case server will not be able to identify the user.

Constructors:

Constructor Details

Cookie() It constructs the cookie with default property.

Cookie(String name, String value) It constructs a cookie with specified name and value.

Methods of Cookie:

Following are the methods supported by Cookie class:

Methods Details

public String getName() It returns the name of the cookies.

public String getPath() It returns the path of the server to which the browser

returns the cookie.

public String getValue() It returns the value of the cookie.

public int getMaxAge() It returns the maximum age limit to the cookie in

seconds.

public void setMaxAge(int expiry) It sets the maximum age of the cookies in seconds.

public void setValue(String

newValue)

It allocates a new value to a cookie after the cookie is

created.

199

Deleting the Cookies

We can delete the cookies from the browser by setting the cookie expiry time to 0 or -1.

Example

 cookie.setMaxAge(0);

Example: In the following example we are storing and retrieving cookie data.

index.jsp

ServletTest.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTest extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res)

{

try{

res.setContentType("text/html");

PrintWriter out = res.getWriter();

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Servlet Example</title>

</head>

<body>

<h1>Welcome to BAOU</h1>

<h1>Cookie Example</h1>

<form action="login">

User Name:<input type="text" name="user"/></br>

Password: <input type="password" name="Pass"/></br>

<input type="submit" value="Login"/>

</form>

</body>

</html>

200

ServletTest1.java

String name = req.getParameter("user");

String password = req.getParameter("Pass");

out.print("Hello : "+name);

out.print("</br>");

out.print("Your Password is : "+password);

//Creating two cookies

Cookie c1=new Cookie("userName",name);

Cookie c2=new Cookie("Password",password);

//Adding the cookies to response header

res.addCookie(c1);

res.addCookie(c2);

out.print("</br>");

out.print("Show Details");

out.close();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTest1 extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res)

{

try{

res.setContentType("text/html");

201

Web.xml

PrintWriter out = res.getWriter();

//Reading cookies

Cookie c[]=req.getCookies();

//Displaying User name value from cookie

out.print("Name : "+c[1].getValue());

//Displaying user password value from cookie

out.print("</br>");

out.print("Password is: "+c[2].getValue());

out.close();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

id="WebApp_ID" version="4.0">

<display-name>Cookie Example</display-name>

<welcome-file-list>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

<servlet>

<servlet-name>Servlet1</servlet-name>

<servlet-class>ServletTest</servlet-class>

http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd

202

Output:

Figure 1: Welcome page

</servlet>

<servlet-mapping>

<servlet-name>Servlet1</servlet-name>

<url-pattern>/login</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>Servlet2</servlet-name>

<servlet-class>ServletTest1</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Servlet2</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

203

Figure 2: After Clicking Login

Figure 3: After Clicking Show Details

4.5 URL Rewriting

URL Rewriting is an approach in which a session (unique) identifier gets appended with each

request URL so that the server can identify the user session.

For example if we apply URL rewriting on,

 http://localhost:8080/BAOU/ServletTest, it will become something like

 http://localhost:8080/ BAOU/ServletTest?jSessionId=hello

Check your progress 3

1. SessionIDs are stored in cookies.

a. True

b. False

c. May be

d. Can't say

2. What is the maximum size of cookie?

a. 40 KB

b. 4 MB

c. 4 bytes

d. 4 KB

204

where jSessionId=hello is the attached session identifier and value hello will be used by

server to identify the user session.

Query string is a name-value pair separated using an equal = sign, a name-value pair is

separated from another name-value pair using the ampersand (&) sign. Query string always

should start from Question mark (?). In a Servlet code, we have to use getParameter()

and getParameterNames() methods to retrieve a name value pair.

There are several advantages of URL rewriting like,

 It is browser independent and even if user’s browser does not support cookie or in

case user has disabled cookies, this approach will work.

 Here, we need not required to submit extra hidden parameter.

At the same time, this approach has some disadvantages like we need to regenerate every url

to append session identifier and this need to keep track of this identifier until the process gets

completed.

Example: In the following example we are storing, forwarding and retrieving user data

through URL Rewriting to manage session.

index.jsp

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Servlet Example</title>

</head>

<body>

<h1>Welcome to BAOU</h1>

<h3>URL Rewriting Example</h3>

<form method="post" action="validate">

Name:<input type="text" name="user" />

Password:<input type="text" name="pass" >

<input type="submit" value="submit">

</form>

</body>

</html>

205

ServletTest.java

ServletTest1.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTest1 extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res)

{

try{

res.setContentType("text/html");

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTest extends HttpServlet

{

public void doPost(HttpServletRequest req, HttpServletResponse res)

{

try{

String name = req.getParameter("user");

String pass = req.getParameter("pass");

if(pass.equals("ved"))

{

res.sendRedirect("Second?user_name="+ name);

}

}

catch(Exception e)

{

System.out.println(e);

}

}

}

206

Web.xml

PrintWriter out = res.getWriter();

String user = req.getParameter("user_name");

out.println("Welcome "+user);

}

catch(Exception e)

{

System.out.println(e);

}

}

}

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

id="WebApp_ID" version="4.0">

<display-name>URL Rewriting Example</display-name>

<welcome-file-list>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

<servlet>

<servlet-name>First</servlet-name>

<servlet-class>ServletTest</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>First</servlet-name>

<url-pattern>/validate</url-pattern>

</servlet-mapping>

<servlet>

http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd

207

Output:

Figure 1: Welcome page

After Clicking submit button, request goes to first servlet, which passes the user data by

invoking second servlet through sendRedirect method of HttpResponse and displays user data

as shown below:

Figure 2: Final output with URL Rewriting

<servlet-name>Second</servlet-name>

<servlet-class>ServletTest1</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Second</servlet-name>

<url-pattern>/Second</url-pattern>

</servlet-mapping>

</web-app>

Check your progress 4

Which of the following leads to high network traffic?

a. URL rewriting

208

4.6 Hidden Form Field

In Hidden Form Field, user has to write the response such a way that user has to move values

explicitly between client and server. In Hidden Form Field a hidden (invisible) text field is

used for maintaining the state of the user. We store the information in the hidden field and get

it from another servlet code. This approach is better if we have to submit form in all the web

pages and we do not want to depend on the browser. For example

 <input type=”hidden” name=”sessionId” value=”unique value”/>

is a hidden form field which will not be displayed to the user but its value will be send to the

server and can be retrieved using request.getParameter(“sessionId”) in servlet code.

We cannot use this approach for static pages like HTML hence HTML pages cannot

participate in session tracking.

Example: In the following example we are retrieving user data from user in index.jsp and

then passes user data in the first servlet (ServletTest). In the first servlet (ServletTest) we

again retrieves user data passed from index.jsp and then passes the same user data in second

servlet (ServletTest1) using hidden form field. In the second servlet (ServletTest1) we

retrieves it and prints it.

index.jsp

b. Hidden form fields

c. SSL sessions

d. Cookies

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Servlet Example</title>

</head>

<body>

<h1>Welcome to BAOU</h1>

<h3>Hidden Form Field Example</h3>

<form method="post" action="First">

Name:<input type="text" name="user" />

City:<input type="text" name="pass" >

<input type="submit" value="submit">

209

ServletTest.java

ServletTest1.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

</form>

</body>

</html>

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTest extends HttpServlet

{

public void doPost(HttpServletRequest req, HttpServletResponse res)

{

try{

res.setContentType("text/html");

PrintWriter out = res.getWriter();

String user = req.getParameter("user");

out.println("<h1>Welcome to BAOU</h1>");

out.println("<h3>Please click on Submit Button </h3>");

out.println("<form action='Second'>");

out.println("<input type='hidden' name='user' value='"+user+"'>");

out.println("<input type='submit' value='submit' >");

out.println("</form>");

}

catch(Exception e)

{

System.out.println(e);

}

}

}

210

Web.xml

public class ServletTest1 extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res)

{

try{

res.setContentType("text/html");

PrintWriter out = res.getWriter();

String user = req.getParameter("user");

out.println("Welcome: "+user);

out.close();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

id="WebApp_ID" version="4.0">

<display-name>Hidden Form Field Example</display-name>

<welcome-file-list>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

<servlet>

<servlet-name>First</servlet-name>

<servlet-class>ServletTest</servlet-class>

http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd

211

Output:

Figure 1: Welcome page

</servlet>

<servlet-mapping>

<servlet-name>First</servlet-name>

<url-pattern>/First</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>Second</servlet-name>

<servlet-class>ServletTest1</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Second</servlet-name>

<url-pattern>/Second</url-pattern>

</servlet-mapping>

</web-app>

212

Figure 2: First Servlet with Submit Button

Figure 3: Second Servlet prints user data

4.7 Http Session

Servlets provide a convenient session-tracking mechanism using the HttpSession API.

Session tracking in servlet using HttpSession is very simple and it has following steps:

Get the associated session object (HttpSession) using request.getSession(). Then to get the

particular value out of session object, use getAttribute(String) method on the HttpSession

object. To store any data in a session use setAttribute(key,object) method on a session object.

To remove the session data use removeAttribute(key) method to discard a object with a given

Check your progress 5

Which method creates unique fields in the HTML which are not shown to the

user?

a. User authentication

b. URL writing

c. HTML Hidden field

d. HTML invisible field

213

key. To invalidate the session use invalidate() method on session object. This method is used

to logout the logged in user.

Example: In the following example we are storing and retrieving users data through

HttpSession in servlet1 and servlet2.

index.jsp

ServletTest.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTest extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res)

{

try{

res.setContentType("text/html");

PrintWriter out = res.getWriter();

String name = req.getParameter("user");

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Servlet Example</title>

</head>

<body>

<h1>Welcome to BAOU</h1>

<h1> HttpSession Example</h1>

<form action="login">

User Name:<input type="text" name="user"/></br>

Password: <input type="password" name="Pass"/></br>

<input type="submit" value="Login"/>

</form>

</body>

</html>

214

ServletTest1.java

String password = req.getParameter("Pass");

out.print("Hello : "+name);

out.print("</br>");

out.print("Your Password is : "+password);

//Creating Session

HttpSession ses=req.getSession();

ses.setAttribute("uname",name);

ses.setAttribute("upass",password);

out.print("
Show Details");

out.close();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTest1 extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res)

{

try{

res.setContentType("text/html");

PrintWriter out = res.getWriter();

HttpSession ses=req.getSession(false);

String Name=(String)ses.getAttribute("uname");

String Pass=(String)ses.getAttribute("upass");

out.print("Name is: "+Name + "</br>");

215

Web.xml

out.print(" Password is: "+Pass);

out.close();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

id="WebApp_ID" version="4.0">

<display-name>HttpSession Example</display-name>

<welcome-file-list>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

<servlet>

<servlet-name>Servlet1</servlet-name>

<servlet-class>ServletTest</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Servlet1</servlet-name>

<url-pattern>/login</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>Servlet2</servlet-name>

<servlet-class>ServletTest1</servlet-class>

</servlet>

http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd

216

Output:

Figure 1: Welcome page

Figure 2: Servlet1 with user and password

Figure 3: Servlet2 displays user and password

<servlet-mapping>

<servlet-name>Servlet2</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

217

4.8 Let Us Sum Up

In this unit we have learnt how each client requests and communication can be stored

and retrieved later using session tracking mechanism. HTTP is a stateless protocol. All

requests and responses are independent. Sometimes we need to manage and store client's

activity across multiple requests. This is possible by creating a session. Session Management

is a mechanism used by the Web container to store session data for a particular user. Here we

have discussed four different techniques used by Servlet application for session management

like Cookies, Hidden form field, URL Rewriting and HttpSession. Each one is best in

particular situation and having their pros and cons.

4.9 Answer for Check Your Progress

Check your progress 1: a

Check your progress 2: 1. b 2. d

Check your progress 3: 1. a 2. d

Check your progress 4: a

Check your progress 5: c

Check your progress 6: b

4.10 Glossary

1. Stateless: A stateless refers each communication as a separate event, unrelated to other

communications of the same type.

2. Stateful: A stateful on the other hand refers each communication as a part of a broader

sequence and responds differently to the same inputs based on the history.

4.11 Assignment

1. Define Session management and its importance.

2. Discuss Cookie with its session mechanism process.

3. Discuss advantages and disadvantages of URL rewriting and hidden form field.

4. Differentiate between Cookie and HttpSession.

Check your progress 6

How you can destroy the session in Servlet?

a. kill()

b. invalidate()

c. destroy()

d. None of these

218

4.12 Activities

- Develop a small e-commerce application to maintain user’s activity.

4.13 Case Study

- Explore different web application (especially e-commerce related) and analyse security

implementation in those application.

4.14 Further Readings

- https://docs.oracle.com/javaee/5/tutorial/doc/bnafe.html

- https://www.w3schools.blog/hidden-field-in-servlet

- https://www.digitalocean.com/community/tutorials/java-session-management-

servlet-httpsession-url-rewriting

http://www.w3schools.blog/hidden-field-in-servlet
http://www.digitalocean.com/community/tutorials/java-session-management-

BLOCK 4: JSP, Expression Language and JSTL

Block Introduction

In this block, the student will learn and understand about the basics of JSP.

JSP is a server side technology used to create a dynamic webpage using java. It

can be considered an extension of Servlet API. Both HTML and JSP tags are

present in Java Server Pages. JSP provides various implicit objects allowing

developer to use different directives and action elements to make the application

more productive.

