
(Established by Government of Gujarat)

Dr. Babasaheb Ambedkar
Open University

BAOU
Educa�on
for All

Master of Science - Data Science
(MSCDS)

Natural Language Processing
MSCDS-303

1

Natural Language
Processing

2024

Dr. Babasaheb Ambedkar Open University

Expert Committee

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Chairman)

Prof. (Dr.) Ajay Parikh
Professor and Head, Department of Computer Science
Gujarat Vidyapith, Ahmedabad

(Member)

Prof. (Dr.) Satyen Parikh
Dean, School of Computer Science and Application
Ganpat University, Kherva, Mahesana

(Member)

Prof. M. T. Savaliya
Associate Professor and Head, Computer Engineering Department
Vishwakarma Engineering College, Ahmedabad

(Member)

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member Secretary)

Course Writer

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Subject Reviewer

Dr. Shivang M. Patel
Associate Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Content Editor

Dr. Nidhi Arora
Co-Founder & Director-AI,
Advicon Solution Pvt. Ltd., Ahmedabad.

June 2024, © Dr. Babasaheb Ambedkar Open University

ISBN- 978-81-982671-6-0

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad
While all efforts have been made by editors to check accuracy of the content, the
representation of facts, principles, descriptions and methods are that of the respective
module writers. Views expressed in the publication are that of the authors, and do not
necessarily reflect the views of Dr. Babasaheb Ambedkar Open University. All products and
services mentioned are owned by their respective copyright’s holders, and mere
presentation in the publication does not mean endorsement by Dr. Babasaheb Ambedkar
Open University. Every effort has been made to acknowledge and attribute all sources of
information used in preparation of this learning material. Readers are requested to kindly
notify missing attribution, if any.

http://creativecommons.org/licenses/by/4.0/
SHIVANG PATEL
Highlight

2

Dr. Babasaheb
Ambedkar Open
University

MSCDS-303

Natural Language Processing

Block-1: Introduction to Natural Language Processing

Unit-1: Basics of Natural Language Processing 04

Unit-2: Text Processing 26

Unit-3: Language Modelling 72

Unit-4: Lexicons 88

Unit-5: English Morphology 128

Block-2: Word Level Analysis

Unit-1: Understanding and Evaluating N-grams 150

Unit-2: Lexicons and Tagging 163

Unit-3: Models for Tagging 183

Block-3: Syntactic & Semantic Analysis

Unit-1: Syntactic Analysis 200

Unit-2: Semantic Analysis 242

Unit-3: Vector Semantics and Embeddings 268

Block-4: Applications of Natural Language Processing

Unit-1: Text Summarization 304

Unit-2: Information Retrieval and Extraction 328

Unit-3: Drawing and Working with Animation 348

Unit-4: Sentiment Analysis 369

Unit-5: Speech Processing 390

3

Block-1
Introduction to

Natural Language Processing

4

Unit-1: Basics of Natural
Language Processing

Unit Structure

1.0. Learning Objectives

1.1. Introduction to Natural Language Processing

1.2. Origin of Natural Language Processing

1.3. Need for Natural Language Processing

1.4. Structural Features of Texts in Natural Language

1.5. Types of Natural Language Processing Tasks

1.6. Challenges of Natural Language Processing

1.7. Basic Approaches to Problem Solving

1.8. Let us sum up

1.9. Check your Progress: Possible Answers

1.10. Further Reading

1.11. Assignment

1

5

1.0 LEARNING OBJECTIVES

After studying this unit student should be able to:

• Know origin of natural language processing

• What is natural language processing

• List various types of natural language processing tasks

• Understand the need of language processing

• Explain the challenges of natural language processing

• Describe basic approaches to problem solving

1.1 INTRODUCTION TO NATURAL LANGAUGE
PROCESSING

With the digital revolution, massive amounts of data are generated every

second—from emails and text messages to articles, reviews, and social

media posts. Managing and extracting valuable insights from this unstructured

data has become a major challenge, as humans simply cannot keep up with

the pace. The solution? NLP allows machines to step in and handle the large-

scale analysis of text data.

The term "natural language" describes how people speak to one another,

specifically, text and speech. Text is all around us. Consider the amount of

text you encounter every day. You see road signs, restaurant menus, emails,

text and other social media messages, you visit websites, you use Google

search and do much more than this using text. The list goes on and on. Now if

you consider speech, we communicate with one another more often than we

write. Speaking might possibly be simpler to learn than writing. We connect

with each other via text and voice. Since natural language is so important, we

need to have ways to comprehend and analyze it, just like we do with other

kinds of data.

This gives rise to natural language processing. The objective is to make it

possible for computers to meaningfully and practically comprehend, interpret,

and produce human language. A branch of artificial intelligence called natural

6

language processing (NLP) helps computers comprehend human language.

Machines can comprehend unstructured web data by using natural language

processing (NLP), which allows us to make important discoveries. As

computer technology progresses beyond its basic needs, businesses are

looking for more effective ways to capitalize. New and extremely sophisticated

software systems have been created as a result of a dramatic increase in

computer power and speed; some of these systems are ready to replace or

supplement human services. Computers must listen, process, and decode

human text and speech in order to understand regular language. Language

recognition alone is insufficient; functional systems must also provide value

through genuine applications.

The goal of the Artificial Intelligence (AI) field of Natural Language Processing

(NLP) is to measure human language so that machines can understand it. It

integrates the strengths of computer science and linguistics to think about the

rules and structure of language and create intelligent systems that can

understand, deconstruct, and extract meaning from speech and text.

1.2 ORIGIN OF NATURAL LANGUAGE PROCESSING

To understand what makes Android so convincing, you must study how

mobile development has evolved and how Android differs from other mobile

platforms.

The concept of NLP has its roots in the early 20th century, grounded in

linguistic theory. In the early 1900s, Ferdinand de Saussure, a Swiss

linguistics professor at the University of Geneva, laid down the fundamentals

of linguistics by describing language as a structured “system” where sounds

represent concepts. His work suggested that language meaning is tied to the

context in which it appears, a foundational idea for NLP since understanding

text or speech requires machines to interpret language in context.

Another early milestone was the creation of the Turing Test by Alan Turing in

1950. In his paper “Computing Machinery and Intelligence”, Turing proposed

that a machine capable of holding a conversation indistinguishable from a

human’s could be considered to “think”. This idea spurred early efforts in

7

artificial intelligence, including the goal of developing machines that could

understand human language.

The formal birth of NLP as a field happened in the late 1950s. In 1957, Noam

Chomsky released Syntactic Structures. He revolutionized linguistic principles

in this work and came to the conclusion that a computer would need to

change the sentence structure in order to comprehend a language. In order to

achieve this, Chomsky developed a grammatical style known as Phase-

Structure grammatical, which systematically converted phrases from natural

language into a computer-readable format.

Following the innovations, in 1958 John McCarthy published the LISP

programming language that is still in use today. ELIZA, a "typewritten" remark

and answer procedure, was created in 1964 with the intention of mimicking a

psychiatrist by employing reflection techniques. It accomplished this by

rearranging sentences and adhering to comparatively basic grammar rules. In

1964, the Automatic Language Processing Advisory Committee was

established by the U.S. National Research Council. The purpose of this group

was to assess the state of research on natural language processing.

Research on artificial intelligence and natural language processing took

almost 14 years (until 1980) to bounce back from the unrealistic expectations

set by fervent enthusiasts. In other respects, the AI halt had sparked a new

wave of innovative thinking, with new ideas—such as expert systems—

promoted by the abandonment of earlier machine translation approaches. A

focus on pure statistics took the place of the linguistics and statistics blending

that had been common in early NLP research. A fundamental reorientation

began in the 1980s, when thorough analysis was replaced with basic

approximations and the evaluation procedure became more stringent.

Early systems were rule-based, using sets of manually crafted linguistic rules

to process text. These systems were limited in flexibility and adaptability.

However, there was a revolution in NLP in the late 1980s. Both the transition

to machine learning techniques and the gradual rise in processing capacity

were responsible for this. Research has shifted its focus to statistical models,

even though some of the earliest machine learning algorithms (decision trees

8

are a good example) created systems that resembled the antiquated

handwritten rules. Soft, probabilistic choices can be made by these statistical

models. IBM was in charge of creating a number of intricate and successful

statistical models during the 1980s. In the 1990s, statistical methods in NLP

became popular as computational power grew, leading to significant

breakthroughs. These statistical methods used large datasets to generate

probabilistic models that could handle language variations more effectively.

One of the first effective NLP/AI assistants in the world was Apple's Siri, which

debuted in 2011. The owner's words are converted into digitally translated

concepts by Siri's automated speech recognition module. The voice-command

system then correlates those concepts to preset instructions, starting

particular actions. Today, NLP is an integral part of AI, blending linguistics and

computer science.

1.3 NEED FOR NATURAL LANGUAGE PROCESSING

The need to access and process data is becoming more and more important

as the amount of data available online grows steadily. Natural language

processing scales language-related tasks and enables computers to converse

with humans in their native language. NLP enables computers to hear voice,

comprehend text, analyze it, gauge sentiment, and determine which passages

are important. More language-based data can be analyzed by current

machines than by people, consistently, and fairly. Given the staggering

volume of unstructured data generated daily—from social media to medical

records—automation will be essential to fully and effectively analyzing text

and audio data.

The human language is incredibly varied and confusing. We use endless

etiquette in both our written and spoken communications. There are

numerous dialects and languages, but each one has its own unique set of

grammatical and sentence construction norms, slang, and words. At the

writing stage, we frequently misspell words, omit punctuation, or shorten

sentences. The advancement of NLP has important implications for both

consumers and businesses. Consider the potential of an algorithm that is able

to understand the importance and nuances of human language in a variety of

9

settings, such as the study hall, the legal system, and medical. We shall

benefit from computers' unending capacity to assist us in making sense of the

ever-increasing amounts of unstructured data.

Some of the important ways in which NLP is needed are listed below:

1. Bridging the Communication Gap Between Humans and Machines

Human language is inherently complex, filled with ambiguities, idioms, and

context-dependent meanings. Unlike structured programming languages,

natural language is not easily interpretable by computers. NLP addresses

this gap by creating systems that can process, analyze, and generate

human language effectively.

Example:

● Virtual assistants like Siri and Alexa interpret spoken commands

and respond meaningfully.

● Search engines like Google use NLP to understand queries and

retrieve relevant results.

2. Managing the Explosion of Text Data

The digital age has led to an exponential increase in unstructured text

data, from emails and social media posts to research papers and customer

reviews. NLP enables organizations to process and derive insights from

this vast amount of text data efficiently.

Example:

● Sentiment analysis on social media helps brands gauge public

opinion about their products or services.

3. Automating Repetitive Language-Intensive Tasks

Many tasks, such as summarizing documents, translating languages, or

extracting key information from texts, are repetitive and time-consuming.

NLP automates these processes, saving time and reducing human error.

Example:

● Automatic summarization tools condense lengthy articles into

concise summaries.

● Machine translation systems like Google Translate break language

barriers.

10

4. Enhancing Accessibility

NLP technologies make information more accessible to people with

different needs. Speech-to-text systems assist individuals with hearing

impairments, while text-to-speech systems benefit visually impaired users.

Additionally, NLP enables non-native speakers to access content in their

preferred language.

Example:

● Real-time subtitles in video conferencing tools.

● Text-to-speech readers for e-books.

5. Enabling Personalization

By analyzing language, NLP tailors user experiences across various

applications, such as personalized recommendations in e-commerce or

adaptive learning platforms in education.

Example:

● Recommender systems suggest movies or books based on user

reviews and preferences.

6. Advancing Human Knowledge

NLP accelerates research by processing large volumes of academic texts,

identifying trends, and generating hypotheses. In domains like healthcare,

NLP helps analyze medical records, scientific papers, and clinical trial data

to uncover insights.

Example:

● NLP systems identify potential drug interactions by analyzing

medical literature.

● Chatbots provide mental health support by engaging users in

conversation.

7. Supporting Real-Time Decision Making

In fields like finance, healthcare, and security, NLP systems analyze

incoming data streams to provide actionable insights in real-time.

Example:

● Fraud detection in banking by analyzing transaction descriptions.

11

Real-time threat detection in cybersecurity by analyzing system logs and

alerts. When there is a need, there is a solution. The challenges driving the

need for natural language processing are as follows:

• Ambiguity in Language: Words and sentences often have multiple

meanings depending on context. For example, the word “bank” could

mean a financial institution or the side of a river. NLP is essential for

disambiguating such cases.

• Cultural and Linguistic Diversity: The world has over 7,000 languages,

each with unique grammar, vocabulary, and cultural nuances. Developing

NLP systems that work universally requires immense effort and innovation.

• Volume and Speed: Human ability to process language is limited

compared to the speed and scale of machine processing. NLP addresses

this by enabling real-time processing of massive datasets.

• Domain-Specific Language: Specialized fields like medicine, law, or

finance have jargon and terminology that require tailored NLP solutions.

Figure-1: Need of Natural Language Processing

12

1.4 STRUCTUAL FEATURES OF TEXT IN NATURAL
LANGUAGE

Natural language is inherently complex, consisting of multiple structural

features. Each feature presents both opportunities and challenges in teaching

machines to understand and interpret text. Let’s have an in-depth look at

these features:

• Phonology: Phonology is the study of sounds in language and their

organizational patterns. Though phonology deals with spoken language

rather than text, it plays a significant role in speech recognition, where

sound patterns are essential for accurate word recognition.

• Morphology: Morphology examines the structure of words and how they

are formed. Words can have roots, prefixes, and suffixes that alter their

meaning. For example, adding “-ed” to a verb root indicates the past

tense, while “-ing” indicates the continuous form. Morphological analysis is

crucial for stemming and lemmatization, which help models understand the

base meaning of different word forms.

• Syntax: Syntax refers to the arrangement of words to form grammatically

correct sentences. Syntax is important in determining relationships within a

sentence. For instance, in “The cat chased the dog”, syntax tells us who is

performing the action. Parsing helps NLP models understand the structure

of a sentence and the role of each word, which is essential for accurate

translation and sentiment analysis.

• Semantics: Semantics involves the meaning of words and phrases within

a language. This level of analysis helps NLP systems interpret polysemy

(words with multiple meanings) and synonymy (different words with similar

meanings). For example, understanding that “bank” can mean both a

financial institution and the side of a river requires semantic processing.

• Pragmatics: Pragmatics goes beyond sentence meaning to consider the

context in which language is used. Pragmatics plays a key role in resolving

ambiguities and understanding the implied meaning. For example, “Can

you pass the salt?” is a polite request, not a question about capability. For

effective conversation in chatbots, pragmatic understanding is essential.

13

Each of these structural features contributes to the complex nature of human

language. NLP algorithms often need to address all these aspects to

accurately interpret and generate human language.

Figure-2: Structureal Fearures of Text in Natural Language Processing

1.5 TYPES OF NATURAL LANGUAGE PROCESSING
TASKS

NLP encompasses a wide range of tasks, each addressing a specific aspect

of language understanding or generation. Here is a closer look at some core

NLP tasks and the methods used to achieve them.

Figure-3: Core NLP tasks

14

• Keyword Extraction: This task involves identifying the main words or

phrases that represent the core ideas of a text. Keyword extraction is

widely used in document indexing and summarization, helping users

quickly grasp the subject matter.

• Tokenization: Tokenization is the process of splitting text into smaller

units, typically words or phrases, called tokens. Tokenization allows NLP

systems to work with text as individual units, an essential step for further

analysis.

• Stemming: Stemming reduces words to their base or root forms by

removing suffixes and prefixes. For example, stemming “running” to “run”

helps NLP models understand that both words represent the same action.

• Parsing: Parsing is the grammatical analysis of a sentence, identifying its

syntactic structure. It’s a foundational step for tasks like machine

translation and question answering. Parsing tools like dependency parsers

help determine relationships between words in a sentence, enabling

deeper understanding.

• Machine Translation: Machine translation translates text from one

language to another. Traditional models used rules or statistical methods,

while modern approaches rely on neural networks, specifically

Transformer models like Google’s T5 or OpenAI’s GPT.

• Sentiment Analysis: Sentiment analysis classifies the emotional tone of

text as positive, negative, or neutral. It’s used to analyze public opinion on

social media, customer feedback, and more. Sentiment analysis

algorithms often rely on supervised learning, where models learn from

labeled examples.

• Named Entity Recognition (NER): NER identifies and categorizes names

of people, places, organizations, and other entities within text. This task is

crucial in applications like news categorization and information extraction.

• Text Summarization: Summarization condenses text while preserving its

main points. Extractive summarization selects key sentences from the

original, while abstractive summarization generates new sentences to

express the main ideas.

15

• Question Answering: Question answering (QA) systems retrieve or

generate answers in response to user questions. QA systems often rely on

large datasets and deep learning techniques to locate relevant information

quickly.

• Information Retrieval: Information retrieval (IR) finds documents or

information snippets relevant to a user’s query, as seen in search engines.

IR uses statistical methods and sometimes deep learning models to rank

results by relevance.

• Speech Recognition: This task involves converting spoken language into

text, foundational for virtual assistants like Siri or Google Assistant.

• Text Generation: Text generation involves producing coherent,

contextually relevant sentences. Neural network models like GPT-3 excel

in this task, generating everything from simple replies to creative writing.

• Text Classification: Text classification assigns predefined categories to

text, such as categorizing emails as spam or not spam. This task often

relies on machine learning models like Naive Bayes or neural networks.

• Part-of-Speech (POS) Tagging: POS tagging labels each word with its

grammatical role (noun, verb, etc.), a foundational step in parsing and

syntactic analysis.

• Text Prediction: Text prediction anticipates the next word or phrase,

commonly used in text input suggestions and autocomplete features.

• Spam Detection: Spam detection identifies unsolicited or harmful content,

commonly applied in email filtering systems.

• Chatbots: Chatbots use NLP to converse with users, often using a

combination of rule-based systems and machine learning for dialogue

management and response generation.

16

1.6 CHALLENGES OF NATURAL LANGUAGE
PROCESSING

NLP faces numerous challenges, given the complexity of human language:

● Data Scarcity: Training NLP models requires vast amounts of labeled

data, especially for deep learning methods. However, high-quality,

annotated datasets are scarce for many languages or specialized

fields.

● Language Diversity: Different languages follow unique syntax,

vocabulary, and conventions. Supporting multiple languages requires

adaptable models that can account for linguistic diversity.

● Contextual Understanding: For accurate interpretation, NLP models

need to understand context. This challenge is especially relevant in

long-form documents or conversations.

● Handling Sarcasm and Idioms: Sarcasm, idioms, and expressions

often rely on cultural knowledge, which machines struggle to interpret

accurately.

● Computational Complexity: Deep learning models, especially those

with billions of parameters, require significant computational resources,

limiting real-time applications.

Addressing these challenges is an ongoing research area, with advancements

in transfer learning, model efficiency, and unsupervised learning gradually

improving NLP capabilities.

1.7 BASIC APPROACHES TO PROBLEM SOLVING

The approaches can vary depending on the nature of the task, the data, and

the level of complexity involved. Here, we’ll explore some of the basic

approaches to problem solving in NLP that have been widely used.

17

Figure-4: Approaches to Problem Solving

1. Rule-Based Approaches

Rule-based approaches rely on predefined sets of linguistic rules to

process and analyze text. These rules are manually crafted by linguists or

experts and are designed to handle specific aspects of language, such as

sentence structure, part-of-speech tagging, or word segmentation. Rule-

based systems can be very effective for simple tasks where the patterns

are predictable, and the scope of the problem is well-defined.

Key Components of Rule-Based Approaches:

● Lexicons: A collection of words and their associated meanings,

properties, or part-of-speech tags.

● Grammar Rules: A set of rules that define how words can be combined

to form valid sentences or phrases.

● Inference Mechanism: A process for applying the rules to input data

and deriving conclusions.

18

Example:

● A rule-based part-of-speech tagger could have rules like “If a word

ends in -ing, tag it as a gerund” or “If a word is preceded by an article

(e.g., ‘the’, ‘a’), tag it as a noun”.

Advantages:

● High interpretability: Each decision is based on explicit rules.

● Can work well in controlled environments or when the language

patterns are well understood.

Challenges:

● Scalability: It’s difficult to account for all linguistic variations, especially

in large and diverse datasets.

● Maintenance: As the language evolves, new rules need to be added

manually, which can be time-consuming and error-prone.

2. Statistical Approaches

Statistical approaches rely on the analysis of large corpora of text and the

application of statistical models to infer patterns in language. These

approaches are based on probability theory and assume that language

can be modelled as a probabilistic process. By learning from data,

statistical models can make predictions about language structure and

meaning, often outperforming rule-based systems in tasks involving large,

varied datasets.

Key Components of Statistical Approaches:

● Corpus: A large collection of texts used to train and test models.

● Probabilistic Models: Statistical models, such as n-grams, Hidden

Markov Models (HMMs), or Conditional Random Fields (CRFs), which

calculate the likelihood of a word, sequence, or event occurring based

on observed data.

● Machine Learning: The use of algorithms that can learn from labelled

or unlabelled data to make predictions or classifications.

19

Example:

● In machine translation, a statistical model might learn the probability of

translating a word in one language to another based on the frequencies

observed in a bilingual corpus.

Advantages:

● Ability to handle large and diverse datasets.

● Provides a data-driven approach that can automatically adapt to new

language patterns without requiring manual rule creation.

Challenges:

● Requires large, labelled datasets for training, which can be expensive

and time-consuming to produce.

● Performance may degrade when dealing with noisy or ambiguous data,
especially in low-resource languages or domains.

3. Machine Learning Approaches

Machine learning (ML) approaches in NLP have gained significant traction

in recent years, particularly with the rise of deep learning techniques.

Machine learning algorithms use data-driven methods to build models that

can learn from examples and make predictions or classifications without

explicitly programming the system with rules. These approaches are

powerful because they allow the system to learn patterns and make

decisions based on large amounts of data.

Key Components of Machine Learning Approaches:

● Supervised Learning: The model is trained on labelled data where the

correct output is already known. This approach is common in tasks like

classification (e.g., sentiment analysis) and regression (e.g., predicting

numerical values).

20

● Unsupervised Learning: The model learns patterns in data without

labelled output. Clustering, topic modelling, and dimensionality

reduction are examples of unsupervised techniques.

● Reinforcement Learning: A system learns by interacting with an

environment and receiving feedback in the form of rewards or

penalties.

Example:

● In sentiment analysis, a supervised machine learning model might be

trained on a labelled dataset containing text samples and their

corresponding sentiment labels (positive, negative, neutral).

Advantages:

● Flexible and adaptable to different types of data and tasks.

● Capable of automatically improving as more data becomes available

(especially with deep learning).

Challenges:

● Requires a large amount of labelled data for supervised learning, which

may not always be available.

● The model’s interpretability can be difficult, especially with complex

models like deep neural networks.

● Training can be computationally expensive, particularly for deep
learning models.

4. Deep Learning Approaches

Deep learning is a subset of machine learning that involves the use of

artificial neural networks with many layers (hence the term “deep”). These

models are particularly effective in handling complex and large-scale data,

such as images, audio, and text. In NLP, deep learning models such as

Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM)

21

networks, and Transformer-based models have revolutionized many NLP

tasks.

Key Components of Deep Learning Approaches:

● Neural Networks: Layers of interconnected nodes that simulate the way

the human brain processes information.

● Embedding Layers: These layers convert words or phrases into

continuous vector representations (word embeddings) that capture

semantic relationships between words.

● Attention Mechanisms: These allow the model to focus on specific

parts of the input when making predictions, improving performance in

tasks such as machine translation.

Example:

● In machine translation, deep learning models like the Transformer

architecture can directly learn to map input sequences (in one

language) to output sequences (in another language) without the need

for explicit feature engineering.

Advantages:

● State-of-the-art performance in many NLP tasks (e.g., language

modelling, translation, question answering).

● Ability to process large amounts of data and learn complex patterns

automatically.

Challenges:

● Requires massive amounts of labelled data for training.

● High computational resources are needed, especially when training on

large datasets.

● Lack of interpretability: These models are often seen as “black boxes”,

making it difficult to understand how decisions are made.

22

5. Hybrid Approaches

Hybrid approaches in NLP combine different methods (e.g., rule-based,

statistical, and machine learning techniques) to leverage the strengths of

each. These approaches can be particularly useful when solving complex

tasks that require both linguistic knowledge and data-driven modelling.

Key Components of Hybrid Approaches:

● Rule-Based + Statistical: Using handcrafted rules for certain parts of

the task, while applying statistical models for other parts.

● Machine Learning + Linguistic Knowledge: Integrating machine

learning models with knowledge from linguistics to improve

performance in areas like syntax, semantics, and morphology.

Example:

● A hybrid approach for named entity recognition (NER) might use rule-

based methods to identify certain patterns (e.g., capitalized words), but

then employ a statistical model to classify the identified words into

entities such as person names, organizations, and locations.

Advantages:

● Flexibility to handle a wide variety of tasks.

● Ability to combine the best aspects of each approach (e.g., high

accuracy of machine learning models with the precision of rule-based

systems).

Challenges:

● Complexity in combining different techniques.

● Maintaining and updating multiple components of the system.

23

6. Neural Symbolic Approaches

Neural symbolic approaches aim to combine the strengths of neural

networks with symbolic reasoning. These models aim to integrate the

pattern recognition capabilities of deep learning with the structured,

interpretable reasoning of symbolic systems. This hybrid approach is still

an emerging field in NLP but has shown promising results in tasks

requiring both learning and reasoning.

Key Components:

● Neural Networks: For pattern recognition and learning from large

datasets.

● Symbolic Reasoning: For logical reasoning and using predefined rules

to solve problems.

Example:

● Using neural networks to learn language representations and then

applying symbolic reasoning to interpret and manipulate these

representations for tasks like question answering or commonsense

reasoning.

Advantages:

● Ability to combine the flexibility of deep learning with the interpretability

of symbolic systems.

● Promising complex reasoning tasks that require both learning and rule-

based logic.

Challenges:

● The integration of neural and symbolic components is still a major

research challenge.

● Ensuring that both components work well together in a unified system.

24

In NLP, there is no one-size-fits-all approach to problem solving. Each

approach, whether rule-based, statistical, machine learning, or deep

learning—has its strengths and weaknesses. Choosing the right approach

depends on the problem at hand, the available data, and the computational

resources. As NLP continues to evolve, hybrid and neural symbolic

approaches are pushing the boundaries of what is possible, allowing for more

accurate, efficient, and interpretable systems. By understanding and

combining these basic approaches, NLP systems can more effectively tackle

the complexities of human language.

Check Your Progress

a) Ambiguity in natural language refers to the presence of a single, clear

meaning for words or phrases. (True/False)

b) The plural forms of “cats” and “dogs” demonstrate examples of

phonological ambiguity. (True/False)

c) Pragmatics in NLP focuses solely on the grammatical correctness of a

sentence. (True/False)

d) Rule-based approaches are well-suited for highly complex and ambiguous

datasets. (True/False)

e) Machine learning models in NLP require manual creation of rules for each

task.

(True/False)

1.10 Let us sum up

In this unit we have discussed the origin of history of Natural Language

Processing. You have got detailed understanding of structural features of

texts in language processing. By explaining the types of natural language

processing tasks, we have set the basis for further concepts. We have also

elaborated on the challenges of natural language processing along with the

possible approaches to solve those problems.

25

1.11 Check your progress: Possible Answers

a) False

b) True

c) False

d) False

e) False

1.12 Further Reading

• Speech and Language processing an introduction to Natural Language

Processing, Computational Linguistics and speech Recognition by Daniel

Jurafsky and James H. Martin (ISBN13: 978-0131873216)

• James A. Natural language Understanding 2e, Pearson Education, 1994.

1.13 Assignments

• What are the origins of Natural Language Processing, and why is it

needed?

• How do the structural features of texts in natural language differ from other

forms of text data?

• What are the common types of tasks in NLP, and how do they address

different linguistic problems?

• Explain ambiguity in language. How does it manifest at various levels,

such as lexical, syntactic, and semantic?

• What are some significant challenges faced in NLP, and how do they

affect the accuracy of language models?

• Compare and contrast rule-based, statistical, and hybrid approaches to

problem-solving in NLP.

26

Unit-2: Text Processing

Unit Structure

2.0 Learning Objectives

2.1 Basic Linguistic Units

2.2 About Levels of Language:

2.3 Phonetics Analysis

2.4 Phonological Analysis

2.5 Morphological Analysis

2.6 Syntactical Analysis

2.7 Semantic Analysis

2.8 Pragmatic Analysis

2.9 Discourse Analysis

2.10 Ambiguity in All Levels of Natural Language

2.11 Let us sum up

2.12 Check your Progress: Possible Answers

2.13 Further Reading

2.14 Assignment

2

27

2.0 LEARNING OBJECTIVES

After studying this unit student should be able to:

• Know the basic linguistic units for processing natural language

• Understand the importance of all types of linguistic units in NLP

• List the subtypes of all linguistic units

• Explain the challenges of all linguistic units

• Recognize the applications of linguistic units

• Understand the ambiguities of natural language processing

• Describe the concept of various levels of language along with the

applications and challenges

2.1 BASIC LINGUISTIC UNITS

In NLP, text analysis starts with breaking down language into smaller,

manageable units. These basic linguistic units act as the foundation for

higher-level language processing tasks. Each unit represents a step in

understanding language, ranging from individual sounds to entire documents.

Let us delve deeper into these linguistic units and their importance in NLP.

Figure-5: Linguistic units

28

1. Phonemes

Phonemes are the smallest units of sound in a language that can change

the meaning of a word. For example, the words bat and pat differ by only

one phoneme: the initial sounds /b/ and /p/. This distinction can alter

meaning entirely, making phonemes a fundamental concept in

understanding spoken language.

Importance in NLP:

• Phonemes are vital in speech processing tasks like automatic speech

recognition (ASR). ASR systems convert spoken language into text by

recognizing individual phonemes and their sequence in speech.

Capturing subtle phoneme differences ensures transcription accuracy.

• Phoneme recognition is also crucial in text-to-speech (TTS) systems,

which need to generate natural and understandable speech.

 Challenges:

• Phonemes vary significantly across languages. For example, Mandarin

has tonal phonemes, where the same sound can have different

meanings depending on pitch.

• Phonemes can merge in connected speech, complicating tasks like

speech recognition. For instance, in rapid speech, want to might sound

like wanna.

2. Morphemes

Morphemes are the smallest meaningful units in a language. A word can

consist of one or more morphemes, each contributing to the word's

meaning.

Examples:

• A single morpheme: book (a complete word with meaning).

• Multiple morphemes: books (book + -s for pluralization).

29

 Types of Morphemes:

• Free Morphemes: Standalone words (e.g., play, happy).

• Bound Morphemes: Attach to other morphemes to convey meaning

(e.g., prefixes like un- or suffixes like -ed).

 Importance in NLP:

• Morphological Analysis:

o Recognizing morphemes helps NLP systems handle word

variations. For example, understanding that running, runs, and

ran share a root (run) aid in tasks like information retrieval.

• Machine Translation:

o Accurate morpheme recognition ensures that subtle nuances in

meaning are preserved across languages. For example,

translating played from English to Spanish requires recognizing

the past tense marker -ed to produce jugó.

• Text Generation:

o Understanding morphemes allows systems to generate

grammatically correct and meaningful text. For instance, a

chatbot generating I am eating instead of I eat now relies on

accurate morphological rules.

3. Words

Words are combinations of morphemes and serve as the primary carriers

of meaning in any language. In NLP, words are often treated as the first

level of analysis, as they represent a distinct unit of understanding.

Tokenization:

• Splitting text into individual words is a foundational step in many NLP

pipelines. For example, tokenizing the sentence “The cat sleeps” yields

the words “The”, “cat”, and “sleeps”.

30

Applications in NLP:

• Part-of-Speech (POS) Tagging: Assigning grammatical labels (e.g.,

noun, verb) to words helps in syntactic analysis.

• Named Entity Recognition (NER): Identifying words that represent

specific entities, such as New York or Google.

• Word Embeddings: Representing words as vectors in a continuous

space (e.g., Word2Vec) captures semantic relationships between

them. For instance, king - man + woman ≈ queen.

Challenges:

• Ambiguity: Words can have multiple meanings depending on context

(e.g., bank as a financial institution or a riverbank).

• Compound Words: Some languages (e.g., German) have compound

words that require special handling.

4. Phrases

Phrases are groups of words that function as a single syntactic unit. They

provide additional context or information within a sentence.

Types of Phrases:

• Noun Phrase (NP): A phrase centered around a noun (e.g., the big

dog).

• Verb Phrase (VP): A phrase with a verb and its complements (e.g., is

running fast).

• Prepositional Phrase (PP): A phrase beginning with a preposition (e.g.,

in the park).

Importance in NLP:

• Syntax Parsing: Parsing phrases helps systems understand sentence

structure. For example, identifying in the park as a PP clarifies that it

describes the location of an action.

• Machine Translation: Phrases often translate differently than individual

words. For instance, the English phrase kick the bucket translates to

31

the idiom estirar la pata in Spanish (not a literal word-for-word

translation).

• Text Summarization: Phrases help identify key information in text,

improving the quality of summaries.

Challenges:

• Recognizing idiomatic expressions: Phrases like raining cats and dogs

require special handling to preserve meaning.

5. Sentences

Sentences represent complete thoughts, consisting of words and phrases

arranged according to grammatical rules.

Importance in NLP:

• Sentiment Analysis: Understanding the sentiment expressed in

sentences, such as “I love this movie” (positive) versus “I hate this

movie” (negative).

• Question Answering: Sentence-level understanding helps systems like

chatbots provide relevant answers to user queries.

• Syntax and Grammar Correction: Identifying and correcting

grammatical errors in sentences is crucial for applications like

Grammarly.

Challenges:

• Long and complex sentences: Parsing a sentence like “The man who

came yesterday and spoke with the manager left his book” requires

resolving ambiguities in phrase attachment and pronoun reference.

• Sentence boundaries: Identifying sentence boundaries in text,

especially in cases like “Dr. Smith is here.” versus “Dr.” in

abbreviations.

32

6. Documents

Documents are cohesive collections of sentences that form a larger text,

such as books, articles, or emails.

Importance in NLP:

• Text Summarization: Condensing lengthy documents into concise

summaries while preserving meaning.

• Topic Modelling: Identifying the main topics in a document, such as

categorizing a news article as related to politics or sports.

• Document Classification: Labelling documents with predefined

categories (e.g., spam vs. non-spam emails).

Challenges:

• Contextual Consistency: A document might shift topics or tone,

complicating consistent analysis.

• Multi-document Processing: Combining information from multiple

documents requires cross-referencing and merging relevant details.

Interaction between Linguistic Units

Understanding linguistic units individually is important, but their interaction is

equally significant. For example:

• Recognizing phonemes leads to identifying morphemes, which

combine to form words. Words group into phrases, which form

sentences, culminating in cohesive documents.

• NLP systems often process text hierarchically, starting with phonemes

or words and progressing to sentence or document-level tasks.

33

2.2 ABOUT LEVELS OF LANGUAGE

Language processing can be broken down into distinct linguistic levels. Each

level provides a structured way to understand the complexities of human

communication. These levels offer foundational knowledge for developing

NLP systems.

Figure-6: Levels of Language

2.3 PHONETICS ANALYSIS

Phonetics in a language referes to the sounds of human speech. It focuses on

how these sounds are produced, transmitted, and perceived. In the context of

NLP, phonetics plays a foundational role in applications such as speech

recognition, text-to-speech synthesis, and language learning tools.

Key Subfields of Phonetics

1. Articulatory Phonetics:

o Studies how speech sounds are physically produced by the

human vocal tract.

o Sounds are formed by the movement of articulators such as the

tongue, lips, vocal cords, and palate.

34

o Example:

▪ The sound /p/ in “pat” is produced by pressing the lips

together (a bilabial sound) and releasing a burst of air.

▪ The sound /s/ in “snake” is formed by forcing air through

a narrow channel between the tongue and the alveolar

ridge.

2. Acoustic Phonetics:

o Examines the physical properties of speech sounds as sound

waves, including frequency, amplitude, and duration.

o Applications: Used in voice recognition systems to analyze

sound wave patterns and match them with phonemes.

o Example: The sound /a/ in “cat” has a distinct frequency pattern

compared to /e/ in “bet”.

3. Auditory Phonetics:

o Focuses on how speech sounds are perceived by the listener.

o Studies how the brain processes different sound frequencies,

volumes, and durations.

o Applications: Critical for building systems like hearing aids and

voice assistants that must mimic human auditory processing.

Phonemes

A phoneme is the smallest unit of sound that can change the meaning of a

word.

Examples:

o The words “bat” and “pat” differ by one phoneme: /b/ vs. /p/. This

difference alters the meaning of the word entirely.

o Similarly, in “cat” and “cut”, the phonemes /æ/ and /ʌ/ determine

the word’s meaning.

35

In NLP applications, identifying phonemes accurately is crucial for speech-

to-text systems. Misidentification of a phoneme can lead to significant

errors in transcription.

Applications of Phonetics in NLP

1. Speech-to-Text Systems:

o Systems like Siri, Google Assistant, and Amazon Alexa rely on

phonetics to transcribe spoken language into text.

o Phonetics enables the recognition of subtle differences between

sounds, ensuring accurate transcription.

2. Text-to-Speech (TTS) Systems:

o Phonetics helps TTS engines produce natural-sounding speech

by simulating the sound patterns of human language.

o Example: In generating speech for words like “cats” and “dogs”,

phonetic rules ensure the correct pronunciation of the plural

ending.

3. Language Learning Applications:

o Language learning apps like Duolingo use phonetic analysis to

help users pronounce words correctly.

o Feedback is often based on comparing the learner's speech

sound patterns with native speakers.

4. Accent and Dialect Recognition:

o Phonetics aids in identifying regional accents and dialects.

o This is particularly useful for customizing voice assistants to

understand users with different accents or pronunciations.

36

Challenges of Phonetics in NLP

1. Ambiguity in Speech:

o Spoken words often sound similar, especially in noisy

environments. For example, “write” and “right” are homophones

that require context to distinguish.

2. Coarticulation:

o Speech sounds are influenced by surrounding sounds, making it

challenging to identify individual phonemes. For instance, the /t/

sound in “cat” may differ subtly when spoken in “catapult”.

3. Variation in Pronunciation:

o Differences in regional accents, age, or speaking style can affect

how phonemes are articulated.

o Example: In American English, “butter” is often pronounced as

/ˈbʌɾɚ/, while in British English, it is /ˈbʌtə/.

4. Noise Interference:

o Background noise or overlapping speech can distort the

acoustic signal, making phoneme identification harder.

Phonetics Beyond Speech Recognition

Phonetics isn’t limited to speech systems; it also influences how NLP

applications handle written language indirectly. For example:

● Spelling Correction:

o Phonetic algorithms like Soundex use phonetic similarity to

suggest corrections for misspelled words.

o Example: If a user types “rite”, the system might suggest “right”

based on phonetic equivalence.

● Cross-Language Processing:

o Phonetics aids in transliteration systems, which convert words

from one script to another while preserving pronunciation.

o Example: Transliteration of the Hindi word “नमसे्त” to “namaste”.

37

Example: Speech-to-Text

Let’s consider a real-world example of how phonetics works in speech-to-

text systems:

1. Speech Input:

o A user says, “Hello, how are you?”

2. Phoneme Recognition:

o The system analyzes the sound wave and identifies the

phonemes /h/, /ə/, /l/, /oʊ/ for “hello”.

3. Context Integration:

o Phonetic analysis helps distinguish between homophones or

similar-sounding words by using contextual probabilities.

4. Text Output:

o The recognized phonemes are mapped to words, producing the

output: “Hello, how are you?”

2.4 PHONOLOGICAL ANALYSIS

Phonology of a language examines how systematically sounds are organized

and used in a particular language. While phonetics deals with the physical

properties of sounds, phonology focuses on their abstract, functional role in

communication. It analyzes patterns and rules that determine how sounds

interact in speech, enabling us to form meaningful utterances.

In the context of NLP, phonology plays a crucial role in applications like text-

to-speech synthesis, speech recognition, and language modelling.

Key Concepts in Phonology

1. Phonemes and Allophones:

o Phonemes: The smallest units of sound that distinguish meaning

between words. Example: /b/ and /p/ in “bat” and “pat” change

the meaning of the word entirely.

38

o Allophones: Variants of a phoneme that do not change the

meaning of a word. Example: The /t/ in “top” (aspirated) vs.

“stop” (unaspirated) are allophones of the same phoneme in

English.

In NLP, recognizing phonemes accurately is crucial for speech-to-text

systems, while understanding allophones helps improve text-to-speech

synthesis to mimic natural speech variations.

2. Distinctive Features:

o Phonemes are characterized by a set of distinctive features,

such as:

▪ Place of articulation (e.g., bilabial, alveolar).

▪ Manner of articulation (e.g., nasal, fricative).

▪ Voicing (whether vocal cords vibrate or not, as in /b/ vs.

/p/).

o These features are essential in NLP systems for distinguishing

between similar-sounding words.

3. Phonotactics:

o Phonotactics refers to the rules governing permissible sound

sequences in a language. Example: In English, “str” can begin a

word (e.g., “street”), but “zbt” cannot.

o Application in NLP: Phonotactic rules are used in automatic

language identification and word generation tasks to ensure

outputs follow the natural patterns of a language.

4. Prosody:

o Prosody encompasses the rhythm, stress, and intonation

patterns in speech. Example: The sentence “You’re going?” can

have a rising intonation to indicate a question or a falling

intonation to suggest disbelief.

39

o Application in NLP: Text-to-speech systems rely on prosodic

features to produce expressive and natural-sounding speech.

Applications of Phonology in NLP

1. Text-to-Speech (TTS) Systems:

o Phonology ensures natural pronunciation by analyzing sound

patterns and stress rules.

o Example: The word “read” is pronounced as /rɛd/ in past tense

but /riːd/ in present tense. Phonology helps TTS systems select

the correct pronunciation based on context.

2. Speech Recognition Systems:

o Phonology helps distinguish between sounds that vary

contextually, ensuring accurate transcription.

o Example: The plural “-s” in “cats” (/s/) and “dogs” (/z/) is different

but systematically predictable. Phonology ensures these

patterns are recognized.

3. Accent and Dialect Handling:

o Different accents and dialects have distinct phonological rules.

o Example: British English often drops the /r/ sound in words like

“car”, whereas American English does not.

o NLP systems use phonology to adapt and process language

variants effectively.

4. Language Modelling:

o Phonological insights aid in generating or analyzing poetic or

rhyming text, where sound patterns are critical.

o Example: A poetry generation model must consider phonological

rules to create rhymes or alliteration.

40

Phonological Processes

1. Assimilation:

o A sound becomes similar to a neighboring sound for ease of

articulation. Example: In “input”, the /n/ often sounds like /m/ in

casual speech, as in [ˈɪmpʊt].

o NLP systems leverage this knowledge to handle casual or

slurred speech in conversational AI.

2. Elision:

o The omission of sounds in rapid speech. Example: “friends” may

be pronounced as [frɛnz], dropping the /d/.

o Speech recognition models account for elision to improve

transcription accuracy.

3. Insertion (Epenthesis):

o Adding a sound to facilitate pronunciation. Example: In English,

some speakers say “ath-a-lete” instead of “athlete”.

o NLP models use this understanding to predict user intent

despite phonological variations.

4. Flapping:

o In American English, /t/ and /d/ between vowels are pronounced

as a soft “tap”. Example: “butter” is pronounced as [ˈbʌɾɚ].

o Text-to-speech systems integrate flapping rules for natural-

sounding American English.

Challenges in Phonology for NLP

1. Cross-Language Phonological Variations:

o Different languages have unique phonological rules, making

multilingual NLP challenging. Example: The sound /r/ in Spanish

differs significantly from its English counterpart.

41

2. Handling Non-Standard Speech:

o Variations like regional accents, casual speech, and slang add

complexity. Example: A British speaker might say “I’ve got” as

“I’ve g-” with the /t/ sound dropped.

3. Prosody and Emotion:

o Capturing the nuances of rhythm and intonation for emotional

understanding remains difficult. Example: The same phrase, “I

didn’t mean it”, can be apologetic or defensive depending on

tone.

Example

Scenario: A user says, “Cats and dogs are friendly pets.”

1. Phoneme Identification:

o Phonemes like /k/, /æ/, /t/, /s/, /d/, and /z/ are extracted.

2. Phonological Rule Application:

o The plural “-s” sounds like /s/ in “cats” and /z/ in “dogs” based on

phonological patterns.

3. Contextual Interpretation:

o Phonological processes like assimilation (e.g., “and” pronounced

as [ən]) are accounted for.

4. Output:

o A text-to-speech system uses these insights to synthesize

natural, human-like speech.

2.5 MORPHOLOGICAL ANALYSIS

Morphology in a language examines the internal structure of words and how

they are formed. It focuses on morphemes, the smallest units of meaning in a

language, and the rules for combining them. Morphology is critical for NLP, as

42

it helps machines understand word formation, variations, and meanings. By

analyzing morphology, NLP systems can perform tasks like text generation,

translation, and information retrieval more effectively.

Core Concepts in Morphology

1. Morphemes:

o The smallest units of meaning within a word.

o Types of Morphemes:

▪ Free Morphemes: Can stand alone as words. Example:

book, run, happy.

▪ Bound Morphemes: Must attach to another morpheme to

convey meaning. Example: Prefix un- in unhappy, suffix -

ed in played.

2. Word Formation Processes:

o Derivation: Adding prefixes or suffixes to create a new word.

Example: happy → unhappy (prefix), care → careful (suffix).

o Inflection: Modifying a word to indicate grammatical features like

tense, number, or case. Example: run → running (present

participle), cat → cats (plural).

3. Morphological Features:

o Tense: Indicates time in verbs (e.g., walked vs. walk).

o Number: Singular or plural forms (e.g., child vs. children).

o Case: Indicates grammatical function in a sentence (common in

languages like German or Russian).

Applications of Morphology in NLP

1. Morphological Analysis:

o Decomposing words into morphemes to understand their

structure.

43

o Example: Breaking down replaying into re- (prefix), play (root),

and -ing (suffix).

2. Part-of-Speech Tagging:

o Morphological cues help identify whether a word is a noun, verb,

or adjective.

o Example: The suffix -ly in quickly signals an adverb.

3. Named Entity Recognition (NER):

o Morphology helps recognize and classify proper nouns, dates,

and other entities.

o Example: Recognizing that January is a month or Microsoft is a

company.

4. Machine Translation:

o Morphological analysis ensures accurate translation of words

with different forms.

o Example: Translating runs (English) to corre (Spanish) while

maintaining grammatical agreement.

Challenges in Morphology for NLP

1. Morphological Complexity:

o Languages like Finnish or Turkish have highly inflectional and

agglutinative structures, making analysis challenging. Example:

In Turkish, evlerinizden means “from your houses”, combining

ev (house), -ler (plural), -iniz (your), and -den (from).

2. Ambiguity in Morphemes:

o The same morpheme may have different meanings in different

contexts. Example: -s in English can indicate plural (cats),

possession (cat’s), or verb tense (runs).

44

3. Compound Words:

o Languages like German create long compound words, requiring

additional analysis.

Example: Donaudampfschifffahrtsgesellschaft (Danube

steamship company).

4. Unseen Morphological Variants:

o Handling newly coined words, such as bloggers or selfie,

requires robust morphological models.

Morphological Parsing

Morphological parsing involves breaking down words into their component

morphemes to understand their structure and meaning. It typically uses:

1. Rule-Based Methods:

o Predefined linguistic rules for segmenting morphemes. Example:

Identify -ed as a past tense marker in played.

2. Statistical Models:

o Learning patterns from annotated datasets to identify

morphemes. Example: Predicting the root and suffix in unseen

words using probabilistic models.

3. Neural Morphological Parsers:

o Deep learning models trained on large corpora for language-

independent morphology analysis. Example: Sequence-to-

sequence models that handle morphologically rich languages

like Arabic or Russian.

Examples of Morphological Processes in NLP

1. Stemming:

o Reducing a word to its root form by removing affixes.

▪ Example: playing, played → play.

45

o Stemming is useful in search engines, where variations of a

word should retrieve the same results.

2. Lemmatization:

o Returning a word to its base form using linguistic rules.

▪ Example: better → good (adjective base form).

o Lemmatization is more accurate than stemming but

computationally intensive.

3. Tokenization:

o Segmenting text into meaningful units like words or phrases.

o Morphological analysis improves tokenization by identifying

compound words or multi-word expressions.

Example

Scenario: Translating cats into a morphologically rich language like Hindi.

1. Morphological Breakdown:

o cats = cat (root) + -s (plural suffix).

2. Translation Process:

o Identify the Hindi equivalent of cat: बिल्ली (billi).

o Apply pluralization rules in Hindi: बिल्लल्लय ाँ (billiyan).

3. Result:

o Morphological analysis ensures correct translation with

grammatical agreement.

Advanced Morphological NLP Tasks

1. Morphological Generation:

o Creating word forms based on rules. Example: Generating verb

conjugations in French (aller → je vais, tu vas, il va).

46

2. Morphological Alignment:

o Mapping morphological features across languages for

translation tasks. Example: Aligning gender and number in

French-English translations.

3. Morphology in Low-Resource Languages:

o Leveraging morphological patterns to enhance NLP capabilities

for underrepresented languages. Example: Using morpheme-

based segmentation to improve Swahili language models.

2.6 SYNTACTICAL ANALYSIS

Syntax for any language is concerned with the rules and principles that

govern the structure of sentences in a language. It focuses on how words are

combined to form grammatically correct sentences and how different

arrangements can alter meaning. In the context of NLP, understanding syntax

is essential for a variety of tasks, including machine translation, question

answering, and parsing.

Key Concepts of Syntax

1. Grammatical Rules:

o Syntax provides rules that dictate how words are arranged to

form valid sentences.

o Example: In English, a simple sentence follows the Subject-

Verb-Object (SVO) order: “The cat (Subject) chased (Verb) the

mouse (Object).”

o Rearranging the order (The mouse chased the cat) changes the

meaning entirely.

2. Syntactic Structures:

o Sentences are not just linear arrangements of words; they have

hierarchical structures represented as syntax trees.

47

o Example: In the sentence, The quick brown fox jumps over the

lazy dog, the phrase quick brown fox is a noun phrase, and

jumps over the lazy dog is a verb phrase.

3. Constituents:

o Words group together into larger units called constituents.

o Types of Constituents:

▪ Noun Phrase (NP): A group of words built around a noun

(e.g., the red car).

▪ Verb Phrase (VP): A group of words built around a verb

(e.g., is running fast).

▪ Prepositional Phrase (PP): A preposition followed by its

object (e.g., in the park).

4. Parts of Speech:

o Words in a sentence are categorized into parts of speech, such

as nouns, verbs, adjectives, and prepositions.

o Syntax relies on these categories to define how words can be

combined.

5. Dependency Grammar:

o This focuses on the relationships between words in a sentence.

o Example: In She eats an apple, the verb eats governs the

subject she and the object apple.

Syntactic Parsing

Parsing is the process of analyzing a sentence's syntactic structure. It

involves breaking down sentences into their components and organizing

them according to grammatical rules.

1. Constituency Parsing:

o Breaks sentences into nested phrases (constituents).

o Result: Syntax trees showing how words group into phrases.

48

▪ Example:

The cat chased the mouse

├── NP (The cat)

└── VP (chased the mouse)

2. Dependency Parsing:

o Focuses on word-to-word relationships instead of phrases.

o Result: Dependency graphs showing the grammatical

relationships between words.

▪ Example:

root(chased)

├── subj(cat)

└── obj(mouse)

Applications of Syntax in NLP

1. Machine Translation:

o Syntax ensures the translated text adheres to the target

language's grammatical rules. Example: Translating The boy

loves the girl (English) to Le garçon aime la fille (French),

maintaining subject-verb-object alignment.

2. Question Answering:

o Understanding syntax helps identify the focus of a question.

Example: For the question Who wrote the book?, syntax

identifies Who as the subject.

49

3. Summarization:

o Syntax helps in condensing sentences while maintaining

grammatical correctness. Example: The quick brown fox jumps

over the lazy dog in the park → The fox jumps over the dog.

4. Grammar Checking:

o Tools like Grammarly analyze syntax to detect and correct

errors.

5. Dialogue Systems:

o Syntax enables systems like chatbots to generate and

understand grammatically correct responses.

Challenges in Syntax

1. Word Order Variation:

o Different languages have different word orders.

▪ Example: English uses SVO order (I eat apples), while

Japanese uses SOV order (I apples eat).

2. Ambiguity:

o Sentences can have multiple syntactic interpretations.

▪ Example: I saw the man with a telescope could mean:

▪ I saw the man using a telescope.

▪ I saw the man who had a telescope.

3. Idiomatic Expressions:

o Syntax may not always follow traditional rules in idioms.

▪ Example: Kick the bucket (meaning to die) does not

conform to typical syntax analysis.

50

4. Complex Sentences:

o Sentences with multiple clauses or unusual structures can be

challenging.

▪ Example: The book that the professor who I met

yesterday recommended is excellent.

Syntactic Formalisms

1. Context-Free Grammar (CFG):

o Uses a set of rules to describe valid sentence structures.

Example Rules:

▪ S → NP VP (A sentence consists of a noun phrase

followed by a verb phrase).

▪ NP → Det N (A noun phrase consists of a determiner

followed by a noun).

2. Probabilistic Context-Free Grammar (PCFG):

o Extends CFG by assigning probabilities to rules, helping resolve

ambiguities.

Example: If a sentence can be parsed in two ways, PCFG

chooses the more likely one based on probabilities.

3. Combinatory Categorial Grammar (CCG):

o Captures syntactic and semantic information simultaneously,

making it useful for tasks like machine translation.

Syntactic Ambiguity in NLP

Ambiguity arises when a sentence has multiple possible syntactic

structures or interpretations. Resolving ambiguity is crucial for accurate

NLP.

Example: Consider the following sentence.

Visiting relatives can be tiresome.

51

● Interpretation 1: The act of visiting relatives is tiresome.

● Interpretation 2: Relatives who are visiting can be tiresome.

Resolution Techniques:

● Use context to determine the most likely interpretation.

● Employ statistical models like PCFGs.

Syntax in Modern NLP Models

1. Rule-Based Systems: Rule-based systems are early NLP systems that

relied on predefined syntactic rules.

Limitation: These systems struggled with ambiguity and exceptions.

2. Statistical Models: Statistical models use annotated corpora to learn

syntactic patterns.

Example: Dependency parsers like Stanford Parser.

3. Neural Models: Transformer-based models like BERT falls under the

category of neural models which implicitly capture syntactic structures

through self-attention mechanisms.

Benefit: They do not require explicit syntactic rules but still achieve high

accuracy.

2.7 SEMANTICAL ANALYSIS

Semantics is the study of meaning in language, focusing on understanding

what words, phrases, sentences, and texts mean. It examines how individual

words relate to one another and how their meanings combine to form the

overall meaning of a sentence or text. In NLP, semantics plays a crucial role

in enabling machines to comprehend and interpret human language

accurately.

52

Key Aspects of Semantics

1. Word Meaning: Words can have different meanings depending on

context, which makes their semantic analysis challenging.

Example: Bank - Could mean a financial institution or the side of a

river, depending on the context.

o Synonymy: Words with similar meanings (e.g., big and large).

o Antonymy: Words with opposite meanings (e.g., hot and cold).

2. Compositional Semantics: This method studies how the meanings of

individual words combine to create the meaning of a sentence.

Example: In the sentence - The cat sat on the mat.

o Word meanings combine logically: cat (subject), sat (action),

mat (object of the action).

3. Ambiguity: Semantic ambiguity occurs when a word or sentence has

multiple meanings.

Example: Semantic ambiguity can be found in the following sentences.

o I saw her duck could mean:

o I observed her pet duck.

o I saw her lower her head.

4. Context Dependence: The meaning of words and sentences often

depends on context.

Example: In the sentence - She is bright could mean intelligent or

glowing, depending on context.

5. Figurative Language: Language that goes beyond literal meanings,

such as metaphors and idioms.

Example: The sentence - He kicked the bucket means he died in

idiomatic use, not the literal action.

53

Applications of Semantics in NLP

1. Question Answering: Semantic analysis ensures the system

understands the intent behind a question and retrieves a relevant

answer.

Example: For the question What is the capital of France?, semantic

analysis identifies Paris as the answer.

2. Machine Translation: Accurate translation requires an understanding of

the semantic nuances of words and sentences.

Example: Translating He is running late to another language must

capture the semantic meaning (delayed) rather than a literal

interpretation of running.

3. Information Retrieval: Semantic understanding allows search engines

to provide results that match the intent behind a query.

Example: Searching for affordable laptops should return results for

budget laptops as well.

4. Sentiment Analysis: Analyzing text to determine whether it expresses

positive, negative, or neutral sentiment.

Example: The movie was absolutely fantastic! conveys a positive

sentiment.

5. Text Summarization: Summarization systems rely on semantics to

identify key points and maintain meaning while condensing text.

Example: Summarizing a news article by retaining its main points

without distorting meaning.

Challenges in NLP

1. Polysemy: Polysemy occurs when a word in the with multiple meanings

is used in a sentence.

Example: The word book can mean a written work or the act of

reserving something.

54

2. Homonyms: Homonyms occur when words that are spelled and

pronounced the same but have different meanings.

Example: Bat (flying mammal) vs. bat (sports equipment).

3. Semantic Ambiguity: When sentences can have different

interpretations, it is said to have semantic ambiguity.

Example: He saw the man with a telescope could mean:

▪ The man had a telescope.

▪ He used a telescope to see the man.

4. Figurative Language: If in a sentence, it is difficult for machines to

recognize and interpret metaphors, idioms, and sarcasm, it is said to

be in figurative language.

Example: Break a leg means good luck, not literal harm.

5. Out-of-Vocabulary (OOV) Words: Words not seen during training can

be challenging to interpret, especially in specialized domains.

Approaches to Semantic Analysis in NLP

1. Lexical Semantics: Lexical semantics focuses on word-level meaning

using resources like dictionaries and thesauri.

Example: WordNet groups words into sets of synonyms (synsets) and

defines their relationships.

2. Distributional Semantics: Distributional semantics represents word

meaning based on the contexts in which words appear.

Example: Words like king and queen occur in similar contexts,

indicating related meanings.

3. Semantic Parsing: Semantic parsing converts natural language into a

formal representation of its meaning.

Example: Find the nearest restaurant → {intent: “find”, object:

“restaurant”, location: “nearest”}.

55

4. Neural Approaches: There are two neural approaches -

o Word Embeddings: Word embeddings represent words as

dense vectors capturing semantic relationships.

Example: In word2vec, vectors for king, queen, man, and

woman encode relationships like:

▪ king - man + woman ≈ queen

o Pretrained Models: Models like BERT and GPT capture deep

contextual semantics for downstream tasks.

5. Knowledge Graphs: Knowledge graphs represent entities and their

relationships in a structured form.

Example: Google Knowledge Graph links entities like Paris (city) to

attributes like capital of France.

Advancements in Semantic Analysis

1. Contextual Word Representations: Models like BERT consider the

context of a word in a sentence, allowing them to handle polysemy

effectively.

2. Cross-Lingual Semantics: Systems are being developed to understand

and process semantics across multiple languages.

3. Semantic Role Labelling (SRL): Assigns roles to words in a sentence to

capture their relationships.

Example: In John gave Mary a book, SRL identifies:

▪ John: Giver

▪ Mary: Receiver

▪ Book: Object

56

2.8 PRAGMATIC ANALYSIS

Pragmatics focuses on how language is used in real-world contexts and how

meaning is influenced by factors such as speaker intent, tone, social norms,

and the surrounding environment. Unlike semantics, which studies meaning in

isolation, pragmatics delves into the interpretation of meaning based on the

situation in which the language is used. It is essential for understanding

implied meanings, conversational nuances, and the broader implications of

what is said.

Key Aspects of Pragmatics

1. Speaker Intent: Pragmatics helps determine why a speaker says

something, focusing on the intended meaning rather than the literal

one.

Example: Can you open the window? is not a question about ability but

a polite request for action.

2. Contextual Influence: The meaning of an utterance can change

depending on the situation or context in which it is spoken.

Example: It’s cold in here might be a statement or an indirect request to

close a window.

3. Conversational Implicature: This refers to meaning implied by the

speaker but not explicitly stated.

Example:

o A: Are you coming to the party?

o B: I have to work late. (Implied meaning: “No, I can’t.”)

4. Deixis (Pointing Words): Words like this, that, here, there, I, and you

derive their meaning from context.

Example: I’ll meet you there tomorrow only makes sense if the listener

knows who I and you are, where there refers to, and when tomorrow is.

57

5. Speech Acts: Language is not just for conveying information; it is used

to perform actions.

Example: I promise to help you is not merely stating something but

committing to an action.

6. Politeness and Social Norms: Pragmatics considers the cultural and

social norms that influence how language is used.

Example: In some cultures, indirectness (e.g., Would you mind...?) is

preferred over direct commands (Do this).

Applications of Pragmatics in NLP

1. Chatbots and Virtual Assistants: Pragmatics is crucial for making

conversational agents like Siri, Alexa, and chatbots interpret user intent

correctly.

Example: A user saying, Can you tell me a joke? requires the system

to understand it as a request, not a literal query about its capability.

2. Sentiment Analysis: Understanding tone and implied meanings, such

as sarcasm or politeness, is a key aspect of pragmatics.

Example: Oh, great, another meeting! might indicate frustration, not

enthusiasm.

3. Contextual Recommendations: Systems like personalized assistants or

e-commerce platforms use pragmatics to tailor suggestions based on

user behavior and preferences.

Example: Recommending restaurants when a user asks, Where should

I go for dinner?

4. Conversational Analysis: Pragmatics helps NLP systems maintain

coherent conversations by linking responses to user inputs and

considering prior context.

58

Example:

o User: I’m hungry.

o System: Would you like me to find a nearby restaurant?

5. Disambiguation: Pragmatic analysis helps resolve ambiguity in

language by considering context.

Example: The phrase I saw her duck could mean observing a pet duck

or the action of bending down. Pragmatics identifies the correct

meaning based on context.

Challenges of Pragmatics in NLP

1. Understanding Implicit Meanings: Machines struggle to infer meanings

that are not explicitly stated, such as conversational implicature.

Example: Interpreting It’s late as a signal to end a meeting.

2. Sarcasm and Irony: Detecting sarcasm often requires knowledge of

tone, context, and cultural cues.

Example: Oh, fantastic! Another delay! (likely sarcasm).

3. Dealing with Ambiguity: Pragmatics must resolve ambiguities caused

by contextual factors.

Example: John said he will come tomorrow. (Who is he referring to?)

4. Context Dependence: Pragmatic interpretation requires maintaining

extensive contextual information, which can be computationally

intensive.

Example: In a long conversation, tracking all prior exchanges to

interpret a statement correctly.

5. Cultural Sensitivity: Language norms vary widely across cultures, and

pragmatic models must account for these differences.

Example: Politeness strategies in English might not translate directly to

other languages.

59

Approaches to Pragmatic Analysis in NLP

1. Rule-Based Systems: Early systems relied on predefined rules to

interpret pragmatic meanings, such as identifying requests or

commands based on keywords.

Example: If a sentence starts with Can you, classify it as a request.

2. Statistical Models: Statistical methods use data-driven approaches to

predict pragmatic meanings based on patterns in large datasets.

Example: Classifying a sentence as sarcastic based on word

combinations like oh and great.

3. Machine Learning Models: Modern approaches use deep learning to

capture nuances of pragmatics.

Example: Transformer-based models like GPT and BERT can infer

intent by considering word relationships in context.

4. Contextual Understanding: Advanced models incorporate context from

prior sentences, conversations, or external knowledge bases to

interpret pragmatic meaning.

5. Cultural and Emotional Modeling: Incorporating knowledge of cultural

norms and emotional cues into models to improve pragmatic

interpretation.

Example: Using sentiment analysis tools to identify tone and intent.

2.9 DISCOURSE ANALYSIS
Discourse focuses on how individual sentences or utterances combine to form

coherent, meaningful communication. It involves analyzing the relationships

between sentences, paragraphs, or dialogue exchanges to uncover the

broader context, intent, and structure of the language. While other levels of

language focus on individual words or sentences, discourse considers the "big

picture," examining how pieces of language fit together to convey meaning

over extended stretches of text or conversation.

60

Key Concepts in Discourse

1. Cohesion

o Cohesion refers to the linguistic elements that link sentences

together, such as conjunctions (and, but, because), pronouns

(he, she, it), or synonyms. These elements ensure a text or

conversation flows logically.

o Example: Consider the sentence -

▪ John went to the park. He took his dog with him.

Here, he and his refer to John, maintaining cohesion.

2. Coherence

o Coherence is about the logical sense or meaning that emerges

from a connected piece of text. Even if sentences are

grammatically correct and cohesive, they must make sense

together to be coherent.

o Example: In the following examples, coherent can be

understood.

▪ The cat is on the mat. It is sleeping. (Coherent)

▪ The cat is on the mat. The sky is blue. (Cohesive but

incoherent)

3. Discourse Markers

o These are words or phrases that signal relationships between

sentences, such as however, therefore, meanwhile, or on the

other hand. They guide readers or listeners through the

structure of the discourse.

o Example: The use of relationship phrases is shown in the

following sentence.

▪ She studied hard. Therefore, she passed the exam.

61

4. Anaphora and Cataphora

o Anaphora refers to backward references, where a pronoun or

phrase points to something previously mentioned.

▪ Example: Sarah loves painting. She is very talented.

o Cataphora refers to forward references, where a pronoun or

phrase points to something yet to be mentioned.

▪ Example: When he arrived, John was tired.

5. Topic Continuity

o This involves maintaining a consistent topic or smoothly

transitioning to new topics within a discourse. Abrupt topic

changes can disrupt understanding.

o Example: In a paragraph about climate change, mentioning

renewable energy is more coherent than switching to a

discussion about sports.

6. Dialogue Acts

o In conversations, sentences serve different functions, such as

making statements, asking questions, or issuing commands.

Recognizing these acts is crucial in understanding discourse.

o Example:

▪ A: Where are you going? (Question)

▪ B: To the store. (Answer)

Applications of Discourse in NLP

1. Text Summarization: Discourse analysis is essential for creating

summaries of long texts while preserving their main points and logical

flow.

62

Example: Summarizing a news article about a political debate by

extracting the key arguments from different participants.

2. Dialogue Systems and Chatbots: Understanding discourse helps

chatbots maintain coherence in conversations.

Example: The following example shows a chat between user and a

chatbot.

▪ User: Tell me about weather forecasts.

▪ Bot: Sure. It’s expected to rain tomorrow.

3. Sentiment Analysis: Discourse analysis allows models to evaluate

sentiments expressed over multiple sentences, considering context.

Example: The beginning of the movie was slow, but the ending was

fantastic. (Overall positive sentiment despite an initial negative phrase)

4. Text Cohesion in Machine Translation: Discourse analysis ensures that

translations of long texts maintain the original meaning and flow.

Example: Translating pronouns accurately so the subject is clear

throughout a passage.

5. Question-Answering Systems: Analyzing discourse enables systems to

find contextually accurate answers within a document.

Example: Answering the question Why did Sarah leave? by

considering the preceding sentence: Sarah left because she was tired.

Challenges in Discourse Analysis

1. Maintaining Context: Keeping track of references, such as pronouns or

implied subjects, over long texts or conversations is difficult.

Example: John met Mary at the park. She was holding a book. It looked

interesting. (What does it refer to?)

63

2. Ambiguity in References: Resolving references like pronouns can be

ambiguous without clear context.

Example: When Jack spoke to Tom, he seemed angry. (Who is

angry?)

3. Complex Relationships: Discourse often includes nested relationships

and interruptions, which are hard for machines to process.

Example: In political debates, speakers may shift topics rapidly while

responding to opponents.

4. Cultural and Stylistic Variations: Different cultures and writing styles

structure discourse differently, posing challenges for universal models.

Example: Some languages use more implicit connections, relying on

the reader to infer relationships.

5. Implicit Meanings: Recognizing unstated but implied connections

between sentences can be difficult.

Example: The streets were wet. She forgot her umbrella. (Implied

meaning: It rained.)

Approaches to Discourse Analysis in NLP

1. Rule-Based Systems: Early systems relied on rules for identifying

discourse markers and resolving references.

Example: Rules like if a pronoun appears, find the nearest noun for

resolution.

2. Machine Learning Models: Models trained on large, annotated datasets

learn to identify relationships between sentences and maintain

coherence.

Example: Classifying sentences as background information, main

points, or conclusions in essays.

64

3. Neural Network Approaches: Advanced deep learning models like

transformers (e.g., BERT, GPT) analyze context across entire

documents, capturing nuanced discourse relationships.

Example: Coherence models trained to predict the likelihood of

sentence order based on discourse structure.

4. Graph-Based Methods: Representing text as a graph, where nodes are

sentences and edges are connections, helps model discourse

structure.

Example: Identifying topic shifts in conversations.

2.10 AMBIGUITY IN ALL LEVELS OF LANGUAGE

Ambiguity in natural language refers to the presence of multiple meanings or

interpretations of words, phrases, or sentences, depending on the context.

One of the greatest challenges in NLP is resolving these ambiguities to

ensure that machines can interpret language as humans do. Ambiguity can

occur at various levels of language, and understanding these levels is

essential for building NLP systems that can effectively process and

understand human language.

Figure-7: Types of ambiguity in language

65

1. Phonetic Ambiguity: Phonetic ambiguity occurs when different words or

phrases sound alike but have different meanings or spellings. This type of

ambiguity is significant in speech processing tasks, like automatic speech

recognition (ASR), where the machine must accurately recognize and

transcribe spoken words.

Example: Consider the words-

● “bare” vs. “bear”

● “right” vs. “write”

● “two” vs. “too”

These words are homophones, meaning they sound the same but differ in

meaning and spelling. Phonetic ambiguity is a primary concern in speech

recognition systems that need to differentiate between similar-sounding

words based on context. For example, in the sentence “I want to bear the

weight”, the word “bear” refers to the verb meaning to carry, while in “I saw

a bear in the woods”, “bear” refers to the animal.

Challenges:

● Distinguishing between words with similar sounds in noisy

environments.

● Handling homophones that change meaning based on context.

2. Phonological Ambiguity: Phonological ambiguity refers to situations

where the same word can be pronounced differently, affecting its meaning.

This type of ambiguity is more prominent in spoken language and involves

how certain sounds can be interpreted differently based on rules or

regional accents.

Example: The plural form of “cat” is pronounced differently than the plural

form of “dog”:

66

● “Cats” is pronounced with a /s/ sound (kæts), while “dogs” is

pronounced with a /z/ sound (dɒgz).

Phonological ambiguity also includes accents, dialects, and speech

variations, where the pronunciation of words can vary from one region to

another. This can pose challenges for NLP systems designed to

understand speech patterns, especially in global applications.

Challenges:

● The need for phonological models that account for dialectal variations

and regional pronunciations.

● Difficulty in creating systems that are robust across different speech

patterns.

3. Morphological Ambiguity: Morphological ambiguity arises when a word

can have multiple meanings due to the different ways in which it can be

broken down into morphemes (the smallest meaningful units in a

language).

Example: The word "unhappiness" can be analyzed as: “un-” (prefix

meaning “not”), “happy” (root), and “-ness” (suffix meaning “state or

condition”).

However, the ambiguity arises in how we interpret the word. Is it the state

of being unhappy, or is the focus on the meaning of the prefix, which

negates happiness?

Challenges:

● Identifying the correct morphemes when words have multiple meanings

or forms (e.g., “bats” can refer to the animal or the sports equipment).

● Resolving ambiguity in compound words, where each part has its own

meaning but together forms a new word.

67

4. Syntactic Ambiguity: Syntactic ambiguity occurs when the structure of a

sentence allows for multiple interpretations of its meaning. This type of

ambiguity happens when a sentence or phrase can be parsed in more

than one way due to the different ways words can be grouped or

organized.

Example: Consider the following sentence.

● “I saw the man with the telescope.”

o Interpretation 1: The speaker used a telescope to see the

man.

o Interpretation 2: The man had a telescope.

In this example, the ambiguity arises due to the phrase “with the

telescope”, which could either modify the subject (“I”) or the object (“man”).

The placement of prepositional phrases and other syntactic elements can

lead to multiple interpretations.

Challenges:

● Resolving ambiguities in sentence structure through syntactic analysis

(e.g., parsing).

● Determining the most probable interpretation based on surrounding

context or world knowledge.

5. Semantic Ambiguity: Semantic ambiguity is one of the most common

forms of ambiguity, occurring when a word or phrase has multiple

meanings based on context. These meanings can be due to polysemy

(one word having multiple related meanings) or homonymy (one word

having entirely unrelated meanings).

Example: Consider the following sentence.

● The word “bank”:

o Interpretation 1: A financial institution.

o Interpretation 2: The edge of a river or stream.

68

Similarly, words like “bat” can refer to both a flying mammal or a piece of

sports equipment.

Semantic ambiguity challenges NLP systems because machines need to

determine the correct meaning of a word in context, which requires a

sophisticated understanding of the sentence or surrounding text.

Challenges:

● Disambiguating words that have multiple meanings based on their

usage in context (e.g., “bark” as the sound a dog makes vs. “bark” as

the outer covering of a tree).

● Identifying the intended sense of a word when there is no explicit

context or the context is ambiguous.

6. Pragmatic Ambiguity: Pragmatic ambiguity occurs when the intended

meaning of a sentence or phrase depends on factors such as the

speaker's intention, the context in which the language is used, and the

social or cultural understanding between the speaker and listener.

Example: Consider the following sentence.

● “Can you pass the salt?”

o Interpretation 1: A question about whether the listener is

physically capable of passing the salt (literal).

o Interpretation 2: A polite request for the listener to pass the

salt (pragmatic).

In this case, the sentence is grammatically a question, but pragmatically it

is understood as a request. NLP systems need to go beyond literal

meaning and understand the social context and underlying intention

behind language.

69

Challenges:

● Understanding intent and context, especially in informal or

conversational settings.

● Handling idiomatic expressions, sarcasm, and irony, where meaning

diverges from the literal interpretation.

7. Discourse Ambiguity: Discourse ambiguity arises when interpreting

relationships between different parts of a conversation or text. Ambiguity

can occur when multiple sentences or paragraphs are involved, and the

relationship between them is unclear or open to different interpretations.

Example: Consider the following sentence.

● “John went to the bank to withdraw some money. He then met his

friend at the bank.”

o Interpretation 1: John visited a financial institution to

withdraw money, then met his friend at the same institution.

o Interpretation 2: John went to the riverbank to withdraw

money (perhaps by the river), then met his friend at the same

location.

Here, discourse ambiguity arises because the word “bank” is ambiguous,

and the relationship between the sentences could be interpreted in

different ways depending on the context.

Challenges:

● Maintaining consistency in interpretation across multiple sentences or

paragraphs.

● Identifying coreferences (e.g., understanding that “he” refers to “John”)

and handling pronominal references and anaphora.

70

Check Your Progress

a) Phonemes are the smallest units of ______ in a language that can change

the meaning of a word, such as /b/ and /p/ in “bat” and “pat”.

b) In NLP, morphemes are categorized into two types: ______ morphemes,

which can stand alone, and ______ morphemes, which must attach to

another morpheme.

c) Tokenization, a fundamental NLP task, involves splitting text into individual

______ for analysis.

d) ______ phrases, such as “the big dog”, are centered around a noun, while

______ phrases, like “is running fast”, are centered around a verb.

e) ______ refers to the study of meaning in language, focusing on how

words, phrases, and sentences convey their intended meanings.

2.11 Let us sum up

In this unit we have discussed the basic linguistic units for processing natural

language. You have got detailed understanding of all types of linguistic units

in NLP along with their subtypes. We have explained the challenges of all

linguistic units. You will be able to recognize the applications of linguistic units

by having the understanding of the ambiguities of natural language

processing.

2.12 Check your progress: Possible Answers

a) sound

b) free, bound

c) words

d) noun, verb

e) semantics

71

2.13 Further Reading

• James A. Natural language Understanding 2e, Pearson Education, 1994.

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

2.14 Assignments

• What are the basic linguistic units in text processing, and why are they

important for NLP tasks?

• Briefly describe the levels of language: phonetics, phonology, morphology,

syntax, semantics, pragmatics, and discourse.

• How does syntax contribute to the understanding of sentence structures in

NLP?

• Define morphology and its role in analyzing the structure of words.

• What is the significance of semantics and pragmatics in language

comprehension?

72

Unit-3: Language Modelling

Unit Structure

3.0. Learning Objectives

3.1. Introduction

3.2. Types of Language Models: Brief Overview

3.3. Importance of Language Models in Modern NLP Applications

3.4. Mathematical Basis of Language Models

3.5. Challenges in Language Modelling

3.6. Grammar-based Language Modelling

3.7. Statistical Language Modelling

3.8. Let us sum up

3.9. Check your Progress: Possible Answers

3.10. Further Reading

3.11. Assignment

3

73

3.0 LEARNING OBJECTIVES

After studying this unit student should be able to:

• Understand the concept of language modelling

• List the importance of language models

• Formulate the mathematical basis of natural languge

• Know the basics of grammar-gased and statistical language modelling

• Explain types of language models

• List strengths and limitations of language models

• Provide examples of language models

3.1 INTRODUCTION

Language modelling is a foundational concept in NLP and has extensive

applications across various domains, from search engines and

recommendation systems to virtual assistants and content generation tools. A

language model (LM) is essentially a computational method that assigns a

probability to a sequence of words, helping to determine which sequences are

likely and which are not. By understanding and predicting sequences of

words, language models can drive tasks like machine translation, sentiment

analysis, text summarization, and even chatbots.

The concept of a language model is straightforward: given a sequence of

words, the model attempts to predict what the next word will likely be. This

seemingly simple task is incredibly powerful because it encapsulates the

essential idea of predicting patterns in human language, which is full of

structure, nuance, and variability. Understanding the patterns in language

requires dealing with ambiguities, complex syntactic structures, and diverse

expressions, which language models strive to capture.

Language models allow machines to work with human languages in a more

sophisticated way than basic text processing techniques can. Since human

language is highly ambiguous and context-sensitive, language models help

computers make more informed guesses about meaning and predict patterns

74

in text. For instance, when typing in a search engine or using a voice

assistant, the tool leverages a language model to understand what you might

want to ask or search for. Similarly, when generating text or recommending

content, models predict what comes next based on context, which is a core

task of NLP.

Example of language model prediction:

Suppose we give input “The quick brown fox jumps over the” to a language

model. The model might predict the word “lazy” as the next word, since it is

frequently used in this phrase. By training on vast amounts of text data,

language models “learn” such frequent associations, allowing them to

generate coherent and relevant text.

3.2 TYPES OF LANGUAGE MODELS

Language models can be divided into three primary types based on the

methods used to understand and predict language:

1. Grammar-based Language Models: These rely on rules and

syntactic structures derived from the grammar of a language.

Grammar-based models are good at generating syntactically

correct sentences but can be rigid and struggle to adapt to the

flexible and dynamic nature of language found in everyday text.

2. Statistical Language Models: These models use statistical

techniques and probability calculations to predict word sequences.

Popular examples include n-gram models, which predict the next

word based on the previous few words. Statistical models are

adaptable, as they are trained on large datasets, allowing them to

learn language patterns without predefined grammar rules.

3. Neural Language Models: Leveraging machine learning and neural

networks, these models can capture complex dependencies

between words over longer contexts. They are highly adaptive and

are the basis for state-of-the-art NLP applications. Modern neural

75

language models, like transformers (such as BERT and GPT), use

attention mechanisms to understand word relationships in

sentences, leading to much more accurate predictions and natural

language understanding.

Figure-8: Types of Language Models

3.3 IMPORTANCE OF LANGUAGE MODELS IN
MODERN NLP APPLICATIONS

Language models are indispensable in NLP because they enable machines to

understand and generate human language with contextual awareness. Here

are a few practical examples of how Language Models are used in NLP:

1. Text Generation: Language models are used to generate human-

like text in applications such as chatbots, virtual assistants, and

content creation tools. By learning from massive datasets, language

models can produce coherent and contextually relevant sentences

or paragraphs.

2. Speech Recognition: In speech-to-text systems, language models

help improve accuracy by predicting which words are most likely

76

based on context. This is crucial in handling homophones and

reducing errors in spoken language processing.

3. Machine Translation: Language models play a critical role in

translating text from one language to another. By learning patterns

and sequences from multilingual data, Language models help

ensure that translated sentences are grammatically correct and

retain the original meaning.

4. Autocomplete and Text Prediction: Language models are used in

keyboard applications and search engines to suggest word

completions and predict the next word or phrase. This saves users

time and enhances usability.

5. Sentiment Analysis: For tasks involving understanding opinions and

emotions in text, Language models help recognize phrases and

structures that convey positive, negative, or neutral sentiments.

This is widely used in social media analysis, customer feedback

processing, and recommendation systems.

6. Question Answering Systems: Advanced language models power

systems that can answer questions posed in natural language, such

as virtual assistants and search engines. These models understand

the intent of questions and use learned language patterns to

generate relevant responses.

3.4 MATHEMATICAL BASIS OF LANGUAGE MODELS

The key mathematical principle behind language models is the probability of

word sequences. In a language model, we want to compute the probability of

a sentence or sequence of words P(w1,w2, ... ,wn). This probability can be

defined using conditional probabilities, where each word depends on the

words before it:

77

P(w1,w2, ... ,wn) = P(w1) × P(w2∣w1) × P(w3∣w1,w2) ×...× P(wn∣w1,w2,

...,wn-1)

However, calculating the probability of a word based on all previous words is

computationally expensive, especially for long sequences. Therefore,

simplifications are made, such as in n-gram models, which consider only the

last n−1 words to predict the next word:

P(w1,w2, ... ,wn) ≈ P(wi ∣ wi-(n-1), …, wi-1)

For instance, in a bigram model (where n=2), each word depends only on the

preceding word:

P(w1,w2, ... ,wn) ≈ P(w1) × P(w2∣w1) × P(w3∣w2) ×...× P(wn∣ wn-1)

3.5 CHALLENGES IN LANGUAGE MODELLING

Developing effective language models comes with several challenges:

1. Data Sparsity: Especially for n-gram models, certain word

sequences may be rare or absent in the training data, making it

hard to assign probabilities to unseen sequences.

2. Contextual Dependencies: Simple models struggle to capture long-

range dependencies, such as those between words separated by

several intervening words in a sentence.

3. Ambiguity: Words often have multiple meanings based on context,

and language models must determine the appropriate

interpretation.

4. Computational Complexity: Large datasets and complex

architectures (like neural networks) require significant

computational resources, which can be expensive.

78

3.6 GRAMMER BASED LANGUAGE MODELS

Grammar-based language models are rule-driven systems that use the

structural rules of a language—its syntax and grammar—to generate and

interpret sentences. Unlike statistical models, which rely on probabilities

derived from data, grammar-based models depend on a structured set of

linguistic rules. These rules help the model predict the correct sequence of

words or phrases, ensuring that generated language follows the grammatical

patterns of the target language. Grammar-based LMs are highly useful for

applications requiring syntactic correctness, such as language generation in

controlled settings.

Basics of Grammar-Based Language Modelling

At the core of grammar-based language models is the formal grammar of a

language, which consists of a set of rules defining valid sentence structures.

Formal grammar can specify the valid arrangement of parts of speech (e.g.,

nouns, verbs, adjectives, and adverbs) and how they combine to form

phrases and sentences. By following these rules, grammar-based LMs

construct sentences that are syntactically correct. These models are

particularly useful for languages with well-defined syntactic structures and are

frequently applied in rule-based natural language processing tasks, especially

for languages with simpler or more rigid grammar.

Grammar-based models often rely on context-free grammars (CFGs) or

regular grammars, which are rule systems that describe how sentences are

constructed. For example, a simple grammar rule for a sentence in English

might look like this:

Sentence → Noun Phrase + Verb Phrase

And the rule for a Noun Phrase (NP) could be:

Noun Phrase → Determiner + Noun

This grammar-based approach enforces that every sentence generated or

analyzed by the model adheres to the specific structural rules of English

grammar.

79

Here’s an example of a grammar rule set for a basic sentence structure:

1. Sentence → Noun Phrase + Verb Phrase

2. Noun Phrase → Determiner + Noun

3. Verb Phrase → Verb + Noun Phrase

If we apply this rule set to generate a sentence, it might create the following:

Eg : The cat eats food.

In this case:

● “The cat” is a Noun Phrase following the rule Determiner + Noun.

● “Eats food” is a Verb Phrase following the rule Verb + Noun Phrase.

These simple rules can be combined in various ways to form sentences that

adhere to the grammar of a language.

Types of Grammar-Based Language Models

Grammar-based LMs can be implemented in different ways based on the

types of grammars and the specific application needs:

1. Context-Free Grammars (CFGs): A CFG is a type of grammar where

each rule, or production, replaces a single non-terminal symbol with a

sequence of non-terminal and/or terminal symbols. The power of CFGs

lies in their ability to describe a wide range of language constructs

without being tied to a specific context. CFGs are widely used in

parsing, where sentences are broken down into their structural

components for further analysis.

Example CFG rule:

o S → NP VP (where S = sentence, NP = noun phrase, VP =

verb phrase)

2. Regular Grammars: Regular grammars are simpler than CFGs and

are often used for simpler tasks, such as tokenization or detecting

simple patterns in text. They are commonly used in search engines and

basic natural language tasks where complex sentence structure is not

needed.

3. Dependency Grammars: Dependency Grammar focuses on the

relationships between words in a sentence, particularly how one word

(such as a verb) governs other words. They are effective for

80

understanding the hierarchical structure of sentences and for tasks that

require understanding who did what to whom in a sentence.

4. Tree Adjoining Grammars (TAGs): TAGs are a more complex form of

grammar that extends CFGs by allowing recursive structures. They are

powerful for languages with flexible word orders and complex sentence

structures, capturing deeper linguistic phenomena such as syntactic

movement.

Strengths Limitations

1 Syntactic Precision: Grammar-based

models ensure syntactic correctness,

which is beneficial for applications

where grammatical accuracy is

crucial.

Lack of Adaptability: Grammar-

based models are limited to

predefined rules and are not well-

suited for languages or dialects

with highly flexible structures or

informal language.

2 Controlled Language Generation:

Since these models follow strict rules,

they are ideal for generating text in

controlled environments, such as

automated report generation,

customer service scripts, or language

learning applications.

Difficulty Handling Ambiguity:

Grammar-based models struggle

with ambiguous sentences

because they lack the probabilistic

approach used by statistical

models. This rigidity can lead to

errors in interpreting colloquial or

complex expressions.

3 Interpretability: The rule-based nature

of these models makes them easier

to interpret and modify, which can be

helpful in refining specific language

patterns.

Manual Rule Creation: Creating

grammar rules for a language

model is labor-intensive and

requires deep linguistic expertise.

Additionally, as the scope of

language grows, the rule set must

be constantly updated and

maintained.

Table-1 Strengths and Limitations of Grammar-Based Models

81

Examples of Grammar-Based Language Models

1. Rule-Based Chatbots: Early chatbots, such as ELIZA and PARRY,

relied on predefined grammar rules and pattern matching. For instance,

ELIZA simulated a therapist by responding with sentence templates

that mirrored user input, though it lacked deep understanding.

2. Natural Language Interfaces: Grammar-based models are often used

in applications like grammar checkers, where syntactic rules can help

detect errors in sentence structure.

3. Voice-Controlled Systems: Grammar-based models are applied in

voice recognition systems for specific domains, such as air traffic

control or customer service, where commands follow strict syntactic

rules.

4. Data Extraction and Transformation: Grammar-based models are used

in data extraction tasks, such as identifying structured information (e.g.,

names, dates, addresses) within unstructured text, by applying specific

grammar rules for patterns.

Grammar-Based Parsing

Parsing is the process of breaking down sentences into components

according to a grammar. A parse tree represents the structure of a sentence

according to grammar rules, with each node representing a syntactic category

and the leaf nodes representing individual words. Parse trees allow the model

to systematically understand how words in a sentence relate to each other

syntactically.

Example: Parse tree for “The cat sits on the mat”.

1. Sentence (S)

o Noun Phrase (NP): The cat

▪ Determiner (Det): The

▪ Noun (N): cat

o Verb Phrase (VP): sits on the mat

▪ Verb (V): sits

82

▪ Preposition Phrase (PP): on the mat

▪ Preposition (P): on

▪ Noun Phrase (NP): the mat

Parse trees are critical in grammar-based LMs because they enforce syntactic

rules, ensuring correct sentence structure. They are especially useful in

applications like code analysis, where even a minor grammatical error can

change the entire meaning of a sentence.

Limitations and Modern Relevance

While grammar-based language models were the mainstay of early NLP, they

face challenges in scalability and flexibility for modern applications. Natural

languages are dynamic, constantly evolving with new words, idioms, and

styles. This variability is hard to capture with static rule sets. Today, while

grammar-based models still find use in niche applications requiring strict

syntactic correctness, they have largely been complemented by statistical and

neural models. However, they continue to influence these newer models by

inspiring ways to integrate syntactic knowledge into machine learning

frameworks, helping to bridge the gap between formal language structure and

natural language variability.

3.7 STATISTICAL LANGUAGE MODELS
Statistical Language Models are among the most commonly used techniques

in NLP, especially in applications like speech recognition, machine translation,

and text prediction. Unlike grammar-based models that rely on predefined

syntactic rules, statistical LMs learn language patterns by analyzing large

amounts of text data. They use probabilities to predict the likelihood of a word

or sequence of words based on observed data, making them powerful tools

for understanding and generating language in diverse contexts.

Overview of Statistical Language Models

The primary idea behind statistical LMs is to estimate the probability of a

sequence of words, or a sentence, within a language. These models are

trained on large text corpora and then used to predict which words are likely

83

to appear in specific contexts. For instance, given the phrase “I would like a

cup of ”, a statistical language model might predict that the next word is likely

to be “coffee” or “tea” based on patterns seen in the training data.

Formally, statistical LMs are concerned with calculating the probability of a

word sequence:

P(w1,w2, ... ,wn)

where w1,w2, ... ,wn represent the words in a sentence. Using probability

theory, statistical LMs aim to model the joint probability of these word

sequences, often simplifying this probability calculation using approaches like

the n-gram model.

The N-Gram Model: A Foundation of Statistical Language Modelling

One of the most common types of statistical LMs is the n-gram model. This

model assumes that the probability of a word depends only on the previous

n−1 words, rather than on the entire sentence. In other words, it simplifies the

calculation of sentence probability by using a Markov assumption—a

technique that assumes a word’s likelihood depends only on the preceding

few words, not the entire context.

For example, in a bigram model (where n=2), the probability of a sequence

P(w1,w2, ... ,wn) is approximated as follows:

P(w1,w2, ... ,wn) ≈ P(wi ∣ wi-1)

This equation means that the probability of each word wi in a sequence is

calculated based on the previous word wi−1. Extending this idea, a trigram

model (where n = 3) would calculate each word's probability based on the

previous two words.

For example:

● In a bigram model, P(“like | I”) might be the probability of the word

“like” given that the previous word is “I”.

● In a trigram model, P(“a | like cup”) is the probability of “a” given

the previous two words “like” and “cup”.

N-grams make it computationally feasible to calculate probabilities and

capture local word dependencies, although longer dependencies (or context)

beyond the chosen value of n are ignored.

84

Calculating Probabilities in N-Gram Models

The probability of a word given its context (such as in a bigram or trigram

model) can be estimated from a corpus by calculating relative frequencies.

For example, in a bigram model:

P(wn∣wn−1) = Count(w n−1 , wn) Count(wn−1)

Where,

● Count(wn−1 , wn) is the frequency with which the word pair (wn−1,wn)

appears in the corpus.

● Count(wn−1) is the frequency of the word wn−1 appearing in the

corpus.

In essence, this equation calculates the conditional probability by dividing the

frequency of the bigram by the frequency of the preceding word, providing a

data-driven likelihood of seeing wn after wn−1.

Strengths Limitations

1 Simplicity: N-gram models are

relatively straightforward to

implement and understand, making

them a good starting point for

statistical language modeling.

Data Sparsity: N-gram models

struggle with data sparsity; for

example, in a trigram model, it is

common to encounter three-word

sequences that appear rarely or

never in the training data. This

makes it challenging to compute

reliable probabilities.

2 Efficiency for Short Sequences:

They work effectively for modeling

short sequences and capturing local

dependencies between nearby

words.

Limited Contextual Understanding:

N-grams ignore dependencies

outside the n−1n-1n−1 word

window, leading to poor

performance when long-range

context is important for meaning.

3 Fast Computation: Since only a

limited history (the previous n−1n-

1n−1 words) is considered, these

models are computationally efficient

and suitable for real-time

applications.

Exponential Growth of Parameters:

The number of parameters grows

exponentially with the value of nnn,

which can make large n-gram

models computationally expensive

to store and train.

Table-2 Strengths and Limitations of N-Gram Models

85

Smoothing Techniques

To address data sparsity, statistical LMs often use smoothing techniques.

Smoothing adjusts probability estimates to account for unseen or rare n-

grams by assigning them a small probability, rather than zero.

Some common smoothing techniques include:

● Laplace Smoothing: Adds a constant (usually 1) to all counts,

ensuring that no probability is zero.

For a bigram model, Laplace-smoothed probability is:

P(wn∣wn−1) = Count(w n−1 , wn) + 1 Count(wn−1) + V

where V is the vocabulary size.

● Kneser-Ney Smoothing: A more advanced smoothing method that

redistributes probability mass more effectively for rare and unseen

words by considering the likelihood of encountering new words after

given contexts.

Applications of Statistical Language Models

Statistical LMs are widely used across various NLP applications due to their

ability to handle large text corpora and make data-driven predictions. Some

applications include:

1. Speech Recognition: In speech recognition, statistical LMs are used

to predict the most likely sequence of words given a sequence of

sounds. For example, if a spoken phrase is ambiguous, an LM

trained on typical word sequences can suggest the most probable

interpretation.

2. Machine Translation: Statistical LMs are used in machine

translation to predict word sequences that accurately convey

meaning in the target language. For instance, a model might favor

“The cat sat on the mat” over “The cat mat on sat” based on

probabilities derived from observed language data.

3. Spelling and Grammar Correction: Statistical LMs can flag unlikely

word sequences or suggest corrections by comparing user input

with high-probability word sequences from training data.

86

4. Autocomplete and Text Prediction: Statistical models suggest or

complete phrases based on frequently occurring patterns, which

enhances user experience in applications like predictive typing on

smartphones.

Transition to Advanced Language Modelling

While statistical LMs like n-gram models laid the groundwork for language

modelling, they have limitations when it comes to handling long-range

dependencies and complex linguistic structures. As a result, they have largely

been supplanted by neural language models (NLMs), which use deep learning

to capture intricate patterns and dependencies across long contexts.

However, statistical models are still foundational in NLP and provide a basis

for understanding how language probabilities work. They also inspire

components in neural models, such as attention mechanisms that capture

dependencies across sequences. In modern systems, statistical and neural

methods are sometimes combined to harness both rule-based and

probabilistic strengths in applications where language structure and data-

driven predictions are both essential.

Check Your Progress

a) A language model assigns a ________ to a sequence of words,

determining which sequences are likely and which are not.

b) Grammar-based language models rely on ________ derived from a

language’s syntax to generate and interpret sentences.

c) Statistical language models struggle with ________ when certain word

sequences are rare or absent in the training data.

d) Parse trees are used in grammar-based parsing to enforce ________

rules and ensure correct sentence structure.

e) In a ________ model, the probability of a word depends only on the

immediately preceding word.

87

3.8 Let us sum up
In this unit we have discussed the concept of language modelling by giving

emphasis on the importance of language models, you have got detailed

understanding of the mathematical basis of natural language. We have also

elaborated factors that should be given consideration while developing mobile

application. You will now know the basics of grammar-gased and statistical

language modelling. We have types of language models along with their

strengths and limitations.

3.9 Check your progress: Possible Answers

a) Probability
b) rules
c) data sparsity
d) syntactic
e) bigram

3.10 Further Reading
• James A. Natural language Understanding 2e, Pearson Education, 1994.

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

3.11 Assignments
• What is a language model, and why is it a cornerstone in NLP

applications?

• Describe grammar-based language models. How do they function, and

what are their limitations?

• How do statistical language models differ from grammar-based models,

and what are their advantages?

• What are some real-world applications of language models in NLP

systems?

• How do language models handle rare or unseen words in a text?

• Compare the strengths and limitations of grammar-based and statistical

language models.

88

Unit-4: Lexicons

Unit Structure

4.0. Learning Objectives

4.1. Transducers for lexicon and rules

4.2. Tokenization and Segmentation

4.3. Token Normalization

4.4. Stemming

4.5. Porter Stemmer

4.6. Lemmatization

4.7. Wordnet Lemmatizer

4.8. Bag of Words

4.9. Detecting and Correcting Spelling Errors

4.10. Minimum Edit Distance

4.11. Let us sum up

4.12. Check your Progress: Possible Answers

4.13. Further Reading

4.14. Assignment

4

89

4.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know what Transuders are

• Define rules in Transducers

• Discuss applications of Transducers in NLP

• Describe foundational steps in NLP for text processing

• List applications and challenges of steps in NLP

• Understand various algorithms for working with text

• Explain crucial task in NLP

4.1 TRANSUDERS FOR LEXICONS AND RULES

Language is complex, with rules that govern how words change form (like run

to running) or how they connect to other words to convey meaning. In NLP, a

transducer is a tool that helps us automate these transformations by

following structured rules and using a dictionary of words (known as a

lexicon).

Think of a transducer as a machine that takes in one form of language (like a

word or sentence) and converts it into another form based on predefined

instructions. Let’s explore this concept step by step.

What Are Transducers?

To understand transducers, let’s start with a real-world analogy. Imagine a

translation machine where:

• You input a word like cat, and the machine outputs cats when you want

the plural form.

• Or, you input running, and it outputs the root word run along with additional

information, like “this is a verb in its continuous form”.

90

A transducer works in a similar way—it processes an input and produces an

output, following specific rules. It’s like a highly organized translator for

language tasks.

Breaking Down the Concept

1. Input: The original form of the word or sentence that needs processing.

Example: The word cats (plural form).

2. Output: The result after processing the input. This could be:

o The base form of the word (e.g., cat).

o Additional information like its grammatical properties (e.g., “Plural

Noun”).

3. Rules: The instructions that tell the transducer how to convert the input

into the output.

Example: Add -s to a noun to make it plural.

Why Are Transducers Important?

Language processing involves countless rules. For example:

● English has rules for plurals (e.g., add -s for most words but -es for words

like boxes).

● Different languages have unique rules, like adding prefixes or changing

word endings.

Transducers automate these transformations, making it easier for computers

to handle language efficiently and consistently.

Finite-State Transducers

A Finite-State Transducer (FST) is a common type of transducer used in NLP.

To understand FSTs, let’s break the term into smaller pieces:

• Finite-State: Imagine a series of steps or checkpoints that the transducer

follows while processing the input. These are called states, and there are a

limited (finite) number of them.

91

• Transducer: It doesn’t just “read” the input but also “writes” or “outputs”

something based on rules.

How a Finite-State Transducer Works

Imagine you’re teaching a robot how to pluralize nouns:

1. Start with the robot in the initial state.

2. As it reads the input (e.g., cat), it follows transitions—like moving

from one step to the next.

3. When the robot finishes processing, it reaches a final state and

outputs the plural form (cats).

Here’s a visual analogy:

• State 1: The robot reads the first letter c.

• State 2: It reads the next letters a and t.

• State 3: It adds -s to make the plural form and outputs cats.

Example: Pluralization Rule

If the input is cat, the transducer applies this rule:

• Read each letter (c, a, t) and keep them unchanged.

• At the end of the word, add -s.

• Output: cats.

If the input is box, the rule may add -es instead of -s:

• Input: box.

• Rule: Add -es for words ending in x.

• Output: boxes.

Relationship between Lexicon and Transducers

A lexicon is like a dictionary that a transducer refers to when processing input.

It contains:

92

1. The word itself (e.g., running).

2. Its base or root form (e.g., run).

3. Additional information like:

o Part of Speech: Is it a noun, verb, or adjective?

o Tense: Past, present, or future?

o Other Features: Singular/plural, gender, or case (as in some

languages).

Example Lexicon Entry:

For the word running:

• Word: running

• Lemma: run

• Features: Verb, Present Continuous Tense.

When the transducer processes running, it consults the lexicon to determine

its base form (run) and applies rules to decide what information to output.

Rules in Transducers

Rules are the instructions that tell a transducer what to do with the input. Let’s

break these into categories with examples:

1. Morphological Rules: These deal with word structure—like prefixes,

suffixes, or infixes.

o Rule: Add -ing to a verb to form its continuous tense.

o Input: run.

o Output: running.

2. Phonological Rules: These focus on sounds and pronunciation.

o Rule: Add the /s/ sound for plurals, but use /z/ for words

ending in a voiced consonant.

93

o Input: dogs.

o Output: Pronounced as /dɒgz/.

3. Syntactic Rules: These control word order or structure in sentences.

o Rule: To form a question, move the auxiliary verb before the

subject.

o Input: She is running.

o Output: Is she running?

4. Semantic Rules: Transform input based on meaning, often in tasks

like machine translation.

o Input: maison (French)

o Output: house (English)

Applications of Transducers in NLP

Transducers can perform many useful tasks:

1. Spelling Correction: Fix typos by mapping incorrect words to their

correct forms.

Input: recieve → Output: receive.

2. Speech Recognition: Convert spoken sounds (phonemes) into

written words.

Input: /hæloʊ/ → Output: hello.

3. Machine Translation: Translate text between languages using

lexicons and rules.

Input: chat (French) → Output: cat (English).

4. Morphological Analysis: Break words into their root forms and

identify properties.

Input: houses → Output: (house, Plural).

5. Text Normalization: Expanding non-standard words into standard

forms.

Input: 5km → Output: five kilometres.

94

Advantages of Transducers

Transducers have become indispensable tools in NLP because they offer

numerous benefits for handling complex linguistic tasks. Let’s break these

down with examples to make them easier to understand.

1. Efficiency in Processing: Transducers are computationally efficient,

especially when implemented as Finite-State Transducers (FSTs). They

process language data step-by-step, making them ideal for tasks requiring

high-speed performance.

• Example: In spell checkers, a transducer quickly maps an incorrect

spelling like recieve to its correct form receive, even in large-scale

systems like word processors.

2. Versatility Across Applications: Transducers are flexible and can handle

various linguistic tasks, including:

o Morphological analysis (breaking words into roots and affixes).

o Phonological transformations (mapping written text to

pronunciation).

o Machine translation (converting words from one language to

another).

For example, they can manage rules for pluralizing words (cat → cats) as well

as more complex transformations like deriving tenses (run → ran).

3. Compact Representation of Rules: Instead of hardcoding thousands of

linguistic rules, transducers allow these rules to be represented in a

compact graph structure. This saves memory and makes the system

easier to maintain and expand.

• Example: Instead of listing every plural form, a single rule like “add -s”

can apply to multiple words.

95

4. Scalability: Transducers can handle large lexicons and rules without

significantly increasing computational requirements. This makes them

suitable for processing large text corpora or working with multiple

languages simultaneously.

• Example: In multilingual spell-checking, a transducer can switch

between languages by referencing the appropriate lexicon and rule set.

5. Real-Time Applications: Their efficiency and simplicity make transducers

suitable for real-time applications, such as:

o Speech-to-text systems.

o Real-time grammar correction in messaging apps.

o Auto-completion features in search engines.

Figure-9: Advantages of Transducers

96

Challenges of Transducers

While transducers are powerful, they also come with limitations that need to

be addressed for effective implementation.

1. Ambiguity in Language: Human language is inherently ambiguous, and

transducers may struggle to resolve these ambiguities without additional

context.

• Example: The word flies can be:

o A noun (insects)

o A verb (third-person singular of fly).

Without additional grammatical or contextual rules, the transducer

might produce incorrect outputs.

2. Scalability of Complex Rules: Although transducers handle straightforward

rules well, modelling highly complex linguistic phenomena can become

cumbersome.

• Example: Rules for verb conjugation in languages like French or

Sanskrit involve exceptions and irregular forms, making it challenging

to encode them compactly in a transducer.

3. Handling Low-Resource Languages: For languages with limited

computational resources (like small lexicons or incomplete grammatical

rules), transducers can be difficult to implement effectively.

• Example: Building a lexicon for endangered languages without

sufficient written material.

4. Dependency on High-Quality Lexicons: Transducers rely heavily on the

quality of the lexicon they use. Errors or gaps in the lexicon can lead to

incorrect outputs.

• Example: If a lexicon lacks the word jogging, a transducer might fail to

process it or misidentify it as a typo.

97

5. Inflexibility for Learning New Patterns: Traditional transducers are rule-

based and cannot "learn" from data. If new linguistic patterns emerge

(e.g., slang or neologisms), the rules and lexicon must be manually

updated.

• Example: Words like selfie or blog might not be processed correctly

unless explicitly added.

6. Performance Issues with Large Data: Although efficient for many tasks,

very large lexicons or highly detailed rule sets can lead to performance

bottlenecks.

• Example: Real-time machine translation systems might struggle if the

transducer must handle thousands of language-specific rules

simultaneously.

Figure-10: Challenges of Transducers

Despite these challenges, transducers remain widely used because their

advantages often outweigh their limitations. For tasks that require greater

flexibility and adaptability, modern NLP systems may combine transducers

with machine learning models, such as neural networks, to overcome some of

these drawbacks. Transducers are vital for automating complex language

tasks in NLP. By combining lexicons with rules, they handle a wide range of

linguistic transformations, from breaking down word forms to generating new

98

ones. With tools like finite-state transducers, computers can process language

efficiently, paving the way for applications like translation, text analysis, and

speech recognition.

4.2 TOKENIZATION AND SEGMENTATION

Tokenization and segmentation are foundational steps in NLP used to prepare

raw text for further processing. These processes help divide text into

manageable units, such as words, sentences, or phrases, enabling computers

to analyze and understand language efficiently.

What Is Tokenization?

Tokenization is the process of splitting text into smaller units called tokens. A

token could be a word, a phrase, or even a character, depending on the

application.

For example, the sentence: “The quick brown fox jumps over the lazy dog”

can be tokenized into:

● Words: [“The”, “quick”, “brown”, “fox”, “jumps”, “over”, “the”,

“lazy”, “dog”]

● Characters: [“T”, “h”, “e”, “ ”, “q”, “u”, “i”, “c”, “k”, ...]

Importance of Tokenization

Tokenization is crucial because most NLP algorithms and models process text

as sequences of tokens. By dividing text into tokens:

1. Structure: Text is broken into meaningful pieces, making it easier to

analyze.

2. Features: Each token becomes a feature that can be used in downstream

tasks like classification, sentiment analysis, or translation.

3. Preparation: Many preprocessing steps, such as removing stop words or

stemming, require tokens as input.

99

Types of Tokenization

Tokenization can be classified based on the granularity of the tokens:

1. Word Tokenization

o Splits text into words.

o Example: “Tokenization is useful” → [“Tokenization”, “is”,

“useful”]

2. Sentence Tokenization

o Splits text into sentences.

o Example: “NLP is fascinating. It helps computers

understand humans” → [“NLP is fascinating”, “It helps

computers understand humans”]

3. Character Tokenization

o Splits text into individual characters.

o Example: “AI” → [“A”, “I”]

4. Subword Tokenization

o Splits words into smaller subword units, often used in

modern NLP models like BERT.

o Example: “playing” → [“play”, “##ing”]

Figure-11: types of Tokenization

100

Challenges in Tokenization

Tokenization may seem straightforward, but it faces challenges, especially in:

1. Ambiguity:

Example: “I saw her duck”

o Is duck a verb or a noun?

2. Language Differences:

o In languages like Chinese or Japanese, words are not

separated by spaces.

3. Compound Words:

o German words like Donaudampfschiffahrt need careful

splitting.

What Is Segmentation?

Segmentation refers to breaking text into larger meaningful units, such as

sentences or paragraphs. It operates at a higher level than tokenization.

Sentence Segmentation: This involves splitting a document into individual

sentences. Punctuation marks (like periods, exclamation marks, and question

marks) are often used as indicators, but exceptions make this non-trivial.

• Example: “Dr. Smith is here. She said, ‘Hello!’”

Segmented as: [“Dr. Smith is here.”, “She said, ‘Hello!’”]

Paragraph Segmentation: This divides a document into paragraphs based on

newline characters or formatting rules.

Applications of Segmentation

1. Summarization: Splitting text into sentences helps extract key information.

2. Translation: Sentence segmentation allows better alignment for bilingual

texts.

3. Text-to-Speech Systems: Sentence boundaries guide prosody and timing

in speech synthesis.

101

4.3 TOKEN NORMALIZATION

Token normalization is a follow-up step after tokenization. It ensures that

tokens are represented in a standard format, improving consistency in

analysis.

The following figure shows the steps in normalization:

Figure-12: Steps in Normalization

Normalization typically involves:

1. Converting to Lowercase

• Reduces case sensitivity.

• Example: “Apple” and “apple” → “apple”

2. Removing Punctuation

• Cleans up unnecessary symbols.

• Example: “hello!” → “hello”

3. Stemming

• Reduces words to their root form by removing suffixes.

• Example: “running”, “runner” → “run”

102

4. Lemmatization

• Converts words to their base or dictionary form while considering

context.

• Example: “better” → “good” (not “bet”)

• Tools like WordNet are often used for this.

5. Handling Numbers

• Normalizes numerical expressions.

• Example: “1234” → “one thousand two hundred thirty-four” (if needed).

6. Removing Stop Words

• Filters out common but uninformative words (e.g., the, and, is).

• Example: “The dog is running” → [“dog”, “running”]

7. Dealing with Misspellings

• Corrects spelling errors.

• Example: “recieve” → “receive”

Challenges in Token Normalization

1. Balancing Specificity and Simplicity

• Over-normalization may lose critical information. For example,

removing punctuation in “U.S.” might change its meaning.

2. Language-Specific Rules

• Normalization differs across languages. For instance, accents in

Spanish (niño vs. nino) carry meaning.

3. Context-Sensitivity

• Tokens may need different treatments based on their role.

• Example: “lead” (verb) vs. “lead” (noun).

103

4.4 STEMMING

Stemming is the process of removing affixes (prefixes or suffixes) from words

to obtain their base or “stem”. The resulting stem may not always be a valid

word in the language but is useful for text processing.

Why Use Stemming?

Stemming helps standardize words in text data, which can improve the

performance of tasks like:

• Search Engines: By matching variations of a word to its root, stemming

ensures that a search for run will also return results for running or

runner.

• Text Classification: Simplifies text by reducing dimensionality,

improving the training of machine learning models.

• Information Retrieval: Groups semantically similar terms under a single

representation.

Word Stemmed Form

Running Run

Happily Happi

Studies Studi

Cars Car

Table-3 Examples of Stemming

Notice that stems like happi and studi aren't valid words but serve as a

common base for analysis.

Types of Stemming Algorithms

Different algorithms handle stemming in unique ways, each with trade-offs

between simplicity and accuracy.

1. Rule-Based Stemming: Uses predefined rules to remove common suffixes.

104

• Example: Removing -ing from verbs or -es from plural nouns.

2. Statistical Stemming: Learns patterns of word reduction from a training

corpus.

3. Hybrid Approaches: Combine rules and statistical methods for improved

accuracy.

4.5 PORTER STEMMER

The Porter Stemmer, developed by Martin Porter in 1980, is one of the most

widely used stemming algorithms in NLP. It follows a rule-based approach

and operates in multiple steps to iteratively reduce words to their stems.

How the Porter Stemmer Works

The algorithm applies a series of heuristic rules in five steps. Each step

targets specific suffixes or word endings:

1. Plural Removal: Handles plurals and third-person singular forms.

cats → cat, likes → like

2. Conversion of Suffixes: Simplifies endings like -ing and -ed.

running → run, baked → bake

3. Transformation of Derivational Suffixes: Removes suffixes like -ness or -

ful.

happiness → happi, beautiful → beauti

4. Reduction of Double Suffixes: Handles complex endings like -ational or -

iveness.

rational → ration, effectiveness → effect

5. Final Adjustments: Refines irregular cases or ensures certain constraints

are met.

crying → cri, flies → fli

105

Rules in the Porter Stemmer

• Conditions: Specifies when a suffix should be removed (e.g., only if the

remaining word length is greater than 2).

• Actions: Determines how to transform the word after removing the

suffix.

Example: Let’s use the word “running”

1. Input Word: running

2. Step 1 (Remove Plural or Third-Person Singular Suffix): No

change.

3. Step 2 (Remove -ing): running → run

4. Step 3–5 (Further Refinements): No further changes are

needed.

Output Stem: run

Advantages of the Porter Stemmer

1. Widely Tested: Its simplicity and robustness make it a standard for

many NLP applications.

2. Efficient: Processes large text corpora quickly with minimal

computational resources.

3. Language Agnostic: Though designed for English, similar principles

can be adapted to other languages.

Limitations of the Porter Stemmer

1. Not Always Accurate:

o Example: relational → relate (semantic meaning may be

altered).

106

2. No Context Awareness: Operates mechanically without

understanding the word’s role in a sentence.

o Example: flies (noun) and flies (verb) are stemmed

identically.

3. Doesn’t Generate Valid Words: Stems like happi or studi aren’t

proper English words, which can be problematic in some

applications.

Alternatives to Porter Stemmer

If the Porter Stemmer's limitations affect your use case, consider alternatives:

• Snowball Stemmer: An improvement by Martin Porter, offering better

accuracy and multilingual support.

• Lancaster Stemmer: A more aggressive stemmer but prone to over-

stemming.

• Lemmatization: Instead of stemming, lemmatization derives the base

form of words using a dictionary, preserving semantics.

4.6 LEMMETIZATION

Lemmatization is a core text preprocessing technique in NLP that reduces

words to their canonical, dictionary-defined base forms, known as lemmas.

Unlike stemming, which relies on simple heuristic rules to trim word endings,

lemmatization considers the word's grammatical role and context, resulting in

more accurate and meaningful output.

A lemma is the base or root form of a word that can stand alone as a valid

entry in a dictionary. Lemmatization differs from stemming because it

incorporates the context of the word, including its part of speech (POS). This

additional step ensures that words are reduced to their correct base forms

without distorting their meanings.

107

Words POS Lemma

Running Verb run

flies Noun fly

flies Verb fly

better Adjective good

children Noun child

Table-4 Examples of Lemmatization

How Lemmatization Works

1. Tokenization: Text is divided into individual words or tokens that can be

analyzed separately.

Example: Consider the input: “The cats are running fast”

Tokens: [“The”, “cats”, “are”, “running”, “fast”]

2. POS Tagging: Each word is tagged with its grammatical role in the

sentence, such as noun, verb, or adjective. This step is crucial because

the same word can have different lemmas depending on its part of speech.

Example: Tokens with POS-

o “The” → Determiner

o “cats” → Noun (plural)

o “are” → Verb (present tense)

o “running” → Verb (present continuous)

o “fast” → Adjective

3. Lemmatization: Words are mapped to their base forms using lexical

resources like dictionaries or pre-defined linguistic rules.

Example: Consider the following words.

o cats → cat

o running → run

o better → good

108

Key Features of Lemmatization

1. Context Awareness

Lemmatization accounts for the role a word plays in a sentence. For

example, the word flies can either be a noun (plural of fly) or a verb (third-

person singular of fly). Based on its context:

o “The flies are annoying.” → Lemma: fly (noun)

o “He flies the plane.” → Lemma: fly (verb)

2. Dictionary-Based Approach

Lemmatization uses a dictionary or a lexical database to identify valid

lemmas. This ensures that the output is always a proper word.

3. Handling Irregular Forms

It can resolve irregular word forms, such as:

o better → good

o children → child

o went → go

4. Language-Specific Rules

Lemmatization can be tailored to handle the unique rules of different

languages, making it versatile for multilingual applications.

Applications of Lemmatization

Some of the important applications of Lemmatization are listed below:

• Search Engines: Lemmatization improves search accuracy by unifying

variations of a word. For instance, a query for running will match

documents containing run or runs, ensuring better retrieval results.

109

• Text Classification: By reducing words to their canonical forms,

lemmatization minimizes the dimensionality of text data, making it easier

for machine learning models to process.

• Sentiment Analysis: Lemmatization ensures consistent analysis by treating

words with similar meanings as equivalent. For example, happy and

happily will both be reduced to happy.

• Chatbots and Virtual Assistants: Lemmatization helps chatbots understand

user input better by standardizing words, regardless of their form.

• Machine Translation: Lemmatization simplifies text for translation systems

by mapping word variations to their base forms.

Challenges in Lemmatization

1. Dependency on POS Tagging: Lemmatization requires accurate

POS tagging for meaningful results. Incorrect tags can lead to

errors in identifying the correct lemma.

Example: Consider the following words.

o flies (noun) → fly (correct lemma)

o flies (verb) → fly (requires proper tagging)

2. Slower Performance: Lemmatization is computationally more

intensive than stemming because it involves dictionary lookups and

contextual analysis.

3. Language Dependency: While effective for English, lemmatization

requires tailored rules and resources for other languages, limiting its

immediate applicability to multilingual datasets.