We have also discussed JSP Expression Language. It is mainly used to

eliminate java code from the JSP. This expression statements increase JSP code

readability and reusability. At last, JSTL is discussed. It is a library containing

several tags that will remove JSP scriptlet code from a JSP page by providing

already implemented common functionalities. It supports common, structural

tasks like iteration and conditions, tags for manipulating XML documents,

internationalization tags and SQL tags.

Block Objective

After learning this block, you will be able to:

 Define JSP Architecture and Life Cycle

 Use JSP Declaration, Scriptlet and Expression Tags

 Use JSP Implicit Objects

 Use JSP Directives

 Use JSP Action Elements

 Use Different EL Implicit Objects

 Use EL Operators

 Use JSTL Core, Function, Formatting, XML and SQL Tags

 Define Servlet and JSP Relationship

Block Structure

Unit 1: basics of JSP

Unit 2: JSP Objects and Directives

Unit 3: JSP Expression Language (EL)

Unit 4: JSTL

Block Summary

JavaServer Pages helps in developing web pages having include dynamic

content. In this block we have discussed the importance of JSP in web application.

Various building blocks to write a JSP page were discussed. JSP allows the

developer to insert Java code into the HTML pages by using special JSP tags. It

can be either HTML or XML with JSP actions and commands. Then various

Implicit Objects were also discussed. We have also discussed JSP EL which

provides a platform to easily access application data stored in JavaBeans

components. JSP EL allows us to create expressions both arithmetic and logical.

At last we have also focused on JSTL. JSTL allows us to program our JSP pages

using various tags, rather than the scriptlet code. With JSTL we can do nearly

everything that regular JSP scriptlet code can do, it leads to faster development of

JSP pages, code re-usability.

Block Assignment

Short Answer Questions:

1. How does JSP Initialization take place?

2. What is the JSP Scriptlet?

3. What are some of the advantages of using JSP?

4. List some important JSP Action Tags.

5. What is JSP Expression Language (EL)?

6. What is JSTL?

Long Answer Questions:

1. Discuss different Life-Cycle methods of JSP.

2. Explain various scope values for <jsp.useBean> tag.

3. Discuss various Implicit Objects of JSP.

4. Discuss various Implicit Objects used in the Expression Language.

5. Explain various JSTL Core tags.

219

UNIT 1: BASICS OF JSP

Unit Structure

1.0 Learning Objectives

1.1 Introduction

1.2 JSP Life Cycle

1.3 JSP Architecture

1.4 JSP Declaration Tag

1.5 JSP Scriptlet Tag

1.6 JSP Expression Tag

1.7 Let Us Sum Up

1.8 Answer for Check Your Progress

1.9 Glossary

1.10 Assignment

1.11 Activities

1.12 Further Readings

220

1.0 Learning Objectives

After learning this Unit, you will be:

 Define JSP Architecture

 Write JSP Syntax

 Define JSP Life Cycle

 Write JSP Scriptlet Tag

 Write JSP Expression Tag

 Write JSP Declaration Tag

1.1 Introduction

In the early days of Servlets, Servlet was not that much popular among ASP programmers as

ASP supports tag-based programming that servlet doesn’t support. For any programmer to

work with Servlet strong knowledge of java is required. It is not an easy task for an ASP

programmer to learn Java. Servlet suffers from following limitations:

 It is not preferable for non-java programmers as strong knowledge of Java is required

to work with Servlets.

 To write a HTML code in the Servlet program is a complex and error-prone process.

 Programmer mixes up presentation logic (HTML) and business logic (Java code).

 Any changes made in the Servlet file will be reflected only after recompilation of the

Servlet file leading to overloading of Web Application.

 Doesn’t provide implicit object. So, you need to write additional code to access those

objects.

 ServletConfig in web.xml is mandatory.

To solve these problems Sun Microsystems has given a tag-based technology called JSP

having all the features of Servlet. So, any programmer can use JSP without having strong

knowledge of Java or Servlet. JSP is a server side technology used to create a dynamic

webpage using java as the programming language. It is a specification from Sun

Microsystems. It can be considered an extension of Servlet API because it offers more

functionality than servlet. The JSP pages are simpler to manage than Servlet as we can

221

differentiate design and development. Both HTML and JSP tags are present in Java Server

Pages.

JSP technology was developed to simplify the process of creating pages by separating web

presentations from business logic. JSP is a collection of HTML tags and JSP tags along with

Java code. Every JSP page can be placed in the root folder or WEB-INF directory of web

application. The JSP placed in the root folder is a public resource and this resource can access

by the client directly. The JSP placed inside WEB-INF directory is a private resource, which

can’t access directly by the client. Client can only access this resource using public URL

defined inside the web.xml file.

JSP pages are opposite of Servlets. In Servlet we can add add HTML code inside Java code,

while in JSP we can add Java code inside HTML using JSP tags. In JSP, we can easily

separate Presentation and Business logic. Web page designer can design and update JSP

pages by creating the presentation layer and java programmer can write server side complex

code independently without concerning the web design. Both the Presentation and Business

layers will easily communicate over HTTP requests. The file extension of the source file of

a JSP page will be .jsp. The extension of the source file of a JSP page fragment will be .jspf.

1.2 JSP Life Cycle

JSP provides tag-based programming so it is very easy to learn and code. JSP life cycle can

be defined as the process from its creation till the destruction which is somewhat similar to a

Servlet life cycle except an additional step required to compile a JSP into Servlet. Generally

life cycle of a JSP page consists of 6 stages as discussed below.

1. Page Translation

When a browser sends an HTTP request to the web server the web server recognizes that the

HTTP request is for a JSP page and forwards it to a JSP engine. Then the JSP engine loads

the JSP page from disk and translates it into a Servlet form. In this translation all template

text is translated to println() statements and all JSP elements are translated to Java code. In

this phase, the JSP container validates the correctness of the JSP pages and tag files.

Example: Let's check what happens when a code of Test.jsp file is translated into Servlet.

The code inside the <% %> is JSP code.

<html>

<head>

<title>Welcome to Babasaheb Ambedkar Open University</title>

</head>

222

The above JSP page (Test.jsp) will be translated in to following Servlet file.

As it is done automatically by the web container you are not required to worry about how a

JSP page will be converted to a Servlet.

2. Page Compilation

The JSP engine compiles the created Servlet file into a java Servlet class file.

3. Class Loading

The java Servlet class file that was compiled from the JSP source will be loaded into the

container.

4. Initialization

<%

float PI = 3.14;

%>

<body>

The Value of PI is:

<% out.println(PI); %>

</body>

</html>

public class Test_jsp extends HttpServlet

{

public void _jspService(HttpServletRequest request, HttpServletResponse response)

throws IOException,ServletException

{

PrintWriter out = response.getWriter();

response.setContenType(“text/html”);

out.write(“<html><body>”);

float PI = 3.14;

out.write(“The Value of PI is:”);

out.print(PI);

out.write(“</body></html>”);

}

}

223

When a container loads a JSP, it invokes the jspInit() method before servicing any requests. If

we need to perform JSP-specific initialization we have to override the jspInit() method as

shown below:

public void jspInit()

{ // Initialization code... }

Typically initialization is performed only once.

5. Execution

Whenever a browser requests a JSP file and the page has been loaded and initialized, the JSP

engine invokes the _jspService() method in the JSP. The _jspService() method takes an

HttpServletRequest and an HttpServletResponse objects as its arguments as shown below:

void _jspService(HttpServletRequest request, HttpServletResponse response)

{ // Service handling code... }

The _jspService() method is invoked once per request and is responsible for generating the

response for that request.

6. jspDestroy()

The jspDestroy() method is equivalent to the destroy method for Servlets. We have to

override jspDestroy method whenever we need to perform any cleanup, such as releasing

database connections or closing open files. The jspDestroy() method has the following

signature:

public void jspDestroy()

{ // Your cleanup code goes here. }

Check your progress 1

1. Which technology do we mix our business logic with the presentation logic?

a. HTML

b. JSP

c. Servlet

d. None of these

2. JSPs eventually are compiled into Java Servlets. You can do as much with JSPs as

you can do with Java Servlets.

a. True

b. False

3. A JSP page consists of which tags?

224

1.3 JSP Architecture

The architecture of JSP is generally based on the Model-View-Controller (MVC) pattern. It

separates the page's business logic from its presentation. This allows the programmer to

easily change the page's look and feel without modifying the underlying business logic.

Generally the JSP architecture consists of three main components:

1. The client requests for the JSP page.

2. The JSP engine receives request and processes the JSP page and generates a response.

3. The JSP container manages the lifecycle of JSP pages.

Figure 1: JSP Architecture

JSP pages are typically used to display data from a database. The JSP engine reads the JSP

and translates it into a Servlet. The Servlet then manipulates the database and retrieves the

data. The data is then transferred to the JSP page, which displays it to the user.

The Servlet file is cached and reused for subsequent requests when JSP is first accessed. This

enables the JSP page to be displayed quickly, without having to access the database each

time.

The JSP architecture is flexible enough and can be customized whenever required to meet the

needs of our application. For example, JSP pages can used to create RSS feeds or generate

PDF files.

a. HTML tags

b. JSP tags

c. Both a & b

d. None of these

4. For What purpose JSP is used?

a. Server-side dynamic content generation

b. Client Side language for validation

c. Web page designing

d. None of these

225

1.4 JSP Declaration Tag

This tag is often used to provide all the java declarations like variable declarations, method

definitions, classes declarations and so on. You can declare a static member, an instance

variable and methods inside the declaration tag. You can use declarations to declare one or

more variables and methods at the category level of the compiled Servlet. The most

significant fact is that they are declared at a class level rather than in the body of the page.

The variables and methods can then be employed by Java code within the remainder of the

page. While writing a declaration during a JSP pages please remember these rules:

 Must end the declaration with a semicolon.

 <% int v=10;%>

 You can directly use the variables or methods that are declared in packages imported

by the page directive, without declaring them in a declaration element.

 You can declare any number of variables or methods within one declaration element,

as long as you end each declaration with a semicolon. The declaration must be valid in

the Java programming language.

Syntax of declaration tag:

<%! Declaration %>

Example:

<%@ page language=”java” contentType=”text/html; charset=ISO-8859-1”

pageEncoding=”ISO-8859-1”%>

<html>

<head>

<title>Declaration Tag Example</title>

</head>

Check your progress 2

Which technology do we mix our business logic with the presentation logic?

a. JSP

b. Servlet

c. Both a & b

d. None of these

226

In above example we have declared four variables inside declaration tag.

1.5 JSP Scriptlet Tag

Scriptlets are java code enclosed within <% and %> tags. This scripting element is used to

provide a block of java code. It can contain any number of statements, variable or method

declarations, or expressions that are valid within the page scripting language. JSP container

transfers statements in _jspservice() method while generating servlet from jsp. For each

<body>

<h3>Welcome to BAOU</h3>

<h3>Use of Declaration Tag in JSP</h3>

<%! int d = 5, v = 8, n = 10, ans=0; %>

<%

ans = d + v + n;

out.println(“The summation of numbers is:” + ans);

%>

</body>

</html>

Check your progress 3

1. Which of the following scripting elements can be used to declare methods and fields?

a. scriptlet tag

b. expression tag

c. declaration tag

d. All of these

2. In JSP, java code can be written inside the jsp page using

a. scriptlet tag

b. expression tag

c. declaration tag

d. JSP include directive

227

request of the client, service method of the JSP gets called so the code inside the Scriptlet

block executes for every request. Within a scriptlet element, you can do the following:

 Declare variables or methods for later use.

 Write valid expressions in the page scripting language.

 Use any implicit objects or any object declared with the element.

 All text, HTML tags, JSP elements must be written outside the scriptlet.

Syntax of Scriptlet tag:

<% java code %>

In below example, Scriptlet tags enclose java code.

<%@ page language=”java” contentType=”text/html; charset=ISO-8859-1”

pageEncoding=”ISO-8859-1”%>

<html>

<head>

<title>Scriptlets Example</title>

</head>

<body>

<h3>Welcome to BAOU</h3>

<h3>Demonstrating the use of Scriptlets in JSP</h3>

<%

int a = 5;

int b = 7;

int c = 9;

out.println(“a is: “ + a + “
” + “b is:” + b + “
” + “c is:” + c + “
”);

out.println(“Multiplication of numbers is: “ + a * b * c + “
”);

out.println(“Addition of numbers is:” + (a + b + c));

%>

</body>

</html>

Check your progress 4

The code placed in scriptlet goes to method.

a. _jspDestroy()

b. _jspInit()

228

1.6 JSP Expression Tag

This scripting element is often used to evaluate only java expression and display that

expression value onto the client browser. The expression element contains a Java expression

that returns a value. This value is then written back to the HTML page. The Expression tag

can contain any kind of expression that is valid and consistent with the Java Language

Specification. This includes variables, method calls or any object that contains a toString()

method. It evaluates the given expression and displays generated results on the browser

windows. It allows you to create expressions like arithmetic and logical. It facilitates produces

scriptless JSP pages. Simply, anything that returns a result is called an expression.

Syntax of expression tag:

<%= expression %>

Example:

Above example displays current time using expression.

The following example demonstrates the use of all the JSP page building blocks in single JSP

file named buildBlock.jsp.

<%@ page language=”java” contentType=”text/html; charset=ISO-8859-1”

c. _jspService(_,_)

d. None of these

<%@ page language=”java” contentType=”text/html; charset=ISO-8859-1”

pageEncoding=”ISO-8859-1”%>

<html>

<body>

Current Time is:

<%=java.util.Calendar.getInstance().getTime()%>

</body>

</html>

Check your progress 5

JSP Expression tag is used for displaying output on browser.

a. True

b. False

229

1.7 Let Us Sum Up

In this unit we learnt that JSP is a server side technology which helps the programmer to

create a webpage dynamically using java as the programming language.