4.7 WORDNET LEMMETIZER

The WordNet Lemmatizer is a widely used lemmatization tool available in the

Natural Language Toolkit (NLTK) for Python. It leverages WordNet, a

comprehensive lexical database of the English language, to reduce words to

their base or canonical forms (lemmas) while preserving semantic meaning.

This makes it a robust choice for NLP tasks where linguistic accuracy is

essential.

110

What Is WordNet?

WordNet is a lexical database that organizes words into groups of synonyms

called synsets. These synsets capture the meaning of words and their

relationships, such as:

o Synonyms: Words with similar meanings (e.g., quick and fast).

o Antonyms: Words with opposite meanings (e.g., good and bad).

o Hierarchies: Relationships such as hypernyms (broader terms) and

hyponyms (narrower terms).

WordNet goes beyond a simple dictionary by including semantic and lexical

relationships, making it a rich resource for understanding word meanings and

contexts.

How the WordNet Lemmatizer Works?

1. Part-of-Speech (POS) Tagging: The WordNet Lemmatizer depends on the

grammatical role (POS) of a word to identify its correct lemma.

Example: Consider the following words.

o The verb running → run

o The noun running → running (unchanged)

If no POS is specified, it assumes the word is a noun, which may lead to

incorrect lemmatization.

2. Database Lookup: The lemmatizer consults the WordNet database to

retrieve the lemma.

Example: Consider the input: flies

▪ POS: noun → Lemma: fly

▪ POS: verb → Lemma: fly

111

3. Context-Aware Reduction: Words are reduced to their base forms without

altering their meanings, unlike stemming, which may produce invalid or

ambiguous results.

Features of WordNet Lemmatizer

1. Context Sensitivity: The lemmatizer produces different lemmas based on

the POS tag.

Example:

o flies (noun) → fly

o flies (verb) → fly

2. Handling Irregular Forms: Sometimes irregular forms of words are used in

the sentence.

Example: Consider the following words.

o better → good (adjective)

o went → go (verb)

3. Semantic Relationships: By relying on WordNet, the lemmatizer leverages

rich semantic information, ensuring accurate lemmatization even for

complex words.

Advantages of WordNet Lemmatizer

1. Linguistic Accuracy: Always returns valid dictionary entries, unlike

stemming, which may produce invalid words.

2. Context-Aware: Incorporates POS tagging to ensure semantically correct

base forms.

3. Easy Integration: Can be easily combined with other NLP tools for

preprocessing tasks.

4. Rich Lexical Database: WordNet provides detailed information about word

relationships, making the lemmatizer highly reliable.

112

Challenges of WordNet Lemmatizer

1. POS Dependency: Requires accurate POS tagging to produce meaningful

results. Without this, it defaults to treating words as nouns, which may lead

to incorrect lemmatization.

2. Computational Overhead: Lemmatization is slower than stemming

because it involves lexical lookups and context analysis.

3. Limited Language Support: Designed for English, making it unsuitable for

multilingual applications without additional language-specific resources.

4. Ambiguity in Polysemous Words: Words with multiple meanings can pose

challenges if contextual information is insufficient.

Applications of WordNet Lemmatizer

1. Search Engines: Enhances search accuracy by mapping different forms of

a word to its lemma. For instance, queries for running, ran, and run are

treated equivalently.

2. Text Normalization: Simplifies text data for tasks like text classification,

clustering, or sentiment analysis by unifying word forms.

3. Machine Translation: Reduces word complexity, aiding translation systems

in aligning source and target languages.

4. Question Answering Systems: Improves the accuracy of QA systems by

normalizing input and query text.

5. Knowledge Representation: Facilitates semantic understanding by

grouping related words, enabling tasks like ontology generation or

knowledge graph construction.

113

When to Use Lemmatization vs. Stemming

Lemmatization is preferred when:

o Semantic accuracy is critical (e.g., for tasks like question-answering or

summarization).

o You're working with linguistically rich tasks that require proper dictionary

forms.

Stemming, on the other hand, might be used for simpler tasks where speed

matters more than precision (e.g., keyword matching or basic search).

Aspect Stemming Lemmatization

Output May not be a valid word Always a valid word

Context Awareness No Yes

Speed Faster Slower

Examples running → run running → run (verb

form)

 better → better better → good

Table-5 Examples of Stemming and Lemmatization

4.8 BAG OF WORDS
 The Bag of Words is a fundamental method in NLP used to represent text

data as numerical features. Despite its simplicity, it forms the basis for many

text classification, sentiment analysis, and information retrieval tasks. The

core idea is to treat text as an unordered collection (or “bag”) of words,

ignoring grammar and word order while focusing on word frequency or

presence.

How the Bag of Words Model Works?

The BoW model transforms text data into a numerical format that machine

learning algorithms can process. Here's how it works step-by-step:

114

1. Text Preprocessing

Before applying the BoW model, the text needs to be cleaned and

standardized. This typically involves:

o Tokenization: Splitting text into individual words or tokens.

o Lowercasing: Converting all text to lowercase to avoid case sensitivity.

o Removing Stop Words: Filtering out common words like “is”, “the”, and

“and” that do not add significant meaning.

o Stemming or Lemmatization: Reducing words to their root forms for

uniformity.

o Removing Special Characters: Eliminating punctuation, numbers, and

other non-alphabetic symbols.

Example: “Cats are running faster than dogs”

After preprocessing: [“cat”, “run”, “fast”, “dog”]

2. Vocabulary Creation

The next step is to create a vocabulary, which is a unique list of all words

in the dataset. Each word is assigned an index, and this vocabulary acts

as the feature space for the text representation.

Example: Given two sentences:

o Sentence 1: “The cat sat on the mat.”

o Sentence 2: “The dog sat on the rug.”

The vocabulary might look like this: [“cat”, “dog”, “mat”, “on”, “rug”, “sat”, “the”]

115

3. Vectorization

The text is then converted into numerical vectors based on the vocabulary.

There are two main methods for this:

o Binary Representation: Each word's presence in a document is marked

as 1 (present) or 0 (absent). Example:

o Sentence 1: [1, 0, 1, 1, 0, 1, 1]

o Sentence 2: [0, 1, 0, 1, 1, 1, 1]

o Frequency Representation: Each word's count in a document is

recorded.

Example:

o Sentence 1: [1, 0, 1, 1, 0, 1, 2]

o Sentence 2: [0, 1, 0, 1, 1, 1, 2]

In both cases, the resulting vectors are sparse (most entries are 0)

because each document typically contains only a subset of the total

vocabulary.

Example of Bag of Words in Action

Let’s demonstrate the BoW model using the following three sentences:

1. “I love natural language processing.”

2. “Natural language processing is fun.”

3. “I love fun projects.”

Step 1: Preprocessing

After cleaning and tokenizing:

o Sentence 1: ["love", "natural", "language", "processing"]

o Sentence 2: ["natural", "language", "processing", "fun"]

o Sentence 3: ["love", "fun", "project"]

Step 2: Vocabulary Creation

Vocabulary:

["fun", "language", "love", "natural", "processing", "project"]

Step 3: Vectorization

Vectors for each sentence (using frequency representation):

116

o Sentence 1: [0, 1, 1, 1, 1, 0]

o Sentence 2: [1, 1, 0, 1, 1, 0]

o Sentence 3: [1, 0, 1, 0, 0, 1]

Key Characteristics of Bag of Words

1. Orderless Representation: The model ignores word order, focusing only on

word presence or frequency. For example, “The cat sat on the mat.” and

“On the mat sat the cat.” will have identical representations.

2. Simplicity: The BoW model is easy to implement and understand, making

it a go-to method for text representation in early stages of analysis.

3. Sparse Vectors: With a large vocabulary, the resulting vectors often have

many zero entries, as most documents contain only a subset of the

vocabulary.

4. Dimensionality Dependence: The dimensionality of the vectors depends

on the size of the vocabulary. Larger datasets with more unique words

lead to higher-dimensional vectors.

Advantages of Bag of Words

1. Simplicity: Easy to implement and computationally efficient for smaller

datasets.

2. Compatibility with ML Models: Transforms unstructured text into structured

numerical data that can be fed into machine learning algorithms.

3. Language-Agnostic: Works with any language, as long as text

preprocessing and vocabulary creation steps are properly adjusted.

4. Baseline Performance: Despite its simplicity, the BoW model often serves

as a strong baseline in text classification tasks.

Challenges of Bag of Words

1. Loss of Semantic Meaning: By ignoring word order and grammar, the BoW

model fails to capture the semantic relationship between words. For

117

example, “I love NLP” and “NLP loves me” have different meanings but are

represented identically.

2. High Dimensionality: For large datasets, the vocabulary size can grow

significantly, leading to computational inefficiency and memory issues.

3. Sparse Representations: The vectors are often sparse, with many zero

entries, which can make calculations slower and less efficient.

4. Out-of-Vocabulary (OOV) Words: Words that are not present in the

training data vocabulary are ignored, potentially losing important

information.

5. No Weighting: All words are treated equally, ignoring the importance of

certain words (e.g., domain-specific terms vs. common words).

Applications of Bag of Words

1. Text Classification: BoW is commonly used for categorizing text into

predefined classes, such as spam detection in emails.

2. Sentiment Analysis: It helps identify whether the sentiment of a document

is positive, negative, or neutral based on word frequencies.

3. Information Retrieval: Search engines use BoW to match user queries with

documents in their index.

4. Topic Modelling: The model is a starting point for extracting latent topics in

a collection of documents.

Enhancements to Bag of Words

1. TF-IDF (Term Frequency-Inverse Document Frequency): Adjusts word

frequencies based on how common or rare a word is across the entire

dataset. This reduces the importance of frequent words like “the” or “is”.

118

2. N-Grams: Instead of single words (unigrams), BoW can consider

sequences of words (e.g., bigrams, trigrams) to capture some level of

context.

3. Word Embeddings: Advanced methods like Word2Vec or GloVe provide

dense, low-dimensional vectors that encode semantic relationships

between words, overcoming BoW's limitations.

The Bag of Words (BoW) model is a foundational technique for text

representation in NLP. While simple and effective for many basic tasks, it has

inherent limitations, particularly in capturing word order and meaning.

Nevertheless, with enhancements like TF-IDF and N-Grams, it remains a

useful tool for preprocessing and analyzing text data. Its importance lies not

just in its standalone applications but also in its role as a stepping stone to

more advanced text representation techniques like word embeddings and

transformer-based models.

4.9 DETECTING AND CORRECTING SPELLING
ERRORS
Spelling error detection and correction is a crucial task in NLP. It enhances

the quality and accuracy of text by identifying and fixing typographical,

phonetic, or contextual spelling mistakes. Applications range from word

processors and search engines to chatbots and automated transcription

systems.

Types of Spelling Errors

1. Typographical Errors: These occur due to accidental keystrokes or typing

mistakes.

Example: “teh” instead of “the”.

2. Phonetic Errors: Mistakes arise when words are spelled as they sound,

often by language learners or in informal contexts.

Example: “tommorow” instead of “tomorrow”.

3. Contextual Errors: These occur when the wrong word is spelled correctly

but used in the wrong context.

Example: “Their going to the park” instead of “They’re going to the park”.

119

Detecting and Correcting Spelling Errors

1. Spelling Error Detection

The goal of this step is to identify whether a word in a text is likely misspelled.

Common approaches include:

Figure-13: Spelling Errors Detection Approaches

• Dictionary-Based Detection:

o Compare words against a predefined dictionary or vocabulary.

o If a word is not in the dictionary, it is flagged as a potential

misspelling.

o Limitation: Rare or domain-specific words (e.g., technical terms,

names) may be incorrectly flagged.

• Statistical Methods:

o Use word frequency data from a corpus to determine if a word is

valid.

o Words with very low occurrence probabilities might be flagged as

errors.

• Machine Learning Models:

o Use trained models to predict if a word fits within a given context.

o Context-aware methods can detect errors like “Their going to the

park”.

120

• Levenshtein Distance:

o Measures the minimum number of edits (insertions, deletions,

substitutions) required to convert one word into another.

o Example: “teh” has a distance of 1 from “the”.

2. Spelling Error Correction

After detecting a potential error, the next step is suggesting the correct

spelling.

Figure-14: Spelling Errors Correction Approaches

Techniques for this include:

• Edit Distance Algorithms: The edit distance algorithm suggest corrections

based on the closest matches using the Levenshtein Distance.

Example: “teh” → “the”

• Phonetic Algorithms: Algorithms like Soundex and Metaphone convert

words into phonetic representations and suggest corrections based on

similar sounds.

Example: “tommorow” → “tomorrow”

• N-Gram Models: The N-gram models analyze the surrounding context

using n-grams to suggest corrections.

Example: In the sentence “I will see you tommorow”, an n-gram model

may predict “tomorrow” based on the context.

121

• Probabilistic Models: Use models like Noisy Channel Model, which

assumes that the misspelled word is a distorted version of the intended

word. The model tries to find the most probable original word given the

observed misspelling.

Noisy Channel Formula:

P(correct word∣observed word)

=P(observed word∣correct word)×P(correct word)

Example: “hte” is more likely to be “the” than “hat” based on prior

probabilities.

• Neural Networks: Modern approaches use Recurrent Neural Networks

(RNNs) or Transformers to predict and correct spelling errors. These

models can handle contextual errors effectively by analyzing the entire

sentence.

Key Algorithms in Spelling Correction

o SymSpell: This algorithm efficiently corrects spelling errors by using

precomputed edit distances and frequency dictionaries. It can also

handle large datasets with low computational overhead.

o Hunspell: This algorithm is widely used in applications like

LibreOffice and Firefox. It supports dictionary-based corrections

with language-specific rules.

o Norvig's Algorithm: This algorithm is known to be a simple and fast

correction method based on editing distance and word frequency. It

is popular for educational purposes due to its simplicity.

o Contextual Spell Checkers: Advanced systems like Grammarly use

deep learning to detect and correct both spelling and grammatical

errors in context.

122

Applications of Spelling Error Detection and Correction

Spelling Error Detection and Correction is highly useful when building text-

based applications. Some of the important applications of spelling error

detection and correction are as follows:

1. Search Engines: Corrects user queries to provide accurate search results.

Example: Google’s “Did you mean...” feature.

2. Word Processors: Tools like Microsoft Word and Google Docs help users

write error-free content.

3. Chatbots and Virtual Assistants: Enhance user experience by correcting

input errors for better interaction.

4. Optical Character Recognition (OCR): Improves the accuracy of digitized

text by correcting misread words.

5. Data Preprocessing: Ensures clean text for NLP tasks like sentiment

analysis or text classification.

Advantages

1. Improved Text Quality: Ensures readable and accurate text, enhancing

communication and analysis.

2. User-Friendly Applications: Reduces the burden on users to type perfectly.

3. Enhanced NLP Tasks: Improves downstream tasks like sentiment

analysis, machine translation, and information retrieval.

Challenges

1. Contextual Errors: Difficult to detect and correct errors like “Their going to

the park”.

2. Ambiguity in Suggestions: Multiple valid corrections can exist for a single

error (e.g., “hte” could be “the” or “hat”).

3. Domain-Specific Terms: Requires specialized dictionaries for technical or

niche vocabularies.

4. Performance in Multilingual Settings: Algorithms must account for the rules

and nuances of different languages.

123

4.10 MINIMUM EDIT DISTANCE

Minimum edit distance is a fundamental concept in computational linguistics

and text processing. It measures how dissimilar two strings (sequences of

characters) are by counting the minimum number of operations required to

transform one string into the other. It is commonly used in spell checkers,

plagiarism detection, bioinformatics (DNA sequence alignment), and natural

language processing (NLP) applications.

Edit distance quantifies the effort needed to convert one string (source string)

into another string (target string) using a set of allowed operations. Each

operation typically incurs a cost, and the goal is to find the sequence of

operations with the smallest total cost.

Edit Operations

The most commonly used edit operations are:

• Insertion: Add a character to the source string.

Example: Transform “cat” → “cart” (Insert ‘r’).

• Deletion: Remove a character from the source string.

Example: Transform “cart” → “cat” (Delete ‘r’).

• Substitution: Replace one character in the source string with another.

Example: Transform “cat” → “cut” (Substitute ‘a’ with ‘u’).

● Transposition: Swapping two adjacent characters.

Example: “ab” → “ba”.

Example of Minimum Edit Distance

Let’s consider two strings:

o Source: “kitten”

o Target: “sitting”

To convert “kitten” → “sitting”, the operations are:

1. Substitute ‘k’ → ‘s’ (kitten → sitten)

2. Substitute ‘e’ → ‘i’ (sitten → sittin)

3. Insert ‘g’ at the end (sittin → sitting)

Thus, the minimum edit distance is 3.

124

Mathematical Representation

The minimum edit distance between two strings A (of length m) and B (of

length n) is defined as d(A,B), the minimum number of operations required to

transform A into B.

This is typically computed using dynamic programming, where we build a

matrix to track the cost of converting substrings of A to substrings of B.

Dynamic Programming Approach

1. Define the Problem

We define D[i][j] as the minimum edit distance between the first i characters of

A and the first j characters of B.

2. Base Cases

o D[i][0]= i : Converting the first i characters of A to an empty string requires i

deletions.

o D[0][j]= j : Converting an empty string to the first j characters of B requires j

insertions.

3. Recurrence Relation

For 1 ≤ i ≤ m and 1 ≤ j ≤ n :

D[i][j] = min

Where:

cost = 0 if A[i−1]=B[j−1], and 1 otherwise.

4. Final Solution

The value D[m][n] represents the minimum edit distance between A and B.

Example: Step-by-Step Calculation

Find the minimum edit distance between “kitten” and “sitting”.

Initialize the Matrix

125

We create a (m+1) × (n+1) matrix, where m=6 (length of “kitten”) and n=7

(length of “sitting”):

 S I T t i n g

 0 1 2 3 4 5 6 7

K 1

I 2

T 3

T 4

E 5

N 6

Fill the Matrix

Using the recurrence relation:

 s i T t i n g

 0 1 2 3 4 5 6 7

K 1 1 2 3 4 5 6 7

I 2 2 1 2 3 4 5 6

T 3 3 2 1 2 3 4 5

T 4 4 3 2 1 2 3 4

E 5 5 4 3 2 2 3 4

N 6 6 5 4 3 3 2 3

Result: The minimum edit distance is D[6][7] = 3.

Applications of Minimum Edit Distance

1. Spell Checking: Identifying and suggesting corrections for misspelled

words.

Example: “hte” → “the”.

2. Text Similarity: Comparing two strings for similarity, such as in plagiarism

detection.

3. Machine Translation: Evaluating the quality of a translated sentence by

comparing it to a reference sentence.

4. DNA Sequence Analysis: Aligning DNA sequences by minimizing the

number of mutations.

126

Advantages

1. Simplicity: Intuitive and easy to implement.

2. Versatility: Applicable across various domains, from text processing to

bioinformatics.

3. Granularity: Provides detailed insight into how strings differ.

Challenges

1. Computational Cost: For long strings, the matrix-based computation can

be time and memory intensive (O (m × n)).

2. Weighted Costs: Simple models treat all operations equally, but in real-

world applications, some operations (e.g., substitutions) might be costlier.

3. Context Ignorance: Does not account for the semantic meaning or context

of the words.

Check Your Progress

a) Tokenization divides text into sentences, paragraphs, or words depending

on the granularity level.

b) Lemmatization does not consider the grammatical role of a word in its

context.

c) The Bag of Words model ignores word frequency and only considers the

presence or absence of words.

d) The Porter Stemmer uses a series of rules to iteratively reduce words to

their base form.

e) The minimum edit distance calculates how similar two strings are by

counting the minimum number of insertions, deletions, and substitutions

required to transform one string into another.

4.11 Let us sum up
In this unit we have discussed what are Transuders and how to define rules in

Transducers and their applications. You have got detailed understanding of

foundational steps in NLP for text processing. We have described applications

and challenges of steps in NLP along with various algorithms for working with

text. We have also elaborated crucial tasks in NLP.

127

4.12 Check your progress: Possible Answers

a) True

b) False

c) False

d) True

e) True

4.13 Further Reading

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921).s

• James A. Natural language Understanding 2e, Pearson Education, 1994.

4.14 Assignments

• What are transducers, and how are they used in managing lexicons and

rules in NLP?

• Explain tokenization and segmentation in NLP. Why are they critical steps

in text preprocessing?

• What is the difference between stemming and lemmatization? Provide

examples of each.

• How do tools like Porter Stemmer and WordNet Lemmatizer assist in text

normalization?

• What is the Bag of Words (BoW) model, and how does it represent textual

data for NLP tasks?

• How can spelling errors in text be detected and corrected using techniques

like Minimum Edit Distance?

128

Unit-5: English Morphology

Unit Structure

5.0 Learning Objectives

5.1 Morphological Analysis

5.2 Regular Expressions

5.3 Finite-State Automata

5.4 Let us sum up

5.5 Check your Progress: Possible Answers

5.6 Further Reading

5.7 Assignment

5.8 Activities

5

129

5.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know key concepts of morphology

• Understand the importance of morphology in grammar

• List the applications of English Morphology in NLP

• Describe morphological analysis

• Explain the significance of regular expressions in text processing

• Assess the role of finite state automata in language processing

5.1 INRODUCTION
Language is complex, with rules that govern how words change form (like run

to Morphology is a branch of linguistics concerned with the structure and

formation of words. In English, morphology plays a crucial role in

understanding how words are created, modified, and interpreted. It delves into

the smallest units of meaning within a language, known as morphemes, and

explores how they combine to form meaningful expressions.

Morphology studies the internal structure of words and how they are

constructed. It bridges the gap between phonology (the sound of language)

and syntax (the arrangement of words in sentences).

Example: The word unhappiness can be broken down into three morphemes:

o un- (a prefix meaning “not”),

o happy (a root word or base form),

o -ness (a suffix indicating a state or quality).

5.2 KEY CONCEPTS IN MORPHOLOGY

When it comes to understanding a language, morphology plays an important

role in deriving how the components of text interact to create specific

meaning. Let us understand the key concepts in morphology.

Morphemes: The Building Blocks of Words

A morpheme is the smallest meaningful unit in a language. Morphemes can’t

be further divided without losing or altering their meaning.

130

• Types of Morphemes

o Free Morphemes: These morphemes can stand alone as independent

words.

Example: book, run, happy.

o Bound Morphemes: These types of morphemes cannot stand alone

and must attach to other morphemes.

Example: -s (plural marker), un- (prefix).

• Affixation: Adding Bound Morphemes

Affixation is the process of adding bound morphemes (affixes) to a root

word to change its meaning or grammatical function. Some of the types of

affixes are as follows:

o Prefixes: Prefixes are added at the beginning of a word.

Example: un- + known = unknown.

o Suffixes: Suffixes are added at the end of a word.

Example: happy + -ness = happiness.

o Infixes (rare in English): Infixes are inserted within a word.

Example: fanbloodytastic (used for emphasis).

o Circumfixes (not in standard English): Circumfixes are the words which

surround a root word. These are found in some other languages but

not English.

• Derivational and Inflectional Morphology

Morphological processes are categorized into two main types: derivational

and inflectional.

o Derivational Morphology: It creates new words by adding morphemes.

It also changes the meaning or grammatical category of a word.

Example:

▪ happy → unhappy (prefix un- changes meaning).

▪ teach → teacher (suffix -er changes noun to verb).

o Inflectional Morphology: It modifies a word to express grammatical

relationships like tense, number, or case without altering the core

meaning. English has eight common inflectional morphemes:

131

▪ -s (plural: cats),

▪ -s (possessive: John’s),

▪ -ing (present participle: running),

▪ -ed (past tense: walked),

▪ -en (past participle: eaten),

▪ -er (comparative: faster),

▪ -est (superlative: fastest).

• Word Formation Processes in English

English morphology employs various techniques to form new words or adapt

existing ones.

Figure-15: Word Formation Processes

Here are some key processes:

o Compounding: The process of compounding combines two or more

free morphemes to create a new word. For example: notebook,

blackboard, snowman.

o Reduplication: Reduplication refers to repeating a part of a word for

emphasis or modification. This is uncommon in standard English but

occurs in informal contexts. For example, “boo-boo” (a small mistake or

injury).

o Conversion (Zero Derivation): Changing a word's grammatical category

without altering its form is called Conversion. For example:

o Noun → Verb: butter (noun) → to butter (verb).

o Verb → Noun: run (verb) → a run (noun).

132

• Clipping

Clippling means shortening a longer word to a common shorter form. For

example, laboratory → lab, advertisement → ad.

• Blending

Blending refers to merging parts of two words to create a new one. For

example, breakfast + lunch = brunch.

• Acronyms and Initialisms

Forming words from the initials of phrases is understood as using acronyms

and initials. For example,

o Acronyms: NASA (National Aeronautics and Space Administration).

o Initialisms: FBI (Federal Bureau of Investigation).

• Borrowing

In Borrowing, words from other languages are sometimes adopted. For

example, taco (Spanish), piano (Italian).

• Backformation

Backformation is done when a new word is created by removing what appears

to be an affix. For example: editor → edit, television → televise.

• Coinage

Coinage refers to the process of inventing entirely new words which does not

actually belong to any language. For example: Google, Kleenex.

5.3 MORPHOLOGY IN GRAMMER

English morphology plays a vital role in grammar by determining how words fit

into sentences and express meaning. This includes:

• Verb Conjugation

o I walk (present tense).

o I walked (past tense).

• Plural Formation

o Regular: cat → cats.

o Irregular: child → children, mouse → mice.

• Possession

o John's book.

133

• Comparison

o Positive: big.

o Comparative: bigger.

o Superlative: biggest.

• Challenges in English Morphology

1. Irregular Forms

o English has many irregular verbs and nouns that do not follow standard

morphological rules.

Example: go → went, foot → feet.

2. Homonyms and Polysemy

o Words with identical forms but different meanings can complicate

analysis.

Example: bank (financial institution) vs. bank (side of a river).

3. Borrowed Vocabulary

o English borrows extensively from other languages, introducing words

with unique morphological patterns.

4. Context-Dependence

o Morphological analysis often depends on context for clarity.

• Applications of English Morphology in NLP

Morphology is crucial in NLP for tasks like:

o Text Normalization: This is a process of breaking down words into

their root forms for text analysis.

Example: running → run.

o Part-of-Speech Tagging: This is a process of identifying grammatical

roles of words in sentences.

Example: run (noun) vs. run (verb).

o Spell Checking: This is a process of identifying errors by analyzing

morphological patterns.

o Machine Translation: This involves translating words while preserving

morphological structure.

134

English morphology provides the tools to understand how words are

constructed and how they function in communication. It uncovers the logic

behind word formation, modification, and usage, offering insights into the rich

and dynamic nature of the English language. From free morphemes to

complex derivational processes, morphology is foundational to linguistics and

its applications in language learning, computational linguistics, and NLP.

5.4 MORPHOLOGICAL ANALYSIS
Morphological analysis is the study and identification of the structure of words

by breaking them down into their smallest units of meaning, called

morphemes. It is a fundamental process in linguistics, computational

linguistics, and NLP, enabling us to understand, analyze, and process

languages computationally.

Morphological analysis involves analyzing the internal structure of words to

understand how they are formed and how they function in language. Each

word in a language can typically be broken into smaller components, which

interact to convey meaning and grammatical information. Example, The word

unbelievable can be broken down as:

o un-: A prefix meaning “not”.

o believe: The root word indicating the main concept.

o -able: A suffix denoting “capable of”.

By analyzing these components, we derive the meaning “not capable of being

believed”.

• Why is Morphological Analysis Important?

Morphological analysis plays a critical role in:

o Understanding Language Structure: It reveals how words are constructed

and interact with grammar.

o Lexicography: Helps in creating comprehensive dictionaries by defining

word components.

o Natural Language Processing: Facilitates tasks like tokenization,

lemmatization, and text normalization.

135

o Language Learning: Enhances vocabulary acquisition by breaking words

into understandable parts.

• Types of Morphological Analysis

Morphological analysis is broadly classified into two categories: inflectional

morphology and derivational morphology.

o Inflectional Morphology

Inflectional morphology studies how words change form to express

grammatical information like tense, number, case, mood, or aspect,

without altering their core meaning or part of speech.

Example:

▪ play → plays (plural, third person singular present tense).

▪ walk → walked (past tense).

Inflectional morphology in English includes:

o Plural forms (cat → cats).

o Verb conjugations (write → writing).

o Possessives (John → John’s).

o Derivational Morphology

Derivational morphology deals with creating new words by adding

morphemes that change their meaning or grammatical category.

Example:

▪ happy → unhappy (prefix un- changes meaning).

▪ teach → teacher (suffix -er changes verb to noun).

Derivational processes are less predictable than inflectional ones and

contribute significantly to the richness of vocabulary.

• Methods of Morphological Analysis

o Manual Morphological Analysis

Traditionally, linguists analyze words manually, identifying prefixes,

suffixes, and roots based on linguistic knowledge. This approach is

effective but time-intensive and prone to human error.

o Computational Morphological Analysis

With advancements in NLP, computational methods have become

essential for analyzing large corpora of text efficiently.

136

• Approaches to Computational Morphological Analysis

o Finite State Automata (FSA) and Transducers

FSAs are widely used for modelling morphological processes. They

process input strings and identify valid word forms based on predefined

rules.

▪ Finite State Automata (FSA): Model regular word forms like plurals or

conjugations.

Example: cat → cats via -s rule.

▪ Finite State Transducers (FST): Extend FSAs by mapping between

surface forms (e.g., cats) and lexical forms (e.g., cat + s).

o Rule-Based Morphological Analysis

Rule-based systems use linguistic rules to parse words into their

components.

Example: If a word ends with -ing, remove it to find the root verb (walking

→ walk).

o Statistical and Machine Learning Methods

With the advent of large text corpora, statistical methods and machine

learning models have become popular. These models learn morphological

patterns from labelled data.

Examples:

▪ Hidden Markov Models (HMMs) for part-of-speech tagging.

▪ Conditional Random Fields (CRFs) for predicting morpheme

boundaries.

o Neural Morphological Analysis

Deep learning models, like recurrent neural networks (RNNs) and

transformers, have shown exceptional performance in morphological

tasks. They can generalize across languages and handle complex

morphology.

137

Figure-16: Approaches to Computational Morphological Analysis

• Tasks of Morphological Analysis

Morphological analysis underpins many NLP tasks. Some of the important

tasks include:

o Text Normalization: Text normalization refers to breaking words into

base forms for processing. Example: running, runs, ran → run.

o Machine Translation: Translating between languages with different

morphological structures is done in machine translation. Example:

English (I eat) → German (Ich esse).

o Spell Checking and Correction: the process of identifying and

suggesting corrections for misspelled words by analyzing morphemes

is done. Example: teh → the.

o Developing Search Engines: While developing search engines, it is

required to enable keyword matching by considering morphological

variations. Example: Searching for run returns results for running and

ran.

o Sentiment Analysis: The process of sentiment analysis enhances text

analysis by understanding the meaning of derived words. Example:

unhappy → not happy.

138

o Language Learning Tools: This is done to assist learners in

understanding word formation and grammar.

• Morphological Analysis in Different Languages

Morphological complexity varies across languages, influencing analysis

techniques:

o English: Relatively simple morphology with limited inflections.

o Turkish and Finnish: Highly agglutinative, forming long words with

multiple morphemes.

o Arabic: Root-based morphology with complex templatic patterns.

o Chinese: Largely analytic, with minimal morphological inflection. etc.

• Challenges in Morphological Analysis

o Ambiguity: Words can have multiple valid analyses.

Example: unlockable → (not lockable) or (able to unlock).

o Irregular Forms: Words with irregular inflections defy standard rules.

Example: go → went, child → children.

o Data Scarcity: Lack of annotated corpora for low-resource languages.

o Morphological Typology: Languages vary significantly in their

morphological structures, requiring tailored approaches.

o Complex Morphologies: Handling languages with rich morphology, like

Finnish or Basque, poses challenges for computational models.

• Future Directions in Morphological Analysis

o Multilingual Models: Developing systems that generalize across

languages with different morphological patterns.

o Transfer Learning: Using knowledge from high-resource languages to

analyze low-resource ones.

o Neural Morphological Paradigms: Leveraging deep learning to model

complex morphological phenomena.

o Integration with Syntax and Semantics: Combining morphology with

higher linguistic levels for more comprehensive analysis.

139

5.5 REGULAR EXPRESSIONS

Regular expressions (regex) are a powerful tool used for pattern matching

and string manipulation. Widely employed in text processing, programming,

and data analysis, regex provides a concise and flexible way to search,

extract, and modify text based on specific patterns.

A regular expression is a sequence of characters that defines a search

pattern. This pattern can be used to match strings or perform operations like

searching, replacing, or splitting text in various programming languages.

Example

The regex \d{3}-\d{2}-\d{4} matches a U.S. Social Security Number format

(e.g., 123-45-6789).

Regex is supported by many programming languages, including Python, Java,

C++, JavaScript, and tools like grep, sed, and text editors like VS Code or

Sublime Text.

• Key Concepts of Regular Expressions

o Literal Characters

The simplest form of a regular expression matches exact characters.

Example: The regex cat matches the word cat in a sentence.

o Metacharacters

Metacharacters are symbols with special meanings in regex:

▪ .: Matches any single character except a newline.

▪ *: Matches zero or more occurrences of the preceding element.

▪ +: Matches one or more occurrences of the preceding element.

▪ ?: Matches zero or one occurrence of the preceding element.

▪ | : Acts as a logical OR.

▪ []: Denotes a set of characters.

▪ () : Groups expressions for operations or capturing.

• Regex Syntax and Examples

o Anchors

Anchors specify the position of the match in a string:

140

▪ ^: Matches the start of a string.

Example: ^Hello matches Hello at the beginning of a string.

▪ $: Matches the end of a string.

Example: world$ matches world at the end of a string.

o Character Classes

Character classes match specific groups of characters:

▪ [abc]: Matches any one of the characters a, b, or c.

▪ [^abc]: Matches any character except a, b, or c.

▪ [a-z]: Matches any lowercase letter from a to z.

▪ [0-9]: Matches any digit.

o Shorthand Classes:

▪ \d: Matches any digit (equivalent to [0-9]).

▪ \D: Matches any non-digit character.

▪ \w: Matches any word character (letters, digits, and underscores).

▪ \W: Matches any non-word character.

▪ \s: Matches any whitespace character (spaces, tabs, newlines).

▪ \S: Matches any non-whitespace character.

o Quantifiers

Quantifiers define the number of occurrences of a pattern:

▪ *: Matches zero or more occurrences.

Example: go* matches g, go, goo, etc.

▪ +: Matches one or more occurrences.

Example: go+ matches go, goo, but not g.

▪ ?: Matches zero or one occurrence.

Example: colou?r matches both color and colour.

▪ {n}: Matches exactly n occurrences.

Example: a{3} matches aaa.

▪ {n,}: Matches n or more occurrences.

Example: a{2,} matches aa, aaa, aaaa, etc.

▪ {n,m}: Matches between n and m occurrences.

Example: a{2,4} matches aa, aaa, or aaaa.

o Groups and Captures

Parentheses () are used to group patterns and capture matched

substrings:

141

▪ Grouping: (abc)+ matches abc, abcabc, etc.

▪ Capturing: (\d{4})-(\d{2}) on 2024-11 captures 2024 and 11 in

separate groups.

• Practical Applications of Regular Expressions

o Searching Text: Regex is often used to find specific patterns in text.

Example: Searching for email addresses

[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}

o Validating Input: Regex ensures that user input follows a specific format.

Example: Validating a phone number \(\d{3}\) \d{3}-\d{4}

Matches numbers like (123) 456-7890.

o Data Cleaning: Remove unwanted characters or patterns from text.

Example: Removing extra spaces \s+

o Extracting Data: Regex extracts specific substrings from a larger text.

Example: Extracting dates \b\d{4}-\d{2}-\d{2}\b

o File Parsing: Regex processes log files, configuration files, and more.

Example: Extracting IP addresses \b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b

Python Example

Python’s re module provides functions for regex operations:

▪ re.search(): Searches for the first match.

▪ re.match(): Matches the pattern at the start of the string.

▪ re.findall(): Returns all non-overlapping matches.

▪ re.sub(): Substitutes the matched patterns.

CODE EXAMPLE:

import re

text = "The price is $15.99."

pattern = r"\$\d+\.\d{2}"

match = re.search(pattern, text)

if match:

print("Found:", match.group()) # Output: Found: $15.99

142

• Advanced Regular Expressions

o Lookahead and Lookbehind

Lookaheads and lookbehinds are zero-width assertions that do not

consume characters in the string. They allow conditional matching based

on context.

▪ Positive Lookahead (?=): Asserts that a pattern is followed by

another.

Example: \d(?= dollars) matches digits before dollars.

▪ Negative Lookahead (?!): Asserts that a pattern is not followed by

another.

Example: \d(?! dollars) matches digits not before dollars.

▪ Positive Lookbehind (?<=): Asserts that a pattern is preceded by

another.

Example: (?<=\$)\d+ matches digits preceded by a dollar sign.

▪ Negative Lookbehind (?<!): Asserts that a pattern is not preceded

by another.

Example: (?<!\$)\d+ matches digits not preceded by a dollar sign.

o Non-Greedy Matching

By default, regex is greedy and matches as much text as possible. Adding

a ? after a quantifier makes it non-greedy.

Example: <.+?> matches the smallest HTML tag.

• Challenges

o Complex Syntax: Regex can be difficult to read and write, especially for

beginners.

o Performance Issues: Complex patterns can be slow on large datasets.

o Ambiguity: Overlapping patterns can produce unexpected matches.

• Best Practices

o Use comments for complex patterns.

o Test regex patterns on small samples before applying them to large

datasets.

o Use tools like Regex101 or RegExr for testing and learning.

143

5.6 FINITE STATE AUTOMATA
Finite State Automata are mathematical models used for computation and

language recognition. They play a foundational role in theoretical computer

science, linguistics, and natural language processing. FSAs are often used for

tasks involving pattern recognition, text parsing, tokenization, and even

speech processing.

A Finite State Automaton is an abstract computational model consisting of

states, transitions, and rules for moving between states based on input

symbols. It operates on the principle of a machine that transitions between

different states, depending on the input, and determines whether a string

belongs to a language.

Example: Consider an automaton designed to recognize whether a string

contains the word “cat”. The automaton transitions through states

corresponding to the letters c, a, and t. If it reaches the final state after

consuming the input, the string is accepted.

• Components of Finite State Automata

An FSA is formally represented as a 5-tuple M=(Q, Σ, δ, q0, F), where:

1. Q (States): A finite set of states the automaton can occupy.

Example: Q={q0,q1,q2,q3}, where q0 is the start state.

2. Σ (Alphabet): A finite set of input symbols (also called the alphabet).

Example: For recognizing binary numbers, Σ ={0,1}.

3. δ (Transition Function): A function defining transitions between states

based on input symbols.

Example: δ(q0,0)=q1 means that on reading ‘0’, the automaton moves

from q0 to q1.

4. q₀ (Start State): The initial state where the automaton begins processing

input.

Example: q0 is the start state.

5. F (Final States): A subset of states F ⊆ Q, representing accepting or final

states.

Example: If q3 is a final state, the automaton accepts a string when it ends

in q3.

144

• Types of Finite State Automata

o Deterministic Finite Automata (DFA)

A DFA has exactly one transition for each symbol in the alphabet from any

given state. The behavior of a DFA is deterministic because its next state

is uniquely determined by its current state and the input symbol.

Example: Recognizing strings ending with “01”:

o States: Q={q0,q1,q2}

o Alphabet: Σ={0,1}

o Transition Function:

▪ δ(q0,0)=q0

▪ δ(q0,1)=q1

▪ δ(q1,0)=q2

▪ δ(q2,1)=q1

o Final State: F={q2}

o Non-Deterministic Finite Automata (NFA)

An NFA can have multiple transitions for the same symbol or even

transitions without consuming any input (epsilon transitions). Unlike DFA,

the behavior of an NFA is non-deterministic.

Key Features:

o Multiple paths may exist for processing a given string.

o NFAs are easier to construct but less efficient to simulate than DFAs.

Example: Recognizing strings containing “ab”:

o States: Q={q0,q1,q2}

o Alphabet: Σ={a,b}

o Transition Function:

▪ δ(q0,a)={q1}

▪ δ(q1,b)={q2}

o Final State: F={q2}

o Epsilon-NFA (ε-NFA)

An ε-NFA is an extension of NFA where transitions can occur without

consuming any input (denoted as ε-transitions). These transitions allow the

automaton to change states “for free”.

Use Case: Simplifies automata construction, especially for complex

languages.

145

• How Finite State Automata Work?

The operation of an FSA involves:

o Initialization: The automaton starts at the initial state q0.

o Input Processing: For each input symbol, the automaton transitions to

the next state based on the transition function δ.

o Acceptance Check: After consuming all input, if the automaton is in a

final state, the string is accepted.

Example: Input: 1101

o Automation:

▪ States: Q={q0,q1,q2}

▪ Alphabet: Σ={0,1}

▪ Final State: q2

o Steps:

▪ Start at q0.

▪ Read 1: Transition to q1.

▪ Read 1: Remain in q1.

▪ Read 0: Transition to q2.

▪ Read 1: Remain in q2.

▪ Final state reached (q2): String accepted.

• Applications of Finite State Automata

o Natural Language Processing

▪ Tokenization: Splitting text into words, phrases, or symbols.

▪ Spell Checking: Recognizing valid words using a dictionary-based

FSA.

▪ Morphological Analysis: Identifying roots, prefixes, and suffixes of

words.

o Text Search and Processing

▪ Recognizing patterns in text, such as email addresses or URLs.

▪ Search engines use FSAs for efficient text matching.

o Compilers

▪ Lexical analysis: FSAs identify keywords, operators, and identifiers

in source code.

146

o Speech Processing

▪ Speech recognition systems use FSAs to model phoneme

transitions.

o Protocol Validation

▪ FSAs validate sequences of actions in communication protocols.

• Advantages of Finite State Automata

o Simplicity: Easy to understand and implement for many tasks.

o Efficiency: DFAs process input in linear time concerning string length.

o Theoretical Foundation: FSAs underpin the design of regular

languages and grammars.

• Challenges of Finite State Automata

o Limited Expressiveness: FSAs cannot recognize non-regular

languages, such as those requiring counting (e.g., balanced

parentheses).

o State Explosion: Large alphabets or complex patterns result in many

states.

o Non-Determinism: NFAs require conversion to DFAs for efficient

implementation, which can be computationally expensive.

Finite State Automata and Regular Languages: FSAs are closely tied to

regular languages, which are defined by regular expressions. Every regular

expression corresponds to an FSA, and vice versa. This connection forms the

basis for their use in text processing and programming.

• Building FSAs for Real-World Problems

To construct an FSA:

1. Define the states and alphabet.

2. Determine the initial and final states.

3. Design the transition function based on the desired language.

Example: Recognizing even-length binary strings:

● States: Q={q0,q1}

147

● Alphabet: Σ={0,1}

● Transitions:

o δ(q0,0)=q1

o δ(q1,0)=q0

o Similar transitions for 1.

● Final State: q0

Finite State Automata are a cornerstone of computational theory and practical

text processing. Their simplicity, efficiency, and close relationship with regular

languages make them invaluable for a variety of applications, from NLP to

compiler design. While they have limitations, their conceptual elegance and

versatility make them a critical tool for understanding the computational

properties of languages and patterns.

Check Your Progress

a) ________ is the branch of linguistics concerned with the structure and

formation of words.

b) ________ creates new words by adding morphemes, often changing the

meaning or grammatical category.

c) ________ are mathematical models used for computation and language

recognition in NLP.

d) The regex shorthand character class ________ matches any digit.

e) An ________ allows an automaton to change states without consuming

any input symbol.

5.7 Let us sum up

In this unit we have discussed the key concepts of morphology. You have got

detailed understanding of understanding the importance of morphology in

grammar, applications of English Morphology in NLP. We have described

morphological analysis giving proper examples and we also elaborate on the

significance of regular expressions in text processing along with the role of

finite state automata in language processing.

148

5.8 Check your progress: Possible Answers

a) Morphology

b) Derivational morphology

c) Finite State Automata (FSA)

d) \d

e) epsilon transition

5.9 Further Reading

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

• James A. Natural language Understanding 2e, Pearson Education, 1994.

5.10 Assignments

• What is morphological analysis, and how does it help in understanding the

structure of English words?

• How are regular expressions used in NLP for pattern matching in text?

• Explain the role of finite-state automata in analyzing and processing

morphological structures.

• Discuss the difference between inflectional and derivational morphology

with examples.

• Why is understanding English morphology crucial for developing robust

NLP systems?

149

Block-2
Word Level Analysis

150

Unit-1: N-Grams

Unit Structure

1.0. Learning Objectives

1.1. Introduction

1.2. Origin of Natural Language Processing

1.3. Need for Natural Language Processing

1.4. Structural Features of Texts in Natural Language

1.5. Types of Natural Language Processing Tasks

1.6. Challenges of Natural Language Processing

1.7. Basic Approaches to Problem Solving

1.8. Let us sum up

1.9. Check your Progress: Possible Answers

1.10. Further Reading

1.11. Assignment

1

151

1.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know the concept of word-level analysis

• What is N-grams

• Understand the importance and mathematical basis of N-grams

• List various types of N-grams

• Describe the evaluation techniques of N-grams

• Explain the use of word classes

1.1 INTRODUCTION

Word-level analysis is the starting point for most NLP tasks. It involves

processing text data one word at a time, capturing syntactic, semantic, and

contextual patterns that reveal how words are organised to convey meaning.

Since language is inherently structured, word-level analysis seeks to

understand these structures by examining word order, context, and frequency.

This foundational step enables more complex tasks like machine translation,

sentiment analysis, information retrieval, and question answering.

A key component of word-level analysis is n-gram modelling. N-grams are

sequences of words in a sentence used to capture local context, making them

valuable for language modelling. A common challenge in NLP is predicting the

probability of the next word in a sequence. For instance, if given a phrase like

"The cat sat on the," predicting the next word could involve choosing the most

probable continuation, which might be "mat." This is where n-grams come into

play—they provide a statistical model for predicting word sequences.

Understanding N-grams

In natural language processing (NLP), N-grams are a core concept used to

model the probability of sequences of words. By examining fixed-length

sequences of words, N-grams provide a way to capture syntactic and

semantic patterns, which can then be used in language modelling, predictive

text, speech recognition, and many other NLP applications.

152

At its essence, an N-gram is a contiguous sequence of 'N' items, typically

words, drawn from a larger body of text. By breaking down text into these

smaller, structured sequences, N-grams allow a model to understand

language patterns, contextual relationships, and common co-occurrences of

words.

1.2 IMPORTANCE OF N-GRAM MODELS
Understanding N-grams is foundational to NLP because language relies on

context: the meaning and function of a word often depend on the words

around it. N-gram models capture these local dependencies by providing a

probabilistic approach to language modelling. However, they do so within a

limited scope (typically only the last few words), which makes them

computationally efficient, though sometimes limited in terms of depth and

global context.

Types of N-grams

1. Unigram (N=1):

○ A unigram is a sequence of single items (e.g., words) without any

context of neighbouring words. This approach treats each word

independently.

Example: In the sentence "I love NLP," the unigrams are "I," "love,"

and "NLP."

2. Bigram (N=2):

○ A bigram considers sequences of two consecutive words. This model is

slightly more sophisticated than a unigram model because it captures

a limited amount of context.

Example: In the same sentence, the bigrams are "I love" and "love

NLP."

3. Trigram (N=3):

○ A trigram model considers sequences of three consecutive words. This

provides even more context than the bigram model and is commonly

used in speech and text recognition.

Example: For the sentence "I love NLP," the trigram is simply "I love

NLP."

153

4. Higher-order N-grams:

○ Beyond trigrams, higher-order N-grams (e.g., 4-grams, 5-grams) can

be used for greater context. However, as N increases, the model

becomes more computationally expensive and prone to issues with

sparsity (since the probability of specific sequences decreases).

Figure-17: Types of N-grams

1.3 MATHEMATICAL FORMULATION OF N-GRAM
MODELS

N-gram models are used to estimate the probability of a word sequence. By

leveraging the Markov assumption, these models simplify the calculation of

a sequence's probability, assuming that the probability of each word depends

only on the preceding N-1 words. This simplification, while not entirely

accurate for natural language, makes the model computationally feasible.

The general formula for the probability of a sequence is:

This formula states that the probability of the entire sequence can be

estimated by the product of the conditional probabilities of each word given its

previous N-1 words.

154

For example, in a bigram model (N=2), we assume that each word depends

only on the previous word:

Example Calculation for Bigram Probabilities

Consider the sentence: "The cat sat on the mat."

Using a bigram model, we can approximate the probability of this sentence

as:

P(“The cat sat on the mat”) = P(“cat” | “The”) P(“sat” | “cat”) P(“on” | “sat”)

 P(“the” | “on”) P(“mat” | “the”)

Each probability, such as P(“cat” | “The”), represents the likelihood of "cat"

following "The" in the training corpus. These probabilities are typically

calculated from the frequency of word pairs in a large corpus.

To estimate each of these bigram probabilities, we use the formula:

where is the count of the bigram in the corpus, and

 is the count of the preceding word . By dividing the frequency of

the bigram by the frequency of the first word, we get the likelihood of the

second word occurring after the first.

1.4 EVALUATING N-GRAMS

A robust n-gram model is one that can generalise well and handle new word

sequences effectively. However, real-world text data often suffer from

sparsity, meaning certain word combinations are either rare or entirely

missing in the training data. Several techniques—smoothing, interpolation,

and backoff—help to mitigate this issue and improve the reliability of n-gram

models.

155

Figure-18: N-Grams Evaluation Techniques

1. Smoothing

Smoothing helps address zero probabilities that occur when certain n-grams

are missing from the dataset. Various smoothing techniques distribute some

probability mass from frequent to infrequent or unseen n-grams, making the

model more robust. Some common smoothing techniques are:

• Laplace (Add-On) Smoothing

Laplace smoothing is a simple method where 1 is added to each observed

count to prevent zero probabilities. The adjusted probability for a bigram

P() is:

where is the size of the vocabulary. While Laplace smoothing effectively

removes zero probabilities, it can lead to over-smoothing, especially for

large vocabularies, by over-penalizing common n-grams.

Example: Consider the following bigram counts for a small dataset:

Bigram Count

“the cat” 2

“cat sits” 1

“sits on ” 1

“on the” 2

“the mat” 1

Table-6 Examples of Bigram Counting

156

To calculate the probability of "cat sits" occurring after seeing "cat," we first

calculate the unsmoothed bigram probability:

However, what if we want to find the probability of "cat jumps," a bigram

that doesn’t appear in our dataset? Without smoothing, this probability

would be zero:

With Laplace smoothing, we add 1 to each bigram count to avoid zero

probabilities. For "cat jumps," the smoothed probability becomes:

where is the vocabulary size. If (assuming we have 6 unique

words), this probability becomes:

Now, the model assigns a small, non-zero probability to previously unseen

bigrams, which prevents it from being overly confident in rare or missing

word pairs.

• Good-Turing Smoothing

Good-Turing smoothing redistributes probability mass based on the counts

of observed events, assigning lower probabilities to rare events and

reserving some probability for unseen n-grams. This method is ideal for

handling very sparse n-gram datasets but is computationally intensive, as

it requires grouping n-grams by frequency counts.

157

2. Interpolation

In interpolation, the final probability of a sequence is a weighted combination

of unigram, bigram, and higher-order n-gram probabilities. For a trigram

model, interpolation is expressed as:

where are weights satisfying . The weights can be

determined by cross-validation on a validation dataset.

Example: Suppose we want to estimate , and

we have:

● Trigram probability:

● Bigram probability:

● Unigram probability:

With interpolation weights , the combined

probability is:

3. Backoff

In backoff, the model "backs off" to a lower-order n-gram (e.g., from trigram to

bigram) if the higher-order n-gram is not found. For instance:

Here, is a scaling factor to ensure that probabilities sum to 1.

Example: Suppose we want to estimate in a trigram model,

but "the cat jumps" is not observed. The backoff scheme might use the bigram

probability , adjusted with a scaling factor , such as:

If and 0.25, then:

158

Backoff allows the model to rely on more general probabilities when specific

higher-order n-grams are missing, thereby ensuring all n-grams receive a

reasonable probability.

1.5 WORD CLASSES
Word classes group words with similar syntactic and semantic characteristics.

By classifying words into categories such as nouns, verbs, adjectives, and

adverbs, we can generalise n-gram models to recognize patterns across

different lexical items.

For example, consider the bigram "dog barks." With word classes, this bigram

can be represented as a "noun verb," making it applicable to phrases like "cat

meows" or "bird sings." This approach reduces the vocabulary size and

makes n-gram models more versatile, particularly with smaller datasets.

Constructing Word Classes

Word classes can be predefined (e.g., using part-of-speech tags) or learned

using clustering techniques. Predefined classes rely on linguistic knowledge,

while clustering algorithms, like k-means or Gaussian Mixture Models

(GMMs), automatically group words based on features such as word

embeddings, contextual similarity, or syntactic roles.

Example: Using word classes helps generalise n-gram models by grouping

words with similar linguistic roles, allowing models to recognize broader

patterns across word types.

• Part-of-Speech (POS) Tags

Consider the following sentence pairs:

1. "The dog barks."

2. "The cat meows."

3. "The bird sings."

Without word classes, the bigram model would treat each pair uniquely.

However, by categorising each noun as noun and each verb as verb, we

can generalise these sentences as:

"The [Noun] [Verb]."

159

Using this structure, the model can estimate probabilities for sequences

like "The dog sings" or "The bird barks" even if they weren't in the training

data, by calculating the probability for "The [Noun] [Verb]" as a pattern.

Example: Another approach to word classes is grouping similar words

using word embeddings. Suppose we have sentences with words like

"dog," "cat," "lion," and "tiger," which are all semantically similar. By

clustering these into an "animal" class, we can generalise the bigram

probabilities. For example, we can model "The [Animal] runs" as a generic

pattern and apply it to sentences like "The lion runs" or "The tiger runs."

Using word classes or clustering improves n-gram models by reducing the

vocabulary size and allowing patterns to emerge across different but

similar words, making the model more data-efficient and generalizable.

Performing Word Clustering in N-gram Models

● Define Word Similarity

The first step in word clustering is to identify words with similar

meanings or linguistic functions. There are several common

approaches for this:

○ Word Embeddings: Use pre-trained word embeddings like

Word2Vec, GloVe, or FastText, which represent words in a

continuous vector space where semantically similar words are

close to each other.

○ Statistical Similarity: Calculate co-occurrence frequencies or

Pointwise Mutual Information (PMI) scores between words in a

corpus to identify words that commonly appear in similar contexts.

○ Clustering Algorithms: Apply clustering algorithms to group

similar words together based on their embeddings or other

similarity metrics.

● Apply a Clustering Algorithm

Once you have a similarity measure for words, you can group them into

clusters. Let’s illustrate this with a common clustering technique like K-

means clustering.

160

○ Get Word Embeddings: Suppose we have a list of words that

include "dog," "cat," "lion," "tiger," "run," and "walk." For each word,

obtain its vector representation using a pre-trained embedding

model. For instance:

■ "dog": [0.2, 0.5, 0.1, ...]

■ "cat": [0.21, 0.48, 0.11, ...]

■ "lion": [0.3, 0.7, 0.15, ...]

■ "tiger": [0.32, 0.68, 0.16, ...]

■ "run": [0.1, -0.5, 0.9, ...]

■ "walk": [0.12, -0.51, 0.88, ...]

○ Cluster the Words: Using K-means clustering, set clusters

(or another appropriate number). The model will group words into

clusters based on their embeddings.

After clustering, we might get two clusters:

■ Cluster 1 (Animals) : {"dog," "cat," "lion," "tiger"}

■ Cluster 2 (Actions) : {"run," "walk"}

○ Label the Clusters: After clustering, assign meaningful labels to

each cluster. Here, Cluster 1 could be labelled as "Animal" and

Cluster 2 as "Action".

● Replace Words with Cluster Labels in N-grams

Now, we replace individual words with their cluster labels in the n-gram

model. Let’s say we have the following sentence:

"The dog runs and the tiger walks."

 After applying the clusters:

"The [Animal] [Action] and the [Animal] [Action]."

This allows the n-gram model to treat "dog runs" and "tiger walks" as

instances of the same generalised pattern, "[Animal] [Action]".

● Train the N-gram Model with Clustered Words

Using the clustered representations, train an n-gram model (e.g.,

bigram or trigram). Now, the model calculates probabilities for

generalised clusters rather than individual words, improving its ability to

generalise and estimate probabilities for unseen word pairs. For

example:

161

If "dog runs" and "tiger walks" appear frequently, the probability for

"[Animal] [Action]" will be high, allowing the model to handle sentences

like "lion walks" or "cat runs" even if they aren’t in the training data.

● Evaluate and Fine-Tune

After training, test the n-gram model to see if it generates coherent and

realistic sequences using the clusters. You may need to adjust the

number of clusters or refine the similarity measure if the model doesn’t

generalise well.

Check Your Progress

a) N-gram models can fully capture the long-range dependencies between

words in a sentence.

b) Higher-order N-grams (e.g., 4-grams, 5-grams) provide more context but

are more computationally expensive.

c) Laplace smoothing adds 1 to each observed count to prevent zero

probabilities but can lead to over-smoothing in large vocabularies.

d) Interpolation combines probabilities from different N-gram orders to

improve prediction accuracy.

e) Word classes (parts of speech) are irrelevant to the effectiveness of N-

gram models in natural language processing.

1.6 Let us sum up

In this unit we have discussed the concept of word-level analysis. You have

got detailed understanding of N-grams, their importance and mathematical

basis of N-grams. You now know various types of N-grams and the evaluation

techniques of all the types of N-grams. We have also elaborated the use of

word classes.

162

1.7 Check your progress: Possible Answers

a) False

b) True

c) True

d) True

e) False

1.8 Further Reading

• James A. Natural language Understanding 2e, Pearson Education, 1994.

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

1.9 Assignments

• What are N-grams, and how are they used in NLP for word-level analysis?

• How do N-grams help in understanding the probabilistic structure of

language?

• What is smoothing in N-gram models, and why is it necessary?

• Compare interpolation and backoff techniques in evaluating N-gram

models.

• How do word classes contribute to improving N-gram-based language
models?

163

Unit-2: Lexicons and Tagging

Unit Structure

2.0. Learning Objectives

2.1. Introduction

2.2. Stochastic Tagging

2.3. Transformation-Based Tagging

2.4. Issues in PoS Tagging

2.5. Let us sum up

2.6. Check your Progress: Possible Answers

2.7. Further Reading

2.8. Assignment

2

164

2.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know key concepts of Lexicons and Tagging

• Understand the importance of tagging in text processing

• List the tyeps of tagging in NLP

• Describe stochastic tagging

• Explain transformation-based tagging

• Know various issues in PoS tagging in natural language processing

2.1 INRODUCTION

Lexicons serve as the foundation for many NLP tasks by providing linguistic

data about words. This data includes parts of speech, morphological features,

and syntactic roles, all of which help define a word’s function in a sentence.