To understand the JSP, we have first discussed JSP page execution through its life cycle and

also explored JSP architecture. We have also discussed the building blocks of a JSP page.

The first is declaration section; which allows us to declare variables and methods. A scriptlet

section contains any number of java language statements, variable or method declarations, or

expressions which is valid in page scripting language. An expression section allows us to

send the response back to the browser.

pageEncoding=”ISO-8859-1”%>

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>

<title> Welcome to Babasaheb Ambedkar Open University </title>

</head>

<body>

<h3> JSP example with Declaration, Scriplet, Comments and Expressions <h3>

<%-- This is a comment syntax to be used in JSP page --%>

<%-- following statements are Scriptlets --%>

<% out.println(“BAOU is located at Ahmedabad”); %>

<% out.println(“The number is “); %>

<%-- following statement is a declaration block --%>

<%! int value1 = 15; int value2 = 15; %>

<%-- following statements are expression blocks --%>

<%= value1* value2 %>

Today's date: <%= (new java.util.Date()).toLocaleString()%>

</body>

</html>

http://www.w3.org/TR/html4/loose.dtd

230

1.8 Answer for Check Your Progress

Progress 1: 1. c 2. a 3. c 4. a

Progress 2: b

Progress 3: 1. c 2. a

Progress 4: c

Progress 5: a

1.9 Glossary

Servlet: A servlet is a Java programming language that is used to design and deploy dynamic

web pages using the Java Programming Language to extend the capabilities of servers that

host applications accessed by means of a request-response programming model.

JSP: A server technology used to create a dynamic web page in java.

Presentation: A Graphical View presented to the user

JSP Engine: JSP engine is a container to process JSP pages. The JSP container is responsible

for intercepting requests for JSP pages.

1.10 Assignment

1. Define JSP. Explain the JSP Architecture?

2. List the benefits of JSP.

3. Explain JSP page life cycle in detail.

4. Explain different JSP building blocks.

1.11 Activities

Understand and implement various JSP life cycle stages.

1.12 Further Readings

- https://www.tutorialspoint.com/jsp/jsp_overview.htm

- https://www.edureka.co/blog/jsp-in-java/

- https://www.studytonight.com/jsp/introduction-to-jsp.php

- https://dotnettutorials.net/lesson/jsp-architecture/

http://www.tutorialspoint.com/jsp/jsp_overview.htm
http://www.edureka.co/blog/jsp-in-java/
http://www.studytonight.com/jsp/introduction-to-jsp.php

231

UNIT 2: JSP OBJECTS AND DIRECTIVES

Unit Structure

2.0 Learning Objectives

2.1 Introduction

2.2 JSP Implicit Objects

2.3 JSP Directives

2.4 JSP Action Elements

2.5 Let Us Sum Up

2.6 Answer for Check Your Progress

2.7 Glossary

2.8 Assignment

2.9 Activities

2.10 Case Study

2.11 Further Readings

232

2.0 Learning Objectives

After learning this Unit, you will be able to:

 Use JSP Implicit Objects

 Use JSP Directives

 Use JSP action elements

 Able to write JSP application

2.1 Introduction

JSP allows us to build powerful web application with the help of various implicit objects. It

also allows developer to use different directives and action elements to make the application

more robust and efficient.

In Java 2 Standard applications, it is a basic requirement to display data on the command

prompt. To perform this operation every time programmer has to prepare PrintStream object

with command prompt location as destination location:

Printstream print = new PrintStream(“C:\Program files\…..\cmd.exe”);

print.println(“Welcome to BAOU”);

In core Java applications, the PrintStream object is a routine requirement so that java

technology has provided that PrintStream object as a predefined object in the form of out

variable in System class.

public static final PrintStream out;

Similarly, in web applications, all the web developers may require some kind of objects to

display some messages. To get these objects you have to write some lines of java code. To

fulfil such objects requirement in web applications, JSP technology has provided them as

predefined functionality in the form of Implicit Objects. This functionality reduces the burden

of writing code from the developers.

2.2 JSP Implicit Objects

Implicit Objects are a group of Java objects which the JSP Container makes available to

programmer on each JSP page. These objects can be accessed as built-in variables through

scripting elements. It can also be accessed programmatically by using JavaBeans and

Servlets. These objects are created automatically for programmer within the service method.

233

These objects are parsed by the container and plugged into the generated servlet code. They

are only available within the JSP service method and not in any other declaration.

There are total 9 implicit objects available in JSP.

1. Request:

It is an instance of javax.servlet.http.HttpServletRequest object. This implicit object is used to

process the request sent by the client.

Example:

index.html

user.jsp

<!DOCTYPE HTML><html lang="en">

<head>

<meta charset="UTF-8">

<title>Welcome to BAOU</title>

</head>

<body bgcolor="cyan">

<form action="user.jsp">

<input type="text" name="uname">

<input type="submit" value="Click">

</form>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Use of implicit request object</title>

</head>

<body bgcolor="cyan">

<%

String name = request.getParameter("uname");

234

In the above example, we are printing the name of the user with a welcome message. Here we

are receiving the input from the user on the index.html page and displaying it in the user.jsp

page using implicit request object.

2. Response:

This object is the HttpServletResponse object associated with the response to the client. This

implicit object is used to process the request and send the response back to the client. This

object is by default available to scriptlets and expressions to get response-related data and to

set response-related information. If a JSP page wants to redirect a request from one server to

another server then it can use the response object and its sendRedirect method.

Example:

index.html

user.jsp

<!DOCTYPE HTML><html lang="en">

<head>

<meta charset="UTF-8">

<title>Welcome to BAOU</title>

</head>

<body bgcolor="cyan">

<form action="user.jsp">

<input type="text" name="uname">

<input type="submit" value="Click">

</form>

</body>

</html>

out.print("Welcome" + " " + name + " "+ "to BAOU");

%>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

235

In the above example, we are redirecting the response to BAOU website. Here we are

receiving the input from the user on the index.html page and redirecting it on the user.jsp

page using implicit response object.

3. PageContext:

The PageContext object encapsulates the environment of a single request for the current JSP

page. It is used for accessing page, request, application and session attributes. It belongs to

package java.servlet.jsp.PageContext. In JSP applications, with the help of pageContext

object we can perform some operations with the attributes in the JSP scopes page, request,

session and application like adding an attribute, removing an attribute, getting an attribute

and finding an attribute.

Example:

index.html

<!DOCTYPE HTML><html lang="en">

<head>

<meta charset="UTF-8">

<title>Welcome to BAOU</title>

</head>

<body bgcolor="cyan">

<form action="user.jsp">

<input type="text" name="uname">

<input type="submit" value="Click">

<html>

<head>

<meta charset="ISO-8859-1">

<title> Use of implicit response object </title>

</head>

<body bgcolor="cyan">

<%

response.sendRedirect("https://baou.edu.in/");

%>

</body>

</html>

236

user.jsp

pagecontext.jsp

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Use of implicit pageContext object</title>

</head>

<body bgcolor="cyan">

<%

</form>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Use of implicit pageContext object</title>

</head>

<body bgcolor="cyan">

<%

String name = request.getParameter("uname");

out.print("Welcome" + " " + name + " "+ "to BAOU");

pageContext.setAttribute("User", name, PageContext.SESSION_SCOPE);

%>

pageContext User Parameter Access

</body>

</html>

237

In the above example, in index.html we are taking user input and storing user’s data using

Pagecontext with the session scope in welcome.jsp page. With this we can access user details

till the user’s session is active. Then we are retrieving the stored attributes using the

getAttribute method of Pagecontext object in the pagecontext.jsp page.

4. Session:

HttpSession object is associated with the request. A session is an implicit object which is

created for HttpSession class to store and access data. By default, session reference is

available to scriptlet and expression tags. These tags can access session related data and they

can manage session scope attributes. By using session reference these tags can delete session

objects by calling session.invalidate() and these reference tags can set session timeout.

Example:

index.html

user.jsp

<!DOCTYPE HTML><html lang="en">

<head>

<meta charset="UTF-8">

<title>Welcome to BAOU</title>

</head>

<body bgcolor="cyan">

<form action="user.jsp">

<input type="text" name="uname">

<input type="submit" value="Click">

</form>

</body>

</html>

String name = (String) pageContext.getAttribute("User", PageContext.SESSION_SCOPE);

out.print("Welcome " + name);

%>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

238

sessiondata.jsp

In the above example, the index.html page displays a text box along with a submit button

which would transfer the control to user.jsp page which will display the text user has entered.

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Use of implicit Session object</title>

</head>

<body bgcolor="cyan">

<%

String name = request.getParameter("uname");

out.print("Welcome" + " " + name + " "+ "to BAOU");

session.setAttribute("User", name);

%>

Access Session data

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Use of implicit Session object</title>

</head>

<body bgcolor="cyan">

<%

String name = (String) session.getAttribute("User");

out.print("Welcome " + name);

%>

</body>

</html>

239

It then stores the same variable in the session object so that it can be retrieved on any JSP

page until the session becomes inactive. Later on in sessiondata.jsp we are retrieving the

variable’s value from the session object and displaying it.

5. Application:

This is the ServletContext object associated with the application context. It is an implicit

object created for ServletContext class and used to access the data of the ServletContext

object. This is used for getting application-wide initialization parameters and to maintain

useful data across whole JSP application. The ServletContext object for the web application

belongs to the package Javax.servlet.ServletContext.

Example:

index.html

user.jsp

<!DOCTYPE HTML><html lang="en">

<head>

<meta charset="UTF-8">

<title>Welcome to BAOU</title>

</head>

<body bgcolor="cyan">

<form action="user.jsp">

<input type="text" name="uname">

<input type="submit" value="Click">

</form>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Use of implicit Application object</title>

</head>

<body bgcolor="cyan">

240

web.xml

In the above example, we are using the application object in the user.jsp file to get the

initialization parameter “University” from the web.xml configuration file.

<%

String name = request.getParameter("uname");

out.print("Welcome" + " " + name + " "+ "to BAOU" +"</br>");

String unvname = application.getInitParameter("University");

out.print("University name is: " + unvname);

%>

</body>

</html>

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

id="WebApp_ID" version="4.0">

<servlet>

<servlet-name>welcome</servlet-name>

<jsp-file>/user.jsp</jsp-file>

</servlet>

<servlet-mapping>

<servlet-name>welcome</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

<context-param>

<param-name>University</param-name>

<param-value>Babasaheb Ambedkar Open University</param-value>

</context-param>

</web-app>

http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd

241

6. Config:

This is the ServletConfig object associated with the servlet for current JSP page. This is

mainly used for accessing configuration information such as servlet context, servlet name,

configuration parameters etc. It belongs to package Javax.servlet.ServletConfig.

Example:

index.jsp

web.xml

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Use of implicit config object</title>

</head>

<body bgcolor="cyan">

<%

String sname = config.getServletName();

out.print("Servlet Name is: " + sname);

%>

</body>

</html>

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

id="WebApp_ID" version="4.0">

<servlet>

<servlet-name>HelloServlet</servlet-name>

<jsp-file>/index.jsp</jsp-file>

</servlet>

<servlet-mapping>

http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd

242

In the above example, we are calling the getServletName() method of implicit config object

for retrieving the servlet name from web.xml file.

7. Out:

This is the PrintWriter object used to send output to the client. The reference of out points

JSPWriter subclass object. With the help of out object, we can print HTML tags and plain

text data on the browser. It belongs to package javax.servlet.jsp.jspwriter.

Example:

index.jsp

In the above example, we are using the print method of OUT object for displaying messages

to the client.

8. Page:

The page variable is equivalent to this variable of Java programming language. It is used to

call the methods defined by the translated servlet class. The reference of page object points

current JSP page object.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Use of implicit Out object</title>

</head>

<body bgcolor="cyan">

<%

out.print("Today is:" + java.util.Calendar.getInstance().getTime()); %>

</body>

</html>

<servlet-name>HelloServlet</servlet-name>

<url-pattern>/index</url-pattern>

</servlet-mapping>

</web-app>

243

Example:

index.jsp

9. Exception:

The exception object represents the Throwable object that was thrown by some other JSP

page.

Example:

index.html

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Use of implicit Page object</title>

</head>

<body bgcolor="cyan">

<%

String pageName = page.toString();

out.println("Page Name is:" + pageName);

%>

</body>

</html>

<!DOCTYPE HTML><html lang="en">

<head>

<meta charset="UTF-8">

<title>Welcome to BAOU</title>

</head>

<body bgcolor="cyan">

<form action="divide.jsp">

Enter First Value:<input type="text" name="first" />

Enter Second Value:<input type="text" name="second" />

<input type="submit" value="Click" />

244

divide.jsp

exception.jsp

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Welcome to BAOU</title>

</head>

<body bgcolor="cyan">

</form>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Welcome to BAOU</title>

</head>

<body bgcolor="cyan">

<%@ page errorPage="exception.jsp"%>

<%

int num1 = Integer.parseInt(request.getParameter("first"));

int num2 = Integer.parseInt(request.getParameter("second"));

int result = num1 / num2;

out.print("Answer is: " + result);

%>

</body>

</html>

245

web.xml

<%@ page isErrorPage="true"%>

Raised the Exception:

<%=exception%>

</br>

Please varify the entered data.

</body>

</html>

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

id="WebApp_ID" version="4.0">

<servlet>

<servlet-name>welcome</servlet-name>

<jsp-file>/index.html</jsp-file>

</servlet>

<servlet-mapping>

<servlet-name>welcome</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

Check your progress 1

1. The object is created by the web container for each jsp page.

a. application

b. config

c. exception

d. All of these

2. Which of the following is not implicit object in jsp?

a. cookies

b. session

http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd

246

2.3 JSP Directives

Directives are basically used to configure the code that is generated by the container during a

translation phase. JSP directives are JSP components that are used to give the instructions to

the JSP compiler. JSP Directives can be used to define present JSP page behaviour to include

the target resource content into the current JSP page. All the JSP directives are going to be

resolved at the time of translating the JSP page in to the Servlet.

Syntax:

<%@Directive_name[attribute-list]%>

There are three types of Directives in JSP:

1. Page Directives

2. Include Directives

3. Taglib Directives

1. Page Directive

The page directives define the properties for the entire JSP page by using its different

attributes and setting values of these attributes as per requirements. It is helpful to provide

global information for the JSP page. Basically, Page directives are used to give the

instructions to the JSP compiler like which package to import, which language we are writing

etc. So, basically Page directives are used for supplying compile-time information to the

container for generating a servlet.

Syntax: <%@ page attributeName=”values” %>

Attributes of JSP page directive are listed in following table:

Attribute Description

import The import attribute is used to import class, interface or all the members

of a package.

Example: <%@ page import="java.util.Date" %>

c. page

d. pageContext

3. This object can be used to get initialization parameter from configuration file

(web.xml)

a. config

b. application

c. session

d. request

247

info This attribute gives an instruction to JSP compiler to override

getServletInfo() method to return the info about JSP file.

Example:

<%@ page info=”Welcome to BAOU”%>

ContentType This attribute is a page directive attribute that gives instructions to the JSP

compiler like what type of content we are sending to the client. We can

specify the content type like text/xml, text/css, etc.

Example:

<%@ page contectType=”text/xml”%>

buffer This attribute is page directive attribute which give an instruction to JSP

compiler what is the buffer size can be taken by out implicit variable of

JspWriter (by default 8KB).

Example:

<%@ page buffer=”5kb”%>

autoflush By default auto flush is true but if we want to control flushing on our own

requirement we have to use this autoflush page directive.

Example:

<%@ page autoFlush=”false”%>

isErrorPage isErrorPage is a directive attribute that is used to create the error page.

Example:

<%@ page isErrorPage=”true”%>

errorPage If our JSP file containing any exception and if we want to display any

error page then we can use this errorPage page directive attribute.

Example:

<%@ page errorPage=”error.jsp”%>

session This attribute is a page directive attribute using which we can make the

session enable or disable for a particular JSP page. By default, the session

is true but if we want to make it false or true, we can use this session

attribute.

Example:

<%@ page session=”false”%>

extends This attribute is a page directive attribute using which we can create our

JSP servlet program by extending from any other class.

Example:

<%@ page extends=”BAOU.Java.ServletDirective”%>

248

isThreadSafe By default, every JSP page is true but if we want to make whether it is

thread-safe or not, we have to mention isThreadSafe page directive

attribute either to be true or false. True indicates multithreading and false

indicates that the servlet should implement SingleThreadModel.

Example:

<%@ page isThreadSafe=”true”%>

pageEncoding This attribute is a page directive attribute using which we can specify what

charset we are using in JSP.

Example:

<%@ pageEncoding=”UTF-8″%>

isELIgnored This attribute is a page directive attribute used to define ENUM data type.

Its default value is false.

Example:

<%@ page isELIgnored=”false”%>

2. Include Directive

JSP include directive is used to include one file to the another file. The included file can be

HTML, JSP, text files etc. This directive tells the container to merge the content of other

external files with the present JSP during the translation phase. Include directives can be used

anywhere in your JSP page.

Syntax:

<%@ include file=”—”%>

Example:

Index.jsp

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ include file="header.jsp" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

Check your progress 2

The pageContext object can be used to set or get or remove attributes from which of

the following scopes

a. request

b. session

c. application

d. All of these

http://www.w3.org/TR/html4/loose.dtd

249

header.jsp

In the above example, we used include directive where we are including the file header.jsp

into the main file(index.jsp) and gets the output of both main file and included file.

3. Taglib Directive

JSP taglib directive is used to define the tag library with “taglib” as the prefix. The main

purpose of Taglib Directives is to make available user-defined tag library into the present JSP

pages.

Syntax:

<%@ taglib uri=”—” prefix=”—”%>

Here, “uri” attribute is a unique identifier in tag library descriptor and “prefix” attribute is a

tag name.

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>JSP Page Directive Usage</title>

</head>

<body>

<a>This is the main JSP file

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

</head>

<body>

<a>Included file in index.jsp :

<%

for(int i=1;i<5; i++)

{

out.println(i);

}

%>

</body>

</html>

http://www.w3.org/TR/html4/loose.dtd

250

Example:

index.jsp

In the above example “taglib” is defined with attributes uri=”http://java.sun.com/jsp/jstl/core”

and prefix="c"%>. Here, “c” is the custom tag defined and it can be used anywhere.

2.4 JSP Action Elements

JSP actions use the construct in XML syntax to control the behavior of the servlet engine.

Through JSP actions a file can be added into another page dynamically, a bean component

can be reused, a user can be forwarded from one page to another page. Unlike directives,

actions are re-evaluated each time the JSP page is accessed. These tags are used to remove or

eliminate scriptlet code from our JSP page because scriplet code are technically not

recommended nowadays. It's considered to be bad practice to put java code directly inside

your JSP page.

JSP standard tags starts with the jsp: prefix. There are many JSP Standard Action tags.

Syntax:

<jsp:action_name attribute=”value” />

The following are some JSP Standard Action Tags available:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Example of JSP Taglib Directives</title>

</head>

<body>

<c:out value="${'Welcome to BAOU!!!'}" />

</body>

</html>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/core
http://www.w3.org/TR/html4/loose.dtd

251

Action Tag Description

jsp:forward It forwards the request to another page.

Syntax of <jsp:forward> :

<jsp:forward page=“URL of the another static, JSP OR Servlet page“ />

jsp:useBean It instantiates a JavaBean. This action is useful when we want to use Beans in

a JSP page, through this tag we can easily invoke a bean.

Syntax of <jsp:useBean>:

<jsp: useBean id=“unique_name_of_bean“

class=“package_name.class_name“ />

Once Bean class is instantiated using above statement, we have to use

jsp:setProperty and jsp:getProperty actions to use the bean’s parameters.

jsp:getProperty It is used to retrieve or fetch the value of Bean’s property.

syntax of <jsp:getProperty>:

<jsp: useBean id=“unique_name_of_bean“

class=“package_name.class_name“ />

....

<jsp:getProperty name=“unique_name_of_bean“ property=“property_name“

/>

jsp:setProperty It store data in property of any JavaBeans instance. This action tag is used to

set the property of a Bean, while using this action tag, we may need to

specify the Bean’s unique name (it is nothing but the id value of useBean

action tag).

syntax of <jsp:setProperty>:

<jsp: useBean id=“unique_name_of_bean“

class=“package_name.class_name“ />

....

<jsp:setProperty name=“unique_name_of_bean“ property=“property_name“

/>

jsp:include It includes the runtime response of a JSP page into the current page. In

<jsp:include> the file is being included during request processing.

Syntax of <jsp:include> :

<jsp:include page=“page URL“ flush=“Boolean Value“ />

252

jsp:plugin It generates client browser-specific construct that makes an OBJECT or

EMBED tag for the Java Applets. It is used to introduce Java components

into jsp, i.e., the java components can be either an applet or bean.

It detects the browser and adds <object> or <embed> tags into the file

Syntax:

<jsp:plugin type=“applet/bean“ code=“objectcode“

codebase=“objectcodebase“>

jsp:fallback It supplies alternate text if java plugin is unavailable on the client. You can

print a message using this, if the included jsp plugin is not loaded.

jsp:element Defines XML elements dynamically

jsp:attribute It defines dynamically defined XML element's attribute. This tag is used to

define the XML dynamically i.e. the elements can be generated during

request time than compilation time

It actually defines the attribute of XML which will be generated dynamically.

Syntax:

<jsp:attribute></jsp:attribute>

jsp:body Used within standard or custom tags to supply the tag body. This tag is used

to define the XML dynamically i.e., the elements can generate during request

time than compilation time.

It actually defines the XML, which is generated dynamically element body.

Syntax:

<jsp:body></jsp:body>

jsp:param Adds parameters to the request object.

Syntax of <jsp:param>:

<jsp: param name=“param_name“ value=“value_of_parameter“ />

jsp:text The <jsp:text> is utilized to layout text in JSP pages. Its body does not

contain any other elements, and it contains only text and EL expressions.

Syntax:

<jsp:text>Welcome to BAOU</jsp:text>

253

2.5 Let Us Sum Up

In this unit we have learnt that using JSP implicit objects we can easily access the data and

parameters without writing unnecessary code. We also discusses JSP directives, which allows

us to specify different attributes whenever required at page level, include the file and use the

tag library. We also discussed Standard Action tags which are applied inside JSP pages. Such

tags are used to remove or eliminate scriptlet code from JSP page as scriplet code are

technically not recommended these days. Various tag libraries are used to make JSP code

more compact and manageable.

2.6 Answer for Check Your Progress

Progress 1: 1. b 2. a 3. b

Progress 2: d

Progress 3: 1. d 2. a 3. a

2.7 Glossary

JavaBean: JavaBeans are classes which encapsulate several objects into a single object. It

helps in accessing various objects from multiple places. It contains several elements like

Constructors, Getter / Setter Methods and more.

Check your progress 3

1. In JSP Action tags which tags are used for bean development?

a. jsp:useBean

b. jsp:setPoperty

c. jsp:getProperty

d. All of these

2. Which of the following is correct for directive in JSP?

a. <%@directive%>

b. <%directive%>

c. <%!directive%>

d. None of these

3. action tag helps embeds another components such as applet.

a. jsp:plugin

b. jsp:config

c. jsp:setProperty

d. jsp:fallback

254

Thread: Threads in Java are pre-defined classes, available in the java.lang package when you

write your java programs. Generally, every program has one thread which is provided from

the java.lang package.

XML: The Extensible Markup Language (XML) is a simple text-based format for storing

and transporting structured information like documents, data, configuration, transactions,

invoices and much more.

2.8 Assignment

1. Explain the various implicit objects of JSP.

2. Explain different JSP Directives.

3. Discuss various standard actions supported by JSP.

2.9 Activities

Understand the difference between include directive and jsp:include action and also

implement it.

2.10 Case Study

Study and analyse MVC architecture to build Hostel Management System.

2.11 Further Readings

- https://www.tutorialspoint.com/jsp/jsp_overview.htm

- https://www.guru99.com/jsp-tutorial.html

- https://dotnettutorials.net/lesson/jsp-implicit-objects/

- https://beginnersbook.com/2013/05/jsp-tutorial-introduction/

http://www.tutorialspoint.com/jsp/jsp_overview.htm
http://www.guru99.com/jsp-tutorial.html

255

UNIT 3: JSP EXPRESSION LANGUAGE (EL)

Unit Structure

3.0 Learning Objectives

3.1 Introduction

3.2 Syntax

3.3 Different EL Implicit Objects

3.4 EL Operators

3.5 Let Us Sum Up

3.6 Answer for Check Your Progress

3.7 Glossary

3.8 Assignment

3.9 Activities

3.10 Further Readings

256

3.0 Learning Objectives

After learning this Unit, you will be:

 Able to write Expression Language

 Able to use different Implicit Objects

 Able to use various operators through EL

 Able to call functions through EL

3.1 Introduction

Expression Language (EL) was introduced in JSP 2.0 version. Expression Language is

mainly used to eliminate java code from the JSP. It is the easiest way of invoking java code.

This expressions increase JSP code readability and reusability. These expressions are always

within curly braces and prefixed with the dollar sign. Each EL expression is evaluated to a

single value that is then expressed as text in the output of the JSP or passed as a value to a

JSP action. The EL is intended to replace the need for Java (scriptlets and expressions) in JSP

pages, resulting in pure JSP templates. The syntax of EL was inspired by the JavaScript

(ECMAScript) syntax.

3.2 Syntax

EL expressions are always within curly braces and prefixed with the dollar sign.

 ${expr}

 ${ expr. expr }

 ${ expr [expr] }

Where, expr can be any one of the following:

 Java expression which results into any value.

 Java variable containing any value.

In EL there are two access operators.

 . (dot) operator

It can be used in accessing values of Map having Map key or Bean having Bean

property. For example, ${Map.MapKey}.

 [] (bracket) operator

257

It can be used in accessing values of Map having Map key or Bean having Bean

property or List and Array having index. For example,

${Map[MapKey]},${Array[5]}

Example:

EL expressions are always evaluated from left to right. The following example demonstrates

how to write the expression to perform a + b.

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>JSP Expression Language Usage</title>

</head>

<body bgcolor="Cyan">

${500}

${24.23}

${"Welcome to BAOU"}

${false}

${8+8}

${25/5}

${25>35}

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/html4/loose.dtd

258

Expressions can be concatenated and that will be evaluated from left to right. The following

example demonstrates how to concatenate two expressions.