Lexicons are organized as dictionaries that map each word to its potential

parts of speech, such as noun (N), verb (V), or adjective (ADJ). When tagging

words, this lexical data serves as a reference for assigning tags based on

word forms, context, and usage patterns.

Part-of-Speech (PoS) Tagging

PoS tagging assigns each word in a text a tag that corresponds to its syntactic

category or part of speech. This step is crucial for many downstream NLP

tasks because it helps models understand sentence structure, which is

necessary for parsing, translation, and sentiment analysis, among other tasks.

PoS tagging can be performed in various ways, each with unique strengths

and challenges, as explored below.

Rule-based Tagging

Rule-based Part-of-Speech (PoS) tagging is one of the earliest techniques for

tagging words in natural language processing. It uses a set of handcrafted

linguistic rules to assign a specific tag to each word in a sentence. The rules

are based on syntactic, morphological, and contextual information, combining

insights from linguistic theories and patterns observed in the language.

165

Unlike statistical or machine learning-based tagging, rule-based tagging does

not rely on large, annotated datasets but rather on expert-crafted rules to

handle language structures. This makes rule-based taggers more

interpretable, but they can be challenging to maintain and scale due to the

effort required to create accurate rules.

Structure of a Rule-based Tagging System

Rule-based tagging generally consists of two main phases:

Figure-19: Phases of Rule-based Tagging

1. Lexicon Lookup Phase

In the lexicon lookup phase, the system checks each word against a

predefined lexicon, which is a dictionary of words associated with possible

PoS tags. The lexicon typically contains common words, irregular forms,

and suffix patterns that can help in initial tagging. For instance:

● Words ending in “-ing”: Frequently tagged as VERB (especially in

present participle form), as in "running" or "playing".

● Words ending in “-ly”: Often tagged as ADV (adverb), such as

"quickly" or "easily".

● Words ending in “-s”: These may be tagged as NOUN in plural form

or VERB in the third-person singular form, such as "dogs" (NOUN) or

"runs" (VERB).

166

During lexicon lookup:

● If a word has only one possible tag in the lexicon, that tag is assigned

directly.

● If a word has multiple possible tags, the lexicon phase provides the

most likely tags, which will be further disambiguated in the rule

application phase. For example, consider the sentence:

"The quick brown fox jumps over the lazy dog."

Lexicon Lookup:

o "The" is identified in the lexicon as a DET (determiner).

o "quick" is identified as an ADJ (adjective).

o "brown" is tagged as an ADJ but could also be a NOUN if context

permits.

o "fox" is a NOUN (singular).

o "jumps" could be a VERB (third-person singular) or a NOUN

(plural).

o "over" is a PREP (preposition).

o "lazy" is an ADJ.

o "dog" is a NOUN.

At this point, the lexicon lookup phase provides potential tags based on

each word’s lexical information.

2. Rule Application Phase

Once initial tags are assigned from the lexicon, the rule application phase

applies a series of predefined rules to disambiguate tags, especially for

words with multiple possible tags. Rules are crafted based on linguistic

insights and typically fall into three categories:

1. Morphological Rules: These rules infer tags based on the

morphological structure of a word, such as its prefix, suffix, or internal

structure.

167

2. Syntactic Rules: These rules use syntactic patterns in the surrounding

words to assign or adjust tags.

3. Positional Rules: These rules consider the position of words in a

sentence to assign the most likely tags.

Let us look at all thes rules in more detail.

1. Morphological Rules

Morphological rules analyse a word’s form to infer its PoS tag. They

focus on specific suffixes, prefixes, or other morphological markers that

are commonly associated with particular tags. Morphological analysis

can significantly narrow down the list of possible tags for words with

ambiguous meanings.

Examples of Morphological Rules:

● Suffix “-ly”: If a word ends in “-ly,” it is likely to be an ADV

(adverb).

● Suffix “-ing”: Words ending in “-ing” are typically VERB

(present participles), such as "playing," or ADJ when used as

gerunds.

● Suffix “-ed”: Words ending in “-ed” are usually VERB (past

tense or past participles), such as "talked" or "finished."

Example: Consider the word "quickly" in a sentence:

● Rule: If a word ends with “-ly,” tag it as an ADV.

● The tagger identifies "quickly" as ADV based on this

morphological rule.

2. Syntactic Rules

Syntactic rules use the grammatical structure of the sentence to assign

or refine tags. These rules analyse the word order and dependencies

to help disambiguate tags based on context. For instance, in English,

168

determiners are commonly followed by nouns or adjectives, while verbs

are often followed by adverbs or objects.

Examples of Syntactic Rules:

● Article Rule: If a word follows an article (e.g., "a," "the") and has

a noun-like structure, tag it as NOUN.

● Verb Following Pronoun Rule: If a word follows a personal

pronoun (e.g., "he," "she") and can be tagged as a verb, assign

the VERB tag.

Example: Consider the sentence: "The quick brown fox jumps."

● Rule: If a word follows an article and can be a noun, assign it the

NOUN tag.

● "The" is an article, and "fox" follows, so "fox" is tagged as a

NOUN based on syntactic context.

3. Positional Rules

Positional rules determine a word’s tag based on its position relative to

other words in a sentence. For example, a word that appears at the

beginning of a sentence might be more likely to be a NOUN or PROPN

(proper noun), especially in titles or headlines.

Examples of Positional Rules:

● First Word Rule: If a word appears at the start of a sentence, it

is more likely to be tagged as NOUN or PROPN.

● Following Verb Rule: If a word follows a verb and could be an

adjective or adverb, tag it as ADV.

Example: Consider the sentence: "Dogs run fast."

● Rule: If a word follows a verb and can be an adverb, tag it as

ADV.

● "Fast" follows the verb "run," so it is tagged as an ADV.

169

 Example: Let’s look at how a rule-based tagger would analyze the

sentence:

Sentence: "The quick brown fox jumps over the lazy dog."

1. Lexicon Lookup:

○ "The" as DET

○ "quick" as ADJ

○ "brown" as ADJ

○ "fox" as NOUN

○ "jumps" as VERB

○ "over" as PREP

○ "lazy" as ADJ

○ "dog" as NOUN

2. Rule Application:

○ Syntactic Rule: If a word follows "the" and can be an

adjective, tag it as ADJ. (applies to "quick" and "brown")

○ Positional Rule: If a word appears after a DET and is a

NOUN, retain its tag as NOUN. (applies to "fox")

○ Verb Following Noun Rule: If a word follows a NOUN and

can be tagged as a VERB, assign it the VERB tag. (applies

to "jumps")

The final tagged sequence becomes:

● The/DET quick/ADJ brown/ADJ fox/NOUN jumps/VERB over/PREP

the/DET lazy/ADJ dog/NOUN

2.2 STOCASTIC TAGGING

Stochastic Tagging, also known as probabilistic tagging, relies on statistical

models to estimate the likelihood of a specific tag for each word based on

patterns learned from large, annotated corpora. By considering contextual

probabilities, stochastic taggers can effectively handle ambiguous word cases

and predict tags that are likely to fit the surrounding structure of the sentence.

170

Unlike rule-based systems that need extensive manual effort to create rules,

stochastic taggers automatically learn these patterns from data.

Stochastic tagging is especially useful for languages and contexts with a high

degree of lexical ambiguity. For instance, words like "lead" and "can" can

serve as different parts of speech depending on the sentence. Probabilistic

models handle these cases by leveraging contextual data to disambiguate

tags.

Hidden Markov Models (HMMs) for PoS Tagging

One of the most widely used models for stochastic tagging is the Hidden

Markov Model (HMM). HMMs are particularly well-suited for PoS tagging

because they can model the sequence of tags as a probabilistic process

where each tag depends on the previous tag in the sequence. In HMM-based

tagging, sentences are represented as sequences of observed words with a

corresponding sequence of hidden tags.

An HMM for PoS tagging involves two main types of probabilities:

1. Transition Probabilities : These represent the probability

of transitioning from one tag to another. For example, a noun is more

likely to follow an adjective than a verb. Transition probabilities capture

these syntactic patterns.

2. Emission Probabilities : These represent the probability of

a word occurring given a particular tag. For instance, "run" has a high

probability of being tagged as a VERB but could also be a NOUN in

certain contexts. Emission probabilities help map words to their

probable tags.

With these probabilities, HMMs define the joint probability of a sequence of

words and tags. For a sentence with words, we denote:

● : the observed sequence of words.

● : the hidden sequence of tags.

The goal in HMM tagging is to find the sequence that maximises the

probability , which can be formulated as maximising the joint

probability .

171

Mathematical Formulation of HMM-Based Tagging

For a given sequence of words , the probability of a sequence of tags is

given by:

Using the Markov assumption (each tag depends only on the previous tag),

the joint probability can be expanded as:

Here:

● : The transition probability, indicating the likelihood of tag

 following tag .

● : The emission probability, indicating the likelihood of word

 appearing with tag .

Decoding with the Viterbi Algorithm

To find the most probable sequence of tags given , we use the Viterbi

Algorithm, a dynamic programming approach that efficiently computes the

most likely sequence of hidden states (tags) for an observed sequence of

words.

1. Initialization: Start with the initial probabilities for each tag based on

the first word in the sentence. For example:

where represents the probability of starting with tag .

2. Recurrence: For each subsequent word in the sentence, calculate

the maximum probability of reaching each tag from any possible

previous tag :

3. Termination: Identify the highest probability for the final word and

trace back to retrieve the most probable sequence of tags.

Example: Consider the sentence: “A fast runner finishes first.”

172

HMM-based tagger would process this sentence as:

1. Initialization:

○ Start by assigning initial probabilities for the possible tags of the

first word, "A".

○ "A" likely has a high emission probability for DET (determiner).

2. Probabilistic Tagging (Iterating through each word):

○ "fast": This word could be either an ADJ (adjective) or an ADV

(adverb). The transition probability from DET to ADJ is likely

higher, so ADJ is chosen.

○ "runner": With ADJ as the preceding tag, "runner" likely has a

high emission probability for NOUN.

○ "finishes": Following a noun, "finishes" is likely to be a VERB.

○ "first": After a verb, "first" could be an ADV (adverb).

3. Output: The tagger calculates the probabilities for each tag path and

selects the most probable sequence: DET ADJ NOUN VERB ADV.

Advanced Stochastic Models

Although HMMs are foundational, modern NLP often extends beyond them.

Here are a couple of prominent extensions:

1. Maximum Entropy Markov Models (MEMMs):

○ MEMMs extend HMMs by incorporating additional features into

the probability calculations, such as capitalization, suffixes,

prefixes, and position within the sentence.

○ MEMMs directly model conditional probabilities

without needing separate transition and emission probabilities.

○ They address some of the limitations of HMMs by enabling

feature-rich representations of the words and tags.

2. Conditional Random Fields (CRFs):

○ CRFs model the entire sequence of tags jointly, rather than as

independent tag transitions.

○ This holistic approach improves accuracy by considering

dependencies between tags across the whole sentence, making

173

CRFs especially effective for structured sequence predictions

like PoS tagging.

○ CRFs overcome certain limitations of HMMs and MEMMs by

avoiding “label bias” (the tendency of models to overemphasise

frequently seen tags in certain contexts).

2.3 TRANSFORMATION-BASED TAGGING
Transformation-based Tagging, also known as Brill Tagging (named after

its inventor, Eric Brill), is a tagging approach that combines the strengths of

both rule-based and statistical methods. The core idea is to start with an initial

tagging, which may contain errors, and iteratively apply transformation rules to

improve accuracy. This approach allows the model to automatically generate,

refine, and apply rules, making it both interpretable (like rule-based methods)

and adaptable to specific data (like probabilistic methods). Unlike traditional

rule-based systems, where linguists manually craft rules, Brill Tagging learns

these rules from annotated training data, enabling it to adapt to specific

languages or domains.

The motivation for transformation-based tagging lies in its balance of

interpretability, flexibility, and adaptability. By generating transformation rules

based on data, Brill Tagging achieves higher accuracy without relying heavily

on probabilistic modelling. Each rule created provides a clear rationale for why

certain tags are changed, making the process interpretable and easily

adjustable by linguists if necessary.

Brill Tagging is particularly useful for handling the following:

1. Ambiguity in Tagging: By iteratively learning patterns, it can

disambiguate complex cases.

2. Efficiency: Compared to probabilistic models, transformation-based

models may require fewer resources.

3. Transparency: The generated rules are explicit, making it easy to

understand and troubleshoot tagging decisions.

Step-by-Step Process of Transformation-Based Tagging is shown in figure

below:

174

Figure-20: Steps of Transformation-Based Tagging

1. Initial Tagging

○ Each word in a sentence is first tagged with an initial guess,

usually based on the most frequent tag for each word in the

training data.

○ For words not seen in the training data (out-of-vocabulary

words), the tagger may use the most common tag or rely on

simple heuristics, such as tagging words ending in “-ing” as

VERB.

2. Learning Transformation Rules

○ The tagger compares its initial tagging with the correct tagging

(from annotated training data).

○ It identifies errors and learns transformation rules to correct

these errors based on patterns in the data.

○ The rules have a specific format, typically specifying conditions

under which one tag should be changed to another.

3. Rule Application

○ Rules are applied in sequence to improve the initial tagging

iteratively.

○ Each rule is chosen based on its effectiveness in reducing errors

on the training data.

4. Stopping Criteria

○ Rule generation continues until adding new rules does not

significantly improve accuracy or reaches a predefined

threshold.

175

Structure of Transformation Rules

Transformation rules in Brill Tagging are generally of the form:

● “Change tag X to tag Y if condition C holds”

These rules specify the circumstances under which the tag for a word should

be changed. Some typical conditions include:

● The presence of a specific preceding or following word/tag.

● Morphological features of the word itself (e.g., suffixes or prefixes).

For example:

● Rule: Change VERB to NOUN if the previous word is tagged as DET

(determiner).

○ Explanation: Nouns typically follow determiners (e.g., “the cat”),

whereas verbs do not.

Example: To illustrate how Brill Tagging works, let’s look at an example

sentence with several possible PoS tags for the word “can”:

Sentence: “Can you can a can?”

This sentence is ambiguous because the word “can” has multiple possible

tags:

● Can (first instance): Auxiliary verb (modal), as in “Can you...?”

● Can (second instance): Verb, meaning “to put in a can or container.”

● Can (third instance): Noun, referring to a container.

Step 1: Initial Tagging

The initial tagging might assign all instances of “can” the VERB tag, as this is

the most frequent usage of the word “can” in the training data:

● Initial Tags:

○ “Can” (VERB)

○ “you” (PRON)

○ “can” (VERB)

○ “a” (DET)

○ “can” (VERB)

176

Step 2: Generating Transformation Rules

The tagger then examines this tagging against the correct tagged data,

noticing that the third “can” should be a NOUN instead of a VERB. To correct

this, the tagger generates a rule based on observed patterns in similar

sentences:

● Learned Rule: Change VERB to NOUN if the word is preceded by the

tag DET.

○ Rationale: In English, determiners like “a” often precede nouns,

not verbs. So if a word follows a determiner, it is likely a noun.

Step 3: Applying the Rule

Once this rule is created, it is applied to the initial tagging. The third “can”

follows the word “a” (a determiner), so according to the rule, it should be re-

tagged as a NOUN:

● Transformed Tags:

○ “Can” (VERB)

○ “you” (PRON)

○ “can” (VERB)

○ “a” (DET)

○ “can” (NOUN)

After this transformation, the tagging more accurately reflects the meaning of

the sentence.

Step 4: Iteration and Additional Rules

Brill Tagging would continue to generate and apply more rules as needed. For

instance, if another error pattern is found—say, NOUN and VERB ambiguities

in similar contexts—it will generate new transformation rules to handle those

cases. Each rule refines the tagging iteratively, gradually approaching the

correct tagging structure.

177

2.4 ISSUES IN POS TAGGING

Part-of-Speech tagging, while a fundamental task in natural language

processing, faces several significant challenges due to the complexities and

nuances of human language. These issues can impact the accuracy and

reliability of PoS tagging models, regardless of whether they use rule-based,

stochastic, or machine learning techniques.

1. Ambiguity

Ambiguity is one of the most pervasive issues in PoS tagging and stems

from the fact that words can have multiple meanings or functions

depending on their context.

o Lexical Ambiguity: This occurs when a word has more than one

possible tag. For example, the word "bank" could be a NOUN

(referring to the financial institution) or a VERB (meaning to rely on

or "bank on" something).

o Syntactic Ambiguity: Phrases or sentences can sometimes be

interpreted in more than one syntactic way. For instance, in the

phrase "I saw the man with a telescope," the word "with" could

modify "man" (indicating that the man has a telescope) or "saw"

(indicating that the speaker used a telescope to see).

Ambiguity challenges PoS taggers to make the correct choice based on

the context in which the word appears. Rule-based systems attempt to

disambiguate tags using predefined context rules, while stochastic and

machine learning-based systems rely on probabilistic models trained on

large amounts of data to predict the most likely tag.

For example, consider the sentence: "The duck can swim."

o "Duck" could be tagged as VERB (meaning to lower one’s head

quickly) or NOUN (the bird), depending on the context. Here, "duck"

is a NOUN because it refers to the bird, but this interpretation

requires context to resolve.

178

o "Can" could be a VERB (to be able to do something) or a NOUN (a

container). In this sentence, it functions as a VERB indicating the

ability to swim.

● Approaches to Resolve Ambiguity

o Contextual Rules: In rule-based systems, rules are crafted to

specify the tag based on nearby words.

o Probabilistic Tagging: Machine learning-based taggers often rely on

probabilistic models (e.g., Hidden Markov Models) that learn tag

sequences from annotated corpora. They calculate the likelihood of

a tag given a word and its neighbouring tags to improve accuracy.

o Neural Networks: More advanced methods use neural networks like

Recurrent Neural Networks (RNNs) or Transformers, which can

capture long-range dependencies to resolve ambiguous cases

more accurately.

2. Out-of-Vocabulary (OOV) Words

Out-of-Vocabulary (OOV) words refer to words that do not appear in the

training lexicon or corpus. This can be a major issue in PoS tagging, as

the tagger may lack sufficient information to accurately assign a tag. OOV

words are especially common when encountering:

o Proper Nouns: Names of people, places, and organisations often

don’t appear in standard training datasets.

o Neologisms and Slang: New words or colloquial expressions can be

problematic.

o Domain-Specific Terms: Words used in specialised fields, such as

technical, legal, or medical terms, may be absent in general-

purpose lexicons.

179

For example, consider the sentence: "She recently invested in Tesla."

o "Tesla" might not appear in a general lexicon, making it difficult for

the tagger to recognize it as a PROPN (proper noun).

● Approaches to Handle OOV Words

o Morphological Analysis: Taggers can analyse the structure of

unknown words. For example, words ending in "-ed" or "-ing" are

likely to be VERBs.

● Backoff Tagging: When encountering an OOV word, a tagger might

assign the most probable tag based on similar known words.

● Character-Level Embeddings: In neural network-based taggers,

character-level embeddings (such as those in LSTMs or CNNs) allow

the model to infer tags based on the word’s morphology, even if the

word itself is not in the vocabulary.

3. Morphological Complexity

Languages with rich morphology, such as Finnish, Turkish, Arabic, or

Hungarian, present unique challenges for PoS tagging. In these

languages, words can have a wide array of forms due to extensive

inflection, derivation, and compounding. A single word can encode

information about tense, mood, case, person, and number, making it

difficult for taggers to handle the complexity without advanced

morphological analysis.

For example: In Turkish, the word "evlerinizden" (meaning "from your

houses") is composed of "ev" (house) + "ler" (plural marker) + "iniz"

(second-person plural possessive) + "den" (ablative case).

This morphological richness makes it challenging for taggers to:

o Identify base forms (lemmas).

o Assign correct tags based on inflections and suffixes.

● Approaches to Address Morphological Complexity

o Morphological Analysis Tools: Some systems incorporate

morphological analyzers that can break down words into roots and

affixes, allowing for more accurate tagging.

180

o Subword Embeddings: Subword or character-level embeddings in

deep learning models can capture morphological information,

enabling models to recognize patterns in inflected forms even if the

full word is unknown.

4. Domain-Specific Language

PoS taggers trained on general corpora (e.g., news articles, Wikipedia)

may struggle to tag text accurately in specialised domains like medicine,

law, or technology. These domains often include unique terminology,

jargon, and syntactic structures that differ significantly from general

language use. For example, medical text might contain abbreviations and

compound terms like "BP" (blood pressure) or "metastatic carcinoma,"

which could be incorrectly tagged by a general-purpose model.

Example: In the sentence: "The patient was given a dose of ibuprofen."

● A tagger trained on general language may not recognize "ibuprofen" as

a NOUN representing a medication, as it may not have seen the term

during training.

● Approaches to Improve Domain-Specific Tagging

o Domain-Specific Training Data: Training taggers on annotated

corpora from the specific domain (e.g., medical, legal) can

significantly improve performance.

o Transfer Learning: Fine-tuning a pre-trained model on domain-

specific text enables it to adapt to the new terminology and

syntactic structures.

o Dictionary or Gazetteer Integration: Integrating specialised lexicons

or gazetteers (e.g., drug names, technical terms) into the tagger

helps improve accuracy for domain-specific terms.

181

Check Your Progress

a) Rule-based PoS tagging requires large annotated corpora and

computational resources for effective performance.

b) Lexicons help in identifying the syntactic roles of words, which is critical for

understanding sentence structure.

c) Stochastic tagging is particularly effective for handling ambiguity in

language by evaluating the context of words.

d) Brill Tagging relies solely on predefined linguistic rules and does not adapt

to new linguistic data.

e) Transformation-based tagging improves tagging accuracy by applying

transformation rules to an initial tagging process.

2.5 Let us sum up

In this unit we have discussed the key concepts of Lexicons and Tagging and

the importance of tagging in text processing. You have got detailed

understanding of types of tagging in NLP. We have explained in detail

stochastic tagging and transformation-based tagging. Now you know various

issues in PoS tagging in natural language processing.

2.6 Check your progress: Possible Answers

a) False

b) True

c) True

d) False

e) True

182

2.7 Further Reading

• James A. Natural language Understanding 2e, Pearson Education, 1994.

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

2.8 Assignments

• What is Part-of-Speech (PoS) tagging, and why is it important in NLP?

• Explain rule-based tagging. What are its advantages and drawbacks?

• How does stochastic tagging differ from rule-based tagging, and what are

its primary benefits?

• What is transformation-based tagging, and how does it improve upon other

tagging methods?

• Identify and explain common issues in Part-of-Speech tagging with

examples.

183

Unit-3: Models for Tagging

Unit Structure

3.0. Learning Objectives

3.1. Hidden Markov Model

3.2. Maximum Entropy Model

3.3. Viterbi Algorithm

3.4. Let us sum up

3.5. Check your Progress: Possible Answers

3.6. Further Reading

3.7. Assignment

3

184

3.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Understand the importance of models for tagging

• List some significant models for tagging

• Explain Hidden Markov Model in detail

• Explain Maximum Entropy Model in detail

• Explain Viterbi Algorithm in detail

• List the advantages and disadvantages of all the models

3.1 HIDDEN MARKOV MODEL

An HMM is a type of statistical model that is particularly useful for

representing systems where we observe a sequence of outputs that

correspond to an underlying, hidden sequence of states. This is highly

relevant in language tasks, such as POS tagging, where the sequence of

words (the observed data) is connected to a sequence of hidden tags (the

POS tags we want to predict).

Key Assumptions in HMM

HMM makes three main assumptions that allow it to model and simplify

sequential data effectively:

1. Hidden States

In HMMs, we define a set of hidden states that represent the possible POS

tags in a sentence. These states include various syntactic categories, such

as Noun, Verb, Adjective, etc. When applied to a POS tagging task, the

hidden states are not directly observable; rather, they correspond to the

syntactic roles that each word in the sentence could take on. In the tagging

context:

● Each hidden state represents one possible POS tag (e.g., a tag for

a Noun).

● The model aims to infer the most likely sequence of these hidden

states (POS tags) for a given observed sequence of words in a

sentence.

185

This hidden aspect means we only see the words in a sentence and not

the POS tags directly. Our goal with HMM is to infer this hidden sequence

of tags given the observed sequence of words.

2. Observed Sequences

The observed sequence in the HMM represents the sequence of words in

a sentence. For instance, in the sentence "Cats sleep," the observed

sequence is ["Cats", "sleep"]. In POS tagging:

● Each word is an observation that the model can “see,” and the

model tries to explain these observations by associating them with

the hidden states.

● The probability of observing each word depends on its likelihood of

being generated by the corresponding hidden state (i.e., POS tag).

The observed sequence is crucial as it provides the data we use to predict

the hidden tags, with each word potentially aligning with multiple possible

tags. The observed words help the HMM determine the emission

probabilities, or the likelihood of each word being associated with each

POS tag.

3. Markovian Property (First-Order Markov Assumption)

The Markovian property in HMMs simplifies the model by assuming that

the current state (POS tag) depends only on the previous state, rather

than on all past states. This is known as the first-order Markov

assumption. Formally, for any tag sequence , the

probability of depends only on .

This assumption is particularly helpful in POS tagging because it makes

the computation of tag sequences manageable:

186

● By considering only the immediately preceding tag, the model

significantly reduces complexity while capturing much of the

necessary syntactic context.

● Although this simplifies the language model, it can still capture

common dependencies between POS tags, such as the likelihood

of a Verb following a Noun.

The Markov assumption is often reasonable in natural language

processing since the immediate context (like the previous word or tag)

usually has a dominant influence on a word's role in a sentence.

The Model

An HMM for POS tagging comprises several key components:

1. States:

● The hidden states, , represent the possible POS tags (e.g., Noun,

Verb, Adjective).

● For a sentence with words, we denote the tag sequence as

, where each is a tag from the state set.

2. Observation:

● The observed sequence, , represents the words

in the sentence.

3. Transition Probabilities:

● The transition probability, , represents the probability of

moving from the previous tag to the current tag . This

captures how likely one tag is to follow another (e.g., how likely a

Verb follows a Noun).

4. Emission Probabilities:

● The emission probability, , is the probability of a word

given a tag . This represents how likely a word is associated with

a particular tag (e.g., the likelihood of the word "sleep" being tagged

as a Verb).

5. Initial Probabilities:

● The initial probability is the probability of the first tag in a

sentence, helping to determine the most likely starting tag.

187

The goal in POS tagging with an HMM is to find the sequence of tags that

maximises the probability of the observed sequence . This is represented

mathematically by the following expression:

Using Bayes’ Rule, we can express this as:

where:

● is the product of transition probabilities for the sequence,

● is the product of emission probabilities for each word given its

corresponding tag.

Example: Consider the sentence "Cats sleep" and let’s assign POS tags to

this sentence using an HMM model.

1. Possible Tags and Observed Words:

● Possible tags: Noun (N),Verb (V)

● Observed words: “Cats” and “sleep”

2. Transition Probabilities:

● P(Noun | Noun) = 0.3

● P(Verb | Noun) = 0.7

● P(Noun | Verb) = 0.2

● P(Verb | Verb) = 0.8

3. Emission Probabilities:

● P(Cats | Noun) = 0.5

● P(Cats | Verb) = 0.1

● P(sleep | Noun) = 0.05

● P(sleep | Verb) = 0.6

4. Initial Probabilities:\

● P(Noun) = 0.3

● P(Verb) = 0.3

5. Calculating Tag Sequences: To find the most probable tag sequence,

we need to calculate the probability of each possible sequence of tags:

188

Sequence 1: Noun → Verb

P(Noun, Verb|Cats,sleep) = P(Cats|Noun) P(Noun) P(Verb|Noun)

P(sleep|Verb)

Substituting values:

= 0.5 0.6 0.7 0.6 = 0.126

Sequence 2: Verb → Noun

P(Verb, Noun|Cats,sleep) = P(Cats|Verb) P(Verb) P(Noun|Verb)

P(sleep|Noun)

Substituting values:

= 0.1 0.4 0.2 0.05 = 0.0004

6. Selecting the Sequence: Since the probability of Noun → Verb

(0.126) is greater than Verb → Noun (0.0004), we select the tag

sequence “Noun Verb” for the sentence “Cats sleep.”

• Advantages

o Probabilistic Nature: HMMs provide a probabilistic framework,

allowing for uncertainty in tagging and producing a ranked list of

possible sequences.

o Efficiency: The Viterbi algorithm, which finds the most probable

sequence of tags, is computationally efficient and works in

polynomial time.

o Flexibility: HMMs can be adapted for a variety of NLP tasks beyond

POS tagging, including Named Entity Recognition and speech

recognition.

• Disadvantages

o First-Order Markov Assumption: HMMs assume each tag depends

only on the previous tag, limiting their ability to model dependencies

further back in the sequence.

o Large Data Requirement: HMMs require large labelled datasets to

accurately estimate emission and transition probabilities.

o Sensitivity to Data Sparsity: If certain words or tag transitions are

rare, probability estimates may be inaccurate.

189

3.3 MAXIMUM ENTROPY MODEL

Concept

The Maximum Entropy Model (MaxEnt) is a versatile and widely used

probabilistic framework in Natural Language Processing (NLP). It operates on

the principle of maximum entropy, which states that when predicting

outcomes (e.g., POS tags, named entities), one should choose the model that

satisfies all given constraints while making the fewest assumptions. In simple

terms, a MaxEnt model selects the most uniform distribution possible,

constrained by known facts.

Why Maximum Entropy?

Imagine you are tasked with predicting the part of speech (POS) of words in a

sentence. Given a word's features (e.g., previous tag, capitalization), the

MaxEnt model ensures that the predicted probabilities reflect no undue bias

beyond the evidence provided. It avoids imposing assumptions about

dependencies between data points unless explicitly modelled. This flexibility

makes MaxEnt an effective choice for tasks requiring diverse contextual

information.

Unlike Hidden Markov Models (HMMs), which rely on sequential

dependencies, MaxEnt can incorporate arbitrary features, such as word

capitalization, prefix/suffix patterns, and even external lexicons, making it

significantly more adaptable.

The Model

The Maximum Entropy model predicts the probability of a sequence of labels

(e.g., POS tags) given an input sequence of observations (e.g., words).

Formally, this probability is expressed as:

190

Components of the Formula:

1. Features:

● : These are binary or numeric functions representing specific

attributes of the data. For example:

○ if the previous word’s tag is a noun.

○ if the current word starts with a capital letter.

● Each feature encodes a particular aspect of the relationship

between the input and the output .

2. Weights:

● λi: The weights associated with each feature are learned during

training. These weights determine the influence of each feature on

the predicted probability.

3. Normalisation Factor:

● : The partition function (normalisation factor) ensures that the
probabilities sum to 1:

This is crucial for maintaining the probabilistic nature of the model.

Mathematical Interpretation of Maximum Entropy

MaxEnt relies on Shannon Entropy, which measures the uncertainty of a

probability distribution:

The MaxEnt principle maximises subject to constraints derived from

observed data. This ensures the resulting model is as uniform as possible

without violating known facts.

Training Objective

The model optimises the log-likelihood of the training data:

Where is the number of training examples, and is computed using

the MaxEnt formula.

191

Optimization

Techniques like Iterative Scaling or Gradient Descent are used to learn the

weights that maximises .

Example: Consider the sentence: "Cats sleep."

We aim to assign POS tags to each word (e.g., "Cats" = Noun, "sleep" =

Verb). The MaxEnt model uses features to guide this tagging. Some possible

features could include:

● : Is the current word capitalised?

● : Is the previous tag a Noun?

● : Does the word end in “s”?

Based on training data, the model learns weights for these features. During

prediction, the MaxEnt model calculates probabilities for each tag sequence,

selecting the one with the highest probability.

Suppose the learned weights are:

The score for the tag sequence is computed as:

This is the unnormalised score for the tag sequence .

Normalising the Score:

The next step is to normalize the scores across all possible tag sequences for

the given word sequence .

Step 1: Compute Scores for All Tag Sequences

Suppose the possible tag sequences are:

1.

Already computed score

2.

Features:

Score:

192

3.

Features:

Score:

Step 2: Calculate the Partition Function

The partition function is the sum of unnormalized scores across all

possible tag sequences:

Step 3: Compute Normalised Probabilities

The probability of each tag sequence is the ratio of its unnormalized score to

the partition function:

1. For :

2. For :

3. For :

From above calculation it can be interpreted as is most likely tag for word

sequence “Cats sleep”

• Advantages

o Feature Flexibility: MaxEnt models can incorporate arbitrary and

overlapping features, allowing the use of rich contextual

information.

o No Assumption of Dependencies: Unlike HMMs, MaxEnt models do

not assume sequential dependencies, making them adaptable to a

wide range of problems.

193

o Robustness: They can handle sparse data better by utilizing

informative features.

o Widely Applicable: Used in tasks like POS tagging, Named Entity

Recognition (NER), and text classification.

• Disadvantages

o Data Requirements: MaxEnt models require a large amount of

labeled data to train effectively. Sparse or noisy data can lead to

suboptimal performance.

o Computational Intensity: Training involves optimizing a log-linear

objective, which can be computationally expensive, especially with

a large number of features.

o Feature Engineering: Manual feature selection and engineering can

be time-consuming and require domain expertise.

3.4 VITERBI ALGORITHM
Concept

The Viterbi Algorithm is a dynamic programming algorithm used for finding the

most probable sequence of states (e.g., tags, hidden states) in Hidden

Markov Models (HMMs). It is widely used in natural language processing

(NLP) tasks, such as Part-of-Speech (POS) tagging, speech recognition, and

named entity recognition.

The core idea of the Viterbi algorithm is to find the sequence of states (e.g.,

tags in POS tagging) that maximises the probability of the observed sequence

of events (e.g., words in a sentence). This is achieved by breaking the

problem into smaller subproblems and solving them efficiently using dynamic

programming.

In mathematical terms:

● Given an observation sequence , and an HMM

defined by:

○ : The set of possible states.

194

○ : The state transition probabilities, where .

○ : The emission probabilities, where .

○ : The initial state probabilities, where .

● The algorithm computes the most probable sequence of states

 such that:

Instead of enumerating all possible sequences (which would be

computationally expensive), the Viterbi algorithm efficiently computes

this by storing intermediate probabilities and making decisions

incrementally.

The Model

The Viterbi algorithm is based on the following key steps:

1. Initialization

At the first time step , initialise the probabilities for each state :

where:

 is the highest probability of observing and ending in state .

2. Recursion

For each time step and for each state :

where:

● is the highest probability of observing the sequence

 and ending in state .

● is the transition probability from to .

● is the emission probability of observing oto_tot from state .

To trace the path, keep track of the state that maximises the probability

at each step:

3. Termination

At the final time step , compute the maximum probability:

195

and identify the best state:

4. Backtracking

Reconstruct the best sequence of states by following the backpointers:

Repeat until

Example

Suppose we want to tag the word sequence

States

Transition probabilities :

Emission probabilities :

Initial probabilities (π):

Step 1: Initialization

At :

Step 2: Recursion

At (word = "can"):

196

At (word = "fish"):

Step 3: Termination

The most probable final state is .

Step 4: Backtracking

Using backpointers, we find the most probable sequence: .

• Advantages

o Optimal Solution: Guarantees the most probable sequence.

o Efficient: Reduces the exponential complexity of enumerating all state

sequences to polynomial time.

o General Applicability: Works with any model that can be represented

as an HMM.

• Disadvantages

o Dependence on Model Accuracy: Assumes the HMM parameters

(transition and emission probabilities) are accurate.

o Limited to Sequence Models: Cannot handle complex dependencies

beyond sequential data.

o Scalability Issues: Performance can degrade with large state spaces or

very long sequences.

197

Check Your Progress-1

a) HMMs assume that the current state depends on all previous states, not

just the previous state.

b) The Maximum Entropy Model uses explicit features to predict outcomes

without assuming any relationships unless specified by the data.

c) The Viterbi algorithm uses dynamic programming to break down the

problem of finding the most probable sequence into smaller subproblems.

d) The Viterbi algorithm computes the most probable sequence by examining

all possible sequences without storing intermediate results.

e) The emission probability in an HMM represents how likely a word is

associated with a specific tag.

3.5 Let us sum up

In this unit we have discussed the importance of models for tagging. You have

got detailed understanding of some significant models for tagging. We have

explained Hidden Markov Model, maximum entropy model and Viterbi

Algorithm in detail. We also elaborated the advantages and disadvantages of

all the models.

3.6 Check your progress: Possible Answers

a) False

b) True

c) True

d) False

e) True

198

3.7 Further Reading

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

• Bharati A., Sangal R., Chaitanya V. Natural language processing: a

Paninian perspective, PHI, 2000.

3.8 Assignments

• Describe the components of the HMM for tagging tasks.

• Provide an example of how an HMM can be used for PoS tagging.

• Explain how the Maximum Entropy Model incorporates features for better

predictions.

• Provide an example of how the Maximum Entropy Model can be used in

PoS tagging.

How does the Viterbi Algorithm work in identifying the most probable
sequence of tags?

199

Block-3
Syntactic & Semantic Analysis

200

Unit-1: Syntactic Analysis

Unit Structure

1.0. Learning Objectives

1.1. Introduction

1.2. Parsing

1.3. Constituency and Dependency Trees

1.4. Context-Free Grammar

1.5. Probabilistic Approach to Parsing

1.6. Lexicalized Probabilistic Context-Free Grammars

1.7. CKY (Cocke–Kasami–Younger) Algorithm

1.8. Earley Chart Parsing Algorithm

1.9. Let us sum up

1.10. Check your Progress: Possible Answers

1.11. Further Reading

1.12. Assignment

1

201

1.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know the concept of parsing

• Create parsing trees

• What is the role of context free grammer

• Understand the probabilistic approach to parsing

• Describe various parsing algorithms

• Know the advantages and examples of parsing algorithms

1.1 INTRODUCTION

Syntactic Analysis, also known as Parsing, is a critical component of Natural

Language Processing (NLP) that focuses on understanding the structural

organization of sentences. It involves examining how words are arranged and

combined to form phrases and sentences according to a set of grammatical

rules. This structural analysis is essential for enabling machines to interpret

human language, as it lays the foundation for advanced tasks like semantic

analysis, information extraction, machine translation, and question answering.

By identifying the grammatical relationships between words, syntactic analysis

provides a framework for understanding the hierarchy and organization of

language.

The primary objective of syntactic analysis is to determine whether a sentence

adheres to grammatical rules and to break it down into its constituent parts,

such as nouns, verbs, and phrases. Two main approaches are commonly

used: constituency parsing, which divides a sentence into hierarchical sub-

phrases, and dependency parsing, which focuses on the relationships

between individual words. These techniques help reveal the underlying

structure of a sentence, making it easier to interpret its meaning. However,

the process is not without challenges, including ambiguity, where sentences

can have multiple valid parses, and the complexity of handling long or

informal sentences that deviate from standard grammatical norms.

202

Despite these challenges, syntactic analysis is indispensable for various

applications. In machine translation, parsing ensures that grammatical

integrity is maintained when converting text between languages. For chatbots

and question-answering systems, understanding syntax helps clarify user

intent and improve response accuracy. Additionally, syntactic analysis

supports tasks like text summarization and information retrieval by providing

structured representations of text. By bridging the gap between raw language

input and higher-level processing, syntactic analysis remains a foundational

step in enabling machines to understand and work with human language

effectively.

1.2 PARSING
Parsing, a fundamental aspect of syntactic analysis, is the process of

deconstructing a sentence into its grammatical components according to

predefined grammar rules. This process enables machines to uncover the

syntactic structure of language, serving as a critical foundation for numerous

advanced Natural Language Processing (NLP) tasks. By analyzing how words

interact within a sentence, parsing provides the structural insights needed for

downstream applications such as information extraction, machine translation,

and semantic analysis. It helps machines not only identify grammatical

correctness but also create meaningful representations of sentences that can

be further utilized for understanding and generating human language.

The importance of parsing lies in its ability to address the inherent ambiguity

of natural language. Sentences can often be interpreted in multiple valid ways

due to varied grammatical constructions or contextual nuances. Parsing

serves as the first step in resolving these ambiguities by providing a

structured framework for analysis. Through parsing, words and phrases are

organized into a hierarchical or relational structure, making it easier to derive

meaning and context. Constituency parsing, which breaks sentences into

nested sub-phrases, and dependency parsing, which highlights relationships

between words, are two key methods employed to achieve this. Both

approaches are instrumental in building precise models for syntactic

interpretation.

203

Parsing is indispensable for a wide range of NLP applications. In machine

translation, parsing ensures that sentences are translated while preserving

grammatical integrity and meaning. For information extraction, it facilitates the

identification of relationships between entities and events in text. Semantic

analysis also relies on parsing to provide the structured data required for

interpreting the meaning of sentences. By addressing the structural

complexity of language and resolving ambiguities, parsing acts as a

cornerstone in enabling machines to process and understand natural

language with greater accuracy and sophistication.

What is Parsing?

Parsing, in its simplest form, is the process of mapping a linear sequence of

words (a sentence) into a tree-like hierarchical representation that reveals its

grammatical structure. This process typically uses grammar to derive

syntactic relationships between words, ensuring that sentences adhere to

linguistic rules.

For example, the sentence:

The cat sat on the mat.

can be represented as a parse tree, showing how individual words group into

phrases and how those phrases combine to form the sentence.

• Key Components of Parsing

o Grammar: A set of rules or patterns that define the syntactic structure

of a language. Examples include Context-Free Grammar (CFG) and its

probabilistic variant, PCFG.

o Parse Tree: A tree diagram that represents the syntactic structure of a

sentence based on the grammar.

o Parsing Algorithms: Computational methods used to construct parse

trees efficiently. Examples include top-down parsing, bottom-up

parsing, and chart parsing algorithms like CKY and Earley.

• Why Parsing Matters in NLP

Parsing plays a pivotal role in many NLP applications:

204

o Semantic Analysis: Parsing provides the structure necessary for

understanding meaning.

o Machine Translation: Helps in aligning syntactic structures between

languages.

o Question Answering: Parsing helps identify relationships between

elements in a question and a corresponding answer.

o Information Extraction: Parsing enables identification of entities,

events, and their relationships in text.

• Types of Parsing

Parsing techniques can broadly be classified into:

o Top-Down Parsing: Top-down parsing starts at the root node (start

symbol of the grammar) and works downward to match the input

sentence. It is useful for constructing possible parse trees by applying

grammar rules in a depth-first manner.

Advantages: Simple and intuitive.

Disadvantages: May explore invalid trees before discovering valid

ones.

o Bottom-Up Parsing: Bottom-up parsing begins with the input words

(leaves of the tree) and works upward to construct the root. It uses

grammar rules to combine smaller constituents into larger ones

iteratively.

Advantages: Avoids exploring trees not supported by the input

sentence.

Disadvantages: Can be computationally expensive for complex

grammars.

• Ambiguity in Parsing

Natural language is often ambiguous, meaning a single sentence can have

multiple valid parse trees. This phenomenon is known as syntactic

ambiguity.

For example:

I saw the man with a telescope.

205

• Interpretation 1: The telescope belongs to the man.

• Interpretation 2: I used the telescope to see the man.

Both interpretations have valid parse trees, but their meanings are

different. Resolving such ambiguities is a critical challenge in parsing.

• Formal Definition of Parsing

Formally, parsing can be defined as follows:

Given:

1. A string where are terminal symbols.

2. A context-free , where :

• : Set of non-terminal symbols.

• : Set of terminal symbols (words in the language).

• : Set of production rules , where and .

• : Start symbol

Parsing involves finding a derivation (or tree structure) such that:

This derivation represents the syntactic structure of according to grammar

.

• Example of Parsing
Example Sentence: The dog barks.

Step 1: Define a CFG

• S → NP VP

• NP → Det N

• VP → V

• Det → 'The'

• N → 'dog'

• V → 'barks'

Step 2: Top-Down Parsing

1. Start with

206

2. Expand

3. Substitute terminals for and

4. Expand

5. Substitute terminal for

Resulting Parse Tree:
 S
 / \
 NP VP
 / \ \
 Det N V
 'The' 'dog' 'barks'

Step 3: Bottom-Up Parsing

1. Start the input: ‘The dog barks’
2. Recognize individual words as terminals:

o

3. Combine and into

4. Combine and into

5. Combine and into

• Challenges in Parsing

o Ambiguity: Resolving multiple valid parse trees.

o Efficiency: Parsing large texts with complex grammars can be

computationally expensive.

o Coverage: Grammar rules must be comprehensive enough to handle

diverse sentence structures.

o Robustness: Handling ungrammatical input gracefully.

• Applications of Parsing in NLP

o Grammar Checking: Identifies grammatical errors in sentences.

o Text-to-Speech (TTS): Converts syntactic structures into prosody and

intonation.

o Semantic Role Labeling (SRL): Assigns semantic roles (e.g., agent,

object) to words or phrases.

o Knowledge Graph Construction: Extracts entities and relationships

from syntactic structures.

207

1.3 CONSTITUENCY AND DEPENDENCY TREES

In syntactic analysis, Constituency Trees and Dependency Trees are two

pivotal structures for representing the grammatical organization of sentences.

Both offer unique perspectives: while constituency trees highlight the

hierarchical grouping of words into phrases, dependency trees focus on the

direct syntactic relationships between words. Together, these trees provide a

comprehensive understanding of sentence structure and are widely used in

computational linguistics for diverse applications.

Constituency Trees

Constituency Trees, also known as phrase-structure trees, represent the

hierarchical arrangement of words into phrases based on the rules of a

Context-Free Grammar (CFG). These trees are especially effective in

capturing how phrases combine to form sentences, offering a visual hierarchy

that explains grammatical composition.

• Key Features of Constituency Trees

o Nodes: Internal nodes represent non-terminal categories such as noun

phrases (NP) or verb phrases (VP).

o Leaf nodes: Leaf nodes represent terminal symbols, which are the

actual words in the sentence.

o Edges: Define the parent-child relationship between grammatical

categories and their components.

o Hierarchy: Encodes the nested structure of phrases, illustrating how

smaller units (words or subphrases) group into larger syntactic

constructs.

Example For the sentence:

The cat sat on the mat.

208

The corresponding constituency tree can be visualized as follows:

 S

 / \

 NP VP

 / \ / \

 Det N V PP

 | | | / \

 The cat sat P NP

 | / \

 on Det N

 | |

 the mat

In this tree:

o The root node (S) represents the sentence.

o Non-terminal nodes like NP and VP group words into noun and verb

phrases.

o Terminal nodes like "The," "cat," and "sat" represent the individual

words.

• Formal Definition

A constituency tree is formally defined as:

o A root node representing the start symbol of the CFG.

o A set of non-terminal nodes denoting grammatical categories.

o A set of terminal nodes corresponding to the words in the sentence.

o Directed edges linking parent nodes to their children according to CFG

production rules.

• Importance of Constituency Trees

o Hierarchical Representation: Provides a detailed view of phrase

structures and their interactions within a sentence.

o Grammatical Insights: Identifies syntactic patterns crucial for

language understanding.

209

• Applications

o Machine Translation: Aligns phrases for accurate translation.

o Syntax-based Sentiment Analysis: Identifies sentiment within

specific syntactic constructs.

Dependency Trees

In contrast to constituency trees, Dependency Trees focus on the grammatical

dependencies between individual words in a sentence. Instead of phrases,

these trees depict direct relationships, such as which word serves as the

subject of a verb or the object of a preposition. Dependency trees align with

Dependency Grammar, where syntax revolves around word-to-word

relationships.

• Key Features of Dependency Trees

o Nodes: Each word in the sentence is a node.

o Edges: Directed edges represent dependencies, labeled with

grammatical roles (e.g., nsubj for nominal subject, obj for object).

o Root Node: The main verb or governing word serves as the root of the

tree.

Example: For the sentence

The cat sat on the mat.

The dependency tree is represented as:

 sat

 / | \

 cat on mat

 / /

 The the

Here:

• The root node "sat" governs the sentence.

• "cat" is linked to "sat" as its subject (nsubj), while "on" is a

prepositional modifier (prep).

• Determiners like "The" and "the" are dependent on their respective

nouns.

210

• Dependency Labels

Some commonly used dependency labels include:

o nsubj: Nominal subject.

o obj: Object.

o det: Determiner.

o prep: Prepositional modifier.

• Formal Representation

A dependency tree is a directed graph , where:

o : Nodes representing words in the sentence.

o : Directed edges , where depends on with relationship

.

o A single root node governs the tree, and each non-root node has

exactly one incoming edge.

The following table represents the difference between constituency trees and

dependency trees.

Feature Constituency Trees Dependency Trees

Focus Phrases and

hierarchical grouping

Word-to-word

grammatical

relationships

Grammer Basis Context-Free Grammar

(CFG)

Dependency Grammar

Structure Hierarchical, nested

phrases

Directed graph with

labeled edges

Root Node Start symbol of CFG Main verb or head word

Applications Phrase-level syntactic

analysis

Word-level grammatical

analysis

Table-7 Constituency vs. Dependency Trees

• Applications in NLP

o Parsing and Syntax Analysis:

▪ Constituency Trees: Evaluate hierarchical phrase structures.

▪ Dependency Trees: Simplify word-level relationships for

efficient parsing.

211

o Information Extraction:

▪ Constituency trees identify structured elements like noun

phrases.

▪ Dependency trees elucidate relational roles like subject and

object.

o Semantic Role Labeling:

▪ Dependency trees assign roles (e.g., agent, patient) essential

for semantic understanding.

o Machine Translation:

▪ Constituency trees align phrases for translation.

▪ Dependency trees preserve grammatical dependencies across

languages.

1.4 CONTEXT-FREE GRAMMAR (CFG)

Context-Free Grammar (CFG) is a fundamental concept in computational

linguistics and syntactic analysis. It provides a systematic framework for

describing the syntax of languages using formal rules. CFG is crucial for

understanding and modeling the syntactic structure of both natural and

artificial languages, forming the foundation for many applications in parsing

and language processing.

• Definition of Context-Free Grammar

A Context-Free Grammar is defined as a 4-tuple:

where:

o : A finite set of non-terminal symbols representing syntactic

categories or variables (e.g., S for a sentence, NP for a noun phrase,

VP for a verb phrase). These symbols are placeholders for patterns in

the language.

o : A finite set of terminal symbols, corresponding to the actual words

or tokens in the language. Terminals are the building blocks of the

language.

212

o : A finite set of production rules specifying how non-terminals can be

replaced by combinations of non-terminals and terminals. Each rule

takes the form:

o

o where:

o is a non-terminal .

 is a sequence of terminals and/or non-terminals .

o : A designated start symbol , indicating where the derivation

process begins.

• Understanding Production Rules

Production rules dictate how non-terminal symbols can expand into

simpler forms, eventually producing terminal sequences. These recursive

rules enable CFGs to generate the structure of sentences in a language.

Example: A Simple Grammar

Consider a CFG for a small subset of English:

Using these rules, we can derive valid sentences such as:

The cat chased the cat.

• Derivations and Parse Trees

Derivation is the step-by-step application of production rules to transform

the start symbol into a string of terminals (a sentence).

Example Derivation:

1. Start with :

2. Expand and :

3. Replace terminals:

4. Final sentence:

the cat chased the cat

213

Parse Trees

Parse trees visually represent the hierarchical structure of derivations. Nodes

represent non-terminals, while leaves represent terminals.

Parse Tree for “The cat chased the cat”:

 S

 / \

 NP VP

 / \ / \

 Det N V NP

 | | | / \

 the cat chased Det N

 | |

 the cat

• CFG vs. Context-Sensitive Grammars

Context-Free Grammars (CFGs) and Context-Sensitive Grammars

(CSGs) are two types of formal grammars within the Chomsky hierarchy,

each differing in expressive power and the type of languages they can

define.

CFGs differ from CSGs primarily in the flexibility of their production rules:

o Context-Free Grammars (CFGs):

• The left-hand side of a production rule in a CFG consists of a single

non-terminal symbol.

• The replacement of this non-terminal symbol is independent of the

context in which it appears.

• CFGs are well-suited for describing the syntactic structure of

programming languages and a subset of natural languages.

Example Rule (Context-Free):

214

Here, is a non-terminal that expands into and regardless of

surrounding symbols.

o Context-Sensitive Grammars (CSGs):

• CSG production rules are more general. The left-hand side can

include both non-terminals and terminals, allowing replacements to

depend on the surrounding context.

• CSGs are more expressive, capable of capturing dependencies and

constraints that CFGs cannot.

Example Rule (Context-Sensitive):

In this case, can only be replaced with if it is preceded by and

followed by .

The following table represents the difference between Context-Free

Grammars and Context-Sensitive Grammars.

Aspect CFG CSG

Expressiveness Limited (e.g., no cross-

serial dependencies).

Broader (can handle

cross-serial

dependencies).

Context Dependency Context-independent. Context-dependent.

Computational Class Recognized by pushdown

automata.

Recognized by linear-

bounded automata.

Parsing Complexity Efficient (polynomial-time

parsing for most

subclasses).

Typically, more

computationally

expensive.

Applications Programming languages,

basic NLP.

Rare in practical NLP,

but useful for formal

language studies.

Table-8 Context-Free Grammars Vs. Context-Sensitive Grammars

• Ambiguity in Context-Free Grammars (CFGs)

Ambiguity in a Context-Free Grammar (CFG) occurs when a single

sentence can be generated in multiple ways, leading to different parse

215

trees or derivations. This ambiguity poses challenges in both

understanding and processing sentences, as multiple interpretations may

need to be considered to determine the intended meaning.

What Causes Ambiguity in CFGs?

o Structural Ambiguity

Structural ambiguity arises when the grammar allows for different

hierarchical groupings of the sentence's components. This is common

in natural languages where a single sentence can have multiple

syntactic structures.

o Lexical Ambiguity

Words with multiple meanings can lead to different interpretations of

the sentence. For example, "bank" can mean a financial institution or

the side of a river.

o Grammar Design

Poorly designed grammars can inherently introduce ambiguity by

allowing multiple derivations for the same string.

Example of Ambiguity: Consider the sentence

I saw the man with the telescope.

This sentence has two distinct interpretations based on how the

prepositional phrase with the telescope is attached:

o Interpretation 1:

I used a telescope to see the man.

In this interpretation, the prepositional phrase with the telescope

modifies the verb saw.

216

Parse Tree:

 S

 / \

 NP VP

 | / \

 I V PP

 | |

 saw with the telescope

o Interpretation 2:

The man I saw had a telescope.

Here, the prepositional phrase with the telescope modifies the noun

man.

Parse Tree:

 S

 / \

 NP VP

 / \ |

 I N saw

 / \

 the man with the telescope

• Challenges of Ambiguity

o Parsing Difficulty: Ambiguity complicates parsing because the parser

must explore all possible derivations to identify the correct one. This

increases computational complexity, particularly for long or complex

sentences.

o Multiple Interpretations: Ambiguity often requires disambiguation

through additional information, such as context, semantics, or

probabilistic models.

o Impact on NLP Applications: Tasks like machine translation,

information extraction, and speech recognition struggle with ambiguity,

as incorrect interpretations can propagate errors through the system.

217

• Chomsky Normal Form (CNF)

Chomsky Normal Form (CNF) is a standard form of Context-Free

Grammars (CFGs) used to simplify parsing algorithms and theoretical

proofs. In CNF, every production rule is constrained to be in one of two

forms:

1. Binary Form: , where are non-terminal symbols, and

and cannot be the start symbol.

2. Terminal Form: , where is a non-terminal and is a terminal

symbol.

No other forms of productions (such as epsilon-productions or unit

productions) are allowed, except for the start symbol, which may produce

an empty string if the language includes the empty string.

• Why Convert CFGs to CNF?

o Algorithmic Simplicity: CNF simplifies parsing algorithms like the

CYK (Cocke-Younger-Kasami) algorithm, which operates efficiently on

CNF grammar.

o Theoretical Analysis: Many formal language proofs and algorithms

require grammar in CNF for consistency and simplicity.

o Uniformity in Representation: CNF ensures that all rules conform to

a predictable structure, reducing ambiguity in parsing.

• Steps to Convert a CFG to CNF

The conversion process involves systematically modifying the CFG to

satisfy CNF constraints. Here's a step-by-step outline:

Step 1: Eliminate ε-productions

(Productions of the form , where)

• Identify all nullable non-terminals (non-terminals that can eventually

derive).

• For each rule that includes nullable non-terminals, add new rules by

omitting these non-terminals in every possible combination.

• Retain the rule if is in the language.

218

Example:

Original Rule:

Modified Rule:

Step 2: Remove Unit Productions

(Productions of the form , where and are non-terminals)

• Replace each unit production with all the rules of , excluding

unit productions.

Example:

Original Rules:

Modified Rule:

Step 3: Eliminate Non-CNF Complex Rules

(Rules with more than two non-terminals or mixed terminals and non-

terminals)

1. Handle Mixed Rules:

o Replace each terminal symbol in rules of the form (mix

of non-terminals and terminals) with a new non-terminal that

derives the terminal.

o Add a new rule for this mapping.

Example:

Original Rule:

Modified Rule:

2. Decompose Long Productions:

o Break down rules with more than two non-terminals into binary

rules using new non-terminals.

Example:

Original Rule:

Modified Rules:

219

Step 4: Adjust the Start Symbol

• If the start symbol appears on the right-hand side of any rule,

introduce a new start symbol and add the rule .

• This ensures that SSS is not affected by any restrictions during the

conversion.

Example:

Original Rule:

Modified Rule:

Example Conversion to CNF

Original Grammer:

Conversion:

1. Eliminate -productions:

 becomes

2. Remove unit productions:

 remains

3. Handle mixed and long rules:

Replace and with new rules .

Resulting CNF Grammer:

220

• Applications of CFG

o Parsing in Natural Language Processing (NLP): CFGs form the

backbone of parsers used to analyze and understand sentence

structures.

o Compiler Design: CFGs define syntax rules for programming

languages, enabling the construction of compilers.

o Language Modeling: They provide formalism for generating valid

sentences in artificial or natural languages.

o Ambiguity Detection: CFGs help identify structural ambiguities in

sentences or grammar.

1.5 PROBABILISTIC APPROACH TO PARSING

The Probabilistic Approach to Parsing introduces a probabilistic component to

syntactic parsing, providing a framework for dealing with ambiguity in natural

language. Traditional parsing methods, such as Context-Free Grammar

(CFG), have been limited by their inability to resolve ambiguities inherent in

language. The probabilistic approach addresses this by associating

probabilities with different parse trees, allowing parsers to rank and choose

the most likely syntactic structure for a sentence. This approach is

fundamental to modern Natural Language Processing (NLP), especially for

tasks like machine translation, speech recognition, and disambiguation in

syntactic analysis.