Example:

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>JSP Expression Language Usage</title>

</head>

<body bgcolor="Cyan">

<h1>Expression Evaluation</h1>

<%

request.setAttribute("a", 15);

request.setAttribute("b", 25);

%>

<p>Expression Statement output</p> </br>

<p>The Summation of A + B is: ${a+b}</p>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>JSP Expression Language Usage</title>

</head>

<body bgcolor="Cyan">

<h1>Expression Concatenation</h1>

<%

request.setAttribute("p", 15);

request.setAttribute("q", 25);

request.setAttribute("r", 35);

request.setAttribute("s", 45);

http://www.w3.org/TR/html4/loose.dtd

259

In the above example you can see that the attribute values are added together within each

expression and then concatenated together as a string.

3.3 Different EL Implicit Objects

To allow the EL to interact with the JSP page above and beyond scoped variables that are

defined by the web programmer, a number of useful implicit scoped variables are pre-defined

that can be used in any EL expression on a JSP page. The JSP implicit objects can be used in

scripting elements to reduce Java code inside the scripting elements. The power of EL is just

because of these implicit objects only. JSP Expression Language provides following list of

implicit objects to eliminate java code from JSP pages:

Implicit Object Description

Cookie Information

cookie A map containing all javax.servlet.http.Cookie objects using

the names as the keys to each object.

Header Information

%>

<p>Expression Concatenation output: ${p+q}${r+s}</p>

</body>

</html>

Check your progress 1

1. What is the main purpose of using EL?

a. To remove XML from JSP pages

b. To remove standard actions from JSP pages

c. To remove Java syntax from JSP pages

d. To remove complexity from JSP pages

2. You can use EL alongside Java scripting elements?

a. true

b. false

3. EL expressions are always evaluated from right to left?

a. true

b. false

260

header A map containing all request headers using header names as

the keys.

First header value returned, for multiple values

use headerValues.

headerValues A map containing all request headers using header names as

the keys.

Values are held as an Array holding all values for relevant

key.

Page Context Information

pageContext A JavaBean containing all JSP Implicit Objects.

Parameter Information

initParam Map containing all context initialisation parameters using

parameter names as the keys.

param Map containing all parameter value using parameter names as

the keys.

First parameter value returned, for multiple values

use paramValues.

paramValues Map containing all parameter value using parameter names as

the keys.

Values are held as an Array holding all values for relevant key.

Scoped Attributes

applicationScope Map containing all context attributes within

the ServletContext object using attribute names as the keys.

sessionScope Map containing all session attributes within

the HttpSession object using attributes names as the keys.

requestScope Map containing all request attributes within

the HttpServletRequest object using attribute names as the

keys.

pageScope Map containing all page attributes within page scope using

attribute names as the keys.

Example of param and paramValues:

In this example, we have created two files index.jsp and user.jsp. The index.jsp file gets input

from the user and sends the request to the user.jsp which in turn displays the value provided

by users using EL:

index.jsp

<!DOCTYPE html>

<html>

261

User.jsp

<head>

<meta charset="ISO-8859-1">

<title>Insert title here</title>

</head>

<body>

<form method="get" action="user.jsp">

 Name: <input type="text" name="uname" />

 Fruit Items: <select size="4" multiple="true" name="friut">

<option value="Orange">Orange</option>

<option value="Apple">Apple</option>

<option value="Grapes">Grapes</option>

<option value="Mango">Mango</option>

</select>

</br>

<input type="submit" value="Show" />

</form>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Insert title here</title>

</head>

<body>

 User Name: ${param.uname}

 Fruit Items Selected:
 ${paramValues.friut[0]}

 ${paramValues.friut[1]}

262

Output:

After providing name and fruit when a user click on Show button following output will be

displayed.

Examples of SessionScope:

In this example, we are printing the data stored in session scope by using Expression

Language. We are using SessionScope object for printing the data.

index.jsp

 ${paramValues.friut[2]}

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ page import="java.io.*,java.util.*"%>

<!DOCTYPE html>

263

user.jsp

Output:

<html>

<head>

<meta charset="ISO-8859-1">

<title>SessionScope Example</title>

</head>

<body>

<h1>WELCOME to BAOU</h1>

<%

session.setAttribute("user", "Ved");

%>

Show Me

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>SessionScope Example</title>

</head>

<body>

<h1>User Name is: ${ sessionScope.user }</h1>

</body>

</html>

264

Once user clicks on Show Me following page will be displayed.

Examples of Cookie:

Here in this example, we are printing the data stored in cookies by using cookie object.

index.jsp

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ page import="java.io.*,java.util.*"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Cookie Example</title>

</head>

<body>

<h1>Welcome to Cookie Example</h1>

<%

Cookie user=new Cookie("name","Ved");

response.addCookie(user);

%>

Show Me

265

user.jsp

Output:

Once user clicks on Show Me following page will be displayed.

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Cookie Example</title>

</head>

<body>

<h1> Welcome to Cookie Example Mr. / Mrs.</h1>

<h2>${cookie.name.value}</hr>

</body>

</html>

266

Example of ApplicationScope
In this example, we are setting the attributes using application object and displaying those

attributes using application scope.

index.jsp

user.jsp

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>ApplicationScope Example</title>

</head>

<body>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ page import="java.io.*,java.util.*"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>ApplicationScope Example</title>

</head>

<body>

<h1>Welcome to ApplicationScope Example</h1>

<%

application.setAttribute("developer", "Ved");

application.setAttribute("WebSite", "https://baou.edu.in/");

%>

Show Me

</body>

</html>

267

Output:

Once user clicks on Show Me following page will be displayed.

Examples of Header

The following Example shows use of header implicit object.

index.jsp:

<h1> Welcome to ApplicationScope Example Mr. / Mrs.</h1>

<h2>${applicationScope.developer}
 ${applicationScope.WebSite}</hr>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ page import="java.io.*,java.util.*"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Using header Implicit Object Example</title>

</head>

268

Output:

Examples of headerValues

The following Example shows use of headerValues implicit object.

index.jsp:

<body>

<h1>Welcome to Header Implicit Example</h1>

${header.accept}

${header["accept-encoding"]}

${header["accept-language"]}

${header["host"]}

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ page import="java.io.*,java.util.*"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Using headerValues Implicit Object Example</title>

</head>

<body>

<h1>Welcome to headerValues Implicit Example</h1>

${headerValues.accept[0]}

269

Output:

Examples of pageContext

The following Example shows use of pageContext implicit object.

index.jsp:

Output:

${headerValues.accept[1]}

${headerValues["accept-charset"][2]}

${headerValues["content-type"][1]}

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ page import="java.io.*,java.util.*"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Using pageContext Implicit Object Example</title>

</head>

<body>

<h1>Welcome to pageContext Implicit Example</h1>

${pageContext.request.servletPath}

${pageContext.request.method}

${pageContext.session.id}

</body>

</html>

270

Examples of requestScope

The following example shows use of requestScope implicit object.

index.jsp:

Output:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ page import="java.io.*,java.util.*"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Using requestScope Implicit Object Example</title>

</head>

<body>

<h1>Welcome to requestScope Implicit Example</h1>

<%

pageContext.setAttribute("name", "Ved", PageContext.REQUEST_SCOPE);

%>

${requestScope.name}

${requestScope["name"]}

</body>

</html>

271

Examples of pageScope

The following example shows use of pageScope implicit object.

index.jsp:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ page import="java.io.*,java.util.*"%>

<!DOCTYPE html>

<html>

<head>

<meta charset="ISO-8859-1">

<title>Using requestScope Implicit Object Example</title>

</head>

<body>

<title>Using pageScope Implicit Object Example</title>

</head>

<body>

<h1>Welcome to pageScope Implicit Example</h1>

<%

pageContext.setAttribute("name", "Dimpy", PageContext.PAGE_SCOPE);

%>

${pageScope.name}

${pageScope["name"]}

</body>

</html>

272

Output:

3.4 EL Operators

There are different operators that can be used within EL expressions. Symbols used for

mathematical and logical evaluation that are recognized by the compiler are generally known

as operators in Java. With EL we also have a comprehensive, although reduced, list of

Check your progress 2

1. Which EL implicit object is not of type java.util.Map?

a. cookie

b. header

c. initParam

d. pageContext

2. Using array like syntax such as ${header.accept[1]}, we can access secondary

header values using the header EL implicit object?

a. true

b. false

3. The initParam EL implicit object allows access to servlet initialization

parameters?

a. true

b. false

4. Which of the following EL implicit object contains variables with the shortest

scope?

a. applicationScope

b. pageScope

c. sessionScope

d. requestScope

273

operators. Here, we will look at the arithmetic, relational, logical, conditional and empty EL

operators that we can use within our JSP pages.

Arithmetic Operators

We are familiar with most of the arithmetic operators shown in the table below.

Operator Meaning Example

+ Addition ${a + b}

- Subtraction ${a - b}

/

div

Division ${a / b}

${a div b}

* Multiplication ${a * b}

%

mod

Modulus ${a % b}

${a mod b}

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>JSP Expression Language Usage</title>

</head>

<body bgcolor="Cyan">

<h1>Arithmetic Operator</h1>

<%

request.setAttribute("a", 15);

request.setAttribute("b", 25);

%>

<p>Expression Statement output</p> </br>

<p>The Summation of A + B is: ${a+b}</p> </br>

http://www.w3.org/TR/html4/loose.dtd

274

Relational Operators

Relational operator takes two operands, compare their values and returns a Boolean value

(either true or false). These operators are typically used in conditional expressions to check

whether a condition is true or not. The table below contains various relational operators.

Operator Meaning Example Result Remarks

==

eq

Equal to ${a == b}

${a eq b}

true All types can be compared for equality

!=

ne

Not Equal to ${a != b}

${a ne b}

false All types can be compared for inequality

<

lt

Less than ${a < b}

${a lt b}

false It can be used with all numeric types and

the char type.

<=

le

Less than or

equal to

${a <= b}

${a le b}

true It can be used with all numeric types and

the char type.

>

gt

Greater than ${a > b}

${a gt b}

false It can be used with all numeric types and

the char type.

>=

ge

Greater than

or equal to

${a >= b}

${a ge b}

true It can be used with all numeric types and

the char type.

Example:

<p>The Subtraction of A - B is: ${a-b}</p> </br>

<p>The Division of A / B is: ${a/b}</p> </br>

<p>The Division of A div B is: ${a div b}</p> </br>

<p>The Multiplication of A * B is: ${a * b}</p> </br>

<p>The Modulus of A % B is: ${a % b}</p> </br>

<p>The Modulus of A mod B is: ${a mod b}</p> </br>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

http://www.w3.org/TR/html4/loose.dtd

275

Logical Operators

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>JSP Expression Language Usage</title>

</head>

<body bgcolor="Cyan">

<h1>Relational Operator</h1>

<%

request.setAttribute("a", 15);

request.setAttribute("b", 25);

%>

<p>Expression Statement output</p> </br>

<p>The Equality operator: ${a == b}</p> </br>

<p>The Equality operator: ${a eq b}</p> </br>

<p>The Un-Equality operator: ${a ne b}</p> </br>

<p>The Un-Equality operator: ${a != b}</p> </br>

<p>The Less Than operator: ${a < b}</p> </br>

<p>The Less Than operator: ${a lt b}</p> </br>

<p>The Greater Than operator: ${a > b}</p> </br>

<p>The Greater Than operator: ${a gt b}</p> </br>

<p>The less than or equal operator: ${a le b}</p> </br>

<p>The less than or equal operator: ${a <= b}</p> </br>

<p>The greater than or equal operator: ${a ge b}</p> </br>

<p>The greater than or equal operator: ${a >= b}</p> </br>

</body>

</html>

276

Logical Operands must be the Boolean type and the result of a logical operation is

the Boolean type and are used with control statements. The following table shows all logical

operators.

Operator Meaning Result Remarks

&&

and

Logical AND false

/ true

If the first operand returns false, the second

operand will not be checked (short-

circuited) and false is returned.

||

or

Logical OR False / true If the first operand returns true, the second

operand will not be checked (short-

circuited) and true is returned.

!

not

Logical NOT True / false Will check if operand is not true.

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>JSP Expression Language Usage</title>

</head>

<body bgcolor="Cyan">

<%

request.setAttribute("a", 15);

request.setAttribute("b", 25);

Boolean p = false;

Boolean q = true;

%>

<p>Expression Statement output</p> </br>

<p>Logical AND Expression Result: ${(a<b)&&(6<12)} </p></br>

<p>Logical AND Expression Result: ${(a<b)and(6>12)} </p></br>

http://www.w3.org/TR/html4/loose.dtd

277

The Conditional Operator

The Conditional operator is a ternary operator and can be used to replace

an if ... else construct. It takes three operands as shown below:

Block Meaning

if ... else

if (condition) {

variable = expression1;

} else {

variable = expression2;

}

Assign result of expression1 to variable

if condition evaluates to true,

otherwise assign result

of expression2 to variable.

Conditional Operator

${statement? expression1 :

expression2

If statement evaluates

to true evaluate expression1,

otherwise evaluate expression2,

The following example shows how to use the Conditional operator. It results in Small

Number being output:

<p>Logical OR Expression Result: ${(a<b)||(6<12)} </p></br>

<p>Logical OR Expression Result: ${(a<b)or(6>12)} </p></br>

<p>Logical NOT Expression Result: ${!p} </p></br>

<p>Logical NOT Expression Result: ${not p} </p></br>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

http://www.w3.org/TR/html4/loose.dtd

278

The empty Operator

The empty operator can be used to check the emptiness of an object and has the following

syntax:

 ${empty object}

The empty operator will return true when any of the following criteria is satisfied otherwise it

will return false:

 If the object being tested is null.

 If the object being tested is an empty string ("").

 If the object being tested is an empty array.

 If the object being tested is an empty Map or Collection.

Example:

<title>JSP Expression Language Usage</title>

</head>

<body bgcolor="Cyan">

<h1>Conditional Operator</h1>

<%

request.setAttribute("a", 25);

request.setAttribute("b", 35);

%>

<p>Conditional Expression Result: ${(requestScope.a lt requestScope.b)? "Small Number" :

"Large Number"} </p></br>

<p>Conditional Expression Result: ${(9 + 7) > 11 ? (12 + 13) : (14 + 15) } </p></br>

</body>

</html>

<%@ page language="java" import="java.util.List,java.util.Arrays" contentType="text/html;

charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

http://www.w3.org/TR/html4/loose.dtd

279

Operator Precedence

Following is the precedence of operators, having priority descends from top to bottom and

from left to right in a row:

 [] .

 ()

 - (unary) not ! empty

 / div % mod

 + - (binary)

 < > <= >= lt gt le ge

 == != eq ne

 && and

 || or

 ? :

Examples:

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>JSP Expression Language Usage</title>

</head>

<body bgcolor="Cyan">

<h1> Empty Operator</h1>

<%

List country = Arrays.asList("USA", "AUSTRALIA", "INDIA",

"JAPAN","ISREAL");

pageContext.setAttribute("Country", country);

%>

<p>Empty Expression Statement </p> </br>

<p>Empty Expression Result: ${empty country} </p></br>

</body>

</html>

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

280

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>JSP Expression Language Usage</title>

</head>

<body bgcolor="Cyan">

<h1> Operator Precedence</h1>

<p>Operator Precedence one: ${5 * 6 + 2 * 8} </p></br>

<p>Operator Precedence two: ${10 + 12 / 4 - 2} </p></br>

<p>Operator Precedence three: ${6 > 4 && 5 > 7} </p></br>

<p>Operator Precedence four: ${2 + 3 > 4 ? 5 * 6 : 7 - 8} </p></br>

</body>

</html>

Check your progress 3

1. What will be the output from the following expression?

<%

request.setAttribute("a", 15);

request.setAttribute("b", 6);

%>

${a%b}

a. 9

b. -3

c. 3

d. -9

2. When using the Short-circuit AND (and or &&) if the first operand returns false,

the second operand will not be checked?

a. true

b. false

3. When using the Short-circuit OR (or or ||) if the first operand returns true, the

second operand will not be checked?

http://www.w3.org/TR/html4/loose.dtd

281

3.5 Let Us Sum Up

In this unit we have learnt that Expression Language is used to access the data. IT helps

developer to easily access the application data stored in objects like Java Beans, request,

session and application etc. We also discussed implicit objects through which developers can

get parameter values and attributes from different scopes. Apart from this we also discussed

different operator’s usage and how it helps developer to write a JSP application efficiently

and effectively without much of the java code hassle.

3.6 Answer for Check Your Progress

Progress 1: 1. c 2. a 3. b

Progress 2: 1. d 2. b 3. b 4. b

Progress 3: 1. c 2. a 3. a 4. c 5. a

3.7 Glossary

ECMAScript: ECMAScript is also known as JavaScript. It is a programming language

adopted by the European Computer Manufacturer's Association as a standard for performing

computations in Web applications. Languages like JavaScript, Dart-lang and C# are

standardized by ECMA.

a. true

b. false

4. What will be the output from the following expression?

${empty ""}

a. an exception will be thrown

b. null

c. true

d. false

5. Which operator has the highest precedence?

a. not

b. instanceof

c. mod

d. empty

282

Scoped Variable: The scope defines the order in which variable names are resolved, the

lifetime of the variable and its purview.

3.8 Assignment

1. Define EL and discuss its benefits.

2. Discuss various implicit objects of Expression language.

3. Write a short note on Operator in Expression Language.

3.9 Activities

Understand and implement function in Expression Language.

3.10 Further Readings

- https://www.tutorialspoint.com/jsp/jsp_overview.htm

- https://www.javatpoint.com/EL-expression-in-jsp

- https://server2client.com/el/elimpobjs.html

- https://www.h2kinfosys.com/blog/expression-language/

http://www.tutorialspoint.com/jsp/jsp_overview.htm
http://www.javatpoint.com/EL-expression-in-jsp
http://www.h2kinfosys.com/blog/expression-language/

283

UNIT 4: JSTL

Unit Structure

4.0 Learning Objectives

4.1 Introduction

4.2 JSP Custom Tag Library

4.3 JSTL Core Tags

4.4 JSTL Function Tag

4.5 JSTL Formatting Tag

4.6 JSTL XML Tag

4.7 JSTL SQL Tag

4.8 Let Us Sum Up

4.9 Answer for Check Your Progress

4.10 Glossary

4.11 Assignment

4.12 Activities

4.13 Case Study

4.14 Further Readings

284

4.0 Learning Objectives

After learning this Unit, you will be:

 Able to define various JSTL tags and its usage

 Write a JSP file to replace a Java scripting completely from our JSP pages by using

JavaBeans and EL in conjunction with JSTL

 Use JSTL functions

4.1 Introduction

JSP Standard Tag Library (JSTL) is a standard tag library of readymade tags. The JSTL

library contains several tags that will remove JSP scriptlet code from a JSP page by providing

already implemented common functionalities. It is a collection of useful JSP tags that

encapsulates the basic functionality common to many JSP applications. It supports common,

structural tasks like iteration and conditions, tags for manipulating XML documents,

internationalization tags and SQL tags. JSTL also supports a structure for integrating the

existing custom tags with the JSTL tags.

JSTL delivers various advantages as mentioned below:

1. It makes easy for a developer to understand and write the code.

2. As JSP scriptlets confuse programmers, the usage of JSTL makes the code neat and

clean.

3. JSTL Expression language handles JavaBean property very efficiently.

4. Based on XML, which is similar to HTML, JSTL is very easy for the programmers to

understand.

4.2 JSP Custom Tag Library

As being a part of the Java EE API, JSTL is generally included in most servlet containers. To

use JSTL in the JSP pages, user need to download the JSTL jars for the servlet container.

Mostly, these jars are available in the example folder of the server downloaded. If these jars

(libraries) are not available then separately downloads it and transfer it to web application

project WEB-INF/lib directory.

285

JSTL jars

JSTL jars are container specific, means in Apache Tomcat, you need to include jstl.jar and

standard.jar jar files in your project build path. If they are not present in the container lib

directory, you should include them into your application. The JAR files must be copied into

the WEB-INF/lib directory of every web application that requires JSTL or into the library

directory of the container you are using.

The JSTL is subdivided into 5 groups including

Core, XML, I18N, Database and Functions libraries where actions are grouped together by

category. The following table demonstrates the tag libraries and the functional areas along

with the URI location and the preferred prefix:

Tag

Library

Functional Areas URI Prefix

Core It provide support for Variable

Support, iteration, conditional

logic, catch an exception, URL

management, forward or redirect

response, Miscellaneous.

http://java.sun.com/jsp/jstl/core c

XML These tags are used to work with

XML documents such as parsing

XML, transforming XML data

and XPath expressions evaluation,

Core

Flow control and Transformation.

http://java.sun.com/jsp/jstl/xml x

Ii8n /

Formatting

Formatting library provides tags

to format text, date, number for

Internationalised web sites.

http://java.sun.com/jsp/jstl/fmt Fmt

Database Database library provides support

for Relational Database

Connection like Oracle, MySQL

etc. Allows interaction to perform

operations like insert, delete,

update, select etc on SQL

databases.

http://java.sun.com/jsp/jstl/sql Sql

Functions JSTL tags provide a number of

functions that we can use to

perform a common operation,

mostly for String manipulation

such as String Concatenation,

String Spliting etc.

http://java.sun.com/jsp/jstl/functions fn

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions

286

All the JSTL standard tags URI starts with https://java.sun.com/jsp/jstl/ and you can use any

prefix you want. But it is advisable to use the above defined prefix to avoid any confusion

because they are the most widely used prefixes.

Syntax to include JSTL functions in JSP page is:

<%@taglib uri="uri" prefix="prefix" %>

4.3 JSTL Core Tags

JSTL Core Tags are listed in the following table.

JSTL Core Tag

Description

<c:out>

To write something in JSP page, we can use EL also with this tag

<c:import>

Same as jsp:include or include directive

<c:redirect>

redirect request to another resource

<c:set>

To set the variable value in given scope.

<c:remove>

To remove the variable from given scope

Check your progress 1

1. To use JSTL functionality, we need a(n) container.

a. Servlet

b. HTML

c. JSP

d. JavaScript

287

JSTL Core Tag

Description

<c:catch>

To catch the exception and wrap it into an object.

<c:if>

Simple conditional logic, used with EL and we can use it to

process the exception from <c:catch>

<c:choose>

Simple conditional tag that establishes a context for mutually

exclusive conditional operations, marked by <c:when> and

<c:otherwise>

<c:when>

Subtag of <c:choose> that includes its body if its condition

evalutes to ‘true’.

<c:otherwise>

Subtag of <c:choose> that includes its body if its condition

evalutes to ‘false’.

<c:forEach>

for iteration over a collection

<c:forTokens>

for iteration over tokens separated by a delimiter.

<c:param>

used with <c:import> to pass parameters

<c:url>

to create a URL with optional query string parameters

288

Syntax:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core”%>

Example: following example demonstrates the use of important core tags.

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c” %>

<html>

<head>

<title>Welcome to BAOU</title>

</head>

<body>

<h1> Welcome to BAOU </h1>

<c:out value = "${'<p>c:out is used to display the result of an expression in

the web browser.</p>'}" default="Not Available" escapeXml="true"/></br>

<c:import var="data" url="header.jsp" charEncoding="UTF-8" />

<c:out value = "${data}"/>

<c:set var = "user" scope = "session" value="${2023}" />

The value defined in the session scope is: <c:out value = "${user}"/></br>

<c:remove var="user" scope="session"/>

The value after removing is: <c:out value = "${user}"/></br>

<c:catch var ="exceCaught">

<% int v = 8/0; %>

</c:catch>

<c:if test = "${exceCaught != null}">

<p>Exception is: ${exceCaught}</p></br>

<p>Exception raised because : ${exceCaught.message}</p></br>

</c:if>

<c:set var="number" value="98"/>

<c:choose>

<c:when test="${number > 24}">

Number value is greater than 24.</br>

</c:when>

<c:otherwise>

Number value is less than or equal to 24.</br>

</c:otherwise>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/core

289

4.4 JSTL Function Tag

The main objective of the functions tag library is to perform all the String manipulation

operations which are defined in the String class.

</c:choose>

<p> Page will redirected because number is greater than 1 </p></br>

<c:if test="${number > 1}">

<c:redirect url="https://baou.edu.in/"/>

</c:if>

</body>

</html>

Check your progress 2

1. JSTL core tag provides support for following except

a. Conditionals

b. Manipulating text documents.

c. Url

d. Iteration

2. How many Core tag library actions are there?

a. 14

b. 12

c. 9

d. 17

3. We can use the target and property attributes of the </c:set> action to assign a

new property value to any object?

a. True

b. False

4. What type of error object is thrown from the <c:catch> tag?

a. java.lang.Error

b. java.lang.Exception

c. java.lang.Throwable

d. All of the above

290

JSTL Function Details

fn:contains() It is used to test if an input string contains the specified

substring in a program

fn:containsIgnoreCase() It is used to test if an input string contains the specified

substring as a case insensitive way

fn:endsWith() It checks whether the specified string is a suffix of a given

string or not

fn:length() It returns the number of characters in a string

fn:trim() It removes spaces from beginning and end of a string

fn:indexOf() It returns an index within a string of first occurrence of a given

substring

fn:escapeXml() It escapes the characters that would be interpreted as XML

markup

fn:startsWith() It checks whether the specified string is a prefix of a given

string or not

fn:split() It splits the string into an array of substrings

fn:toLowerCase() It converts all the characters of a string to lower case

fn:toUpperCase() It converts all the characters of a string to upper case

fn:substring() It returns the subset of a string according to the given start and

end position

fn:substringAfter() It returns the subset of string after a specific substring

fn:substringBefore() It returns the subset of string before a specific substring

fn:replace() It replaces all the occurrence of a string with another string

sequence

fn:join() The fn:join() function joins the all array elements with a

specified separator.

Syntax:

<% taglib uri=http://java.sun.com/jsp/jstl/functions prefix=”fn” %>

Example: following example demonstrates the use of important function tags.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn"%>

http://java.sun.com/jsp/jstl/functions
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions

291

<html>

<head>

<title>JSTL Function Tags</title>

</head>

<body>

<h1> Welcome to BAOU </h1>

<c:set var="data" value="Welcome to Sardar Patel University"/>

Given String: </br>

<c:out value="${data}" />
</br>

String after replacing Welcome to Most Welcome:</br>

<c:out value="${fn:replace(data, 'Welcome', 'Most Welcome')}"/> </br>

Substring of the given string:

<c:out value="${fn:substring(data, 11, '23')}" /> </br>

Length of the given string: </br>

<c:out value="${fn:length(data)}" /> </br>

<c:set var="testStr" value="You are in the State of Gujarat "/>

String before splitting: </br>

<c:out value="${testStr}" />

<c:set var="StringAfterSplitting"

value="${fn:split(testStr, ' ')}"/></br>

<c:set var="StringAfterJoining"

value="${fn:join(StringAfterSplitting, '-')}"/></br>

Final String after split and join operation:</br>

<c:out value="${StringAfterJoining}" /> </br>

Index of State in the String is:

<c:out value="${fn:indexOf(testStr, 'State')}" /></br>

</body>

</html>

Check your progress 3

JSTL function tag provides support for manipulating

292

4.5 JSTL Formatting Tag

The formatting tag provides support for message formatting, number and date formatting etc.