• Motivation for Probabilistic Parsing

Natural language is inherently ambiguous. A single sentence can often

have multiple syntactic interpretations, and a robust parser needs to

resolve these ambiguities to generate a correct interpretation. Traditional

Context-Free Grammar (CFG) parsing, while effective for defining the

syntactic structure of language, does not have the capability to prioritize

one interpretation over another.

221

• Ambiguity in Language

Many sentences exhibit structural ambiguity. For example, consider the

sentence:

I saw the man with the telescope.

This sentence could be interpreted in two distinct ways:

1. Interpretation 1: The subject (I) used the telescope to see the man.

2. Interpretation 2: The object (the man) possesses the telescope.

Without additional information or a mechanism for ranking these

interpretations, CFG parsers would generate both parse trees with equal

validity. Probabilistic parsing assigns likelihoods to each tree based on a

corpus, helping to select the most probable interpretation.

• Preference for More Likely Parses

Probabilistic parsers resolve ambiguities by assigning a probability

distribution over possible parse trees. For example, consider the

sentence:

John chased the cat.

There are multiple ways this sentence can be parsed syntactically, but

some parse trees are more likely than others based on linguistic data. The

probabilistic approach ensures that the more frequent or plausible

structure is chosen over less probable ones.

Probabilistic Context-Free Grammar (PCFG)

A Probabilistic Context-Free Grammar (PCFG) extends the idea of a standard

CFG by associating each production rule with a probability. The main goal is

to define the probability of each production in such a way that, for a given

sentence, the parse tree with the highest probability is selected.

A PCFG is formally defined as:

Where:

• is the set of non-terminal symbols, which represent syntactic

categories (e.g., Sentence, Noun Phrase, Verb Phrase).

222

• is the set of terminal symbols, which represent actual words or

tokens in the sentence.

• is the set of production rules, each of which defines how a non-

terminal can be expanded into a sequence of non-terminals and

terminals.

• is the start symbol, which represents the entire sentence.

• represents the probability distribution over production rules, i.e.,

the probability of each rule where is a non-terminal and is a

possible expansion.

For each non-terminal , the sum of the probabilities of all productions for

must equal 1:

• Parse Trees and Probabilities

The probability of a parse tree is computed as the product of the

probabilities of the production rules used to generate that tree. This

reflects the likelihood of the entire syntactic structure, considering both the

choice of production rules and their probabilities.

Given a sentence and a corresponding parse tree , the probability is

calculated as:

Example: Consider the following PCFG:

223

For the sentence John chased the cat, the corresponding parse tree is:

 S

 / \

 NP VP

 | / \

 John V NP

 | / \

 chased Det N

 | |

 the cat

The probability of this tree is computed as:

Substituting in the probabilities:

• Probabilistic Parsing Algorithms

The main goal of probabilistic parsing is to find the most likely parse tree

for a given sentence. Given that the number of possible parse trees for a

sentence is exponential, efficient algorithms are needed to compute this.

o Maximum Probability Parse

The Maximum Probability Parse algorithm aims to find the parse tree

 that maximizes the probability , where is the likelihood of a

given parse tree . The basic idea is that for a given sentence, multiple

parse trees may exist, but the one with the highest probability is

considered the correct or most likely interpretation.

Where is the set of all possible parse trees for the sentence ,

and is the probability of a tree .

Example: Consider the sentence "John saw the man with the

telescope." and the following Probabilistic Context-Free Grammar

(PCFG):

224

For the sentence "John saw the man with the telescope.", there are two

possible parse trees, each with different interpretations.

o Interpretation 1 (John used the telescope):

The parse structure is:

The probability of this tree is the product of the probabilities of

each rule used in the tree:

o Interpretation 2 (The man had the telescope):

The parse structure is:

, and the PP is not used in this interpretation.

The probability of this tree is:

225

o Comparison

▪ Interpretation 1 (John used the telescope) has a higher

probability (0.15) than Interpretation 2 (The man had the

telescope) with a probability of 0.1.

▪ Therefore, the Maximum Probability Parse algorithm would

select Interpretation 1 as the correct parse because it has

the higher probability.

Thus, the sentence "John saw the man with the telescope" would be

interpreted as "John used the telescope," based on the probabilities in

the given PCFG.

• CKY Algorithm with Probabilities

The Cocke-Kasami-Younger (CKY) algorithm is a dynamic programming

technique originally designed for Context-Free Grammars (CFGs). It can

be extended to handle Probabilistic Context-Free Grammars (PCFGs),

making it an effective method for probabilistic parsing. The CKY algorithm

uses a table to store probabilities of subtrees, combining smaller subtrees

to build larger ones, ensuring that the most probable parse tree for a given

sentence is found efficiently. Here are the steps:

o Initialize: For each word in the sentence, initialize the probability of a

tree with that word as the only terminal.

o Combine Subtrees: For each span of the sentence, combine possible

subtrees, calculating the probability of each combination using the

production rules and their probabilities.

o Return the Best Tree: The tree with the highest probability for the

entire sentence is returned.

The CKY algorithm works in polynomial time, specifically O(n³) where n is

the length of the sentence. It ensures that, despite the potentially large

number of parse trees, only the most probable one is considered.

226

Example: Consider the sentence "John chased the cat." and the following

PCFG:

• Step-by-Step Process

o Initialization:

▪ For each word, create a table entry with the word and its

corresponding part-of-speech tag.

▪ For "John", we initialize NP with probability 0.5 (because "John"

is either a noun phrase or part of an NP).

▪ For "chased", we initialize V with probability 1.0 (since "chased"

can only be a verb).

▪ For "the", we initialize Det with probability 1.0.

o For "cat", we initialize N with probability 1.0.

o Combining Subtrees:

▪ Now, we combine the smaller subtrees based on the rules in the

PCFG.

▪ For example, for the span "chased the" (words 2 and 3), we

combine V and Det N to form VP.

▪ The rule VP → V NP has a probability of 0.7, so we

combine V ("chased") with NP ("the cat") to form VP.

▪ The probability of this combination is:

227

▪ Similarly, we can combine NP ("John") and VP to form S:

▪ The rule S → NP VP has a probability of 1.0, so:

o Return the Best Tree:

▪ After combining all subtrees, the CKY table will contain the most

probable parse tree for the entire sentence.

▪ In this case, the most probable parse tree for the sentence

"John chased the cat." is:

 S

 / \

 NP VP

 | / \

 John V NP

 / \

 chased Det N

 | |

 the cat

▪ The final probability of the sentence’s parse tree is 0.25.

This approach guarantees that the most probable parse tree is found in

polynomial time, even for ambiguous sentences with multiple possible parses.

• Applications of Probabilistic Parsing

Probabilistic parsing plays a significant role in numerous NLP tasks. Some

key applications include:

o Disambiguation: Ambiguities in sentence structure can be resolved by

selecting the most probable parse.

o Machine Translation: Probabilistic parsing aids in choosing

syntactically correct translations by assigning higher probability to more

plausible parse trees in the target language.

228

o Speech Recognition: The parser can select the most likely syntactic

structure for an utterance, reducing errors due to misrecognition.

o Question Answering: Probabilistic parsing can improve the syntactic

understanding of questions, leading to more accurate responses.

1.6 LEXICALIZED PROBABILISTIC CONTEXT-FREE
GRAMMARS

Lexicalized Probabilistic Context-Free Grammars (Lexicalized PCFGs) are an

extension of traditional Probabilistic Context-Free Grammars (PCFGs),

designed to capture syntactic structures with finer granularity by incorporating

lexical information into grammar rules. Traditional PCFGs model sentence

structures based purely on syntactic categories like NP (noun phrase) and VP

(verb phrase), but they lack sensitivity to the specific words in a sentence.

Lexicalized PCFGs address this limitation by associating grammar rules with

"headwords" that carry critical syntactic and semantic information.

• Motivation for Lexicalized PCFGs

PCFGs provide a probabilistic extension of Context-Free Grammars

(CFGs), assigning probabilities to each rule in the grammar. While PCFGs

are effective for many syntactic parsing tasks, they suffer from several

limitations:

o Lack of Context Sensitivity: PCFGs treat nonterminal (e.g., NP, VP)

as atomic entities and do not differentiate between rules based on their

lexical context.

For example, the same rule for an NP applies regardless of whether it’s

"dog" or "idea."

o Ambiguity in Parsing: Without considering lexical details, PCFGs

often fail to resolve ambiguities effectively.

For instance, in the sentence: "I saw her duck", the word duck could

refer to a noun (the bird) or a verb (to lower one's head). Lexical

information is crucial to disambiguating such cases.

229

o Dependency Relations: Syntactic structures often revolve around

headwords—key lexical items determining the structure's grammatical

properties.

For example: In "The cat sat on the mat," the verb sat governs the

structure of the sentence. PCFGs cannot capture such dependencies.

To address these shortcomings, Lexicalized PCFGs integrate lexical

information directly into grammar rules, enabling context-sensitive and

more precise syntactic parsing.

• Lexicalization of Grammar Rules

o Grammar Representation

In Lexicalized PCFGs, each nonterminal is annotated with a headword

and its part of speech. This transforms the grammar into a more refined

form, where rules are defined in terms of lexicalized categories.

Example: Consider a simple CFG rule:

In a Lexicalized PCFG, this rule becomes:

Here, the headword dogs is propagated from NP to S, and barked

becomes the headword for VP. These headwords help disambiguate

syntactic structures by encoding semantic and syntactic dependencies.

o Headword Propagation

The process of assigning headwords involves defining head rules,

which specify how the headword of a parent node is determined based

on its children. Common strategies include:

▪ Rightmost Head Rule: The rightmost child is selected as the

headword.

▪ Leftmost Head Rule: The leftmost child becomes the headword.

230

▪ Lexicon-Driven Rules: Specific rules for particular syntactic

categories, e.g., for VP, the verb is always the head.

Example of Head Propagation: For the rule

The headword barked is propagated to VP because the verb typically

governs the phrase.

• Probabilities in Lexicalized PCFGs

o Rule Probabilities

In traditional PCFGs, the probability of a grammar rule is calculated as:

Where:

▪ is the parent nonterminal,

▪ and are child nonterminals,

▪ is the count of the rule ,

▪ is the count of all rules with as the parent.

In Lexicalized PCFGs, each nonterminal is annotated with a headword.

The probability of a lexicalized rule is defined as:

Where:

▪ is the parent nonterminal annotated with the headword ,

▪ and are the child nonterminals with headwords and

,

▪ is the count of the lexicalized rule,

▪ is the count of all rules with as the parent.

231

o Lexical Dependency Modeling

In addition to the probability of the rule itself, Lexicalized PCFGs

incorporate probabilities of dependencies between headwords. For

example, the probability of a lexicalized VP rule might include a

dependency term:

Where:

▪ is the probability of the

syntactic rule,

▪ models the lexical dependency

between the headwords "barked" and "cat."

Dependency probabilities are estimated from a corpus using maximum

likelihood estimation or other statistical techniques:

Where:

▪ is the count of the dependency between and ,

▪ is the count of occurrences of as a headword.

• Parsing with Lexicalized PCFGs

Parsing with Lexicalized PCFGs extends traditional parsing algorithms like

the CKY algorithm to handle lexicalized categories. The key steps include:

o Initialization: Start with lexical items (words) as terminal symbols,

annotated with part-of-speech tags and headwords.

o Dynamic Programming: Use a chart-based approach to compute the

probabilities of all possible parses, incorporating lexicalized rules and

headword dependencies.

o Maximization: Select the parse with the highest probability.

• Computational Complexity

Lexicalized PCFGs increase the grammar size significantly due to lexical

annotations, leading to higher computational complexity. Efficient parsing

232

often involves approximations or pruning strategies to manage this

complexity.

Example: Consider the sentence

"The cat chased the dog."

Steps:

o Lexical Annotation:

Assign headwords and part-of-speech tags:

▪ The (DT), cat (NN), chased (VBD), the (DT), dog (NN).

o Grammar Rules:

▪

▪

▪

▪

o Parse Tree:

S(chased)

├── NP(cat)

│ ├── DT(the)

│ └── NN(cat)

└── VP(chased)

 ├── V(chased)

 └── NP(dog)

 ├── DT(the)

 └── NN(dog)

o Probability Computation:

Compute probabilities for each rule and head dependency to find the

most likely parse.

• Applications

o Syntactic Parsing: Lexicalized PCFGs are widely used for natural

language parsing tasks, especially in treebank parsers like the Stanford

Parser.

233

o Ambiguity Resolution: Lexical information helps disambiguate

structures, improving parsing accuracy for complex sentences.

o Dependency Parsing: The dependency modeling inherent in

Lexicalized PCFGs bridges the gap between phrase-structure and

dependency parsing.

o Semantic Role Labeling: By identifying headwords, Lexicalized

PCFGs facilitate the extraction of semantic relationships in sentences.

1.7 CKY ALGORITHM
The CKY (Cocke–Kasami–Younger) algorithm is a foundational parsing

algorithm used for determining whether a given string can be generated by a

context-free grammar (CFG). It is also used to construct the most probable

parse tree when working with probabilistic grammars, such as PCFGs. This

algorithm relies on dynamic programming and is particularly efficient for

grammars in Chomsky Normal Form (CNF), where all production rules are

either binary (e.g.,) or unary (e.g.,).

• Chomsky Normal Form (CNF)

To use the CKY algorithm, the CFG must be converted into CNF. In CNF,

the production rules have the following form:

1. Binary Rules:

, where are nonterminals.

2. Unary Rules:

, where is a terminal symbol.

• Conversion to CNF

If a given grammar is not in CNF, it can be converted by using the

following steps:

1. Eliminate ϵ-productions: Remove rules of the form (where is

the empty string).

2. Eliminate unit productions: Replace rules of the form with

equivalent rules.

234

3. Simplify long rules: Break rules like into a series of binary

rules, e.g., and .

• CKY Algorithm: Step-by-Step Explanation

o Dynamic Programming Approach: The CKY algorithm uses a chart,

a 2D triangular table, where each cell represents the substring of

the input from position to . The algorithm proceeds by systematically

filling this chart.

Inputs

• A string of length ,

• A CFG in CNF.

Initialization

The chart is initialized for all substrings of length 1 (single terminals). For

each word in the input:

Recursive Filling

For substrings of increasing lengths (from 2 to):

1. For each starting index (from to):

o Compute the end index .

o For each possible split point (from to :

▪ Check all binary rules in the grammar:

If and , then

.

To reconstruct the parse tree:

1. Keep track of the grammar rule used to fill each cell.

2. Backtrack through the chart starting from , the topmost cell.

235

• CKY for Probabilistic CFGs

o When using PCFGs, the CKY algorithm is extended to compute the

most probable parse tree:

1. Each cell in the chart stores not only the nonterminals but also the

maximum probability of deriving the substring and the corresponding

rule.

2. For each binary rule , compute:

Where:

o is the probability of deriving the substring ,

o is the rule probability from the PCFG.

3. Update the chart with the nonterminal and its maximum probability.

Example of CKY Algorithm

Consider the grammar:

Input Sentence

Input: "the cat chased the dog"

CKY Chart

1. Initialization (single words):

o ,

o ,

o ,

o ,

o .

236

2. Filling larger substrings:

o For length 2:

▪ from ,

▪ from .

o For length 3:

▪ from .

o For length 5:

▪ from .

4.4 Parse Tree

The final parse tree for :

 S

 / \

 NP VP

 / \ / \

 Det N V NP

 the cat chased the dog

• Complexity

1. Time Complexity:

The CKY algorithm runs in , where:

o is the length of the input string,

o is the size of the grammar (number of rules).

2. Space Complexity:

The chart requires space to store all possible parses.

• Applications

o Syntactic Parsing: CKY is widely used for efficient parsing of

sentences in NLP tasks.

o Machine Translation: Parsing source languages with CKY helps in

syntactic alignment for translation.

o Speech Recognition: The algorithm is used in systems where

grammar-constrained recognition is required.

237

1.8 EARLEY CHART PARSING ALGORITHM
The Earley Chart Parsing Algorithm is a versatile and efficient parsing method

for context-free grammars (CFGs). Unlike the CKY algorithm, which requires

the grammar to be in Chomsky Normal Form (CNF), the Earley parser can

handle arbitrary CFGs, including those with productions and unit

productions. This flexibility makes it suitable for parsing tasks where the

grammar structure might be complex or when real-time parsing is required.

Earley parsing operates in three primary stages—Prediction, Scanning, and

Completion—using a chart to systematically track parsing states as it

processes the input. The algorithm works in time for general CFGs, but

it achieves for unambiguous grammars and for deterministic

grammars, where is the length of the input string.

• Key Concepts

The Chart

The Earley parser uses a chart, which is a list of states for each position in

the input string. A state is represented as a dotted rule:

Where:

• is a nonterminal being expanded,

• is the sequence of grammar symbols that have been recognized,

• is the sequence of grammar symbols yet to be recognized,

• is the position in the input where this rule was predicted.

• Operations

o Prediction: Expand nonterminals by predicting applicable grammar

rules.

o Scanning: Match terminals in the input with expected terminals in the

grammar.

o Completion: Conclude parsing of a nonterminal and propagate its

result to higher-level rules.

238

• Algorithm Description

o Input

1. A context-free grammar , where:

o : Set of nonterminals,

o : Set of terminals,

o : Production rules,

o : Start symbol.

2. An input string .

o Initialization

1. Create a chart with positions (indexed from 0 to).

2. Add an initial state to :

Where is an augmented start symbol .

• Parsing Stages

For each position in the input (from 0 to):

1. Prediction:

For any state in , if is a nonterminal:

o Add to for every production in the

grammar.

2. Scanning:

For any state in , if (the next input

symbol):

o Add to .

3. Completion:

For any state in (completed rule):

o Find states in ,

o Add to .

Example: Consider the Grammar

Input: "the cat chased the dog"

Parsing Steps

1. Initialization: Add to .

2. Prediction (Position 0): Expand :

o ,

o .

3. Scanning (Position 0 to 1): Match :

o Move dot in and add to .

239

4. Completion (Position 1): Complete :

o Advance in .

5. Prediction (Position 1): Expand .

6. Scanning (Position 1 to 2): Match :

o Move dot in and add to .

7. Completion (Position 2): Complete :

o Advance in ,

o Advance .

8. Prediction (Position 2): Expand .

9. Scanning (Position 2 to 3): Match :

o Move dot in and add to .

10. Completion (Position 3): Complete :

o Advance in .

11. Prediction and Scanning Continue: Repeat for the remaining input

symbols.

12. Final State: in , indicating a successful parse.

• Applications

o General CFG Parsing: Handles grammars with epsilon rules, unit

productions, and non-binary branching.

o Real-Time Parsing: Suitable for incremental and left-to-right parsing in

language processing.

o Speech Recognition and Natural Language Understanding:

Extensively used in real-time systems requiring flexible parsing.

240

Check Your Progress

a) Ambiguity in context-free grammars always results in the same parse tree

for different interpretations of a sentence.

b) In dependency parsing, every word in a sentence is represented as a node

with exactly one incoming edge except the root.

c) The CKY algorithm has a time complexity of O(n³) for any context-free

grammar.

d) In lexicalized PCFGs, headword dependencies are completely ignored

during probability computation.

e) The Earley parser can handle grammars with epsilon rules without any

modifications to the input grammar.

f) A constituency tree can represent dependency relationships directly

without any transformation.

1.9 Let us sum up

In this unit we have discussed the concept of parsing. You have got detailed

understanding creating parsing trees using various parsing algorithms along

with the advantages and examples of parsing algorithms. You now know the

role of context free grammar. We also elaborate the probabilistic approach to

parsing.

1.10 Check your progress: Possible Answers

a) False

b) True

c) False

d) False

e) True

f) False

241

1.11 Further Reading

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

• Bharati A., Sangal R., Chaitanya V. Natural language processing: a

Paninian perspective, PHI, 2000.

1.12 Assignments

• What is parsing, and how does it help in syntactic analysis?

• Explain the difference between constituency trees and dependency trees

in syntactic structures.

• What are the key properties of context-free grammar (CFG), and why is it

used in parsing?

• How does the probabilistic approach to parsing improve the accuracy of

syntactic analysis?

• What are Lexicalized Probabilistic Context-Free Grammars (PCFGs), and

how do they differ from traditional PCFGs?

242

Unit-2: Semantic Analysis

Unit Structure

2.0. Learning Objectives

2.1. Introduction

2.2. Named-Entity Recognition (NER)

2.3. Named-Entity Recognition using Hidden Markov Model

2.4. Named-Entity Recognition using POS Tagging

2.5. Word Senses

2.6. Word Sense Disambiguation

2.7. WordNet

2.8. Semantic Similarity Measures

2.9. Let us sum up

2.10. Check your Progress: Possible Answers

2.11. Further Reading

2.12. Assignment

2

243

2.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know the concept of semantic analysis

• What is named entity recognition

• Understand the importance NER using HMM and PoS tagging in

semantic analysis

• Describe the role of word sense disambiguation in semantic analysis

• Explain wordnet and semantic similarity meaures

2.1 INTRODUCTION

Semantic analysis is a key component of NLP that focuses on interpreting the

meaning of words, phrases, and sentences in context. Unlike syntactic

analysis, which examines the structure of language, semantic analysis is

concerned with understanding the meaning behind the text, enabling

machines to comprehend and generate human language in a meaningful way.

Semantic analysis involves techniques that extract, represent, and manipulate

the meaning of language. It allows machines to go beyond recognizing words

and understand the relationships, contexts, and subtleties embedded in text.

For example: Consider the word “bank”. Depending on the sentence, it could

refer to a financial institution (“I deposited money in the bank”) or the side of a

river (“The boat is near the river bank”). Semantic analysis helps

disambiguate such meanings.

Applications like sentiment analysis, question answering systems, and

machine translation rely heavily on semantic analysis to produce accurate

results.

• How Semantic Analysis Works

Semantic Analysis comprises of following steps.

o Lexical Semantics: This involves understanding word meanings and

their relationships. Lexical semantics examines phenomena like

synonyms (similar meanings), antonyms (opposite meanings), and

hyponyms (specific examples of a category).

244

Example: Synonyms of “happy” include “joyful” and “elated,” while its

antonym is “sad”.

o Sentence Semantics: Sentence semantics explores how words

combine to form meaningful sentences. It considers word order,

grammar, and the relationships between words in a sentence.

Example: In “The cat chased the mouse”, the relationships reveal the

subject (cat), verb (chased), and object (mouse).

o Contextual Semantics: Context plays a vital role in determining the

meaning of ambiguous words or phrases. For instance, the word “light”

could mean “not heavy” or “bright”, depending on the sentence.

• Key Techniques in Semantic Analysis

o Named-Entity Recognition (NER): Identifies entities like names,

dates, and locations within text. For example, in the sentence “Albert

Einstein was born in Germany”, NER identifies “Albert Einstein” as a

person and “Germany” as a location.

o Word Sense Disambiguation (WSD): Resolves ambiguities by

determining the correct meaning of a word based on its context. For

example, WSD ensures that the word “bat” in “The bat flew at night”

refers to an animal, not a sports implement.

o Semantic Similarity: Measures the likeness between words or

sentences in meaning. Algorithms calculate similarity scores to

understand how closely words like “car” and “automobile” relate.

• Challenges in Semantic Analysis

o Ambiguity: Words and phrases often have multiple meanings, making

it challenging to interpret language accurately.

o Context Dependency: Understanding idioms, sarcasm, and cultural

references requires deep contextual knowledge.

o Complex Relationships: Analyzing relationships in long or complex

sentences can be computationally demanding.

245

2.2 NAMED-ENTITY RECOGNITION

Named-Entity Recognition (NER) is a crucial task in natural language

processing that focuses on identifying and categorizing specific entities in text.

These entities, referred to as “named entities”, can include people,

organizations, dates, locations, numerical values, and more. NER enables

machines to extract meaningful information, making it easier to analyze and

structure unstructured text data.

• What is Named-Entity Recognition?

Named-Entity Recognition involves two primary tasks:

o Detection: Identifying words or phrases that represent named entities

in the text.

o Categorization: Assigning the identified entities to predefined

categories, such as “Person”, “Location”, or “Organization”.

For example, in the sentence:

“Barack Obama served as the President of the United States from 2009 to 2017”,

▪ “Barack Obama” → Person

▪ “United States” → Location

▪ “2009 to 2017” → Date

• Why is NER Important?

NER is foundational in many NLP applications:

o Information Retrieval: Extracting relevant information from large

datasets (e.g., extracting company names from financial reports).

o Question Answering Systems: Identifying the entity being asked

about (e.g., “Who is the CEO of Apple?” → “Tim Cook”).

o Summarization: Highlighting critical entities in news articles or

research papers.

o Text Analytics: Analyzing customer reviews, social media, or surveys

for trends or patterns related to specific entities.

246

• How NER Works

NER systems use a combination of linguistic rules, statistical models, and

machine learning algorithms. The process typically involves:

o Text Preprocessing: Tokenization and part-of-speech (POS) tagging

to break text into meaningful units and identify grammatical roles.

o Entity Recognition: Entity recognition can be done in two ways:

▪ Rule-based methods use predefined patterns (e.g., titles like

“Dr.” or suffixes like “Inc.”) to identify entities.

▪ Machine learning-based methods train models using annotated

datasets to learn patterns of entities in context.

o Entity Categorization: Assigning detected entities to the appropriate

category based on context.

• NER Algorithms

o Hidden Markov Models (HMMs): HMMs are statistical models that

assume text has a sequence structure. They calculate the probability of

word sequences belonging to specific categories.

Example: The sequence “New York City” has a high probability of

being a location rather than separate unrelated words.

o Conditional Random Fields (CRFs): CRFs improve upon HMMs by

considering the entire context of a sentence. They are widely used for

sequence labelling tasks like NER.

o Deep Learning: Neural networks, especially recurrent neural networks

(RNNs) and transformers (e.g., BERT), have revolutionized NER. They

learn deep contextual relationships, enabling more accurate entity

recognition.

• Challenges in NER

o Ambiguity: The same word can represent different entities in different

contexts (e.g., “Apple” as a fruit vs. a company).

247

o Lack of Standardization: Variations in writing styles, abbreviations,

and spellings can complicate recognition.

o Domain-Specific Entities: General models may fail to recognize

entities unique to specialized fields like medicine or law.

• Applications of NER

o Healthcare: Extracting drug names, symptoms, and patient information

from medical records.

o Business Intelligence: Identifying competitors, partnerships, or

market trends from news articles.

o Legal Tech: Recognizing laws, case references, and parties involved

in legal documents.

2.3 NAMED-ENTITY RECOGNITION USING HIDDEN
MARCOV MODEL

One of the early and widely used methods for performing NER is the Hidden

Markov Model (HMM). HMMs are statistical models used for sequence

prediction tasks, making them well-suited for structured data like text.

• What is a Hidden Markov Model (HMM)?

HMM is a probabilistic model that assumes:

1. The data is sequential (e.g., words in a sentence).

2. The sequence is generated by a series of hidden states, where each

state corresponds to an observable output.

In the context of NER:

o Hidden states: The entity labels for each word, such as “B-PER”

(beginning of a person name) or “O” (not part of any entity).

o Observations: The actual words in the text.

o Transitions: Probabilities of moving from one hidden state to another

(e.g., transitioning from “B-PER” to “I-PER”).

o Emissions: Probabilities of observing a word given a specific state.

248

• Steps in NER Using HMM

Named Entity Recognition using HMM comprises of following steps.

o Define States and Observations: States correspond to entity labels

(e.g., “B-PER,” “I-PER,” “B-ORG” for organizations, etc.). Observations

are the words in the sentence.

o Training the HMM: The model is trained on a labelled dataset (e.g.,

sentences with annotated entities). During training:

▪ Transition probabilities are estimated from the frequency of

moving between states.

▪ Emission probabilities are calculated based on the likelihood of

a word appearing in a given state.

▪ Initial probabilities (starting states) are determined from the

dataset.

o Inference: To predict the sequence of entity labels for a new sentence,

HMM uses the Viterbi algorithm, which identifies the most likely

sequence of states based on the observed words and the trained

probabilities.

Example of HMM in NER

Let’s consider the sentence: “Barack Obama visited New York.”

o Define States and Observations:

▪ Observations: [“Barack”, “Obama”, “visited”, “New”, “York”]

▪ States: [“B-PER”, “I-PER”, “O”, “B-LOC”, “I-LOC”]

o Training the HMM:

▪ Transition Probabilities:

• P(B-PER → I-PER) = High (e.g., “Barack” → “Obama”).

• P(B-PER → O) = Low (e.g., starting a name and directly

moving out of an entity).

▪ Emission Probabilities:

• P(“Barack” | B-PER) = High.

• P(“visited” | O) = High.

249

o Inference:

▪ Given the trained model, the Viterbi algorithm predicts the most

probable sequence of states: [“B-PER”, “I-PER”, “O”, “B-LOC”,

“I-LOC”].

• Advantages of HMM for NER

o Sequential Modelling: HMMs explicitly consider the sequential nature

of text, making them suitable for entity recognition.

o Ease of Training: Transition and emission probabilities can be

computed directly from labelled data.

o Domain Adaptability: With sufficient training data, HMMs can adapt to

various domains, such as medical or legal texts.

• Challenges of Using HMM for NER

o Data Sparsity: Infrequent entities or transitions may not have enough

training examples, leading to unreliable probabilities.

o Limited Context: HMMs primarily consider local dependencies,

ignoring long-range relationships within a sentence.

o Example: In the sentence, “He went to Washington to visit the

president.” HMM may struggle to distinguish whether “Washington”

refers to the person or the location without additional contextual

features.

• Applications of HMM-based NER

o Early NLP Systems: Before the advent of neural networks, HMMs

were widely used in tasks like automated email sorting and document

indexing.

o Domain-Specific Applications: Fields with structured entities, such as

medical text analysis (e.g., identifying diseases or medications).

• Limitations and Modern Alternatives

While HMMs laid the groundwork for sequence-based NER, they are now

largely replaced by more advanced models:

250

o Conditional Random Fields (CRFs): Unlike HMMs, CRFs do not

assume independence between observations, making them more

accurate for NER.

o Deep Learning Models: Neural networks (e.g., LSTMs, BERT)

capture rich contextual dependencies, significantly outperforming

HMMs in entity recognition tasks.

HMM remains a significant historical method for NER, offering a

foundation for understanding sequential modelling and probabilistic

approaches.

2.4 NAMED-ENTITY RECOGNITION USING POS
TAGGING
Part-of-Speech (POS) tagging, a fundamental task in NLP, can be used to

assist in NER by providing syntactic information about words in a sentence.

This approach leverages the grammatical role of words, which can indicate

whether a word is likely to be a named entity or not. For example, proper

nouns often correspond to named entities, and POS tagging helps identify

such nouns.

• What is POS Tagging?

POS tagging involves assigning a grammatical category (e.g., noun, verb,

adjective) to each word in a text based on its context.

Example: Consider the sentence.

“Barack Obama visited New York.”

POS Tags: [Proper Noun (NNP), Proper Noun (NNP), Verb (VBD), Proper

Noun (NNP), Proper Noun (NNP)]

Here, the POS tags indicate that “Barack Obama” and “New York” are

proper nouns, which could be potential named entities.

• How POS Tagging Helps in NER

o Entity Identification: POS tagging identifies parts of speech, such as

proper nouns (NNP), which are commonly used for named entities like

names of people or places.

251

Example: In the sentence, “Google is headquartered in California”, the

words “Google” and “California” are tagged as proper nouns (NNP),

signalling that they might be named entities.

o Contextual Understanding: The grammatical structure provided by

POS tagging helps disambiguate entities.

Example: Consider the sentence: “The apple fell from the tree.”

▪ POS Tag: “apple” is tagged as a common noun (NN), so it is

not treated as a named entity.

▪ Sentence: “Apple released a new iPhone.”

▪ POS Tag: “Apple” is tagged as a proper noun (NNP),

indicating it might be a named entity (company name).

o Feature Extraction for NER Models: POS tags can serve as input

features for NER systems.

Example: A statistical model may learn that sequences like [NNP,

NNP] often correspond to named entities.

• Steps for NER Using POS Tagging

o POS Tagging: Apply a POS tagging algorithm to assign grammatical

categories to each word in the sentence.

o Named Entity Detection: Identify candidate words or phrases based

on their POS tags.

Example:

▪ Proper nouns (NNP) may represent entities like people,

organizations, or locations.

▪ Cardinal numbers (CD) could indicate dates or numerical

entities.

o Named Entity Classification: Use predefined rules or statistical

models to classify the identified entities into categories such as

“Person”, “Location”, or “Organization”.

Example of NER Using POS Tagging

Consider the sentence: “Elon Musk founded SpaceX in 2002 in California.”

1. POS Tagging Output: [“Elon/N NNP”, “Musk/NNP”, “founded/VBD”,

“SpaceX/NNP”, “in/IN”, “2002/CD”, “in/IN”, “California/NNP”]

252

2. NER Steps:

o Identify NNP: [“Elon Musk”, “SpaceX”, “California”]

o Identify CD: [“2002”]

o Classify:

▪ “Elon Musk” → Person

▪ “SpaceX” → Organization

▪ “California” → Location

▪ “2002” → Date

• Advantages of NER Using POS Tagging

o Simple and Intuitive: POS tagging is computationally lightweight and

provides useful information for identifying named entities.

o Rule-Based NER Systems: POS tags can form the foundation for

rule-based NER, where entity identification relies on grammar and

syntax rules.

o Language Independence: POS tagging frameworks can be adapted

to multiple languages, enabling NER in diverse linguistic contexts.

• Challenges of Using POS Tagging for NER

o Ambiguity in POS Tags: Words with multiple meanings can have

ambiguous POS tags, leading to errors in entity detection.

Example: “Apple” (company) vs. “apple” (fruit).

o Limited Contextual Understanding: POS tagging does not capture

long-range dependencies or nuanced contexts, which are essential for

complex NER tasks.

o Domain-Specific Entities: Certain entities may not align with standard

POS tagging rules, especially in technical or specialized domains like

medicine or finance.

• Applications of NER Using POS Tagging

o Information Retrieval: Extract names of people, places, and

organizations for search engines or recommendation systems.

253

o Customer Support Chatbots: Identify product names or user queries

to provide relevant responses.

o Document Classification: Tagging and categorizing documents

based on identified entities (e.g., legal documents containing names of

laws or jurisdictions).

While POS tagging provides a strong baseline for NER, its limitations in

capturing deeper semantic or contextual nuances have paved the way for

more sophisticated models such as Conditional Random Fields (CRFs)

and neural networks. Nonetheless, it remains an important method for

foundational NER tasks, especially in resource-constrained settings.

2.5 WORD SENSES
Word senses refer to the different meanings a word can have based on its

usage in a sentence. Many words in natural languages are polysemous,

meaning they have multiple meanings, and the correct interpretation often

depends on the context. Understanding word senses is crucial in NLP tasks

such as translation, search engines, text summarization, and sentiment

analysis.

• What Are Word Senses?

A word sense is a specific meaning of a word within a particular context.

For example, consider the word bank:

o I deposited money in the bank. (Financial institution)

o The fisherman sat on the river bank. (Edge of a river)

Here, the word bank has two different senses: one related to finance and

the other to geography. Accurately identifying the intended sense is vital

for understanding and processing text correctly.

• Challenges in Identifying Word Senses

o Polysemy: Polysemy occurs when many words have multiple related

meanings.

Example: run can mean:

▪ To jog or sprint (He runs every morning.)

254

▪ To manage or operate (She runs a small business.)

o Homonymy: Homonyms are words with the same spelling and

pronunciation but unrelated meanings.

Example: Bat (a flying mammal) vs. bat (a piece of sports equipment).

o Context Dependency: The meaning of a word is often influenced by

its surrounding words and the broader context of the sentence or

document.

o Idiomatic Usage: Words can be part of idiomatic expressions where

their meaning differs from the literal interpretation.

Example: Kick the bucket means to die, not literally kicking a bucket.

• Why Word Senses Matter in NLP

Understanding word senses enables NLP systems to process language

with greater accuracy and relevance. Examples of how this applies

include:

o Machine Translation: Translating ambiguous words requires

knowledge of their correct sense.

Example: He works at the bank. should translate to a word indicating a

financial institution, not a river edge.

o Information Retrieval: Search engines must identify the intended

sense of a query to return relevant results.

Example: A search for bat care should focus on flying mammals, not

sports equipment.

o Question Answering Systems: Systems must understand word

senses to answer questions correctly.

Example: Question: What does a crane do? (Construction equipment

or bird?)

o Text Summarization: Misinterpreting word senses can lead to

inaccurate or irrelevant summaries.

• Approaches to Understanding Word Senses

o Dictionary-Based Methods: Words are matched with predefined

senses in a lexicon, such as WordNet.

255

Example: The word bank in WordNet has senses for both financial

institutions and river edges.

o Corpus-Based Methods: Word senses are identified using the context

in large text corpora.

Example: If bank frequently appears with words like river or water, the

sense is likely geographic.

o Machine Learning Approaches: Supervised or unsupervised models

analyze context to predict word senses.

Example: Neural networks trained on annotated datasets can classify

the sense of a word based on its sentence context.

Examples of Word Senses in Action

o Sentence: The coach is training the team.

Sense: Coach (a person who trains others).

o Sentence: The coach arrived at the station.

Sense: Coach (a type of vehicle).

o Sentence: I need a match to light the fire.

Sense: Match (a small stick used to produce fire).

o Sentence: It was a tough match between the two teams.

Sense: Match (a sports game).

• Applications of Word Senses in NLP

o Sentiment Analysis: Accurately interpreting words with positive or

negative connotations based on context.

Example: He’s a cool person. (Positive sense of cool).

o Topic Modelling: Grouping documents by topics requires

understanding the correct sense of key terms.

o Dialogue Systems: Chatbots and voice assistants rely on word sense

disambiguation to understand user queries.

Example: Set the table (lay out dishes) vs. set the table (configure a

database).

256

2.6 WORD SENSE DISAMBIGUATION
Word Sense Disambiguation (WSD) is a critical task in NLP that involves

determining the correct sense of a word in a given context. Many words in

natural language are polysemous, meaning they have multiple meanings, and

the appropriate sense depends on the surrounding words or the broader

context. WSD plays a crucial role in enhancing the accuracy of various NLP

applications, including machine translation, search engines, and sentiment

analysis.

• Why is WSD Important?

The meaning of a word changes with context, and misinterpreting it can

lead to significant errors in NLP tasks. For example:

o Bank in He deposited money in the bank refers to a financial institution.

o Bank in The fisherman sat on the river bank refers to the edge of a

river.

Understanding the correct sense in such cases is vital for systems like

machine translation, where mistranslation can change the entire meaning

of a sentence, or search engines, where the relevance of results depends

on accurate interpretation.

• Approaches to Word Sense Disambiguation

WSD techniques can be broadly categorized into three main types:

Knowledge-based, Supervised, and Unsupervised.

o Knowledge-Based Approaches: These methods rely on lexical

resources such as dictionaries, thesauri, and semantic networks (e.g.,

WordNet).

▪ Lesk Algorithm: This algorithm determines the sense of a word by

finding the overlap between its dictionary definition and the

surrounding context.

Example: For the sentence The bank of the river is steep, Lesk

identifies the sense of bank that shares the most common terms

(e.g., river, steep) with the context.

Advantages: Simple and interpretable.

257

Limitations: Dependent on the quality of the lexical resource.

Struggles with long contexts or ambiguous definitions.

▪ WordNet-Based Methods: WordNet organizes words into sets of

synonyms (synsets) and provides semantic relationships like

hypernyms (broader terms) and hyponyms (specific terms).

Example: Bank is linked to synsets for financial institution and river

edge. Context clues help choose the relevant synset.

o Supervised Approaches: These methods use labelled datasets

where the correct senses of words in various contexts are predefined.

Machine learning algorithms learn from these datasets to predict

senses in new contexts.

▪ In this method, features such as surrounding words (contextual

words), part-of-speech tags, and syntactic dependencies are

extracted.

▪ A classifier like Support Vector Machines (SVM) or Neural Networks

is then trained to assign the correct sense.

Example: In the sentence She placed flowers in the bank, the model

uses context words like flowers to classify bank as river edge.

Advantages: High accuracy when trained on a large, annotated

dataset.

Challenges: Requires extensive labelled data, which is time-consuming

to create.

o Unsupervised Approaches: Unsupervised methods rely on patterns

and relationships in unannotated corpora, clustering word usages into

different senses.

▪ Clustering: Words are grouped into clusters based on similarity in

their usage. Each cluster represents a distinct sense.

Example: Sentences using bank with terms like money or loan are

clustered into the financial institution sense, while those with water

or river are clustered into the geographic sense.

▪ Word Embeddings: Vector representations of words (e.g., using

Word2Vec or BERT) capture semantic relationships. Contextual

258

embeddings like BERT dynamically generate sense-specific

embeddings based on context.

Advantages: Does not require labelled data.

Challenges: Clusters may not directly align with human-annotated

senses.

• Applications of Word Sense Disambiguation

o Machine Translation: WSD ensures that polysemous words are

translated into their correct equivalents in the target language.

Example: I visited the bank is translated differently into languages like

French depending on whether it refers to a financial institution or river

edge.

o Search Engines: WSD helps refine search results by interpreting the

user’s query correctly.

Example: A query for Java may refer to the programming language, the

island, or coffee, depending on additional keywords.

o Sentiment Analysis: WSD identifies the correct sense of words with

dual sentiments.

Example: Cool can mean cold or awesome.

o Question Answering Systems: Disambiguation helps retrieve precise

answers.

Example: For the question What is the capital of the bank? WSD helps

interpret bank as a financial institution and provide relevant information.

• Challenges in Word Sense Disambiguation

o Ambiguity in Context: Sentences with insufficient context can make

disambiguation difficult.

Example: He went to the bank.

o Resource Dependency: Knowledge-based methods require

comprehensive and updated lexical resources, which are not available

for all languages.

o Domain-Specific Senses: Words may have specialized meanings in

different fields.

259

Example: Network in computer science vs. network in broadcasting.

o Scalability: Supervised methods require large, annotated corpora,

which are impractical for many languages or domains.

2.7 WORDNET
WordNet is one of the most widely used lexical databases in NLP. Developed

at Princeton University under the guidance of George A. Miller, it organizes

words into sets of synonyms (called synsets) and provides semantic

relationships between them. WordNet is instrumental in various NLP tasks like

word sense disambiguation, semantic similarity computation, and information

retrieval.

• What is WordNet?

WordNet is more than just a dictionary or thesaurus. It is a structured

network of words where:

o Synsets: Each synset is a collection of words or phrases that are

interchangeable in certain contexts. For example, the synset {car, auto,

automobile, machine, motorcar} refers to a motor vehicle.

o Lexical Relations: Relationships between words and synsets are

explicitly defined, such as synonyms, antonyms, hypernyms, and

hyponyms.

This organization helps WordNet capture both the meaning of words and

their relationships, making it a powerful tool for computational linguistics.

• Structure of WordNet

o Synsets: A synset represents a unique concept and is associated with:

▪ A set of synonymous words.

▪ A definition or gloss describing the concept.

Example:

Synset: {dog, domestic_dog, Canis_familiaris}

Gloss: “A domesticated carnivorous mammal typically kept as a pet or

used for hunting.”

260

o Semantic Relationships: WordNet defines multiple relationships

between words and synsets:

▪ Hypernym (is-a relationship): A broader term. Example: Dog →

Animal.

▪ Hyponym (is-a kind of relationship): A narrower term. Example:

Animal → Dog.

▪ Meronym (part-of relationship): Indicates parts of a whole.

Example: Car → Wheel.

▪ Antonym: Words with opposite meanings. Example: Hot ↔

Cold.

▪ Holonym (whole-to-part relationship): Indicates the whole that a

term is a part of. Example: Wheel → Car.

▪ Troponym: A specific way of performing an action. Example:

Walk → Stroll.

o Lexical Categories: WordNet categorizes words into:

▪ Nouns

▪ Verbs

▪ Adjectives

▪ Adverbs

Each category is treated as a separate semantic network.

• Key Features of WordNet

o Synonymy: WordNet organizes synonyms to clarify ambiguous

meanings. Example: Bright can mean:

▪ Intelligent (as in “a bright student”).

▪ Luminous (as in “a bright light”).

o Polysemy: Handles words with multiple senses, mapping them to

different synsets. Example: The word bank has synsets for:

▪ A financial institution.

▪ The edge of a river.

o Hierarchical Structure: Relationships like hypernymy and hyponymy

create a taxonomy. Example:

▪ Entity → Living thing → Animal → Dog.

261

o Searchable Glosses: Each synset is described by a concise definition

and example sentences.

• Applications of WordNet in NLP

o Word Sense Disambiguation (WSD): WordNet helps identify the

correct sense of a word by providing synsets and relationships.

Example: In He went to the bank, WordNet can distinguish between the

financial institution sense and the river edge sense.

o Semantic Similarity Computation: By measuring the distance

between synsets in WordNet’s hierarchy, systems can quantify the

similarity between words.

Example: Car and Automobile are closer than Car and Bicycle.

o Information Retrieval: WordNet aids in expanding search queries with

synonyms and related terms to improve search results.

Example: A search for doctor might include physician and surgeon as

related terms.

o Text Classification and Sentiment Analysis: WordNet’s relationships

are used to understand word meanings in context, improving

classification tasks.

o Machine Translation: WordNet maps words to their closest

equivalents in other languages by understanding their senses.

o Chatbots and Virtual Assistants: WordNet improves understanding

of user queries by recognizing synonyms and related terms.

• Advantages of WordNet

o Comprehensive Coverage: With thousands of synsets and

relationships, WordNet covers a vast portion of the English lexicon.

o Hierarchical Relationships: The hypernym-hyponym structure aids in

understanding the taxonomy of concepts.

o Contextual Clarity: By organizing polysemous words into distinct

synsets, WordNet eliminates ambiguity.

o Integration with NLP Tools: Many NLP libraries and frameworks

integrate WordNet, making it accessible for developers.

262

• Challenges of WordNet

o Limited to English: Although multilingual WordNets exist, the original

WordNet focuses only on English.

o Static Nature: WordNet does not capture emerging words, slang, or

changes in usage over time.

o Lack of Contextual Understanding: While WordNet captures

relationships, it lacks the dynamic, contextual nuances of modern

contextual embeddings like BERT.

o Sparse Verb and Adjective Relationships: Relationships among

verbs and adjectives are less exhaustive than those among nouns.

2.8 SEMANTIC SIMILARITY MEASURES

Semantic similarity measures quantify how closely two words, phrases, or

texts are related in meaning. These measures are fundamental in NLP tasks

like information retrieval, text clustering, and machine translation. Two major

approaches to computing semantic similarity are thesaurus-based methods

and distributional methods. Each method leverages different sources of

knowledge to evaluate relationships between linguistic units.

Thesaurus-based Methods

Thesaurus-based methods use structured semantic resources, such as

WordNet, to measure similarity by analyzing the relationships between words

in a pre-defined lexical hierarchy. These methods rely on predefined

knowledge and are interpretable, as they explicitly define relationships

between terms.

• How It Works

o Hierarchical Structure: Semantic resources like WordNet organize

words into a hierarchical structure based on hypernyms (general terms)

and hyponyms (specific terms). The similarity is determined by how

closely two words are located in this structure.

o Synsets and Relationships: Words are grouped into synsets (sets of

synonyms), and relationships like hypernymy (is-a relationship) or

meronymy (part-of relationship) help establish semantic links.

263

o Path-Based Similarity: The similarity is calculated based on the path

length between concepts in the hierarchy. Shorter paths indicate higher

similarity.

Example: In WordNet, dog and wolf are closer than dog and car.

• Key Thesaurus-Based Similarity Metrics

o Path Similarity: Measures the shortest path between two words in a

semantic graph.

Example: The similarity between dog and canine will be high due to

their close proximity in WordNet.

o Leacock-Chodorow (LCH): Incorporates the depth of the hierarchy in

calculating similarity. It computes similarity as:

Similarity = −log ()

o Wu-Palmer Similarity (WUP): Considers the depth of the common

ancestor (lowest common subsumer, or LCS) in the hierarchy relative

to the total depth of the concepts:

Similarity =

o Resnik Similarity: Utilizes information content (IC) of the LCS, which

measures how informative a concept is. Words sharing a highly

specific ancestor have higher similarity.

• Advantages of Thesaurus-Based Methods

o Interpretability: The results are transparent and grounded in

structured semantic knowledge.

o Good for Specific Domains: Works well for tasks requiring well-

defined relationships, such as taxonomies in medical or biological

datasets.

• Challenges

o Resource Dependency: These methods depend on comprehensive

lexical databases, which may not cover all words or emerging terms.

o Static Nature: Lexical resources may not adapt quickly to language

changes or new domains.

264

Distributional Methods

Distributional methods derive semantic similarity based on the context in

which words appear in large corpora. These methods leverage the

distributional hypothesis, which states: Words that occur in similar contexts

tend to have similar meanings.

• How It Works

o Vector Representation of Words: Each word is represented as a

vector in a high-dimensional space. The vector encodes information

about the word's co-occurrence with other words in a corpus.

o Similarity Metrics: The similarity between two words is computed as

the similarity between their vectors, typically using metrics like:

▪ Cosine Similarity: Measures the cosine of the angle between two

vectors.

Cosine Similarity=

Where, A and B are word vectors.

▪ Euclidean Distance: Measures the straight-line distance between

two vectors in space.

▪ Dot Product: Captures the alignment of two vectors in the

embedding space.

o Corpus-Based Context: Context windows (e.g., five words before and

after a target word) are used to capture co-occurrence statistics. The

idea is that similar words will co-occur with similar neighbors.

• Key Distributional Methods

o Count-Based Models: These models build co-occurrence matrices,

where each entry represents the frequency of a word pair within a

specified context window.

▪ Latent Semantic Analysis (LSA): Reduces the dimensionality of

co-occurrence matrices using techniques like Singular Value

Decomposition (SVD) to capture deeper relationships between

words.

o Prediction-Based Models: These models predict a word given its

context and learn dense word embeddings.

265

▪ Word2Vec: Generates word embeddings using techniques like

Continuous Bag of Words (CBOW) or Skip-Gram.

▪ GloVe (Global Vectors for Word Representation): Combines the

benefits of count-based and prediction-based methods to create

word vectors.

• Advantages of Distributional Methods

o Data-Driven: Does not rely on predefined resources and adapts to new

languages and domains.

o Contextual: Captures the dynamic nature of word meanings based on

their usage.

• Challenges

o High Computational Cost: Building and processing co-occurrence

matrices or training embeddings can be computationally expensive.

o Limited Interpretability: Unlike thesaurus-based methods, the

relationships between vectors are not explicitly defined.

• Applications of Semantic Similarity

o Information Retrieval: Ranking documents based on their relevance

to a query.

o Question Answering: Matching user questions to the most relevant

answers.

o Plagiarism Detection: Comparing text similarity to identify copied

content.

o Text Clustering: Grouping similar documents or sentences.

o Paraphrase Detection: Determining whether two sentences convey

the same meaning.

266

Check Your Progress

a) _________ ambiguity occurs when a word has multiple meanings

unrelated to each other, such as "bat" referring to a flying mammal or

sports equipment.

b) __________ is a task in semantic analysis that measures the likeness

between words or sentences based on their meaning.

c) The _______ algorithm is commonly used in Word Sense Disambiguation

(WSD) to determine the sense of a word by finding overlaps between its

dictionary definition and surrounding context.

d) In Named Entity Recognition (NER), ________ are models that improve

upon Hidden Markov Models by considering the entire context of a

sentence during entity recognition.

e) The ________ hypothesis states that words appearing in similar contexts

tend to have similar meanings, forming the basis of distributional methods

in semantic similarity.

f) In thesaurus-based semantic similarity, the ____________ metric uses the

depth of the lowest common subsumer relative to the total depth of the

concepts to calculate similarity.

2.9 Let us sum up

In this unit we have discussed concept of semantic analysis. You know now

what is named entity recognition and the importance of NER using HMM and

PoS tagging in semantic analysis. We have given a detailed description of the

role of word sense disambiguation in semantic analysis. We have also

elaborated on wordnet and semantic similarity measures.

267

2.10 Check your progress: Possible Answers

a) Homonymy

b) Semantic similarity

c) Lesk

d) Conditional Random Fields (CRFs)

e) Distributional

f) Wu-Palmer Similarity

2.11 Further Reading

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

• Bharati A., Sangal R., Chaitanya V. Natural language processing: a

Paninian perspective, PHI, 2000.

2.12 Assignments

• What is Named-Entity Recognition (NER), and why is it important in

semantic analysis?

• How can the Hidden Markov Model be used for Named-Entity

Recognition?

• Explain how PoS tagging contributes to Named-Entity Recognition.

• Define Word Sense Disambiguation (WSD) and describe its significance in

NLP.

• What is WordNet, and how does it assist in understanding word senses

and semantic relationships?

268

Unit-3: Vector Semantics and
Embeddings

Unit Structure

3.0. Learning Objectives

3.1. Introduction

3.2. Vector Space Models

3.3. TF-IDF

3.4. Word2vec

3.5. doc2vec

3.6. Word embeddings

3.7. Skip-gram Classifier

3.8. Character-to-Sentence Embeddings

3.9. Let us sum up

3.10. Check your Progress: Possible Answers

3.11. Further Reading

3.12. Assignment

3

269

3.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know the concept of vector semantics

• Understand the mathematical basis of vector space models

• What are word2vec and doc2vec

• List various types of embeddings

• Describe the statistical measure in Natural Language Processing

• Explain the use of skip-gram classifiers

3.1 INTRODUCTION

Vector semantics is a fundamental concept in natural language processing

(NLP) that represents words, phrases, or larger text units as numerical

vectors in a high-dimensional space. These numerical representations allow

text to be analyzed mathematically, enabling machines to understand and

process language more effectively. Embeddings, a specific type of vector

representation, are compact and dense representations of text elements.

Unlike traditional sparse representations, embeddings condense semantic

relationships into fewer dimensions, making them efficient and powerful.

These representations form the basis for many modern NLP systems and

applications. The importance of vector semantics and embeddings lies in their

ability to address limitations in earlier methods. Traditional approaches, like

one-hot encoding or bag-of-words, fail to capture semantic relationships and

contextual nuances. By contrast, vector-based representations enable

semantic similarity, contextual understanding, and efficient dimensionality

reduction. For example, in embedding spaces, words like "king" and "queen"

are represented as vectors that are geometrically closer, reflecting their

related meanings. Such properties make embeddings indispensable for tasks

like machine translation, sentiment analysis, and question answering.

The evolution of text representation in NLP began with symbolic methods like

one-hot encoding, where each word is assigned a unique binary vector. While

270

simple, this method fails to encode relationships between words. Bag-of-

words models introduced frequency-based representations, but they still

lacked semantic depth and ignored word order. Sparse vector

representations, such as those used in vector space models, improved upon

these methods by representing words or documents in high-dimensional

spaces with meaningful features like term frequency or TF-IDF values.

However, these approaches were computationally inefficient and context-

insensitive. Dense embeddings emerged as a solution to these challenges,

offering compact vector representations that preserve semantic meaning.

Early word embeddings like Word2vec and GloVe encode relationships

between words in continuous vector spaces. These models capture nuances

such as analogical relationships (e.g., "king" - "man" + "woman" ≈ "queen").

More advanced contextual embeddings, such as ELMo and BERT, extend

this by considering the context in which words appear, making their

representations dynamic and highly adaptable to various tasks.

In vector semantics, the geometric interpretation of language is crucial. Text

elements, represented as vectors, occupy positions in a multi-dimensional

space where their semantic relationships are encoded as distances or angles.

Measures like cosine similarity calculate the angular difference between

vectors, determining their similarity. Furthermore, vector arithmetic allows us

to perform operations like finding analogies or semantic transformations. Each

dimension in these vectors corresponds to a specific feature, such as a

syntactic role or a topical attribute, allowing embeddings to encapsulate rich

linguistic information. The applications of vector semantics and embeddings

are vast and transformative. They enable text similarity measurements and

clustering, which are essential for deduplication and document organization.

In information retrieval, embeddings enhance the ranking and precision of

search results. Machine translation leverages embeddings to align multiple

languages in a shared vector space, enabling more accurate translations. In

conversational AI, embeddings power the semantic understanding of queries

and responses, improving the relevance and coherence of chatbot

interactions.

271

Despite their advancements, embeddings face challenges that limit their

effectiveness. Static embeddings like Word2vec struggle with out-of-

vocabulary words and fail to adapt to varying contexts. Moreover, embeddings

can inadvertently encode biases present in training data, propagating unfair or

prejudiced representations. Addressing these issues is a critical area of

ongoing research, with efforts focusing on enhancing contextual

understanding, improving computational efficiency, and ensuring fairness in

embeddings.

3.2 VECTOR SPACE MODELS

Vector Space Models (VSMs) are a cornerstone of Natural Language

Processing (NLP) and information retrieval. They provide a mathematical

framework for representing textual data in a way that enables comparison,

clustering, and other quantitative analyses. In VSMs, words, phrases, or entire

documents are mapped to vectors in a multi-dimensional space, where their

positions reflect semantic or contextual relationships.

The fundamental idea of VSMs is rooted in the distributional hypothesis,

which states that the meaning of a word can be understood by the contexts in

which it appears. This hypothesis, attributed to linguists Zellig Harris and J.R.

Firth, forms the theoretical backbone of VSMs, allowing language to be

analyzed geometrically. This representation enables applications such as

information retrieval, topic modeling, and clustering.

By encoding textual data into vectors, VSMs also set the stage for advanced

techniques like neural embeddings (e.g., Word2vec, GloVe), which further

refine the representation of semantic relationships.

Core Principles of Vector Space Models

• Geometric Representation of VSMs

In a VSM, textual data is represented in a multi-dimensional space. The

dimensions of this space often correspond to features such as the

frequency of specific terms or their co-occurrence with other terms.

272

o Representation: Each word, sentence, or document is transformed

into a vector where the values in each dimension correspond to

specific linguistic or statistical properties.

Example: The vector for a document could be:

Where, represents the weight of the term in the document.

• Similarity Metrics

The similarity or dissimilarity between two vectors is quantified using

measures such as:

o Cosine Similarity: Measures the angle between two vectors,

highlighting their directional alignment:

This metric is particularly useful because it focuses on orientation

rather than magnitude, making it robust to variations in text length.

o Euclidean Distance: Focuses on the direct distance between two

vectors, capturing their overall difference:

• Distributional Hypothesis

The distributional hypothesis underpins the semantic foundation of VSMs.

This principle posits that words with similar meanings are likely to appear

in similar contexts. For example:

o Words like "doctor" and "nurse" often occur near terms like "hospital" or

"patient."

o In contrast, "doctor" and "river" rarely co-occur in similar contexts.

This hypothesis allows VSMs to capture latent semantic relationships,

making them powerful tools for tasks like word similarity and topic

modeling. The contextual nature of this approach enables VSMs to

generalize semantic properties across diverse text corpora.

273

• Types of Vector Space Models

o Term-Document Matrix: The term-document matrix is one of the

simplest and most interpretable forms of VSM. It is structured as a

matrix where:

▪ Rows represent terms (words, phrases, etc.).

▪ Columns represent documents.

▪ Each cell contains a value indicating the importance of the term in

the document.

Key weighting schemes include:

▪ Raw Term Frequency (TF): Counts the number of times a term

appears in a document.

▪ TF-IDF: Adjusts term frequency by factoring in its rarity across the

corpus:

Where,

▪ : Total number of documents.

▪ : Number of documents containing term .

This representation is particularly effective in information retrieval and

topic modeling, as it emphasizes discriminative terms.

o Word-Context Matrix: Unlike term-document matrices, which focus on

documents, word-context matrices capture relationships between

words. Here:

▪ Rows represent target words.

▪ Columns represent context words (e.g., words appearing within a

specific window size around the target word).

▪ Cells contain co-occurrence counts or probabilities.

Word-context matrices form the basis for distributional semantic

models and are often subjected to dimensionality reduction techniques

to extract semantic patterns.

274

• Latent Semantic Analysis (LSA)

LSA addresses the sparsity and high dimensionality of term-document and

word-context matrices by employing Singular Value Decomposition (SVD).

SVD decomposes the matrix into three components:

Where,

o : Term matrix.

o : Diagonal matrix of singular values (capturing importance).

o : Document matrix.

The dimensionality reduction provided by LSA enables VSMs to uncover

latent semantic relationships, improving performance in tasks like clustering

and retrieval.

• Applications of Vector Space Models

o Information Retrieval: Search engines leverage VSMs to rank

documents based on their relevance to a query. By representing both

documents and queries as vectors, similarity metrics like cosine

similarity are used to compute relevance scores.

Example:

▪ Query: "climate change impact"

▪ Documents discussing climate change will have higher cosine

similarity to the query vector than unrelated documents.

o Document Clustering: VSMs enable unsupervised learning methods,

such as k-means clustering, to group similar documents. This

application is critical in areas like news categorization, academic paper

organization, and large-scale content management.

o Sentiment Analysis: By representing textual data as vectors, VSMs

allow the use of machine learning classifiers to predict sentiment.

Features may include counts of positive, negative, or neutral terms,

enabling straightforward sentiment prediction.

Example: Comparing Documents with VSMs

Given Documents:

275

o Document 1: "Natural language processing is fun."

o Document 2: "Language processing helps computers understand."

Step 1: Build a Term-Document Matrix

Term Document 1 Document 2

natural 1 0

language 1 1

processing 1 1

is 1 0

fun 1 0

helps 0 1

computers 0 1

understand 0 1

Table-9 Examples of Term-Document Matrix

Step 2: Compute Cosine Similarity

Using the vectors and :

The result indicates moderate semantic overlap.

3.3 TF-IDF
TF-IDF, or Term Frequency-Inverse Document Frequency, is a widely used

statistical measure in natural language processing and information retrieval. It

evaluates how important a word is in a specific document compared to a

larger collection of documents (corpus). Unlike raw term frequency, TF-IDF

incorporates global context by penalizing terms that are ubiquitous across the

corpus. This dual approach ensures that words like "the," "is," or "and" do not

dominate the representation despite their high frequency.

This method has applications across a variety of fields, including search

engines (to rank documents based on relevance), recommendation systems,

and machine learning pipelines for tasks like text classification and clustering.

TF-IDF serves as a foundation for more complex models, providing a bridge

between raw textual data and numerical analysis.

276

Components of TF-IDF

▪ Term Frequency (TF)

Term Frequency quantifies how often a word appears in a document ,

providing a measure of the term's significance within the document. The

formula is:

Where,

o : The raw count of term in document .

o : The total number of words in the document.

Example: In a document containing 100 words where the term "processing"

appears 5 times:

Normalization prevents biases toward longer documents that naturally have

higher raw term frequencies.

▪ Variants of Term Frequency

o Boolean Frequency: Assigns a value of 1 if the term appears at least

once in the document and 0 otherwise.

o Logarithmic Scaling: Adjusts high frequencies using a logarithmic

transformation:

 if

These variants address specific use cases, such as mitigating the impact of

overly frequent terms in long documents.

▪ Inverse Document Frequency (IDF)

Inverse Document Frequency measures the rarity of a term across the

entire corpus . Its formula is:

Where,

o : Total number of documents in the corpus.

o : Number of documents containing the term ttt.

277

o Adding 1 to avoids division by zero when a term does not appear

in any document.

Example: Consider a corpus with 10,000 documents. If the term

"processing" appears in 100 documents:

This result shows that "processing" is relatively rare across the corpus,

making it a more informative term. The logarithmic scaling ensures that

very frequent terms are penalized without completely negating their

importance.

▪ Variants of IDF:

o Smooth IDF:

This variant ensures that IDF values remain positive for all terms.

o Probabilistic IDF:

This accounts for the probability of a term not appearing in a document.

▪ Combining TF and IDF

The TF-IDF score integrates both the local importance of a term (TF) and

its global rarity (IDF):

This combination allows TF-IDF to identify terms that are both frequent in

a specific document and unique across the corpus.

Example: If the term "processing" has a TF of 0.05 in a document and an

IDF of 4.595:

This score indicates the relative importance of "processing" in that

document.

278

Example: Calculating TF-IDF

Let’s revisit the corpus of three documents:

1. Document 1: "Natural language processing is fun."

2. Document 2: "Language processing helps computers understand."

3. Document 3: "Natural language models use embeddings."

Step 1: Compute Term Frequency (TF)

1. Identify all the unique terms (words) in the corpus.

2. For each document, count how many times each term appears.

3. Normalize these counts by dividing the total number of words in the

document.

According to the above-mentioned equation the TF matrix for the terms in all

three documents looks like this:

Term Document 1 Document 2 Document 3

natural 0.2 0 0.2

language 0.2 0.2 0.2

processing 0.2 0.2 0

is 0.2 0 0

fun 0.2 0 0

helps 0 0.2 0

computers 0 0.2 0

understand 0 0.2 0

models 0 0 0.2

use 0 0 0.2

embeddings 0 0 0.2

Table-10 Term-Document Matrix Example

Step 2: Compute Inverse Document Frequency (IDF)

4. For "language":

▪ (appears in all three documents).

▪

279

5. For "models":

▪ (appears only in Document 3).

▪

Step 3: Compute TF-IDF

6. For "language" in Document 1:

▪

▪

▪

7. For "models" in Document 3:

▪

▪

▪

The resulting TF-IDF would look something like this:

Term Document 1 Document 2 Document 3

natural 0.081 0 0.081

language -0.025 -0.025 -0.025

processing 0.162 0.162 0

Is 0.223 0 0

fun 0.223 0 0

helps 0 0.223 0

computers 0 0.223 0

understand 0 0.223 0

models 0 0 0.081

use 0 0 0.081

embeddings 0 0 0.081

Table-11 Modified Term-Document Matrix

• Applications of TF-IDF

o Information Retrieval: Search engines use TF-IDF to rank

documents. A query term with a high TF-IDF score in a document

indicates the document's relevance to the query.

280

o Keyword Extraction: TF-IDF identifies key terms in a document by

ranking them based on their TF-IDF scores.

o Text Classification: Machine learning models use TF-IDF vectors as

input features for tasks like spam detection, sentiment analysis, and

topic classification.

3.4 WORD2VEC
Word2Vec is one of the most influential advancements in natural language

processing (NLP) for creating vector representations of words. Developed by

Tomas Mikolov and his team at Google in 2013, Word2Vec introduced dense

vector embeddings that capture the semantic relationships between words,

fundamentally shifting the way machines understand and process text.

Word Embeddings

Word embeddings provide a way to represent words in a continuous vector

space, where the geometric relationships between vectors encode the

semantic meaning of words. Unlike traditional representations like one-hot

encoding or frequency-based vectors, word embeddings are low-dimensional

and dense, making them more efficient and meaningful.

• Key Features of Word Embeddings

o Dimensionality Reduction: Instead of sparse, high-dimensional

vectors (as in one-hot encoding), embeddings represent words in

dense vectors with dimensions typically ranging from 100 to 300.

o Semantic Meaning: Embeddings place semantically similar words

closer together in the vector space. For example, "dog" and "cat" would

have similar embeddings, while "dog" and "car" would be more distant.

o Scalability: Word embeddings can be trained on massive text corpora,

efficiently capturing a rich semantic structure.

Example: Consider the analogy problem: "king is to queen as man is to

what?" Word2Vec embeddings can answer this by leveraging the vector

relationships:

This reflects the inherent similarity and relationships encoded in the

embeddings.

281

• How Word2Vec Works

Word2Vec learns word embeddings using a neural network model guided

by the distributional hypothesis, which posits that words appearing in

similar contexts tend to have similar meanings. It operates in two main

configurations:

o Continuous Bag of Words (CBOW): Predicts a target word from the

surrounding context words.

o Skip-Gram: Predicts the surrounding context words given a target

word.

Both models aim to encode words into vectors such that the embeddings

reflect the semantic and syntactic properties of the language.

1. Continuous Bag of Words (CBOW)

CBOW focuses on predicting a target word based on its neighboring words

within a fixed-size context window. It operates efficiently, particularly in

large datasets.

o Architecture

▪ Input Layer: One-hot encoded vectors for the context words.

▪ Hidden Layer: Shared weight matrix that projects input vectors into

a dense embedding space.

▪ Output Layer: A softmax layer that predicts the target word.

o Mathematical Foundation of CBOW

▪ Input Representation: Suppose the vocabulary has words and

the context window size is . Each input context word is

represented as a one-hot vector.

▪ Hidden Layer Calculation: The hidden layer aggregates the one-

hot encoded inputs using a shared weight matrix (of size

):

where, is the embedding size.

▪ Output Layer: The output layer predicts the probability of the target

word using a softmax function:

282

Here, are the output weights corresponding to the target

word.

Example: Consider the sentence "The cat sat on the mat." With a

context window size of 2, CBOW might predict "sat" using the context

words ["The","cat","on","the"].

2. Skip-Gram Model

Skip-Gram takes an inverse approach compared to CBOW. It predicts the

context words based on a single target word, making it particularly

effective for capturing rare word associations.

o Architecture

▪ Input Layer: One-hot vector for the target word.

▪ Hidden Layer: Shared weight matrix for dimensionality reduction.

▪ Output Layer: Multiple softmax layers, one for each context word.

o Mathematical Foundation of Skip-Gram

▪ Input Representation: A single one-hot encoded vector for

the target word.

▪ Hidden Layer Calculation: The input is projected into the

embedding space via the weight matrix .

▪ Output Layer: For each context word , the model predicts its

probability using:

Example: From the sentence "The cat sat on the mat," Skip-Gram

could predict ["The","cat","on","the"] using "sat" as the target word.

o Optimization and Training

Word2Vec relies on stochastic gradient descent (SGD) and

backpropagation for training. However, due to the vast size of

vocabularies in real-world corpora, it incorporates optimizations to

reduce computational overhead.

283

• Key Challenges

o Computational Complexity: Calculating softmax probabilities over

large vocabularies is resource intensive.

• Solutions

o Hierarchical Softmax: Uses a binary tree representation of the

vocabulary to reduce softmax complexity.

o Negative Sampling: Focuses on a small set of sampled negative

examples rather than the entire vocabulary. This approach simplifies

the loss function by updating only the embeddings of the positive

example (the target word) and a small number of randomly sampled

negative examples. The adjusted loss function becomes:

Where, is the number of negative samples.

• Applications of Word2Vec

o Semantic Similarity: Identifying synonyms or related words.

o Analogy Tasks: Solving problems like "king is to queen as man is to

what?"

o Feature Engineering: Using pre-trained embeddings as input features

for downstream NLP tasks like sentiment analysis or translation.

3.5 DOC2VEC

Doc2Vec is a groundbreaking model designed to generate fixed-length vector

representations for entire documents, including sentences, paragraphs, and

articles. These vectors encapsulate semantic and syntactic information,

enabling machines to understand and process textual data effectively.

Introduced by Quoc Le and Tomas Mikolov in 2014, Doc2Vec builds on the

success of Word2Vec by extending its principles to longer, variable-length

texts. In natural language processing (NLP), many tasks require

understanding documents as a whole rather than individual words. Tasks like

document classification, sentiment analysis, and semantic search benefit from

a unified representation of textual data.

284

Word2Vec produces embeddings for individual words, but it lacks the ability to

represent variable-length texts directly. This is where Doc2Vec shines,

offering:

● Fixed-Length Representations: No matter how long the document is,

it produces a consistent vector size.

● Semantic Awareness: Embeddings retain contextual meaning, even

for complex texts.

● Task Utility: Vectors can be directly used for tasks such as clustering,

retrieval, or classification.

For example, consider the problem of categorizing news articles. With

Doc2Vec, each article can be represented by a dense vector, making it easier

to cluster articles on similar topics.

• Core Idea of Doc2Vec

The fundamental idea behind Doc2Vec is to represent a document as a

single, trainable vector. This vector is optimized to predict either the context

words (like in Word2Vec's CBOW) or randomly sampled words from the

document (similar to Word2Vec's Skip-Gram). The document vector acts as a

memory of the document’s meaning, enabling the model to capture long-

range dependencies and thematic information.

• Doc2Vec Variants:

1. Distributed Memory (DM): Predicts context words using the document

vector, similar to CBOW in Word2Vec.

2. Distributed Bag of Words (DBOW): Predicts random words from the

document, akin to Skip-Gram.

1. Distributed Memory (DM) Model

The DM model works like Word2Vec’s CBOW, where the goal is to predict

a target word based on its surrounding context. However, DM adds a

document vector to the context, making it a pivotal memory element for

capturing the broader meaning.

285

• How it Works:

1. Input: The model takes a document ID (mapped to a vector) and

several surrounding words in the context window.

2. Hidden Layer: Combines the embeddings of the context words with

the document vector.

3. Output Layer: Predicts the next word in the sequence using a

probability distribution over the vocabulary.

• Mathematical Formulation of DM:

1. Document Representation: Each document has a unique vector

.

2. Context Words: Each word in the context is represented as a one-hot

vector .

3. Hidden Representation: Combines context and document

embeddings:

where is the word embedding matrix.

4. Output: Predicts the target word using softmax:

Example:

Suppose the document is: "Deep learning is powerful". The DM model uses

the document ID and the context words ["Deep","learning"] to predict

"powerful."

286

2. Distributed Bag of Words (DBOW) Model

The DBOW model is simpler and focuses on predicting individual words

from the document vector. Unlike DM, it ignores word order and context

words entirely.

• How it Works:

1. Input: Only the document vector is used.

2. Output: Predicts random words from the document.

• Mathematical Formulation of DBOW:

1. Hidden Representation: Directly uses .

2. Output: Predicts random words :

Example:

For the document "Deep learning is powerful", DBOW predicts "deep,"

"learning," and "powerful" directly from the document vector.

• Applications of Doc2Vec

1. Text Classification:

○ Example: Classifying movie reviews as positive or negative.

○ Process: Train Doc2Vec to generate review embeddings, then

feed these embeddings into a classifier like logistic regression.

2. Semantic Search:

○ Example: Matching user queries to relevant documents.

○ Process: Represent both queries and documents as vectors,

then compute their similarity (e.g., cosine similarity).

3. Document Clustering:

○ Example: Grouping articles by topic.

○ Process: Cluster document vectors using k-means or

hierarchical clustering.

287

3.6 WORD EMBEDDINGS
Word embeddings are a foundational building block of natural language

processing (NLP). They transform text into numerical representations that

capture both semantic and syntactic relationships between words. Unlike

traditional text representations, embeddings allow algorithms to process

language meaningfully, improving performance across tasks like sentiment

analysis, machine translation, and information retrieval. This guide provides

an in-depth examination of word embeddings, detailing their theory, models,

mathematical basis, and applications.

At their essence, word embeddings are dense vector representations of

words, designed to encode linguistic meaning into a numerical form. They

enable algorithms to perform arithmetic-like operations that reveal semantic or

syntactic relationships.

• The Need for Word Embeddings

Traditional methods of representing words, such as one-hot encoding,

bag-of-words (BoW), and term frequency-inverse document frequency

(TF-IDF), come with significant limitations:

o High Dimensionality: One-hot encoding represents each word as a

binary vector the size of the vocabulary. For example, in a corpus with

100,000 words, "apple" would be represented as a vector with 100,000

dimensions, with only one "1" at the position corresponding to "apple."

Such representations are memory-intensive and sparse (mostly zeros).

o No Contextual Understanding: Traditional methods fail to capture the

relationships between words. For instance, "apple" and "fruit" would

have no inherent similarity under one-hot encoding, despite their clear

semantic link.

o Lack of Scalability: As corpus sizes grow, the dimensions of these

representations explode. Computing similarities or training models on

such sparse, high-dimensional data becomes inefficient.

• What Makes Word Embeddings Different?

Word embeddings offer a paradigm shift. They:

288

o Represent words in dense, low-dimensional vector spaces (e.g.,

50–300 dimensions instead of tens of thousands).

o Encode both semantic similarity (e.g., "king" and "queen" are close in

the vector space) and syntactic relationships (e.g., pluralization,

gender transformations).

o Are learned directly from large corpora, making them adaptable and

rich in information.

Example: Consider the words "cat" and "dog." While distinct, they often

appear in similar contexts (e.g., "pets," "fur," "tail"). A well-trained

embedding model positions these words close to each other in the vector

space.

• Key Properties of Word Embeddings

Word embeddings exhibit several properties that make them powerful

tools for understanding and modeling language. These properties include

dimensionality reduction, semantic relationships, and context sensitivity.

• Dimensionality Reduction

Embedding vectors typically have dimensions ranging between 50 and

300, significantly reducing the memory and computational requirements of

traditional methods. Despite this reduction, they retain essential linguistic

information.

Analogy: Think of compressing a high-definition image into a smaller

format that preserves the critical details while discarding redundant pixels.

Why Dimensionality Matters:

• High-dimensional representations (e.g., one-hot vectors) are sparse

and inefficient, requiring large amounts of memory and computational

power.

• Dense embeddings consolidate information into fewer dimensions,

enabling efficient storage and processing.

289

• Semantic Relationships

A key strength of word embeddings is their ability to model relationships

between words. Words with similar meanings or usage patterns are close

in the embedding space.

Example of Semantic Proximity:

• "King," "queen," "prince," and "princess" form a cluster, as do "apple,"

"orange," and "banana."

Word Analogies: Embeddings can model analogical reasoning, enabling

equations like:

This demonstrates that the relationship "king is to man as queen is to

woman" is encoded geometrically in the vector space.

• Context Sensitivity

While earlier embeddings such as Word2Vec and GloVe produce static

vectors (a word always has the same vector), modern approaches like

BERT and GPT generate contextual embeddings. This means the

representation of a word adapts based on the sentence it appears in.

Example:

o In "I deposited money at the bank," the word "bank" relates to a

financial institution.

o In "The boat is near the river bank," "bank" refers to a riverbank.

Contextual embeddings distinguish these meanings by adjusting the

vector representation for "bank" based on its usage.

The mathematical basis of word embeddings is rooted in the distributional

hypothesis, which posits that words occurring in similar contexts tend to

have similar meanings. This principle underpins most word embedding

models.

• Understanding the Distributional Hypothesis

The hypothesis suggests that a word’s meaning can be inferred by

examining its neighboring words. For example:

o In "The cat chased the mouse," the context words "chased," "the," and

"mouse" help define "cat."

290

o Similarly, in "The dog chased the ball," "dog" shares a similar context,

indicating a similarity in meaning with "cat."

Embedding models leverage this hypothesis by analyzing patterns in large

corpora to position words with similar contexts close together in vector

space.

• Vector Space Representation

Word embeddings represent words as vectors in an -dimensional space

. The aim is to optimize these vectors so that:

o Words with similar meanings are geometrically close.

o Linguistic relationships (e.g., analogies, semantic hierarchies) are

captured as geometric transformations.

• Methods for Learning Word Embeddings

There are three main categories of methods for generating word

embeddings:

o Count-Based Methods: Count-based methods derive word vectors

from the frequency with which words co-occur within a context window.

1. Co-Occurrence Matrices:

o Construct a matrix , where represents how often words

and appear together within a fixed window size.

o Example: In "The cat sat on the mat," the word "cat" might co-

occur with "the," "sat," "on," and "mat."

2. Dimensionality Reduction:

o Large co-occurrence matrices are reduced using techniques like

Singular Value Decomposition (SVD).

o Example: Latent Semantic Analysis (LSA) transforms co-

occurrence data into a lower-dimensional space.

o Prediction-Based Methods: These methods learn embeddings by

predicting a word from its context (or vice versa). They use neural

networks to optimize embeddings for specific tasks. The key prediction-

based methods are as follows:

1. Word2Vec: Developed by Mikolov et al. (2013), Word2Vec

introduced two architectures:

291

▪ Continuous Bag of Words (CBOW): Predicts the target

word given surrounding context words.

▪ Skip-Gram: Predicts context words given a target word.

Example: For the phrase "The cat sat," CBOW predicts "cat"

from ["The," "sat"], while Skip-Gram predicts "The" and "sat"

from "cat."

2. GloVe: Introduced by Pennington et al. (2014), GloVe combines

count-based and prediction-based methods. It models the co-

occurrence probability of word pairs:

Where, is the co-occurrence frequency of and .

3. FastText: Extends Word2Vec by representing words as collections

of character n-grams. Handles rare or out-of-vocabulary (OOV)

words better by constructing embeddings from their subword

components.

o Contextual Embeddings: Contextual embeddings dynamically adjust

word representations based on surrounding text.

1. ELMo: Uses bidirectional LSTMs to generate embeddings for each

word in context.

2. BERT: Based on transformers, BERT creates embeddings by

attending to all words in a sentence simultaneously, allowing it to

capture nuanced contextual relationships.

• Applications of Word Embeddings

o Semantic Search: Retrieve documents or sentences that are

semantically similar to a query.

o Text Classification: Input embeddings into classifiers to perform tasks

like sentiment analysis.

o Machine Translation: Align embeddings across languages to translate

words effectively.

o Question Answering: Match questions and answers by comparing

their embeddings.

o Clustering and Topic Modeling: Group similar words or documents in

embedding space.

292

3.7 SKIP-GRAM CLASSIFIER

The Skip-Gram Classifier, adapted from the original Skip-Gram model

introduced in Word2Vec by Mikolov et al. (2013), extends its utility beyond

embedding generation to classification tasks. By leveraging the shallow neural

network architecture of Skip-Gram, this classifier can predict labels,

relationships, or contextual associations for words in natural language

processing (NLP) tasks. The Skip-Gram model was initially designed to

generate word embeddings by predicting the surrounding context words for a

given target word. The intuition is simple: words that appear in similar

contexts tend to have similar meanings, and their embeddings should reflect

this semantic closeness.

In the Skip-Gram Classifier, this principle is adapted for classification tasks.

Instead of predicting context words, the model predicts specific labels or

outputs associated with the input word. This can include:

o Semantic categories (e.g., classifying words as nouns, verbs, or

adjectives).

o Sentiment polarity (e.g., classifying words as positive, negative, or

neutral).

o Contextual relationships (e.g., predicting if a word belongs to a

certain topic).

The classifier maintains the core architecture of Skip-Gram, modifying the

output layer to suit classification objectives.

• Architecture of Skip-Gram Classifier

The Skip-Gram Classifier is a shallow neural network with three primary

layers:

o Input Layer: The input is a one-hot vector representing the word. For

example, if the vocabulary size is 10,000, each word is

represented as a 10,000-dimensional vector with a single "1" at the

position corresponding to the word and "0" elsewhere.

293

o Hidden Layer (Embedding Layer): The one-hot input vector is

multiplied by a weight matrix of size (where is the

embedding dimension). This produces a dense embedding for the

input word :

This dense vector represents the word in a continuous, low-

dimensional space, capturing its semantic properties.

o Output Layer: The output layer is modified depending on the

classification task:

▪ For multi-class tasks (e.g., predicting a category), a softmax

activation outputs a probability distribution over the possible

classes.

▪ For binary tasks (e.g., determining formality of a word), a sigmoid

activation predicts the probability of the word belonging to the

positive class.

Key Difference from Standard Skip-Gram: In the original Skip-Gram

model, the output layer predicts probabilities over the vocabulary for

context words. For the classifier, the output predicts labels or categories

based on the task requirements.

• Mathematical Foundations

The Skip-Gram Classifier predicts a label given an input word , based

on its embedding .

o Input Representation

▪ Vocabulary : A set of unique words.

▪ Input word : Represented as a one-hot vector .

o Embedding:

▪ The dense embedding for the input word is computed as:

▪ : Weight matrix of size .

o Output Layer:

▪ For multi-class classification, the probability of label is:

294

where is the weight vector for label , and is the set of

possible labels.

▪ For binary classification:

Where, is the sigmoid activation function.

o Loss Function:

▪ For multi-class classification, the loss is negative log-likelihood:

Where, is the number of training examples.

▪ For binary classification, the loss is binary cross-entropy:

• Training Process

Step 1: Construct Input-Output Pairs

• For Word Prediction: Use a sliding window over text to generate

word-context pairs.

• For Classification: Pair each word with its corresponding label (e.g.,

"run" → "verb").

Step 2: Forward Pass

• Input a word’s one-hot vector.

• Compute the embedding via the hidden layer.

• Predict the label probabilities through the output layer.

Step 3: Backward Pass and Optimization

• Compute the loss using the appropriate loss function.

• Use stochastic gradient descent (SGD) or its variants (e.g., Adam) to

update weights via backpropagation.

295

Step 4: Efficiency Techniques

1. Negative Sampling:

o Instead of computing probabilities for all classes, sample a small

number of "negative" classes to contrast with the true class.

2. Hierarchical Softmax:

o Represent classes in a binary tree to reduce the number of

computations required for softmax.

• Applications of Skip-Gram Classifier

o Word-Level Classification: Predict syntactic or semantic properties of

words (e.g., part-of-speech tagging).

o Semantic Similarity: Use embeddings to measure similarity between

words or classify words into similar categories.

o Named Entity Recognition (NER): Classify words as entities like

names, locations, or organizations.

o Sentiment Analysis: Classify words or phrases as positive, negative,

or neutral.

o Custom Word Categorization: Predict labels such as formal/informal,

domain-specific categories, etc.

Example: Formal vs. Informal Words

Objective: Classify whether a word is formal or informal.

Dataset:

• Formal Words: "endeavor," "salutations," "cordially."

• Informal Words: "cool," "yo," "chill."

Steps:

1. Prepare Data: Pair words with labels (e.g., "yo" → informal).

2. Train Model: Use binary cross-entropy as the loss function. Train

embeddings and classification weights.

3. Evaluate Model: Test on unseen words like "hi" or "greetings."

296

3.8 CHARACTER-TO-SENTENCE EMBEDDINGS

Character-to-sentence embeddings are an advanced and hierarchical

approach in natural language processing (NLP), creating sentence-level

vector representations from character-level inputs. By starting at the smallest

linguistic unit—characters—this method enables models to understand

spelling, morphology, word structures, and sentence-level semantics

comprehensively. This hierarchical embedding method is particularly effective

for handling out-of-vocabulary (OOV) words, noisy or informal text, and

morphologically rich languages. Character-to-sentence embeddings differ

from traditional word-level embeddings by focusing on characters as the

smallest input unit. They systematically build higher-level representations,

starting from characters, forming word embeddings, and finally constructing

sentence-level embeddings.

• Why Use Character-to-Sentence Embeddings?

o Robustness to OOV Words: Traditional word embeddings like

Word2Vec or GloVe rely on fixed vocabularies. OOV words, typos, and

new terms disrupt such systems. Character-based methods

dynamically create embeddings for unknown words based on character

patterns.

o Handling Noisy Text: Modern communication (e.g., social media,

SMS) includes typos, abbreviations, and slang. Character-level

processing ensures these nuances are not ignored.

o Morphological Understanding: Languages like Finnish, Turkish, and

Arabic are highly inflectional or agglutinative. Character-to-sentence

embeddings capture subword variations and affixes, enhancing

language comprehension.

o Fine-Grained Information: By processing at the character level,

embeddings capture detailed linguistic signals often missed by word-

level methods.

297

o Example: Consider the words “running”, “runs”, and “runner”.

Character-based embeddings extract shared morphological roots (run)

and suffixes (-ing, -s, -er) to infer their semantic relationships.

• Architecture of Character-to-Sentence Embeddings

Character-to-sentence embeddings involve three key stages:

o Character-Level Representation: Individual characters are

represented as vectors. This can be done through:

▪ One-hot encoding: A sparse vector representation where each

character maps to a unique position.

▪ Dense character embeddings: Pretrained embeddings that

capture semantic similarity between characters.

o Word-Level Composition: Combines character embeddings to form

word embeddings. This involves using:

▪ Recurrent Neural Networks (RNNs): Effective for sequential

processing of character embeddings. Models the dependencies

between characters in a word.

▪ Convolutional Neural Networks (CNNs): Focuses on local

character patterns, such as prefixes or suffixes. Captures

morphological structure efficiently.

▪ Transformers: Encodes global dependencies between

characters. Leverages self-attention for parallel processing.

o Sentence-Level Aggregation: Aggregates word embeddings into

sentence representations. Common techniques include:

▪ RNNs: Processes word embeddings sequentially, capturing

context.

▪ Attention Mechanisms: Assigns varying importance to different

words based on their relevance to the overall sentence

meaning.

298

▪ Pooling Methods: Combines word embeddings through

averaging (mean pooling) or selecting the most salient features

(max pooling).

• Mathematical Foundations

This section provides a detailed mathematical representation of how

character-to-sentence embeddings work.

1. Character-Level Representation

o Input Encoding:

▪ Let represent the character vocabulary, and the maximum

word length.

▪ Each character is represented as a one-hot vector

, where is the vocabulary size.

▪ For a word of length , its representation is:

with padding for .

o Character Embedding Layer:

▪ Transforms one-hot vectors into dense embeddings:

where is the embedding matrix and is the

embedding dimension.

2. Word-Level Composition

o Using RNNs: Processes character embeddings sequentially:

Where, is the hidden state at timestep .

299

The final hidden state represents the word embedding:

o Using CNNs: Convolves filters over character embeddings:

Where, is a filter, * denotes convolution, and is a bias term.

Max pooling over features yields the word embedding.

3. Sentence-Level Aggregation

o RNN-Based Sentence Embedding: Processes word embeddings

sequentially to capture order:

Where, (final state) is the sentence embedding.

o Attention Mechanism: Computes attention weights :

Sentence embedding is the weighted sum of word embeddings:

• Training Character-to-Sentence Embeddings

Character-to-sentence embeddings are trained end-to-end to capture

sentence-level representations based on character-level inputs. These

embeddings are tailored for specific NLP tasks such as classification or

semantic similarity.

Loss Functions

o For Classification Tasks: The loss function used is the negative log-

likelihood of the true label :

Where,

o is the total number of samples.

300

o is the true label for sentence .

o is the predicted probability of the correct label .

o For Similarity Tasks: To learn meaningful embeddings for similarity

tasks, the following loss functions are commonly used:

▪ Contrastive Loss: Used to pull similar embeddings closer and

push dissimilar ones apart:

Where,

▪ is a binary label indicating whether the pair is similar

 or not .

▪ is the Euclidean distance between embeddings.

▪ is a margin that defines how far dissimilar pairs should

be pushed apart.

▪ Triplet Loss: Ensures that an anchor embedding is closer to a

positive embedding than to a negative embedding :

Where,

▪ is the distance between the anchor and positive

samples.

▪ is the distance between the anchor and negative

samples.

▪ is a margin to ensure separation between positive and

negative pairs.

Optimization

To minimize the loss, optimization techniques like Stochastic Gradient

Descent (SGD) or adaptive optimizers like Adam are employed. These

301

optimizers adjust the model parameters iteratively to ensure convergence to

an optimal embedding space.

This combination of task-specific losses and optimization techniques enables

character-to-sentence embeddings to generalize well across NLP tasks such

as classification, sentiment analysis, and semantic textual similarity.

• Applications of Character-to-Sentence Embeddings

o Text Classification: Applications include sentiment analysis and spam

detection.

o Machine Translation: Handles languages with rich morphology,

improving lexical transfer.

o Information Retrieval: Enables precise document matching.

o Named Entity Recognition (NER): Captures morphological patterns

for entity identification.

o Dialogue Systems: Improves context understanding in chatbot

responses.

Check Your Progress-1

a) The ______ hypothesis states that words occurring in similar contexts tend

to have similar meanings, forming the foundation of vector space models.

b) In character-to-sentence embeddings, ______ mechanisms assign varying

importance to words based on their relevance to the sentence meaning.

c) The ______ algorithm is often used in Skip-Gram models to reduce

computational overhead by focusing on a small set of sampled negative

examples.

d) In Word2Vec, the ______ architecture predicts the target word based on

its surrounding context words within a fixed-size window.

e) The _____ model of Doc2Vec predicts random words from the document,

ignoring the word order entirely.

302

3.9 Let us sum up

In this unit we have discussed the concept of vector semantics. you have got

detailed understanding of the mathematical basis of vector space models.

You now know word2vec and doc2vec. We have described the statistical

measure in Natural Language Processing. You can now list various types of

embeddings and explain the use of skip-gram classifiers.

3.10 Check your progress: Possible Answers

a) distributional

b) attention

c) negative sampling

d) Continuous Bag of Words (CBOW)

e) Distributed Bag of Words (DBOW)

3.11 Further Reading
• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

• Bharati A., Sangal R., Chaitanya V. Natural language processing: a

Paninian perspective, PHI, 2000.

3.12 Assignments
• What are Vector Space Models, and how are they used in representing

text data in NLP?

• Explain the concept of TF-IDF and its role in assessing the importance of

words in a document.

• What are Word2Vec and doc2vec, and how do they differ in representing

word and document embeddings?

• How do word embeddings capture semantic relationships among words?

• Describe the Skip-gram Classifier and its use in generating word

embeddings.

303

Block-4
Applications of Natural
Language Processing

304

Unit-1: Text Summarization

Unit Structure

1.0. Learning Objectives

1.1. Introduction to the Problem

1.2. Approaches to Text Summarization

1.3. Multiple Document Summarization

1.4. Advanced Techniques in Multiple Document Summarization

1.5. Real Time Applications

1.6. Let us sum up

1.7. Check your Progress: Possible Answers

1.8. Further Reading

1.9. Assignment

1

305

1.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know the problems in text summarization

• Understand the key approaches to text summarization

• List various advantages and limitations of each approach

• Describe the advanced techniques for multiple document

summarization

• Give examples of each approach

1.1 INTRODUCTION TO THE PROBLEM

In the age of information overload, we’re constantly bombarded with articles,

reports, social media posts, and much more. Processing all of this content

manually is both time-consuming and inefficient. Text summarization

addresses this challenge by distilling large volumes of text into concise

summaries, capturing the essential points while saving readers from reading

the full text. Whether it’s summarizing a research paper, news article, or social

media feed, text summarization offers a way to handle vast amounts of

information efficiently. The goal is to retain the original meaning and context

while significantly reducing the content’s length.

This seemingly simple task is complex due to the nuances of human

language, varied ways of expressing ideas, and the challenge of extracting

only the information that is most relevant. Text summarization poses many

challenges, from understanding the context and intent of the text to capturing

the most important information without oversimplifying.

Here are some of the main problems encountered in text summarization:

• Understanding Context and Semantic Meaning: One of the biggest

challenges in text summarization is understanding the full context and

meaning of the original text. A well-summarized text isn’t just a random

selection of sentences; it needs to capture the essence, tone, and intent of

the material. For instance, summarizing a news article about climate

306

change must ensure that the key facts—such as the causes,

consequences, and potential solutions—are retained, while also conveying

the tone (e.g., urgent, neutral, or hopeful). Machines often struggle with

this because understanding context requires not just recognizing words

but grasping relationships, subtleties, and implied meanings within a

broader narrative.

Consider a legal professional who needs to summarize long court rulings.

If the summarization system fails to capture the tone or misinterprets a

legally binding clause, it could lead to significant misunderstandings.

Similarly, healthcare professionals rely on summarization tools to

condense research papers or medical guidelines. Misrepresenting key

findings due to a lack of semantic understanding can have life-altering

consequences.

Accurate context and semantic comprehension are critical in

summarization, as errors can impact professionals across domains—

journalism, law, healthcare, and education. Thus, enhancing machines'

ability to understand and replicate nuanced meaning is essential for

effective summarization.

• Identifying Key Information: Summarization requires identifying which

pieces of information are essential and which can be left out without losing

meaning. Humans can easily determine what is important, but for

machines, this isn’t straightforward. The system must prioritize information

based on relevance and impact, filtering out less significant details. For

example, when summarizing a scientific article, results and conclusions

are often more critical than the methodology. Determining this hierarchy of

importance is challenging, especially when dealing with long and complex

documents.

• Handling Redundancy and Repetition: Long texts often contain

repeated information, rephrased ideas, or supporting details that reinforce

a main point. In summary, repetition is unnecessary and can make the

summary longer than needed. Machines must be able to recognize when

information is being repeated or rephrased and condense it into a single,

307

coherent point. However, accurately identifying these repetitions requires a

proper understanding of the text, which is difficult to program.

• Avoiding Oversimplification: While summarizing aims to condense

information, retaining the complexity of the original ideas is essential to

avoid creating summaries that are misleading or incomplete.

Oversimplification can strip away crucial nuances, altering the intended

meaning of the source material. For example, consider a research paper

on climate change. If a summarization system oversimplifies a statement

like “Carbon emissions must be reduced by 50% by 2030 to limit global

warming to 1.5°C, assuming global cooperation”, into “Carbon emissions

should be reduced”, the summary loses vital details about the urgency,

specific target, and the assumption of cooperation, making it much less

informative or actionable.

In legal documents, oversimplification can have even more severe

consequences. For instance, a clause stating, “The contract is valid if both

parties agree within 30 days, provided no external disputes arise”, might

be summarized incorrectly as “The contract is valid if agreed upon within

30 days”. This omits the critical condition regarding external disputes,

potentially leading to legal misunderstandings and disputes.

Professionals in fields like law, healthcare, and science rely on summaries

for decision-making. Inaccurate summaries due to oversimplification can

lead to incorrect decisions, miscommunication, or even ethical and

financial consequences.

• Dealing with Ambiguity and Multiple Meanings: Words and phrases

can have multiple meanings depending on context. In summarization, a

machine must decide which interpretation of a word or phrase is correct for

the given text. For example, in the sentence “The bank is located near the

river”, the word “bank” could mean a financial institution or the side of the

river. Choosing the correct interpretation is essential to create an accurate

summary. This challenge is compounded in longer texts where context

shifts frequently, making it harder for machines to maintain consistent

understanding.

308

• Domain-Specific Challenges: Text summarization challenges vary

greatly across domains because each field has unique requirements for

accuracy, tone, and information extraction. Let's explore three key

examples:

o News Articles: Summarizing news articles requires balancing

timeliness with accuracy. Consider a breaking news story about a

natural disaster. The original text may include the cause, impact, and

ongoing rescue efforts. A poor summary might state, “A storm caused

damage”, ignoring key details like location, casualty numbers, or efforts

underway, which are crucial for readers seeking actionable information.

Furthermore, the tone must be appropriate. A summary of a

humanitarian crisis must avoid overly neutral or casual language, as it

can misrepresent the severity of the situation.

o Scientific and Technical Articles: Scientific papers are often filled with

jargon, acronyms, and complex sentence structures, making them

particularly challenging for summarization systems. For instance, a

paper on AI might include sentences like: “The proposed convolutional

neural network (CNN) achieves state-of-the-art performance on the

CIFAR-10 dataset, improving accuracy by 2% over previous

benchmarks.” A system must understand that “CNN” refers to a neural

network type and that “state-of-the-art” is a performance claim. If the

summary simplifies this to “The model performed well”, the nuance of

improvement over benchmarks is lost, making the summary less

meaningful to researchers. Additionally, systems must know which

sections (e.g., results, conclusions) are most relevant to the user, as

summarizing introductory material instead of findings could lead to

irrelevant summaries.

o Legal Documents: Legal documents are notoriously dense, with every

word and phrase carrying significant weight. For example, a clause

stating, “The contract is void if any party fails to deliver within 30 days,

provided no prior agreements to extend the delivery time exist”, could

be incorrectly summarized as, “The contract is void if delivery is late”.

309

This oversimplification ignores the condition of prior agreements,

potentially leading to legal disputes. Accurate summarization in this

domain requires precise interpretation of terminology and context.

• Cohesion and Coherence: A good summary needs to be not only

concise but also cohesive and coherent. This means that it should flow

logically, with sentences that connect and support each other. When

summarizing using extractive methods, maintaining this flow can be

difficult, as selected sentences may not naturally connect. Abstractive

summarization models attempt to overcome this by generating new

sentences, but these models are prone to errors and can struggle to

produce grammatically correct and logically flowing summaries.

• Evaluating Summarization Quality: Assessing the quality of a summary

is also a complex task. Different readers may have different ideas about

what is important, making it hard to define a single “correct” summary.

Evaluation metrics, like ROUGE, measure overlap with a human-written

summary, but they don’t account for coherence, style, or whether the

summary truly captures the essence of the original. Developing reliable

metrics that capture all dimensions of a high-quality summary remains an

open problem.

• Real-Time Summarization: In many applications, such as customer

support chat or real-time news updates, summaries need to be generated

instantly. Achieving high-quality, real-time summarization is challenging

because it requires both speed and accuracy. Real-time systems have

limited processing time, so they may struggle to generate summaries that

are both relevant and coherent in high-demand environments.

• Cross-Lingual Summarization: Cross-lingual summarization involves

summarizing text in one language and generating a concise summary in

another, combining the challenges of machine translation with those of text

summarization. This process introduces additional complexities because it

requires not only accurately identifying the key points of the original text

310

but also ensuring those points are correctly translated while maintaining

the original context, tone, and cultural nuances.

For instance, summarizing a detailed French research article into an

English summary is challenging because certain French expressions or

idioms may not have direct equivalents in English. For example, the

French phrase “reculer pour mieux sauter” (literally, “step back to jump

better”) means taking a step back to achieve better results, but translating

it word-for-word in a summary could confuse the reader. Machines must

interpret such phrases and adapt them to the target language without

losing the original meaning.

Furthermore, differences in word order, grammar, and syntax between

languages add complexity. A poorly designed system might produce

grammatically incorrect or incoherent summaries. This is especially

problematic in fields like global business or healthcare, where inaccuracies

can lead to miscommunication or errors in decision-making. Developing

robust models for cross-lingual summarization is essential to overcome

these linguistic and cultural barriers.

While recent advancements in deep learning and transformer models like

BERT and GPT have made significant strides, achieving reliable, high-quality

summaries that balance accuracy, conciseness, and readability across

domains.

1.2 APPROACHES TO TEXT SUMMARIZATION
Text summarization involves several approaches, each leveraging unique

methods and algorithms. The two primary types of summarizations are

extractive and abstractive summarization, both of which aim to produce

concise summaries but differ in their methodologies.

1. Extractive Summarization: This approach extracts the most relevant

sentences or phrases directly from the original text to form the summary.

It’s somewhat similar to “highlighting key points” without altering the

original wording. Extractive summarization typically uses techniques like

sentence scoring and ranking, where algorithms assess each sentence’s

311

importance based on factors like term frequency, sentence position, and

semantic similarity to the document’s main topic. Machine learning

models, such as TextRank (a graph-based ranking algorithm) or neural

networks, can be trained to identify these important sentences

automatically.

2. Abstractive Summarization: Abstractive summarization generates new

phrases and sentences that capture the original text’s core ideas but in a

rephrased, often more concise, format. Instead of simply pulling sentences

from the original text, the model synthesizes new language, which can

make this approach more challenging but also more human-like. Neural

networks, especially those based on transformers (e.g., BERT, GPT, T5),

are popular choices for abstractive summarization due to their capacity for

understanding and generating human-like language. Abstractive methods

require advanced natural language understanding and generation

capabilities, which often make them more computationally intensive. Both

approaches aim to provide a summary that’s easy to read, informative,

and true to the source content, yet they vary in complexity and outcome.

Let’s explore these two main types of summarizations in more depth,

including the pros, cons, and some of the algorithms used.

Extractive Summarization

Extractive summarization is a widely used method in text summarization

where key sentences or phrases are selected from the original text to create a

concise summary. This approach is relatively simpler to implement and

ensures grammatical correctness since it relies on pre-existing sentences. It

often uses algorithms and techniques that score sentences based on their

importance or relevance to the overall text. Here’s an overview of some

popular methods:

• TextRank: TextRank is inspired by Google’s PageRank algorithm, which

ranks webpages by importance. In TextRank, sentences in a document

are represented as nodes in a graph, and edges between nodes represent

the similarity between sentences (often measured by shared words).

312

Sentences are ranked based on their connections to others, and the top-

ranking sentences are included in the summary.

Example: If a document discusses climate change and contains sentences

about greenhouse gases and global temperatures, TextRank identifies and

selects sentences strongly connected to others discussing these topics.

Advantages: Simple and unsupervised; works well for short, general texts.

Limitations: Struggles with longer texts or those with complex sentence

structures; may miss context-specific nuances.

• Latent Semantic Analysis (LSA): LSA uses a mathematical technique

called singular value decomposition (SVD) to identify underlying topics in a

document. It analyzes patterns in word usage to determine the main

themes and selects sentences most representative of these themes.

Example: In a research article, LSA might focus on sentences discussing

the methodology and results, as these are central to the document.

Advantages: Identifies relationships between words and concepts,

capturing deeper semantic meaning.

Limitations: Computationally intensive and less effective for highly diverse

or informal texts.

• Term Frequency-Inverse Document Frequency (TF-IDF): TF-IDF scores

words based on their importance in a document relative to a larger

collection (corpus). Sentences containing high-scoring words are

considered more important and included in the summary.

Example: In a news article, terms like “election,” “results,” or “victory” may

have high TF-IDF scores, so sentences containing these words would

likely make it into the summary.

Advantages: Easy to implement; effective for documents where important

terms stand out.

Limitations: Focuses on word frequency and may overlook context or

meaning.

313

• Advantages

o Simplicity: Extractive methods are straightforward to implement and

require minimal training, especially with traditional techniques like TF-

IDF or TextRank.

o Grammatical Accuracy: Since it uses existing sentences, the output is

grammatically correct, unlike some abstractive methods that may

struggle with fluency.

o Domain Flexibility: Works well for general documents and applications

where exact wording is important, like legal or scientific texts.

• Limitations of Extractive Summarization

o Fragmentation: Summaries can feel disjointed because they are

composed of individual sentences that may not flow naturally.

o Repetition: Important points mentioned multiple times in a document

might result in redundant sentences being included.

o Lack of Paraphrasing: Extractive summaries cannot rephrase or

simplify complex ideas, making them less suitable for creating user-

friendly summaries.

o Context Loss: Sometimes fails to capture the overarching tone or intent

of the original text, focusing only on “important” sentences without

considering their connections.

Abstractive Summarization

Instead of selecting and reusing exact sentences from the source text,

Abstractive summarization rewrites the content to create a concise summary

that remains true to the original meaning. This requires a deeper

understanding of the input text and the ability to generate new sentences that

are coherent, accurate, and meaningful. Abstractive summarization relies on

advanced neural networks and machine learning models to process and

generate summaries. Here are some commonly used models and techniques

explained in simple terms:

• Sequence-to-Sequence (Seq2Seq) Models: Seq2Seq models consist of

two main parts- an encoder and a decoder. The encoder reads the input

314

text and converts it into a numerical representation (hidden states) that

captures its meaning. The decoder then takes this representation and

generates the summary, word by word or sentence by sentence.

Example: Imagine explaining a chapter from a book to a friend. First, you

fully understand the content (encoding), then you rephrase it in your own

words (decoding).

Advantages: Good for capturing relationships and nuances in the text,

enabling coherent summaries.

Limitations: May struggle with very long texts or complex sentence

structures if not properly trained.

• Transformer Models: Transformers, such as BERT, GPT, and T5, are

highly advanced neural networks that use an attention mechanism. This

mechanism allows models to focus on the most relevant parts of the input

text while generating the output.

• Attention Mechanism: Think of it as a system where the model asks itself,

“Which parts of this text are most important to the current word I’m

generating?”

Example: If a text discusses climate change and includes phrases about

greenhouse gases, global warming, and policy interventions, the attention

mechanism ensures the summary emphasizes these topics appropriately.

Advantages: Excellent at generating fluent, human-like summaries due to

their ability to capture long-range dependencies in the text.

Limitations: Require large datasets and computational power for training;

can sometimes generate sentences that deviate from the source's

meaning (hallucination).

• Advantages of Abstractive Summarization

o Coherence and Readability: Abstractive methods can generate

summaries that are more fluid and natural compared to extractive

315

methods. For example, instead of combining choppy sentences from

the original text, they can paraphrase and rewrite content smoothly.

o Example: In summarizing a technical paper, an abstractive model

might transform the sentence “The study concludes with an analysis of

the effects of urbanization on biodiversity, specifically the displacement

of native species by invasive species” into “Urbanization displaces

native species and promotes invasive ones, harming biodiversity.”

o Simplification: Abstractive models are ideal for simplifying complex

ideas or rephrasing information in layman’s terms, making them

especially useful in domains like healthcare or education.

o Flexibility Across Domains: These methods are adaptable and can

tailor summaries to different styles or audiences. For instance, they can

create summaries for technical experts or for the general public,

depending on the training data.

• Limitations of Abstractive Summarization

o Computational Intensity: Training abstractive models is resource-

intensive. It requires powerful hardware and large datasets to achieve

good performance.

o Risk of Inaccuracy: Because abstractive models generate new

sentences, there is a risk they might include information that isn’t

accurate or present in the original text. This issue, known as

“hallucination”, can make the summary misleading.

o Context Challenges: While abstractive models perform well for shorter

texts, they can struggle to condense long and complex documents

without losing critical details.

1.3 MULTIPLE DOCUMENT SUMMARIZATION

Multiple Document Summarization (MDS) is a task in NLP where the goal is to

condense the information from multiple documents into a concise, coherent

summary. Unlike single-document summarization, where we deal with just

one document, MDS combines and processes content from several related

316

documents to provide an overview of their key points. This technique is highly

useful in scenarios where users need to analyze large amounts of information,

such as news aggregation, scientific literature reviews, and business

intelligence.

• Importance of Multiple Document Summarization

In the digital age, the volume of information generated daily is

overwhelming. Imagine trying to keep up with global news, research

articles on a specific topic, or customer reviews about a product.

Accessing multiple sources to find relevant details is time-consuming and

inefficient.

For example:

o News aggregation: When a major event occurs, multiple news outlets

report on it. Each article might cover different aspects of the event, like

causes, effects, or opinions. A summary consolidating the key points

from all sources saves readers from going through every article

individually.

o Scientific research: A researcher might need to review hundreds of

papers on a specific topic. A multiple-document summary could

highlight key findings, methodologies, and gaps in the literature.

• Challenges in Multiple Document Summarization

o Avoiding redundancy: Multiple documents often contain overlapping

information. The summarization system must ensure that repeated

points are included only once.

o Combining diverse perspectives: Different documents may focus on

various aspects of the same topic or present conflicting viewpoints. A

good summary balances these perspectives.

o Maintaining coherence: The summary should read as a unified text, not

a disjointed collection of unrelated points.

317

• Approaches to Multiple Document Summarization

There are several methods to perform MDS, categorized broadly into

extractive summarization and abstractive summarization. Let’s understand

how these methods are adapted for multiple documents.

Extractive Summarization: This approach selects and combines

sentences or phrases directly from the input documents. It identifies the

most important sentences by analyzing their relevance and importance,

and then stitches them together into a summary. The steps in extractive

MDS are as follows:

o Preprocessing: Clean and tokenize the text from all documents.

Remove irrelevant elements like advertisements, stopwords, or special

characters.

o Content Representation:

▪ Represent the documents as vectors using techniques like Term

Frequency-Inverse Document Frequency (TF-IDF) or

embeddings such as BERT.

▪ Assign weights to sentences based on their informativeness,

position, or keyword density.

o Sentence Scoring: Rank sentences across documents using scoring

functions. These scores reflect the importance or relevance of

sentences to the overall content.

o Redundancy Reduction: Identify sentences with overlapping

information and select only one representative sentence.

o Summary Generation: Combine the highest-scoring sentences into a

coherent summary.

Example: If three articles describe a recent technology conference, the

extractive MDS system might pick sentences like:

o “The conference introduced groundbreaking advancements in AI-

powered healthcare.”

318

o “Keynote speakers emphasized the ethical challenges of AI adoption.”

o “Over 5,000 participants attended the event.”

While extractive methods are simpler and faster, they may lack coherence

since they directly copy text without rephrasing or restructuring.

Abstractive Summarization: Abstractive summarization generates

summaries by understanding the content of the documents and creating

entirely new sentences. It requires more advanced models capable of

paraphrasing, merging ideas, and generating human-like text. The steps in

abstractive MDS are as follows:

o Preprocessing: Preprocessing is similar to extractive methods. This

involves cleaning and tokenizing the text from all documents.

o Content Understanding:

▪ Use deep learning models, such as transformers (e.g., BERT,

GPT, or T5), to encode the meaning of the input text.

▪ Analyze relationships, trends, and contradictions across

documents.

o Summary Generation: The model generates a concise, coherent

summary by focusing on key ideas and rewriting them in natural

language.

o Postprocessing: Ensure grammatical correctness, resolve ambiguities,

and maintain factual accuracy.

Example: For the same conference articles, an abstractive summary might

look like:

• “The technology conference showcased innovative AI solutions for

healthcare and discussed ethical challenges in AI. It attracted over

5,000 attendees, including industry leaders and researchers.”

Abstractive MDS often produces more coherent and human-like

summaries, but it is computationally intensive and may generate

inaccurate or irrelevant information.

319

1.4 ADVANCED TECHNIQUES IN MULTIPLE
DOCUMENT SUMMARIZATION
Modern MDS systems often combine extractive and abstractive methods to

achieve better results. Some techniques include:

Clustering-Based Techniques

Clustering is a foundational method in MDS. It groups similar sentences or

paragraphs from multiple documents into clusters, where each cluster

represents a unique theme or aspect of the overall content. The system then

generates a summary for each cluster to ensure comprehensive coverage of

the main topics.

• How Clustering-Based Techniques Works

The clustering based techniques work as follows:

o Representation: Sentences from all documents are represented as

vectors using techniques like TF-IDF, word embeddings (e.g.,

Word2Vec, GloVe), or contextual embeddings (e.g., BERT, RoBERTa).

o Clustering Algorithm: Algorithms like K-Means, Agglomerative

Clustering, or DBSCAN are applied to group similar sentences.

o Cluster Summarization: Each cluster is processed to extract or

generate a concise summary that encapsulates its main idea.

o Final Summary: The system combines summaries of all clusters into a

coherent final output.

Example: Imagine summarizing five articles about climate change.

Clusters might include:

o Causes of climate change (e.g., greenhouse gas emissions,

deforestation).

o Effects on the environment (e.g., rising sea levels, extreme weather).

o Mitigation strategies (e.g., renewable energy, carbon capture).

By summarizing each cluster, the system ensures all key aspects of the

topic are covered.

• Advantages

o Reduces redundancy by grouping similar sentences.

o Ensures diverse perspectives are represented.

320

Graph-Based Methods

Graph-based approaches model relationships between sentences or words as

a graph, where nodes represent textual units (e.g., sentences) and edges

represent their similarity or relevance. These methods are especially useful

for identifying key sentences in extractive summarization.

• How Clustering-Based Techniques Works

TextRank, inspired by Google’s PageRank, is one of the most popular

graph-based summarization techniques. It works as follows:

o Graph Construction: Create a graph where each node is a sentence,

and edges represent similarity scores (e.g., cosine similarity of TF-IDF

vectors).

o Edge Weighting: Assign weights to edges based on the degree of

similarity between sentences.

o Ranking: Use an iterative algorithm like PageRank to assign

importance scores to nodes. Sentences with the highest scores are

selected for the summary.

Example: In summarizing articles on COVID-19 vaccines:

o Sentences discussing "vaccine efficacy" might form a cluster

connected by high-similarity edges.

o TextRank identifies the most representative sentence in this cluster for

inclusion in the summary.

• Advantages

o Captures relationships between textual units effectively.

o Can handle large volumes of text without heavy computational

requirements.

• Challenges

o Limited to extractive summarization.

o Struggles with ensuring coherence across selected sentences.

321

Transformer-Based Models

Tranformaer based represent the state-of-the-art in abstractive MDS. These

models understand the context and semantics of the input text, allowing them

to generate human-like summaries.

Some of the important models are as follows:

• PEGASUS (Pre-training with Gap-sentences for Abstractive

Summarization):

o Pretrained specifically for summarization tasks.

o Trained to predict missing sentences in a document, making it highly

effective at generating summaries.

o Ideal for MDS, as it can handle multiple inputs and condense them into

a single coherent output.

• T5 (Text-to-Text Transfer Transformer):

o Treats all NLP tasks, including summarization, as text-to-text

generation problems.

o Can handle multiple documents by concatenating them as input.

o Capable of generating summaries that are both coherent and concise.

• BART (Bidirectional and Auto-Regressive Transformers):

o Combines bidirectional encoding with autoregressive decoding.

o Excels at abstractive summarization by rephrasing and reorganizing

input text.

Example: For summarizing research papers on artificial intelligence:

o Input: Multiple papers on AI ethics, each with distinct sections (e.g.,

abstract, introduction, conclusion).

o Output: A concise summary that integrates key findings, ethical

considerations, and future directions from all papers.

• Advantages

o Produces fluent, human-like summaries.

o Can combine diverse ideas from multiple documents seamlessly.

• Challenges

o Computationally expensive.

o May introduce factual inaccuracies (hallucinations).

322

Reinforcement Learning for Summarization

Reinforcement learning (RL) optimizes MDS models by rewarding summaries

that align with specific quality metrics, such as relevance, coherence, and

conciseness.

• How Reinforcement Learning for Summarization Works

o A summarization model acts as an agent, generating summaries for

input documents.

o The agent receives feedback based on evaluation metrics (e.g.,

ROUGE, BLEU).

o Over time, the model learns to produce better summaries through

iterative improvement.

Example: An RL-based MDS system for summarizing customer feedback:

o Reward functions prioritize summaries that capture diverse customer

sentiments without redundancy.

o The system adapts to focus on the most valuable insights for

businesses.