Syntax:

<%@ taglib uri=”http://java.sun.com/jsp/jstl/fmt” prefix=”fmt” %>

Following table contains various formatting tags:

Example: following example demonstrates the use of important formatting tags.

a. Integer

b. Float

c. String

d. Boolean

Formatting Tags Details

fmt:parseNumber It is used to Parses the string representation of a currency,

percentage or number.

fmt:timeZone It specifies a parsing action nested in its body or the time zone for

any time formatting.

fmt:formatNumber It is used to format the numerical value with specific format or

precision.

fmt:setTimeZone It stores the time zone inside a time zone configuration variable.

fmt:bundle It is used for creating the ResourceBundle objects which will be

used by their tag body.

fmt:message It display an internationalized message.

fmt:setBundle It loads the resource bundle and stores it in a bundle configuration

variable or the named scoped variable.

fmt:formatDate It formats the time and/or date using the supplied pattern and

styles.

fmt:parseDate It parses the string representation of a time and date.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>

<html>

<head>

http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/fmt

293

<title>JSTL Formatting Tags</title>

</head>

<body>

<h1> Welcome to BAOU </h1>

<c:set var="TODAY" value="<%=new java.util.Date()%>"/>

Present date after setting type attribute to date: </br>

<fmt:formatDate type="date" value="${TODAY}" /> </br>

Present date after setting type attribute to time: </br>

<fmt:formatDate type="time" value="${TODAY}" /></br>

Present date after setting type attribute to both: </br>

<fmt:formatDate type="both" value="${TODAY}" /> </br>

Present date after setting pattern attribute: </br>

<fmt:formatDate pattern="yyyy-MM-dd" value="${TODAY}"/> </br>

<c:set var="TODAY" value="2023-03-01" />

<fmt:parseDate value="${TODAY}"

var="parsedDate" pattern="yyyy-MM-dd" />

Current date after parsing: </br>

<c:out value="${parsedDate}"/> </br>

<c:set var="number" value="2568.4589"/>

Number after parsing by setting type attribute:

<fmt:parseNumber var="num" value="${number}" type="number"/>

<c:out value="${num}"/></br>

Number after parsing by setting integerOnly attribute to true: </br>

<fmt:parseNumber var="num" value="${number}" integerOnly="true"/>

<c:out value="${num}"/></br>

<c:set var="TODAY" value="<%=new java.util.Date()%>"/>

<fmt:formatDate value="${TODAY}" type="both"/>

Set Time Zone to HST </br>

<fmt:setTimeZone value="HST" />

294

4.6 JSTL XML Tag

The XML tags are used for providing a JSP centred way of manipulating and creating XML

documents. The XML tag library is based on XPath, which provides a concise notation for

specifying and selecting parts of an XML document. XPath can be thought of as an

expression language.

Syntax:

<%@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x" %>

Following table contains various XML tags:

<fmt:formatDate value="${TODAY}" type="both"/> </br>

</body>

</html>

XML Tags Details

x:out It is similar to <%= ... > tag, but for XPath expressions.

x:parse It is used for parse the XML data specified either in the tag body or an

attribute.

x:choose It is a conditional tag that establish a context for mutually exclusive

conditional operations.

x:set It is used to sets a variable to the value of an XPath expression.

x:when It is a subtag of that will include its body if the condition evaluated be

'true'.

x:if It is used for evaluating the test XPath expression and if it is true, it will

processes its body content.

x:otherwise It is subtag of that follows tags and runs only if all the prior conditions

evaluated be 'false'.

Check your progress 4

JSTL formatting tag provides support for numbers, dates and i18n.

a. True

b. False

http://java.sun.com/jsp/jstl/xml

295

x:transform It is used in a XML document for providing the XSL(Extensible

Stylesheet Language) transformation.

x:param It is used along with the transform tag for setting the parameter in the

XSLT style sheet.

To utilize the functionality of XML and XPath related libraries, it is required to download

and add following three jar files within the lib directory of your project.

 XercesImpl.jar

 xalan.jar

 xml-apis-1.4.01.jar

Example: following example demonstrates the use of important XML tags.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x"%>

<html>

<head>

<title>JSTL XML Tags</title>

</head>

<body>

<h1> Welcome to BAOU </h1>

<h2>JSTL XML Tag Example </h2>

<c:set var="University">

<University>

<name>Sardar Patel University</name>

<city>Vallabh Vidyanagar</city>

</University>

</c:set>

<x:parse xml="${University}" var="data"/>

Website ::

<x:out select="$data/University/name" /></br>

Tutorial ::

<x:out select="$data/University/city" /> </br>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml

296

<c:set var = "xmlData">

<books>

<book>

<name>Data Visualization</name>

<author>Vinod</author>

<price>250</price>

</book>

<book>

<name>Machine Learning</name>

<author>Ajay</author>

<price>400</price>

</book>

</books>

</c:set>

<x:parse xml = "${xmlData}" var = "output"/>

<x:choose>

<x:when select = "$output//book/author = 'Vinod'">

Book is Authored by Dr. Vinod

</x:when>

<x:when select = "$output//book/author = 'Ajay'">

Book is written by Dr. Ajay

</x:when>

<x:otherwise>

Author is not Known.

</x:otherwise>

</x:choose>

</body>

</html>

297

4.7 JSTL SQL Tag

The SQL tags provide SQL support. This tag library allows the tag to interact with RDBMSs

like Microsoft SQL Server, mySQL or Oracle.

Syntax:

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql" %>

Following table contains various SQL tags:

Check your progress 5

1. JSTL xml tag provides support for which of the following,

a. parsing XML

b. Transforming XML

c. XPath Expression Evaluation

d. All of these

2. How many XML tag library actions are there?

a. 7

b. 10

c. 8

d. 14

3. Which XML attribute allows us to specify XPath expressions?

a. allow

b. select

c. transform

d. view

SQL Tags Details

sql:setDataSource It is used for creating a simple data source suitable only for

prototyping.

sql:param It is used for sets the parameter in an SQL statement to the

specified value.

sql:query It is used for executing the SQL query defined in its sql attribute

or the body.

sql:update It is used for executing the SQL update defined in its sql attribute

or in the tag body.

http://java.sun.com/jsp/jstl/sql

298

sql:transaction It is used to provide the nested database action with a common

connection.

sql:dateParam It is used for sets the parameter in an SQL statement to a specified

java.util.Date value.

To utilize the functionality of SQL libraries, it is required to download and add following

mysql jar file within the lib directory of your project to connect the mysql database.

 mysql-connector.jar

Example: following example demonstrates the use of important SQL tags.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>sql:query Example</title>

</head>

<body>

<h1>Welcome to BAOU</h1>

<h3>SQL:query Example</h3>

<sql:setDataSource var="myDS" driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost:3306/mca" user="root" password=""/>

<sql:query dataSource="${myDS}" var="students">

SELECT * from student;

</sql:query>

<table border="1">

<c:forEach var="row" items="${students.rows}">

<tr>

<td><c:out value="${row.sno}"/></td>

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/sql
http://www.w3.org/TR/html4/loose.dtd

299

4.8 Let Us Sum Up

In this unit we learnt that JSP Standard Tag Library(JSTL) is a standard library of readymade

tags which replaces the scriptlet code from a JSP page by providing some ready to use

functionalities. We discussed various important functionality relating core tags such as if,

forEach, import, out etc to support some basic scripting task. Formatting library provides tags

to format text, date, number for internationalized web sites. SQL library provides support for

Relational Databases and tags to perform operations like insert, delete, update, select on SQL

databases. XML tag provides support for XML processing like flow control, transformation

features etc. Functions tag provides support for string manipulation.

<td><c:out value="${row.sname}"/></td>

<td><c:out value="${row.smob}"/></td>

</tr>

</c:forEach>

</table>

</body>

</html>

Check your progress 6

1. JSTL SQL tag provides support to interact with non relational databases.

a. True

b. False

2. Which action is used for date parameterisation?

a. <sql:date>

b. <sql:param>

c. <sql:dateParam>

d. <sql:value>

3. Which Database action allows us to safeguard database integrity?

a. <sql:commit>

b. <sql:rollback>

c. <sql:update>

d. <sql:transaction>

300

4.9 Answer for Check Your Progress

Progress 1: a

Progress 2: 1. b 2. a 3. b 4. c

Progress 3: c

Progress 4: a

Progress 5: 1. d 2. b 3. b

Progress 6: 1. b 2. c 3. d

4.10 Glossary

Taglib: The taglib directive specifies that the JSP page uses a set of custom tags, identifies

the location of the library.

Prefix: It is a letter or group of letters added to the start of a word to change the meaning or

make a new word.

JSTL: Group of different Tag Libraries

4.11 Assignment

1. Explain various benefits of JSTL?

2. Discuss various JSTL core tags.

3. Discuss various JSTL String manipulation tags.

4. Discuss various JSTL xml tags.

4.12 Activities

Understand and implement various JSTL SQL tags.

4.13 Case Study

Study and analyse MVC architecture to build Hostel Management System.

4.14 Further Readings

- https://www.baeldung.com/jstl

- https://server2client.com/jstl/jstl.html

- https://www.guru99.com/jsp-tag-library.html

- https://www.digitalocean.com/community/tutorials/jstl-tutorial-jstl-tags-example

http://www.baeldung.com/jstl
http://www.guru99.com/jsp-tag-library.html
http://www.digitalocean.com/community/tutorials/jstl-tutorial-jstl-tags-example

BAOU
Education
for All

Website : www.baou.edu.in | Email : office.scs@baou.edu.in

http://www.baou.edu.in/
mailto:oﬃce.scs@baou.edu.in

	UNIT-1
	UNIT-1 (1)
	UNIT-2
	UNIT-3
	UNIT-4
	UNIT-1 (2)
	UNIT-2 (1)
	UNIT-3 (1)
	UNIT-4 (1)
	Block Introduction
	Block Objective
	After learning this block, you will be able to understand:

	Block Structure
	Block Assignment
	Short Answer Questions:
	Long Answer Questions:

	UNIT 1: GUI PROGRAMMING USING SWING
	Unit Structure
	1.0 Learning Objectives
	1.3 Swing Containers
	1.5 Working with Swing Component
	1.7 Answer for Check Your Progress
	1.9 Assignment
	1.11 Case Study
	After learning this Unit, you will be:

	1.1 Introduction
	1.2 Differences between Swing and AWT
	1.3 Swing Containers
	Top level Containers:

	1.4 Basics of Swing Program
	Swing Template:

	1.5 Working with Swing Component
	JButton:
	Constructor Syntax:

	JLabel
	JTextField:
	JCheckBox
	JRadioButton
	JComboBox:
	JTextArea
	JPasswordField:
	JMenuBar, JMenu and JMenuItem:
	JScrollBar :

	1.6 Let Us Sum Up
	1.7 Answer for Check Your Progress
	1.8 Glossary
	1.9 Assignment
	1.10 Activities
	1.11 Case Study

	1.12 Further Readings

	UNIT 2: EVENT HANDLING AND LAYOUT
	Unit Structure
	2.0 Learning Objectives
	2.4 Working with Event Handling
	2.6 Let us sum up
	2.8 Glossary
	2.10 Activities
	After learning this Unit, you will be:

	2.1 Introduction
	2.2 Event Delegation Model
	Event Listener:
	Event Handler:

	2.3 Types of Events and Event Handlers
	2.4 Working with Event Handling
	The ActionListener Interface
	The AdjustmentListener Interface
	The ItemListener Interface
	The MouseListener Interface

	2.5 Layout Manager
	Types of the Layout Manager
	Border Layout:
	Grid Layout:
	Card Layout:
	GridBag Layout:
	Group Layout:

	2.6 Let Us Sum Up
	2.7 Answer for Check Your Progress
	2.8 Glossary
	2.9 Assignment
	2.10 Activities
	2.11 Case Study

	2.12 Further Readings

	UNIT 3: JAVA NETWORKING
	Unit Structure
	3.0 Learning Objectives
	3.2 Java Networking Terminology
	3.4 Socket Programming
	3.6 Advantages and Disadvantages of Java Socket Programming
	3.8 Answer for Check Your Progress
	3.10 Assignment
	3.12 Case Study
	After learning this Unit, you will be able to:

	3.1 Introduction
	3.2 Java Networking Terminology
	 IP Address:
	 Protocol:
	 Port Number:
	 MAC Address:
	 Connection-Oriented and Connection-Less Protocol:
	 Socket:

	3.3 Common Network Protocols
	TCP (Transmission Control Protocol)
	UDP (User Datagram Protocol)
	Difference between TCP & UDP:

	3.4 Socket Programming
	Socket Class
	ServerSocket Class

	3.5 Client-Server Communication
	Creating Server:
	Creating Client:
	Server Program: SockServerApp.java

	3.6 Advantages and Disadvantages of Java Socket Programming
	3.7 Let Us Sum Up
	3.8 Answer for Check Your Progress
	3.9 Glossary
	3.10 Assignment
	3.11 Activities
	3.12 Case Study