• Advantages

o Improves model performance over time.

o Can be customized to prioritize specific aspects of summary quality.

• Evaluation Metrics

To assess the quality of MDS systems, several metrics are used:

o ROUGE (Recall-Oriented Understudy for Gisting Evaluation):

Compares the overlap of n-grams, sentences, or words between the

generated summary and a reference summary.

o BLEU (Bilingual Evaluation Understudy): Measures how similar the

summary is to human-generated summaries.

o Content Coverage: Evaluates whether the summary covers the key

points of the input documents.

323

o Coherence and Readability: Human evaluators assess whether the

summary flows well and is easy to understand.

• Real Time Applications

MDS has numerous practical applications, including:

1. News Aggregation: Platforms like Google News summarize articles

from multiple news sources to provide concise overviews of trending

stories.

2. Scientific Literature Review: Researchers use MDS tools to summarize

findings from multiple research papers on a specific topic, saving time

and effort.

3. Business Intelligence: Organizations analyze customer feedback,

product reviews, or market reports from multiple sources to generate

actionable insights.

4. Legal Summaries: Lawyers or legal professionals summarize

information from multiple case files, contracts, or regulations.

5. Social Media Monitoring: MDS tools summarize public sentiment and

trending topics from multiple social media posts.

Query-based summarization

n query-based summarization, the summary focuses on answering a specific

query or question. This approach provides targeted summaries tailored to the

user's needs. For instance, a legal researcher might seek information about a

specific law in a lengthy document, or a student might want a summary of an

academic paper based on a particular research question.

• Approaches for Query-Based Summarization

1. Query Expansion and Matching: Sometimes, users may use terms that

don’t directly match the language in the document. Query expansion helps

by adding synonyms, related terms, or phrases to the original query to

improve its relevance. This ensures the summarization process captures

all relevant content, even if the wording differs between the query and the

document.

324

Example: A query for “climate change” might be expanded to include

related terms like “global warming”, “carbon emissions”, or “environmental

degradation”.

2. Similarity Matching: Measures the similarity between the user’s query

and sentences in the text using techniques like cosine similarity or word

embeddings. Cosine similarity calculates the angle between vector

representations of the query and document sentences, while word

embeddings (e.g., Word2Vec) capture the semantic relationships between

words.

Example: If a query is “impact of AI on education”, similarity matching

identifies sentences in the document that contain relevant keywords or

concepts related to the query.

3. Contextual Embeddings: Modern transformers like BERT create context-

aware embeddings for both the query and the document. This allows the

system to understand the deeper meaning of the query and identify the

most relevant content. Contextual embeddings improve the relevance and

accuracy of the summaries by focusing on meaning rather than just word

overlap.

Example: If a query asks, “What are the benefits of renewable energy?”,

BERT can match this with sentences discussing solar, wind, or geothermal

energy, even if they don’t explicitly use the term “renewable energy”.

Query-based summarization is invaluable in fields like customer support,

where users need direct answers, or academic research, where precision and

relevance are critical.

2.5 REAL TIME APPLICATIONS
Text summarization is already widely implemented in real-world applications,

with new uses constantly emerging. Here are some examples:

1. News Aggregation and Summarization: Platforms like Google News use

summarization to provide users with concise updates on trending news

topics. Summarization here allows users to grasp the main points of a

story quickly without needing to read multiple full-length articles.

2. Document Management Systems: In enterprises, document

summarization tools help employees quickly understand the contents of

325

large reports or research papers. This is especially valuable for industries

with substantial documentation, like finance, law, and healthcare.

3. Social Media Summarization: Twitter, Facebook, and other social media

platforms generate massive amounts of text daily. Summarization tools

help filter important news, opinions, and trends, giving users a distilled

view of public sentiment and key events.

4. Customer Review Summarization: E-commerce websites and customer

support teams utilize query-based summarization to retrieve relevant

information from product reviews, FAQs, or support tickets, allowing them

to respond more effectively to customer queries.

5. Medical Records Extraction and Summarization: In healthcare,

summarization is used to generate summaries of patient records, medical

literature, and research articles, aiding doctors in making informed

decisions based on the latest findings or patient history.

Figure-21: Real Time Applications of Text summarization

326

Check Your Progress-1

a) Extractive summarization techniques like TextRank ensure grammatically

accurate summaries because they use sentences directly from the original

text.

b) Abstractive summarization generates entirely new sentences, often

making it more computationally efficient than extractive summarization.

c) Real-time summarization combines high accuracy with the ability to handle

domain-specific nuances effectively without additional tuning.

d) The ROUGE metric is used to evaluate text summarization by comparing

n-gram overlap between machine-generated and human-written

summaries.

e) Cross-lingual summarization involves summarizing text in one language

and creating an abstract in another, requiring both summarization and

translation.

f) Oversimplification in text summarization typically improves the

conciseness of summaries while retaining all critical details.

1.6 Let us sum up

In this unit we have discussed the problems in text summarization. You have

got detailed understanding of the key approaches to text summarization along

with the advantages and limitations of each approach and we also elaborate

the advanced techniques for multiple document summarization.

1.7 Check your progress: Possible Answers

a) True

b) False

c) False

d) True

e) True

f) False

327

1.8 Further Reading

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

• Bharati A., Sangal R., Chaitanya V. Natural language processing: a

Paninian perspective, PHI, 2000.

1.9 Assignments

• What is the primary problem addressed by text summarization in NLP?

• How do extractive and abstractive summarization approaches differ?

• What challenges are involved in multiple document summarization

compared to single-document summarization?

• How does query-based summarization cater to specific user needs?

• Discuss some real-time applications of text summarization in industries

like journalism and education.

• What are the key evaluation metrics used to assess the quality of text

summarization systems?

328

Unit-2: Information Retrieval
and Extraction

Unit Structure

2.0. Learning Objectives

2.1. Introduction to the Problem

2.2. Approaches to Information Retrieval Solving

2.3. Real Time Applications

2.4. Let us sum up

2.5. Check your Progress: Possible Answers

2.6. Further Reading

2.7. Assignment

2

329

2.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know the problems in information retrieval and extraction

• Understand the key approaches to information retrieval

• List various advantages and limitations of each approach

• Give examples of each approach

• Describe the real time applications of information retrieval

2.1 INTRODUCTION TO THE PROBLEM

As the volume of digital information grows exponentially, retrieving relevant

data from massive repositories becomes a pressing challenge. Information

Retrieval (IR) is the science of searching for information within a large

collection of resources, aiming to deliver the most relevant results to a user’s

query. This is crucial in countless fields, from web search engines like Google

to library databases, online customer support, and beyond.

Closely related is Information Extraction (IE), which focuses on identifying

specific data within unstructured text (e.g., extracting names, dates, locations,

or relationships). In essence, IR helps find relevant documents, and IE drills

down to locate key information within those documents. Together, they

transform raw data into actionable insights. However, they face challenges in

handling ambiguous language, assessing relevance accurately, and efficiently

processing large datasets. The problem arises primarily due to the vast

amounts of unstructured data available today, which are often in the form of

text, social media posts, documents, news articles, or even spoken words.

This data is rich in information but is difficult to search, analyze, and extract

meaning from without appropriate computational methods.

1. Volume and Variety of Data: One of the biggest problems in information

retrieval and extraction is the sheer volume and variety of data that needs

to be processed. The internet is flooded with an enormous amount of

content, ranging from websites, blogs, forums, and social media posts to

330

academic papers, legal documents, and business reports. This data is

unstructured, meaning it doesn’t follow a predefined format and is hard to

process with traditional database management systems. Traditional

techniques that work with structured data are ineffective for dealing with

this unstructured, text-heavy information.

2. Relevance of Retrieved Information: In information retrieval, the key

problem is determining the relevance of a document or piece of

information in response to a query. For example, when a user searches for

something on Google, they are looking for the most relevant results from

millions of web pages. The challenge here is to rank these documents in

such a way that the most relevant and accurate results appear at the top.

This process involves considering not just keyword matching, but also

understanding the meaning of the query, the context, and the intent behind

it.

o Contextual Relevance: The same word or phrase can have different

meanings depending on the context in which it is used. For

instance, the word “Apple” could refer to the fruit or the technology

company, but which one is relevant depends on the surrounding

context. Information retrieval systems must be able to correctly

interpret these nuances to ensure that the most appropriate results

are returned.

3. Ambiguity in Natural Language: Ambiguity is a significant challenge in

both extraction and retrieval, arising from the flexibility and complexity of

human language. Words or phrases can have multiple meanings

depending on context, making it difficult for systems to process queries or

extract precise information. For instance, the phrase “New York” could

refer to the city, the state, or even an organization such as The New York

Times. Without understanding the context, a retrieval system might

retrieve documents related to the wrong entity, leading to irrelevant or

confusing results. In information extraction, ambiguity complicates tasks

like named entity recognition (NER). Consider the sentence, “I saw a

Jaguar at the park.” The term Jaguar could refer to the animal or the car

brand. Without contextual cues, an automated system might fail to identify

which entity is being referred to, potentially affecting downstream

331

processes. Moreover, grammatical ambiguities, such as pronoun

references, add another layer of complexity. For example, in the sentence,

“John told Tom that he was late”, it’s unclear whether he refers to John or

Tom. Addressing ambiguity requires sophisticated models that can capture

context.

4. Complexity of Information Extraction: Information extraction aims to

identify specific data from unstructured text, such as named entities

(people, organizations, locations), relationships between entities, and

other key facts. The problem in information extraction arises from the

variety of ways in which data can be expressed. For instance, the same

information might be represented in different forms:

o “Barack Obama was born in Hawaii”

o “The birthplace of Barack Obama is Hawaii”

o “Hawaii is where Barack Obama was born”

All these sentences convey the same information, but an extraction

system needs to recognize the semantic similarity and correctly extract the

relevant entities and relationships.

5. Difficulty in Handling Large Scale Data: The rapid growth of digital

content has created significant challenges in processing and analyzing

large-scale datasets. Information retrieval systems must sift through

enormous amounts of data, often containing millions or even billions of

documents, to return relevant results efficiently. For instance, a search

engine like Google processes over 3.5 billion queries daily, requiring it to

analyze vast datasets in real-time while maintaining accuracy and speed.

Handling such immense data volumes demands highly optimized

algorithms capable of managing scalability and complexity. Traditional

approaches like keyword matching or simple ranking models may falter

when applied to big data because they are not computationally efficient.

Advanced indexing techniques, such as inverted indexes, and parallel

processing frameworks like Hadoop or Spark are often used to improve

performance. In addition to retrieval, summarization and extraction tasks in

big data environments add complexity. For example, summarizing

customer feedback from thousands of reviews on an e-commerce platform

requires systems that can both identify and prioritize relevant data without

332

being overwhelmed. Real-time processing introduces further challenges.

Social media platforms, for instance, must retrieve and analyze massive

amounts of dynamic, user-generated content to provide instant search

results or recommendations. Optimizing algorithms to handle this scale

while ensuring relevant results remains a critical challenge for modern

information retrieval systems.

6. Lack of Structure in Textual Data: A significant challenge in information

retrieval and extraction lies in the unstructured nature of most textual data.

Unlike structured data, which is neatly organized in predefined formats

such as tables or databases, unstructured data—like articles, emails,

social media posts, and news stories—lacks an inherent framework,

making it harder for systems to process. This disparity means that

machines must go beyond simple keyword matching to “understand” the

text in a meaningful way. For instance, consider analyzing thousands of

customer reviews on an e-commerce website. Each review is written in

free-form text, often containing varied sentence structures, colloquialisms,

or even sarcasm. Extracting insights, such as identifying the most common

complaints, requires advanced techniques like NLP to detect patterns and

infer context. The lack of structure also complicates tasks like entity

recognition and sentiment analysis. For example, in an unstructured email,

identifying critical entities such as dates or names and understanding their

relationships to other parts of the text is far more challenging than parsing

a database field labelled “Date of Appointment”. Moreover, unstructured

data often contains noise, irrelevant information, or inconsistent formatting,

further increasing the complexity of processing. Overcoming these

obstacles requires sophisticated algorithms capable of understanding

context, syntax, and semantics, making unstructured data a critical frontier

for advancements in AI and machine learning.

7. Dynamic Nature of Information: One of the significant challenges in

information retrieval is managing the dynamic and ever-changing nature of

information, especially on the web. New documents, news articles,

research papers, and social media posts are generated constantly,

creating an information landscape that evolves by the minute. For

instance, breaking news stories can dramatically alter the relevance of

333

search results within moments, making it essential for retrieval systems to

adapt quickly to these changes. Consider a search engine handling

queries about a natural disaster. As updates about the disaster are

published, the system must prioritize the latest and most accurate

information over outdated reports. If the system cannot dynamically adapt,

users might receive irrelevant or obsolete data, reducing the quality and

reliability of the retrieval process. Moreover, this continuous influx of data

demands frequent indexing and ranking updates. Algorithms must be

capable of efficiently processing and integrating new information without

disrupting existing functionalities. This requires not only computational

efficiency but also strategies to filter out low-quality or misleading data,

which often accompanies dynamic content like social media. The

challenge extends to personalization as well. Users’ preferences and

queries evolve over time, necessitating systems that can adapt not only to

global information changes but also to individual user behaviors for

providing relevant, timely results.

8. Multilingual Challenges: The global nature of digital content means

information is produced in countless languages, making multilingual IE and

IR a complex challenge. Many IR and IE systems are predominantly

designed for high-resource languages, such as English, and struggle to

perform effectively with less widely spoken or low-resource languages.

This limitation significantly hampers their ability to cater to diverse users

across the globe. A key difficulty lies in understanding the syntax,

semantics, and cultural nuances of different languages. For example, a

search query in Spanish, “¿Cuál es la capital de México?” (What is the

capital of Mexico?), must yield the same result as its English equivalent.

Beyond mere translation, the system must also respect grammatical

differences and idiomatic expressions unique to each language. Consider

an e-commerce platform operating in multiple countries. If the system

cannot accurately retrieve product descriptions, reviews, or customer

queries in different languages, it risks alienating non-English-speaking

customers. Similarly, extracting relevant content from multilingual sources,

such as news articles or social media posts, demands sophisticated

techniques like machine translation, multilingual embeddings, and cross-

334

lingual learning. The challenge becomes even greater for low-resource

languages like Quechua or Khmer, where linguistic resources (corpora,

annotated datasets) are scarce.

9. Scalability and Efficiency: The rapid expansion of digital content has

made scalability and efficiency critical challenges for information retrieval

and extraction systems. As the volume of data grows exponentially, these

systems must handle increasingly large datasets while maintaining speed

and accuracy. Efficiently processing this data requires sophisticated

algorithms for indexing, retrieval, and extraction that minimize

computational resources without compromising relevance. For example,

consider a global search engine like Google. Every second, it processes

thousands of queries and sifts through billions of web pages to deliver

relevant results almost instantaneously. This level of performance is made

possible by advanced indexing techniques, such as inverted indexes,

which allow systems to quickly locate relevant documents without

scanning the entire dataset. Similarly, retrieval efficiency is enhanced by

algorithms like BM25 and neural ranking models that prioritize the most

relevant results. Scalability also poses challenges for real-time data, such

as social media streams or financial transactions. These require systems

to update indexes and extract information dynamically, ensuring new data

is incorporated promptly. Computational efficiency becomes vital here;

without it, latency increases, and the user experience suffers.

Organizations relying on big data analytics, like e-commerce or healthcare,

need scalable IR and IE systems to remain competitive, making

innovations in distributed processing and cloud computing essential for

tackling this challenge.

10. Performance in Diverse Domains: Information extraction and retrieval

face significant challenges when applied across diverse domains, as the

nature of data, terminology, and structure varies widely. A system

optimized for one domain may perform poorly in another, requiring

domain-specific customization to achieve accurate results. For instance, in

the medical domain, IE systems must process dense research papers

filled with specialized terminology, abbreviations, and structured formats

like tables or charts. The focus here might be extracting key facts, such as

335

drug interactions or clinical trial results. Conversely, in the legal domain,

documents like contracts and case rulings have a distinct structure, use

complex legal jargon, and require nuanced understanding of phrases that

can carry significant weight. A system adept at summarizing medical

findings may misinterpret legal texts, leading to incomplete or incorrect

information extraction. Creating a general-purpose system capable of

adapting to various domains is challenging. Such systems need

mechanisms like domain adaptation or transfer learning, where models

trained in one domain can effectively adjust to another with minimal

retraining. Furthermore, specific applications like financial analysis, news

summarization, and customer reviews bring their own complexities, such

as timeliness, sentiment analysis, and cultural context. To excel, IR and IE

systems must incorporate domain-aware models, knowledge bases, and

context-sensitive processing tailored to diverse fields.

While techniques such as machine learning, natural language processing, and

deep learning have significantly advanced these fields, the challenges remain

significant. Ongoing research and innovation are necessary to improve the

precision, relevance, and scalability of these systems to make them more

effective at handling the vast and ever-growing amounts of unstructured data.

2.2 APPRACHES TO INFORMATION RETRIEVAL
Information retrieval and extraction employ several key techniques, many of

which combine statistical, linguistic, and machine learning methods. Let’s

break these down into major approaches.

Keyword Matching and Boolean Retrieval

Keyword matching is one of the foundational approaches in information

retrieval. It involves identifying documents that contain specific keywords

provided by the user.

• How Keyword Matching and Boolean Retrieval Works

This approach operates on the premise that documents relevant to a query

will contain those exact keywords. Boolean retrieval enhances this basic

mechanism by incorporating logical operators such as AND, OR, and

NOT, allowing users to combine or exclude keywords to refine their

336

searches. For example, Boolean retrieval can handle queries like

“machine learning AND healthcare”, which ensures that only documents

containing both terms are retrieved, or “machine learning NOT healthcare”,

which excludes documents related to healthcare.

Example: Consider a scenario in a digital library-

1. Query: A researcher searches for “renewable energy AND climate

change”.

Result: This retrieves articles containing both terms, ensuring the

results focus on the intersection of renewable energy and its

relationship to climate change.

2. Query: A student searches for “renewable energy OR climate change”.

Result: Articles covering either renewable energy or climate change

are retrieved, leading to a broader range of information.

3. Query: “renewable energy NOT solar energy”.

Result: Articles discussing renewable energy without mentioning solar

energy are retrieved.

• Advantages

o Simplicity: Easy to implement and understand, making it suitable for

straightforward queries.

o Control: Users can precisely define their query criteria using Boolean

operators.

o Speed: Keyword matching is computationally efficient, especially for

smaller datasets or well-defined terms.

• Limitations

o Lack of Context: The approach doesn’t understand the meaning or

relationships between words, leading to irrelevant results if the

keywords are too generic.

o Exact Matches Required: Synonyms, misspellings, or variations of

terms (e.g., “renewables” vs. “renewable energy”) might cause relevant

documents to be excluded.

o Scalability Issues: For extensive datasets, the retrieval results may

become overwhelming if the query is not specific enough.

337

Vector Space Model (VSM) and TF-IDF

The Vector Space Model (VSM) is a mathematical framework for representing

documents and queries as vectors in a high-dimensional space. Each

dimension corresponds to a unique term in the vocabulary of the document

collection. The significance of each term within a document or query is

assigned a weight, commonly computed using Term Frequency-Inverse

Document Frequency (TF-IDF).

• Term Frequency (TF): Measures how often a term appears in a document.

The assumption is that frequent terms are more important in representing

the document’s content.

TF =

• Inverse Document Frequency (IDF): Measures the uniqueness of a term

across all documents in the corpus. Rare terms are given higher weights

because they are more likely to be meaningful.

IDF = log

The final TF-IDF score for a term is the product of these two components.

TF-IDF = TF × IDF

Using these scores, both documents and queries are represented as

vectors, and the similarity between them can be calculated using metrics

like cosine similarity, which measures the angle between the two vectors:

Cosine Similarity =

Example: Imagine a corpus with two documents.

Doc1: “Machine learning is fascinating.”

Doc2: “Machine learning revolutionizes healthcare.”

For the query “machine healthcare”, the system calculates TF-IDF for each

term and assigns higher scores to terms like “healthcare” in Doc2, which

appears less frequently in the corpus. This makes Doc2 more relevant to

the query.

• Advantages

o Relevance Ranking: TF-IDF highlights unique and important terms,

improving the ranking of documents based on relevance.

338

o Simplicity and Interpretability: Easy to implement and understand,

making it a popular choice in traditional information retrieval systems.

o Efficiency: Computationally efficient for small to medium-sized

datasets.

• Limitations

o Lack of Semantic Understanding: VSM doesn’t capture synonyms,

word relationships, or contextual meaning. For instance, it treats

“doctor” and “physician” as unrelated terms.

o Sparsity Issues: As the number of unique terms grows, the vector

representation becomes increasingly sparse.

o Static Weights: TF-IDF weights remain constant, regardless of changes

in query context or user intent.

Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) is an advanced approach to information

retrieval that goes beyond simple keyword matching. It analyzes the

relationships between terms and documents by representing them in a lower-

dimensional space. LSA uncovers hidden patterns or topics within a collection

of text using Singular Value Decomposition (SVD), a linear algebra technique.

By doing so, it captures semantic relationships, such as synonyms or related

concepts, that are not explicitly present in the original data.

• How Latent Semantic Analysis Works

The Latent Semantic Analysis method for information retrieval works as

follows:

1. Document-Term Matrix: LSA starts by creating a matrix where rows

represent terms, columns represent documents, and each cell contains

the frequency of a term in a document.

2. Singular Value Decomposition (SVD): SVD decomposes this matrix

into three matrices:

A=UΣVT

o U: Orthogonal matrix representing term-topic associations.

o Σ: Diagonal matrix with singular values representing the

importance of each topic.

o VT: Orthogonal matrix representing document-topic associations.

339

3. Dimensionality Reduction: By keeping only the largest singular values,

LSA reduces the number of dimensions, focusing on the most

significant relationships while ignoring noise or irrelevant details.

Example: Suppose we have a collection of financial documents. LSA might

identify topics like “investment”, “market trends”, and “stocks”. It can then

group related terms (e.g., “equities”, “shares”) together under these topics,

even if they don't co-occur explicitly in a single document. This enables the

retrieval system to identify relevant documents for queries like “shareholder

profits” by understanding that “shareholder” relates to “investment”.

• Advantages

o Semantic Understanding: LSA captures relationships between terms,

allowing it to detect synonyms and related terms.

o Dimensionality Reduction: By reducing the feature space, LSA

minimizes noise and enhances performance for tasks like clustering

and classification.

o Topic Modelling: It reveals latent topics in documents, helping to

understand underlying themes.

• Limitations

o Computational Complexity: SVD is computationally expensive,

especially for large datasets, requiring significant memory and

processing power.

o Linear Nature: LSA assumes linear relationships between terms, which

can oversimplify the complexities of natural language.

o Interpretability Issues: The reduced dimensions are abstract and can

be difficult to interpret.

Probabilistic Models (BM25)

Probabilistic models approach information retrieval by estimating the

probability that a document is relevant to a user’s query. Among these

models, BM25 (Best Matching 25) is one of the most widely used and

effective methods. BM25 is a ranking function based on the Probabilistic

Relevance Framework (PRF). It balances the term frequency (TF) of words in

documents, the document length, and the frequency of terms across the

340

entire document collection to calculate a relevance score for ranking

documents.

• How BM25 Works

BM25 refines the traditional term frequency-inverse document frequency

(TF-IDF) approach with the following features:

• Term Frequency Saturation: BM25 incorporates a saturation effect for

term frequency, meaning that while a term’s frequency in a document

contributes to its relevance, this impact diminishes after a certain point.

For example, a word occurring 20 times in a document isn't necessarily

20 times more relevant than a word occurring only once.

• Document Length Normalization: BM25 adjusts for document length,

giving shorter documents a slight preference to avoid bias toward

longer ones that might include the query term more frequently but lack

focus.

The BM25 scoring formula is:

BM25(D,Q) =

Where,

o f(q,D): Frequency of query term q in document D.

o ∣D∣: Length of document D.

o avgdl: Average document length in the collection.

o k1 and b: Tuning parameters (default values are 1.2 and 0.75,

respectively).

o IDF(q): Inverse document frequency of q, emphasizing rarer terms.

Example: Imagine a query “solar power benefits”. BM25 calculates the

relevance of each document by considering how many times the terms

“solar”, “power”, and “benefits” appear, their importance in the context of

the entire collection, and the document length. A document with focused

content about solar power would score higher than a lengthy report

mentioning it only tangentially.

• Advantages

o Relevance Ranking: BM25 is highly effective at ranking documents

based on their relevance to the query.

341

o Flexibility: The model's parameters k1 and b can be tuned to optimize

performance for different datasets.

o Length Normalization: Adjusting for document length ensures fair

scoring across documents of varying sizes.

o Real-World Success: BM25 is a standard baseline for IR systems and

has been widely adopted in search engines and recommendation

systems.

• Limitations

o Parameter Sensitivity: The performance of BM25 depends on proper

tuning of k1 and b, which might not generalize across datasets.

o Context Blindness: BM25 doesn’t account for semantic relationships or

the context of terms, which modern models like BERT-based retrieval

can handle.

o Vocabulary Mismatch: It struggles with queries that don’t match the

document's exact wording, unlike models using embeddings.

Neural Information Retrieval Models

Neural Information Retrieval models leverage advancements in deep learning

to significantly enhance the performance of search systems. Unlike traditional

models, which rely on statistical or algebraic methods, neural models create

dense, contextual representations of text. These representations allow

systems to understand not just individual words but their relationships and

meanings in context.

Key techniques in neural IR include:

• Word Embeddings (e.g., Word2Vec, GloVe): These pre-trained models

represent words as dense vectors in a multi-dimensional space, capturing

semantic similarities. For instance, “king” and “queen” will have vectors

close in space, indicating similarity.

• Transformers (e.g., BERT, GPT): Transformers use attention mechanisms

to model contextual word embeddings. Unlike Word2Vec, transformers

consider the meaning of words within their surrounding text, making them

highly effective for complex queries.

342

• How Neural Information Retrieval Works

The Neural Information Retrieval method for information retrieval works as

follows:

o Neural models encode both queries and documents into dense vector

spaces where similar meanings are close together.

o Matching is performed by calculating similarities (e.g., cosine similarity)

between the query and document vectors.

o Neural networks can be fine-tuned for specific domains, such as legal

or medical texts, to further improve retrieval quality.

Example: Consider a query “treatment for type 2 diabetes”.

o Traditional models might match documents containing these exact

keywords.

o A neural IR system, using a transformer like BERT, can understand

that “treatment for type 2 diabetes” is semantically similar to

“management of adult-onset diabetes”, retrieving relevant documents

even if keywords differ.

• Advantages

o Rich Semantic Understanding: Neural models capture contextual

meanings and word relationships, leading to highly relevant results.

o Adaptability: These models can handle synonyms, polysemy (e.g.,

“bank” as a riverbank or financial institution), and complex queries.

o Domain-Specific Applications: With fine-tuning, they outperform

traditional models in specialized areas like healthcare or legal domains.

• Limitations

o Computationally Expensive: Training neural models, especially

transformers, requires significant computational resources and

powerful GPUs.

o Data Requirements: These models perform best with large datasets,

which may not always be available for niche applications.

o Complexity: Implementing and fine-tuning neural IR systems demands

expertise in deep learning, making them less accessible to smaller

organizations.

343

Entity Recognition and Relation Extraction for IE

Entity Recognition and Relation Extraction are core techniques in Information

Extraction, enabling systems to identify key pieces of information (entities)

and understand how these entities relate to each other.

• Named Entity Recognition (NER): NER identifies specific entities within a

text, such as names, dates, organizations, or locations. For example, in

the sentence, “Elon Musk founded SpaceX in 2002”, NER would tag Elon

Musk as a person, SpaceX as an organization, and 2002 as a date.

• Relation Extraction (RE): Once entities are identified, RE uncovers

relationships between them. In the same example, RE would identify the

relationship between Elon Musk and SpaceX as “founder-of” and the

association between SpaceX and 2002 as “founded-in”.

• Approaches

1. Rule-Based Systems: These use predefined patterns (e.g., “X founded

Y in Z”) and are straightforward but rigid, struggling with variability in

language.

2. Statistical Methods: Models like Hidden Markov Models (HMMs) and

Conditional Random Fields (CRFs) analyze sequences of text to detect

entities and relationships. While effective, they require a lot of labelled

data and don’t generalize well.

3. Deep Learning Architectures:

o BiLSTM Models: Bi-directional Long Short-Term Memory

networks capture word context from both left and right

sequences, enhancing NER accuracy.

o Transformers (e.g., BERT): These models use attention

mechanisms to capture context-rich embeddings, making them

state-of-the-art for both NER and RE tasks.

Example: For a legal text- NER: Identify entities like “Supreme Court”

(organization) and “Roe v. Wade” (case) while RE: Extract the relationship

between “Supreme Court” and “Roe v. Wade” as “ruled-on”.

344

• Advantages

o Rich Information Extraction: NER and RE automate the identification of

critical details and their associations, saving time for professionals in

fields like law, healthcare, or finance.

o Scalability: Advanced models can process large corpora quickly,

identifying patterns humans might miss.

• Limitations

o Ambiguity: NER struggles when entities have multiple meanings (e.g.,

“Apple” as a fruit vs. a company).

o Resource-Intensive: Deep learning methods require significant

computational resources and large annotated datasets.

o Complex Relationships: Extracting nuanced or implicit relationships

remains a challenge for many systems.

Together, these approaches form the foundation of effective IR and IE

systems, allowing for flexible, scalable, and accurate data retrieval and

extraction.

2.3 REAL TIME APPLICATIONS
Information retrieval and extraction power various real-time applications, from

search engines to medical research and beyond. Here are some notable use

cases:

1. Web Search Engines: Google and Bing use complex IR algorithms and

neural models to deliver relevant results to billions of users daily. These

engines not only retrieve documents based on keyword matching but also

factor in user behaviour, context, and intent to improve search quality.

2. Question-Answering Systems: Popular in customer service and virtual

assistants, question-answering (QA) systems rely on IR to retrieve

relevant documents or sections and on IE to extract the exact answer. Siri,

Alexa, and chatbots employ QA systems to understand and respond to

user queries accurately.

3. News Aggregators and Topic Extraction: News aggregators, like

Google News, rely on IR to gather articles from multiple sources and IE to

345

extract relevant topics. Users receive summaries and updates on trending

topics across multiple publications in a single place.

4. Biomedical Research: In medical research, IR and IE help extract

information from research papers, patient records, and clinical trial results.

For example, PubMed and other medical databases allow researchers to

retrieve studies based on specific conditions or treatments, expediting

research in critical fields.

5. Product Search and Recommendation Systems: Amazon and other e-

commerce platforms use IR to help users find products quickly.

Additionally, IE helps categorize products, extract attributes (e.g., color,

size, brand), and provide personalized recommendations based on

customer preferences.

6. Legal and Financial Document Processing: In law and finance, IR

retrieves relevant clauses, precedents, or financial figures from complex

documents. IE automates the extraction of entities and relationships,

saving time in legal research, contract analysis, and compliance tasks.

7. Social Media Monitoring and Sentiment Analysis: Platforms like

Brandwatch use IR to retrieve posts or tweets related to specific brands or

topics, and IE extracts sentiments or opinions. This information helps

companies gauge public perception and respond proactively to feedback

or concerns.

Figure-22: Real Time Applications of Information Retrieval and Extraction

346

Check Your Progress-1

a) Named entity recognition (NER) systems struggle with ambiguity in words

that have multiple meanings, such as "Jaguar," which could refer to an

animal or a car brand.

b) Information retrieval systems like BM25 prioritize document relevance

based solely on the frequency of query terms without considering

document length.

c) The Vector Space Model (VSM) represents documents and queries as

vectors and calculates their similarity using metrics like cosine similarity.

d) Probabilistic models such as BM25 are unaffected by tuning parameters

like k1k_1 and bb.

e) Contextual embeddings from transformers like BERT can improve

information retrieval by understanding deeper semantic relationships in

queries and documents.

f) Neural models for information retrieval often outperform traditional

keyword-based systems by accounting for word context and relationships.

2.4 Let us sum up

In this unit we have discussed the key approaches to information retrieval.

Along with the advantages and limitations of each approach. You now know

the problems in information retrieval and extraction. We have also described

the real time applications of information retrieval in detail.

2.5 Check your progress: Possible Answers

a) True

b) False

c) True

d) False

e) True

f) True

347

2.6 Further Reading

• Handbook of Natural Language Processing, Second Edition-

NitinIndurkhya, Fred J. Damerau, Fred J. Damerau (ISBN13: 978-

1420085921)

• Bharati A., Sangal R., Chaitanya V. Natural language processing: a

Paninian perspective, PHI, 2000.

2.7 Assignments

• What is the problem of information retrieval and extraction in NLP?

• What are the main approaches to solving information retrieval problems?

• How does information extraction differ from information retrieval, and what

are its key challenges?

• Explain how NLP techniques enhance search engines' ability to retrieve

relevant information.

• How can Named-Entity Recognition (NER) improve information extraction

systems?

348

Unit-3: Machine Translation

Unit Structure

3.0. Learning Objectives

3.1. Introduction to the Problem

3.2. Approaches to Machine Translation

3.3. Real Time Application

3.4. Let us sum up

3.5. Check your Progress: Possible Answers

3.6. Further Reading

3.7. Assignment

3

349

3.0 LEARNING OBJECTIVES

After studying this unit student should be able to:

• Know the problems in machine translation

• Understand the key approaches to machine translation

• List various advantages and limitations of each approach

• Give examples of each approach

• Describe the real time applications of machine translation

3.1 INTRODUCTION TO THE PROBLEM

Language barriers can impede communication, collaboration, and information

access, especially in a globalized world where interaction between diverse

languages is essential. Machine translation (MT) addresses this problem by

automatically translating text from one language to another, making content

accessible to a broader audience. From translating documents to facilitating

cross-language communication in real time, MT helps bridge linguistic divides.

Despite its tremendous success in some languages, MT still faces several

challenges that make it a difficult task to fully automate. The problem stems

from various factors related to language complexity, linguistic structure,

cultural context, and the nuances of human communication. Some of the key

challenges are:

• Ambiguity in Language: One of the primary challenges in machine

translation is the inherent ambiguity present in natural languages. Words,

phrases, and sentences can carry multiple meanings, making it difficult for

machines to select the correct interpretation without understanding the

context. For example, the English word “bank” could refer to a financial

institution, the edge of a river, or a place where items are stored,

depending on the context. Similarly, the word “bat” could mean a flying

mammal or a piece of sports equipment. Ambiguity is not limited to

individual words but extends to entire phrases and sentences. For

instance, the sentence “He saw the man with the telescope” can mean

either that the man had the telescope or that the telescope was used to

350

see the man. This syntactic ambiguity adds another layer of complexity to

translation tasks. Handling such ambiguities requires machine translation

systems to consider contextual clues, often spread across the surrounding

text. Neural Machine Translation (NMT) models, particularly transformer-

based architectures, have made significant strides in addressing ambiguity

by capturing contextual relationships in large datasets. However, even

these advanced models can struggle when dealing with rare words,

idiomatic expressions, or sentences lacking clear context, resulting in

mistranslations or imprecise outputs

• Differences in Grammar and Sentence Structure: Every language

follows its own unique grammatical rules and sentence structures,

presenting a significant challenge for machine translation systems. For

example, English adheres to a Subject-Verb-Object (SVO) structure, as in

the sentence “She reads a book.” However, languages like Japanese use

a Subject-Object-Verb (SOV) structure, which translates the same

sentence to “She a book reads.” Similarly, Chinese has a relatively flexible

word order but relies heavily on context and word particles to convey

meaning, making direct translations even more complex. Successfully

translating between languages with drastically different grammar requires

understanding and restructuring sentences while preserving their meaning.

This task is particularly difficult when dealing with intricate syntactic rules,

such as those found in languages with extensive noun cases, verb

conjugations, or gender-specific grammar (e.g., Russian or Hindi).

Advanced Neural Machine Translation (NMT) models, particularly

transformer-based systems like BERT and GPT, have improved the ability

to capture and adapt to such structural differences. These models use

attention mechanisms to identify relationships between words and reorder

them appropriately in the target language. Despite these advancements,

challenges persist, especially with long or complex sentences. Poor

translations may lead to grammatical inaccuracies or loss of subtle

meanings, affecting the fluency and quality of the output.

• Idiomatic Expressions and Phrasal Verbs: Idiomatic expressions and

phrasal verbs pose significant challenges for machine translation systems.

351

These phrases often carry meanings that are not directly interpretable

from the individual words. For example, the English idiom “kick the bucket”

means “to die”, but a literal translation into another language would

confuse the reader, as it would not capture the intended meaning.

Similarly, phrasal verbs like “give up” or “run into” carry specific meanings

that cannot be understood through word-for-word translation. To

accurately translate such expressions, machine translation systems need

to identify the idiomatic or figurative meaning, which often requires

contextual understanding and cultural knowledge. This challenge becomes

more difficult when translating between languages with very different

cultural contexts or when the target language does not have an equivalent

expression. While recent advances in neural machine translation (NMT)

have improved the handling of idioms by learning patterns from large

corpora, idiomatic expressions still often result in awkward or misleading

translations. Ensuring cultural sensitivity and relevance in translations

remains a critical challenge for accurate machine translation.

• Lack of Parallel Data: Machine learning-based translation systems,

especially neural models like Neural Machine Translation (NMT), rely

heavily on extensive parallel data—datasets containing aligned text in both

the source and target languages. These datasets are essential for training

the models to understand linguistic relationships and patterns across

languages. However, for many language pairs, especially those involving

low-resource languages, such parallel data is scarce or non-existent. This

lack of data significantly hampers the ability of these systems to generate

accurate and meaningful translations. For instance, while languages like

English and Spanish have abundant parallel datasets, languages spoken

in smaller communities or indigenous regions often lack such resources.

Without sufficient training data, machine translation systems struggle to

achieve high-quality results, leading to inaccuracies or incomplete

translations.

• Cultural Context and Nuances: Effective translation is not merely about

converting words from one language to another but also understanding the

cultural context and nuances embedded in the text. Different cultures use

352

language in unique ways, influenced by societal norms, traditions, and

interpersonal relationships. For instance, in languages like Korean and

Japanese, there are distinct forms of speech that convey varying levels of

formality and respect. Choosing between formal and informal expressions

depends heavily on the social context—whether addressing a superior, a

peer, or a subordinate. A machine translation system must grasp these

subtleties to produce accurate and contextually appropriate translations.

Consider a situation where a Japanese sentence needs to be translated

into English. The Japanese sentence might use honorifics to express

deference, which might not have a direct equivalent in English. If the

machine fails to capture the cultural nuance, the translation may lose the

intended meaning or appear overly casual. Similarly, idioms, humor, and

culturally specific references often do not translate directly. For example,

an English idiom like “kick the bucket” would need cultural adaptation in

translation to convey its meaning (death) rather than a literal action. Such

complexities make it challenging for machine translation systems to fully

understand cultural context, often requiring human intervention for high-

quality translations.

• Word Order Variability: Word order variability is a significant challenge in

machine translation, as different languages follow distinct grammatical

conventions for structuring sentences. For example, English typically

follows a Subject-Verb-Object (SVO) order, as in the sentence “She gave

him a book”. In contrast, Turkish uses an Object-Indirect Object-Verb

(OIOV) structure, translating the same sentence as “Kitap ona verdi”

(literally, “Book to him gave”). The variability in word order influences how

meaning is conveyed and understood across languages. Machine

translation systems must account for these differences to preserve the

intended meaning. This requires the system to accurately identify

sentence components (e.g., subject, verb, object) and reorder them during

translation. Failure to do so can lead to awkward or nonsensical

translations. For instance, directly translating a Turkish sentence into

English while maintaining its word order might produce “Book to him

gave,” which lacks grammatical coherence in English. Advanced neural

353

machine translation (NMT) models address this challenge using attention

mechanisms, enabling them to analyze relationships between words in a

sentence and determine the correct order in the target language. However,

accurately managing word order remains difficult in complex sentences

with multiple clauses or nuanced relationships, highlighting the ongoing

need for refinement in translation systems.

• Handling Low-Resource Languages: Low-resource languages present a

significant challenge for machine translation systems due to their lack of

extensive digital resources, such as large corpora or annotated datasets.

These languages, often spoken by smaller populations, may lack

standardized linguistic tools like dictionaries or grammar references,

limiting the data available for training machine learning models.

Consequently, machine translation systems for such languages often

produce less accurate and less reliable translations. For example,

translating between indigenous languages or dialects may result in errors

due to insufficient training data. Addressing this issue requires innovative

approaches, such as transfer learning, multilingual training, or leveraging

related high-resource languages to improve accuracy.

• Domain-Specific Terminology: Machine translation systems often face

difficulties when handling domain-specific terminology, such as technical

jargon in fields like medicine, law, or science. These terms require

specialized knowledge to be interpreted accurately within the appropriate

context. For example, the term “stent” in medicine refers to a specific

medical device, while in general usage, the word might not have a direct

equivalent. Without sufficient domain-specific training data, machine

translation systems may fail to recognize or accurately translate such

terms, leading to errors or imprecise translations. This issue is

compounded in highly specialized fields where consistent and high-quality

bilingual corpora are scarce. To address this, MT systems often rely on

fine-tuning with domain-specific datasets or integrating glossaries and

terminology databases.

354

• Fluency and Naturalness of Output: Machine translation systems often

struggle to produce translations that are not only accurate but also fluent

and natural sounding. Even when the meaning of the source text is

correctly conveyed, the output may appear rigid, awkward, or inconsistent

with how a native speaker would express the same idea. For instance, a

sentence translated from English to French might adhere to grammatical

rules but fail to capture the nuanced phrasing or stylistic conventions of

French. The challenge lies in balancing literal translations with contextually

appropriate rephrasing, as languages differ in structure, idiomatic

expressions, and cultural preferences. This issue is particularly

pronounced when translating informal or creative texts, such as dialogues

or literature, where tone and flow are critical. Improving fluency and

naturalness often requires advanced models, such as neural machine

translation systems with attention mechanisms, fine-tuned on large, high-

quality datasets. However, achieving native-level fluency remains an

ongoing challenge, especially for low-resource languages or specialized

domains.

• Real-Time Translation: Real-time translation is a critical application of

machine translation, enabling live conversations and simultaneous

interpreting for scenarios like international conferences, business

meetings, or travel. However, delivering accurate, context-aware, and

coherent translations within tight time constraints presents significant

technical challenges. Unlike offline translation, where systems can analyze

the entire text before producing a result, real-time translation requires the

machine to process streaming input as it is received. This demands high

computational efficiency and the ability to interpret incomplete sentences

or phrases without losing meaning. For example, in languages where

verbs typically appear at the end of sentences (like German or Japanese),

the system must anticipate and handle potential ambiguities before the

sentence is completed. Another major challenge is context awareness.

Words or phrases can have multiple meanings depending on the situation,

and real-time systems must disambiguate these meanings instantly.

Moreover, maintaining fluency and naturalness in output is essential to

355

ensure smooth communication. Advances in neural machine translation

(NMT) models, particularly transformer architectures like BERT and GPT,

have improved the quality of real-time translations. However, these

systems require robust computational infrastructure to meet speed

requirements, making deployment costly. Additionally, real-time translation

struggles with less common languages and domain-specific jargon,

highlighting the need for further improvements in accuracy and scalability.

These challenges show the complexity of machine translation, which is still

an ongoing research problem. While significant progress has been made,

especially with neural machine translation (NMT) and deep learning

techniques, there is still much work to be done to overcome the limitations

and provide high-quality translations across all languages and domains.

3.2 APPROACHES TO MACHINE TRANSLATION
Various approaches have been developed for machine translation, each

building upon the limitations and successes of its predecessors. Below are the

main types:

Rule-Based Machine Translation (RBMT)

Rule-Based Machine Translation (RBMT) is one of the earliest approaches to

automated language translation. It relies on manually crafted linguistic rules

that define the relationships between the source and target languages,

including grammar, syntax, and vocabulary. This method uses dictionaries

and linguistic rules to break down a sentence in the source language and

reconstruct it in the target language.

• How Rule-Based Machine Translation Works

The Rule-Based Machine Translation (RBMT) method works as follows:

1. Linguistic Analysis: RBMT begins by analyzing the grammatical

structure of the source language text. This step involves parsing the

text to identify parts of speech, syntax, and sentence structure.

Example: The English sentence “I am going to the store” is parsed to

identify the subject (“I”), verb (“am going”), and object (“to the store”).

356

2. Transfer Rules: The system uses predefined rules to map the structure

of the source language to the target language.

Example: In Spanish, the phrase would be restructured to “Yo voy a la

tienda”, where the grammar rules align with Spanish syntax.

3. Generation: Finally, the system generates the target language

sentence by applying vocabulary substitutions and arranging words

according to the target language’s grammar.

Example: Consider translating the English sentence “She is reading a

book” into French.

Step 1 - Parsing: Identify components: “She” (subject), “is reading”

(present continuous verb), and “a book” (object).

Step 2 - Application of Rules: Adjust verb conjugation: French does not

use a continuous tense for “is reading”. The equivalent is “elle lit”.

Replace vocabulary: “She” → “Elle”, “book” → “livre”.

Step 3 - Output: The final translation is “Elle lit un livre”.

• Advantages

o Consistency: Rules ensure a consistent and deterministic output, which

is particularly useful in technical or domain-specific translations (e.g.,

legal or medical texts).

o Customizability: Systems can be tailored to specific domains by

creating custom rules and specialized dictionaries.

o Error Transparency: Errors in RBMT are easier to identify and fix

because they are tied to specific rules or dictionary entries.

• Limitations

o High Development Costs: Creating and maintaining comprehensive

linguistic rules for every pair of languages is labor-intensive and

requires significant expertise in both languages.

o Limited Scalability: As the number of languages increases, the

complexity of creating transfer rules grows exponentially, making it

impractical for diverse multilingual applications.

357

o Poor Handling of Ambiguity: Idiomatic expressions, cultural nuances,

and complex sentence structures often break RBMT systems. For

example, the English idiom “kick the bucket” might be translated

literally, losing its meaning as “to die”.

o Static Nature: Rules are fixed and cannot adapt to evolving language

usage or new vocabulary, making the system rigid compared to

modern techniques.

While RBMT was groundbreaking in its time, it has largely been replaced by

statistical and neural machine translation methods, which learn directly from

data and do not rely on explicit linguistic rules. For instance, a Neural Machine

Translation (NMT) model like Google Translate can dynamically infer patterns

and idiomatic expressions without requiring predefined rules.

RBMT laid the foundation for machine translation by demonstrating that

linguistic structure could guide accurate translations. However, its reliance on

extensive rule sets and difficulty handling nuanced language have limited its

effectiveness in real-world applications. Despite its limitations, RBMT is still

valuable in controlled settings where consistency and precision are

paramount, such as translating legal documents or ancient texts.

Statistical Machine Translation

Statistical Machine Translation is a data-driven approach to language

translation that relies on probabilistic models to determine the most likely

translation of a text. Instead of relying on explicit linguistic rules, SMT learns

patterns from large bilingual corpora, using statistical methods to map

phrases and words from one language to another.

• How Statistical Machine Translation Works

The Statistical Machine Translation (SMT) method works as follows:

1. Training Data: The training is done using a bilingual corpus.

• A large dataset containing text in a source language and its

equivalent in a target language.

Example: Parallel corpora like the European Parliament

Proceedings are often used to train SMT systems.

358

2. Core Models in SMT: SMT typically relies on three key probabilistic

models:

• Translation Model: Determines the probability of a source language

phrase translating to a target language phrase.

Example: If the English phrase “thank you” frequently maps to the

French phrase “merci” in the training data, the system assigns a

high probability to this mapping.

• Language Model: Ensures fluency by calculating the likelihood of a

word sequence in the target language.

Example: The phrase “merci beaucoup” (French for “thank you very

much”) would have a higher probability than the grammatically

incorrect “beaucoup merci.”

• Alignment Model: Aligns words and phrases between the source

and target languages, especially for sentences with differing

structures.

Example: In English, the adjective typically precedes the noun (“red

car”), whereas in Spanish, the noun precedes the adjective (“coche

rojo”).

3. Decoding: During translation, the system uses the probabilities from

these models to choose the most likely target language sequence for a

given source text.

• Phrase-Based SMT

A significant advancement over word-based SMT is Phrase-Based SMT,

which considers phrases rather than individual words. This helps capture

contextual meaning and improves fluency.

Example: For the English sentence “How are you?”, a word-based SMT

might incorrectly translate it into Spanish as “Cómo están tú” (literal,

awkward). A phrase-based SMT, recognizing “How are you” as a single

unit, would correctly translate it to “¿Cómo estás?”.

359

• Advantages

o Flexibility: SMT can adapt to diverse languages and domains, provided

it has access to sufficient training data.

o Data-Driven: Unlike Rule-Based MT (RBMT), SMT learns directly from

examples, eliminating the need for extensive linguistic expertise.

o Handling Idioms: SMT can often translate idiomatic phrases

accurately if they occur frequently in the training data.

o Scalability: SMT systems can be trained for multiple language pairs

by using different corpora.

• Limitations

o Fragmented Translations: SMT struggles with long-distance

dependencies (e.g., subject-verb agreement in complex sentences).

Example: Translating “The book that I borrowed yesterday is on the

table” into another language might produce disjointed results.

o Data Dependency: Quality and quantity of training data directly impact

performance. Rare languages with limited corpora are poorly

supported.

o Literal Translations: SMT often struggles with nuanced or idiomatic

expressions. For instance, “It’s raining cats and dogs” might be

translated literally instead of capturing its figurative meaning.

o Lack of Context: Without understanding context, SMT may misinterpret

words with multiple meanings. Example: The English word “bank”

might be incorrectly translated as “banco” (financial institution) instead

of “orilla” (riverbank) in Spanish.

SMT revolutionized machine translation by replacing rigid rule-based systems

with data-driven probabilistic models. While it has been largely superseded by

Neural Machine Translation (NMT), SMT remains an important milestone in

the evolution of automated translation. It laid the groundwork for scalable,

flexible translation systems and is still useful for low-resource languages

where large-scale NMT models might be infeasible.

360

Neural Machine Translation (NMT)

Neural Machine Translation (NMT) is an advanced approach to language

translation that uses artificial neural networks to model the relationships

between source and target languages. It is highly effective in generating fluent

and contextually accurate translations by leveraging deep learning

techniques.

• How Neural Machine Translation Works

Neural Machine Translation is based on the encoder-decoder architecture,

which is the backbone of its success. The Statistical Machine Translation

(SMT) method works as follows:

1. Encoder: Encoder converts the input sentence (in the source language)

into a sequence of fixed-length numerical representations called

context vectors. These vectors capture the semantic meaning of the

entire sentence.

Example: For the sentence “I love programming”, the encoder

transforms each word into a representation and combines them into a

unified context vector.

2. Decoder: Decoder decodes the context vector to generate the

corresponding translation in the target language, one word at a time.

The decoder predicts the next word based on the context vector and

the words already generated.

3. Attention Mechanism: Traditional NMT architectures like RNNs or

LSTMs struggled with long sentences because they compressed the

entire sentence into a single context vector. Attention mechanisms

address this by allowing the model to focus on relevant parts of the

source sentence during translation.

Example: While translating “The boy who is playing soccer is my

brother” into French, the attention mechanism helps focus on the

phrase “playing soccer” at the right moment to ensure an accurate

translation.

361

• Evolution of NMT Architectures

Neural Machine Translation architectures have evolved as follows:

1. Recurrent Neural Networks (RNNs): Early NMT models used RNNs,

which processed input sequentially, making them suitable for sentence-

by-sentence translation.

Limitations: RNNs struggled with long-distance dependencies and

often forgot earlier parts of the sentence.

2. Long Short-Term Memory Networks (LSTMs) and Gated Recurrent

Units (GRUs): LSTMs and GRUs are improved versions of RNNs that

addressed the vanishing gradient problem by retaining memory over

longer sequences.

Example: While translating “She said that she would meet me

tomorrow”, an LSTM ensures that “tomorrow” remains associated with

the correct verb “meet”.

3. Transformer Models: Transformers, introduced by the paper “Attention

Is All You Need” in 2017, revolutionized NMT by removing the

sequential processing constraint. They rely entirely on attention

mechanisms and process entire sentences in parallel. Key transformer-

based models include:

o BERT (Bidirectional Encoder Representations from Transformers):

Focuses on understanding text.

o GPT (Generative Pre-trained Transformer): Excels at generating

text, including translations.

o T5 (Text-to-Text Transfer Transformer): Can perform various tasks,

including translation, by framing them as text-to-text problems.

Example: Translating “The weather is nice today” to German becomes

more accurate and contextually fluent with transformer-based models.

Example: Consider translating the sentence “He kicked the bucket”

(idiom for “He passed away”) into Spanish. Without sufficient training

data, NMT might translate this literally as “Él pateó el cubo” (literal: “He

kicked the bucket”), losing the idiomatic meaning. A well-trained NMT

model using a transformer might correctly infer the meaning and

translate it as “Él falleció” (“He passed away”).

362

• Advantages

o High-Quality Translations: NMT produces translations that are natural-

sounding and fluent, often indistinguishable from human translations

for common languages.

o Contextual Understanding: The attention mechanism enables NMT to

maintain coherence and capture the meaning of phrases within the

broader sentence context.

o Adaptability: Pretrained transformer models like BERT and GPT can be

fine-tuned for specific domains, improving translation quality for

technical or specialized content.

o Multilingual Support: NMT can be trained on multiple language pairs

simultaneously, making it efficient for translating between lesser-known

languages.

• Limitations

o Computational Requirements: NMT models, particularly transformers,

demand significant computational resources and memory, making

them expensive to train and deploy.

o Data Dependency: They require large, high-quality datasets for

training. Low-resource languages with limited data often result in

suboptimal translations.

o Hallucinations: NMT systems can generate plausible but incorrect

translations, especially when dealing with out-of-domain content.

o Idiomatic and Cultural Expressions: NMT may struggle with idioms or

culturally specific expressions, translating them too literally without the

intended meaning.

NMT has significantly advanced the field of machine translation, delivering

more fluent, context-aware, and scalable solutions compared to traditional

methods. While it faces challenges with data scarcity and computational

costs, ongoing research, such as advancements in efficient transformers and

multilingual training, continues to enhance its capabilities. NMT represents a

critical step toward breaking language barriers and enabling global

communication.

363

Hybrid Approaches

Hybrid approaches to machine translation combine the strengths of Rule-

Based Machine Translation (RBMT), Statistical Machine Translation (SMT),

and Neural Machine Translation (NMT) to achieve better translation quality.

By integrating different techniques, these systems aim to handle linguistic

diversity, contextual understanding, and fluency more effectively than

individual methods.

• How Hybrid Approaches Work

Hybrid systems are designed to capitalize on the advantages of different

MT approaches. They might incorporate rule-based methods to ensure

grammatical correctness, use statistical methods to capture phrase-level

patterns, and leverage neural networks for contextual understanding and

fluency.

1. Preprocessing with RBMT: Rule-based components might normalize or

restructure input sentences to address grammar-specific issues or

disambiguate terms.

Example: Translating from English to German, where verbs often

appear at the end of sentences, rules can rearrange sentence structure

to conform to German grammar.

2. Phrase and Context Handling with SMT: SMT can identify statistically

significant phrase pairs in the source and target languages to provide

reliable phrase-level translations.

Example: For phrases like “out of the blue”, SMT might suggest an

idiomatic equivalent in the target language rather than a literal

translation.

3. Fluency with NMT: Neural models refine the translation to ensure

natural-sounding results, leveraging attention mechanisms to maintain

context.

Example: Translating “The boy who was playing soccer is my brother”,

NMT ensures fluency by understanding the dependencies between

“playing soccer” and “boy”.

4. Post-processing: Rule-based systems or manual intervention might

correct domain-specific terminology or resolve ambiguities introduced

by earlier stages.

364

Example: Consider translating the sentence “I am over the moon” into

French:

o RBMT Component: Identifies the grammatical structure of the

sentence and maps basic words like “I am” to “Je suis”.

o SMT Component: Recognizes “over the moon” as an idiom and

maps it statistically to “ravi” (delighted) based on bilingual training

data.

o NMT Component: Refines the sentence to ensure fluency,

producing the output “Je suis ravi” (I am delighted), capturing the

intended meaning rather than a literal translation.

• Real-World Applications

o Medical Translations: A hybrid system might use RBMT to ensure the

accurate translation of medical terminology while relying on NMT for

fluency.

o Low-Resource Languages: Hybrid models can use RBMT rules to

bridge gaps where NMT lacks training data, making translations viable

for underrepresented languages.

o Custom Business Solutions: In industries like legal services, hybrid

approaches ensure compliance with domain-specific terminology while

maintaining natural language fluency.

• Advantages

o Balance Between Linguistic Precision and Fluency: Rule-based

systems ensure grammatical correctness, while NMT or SMT

enhances fluency and contextual accuracy.

o Improved Domain-Specific Translation: By leveraging linguistic rules

and domain-specific SMT models, hybrid systems perform well in

specialized fields like medical, legal, or technical translations.

o Flexibility Across Language Pairs: Hybrid approaches can be tailored

to handle low-resource languages by compensating for data scarcity

with rules and statistical methods.

o Idiomatic Handling: SMT or NMT components can improve idiomatic

expression handling, while rules help ensure the accuracy of critical

structures.

365

• Advantages Over Pure Methods

o Compared to RBMT: Hybrid systems add fluency and idiomatic

handling, which RBMT alone often lacks.

o Compared to SMT: They incorporate grammatical correctness through

RBMT and contextual understanding from NMT.

o Compared to NMT: Hybrid systems handle low-resource scenarios

better by falling back on rules and statistics when training data is

limited.

• Limitations

o Complexity in Integration: Combining RBMT, SMT, and NMT requires

significant computational and linguistic expertise. Integrating these

components while maintaining performance is challenging.

o Resource Intensity: Maintaining rule sets, statistical models, and neural

networks for multiple language pairs can be resource-intensive in terms

of time, labor, and computational power.

o Domain-Specific Challenges: Hybrid systems may still struggle with

highly ambiguous or creative text (e.g., poetry or slang) unless

explicitly designed for those contexts.

o Scaling Across Languages: Adding support for new language pairs

involves substantial work, particularly for rule-based components,

which require extensive linguistic expertise.

Hybrid approaches represent a middle ground between traditional and

modern MT methods, offering flexibility, robustness, and adaptability

across different domains and language pairs. While their complexity

presents challenges, their ability to leverage the strengths of RBMT,

SMT, and NMT makes them a powerful choice for high-quality

translations, especially in specialized or resource-constrained settings.

3.3 REAL TIME APPLICATIONS
Machine translation is used in a wide range of real-world applications,

transforming how we communicate, conduct business, and access information

across languages. Here are some key areas where Machine Translation plays

an essential role:

366

1. Web and Mobile Applications: Platforms like Google Translate and

Microsoft Translator are widely used by individuals, travellers, and

professionals for on-the-go translations. These applications support

multiple languages and offer real-time text, voice, and even image

translation, helping users bridge language gaps instantly.

2. Customer Support and Multilingual Chatbots: Many businesses rely

on machine translation to assist customer service in multiple

languages. Chatbots, for instance, use MT to interpret customer

queries in various languages and provide responses in the customer’s

preferred language. This enhances customer support and accessibility

without requiring multilingual human agents.

3. Social Media Monitoring and Content Moderation: Companies use

MT to monitor global social media for mentions, sentiments, and trends

in various languages. Social media platforms also rely on MT to

translate comments or posts, enabling cross-language interactions and

content moderation across diverse linguistic regions.

4. Content Localization: MT aids in the localization of websites, product

descriptions, and e-learning materials, helping companies reach global

markets. MT with post-editing (human review) is often used to ensure

accuracy, especially for brand-sensitive or complex content.

5. Medical and Legal Document Translation: Machine translation

facilitates quick translation of medical or legal documents, research

papers, and patents. NMT, especially when trained on specialized

vocabulary, enables researchers, healthcare professionals, and legal

experts to access critical information without needing human

translators for initial reviews.

6. Education and E-learning: Educational platforms use machine

translation to translate course materials, articles, and lectures into

multiple languages, making knowledge accessible worldwide. This

promotes inclusive learning and helps non-native speakers participate

in global education.

367

Figure-23: Real Time Applications of Information Machine Translation

Check Your Progress-1

a) Neural Machine Translation (NMT) outperforms Rule-Based Machine

Translation (RBMT) in handling idiomatic expressions due to its data-

driven approach.

b) Real-time translation systems must consider sentence-level context for

accurate word order and grammar in languages like German and

Japanese.

c) Statistical Machine Translation (SMT) systems perform better than NMT

when translating between languages with abundant parallel data.

d) Low-resource languages pose challenges for NMT due to the limited

availability of parallel corpora for training.

e) The use of attention mechanisms in NMT allows models to selectively

focus on relevant parts of a sentence during translation.

f) Rule-based systems outperform neural systems in accurately translating

idiomatic and culturally nuanced text.

368

3.4 Let us sum up
In this unit we have discussed the the problems in machine translation. You

have got detailed understanding of the key approaches to machine

translation. You now have a clear knowledge of various advantages and

limitations of each approach. You can now also give examples of each

approach. We have given an elaborative list of the real time applications of

machine translation.

3.5 Check your progress: Possible Answers

a) True

b) True

c) False

d) True

e) True

f) False

3.6 Further Reading

• Speech and Language processing an introduction to Natural Language

Processing, Computational Linguistics and speech Recognition by Daniel

Jurafsky and James H. Martin (ISBN13: 978-0131873216)

• James A. Natural language Understanding 2e, Pearson Education, 1994.

3.7 Assignments
• What are the primary challenges faced in machine translation tasks?

• How does statistical machine translation differ from neural machine

translation?

• Explain the significance of language pairs and context in machine

translation systems.

• What are some real-time applications of machine translation in global

communication and business?

• How does machine translation handle idiomatic expressions and cultural

nuances?

369

Unit-4: Sentiment Analysis

Unit Structure

4.0. Learning Objectives

4.1. Introduction to the Problem

4.2. Approaches to Sentiment Analysis

4.3. Real Time Application

4.4. Let us sum up

4.5. Check your Progress: Possible Answers

4.6. Further Reading

4.7. Assignment

4

370

4.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know the problems in sentiment analysis

• Understand the key approaches to sentiment analysis

• List various advantages and limitations of each approach

• Give examples of each approach

• Describe the real time applications of sentiment analysis

4.1 INTRODUCTION TO THE PROBLEM

Sentiment Analysis, often referred to as “opinion mining”, is a field of NLP

focused on determining the emotional tone or attitude conveyed in a piece of

text. By identifying and analyzing sentiments, machines can understand

whether a message expresses a positive, negative, or neutral sentiment. This

capability is valuable across various industries, from social media monitoring

to customer service, as it enables organizations to assess public opinion,

track customer satisfaction, and make data-driven decisions.

The core challenge in sentiment analysis is understanding the subjective

elements of language. Human language is complex, filled with sarcasm,

implicit emotions, and cultural nuances, which makes interpreting sentiment

challenging for machines. For example, a phrase like “I love waiting in long

lines!” is often sarcastic and implies a negative sentiment, even though it

includes positive words. Machines need to account for these subtleties to

accurately gauge the true sentiment.

Key challenges in sentiment analysis include:

• Ambiguity: Ambiguity is one of the primary challenges in sentiment

analysis, as words and phrases often have different emotional

interpretations depending on the context in which they are used. A word or

phrase that conveys a positive sentiment in one situation might express a

negative or neutral sentiment in another, making it difficult for automated

systems to accurately classify sentiment. Natural language is inherently

complex, with many layers of meaning influenced by context, tone, and

371

intent. For instance, the word “unpredictable” can be interpreted positively

when describing an exciting or dynamic movie:

o “The plot twists were unpredictable, making the movie thrilling!”

Here, “unpredictable” conveys excitement and is seen as a positive

attribute.

However, the same word becomes negative in a professional

context:

o “Her unpredictable behavior makes her difficult to work with.”

In this case, “unpredictable” indicates unreliability or instability.

Ambiguity also arises with sarcasm, idioms, and cultural expressions,

where the literal meaning of words may differ significantly from their

intended emotional impact. For example: “Great, another Monday!”

This sentence might seem positive literally but is likely sarcastic,

expressing frustration.

Traditional sentiment analysis models often rely on lexicons or word

embeddings, where individual words are assigned fixed sentiment scores.

Such approaches fail to account for contextual variations, leading to

errors. For example, rule-based systems may interpret words like “killer”

negatively without recognizing that in phrases like “That was a killer

performance!”, the sentiment is highly positive. Advanced machine

learning models, especially those based on transformers like BERT or

RoBERTa, have significantly improved sentiment analysis by leveraging

contextual embeddings. These models consider the surrounding words

and phrases to better understand the intent behind ambiguous

expressions. Despite advancements, these models still struggle with

nuances like sarcasm, regional dialects, and cultural variations. Training

on diverse, well-annotated datasets can help improve accuracy, but

achieving consistent performance across all contexts remains a challenge.

• Intensity: Sentiments in language are not binary; they exist on a spectrum

ranging from weak to strong. This intensity often adds nuance to

expressions, requiring sentiment analysis systems to not only classify the

372

sentiment as positive, negative, or neutral but also determine its strength

or degree. Capturing sentiment intensity is critical in understanding the

emotional tone more comprehensively. The strength of sentiment can

significantly alter the meaning and impact of a statement. For instance:

o “I like this.” This conveys mild approval and suggests a moderate

positive sentiment.

o “I absolutely love this!” Here, the sentiment is highly positive and

enthusiastic, reflecting a strong emotional response.

If an analysis system treats both sentences as equally positive, it misses a

vital aspect of the speaker's intent and emotional intensity, leading to less

actionable insights.

Example in Action. Consider product reviews:

o “The product is okay.” (Neutral, low intensity)

o “The product is amazing!” (Highly positive, high intensity)

o “The product is a disaster!” (Highly negative, high intensity)

An effective system should score these differently to reflect the varying

emotional tones accurately.

Challenges in Measuring Intensity:

o Lexical Variations: Words like “good”, “great” and “amazing”

represent varying degrees of positivity but are often lumped

together in traditional models. Similarly, intensifiers like “absolutely”

or “very” can amplify sentiment strength, while hedging terms like

“kind of” or “somewhat” reduce it.

o Contextual Dependencies: Intensity can change based on

context. For instance, the phrase “That’s good” can range from

mildly positive to sarcastic, depending on tone or surrounding text.

o Cultural and Subjective Differences: What feels “intense” in one

culture or language might not be perceived the same way

elsewhere. A sentiment expressed as “intense” by one person may

seem neutral to another.

373

Addressing intensity enriches sentiment analysis by unveiling the

emotional depth of language, making it indispensable for nuanced

applications like customer experience management and social media

monitoring.

• Negation Handling: Negation is a significant challenge in sentiment

analysis as it often reverses or alters the sentiment expressed in a phrase.

Words like “not”, “never”, “no” and “cannot” can completely change the

meaning of a sentence, making it crucial for sentiment analysis systems to

detect and appropriately interpret negation. Failure to handle negation

correctly can lead to inaccurate sentiment predictions. Negation can

transform sentiment in subtle ways:

o “This movie is good.” (Positive sentiment)

o “This movie is not good.” (Negative sentiment due to negation)

o In more complex cases, negation introduces nuance:

o “The performance was not bad.” (Positive sentiment despite the

presence of negative terms)

o “The design is not only practical but also beautiful.” (Positive

sentiment with an intensifier).

o “The service wasn’t awful, but it wasn’t great either.”

Advanced models can identify mixed sentiment, recognizing both

the absence of extreme negativity and the lack of high praise.

Without proper negation handling, systems might misclassify these

sentences as negative, overlooking the context provided by negation

terms.

Challenges in Handling Negation:

o Scope of Negation: Determining the words or phrases affected by

negation is challenging. For example, in “I don’t think the food was

great, but the service wasn’t bad”, negation applies differently to

“great” and “bad”.

374

o Double Negatives and Sarcasm: Phrases like “Not unhappy” or

sarcastic comments such as “Yeah, that wasn’t terrible at all”

require nuanced interpretation.

o Varied Expressions of Negation: Negation can be implicit, as in “I

would avoid this place.” Here, the sentiment is negative despite the

absence of explicit negation words.

Negation handling ensures sentiment analysis systems can accurately

reflect the complexities of human language, providing more reliable and

insightful results.

• Sarcasm Detection: Sarcasm presents a significant challenge in

sentiment analysis because its true meaning often contradicts the literal

interpretation of the words. Sarcastic statements require an understanding

of tone, context, and sometimes even prior knowledge about the speaker’s

intent, which makes it difficult for automated systems to detect sarcasm

accurately. Sarcasm often relies on the interplay between what is said and

what is implied:

o Literal meaning: “Great job!” suggests praise.

o Sarcastic intent: When spoken in a context of failure, it conveys

frustration or criticism.

Examples

1. “Oh, fantastic! Another delay!” While the words seem positive, the

context (e.g., waiting for a late train) reveals annoyance.

2. “That’s just what we needed—another broken appliance.” This

implies dissatisfaction, despite the apparent enthusiasm.

3. “Loved it! Can’t wait to never experience that again.” A mixture of

positive and negative words, with the overall sentiment being

negative.

375

Challenges in Detecting Sarcasm:

o Context Dependence: Sarcasm often requires contextual clues to

interpret correctly. For example, “Great game!” after a loss in a

sports match implies disappointment.

o Subtlety: Sarcasm can be subtle, with no clear indicators like tone

or exaggerated expressions in text-based communication.

o Cultural and Linguistic Nuances: Sarcasm varies across cultures

and languages, requiring systems to be adaptable.

Sarcasm detection struggles in low-resource languages or without

sufficient contextual training data. Multimodal detection requires advanced

systems and data beyond text, such as audio or video. Sarcasm detection

is essential for accurate sentiment analysis, enabling systems to

understand the nuanced ways people express emotions in everyday

communication.

Addressing these challenges requires a mix of linguistic techniques,

machine learning, and deep learning, which we’ll discuss in the

approaches below.

4.2 APPROACHES TO SENTIMENT ANALYSIS

Several techniques have been developed to analyze sentiment, ranging from

traditional rule-based methods to complex deep learning models. Here are

some commonly used approaches:

Rule-Based Sentiment Analysis

Rule-based sentiment analysis is a traditional and straightforward approach

used to determine the sentiment of a given text. These systems rely on

manually crafted rules, lexicons, and linguistic patterns to classify sentiments

into predefined categories such as positive, negative, or neutral. Despite the

simplicity of the approach, it serves as a foundational method in sentiment

analysis.

376

• How Rule-Based Sentiment Analysis Works

The core of a rule-based system is a sentiment lexicon—a dictionary of

words tagged with sentiment scores. Each word is assigned a positive,

negative, or neutral sentiment value, and the overall sentiment of a

sentence or document is calculated by aggregating these values. The

system may also incorporate additional rules to handle negations,

intensifiers, and other linguistic constructs.

Example Process:

1. Input Sentence: “The movie was not bad at all.”

2. Lexicon Lookup:

o “movie”: Neutral

o “not”: Negation

o “bad”: Negative (-1)

o “at all”: Intensifier

3. Rule Application:

o Negation (“not bad”) flips “bad” from negative to positive.

o Resulting Sentiment: Positive.

• Examples of Rules

o Negation Handling: Words like “not”, “never”, or “no” reverse the

polarity of the following sentiment word (e.g., “not happy” becomes

negative).

o Intensifiers: Words such as “very”, “extremely”, or “slightly” modify the

strength of sentiment (e.g., “very good” is more positive than “good”).

377

o Conjunction Handling: Rules can handle conjunctions like “but” to

prioritize one part of the sentence over another (e.g., “The food was

great, but the service was terrible.” focuses on the negative aspect).

• Advantages

o Simplicity: Rule-based systems are easy to implement and understand,

making them suitable for beginners and small-scale applications.

o Customization: The system can be tailored for specific domains (e.g.,

finance or healthcare) by adding domain-specific words to the lexicon.

o Transparency: The rules and processes are explicit, enabling users to

trace and debug decisions easily.

o Low Computational Requirement: Compared to machine learning-

based methods, rule-based systems are lightweight and do not require

large amounts of training data.

• Limitations

o Lack of Context Understanding: Rule-based systems often fail to grasp

the context of a sentence. For example, “This movie was so

unpredictable!” could be positive or negative depending on the user's

tone or intent.

o Inability to Handle Sarcasm and Irony: Phrases like “What a fantastic

mess you’ve created!” are misclassified due to their literal

interpretation.

o Maintenance Challenges: Keeping the lexicon updated with new words,

slang, and expressions requires constant effort.

o Scalability Issues: Performance may degrade with longer, more

complex texts where multiple linguistic factors interact.

o Dependency on Manual Efforts: Creating and maintaining rules and

lexicons is labor-intensive and subjective.

378

• Applications

o Social Media Monitoring: Analyzing customer sentiment in tweets or

Facebook posts about a product or service.

o Customer Feedback: Classifying product reviews as positive or

negative for quick decision-making.

o Domain-Specific Analysis: For example, in healthcare, identifying

positive or negative mentions of a drug’s effects.

While rule-based methods are limited, combining them with modern

techniques can enhance performance. Hybrid models integrate rule-based

systems with machine learning or deep learning for better accuracy. For

instance, using a rule-based system to preprocess data and then applying

machine learning algorithms for deeper contextual understanding can yield

significant improvements.

In conclusion, while rule-based sentiment analysis provides a solid starting

point, its reliance on predefined rules limits its ability to handle nuanced

language. For modern applications requiring high accuracy and adaptability,

transitioning to data-driven approaches is essential.

Machine Learning-Based Sentiment Analysis

Machine learning has revolutionized sentiment analysis by enabling systems

to learn from data rather than relying on hand-crafted rules. These models

leverage labelled datasets to identify sentiment patterns, making them

adaptable to diverse text inputs and complex language constructs.

• How Machine Learning-Based Sentiment Analysis Works

In ML-based sentiment analysis, models are trained using labelled

datasets, where each text entry (e.g., tweets, reviews, or comments) is

tagged as positive, negative, or neutral. The training process involves

identifying numerical representations of text—that help the model classify

sentiment effectively.

379

Key Text Feature Extraction Techniques:

1. Bag of Words (BoW): Converts text into a vector by counting word

occurrences. For example:

o “I love this movie”: BoW vector → {love: 1, movie: 1}

o Limitations: It ignores word order and context (e.g., “not good”

vs. “good”).

2. TF-IDF (Term Frequency-Inverse Document Frequency): Adjusts word

counts by their importance across documents. Rare yet sentiment-rich

words (e.g., “horrific”, “amazing”) are emphasized, while common

words (e.g., “the”, “is”) are down-weighted.

o Example: A word like “disappointing” might have higher weight

in a movie review dataset compared to generic words.

3. N-grams: Captures sequences of words (e.g., bigrams or trigrams) to

account for context. Adds structure and context beyond single-word

features. For instance:

o “not bad”: Bigram preserves negation meaning.

• Common Machine Learning Algorithms

1. Naïve Bayes (NB): It is a probabilistic classifier that uses Bayes’

theorem which assumes features (e.g., words) are independent, which

simplifies computation.

o Example: Given a positive review like “The product is amazing,”

NB assigns probabilities to classify it as positive.

o Advantage: Fast and effective for simple tasks.

o Limitation: Struggles with nuanced contexts (e.g., sarcasm).

2. Support Vector Machines (SVM): This algorithm separates classes by

finding a hyperplane that maximizes the margin between them.

o Example: An SVM trained on product reviews classifies phrases

like “terribly good” based on its proximity to sentiment

boundaries.

o Advantage: Handles high-dimensional data well.

o Limitation: Requires careful tuning of parameters for optimal

performance.

380

3. Logistic Regression (LR): The logisitic regression model is a linear

model predicting probabilities for classes (positive or negative

sentiment).

o Example: Trained on movie reviews, LR predicts the likelihood

that a review is positive.

o Advantage: Simple and interpretable.

o Limitation: May underperform with complex feature interactions.

• Example

Consider a sentiment analysis task for classifying product reviews:

1. Dataset: Labelled reviews such as “The battery life is excellent”

(positive) and “The screen quality is poor” (negative).

2. Process:

o Extract features (e.g., TF-IDF or BoW).

o Train an SVM model.

o Use the model to classify new reviews like “This camera is

awful” as negative.

• Advantages

o Improved Generalization: Learns patterns across diverse datasets,

making it more robust than rule-based systems.

o Feature Engineering Flexibility: Adapts to domain-specific needs with

tailored features (e.g., industry-specific keywords).

o Efficiency in Large-Scale Applications: Once trained, ML models can

process vast amounts of text quickly.

• Limitations

o Dependence on Labelled Data: High-quality, labelled datasets are

crucial but can be expensive and time-consuming to create.

o Contextual Limitations: Models struggle with subtle cues like sarcasm,

irony, or context-specific meanings (e.g., “This book is unexpectedly

dull” in a satire genre).

381

o Domain Transfer Challenges: Models trained on one domain (e.g.,

movie reviews) may perform poorly when applied to another (e.g.,

financial reports).

o Computational Complexity: Training on large datasets can require

significant computational resources.

Machine learning-based sentiment analysis represents a significant

advancement over rule-based methods. It excels in handling diverse text

inputs, recognizing complex language patterns, and processing large datasets

efficiently. However, its effectiveness depends on the availability of labelled

data, careful feature engineering, and domain-specific tuning. Combining ML

with advanced techniques like deep learning can further enhance sentiment

analysis capabilities, enabling it to tackle more nuanced challenges like

sarcasm and contextual dependencies.

Deep Learning-Based Sentiment Analysis

Deep learning has transformed sentiment analysis by offering advanced

models capable of capturing intricate language features, contextual

relationships, and subtle sentiment cues. Unlike traditional machine learning,

deep learning automates feature extraction, making it well-suited for complex

text data. Models such as Convolutional Neural Networks (CNNs), Recurrent

Neural Networks (RNNs), and Transformers like BERT have set new

benchmarks in the field.

• How Deep Learning Models Work:

1. Convolutional Neural Networks (CNNs)

o CNNs, initially designed for image processing, are also effective

for text classification.

o They apply filters to text representations (e.g., word embeddings

like GloVe or Word2Vec) to capture patterns like phrases or n-

grams.

o Example: A CNN might detect that the words “absolutely

amazing” together convey strong positive sentiment.

2. Recurrent Neural Networks (RNNs)

o RNNs process sequential data, making them ideal for analyzing

sentence structures.

382

o Long Short-Term Memory Networks (LSTMs): An advanced

RNN variant that remembers context over long sequences,

essential for understanding sentiment in longer texts.

o Example: LSTMs can differentiate “not only did I dislike the

movie, but the acting was awful too” from “I disliked the movie,

but the ending was great” by retaining long-term dependencies.

3. Transformers

o Bidirectional Encoder Representations from Transformers

(BERT): A state-of-the-art model that processes text

bidirectionally to capture the meaning of words in context.

o Example: BERT understands nuanced differences in sentiment,

such as “I’m not sure if I’m happy” (neutral to negative) versus

“I’m very happy” (strongly positive).

• Example

A BERT-based sentiment analysis system processes a movie review

dataset:

1. Input: Text such as “The plot was gripping, but the dialogue felt

forced.”

2. Preprocessing: Tokenization, converting text into embeddings.

3. Training: The model learns context by analyzing sequences of tokens,

distinguishing positive words (“gripping”) from negatives (“forced”).

4. Output: Assigns a mixed or neutral sentiment based on overall

context.

• Advantages

o Contextual Understanding: Models like BERT grasp subtle context and

relationships between words, overcoming limitations of traditional

approaches. For example, BERT identifies the negative tone in “The

service was not just bad, it was terrible” despite the presence of the

word “just”.

o Nuance and Complexity: Deep learning captures sentiments expressed

through complex language constructs like metaphors, idioms, or

383

implicit cues. Example: Recognizing positive sentiment in “This movie

was a breath of fresh air.”

o Reduced Manual Effort: Feature extraction is automated. There’s no

need for manual feature engineering, as embeddings represent

semantic and syntactic information.

o Scalability: Once trained, these models perform well across large

datasets and real-time applications.

• Limitations

o Data Requirements: Deep learning models require large, annotated

datasets for training. For example, a sarcasm detection-capable

sentiment model would need significant training data with annotated

sarcasm.

o Computational Resources: Training and deploying models like BERT

demand high-performance GPUs, making it resource intensive.

o Interpretability: Deep learning models are often considered “black

boxes”, making it difficult to understand why a specific sentiment was

assigned.

o Domain Adaptation: A model trained on product reviews may not

generalize well to legal or medical texts without domain-specific fine-

tuning.

Deep learning-based sentiment analysis offers unparalleled accuracy and

adaptability, especially in handling complex text with nuanced sentiment.

However, it requires significant computational and data resources, making it

ideal for applications with ample infrastructure, such as large-scale review

analysis or chatbot development. Advanced models like BERT and its

successors continue to push the boundaries, promising even more refined

sentiment understanding in the future.

Hybrid Approaches

Hybrid approaches in sentiment analysis aim to blend the strengths of rule-

based methods with machine learning or deep learning techniques to create

systems that are both interpretable and capable of handling complex

384

language patterns. These approaches address the limitations of individual

methods and strike a balance between simplicity and sophistication.

• How Hybrid Approaches Work:

1. Preprocessing with Rule-Based Systems: A rule-based system is used

in the early stages of processing to identify key sentiment-bearing

words and patterns using sentiment lexicons like SentiWordNet.

o Example: A hybrid system might first identify that “amazing” is a

positive word and “not” is a negation indicator.

2. Machine Learning for Classification: After rule-based preprocessing,

machine learning or deep learning algorithms analyze the text to

capture context, sentence structure, and subtle nuances.

o Example: Once “not amazing” is identified, a machine learning

model can classify the overall sentiment as neutral or negative

based on training data.

3. Combining Outputs: The final sentiment is determined by combining

scores or predictions from the rule-based and machine learning

components. Weighted averages or ensemble methods are often used

to achieve this.

• Example

A hybrid sentiment analysis system processes a review like “The movie

was not just bad; it was absolutely terrible.”

Step 1: Rule-Based Preprocessing:

Lexicon tagging identifies “bad” and “terrible” as negative words and

detects intensifiers like “absolutely”. Negation rules identify “not just” to

add emphasis to the sentiment.

Step 2: Machine Learning Model:

The preprocessed text is fed into a model like Naïve Bayes or a

Transformer-based model like BERT, which accounts for contextual

385

relationships. It recognizes the emphasis created by the phrase structure

and assigns a strongly negative sentiment.

Step 3: Final Output:

The hybrid system combines insights from the lexicon and the machine

learning predictions to classify the sentiment accurately.

• Advantages

o Improved Accuracy: By combining predefined sentiment rules with

learned patterns, hybrid methods can handle diverse datasets better.

Example: A hybrid system might correctly interpret “This isn’t great, but

it’s not terrible either” as neutral, recognizing the contrast in sentiment.

o Flexibility: Hybrid systems can adapt to specific domains by modifying

the rule-based component while retraining the machine learning model.

o Handles Edge Cases: Sentiment lexicons help manage rare or unusual

words, while machine learning handles patterns not explicitly covered

by rules.

o Cost-Effective: Rule-based components reduce the need for large

amounts of annotated training data, which is essential for training deep

learning models.

• Limitations

o Complexity: Designing and maintaining hybrid systems can be

challenging, as the rules must be carefully aligned with the model’s

outputs to avoid conflicts.

o Domain-Specific Challenges: While the rule-based part is easy to

customize for a domain, the machine learning model must be retrained

for effective generalization, which can be resource-intensive.

o Struggles with Sarcasm and Context: Although hybrid methods

improve performance, detecting subtle sarcasm or deep context (e.g.,

“Oh, just wonderful!” sarcastically) remains difficult.

386

Hybrid approaches to sentiment analysis offer a pragmatic solution that

leverages the interpretability of rule-based methods and the adaptability of

machine learning. They are particularly useful in scenarios where annotated

data is limited or where domain-specific customization is necessary. While not

a one-size-fits-all solution, hybrid systems strike a balance that is both

practical and effective for many sentiment analysis tasks.

4.3 REAL TIME APPLICATIONS

Sentiment analysis is applied across various fields, helping organizations

understand their customers, improve services, and manage brand reputation.

Here are some prominent real-time applications:

1. Customer Feedback Analysis: Sentiment analysis helps businesses

analyze customer feedback from product reviews, surveys, and support

tickets. By automatically categorizing feedback as positive, negative, or

neutral, companies can quickly identify areas needing improvement and

respond to customer concerns more effectively. For example, Amazon

uses sentiment analysis on product reviews to provide insights on

customer satisfaction.

2. Social Media Monitoring and Brand Sentiment: Companies use

sentiment analysis tools to track social media mentions, posts, and

hashtags related to their brand. By analyzing real-time sentiment, they can

gauge public perception, identify negative trends early, and respond

proactively to maintain a positive brand image. Tools like Brandwatch and

Sprout Social integrate sentiment analysis to monitor online brand

sentiment continuously.

3. Financial Market Analysis: Sentiment analysis is used in finance to

analyze news articles, earnings reports, and social media posts to assess

market sentiment about specific companies or the economy in general. For

instance, hedge funds use sentiment analysis to track mentions of

companies in the news, analyzing sentiment to predict stock price

movements or investment opportunities.

387

4. Patient Feedback in Medical Research: Sentiment analysis is used to

analyze patient feedback, surveys, and social media comments on

healthcare services. Hospitals and healthcare providers can use this

feedback to improve the quality of care, patient satisfaction, and overall

service delivery. Sentiment analysis can also be used in health apps to

analyze mental health conditions based on patient self-reports.

5. Political Opinion and Public Sentiment: Sentiment analysis is widely

used in political campaigns and governance to gauge public opinion on

policy decisions, speeches, or political events. By analyzing tweets, news

comments, and forum posts, governments and political analysts can

understand the public mood, respond to concerns, and adjust messaging

accordingly.

6. Content Moderation: Social media platforms and online communities use

sentiment analysis to detect potentially harmful or inappropriate content.

For example, platforms like YouTube and Facebook use sentiment

analysis algorithms to monitor and flag comments or posts that could be

aggressive, abusive, or offensive, helping to maintain a safer online

environment.

7. Product Development and Marketing Strategy: Sentiment analysis

helps companies understand customer sentiment toward product features,

advertising campaigns, and competitors. By analyzing public feedback,

they can tailor marketing strategies and develop new features that

resonate with customer preferences. For instance, a company launching a

new smartphone might use sentiment analysis to see which features

generate the most positive feedback and emphasize these in future

campaigns.

388

Figure-24: Real Time Applications of Information Sentiment Analysis

Check Your Progress

a) TextRank is inspired by the ______ algorithm, used originally for ranking

web pages.

b) ______ summarization models often face the challenge of hallucination,

where generated text includes inaccuracies not present in the source.

c) The ______ technique in summarization evaluates the quality of

summaries by measuring overlap between machine and human-generated

summaries.

d) ______ summarization generates summaries by selecting key sentences

directly from the source text.

e) One challenge of real-time summarization is balancing ______ and

______ to produce concise yet coherent summaries in high-pressure

environments.

389

4.4 Let us sum up
In this unit we have discussed the the problems in sentiment analysis. You

have got detailed understanding of the key approaches to sentiment analysis.

You now have a clear knowledge of various advantages and limitations of

each approach. You can now also give examples of each approach. We have

given an elaborative list of the real time applications of sentiment analysis.

4.5 Check your progress: Possible Answers

a) PageRank

b) Abstractive

c) ROUGE

d) Extractive

e) speed, accuracy

4.6 Further Reading

• Speech and Language processing an introduction to Natural Language

Processing, Computational Linguistics and speech Recognition by Daniel

Jurafsky and James H. Martin (ISBN13: 978-0131873216)

• James A. Natural language Understanding 2e, Pearson Education, 1994.

4.7 Assignments
• What is the problem of sentiment analysis, and how does it relate to

opinion mining?

• Discuss the main approaches to sentiment analysis, including lexicon-

based and machine learning-based methods.

• How does sentiment analysis handle challenges like sarcasm, negation,

and ambiguity in language?

• Describe some real-time applications of sentiment analysis in areas such

as social media monitoring and product reviews.

• How is sentiment analysis used to understand customer feedback and

improve business strategies?

390

Unit-5: Speech Processing

Unit Structure

5.0. Learning Objectives

5.1. Introduction to the Problem

5.2. Approaches to Speech Processing

5.3. Real Time Application

5.4. Let us sum up

5.5. Check your Progress: Possible Answers

5.6. Further Reading

5.7. Assignment

5

391

5.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Know the problems in speech processing

• Understand the key approaches to speech processing

• List various advantages and limitations of each approach

• Give examples of each approach

• Describe the real time applications of speech processing

5.1 INTRODUCTION TO THE PROBLEM
Speech processing is a subset of NLP that deals with the analysis,

manipulation, and synthesis of speech signals. The goal of speech processing

is to enable machines to understand human speech in a way that mimics

human capabilities. Speech processing systems are critical in enabling voice-

based applications such as voice assistants, transcription software, and real-

time language translation tools.

Speech is a complex and dynamic mode of communication. Unlike written

text, which is static and predictable, speech is dynamic and heavily influenced

by factors such as tone, pitch, accent, and context. This makes speech

processing a particularly challenging field. The core problem lies in converting

human speech into a form that machines can process and interpret.

Key challenges in speech processing include:

1. Noise and Distortions: One of the primary challenges in speech

processing is handling noise and distortions present in real-world audio

signals. Noise can come from a variety of sources, such as background

chatter in a crowded room, environmental sounds like traffic or wind, or

technical issues like microphone hum or recording artifacts. These

interferences significantly degrade the quality of the audio, making it

harder for speech processing systems to accurately interpret or transcribe

the spoken content. For example, a virtual assistant like Alexa or Siri might

struggle to understand commands given in a noisy household with the TV

392

playing in the background. Similarly, in a call center, poor-quality phone

lines or overlapping conversations can affect automatic transcription or

sentiment analysis tools. Speech processing systems must employ noise

reduction and filtering techniques to isolate the speech signal from

unwanted noise. Methods like spectral subtraction, Wiener filtering, or

advanced deep learning approaches such as denoising autoencoders help

in cleaning the audio. Additionally, robust automatic speech recognition

(ASR) models are trained on datasets that simulate noisy environments to

improve performance in real-world scenarios. However, certain distortions,

like overlapping speech in multi-speaker settings or strong echo, remain

particularly challenging, requiring innovations like beamforming and

advanced source separation algorithms to address effectively.

2. Variability in Pronunciation: A major challenge in speech processing is

the significant variability in pronunciation across speakers. This variability

arises from factors such as regional accents, dialects, speaking speeds,

and individual speaking styles. For instance, the way “tomato” is

pronounced differs between American and British English, and even within

a single language, regional accents can vary widely. These differences

pose a challenge for speech recognition systems, which must account for

such diversity to ensure accurate transcription or interpretation. Speaking

speed is another source of variability. Some individuals speak very quickly,

blending words together (“gonna” instead of “going to”), while others

articulate slowly and deliberately. Systems must adjust dynamically to

these differences without losing context or meaning. For example, a call

center speech recognition system must understand callers from diverse

linguistic backgrounds who might pronounce the same phrase differently.

Similarly, a voice assistant like Google Assistant needs to accurately

interpret commands from speakers with varying accents, such as an

Australian user asking for “football” versus a Scottish user doing the same.

To address these challenges, speech processing systems rely on

extensive training with diverse datasets that include different accents and

pronunciations. Techniques like speaker adaptation, transfer learning, and

phoneme modelling enhance robustness, but achieving universal accuracy

393

remains a complex task, especially for low-resource languages and rare

accents.

3. Contextual Understanding: Speech processing systems face significant

challenges in capturing the context embedded in spoken language. Unlike

written text, spoken language includes nuances like tone, intonation,

pauses, emphasis, and even rhythm, which add layers of meaning. These

elements can drastically alter the interpretation of a statement, making

contextual understanding a critical but complex task. For example,

consider the phrase, “You’re going to the store?” versus “You’re going to

the store!” Though the words are identical, the question conveys

uncertainty or a need for confirmation, while the exclamation indicates

surprise or excitement. Without analyzing tone and intonation, a speech

recognition system might misinterpret the user’s intent, leading to

inaccurate responses. Another challenge is the use of pauses or

hesitations in speech. In natural conversations, a pause after “I think” in “I

think... you’re right” might signify doubt, whereas no pause indicates

agreement. Similarly, emphasis on different words can shift meaning. For

instance, “I didn’t take the book” versus “I didn’t take the book” can

indicate denial of the action or stress on a different culprit. To address

these complexities, advanced models integrate prosody (the rhythm and

tone of speech) and semantic analysis, often leveraging large datasets

and transformer-based architectures like BERT or Whisper. However,

accurately capturing subtle nuances remains a challenge, especially in

noisy or multilingual environments.

4. Speaker Adaptation: Speaker adaptation is a critical challenge in speech

processing, as each individual has unique speech characteristics

influenced by their age, gender, accent, pitch, and speaking style. A

system optimized for one speaker may struggle to perform accurately

when interacting with another, leading to errors in recognition or

misinterpretation of intent. For instance, consider a voice assistant trained

primarily on adult male voices. When interacting with children or

individuals with higher-pitched voices, the system may fail to recognize

words correctly due to the differences in frequency range and articulation

patterns. Similarly, accents can cause significant variability. A speaker

394

from the UK might pronounce “data” as day-tuh, while a speaker from the

US may say dah-tuh. Without proper adaptation, the system could fail to

generalize across these variations. Speaker adaptation techniques aim to

address this issue by customizing the system to better understand

individual speakers. Methods include:

o Speaker Normalization: Adjusting the acoustic features of speech to

align with a standard representation.

o Fine-Tuning Models: Using small amounts of speaker-specific data

to retrain the model for improved accuracy.

o Adaptive Learning: Systems that continuously learn and adjust to a

speaker’s unique traits over time.

For example, Google Assistant and Alexa use adaptive learning, storing

user-specific data (with permission) to better understand repeated

interactions, leading to personalized and accurate responses. However,

achieving real-time, accurate adaptation across diverse populations

remains a significant challenge.

5. Real-Time Processing: Real-time processing is a significant challenge in

speech applications, as many systems require immediate responses to

user input. This is particularly true for virtual assistants like Alexa, Siri, and

Google Assistant, where any delay in processing impacts the user

experience. Real-time speech processing involves capturing, analyzing,

and interpreting audio signals within milliseconds to deliver accurate

outputs without noticeable latency. The difficulty lies in balancing speed

with accuracy. Speech is a continuous signal that needs to be broken

down into smaller units (phonemes or words) and analyzed for context.

This requires algorithms that are both computationally efficient and

capable of understanding nuances such as accent, speed, and context.

For example, a virtual assistant must process commands like “Turn off the

lights” almost instantaneously while ensuring the command isn’t confused

with similar phrases like “Turn on the lights”. Another example is real-time

translation systems, such as Google Translate’s speech-to-speech

feature. These systems must transcribe the input language, translate it into

the target language, and synthesize the output—all in real time. Real-time

processing also demands robust hardware and optimized algorithms to

395

handle tasks like noise cancellation, feature extraction, and deep learning

inference with minimal delay. The trade-off between computational cost

and performance remains a significant hurdle, especially in low-power

devices like smartphones and IoT gadgets.

5.2 APPROACHES TO SPEECH PROCESSING
There are several approaches to speech processing, ranging from traditional

signal processing techniques to modern machine learning-based methods.

These approaches can be broadly categorized into four main tasks: Speech

Recognition, Speech Synthesis, and Speech Enhancement.

Speech Recognition

Speech recognition refers to the process of converting spoken language into

written text. This technology is integral to various applications, such as virtual

assistants (Google Assistant, Siri, Alexa), transcription software, and real-time

translation systems. The field has evolved from traditional methods to modern

deep learning approaches, enabling systems to handle complex tasks with

improved accuracy.

• Traditional Speech Recognition

Early speech recognition relied on statistical and rule-based approaches,

where speech was analyzed based on handcrafted features. Two key

techniques were:

o Dynamic Time Warping (DTW): A method used to align spoken words

to a reference template, even when there are variations in speed or

intonation. DTW measures similarities between sequences (e.g.,

speech waveforms) by stretching or compressing them to find an

optimal match.

Example: DTW could match a slowly spoken “hello” to a faster

reference version, ensuring the recognition system understands both

variations.

Limitations: DTW is computationally intensive and struggles with large

vocabularies.

o Hidden Markov Models (HMMs): A statistical method that models

speech as a sequence of states (e.g., phonemes). Each state

396

represents a probability distribution over acoustic features, and

transitions between states follow a Markov process.

Example: HMMs could recognize the phrase “play music” by modeling

the sequence of phonemes /p/, /l/, /eɪ/, and so on.

Advantages: HMMs handle variability in speech effectively.

Limitations: They rely heavily on feature engineering and struggle with

long-term dependencies in speech.

• Modern Speech Recognition

Recent advancements in deep learning have transformed speech

recognition. These approaches automatically learn features from raw data,

reducing the need for manual intervention.

o Convolutional Neural Networks (CNNs): Deep Neural Networks extract

high-level representations from audio features, such as Mel-Frequency

Cepstral Coefficients (MFCCs), and map them to text. CNNs on the top

of deep networks are effective at capturing local patterns in audio

spectrograms, such as frequency changes over time.

Example: CNNs can detect sudden spikes in pitch or volume, helping

distinguish similar-sounding words like “can” and “can’t”.

Advantage: Learn complex patterns and improve robustness to noise.

Limitation: Require large datasets and substantial computational

resources.

o Recurrent Neural Networks (RNNs): Particularly, Long Short-Term

Memory (LSTM) networks are used to capture temporal dependencies

in speech.

Example: LSTMs can recognize that “weather” in “what’s the weather”

follows “the” and not “where”.

Advantages: Handle sequences effectively.

Limitations: RNNs can be slow to train and process.

o Deep Speech: Modern systems aim for end-to-end approaches,

directly mapping raw audio to text. A notable end-to-end model, it uses

deep learning to process raw speech waveforms and convert them to

text.

397

Example: DeepSpeech powers real-time transcription in tools like

Otter.ai, translating meetings or interviews into text in seconds.

Advantages: Simplify architecture and improve adaptability.

Limitations: Require extensive training data and high computational

power.

When a user says, “What’s the weather like today?” into a voice assistant, this

is what happens. The system captures the speech signal. It processes the

waveform into spectrograms or MFCCs. An end-to-end model maps the audio

to text, “What’s the weather like today? The assistant processes the query to

fetch weather data.

Modern speech recognition systems provide high accuracy, real-time

processing, and robust handling of diverse accents and noise. They require

large annotated datasets, are computationally expensive, and can struggle

with domain-specific language or rare words. Speech recognition has come a

long way, and with advancements like transformers, the future promises even

more accurate and versatile systems.

Speech Synthesis (Text-to-Speech)

Speech synthesis, also known as Text-to-Speech (TTS), is the process of

converting written text into spoken language. TTS is a cornerstone technology

in applications such as screen readers for the visually impaired, virtual

assistants (e.g., Siri, Alexa), in-car navigation systems, and even automated

customer service agents. Over time, TTS has evolved from simple

concatenation-based methods to highly sophisticated neural models capable

of producing natural, human-like speech.

• Concatenative Synthesis

This traditional method involves stitching together pre-recorded segments of

speech stored in a database. Each segment corresponds to a phoneme,

syllable, word, or phrase. The system identifies the required segments based

on the text input and concatenates them to form complete sentences.

398

Example: Early GPS navigation systems often used concatenative synthesis,

leading to robotic or disjointed speech, especially when encountering

uncommon place names.

Advantages: Produces high-quality, natural-sounding speech when

appropriate recordings are available.

Limitations: Limited flexibility. It struggles to generate new words, adapt to

varying contexts, or produce multiple voices. It also requires vast amounts of

storage for the speech database.

• Parametric Synthesis

Parametric synthesis represents speech using mathematical models instead

of pre-recorded samples. It generates speech by predicting parameters such

as pitch, duration, and voice timbre.

o Hidden Markov Models (HMMs): Early parametric methods utilized

HMMs to model sequential patterns in speech and predict speech

waveforms based on text.

Advantages: More flexible than concatenative synthesis, capable of

generating speech dynamically.

Limitations: Speech quality was often robotic due to oversimplified

models of human speech patterns.

o WaveNet: Developed by DeepMind, WaveNet improved parametric

synthesis by employing a deep generative model to produce speech

waveforms directly.

Example: WaveNet is used in Google Assistant to create smooth, human-

like voices for various languages and accents.

Advantages: It generates highly realistic and natural speech. It can

handle nuances such as intonation and prosody effectively.

Limitations: High computational requirements during training and

inference.

Deep Learning for TTS

Recent advances in TTS have been driven by deep learning models that

excel at capturing the complexities of human speech.

399

o Tacotron: A sequence-to-sequence model developed by Google, Tacotron

converts text into spectrograms and then into audio waveforms. It ensures

proper rhythm, intonation, and pronunciation.

o Tacotron + WaveNet: A common pairing where Tacotron generates a

spectrogram, and WaveNet converts it to speech, producing highly natural

results.

o End-to-End Models: Models like FastSpeech optimize the process by

reducing latency and computational demands, making TTS more efficient

for real-time applications.

Example: Modern virtual assistants like Siri use such systems to generate

responses with personalized accents or tones.

Advantages: These models reduce errors caused by intermediate steps and

produce speech that closely mimics human expression, including emotions.

Let us take one more example for text to speech. Imagine typing “What’s the

weather like today?” into your virtual assistant. The system converts this input

into speech as follows:

• Text Analysis: The input is processed to identify words, punctuation,

and context.

• Phoneme Conversion: The text is mapped to phonemes (basic sound

units).

• Waveform Generation: A TTS model like Tacotron generates a

spectrogram, and WaveNet converts it to audio for playback.

Advantages: Parametric and deep learning-based systems can produce

speech in different accents, emotions, and languages. TTS is invaluable for

individuals with visual impairments or reading difficulties. Deep learning

models can adapt to diverse tasks, from reading news to creating virtual

characters in games.

Limitations: Computational Cost: Deep models like WaveNet require

significant resources during training and deployment. Contextual Challenges:

Understanding complex texts, abbreviations, or nuanced tones can still be

400

problematic. Ethical Concerns: Misuse of TTS (e.g., voice cloning for

impersonation) raises security and ethical questions.

Speech synthesis has progressed remarkably, from mechanical voices to

conversational agents indistinguishable from humans. Future developments

aim to make TTS even more efficient, expressive, and accessible across

languages and domains.

Speech Enhancement

Speech enhancement is a critical component of speech processing, aiming to

improve the clarity, quality, and intelligibility of speech signals. It is particularly

important in environments with noise, echoes, or other distortions, ensuring

that the intended message is accurately conveyed. Speech enhancement

finds applications in telecommunication, hearing aids, voice-controlled

systems, and video conferencing platforms.

• Noise Reduction

Noise reduction is a core technique in speech enhancement, aimed at filtering

out unwanted background sounds while preserving the speech signal.

o Spectral Subtraction: One of the earliest methods, it estimates the noise

spectrum and subtracts it from the speech signal’s spectrum. While

effective for stationary noise (e.g., hum of an air conditioner), it may

struggle with dynamic noise patterns like crowd chatter.

o Wiener Filtering: This adaptive filtering technique minimizes the mean

square error between the desired clean signal and the observed noisy

signal. It works well in moderately noisy environments but may distort

speech if noise levels fluctuate significantly.

Example: A hearing aid user in a subway benefit from noise reduction, which

minimizes the rumble of passing trains while maintaining conversational

clarity.

• Echo Cancellation

Echoes occur when the speech signal reflects off surfaces and re-enters the

system, distorting the original signal. This is particularly problematic in

401

telecommunication systems. Echo cancellation uses adaptive filters to identify

and cancel echoes by dynamically adjusting parameters based on the

incoming signal.

Example: During a virtual meeting, echo cancellation ensures that the

speaker’s voice is not repeated or distorted due to reflections from walls or the

microphone’s feedback loop.

Challenges: Echo cancellation can be computationally intensive and may

require precise tuning in environments with complex acoustics.

• Voice Activity Detection (VAD)

Voice Activity Detection distinguishes between periods of speech and non-

speech (silence, background noise). It helps focus processing resources on

speech segments, improving both efficiency and accuracy.

Applications: VAD is used in telecommunication to suppress background

noise during pauses and in automatic speech recognition systems to process

only relevant data. Some of the techniques for detecting voice activity are as

follows:

o Energy-Based Detection: Monitors energy levels to identify speech, but it

can be susceptible to loud background noise.

o Machine Learning Approaches: Neural networks trained on diverse

datasets can robustly differentiate speech from non-speech in noisy

environments.

Example: In an online class, VAD ensures that only the teacher's voice is

transmitted, muting keyboard clicks or rustling paper.

Advanced Approaches in Speech Enhancement

o Deep Learning Models: Neural networks like DNNs and transformers are

used for noise suppression and dereverberation. They learn complex

patterns in noisy signals to separate speech and noise more effectively.

Example: Apps like Krisp use deep learning to create noise-free audio in

real-time calls, even in highly noisy environments.

o Beamforming: A technique employed in microphone arrays to focus on a

particular direction of sound, reducing interference from other sources.

402

Example: Consider a video call where one participant is in a bustling café.

Speech enhancement algorithms dynamically filter out background chatter

and clinking dishes, ensuring that the participant’s voice is transmitted clearly

to the other end.

Advantages: Clearer speech ensures effective communication in noisy or

reverberant environments. Speech enhancement boosts the accuracy of

downstream tasks like speech recognition and speaker identification.

Enhanced Accessibility: Improves audio for individuals with hearing

impairments.

Limitations: Advanced algorithms like deep learning require significant

processing power. Imperfect noise suppression may introduce distortions,

making speech sound unnatural. Systems may struggle in environments

where noise patterns change unpredictably.

Speech enhancement continues to evolve, leveraging advancements in deep

learning and signal processing to create highly robust and adaptive solutions

for diverse real-world challenges.

Speaker Recognition

Speaker recognition refers to the ability of a system to identify or verify an

individual based on their voice. It plays a pivotal role in applications like voice

biometrics, user authentication, and personalized virtual assistants. This

technology leverages the uniqueness of a person’s voice—shaped by both

physical attributes (vocal tract, mouth shape) and speech patterns. Speaker

recognition is broadly categorized into speaker identification and speaker

verification.

• Speaker Identification

Speaker identification answers the question, “Who is speaking?” It involves

matching the voice of an unknown speaker to a database of known speakers.

The process of speaker identification is as follows:

o Voice features, such as pitch, formant frequencies, and spectrograms, are

extracted.

o These features are compared against stored templates using algorithms

like Gaussian Mixture Models (GMMs) or deep learning models.

o Probabilities are assigned to determine the closest match.

403

Example: A call center identifies a customer by matching their voice against a

database, enabling faster service without requiring manual identification.

Challenges: Performance can degrade in noisy environments or when dealing

with speakers with similar voice characteristics.

• Speaker Verification

Speaker verification answers the question, “Is this person who they claim to

be?” It compares a speaker’s voice against a single enrolled sample to

confirm their identity.

Applications

o Used in biometric security systems where a user's voice serves as a

password.

o Examples include voice-controlled banking systems or unlocking devices

with voice commands.

Some of the common algorithms for speaker verification are as follows:

o Dynamic Time Warping (DTW): Measures similarity between two

temporal sequences of speech features.

o I-Vectors and X-Vectors: Compact representations of speaker

characteristics, often used with probabilistic models like Probabilistic

Linear Discriminant Analysis (PLDA) for verification.

o Deep Neural Networks (DNNs): These networks can learn discriminative

voice features, improving accuracy in diverse conditions.

Example: When accessing a voice banking service, the system verifies the

speaker by matching their voice against a pre-recorded voiceprint before

allowing access to sensitive accounts.

Advanced Speaker Recognition Techniques

As far as advanced speaker recognition techniques are concerned, these can

be categorized as follows:

o Text-Dependent Systems: Require the speaker to say specific

phrases, ensuring higher accuracy.

o Text-Independent Systems: Work with any speech content but are

more complex due to variability in utterances.

404

Speaker recognition can also be implemented using deep Learning

Approaches by using

o Convolutional Neural Networks (CNNs) which extract local voice

features from spectrograms.

o Recurrent Neural Networks (RNNs) which capture temporal

dependencies in speech signals.

o Speaker Embeddings which are modern systems using embeddings

like X-vectors, which encapsulate speaker characteristics into fixed-

length vectors for easier comparison.

Example: In voice-controlled banking, users authenticate themselves through

speaker verification by saying, “Access my account”. The system compares

the input voice to a pre-enrolled voiceprint, ensuring that only authorized

individuals gain access.

Advantages

o High Accuracy: Modern algorithms achieve impressive accuracy, even in

challenging environments.

o Convenient Authentication: Eliminates the need for passwords, relying

instead on unique voiceprints.

o Personalization: Enhances user experience by personalizing responses

based on recognized speakers.

Limitations

o Environmental Factors: Background noise, echoes, and distortions can

impact performance.

o Health Conditions: Temporary changes in a person’s voice (e.g., due to a

cold) can affect recognition.

o Impersonation Risks: High-quality voice mimicking or spoofing attacks may

deceive systems.

Speaker recognition is a cornerstone of biometric security and personalized

services. With advancements in deep learning and adaptive models, these

systems are becoming increasingly robust, scalable, and secure, making

them invaluable in modern technology landscapes.

405

Speech-to-Speech Translation

Speech-to-speech translation is a sophisticated technology that converts

spoken language in one language into spoken language in another, enabling

seamless multilingual communication. It integrates three key components of

speech processing: speech recognition, machine translation, and speech

synthesis. This holistic approach eliminates language barriers and facilitates

real-time multilingual interactions.

• How Speech-to-Speech Translation Works

1. Speech Recognition (ASR - Automatic Speech Recognition): The first step

involves converting spoken input into text. For instance, if someone

speaks in English, ASR systems transcribe the spoken words into written

text. Advanced models like Google’s Speech-to-Text API or Microsoft

Azure use Deep Neural Networks (DNNs) and transformer architectures

like Whisper to ensure high accuracy, even in noisy environments.

2. Machine Translation (MT): The transcribed text is translated into the target

language using MT techniques. Models like Google Translate or OpenAI's

GPT-based approaches leverage transformers, which use attention

mechanisms to capture linguistic nuances, grammar, and context,

ensuring precise and natural translations. For example, the English

sentence “How are you?” could be translated into Spanish as “¿Cómo

estás?”

3. Speech Synthesis (Text-to-Speech or TTS): Finally, the translated text is

converted into speech in the target language. Cutting-edge TTS models

like WaveNet or Tacotron 2 are used to produce natural and fluid speech,

incorporating prosody (intonation, stress, rhythm) for a human-like auditory

experience.

Advanced Techniques in Speech-to-Speech Translation

o Zero-Shot Translation: Modern systems like OpenAI or Google Translate

use transfer learning to handle translations between languages for which

they weren’t explicitly trained.

o Multilingual Models: Unified models like mBART and M2M-100 handle

multiple languages simultaneously, improving efficiency.

406

o Speech-to-Speech End-to-End Models: Cutting-edge approaches bypass

intermediate text conversion. Systems like Meta’s SeamlessM4T directly

map speech in one language to speech in another, improving speed and

reducing errors.

Example: Consider a traveler in Spain who doesn’t speak Spanish. They ask

a question in English, “Where is the nearest train station?” The speech-to-

speech translation system converts their query into Spanish speech, “¿Dónde

está la estación de tren más cercana?” The Spanish response is then

translated back into English, facilitating a natural dialogue.

Applications

o Real-Time Communication: Used in international business meetings and

diplomatic discussions, it allows participants to communicate effectively

despite language differences.

o Travel and Tourism: Tourists use translation devices or apps to interact

with locals in foreign countries.

o Healthcare: Doctors and patients speaking different languages can

communicate accurately, improving medical outcomes.

o Education: Facilitates multilingual classrooms, enabling students from

diverse linguistic backgrounds to learn seamlessly.

Advantages

o Global Accessibility: Breaks down language barriers, fostering inclusivity

and collaboration.

o Time-Efficiency: Real-time processing eliminates the need for human

interpreters, speeding up communication.

o Scalability: Can handle multiple languages and dialects, making it

adaptable to global use cases.

Limitations

o Accuracy Challenges: Speech recognition may struggle with accents,

background noise, or ambiguous phrases. Machine translation might

misinterpret context or idiomatic expressions, leading to errors.

407

o Latency: Real-time translation demands high computational power, which

can cause delays.

o Cultural Nuances: Translation systems often miss cultural subtleties,

leading to potential misunderstandings.

o Limited Low-Resource Language Support: Many languages lack the large

datasets needed to train accurate models.

Speech-to-speech translation is revolutionizing global communication. As

technology advances, we can expect even more seamless, accurate, and

culturally aware solutions that will further bridge linguistic divides and enhance

human connection.

5.3 REAL TIME APPLICATIONS
Speech processing has numerous real-time applications that are transforming

industries and everyday life. Here are some significant use cases:

1. Virtual Assistants and Voice-Activated Devices: Speech processing is

the backbone of virtual assistants like Amazon’s Alexa, Apple’s Siri,

Google Assistant, and Microsoft’s Cortana. These systems use speech

recognition to understand user commands and speech synthesis to

respond. Virtual assistants are widely used for home automation, hands-

free operation, and interactive user support. For example, a user can ask

their virtual assistant, “What’s the weather like today?” and the system will

recognize the speech, process it, and provide a spoken response, “The

weather is sunny with a high of 75°F”.

2. Automated Customer Service and Interactive Voice Response

Systems: Many companies use speech recognition and synthesis in

automated customer service systems. Instead of waiting for a human

operator, customers can interact with automated systems that recognize

speech and provide relevant responses, often using a TTS system to

speak back to the customer. For instance, calling a bank’s customer

service may involve automated systems that recognize your voice inputs

and provide information about your account balance or guide you through

troubleshooting processes.

3. Transcription Services: Speech-to-text systems are increasingly used for

transcribing audio recordings into text, useful in legal, medical, and media

408

industries. Automated transcription services like Otter.ai and Google’s

Speech-to-Text API enable fast, accurate transcriptions for meetings,

interviews, and dictation.

4. Real-Time Translation and Language Learning: Speech processing

powers real-time language translation systems that can listen to speech in

one language and translate it into another, making cross-language

communication smoother. Apps like Google Translate offer speech-to-

speech translation, while language learning apps use TTS to improve

pronunciation and comprehension. For example, a tourist in Paris can use

an app that listens to a French-speaking person, translates the message

to English, and then speaks the translated message back to the tourist.

5. Accessibility in Healthcare: In healthcare, speech recognition systems

are used for hands-free documentation, allowing physicians to dictate

patient notes without typing. This reduces administrative burden and

enables more time for patient care. Voice analysis is also being explored

for detecting health conditions based on speech patterns, such as early

signs of neurological disorders. It also assists individuals with disabilities,

helping them interact with technology via voice commands. Eg: A visually

impaired person may use speech-based commands to navigate a

smartphone, use speech-to-text tools to write messages, and read text

aloud using TTS.

6. Automotive and In-Vehicle Systems: Speech recognition is crucial for

hands-free control in vehicles, allowing drivers to control navigation, make

calls, or play music without taking their hands off the wheel. Major

automotive companies integrate ASR into infotainment systems to improve

driver safety and convenience.

7. Security and Authentication: Voice-based biometric systems

authenticate users based on their unique vocal characteristics. Banks and

tech companies are incorporating speaker verification to enhance security

for phone and online services, making voice a potential password

replacement.

409

Figure-25: Real Time Applications of Information Speech Proceesing

Check Your Progress

a) ______ Machine Translation uses linguistic rules and dictionaries to parse

and translate text between languages.

b) The ______ mechanism in neural machine translation helps models focus

on relevant parts of the input sentence during translation.

c) Statistical Machine Translation relies on large ______ corpora to estimate

probabilities for translations between language pairs.

d) Neural systems like ______ leverage transformer architectures for

handling long-range dependencies in sentences.

e) Machine translation often struggles with ______ languages due to a lack

of annotated training data and resources.

410

5.4 Let us sum up
In this unit we have discussed the the problems in speech processing. You

have got detailed understanding of the key approaches to speech processing.

You now have a clear knowledge of various advantages and limitations of

each approach. You can now also give examples of each approach. We have

given an elaborative list of the real time applications of speech processing.

5.5 Check your progress: Possible Answers

a) Rule-Based

b) attention

c) parallel

d) BERT

e) low resource

5.6 Further Reading
• Speech and Language processing an introduction to Natural Language

Processing, Computational Linguistics and speech Recognition by Daniel

Jurafsky and James H. Martin (ISBN13: 978-0131873216)

• James A. Natural language Understanding 2e, Pearson Education, 1994.

5.7 Assignments
• What is the problem of speech processing in NLP, and how does it differ

from text-based processing?

• What are the key approaches to speech processing, including automatic

speech recognition (ASR) and text-to-speech (TTS)?

• How does speech processing handle challenges like accents, noise, and

variations in speech?

• What are some real-time applications of speech processing in virtual

assistants and accessibility tools?

• Explain the significance of phonetics and acoustic models in speech
recognition tasks.