	3.13 Further Readings

	UNIT 4: JAVA.NET PACKAGE
	Unit Structure
	4.0 Learning Objectives
	4.2 Networking Classes
	4.4 Let Us Sum Up
	4.6 Glossary
	4.8 Activities
	After learning this Unit, you will be able to:

	4.1 Introduction
	4.2 Networking Classes
	InetAddress Class
	Socket Class
	ServerSocket Class
	DatagramPacket
	DatagramSocket
	datagramReceiver.java

	URLConnection Class
	URLConnclass.java

	MulticastSocket
	MultiCastClient.java

	4.3 Networking Interfaces and Exceptions
	1. ContentHandlerFactory
	2. CookiePolicy
	3. CookieStore
	4. DatagramSocketImplFactory
	5. FileNameMap
	6. ProtocolFamily
	7. SocketImplFactory
	8. SocketOption
	9. URLStreamHandlerFactory
	1. SocketException
	2. BindException
	3. ConnectException
	4. NoRouteToHostException
	5. InterruptedIOException

	4.4 Let Us Sum Up
	4.5 Answer for Check Your Progress
	4.6 Glossary
	4.7 Assignment
	4.8 Activities
	4.9 Case Study

	4.10 Further Readings

	BLOCK 2: JDBC, Stored Procedure and Functions
	Block Introduction
	Block Objective:
	After learning this block, you will be able to:

	Block Structure
	Block Assignment
	Short Answer Questions:
	Long Answer Questions:
	Unit Structure
	1.0 Learning Objectives
	1.6 Let Us Sum Up
	1.8 Glossary
	1.10 Activities
	After learning this Unit, user will be:

	1.1 Introduction
	1.2 Call Level Interface (CLI)
	1.3 Implementation of JDBC
	1.4 JDBC Architecture
	1. Two-tier Model (Client-Server)
	2. Three-tier Model

	1.5 JDBC Drivers
	Type 1: JDBC-ODBC bridge driver
	Advantage of JDBC-ODBC bridge driver
	Disadvantage JDBC-ODBC bridge driver
	Type 2: Native-API Driver (partially java driver)
	Advantage of Native-API Driver (partially java driver)
	Disadvantage of Native-API Driver (partially java driver)
	Type 3: Network protocol driver (fully java driver)
	Advantage Network protocol driver (fully java driver)
	Disadvantage Network protocol driver (fully java driver)
	Type 4: Pure Java driver (Thin driver)
	Disadvantage of Pure Java driver

	1.6 Let Us Sum Up
	1.7 Answer for Check Your Progress
	1.8 Glossary
	1.9 Assignment
	1.10 Activities
	1.11 Case Study

	1.12 Further Readings
	UNIT 2: EXPLORING JAVA.SQL PACKAGE
	Unit Structure
	2.0 Learning Objectives
	2.2 DriverManager Class
	2.4 Statement
	2.6 Metadata
	2.8 Let Us Sum Up
	2.10 Glossary
	2.12 Activities
	After learning this Unit, you will be:

	2.1 Introduction
	2.2 DriverManager Class
	2.3 Connection Interface
	2.4 Statement
	2.5 ResultSet
	ResultSet Types:
	ResultSet Concurrency:
	Using the Method next:
	Using the getXXX Methods:

	2.6 Metadata
	Example:

	2.7 Exceptions
	2.8 Let Us Sum Up
	2.9 Answer for Check Your Progress
	2.10 Glossary
	2.11 Assignment
	2.12 Activities
	2.13 Case Study

	2.14 Further Readings

	UNIT 3: CONNECTING WITH DATABASE
	Unit Structure
	3.0 Learning Objectives
	3.2 Steps to Connect a Database
	3.4 Connectivity with MySQL
	3.6 Let Us Sum Up
	3.8 Glossary
	3.10 Activities
	After learning this Unit, you will be:

	3.1 Introduction
	3.2 Steps to Connect a Database
	1. Import JDBC Packages
	2. Load and Register the JDBC Driver
	3. Connecting to a Database
	4. Create a Statement Object
	5. Executing the Query and collecting a ResultSet
	6. Processing the results
	7. Close the connection

	3.3 JDBC Data Types
	3.4 Connectivity with MySQL
	3.5 Connectivity with Oracle database
	3.6 Let Us Sum Up
	3.7 Answer for Check Your Progress
	3.8 Glossary
	5. Thin driver

	3.9 Assignment
	3.10 Activities
	3.11 Case Study

	3.12 Further Readings

	UNIT 4: WORKING WITH STORED PROCEDURES AND FUNCTIONS
	Unit Structure
	4.0 Learning Objectives
	4.2 Precompiled Statement and Stored Procedures
	4.4 Batch Processing
	4.6 Answer for Check Your Progress
	4.8 Assignment
	4.10 Case Study
	After learning this Unit, you will be:

	4.1 Introduction
	4.2 Pre-compiled Statement and Stored Procedures
	Pre-compiled Statement:
	Limitation of PreparedStatement
	Example:

	4.3 Transaction Management
	Disabling Auto-Commit Mode
	Committing Transactions
	Output:

	4.4 Batch Processing
	Statement.addBatch(String sql)
	Statement.executeBatch()

	4.5 Let Us Sum Up
	4.6 Answer for Check Your Progress
	4.7 Glossary
	4.8 Assignment
	4.9 Activities
	4.10 Case Study

	4.11 Further Readings

	BLOCK 3: Web Application, Servlets and Session Management
	Block Introduction
	Block Objective
	After learning this block, you will be able to:

	Block Assignment
	Short Answer Questions:
	Long Answer Questions:
	Unit Structure
	1.2 Web Application
	1.9 Glossary
	1.11 Activities
	After learning this unit, you will be:

	1.1 Introduction
	1.2 Web Application
	1.3 Web Client and Web Server
	Web Servers and Web Clients Communication:

	1.4 HTTP Protocol
	1.5 Web Container
	1.6 Web application Project Structure
	1.7 Let Us Sum Up
	1.8 Answer for Check Your Progress
	1.9 Glossary
	1.10 Assignment
	1.11 Activities
	1.12 Case Study

	1.13 Further Readings
	UNIT 2: SERVLETS
	Unit Structure
	2.2 Servlet Basics
	2.4 Servlet Creation Tomcat
	2.6 Differences between GET and POST
	2.9 Glossary
	2.11 Activities
	After learning this Unit, you will be:

	2.1 Introduction
	2.2 Servlet Basics
	Servlet Life Cycle
	public void init(ServletConfig config) throws ServletException
	public void destroy():

	2.3 Servlet API
	These are as follows:
	Classes and Interfaces of javax.servlet package:
	Servlet Interface
	Servlet Interface Methods
	HttpServlet Class
	HttpServlet Class Methods
	GenericServlet Class
	GenericServlet Class Methods

	2.4 Servlet Creation in Tomcat
	Creating the Directory Structure
	Create a Servlet
	Compile the Servlet program
	Create a deployment descriptor
	Web.xml

	2.5 HTTP Methods
	Syntax:
	Syntax: (1)
	Syntax: (2)
	Syntax: (3)
	Syntax: (4)
	Syntax: (5)
	Syntax: (6)
	Syntax: (7)
	Syntax: (8)

	2.6 Differences between GET and POST
	Security:
	Re-submit behaviour:
	Form data type:
	Usability:
	Visibility:
	Caching:

	2.7 Let Us Sum Up
	2.8 Answer for Check Your Progress
	2.9 Glossary
	2.10 Assignment
	2.11 Activities
	2.12 Case Study

	2.13 Further Readings

	UNIT 3: SERVLET COLLABORATION AND CONFIGURATION
	Unit Structure
	3.2 Servlet Config
	3.4 Request Dispatcher
	3.6 Working with Attributes
	3.9 Glossary
	3.11 Activities
	After learning this Unit, you will be:

	3.1 Introduction
	3.2 Servlet Config
	ServletTest.java
	Output:

	3.3 Servlet Context
	ServletTest.java
	Output:

	3.4 Request Dispatcher
	Difference between forward() vs include() :
	Example:

	3.5 Send Redirect
	3.6 Working with Attributes
	Output:

	3.7 Let Us Sum Up
	3.8 Answer for Check Your Progress
	3.9 Glossary
	3.10 Assignment
	3.11 Activities
	3.12 Case Study

	3.13 Further Readings

	UNIT 4: SESSION MANAGEMENT
	Unit Structure
	4.10 Glossary
	4.12 Activities
	After learning this Unit, you will be:

	4.1 Introduction
	4.2 Session and its Importance
	4.3 Information Passing between Client and Server
	4.4 Cookies
	Constructors:
	Deleting the Cookies
	Example
	index.jsp
	ServletTest1.java
	Output:
	Figure 2: After Clicking Login

	4.5 URL Rewriting
	index.jsp
	ServletTest1.java
	Output:

	4.6 Hidden Form Field
	index.jsp
	ServletTest1.java
	Output:
	Figure 2: First Servlet with Submit Button

	4.7 Http Session
	index.jsp
	ServletTest1.java
	Output:
	Figure 2: Servlet1 with user and password

	4.8 Let Us Sum Up
	4.9 Answer for Check Your Progress
	4.10 Glossary
	4.11 Assignment
	4.12 Activities
	4.13 Case Study

	4.14 Further Readings

	BLOCK 4: JSP, Expression Language and JSTL
	Block Introduction
	Block Objective
	After learning this block, you will be able to:

	Block Assignment
	Short Answer Questions:
	Long Answer Questions:
	Unit Structure
	1.0 Learning Objectives
	1.2 JSP Life Cycle
	1.4 JSP Declaration Tag
	1.6 JSP Expression Tag
	1.8 Answer for Check Your Progress
	1.10 Assignment
	After learning this Unit, you will be:

	1.1 Introduction
	1.2 JSP Life Cycle
	1. Page Translation
	2. Page Compilation
	3. Class Loading
	4. Initialization
	5. Execution
	6. jspDestroy()

	1.3 JSP Architecture
	1.4 JSP Declaration Tag
	1.5 JSP Scriptlet Tag
	1.6 JSP Expression Tag
	Example:

	1.7 Let Us Sum Up
	1.8 Answer for Check Your Progress
	1.9 Glossary
	1.10 Assignment
	1.11 Activities

	1.12 Further Readings
	UNIT 2: JSP OBJECTS AND DIRECTIVES
	Unit Structure
	2.0 Learning Objectives
	2.2 JSP Implicit Objects
	2.4 JSP Action Elements
	2.6 Answer for Check Your Progress
	2.8 Assignment
	2.10 Case Study
	After learning this Unit, you will be able to:

	2.1 Introduction
	2.2 JSP Implicit Objects
	1. Request:
	Example: index.html
	2. Response:
	Example: index.html (1)
	3. PageContext:
	Example: index.html (2)
	pagecontext.jsp
	4. Session:
	Example: index.html (3)
	sessiondata.jsp
	5. Application:
	Example: index.html (4)
	web.xml
	6. Config:
	Example: index.jsp
	7. Out:
	Example: index.jsp (1)
	8. Page:
	index.jsp
	index.html
	exception.jsp

	2.3 JSP Directives
	Syntax:
	1. Page Directive
	2. Include Directive
	Example: Index.jsp
	3. Taglib Directive
	Example: index.jsp

	2.4 JSP Action Elements
	2.5 Let Us Sum Up
	2.6 Answer for Check Your Progress
	2.7 Glossary
	2.8 Assignment
	2.9 Activities
	2.10 Case Study

	2.11 Further Readings

	UNIT 3: JSP EXPRESSION LANGUAGE (EL)
	Unit Structure
	3.0 Learning Objectives
	3.2 Syntax
	3.4 EL Operators
	3.6 Answer for Check Your Progress
	3.8 Assignment
	After learning this Unit, you will be:

	3.1 Introduction
	3.2 Syntax
	Example:
	Example: (1)
	Example: (2)

	3.3 Different EL Implicit Objects
	Example of param and paramValues:
	index.jsp
	Output:
	Examples of SessionScope:
	index.jsp (1)
	Output: (1)
	Examples of Cookie:
	index.jsp (2)
	Output: (2)
	Example of ApplicationScope
	index.jsp (3)
	Output: (3)
	Examples of Header
	index.jsp:
	Examples of headerValues
	index.jsp: (1)
	Examples of pageContext
	index.jsp: (2)
	Examples of requestScope
	index.jsp: (3)
	Examples of pageScope
	index.jsp: (4)

	3.4 EL Operators
	Arithmetic Operators
	Example:
	Example: (1)
	Example: (2)
	The empty Operator
	Example: (3)

	3.5 Let Us Sum Up
	3.6 Answer for Check Your Progress
	3.7 Glossary
	3.8 Assignment
	3.9 Activities

	3.10 Further Readings

	UNIT 4: JSTL
	Unit Structure
	4.0 Learning Objectives
	4.2 JSP Custom Tag Library
	4.4 JSTL Function Tag
	4.6 JSTL XML Tag
	4.8 Let Us Sum Up
	4.10 Glossary
	4.12 Activities
	After learning this Unit, you will be:

	4.1 Introduction
	4.2 JSP Custom Tag Library
	JSTL jars

	4.3 JSTL Core Tags
	Syntax:

	4.4 JSTL Function Tag
	Syntax:

	4.5 JSTL Formatting Tag
	Syntax:

	4.6 JSTL XML Tag
	Syntax:

	4.7 JSTL SQL Tag
	Syntax:

	4.8 Let Us Sum Up
	4.9 Answer for Check Your Progress
	4.10 Glossary
	4.11 Assignment
	4.12 Activities
	4.13 Case Study

	4.14 Further Readings

