
Master of Science - Data Science
(MSCDS)

 Problem Solving using Python
MSCDS-204

(Established by Government of Gujarat)

Dr. Babasaheb Ambedkar
Open University

BAOU
Educa�on
for All

Problem Solving
Using Python

2024

Dr. Babasaheb Ambedkar Open University

MSCDS-204 Problem Solving using Python

Expert Committee

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Chairman)

Prof. (Dr.) Ajay Parikh
Professor and Head, Department of Computer Science
Gujarat Vidyapith, Ahmedabad

(Member)

Prof. (Dr.) Satyen Parikh
Dean, School of Computer Science and Application
Ganpat University, Kherva, Mahesana

(Member)

Prof. M. T. Savaliya
Associate Professor and Head, Computer Engineering Department
Vishwakarma Engineering College, Ahmedabad

(Member)

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member
Secretary)

Course Writer

Dr. Harshal A. Arolkar

Professor & Head, FCAIT-GLS University

Dr. Vishal Narvani

Assistant Professor, FCAIT-GLS University

Dr. Snehal Shukla

Assistant Professor, FCAIT-GLS University

Dr. Rachana Chaudhari

Assistant Professor, FCAIT-GLS University

Content Editor

Dr. Shivang M. Patel

Associate Professor, School of Computer Science,

Dr. Babasaheb Ambedkar Open University, Ahmedabad

Subject Reviewer

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

August 2024, © Dr. Babasaheb Ambedkar Open University

ISBN- 978-81-982671-5-3

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad
While all efforts have been made by editors to check accuracy of the content, the
representation of facts, principles, descriptions and methods are that of the
respective module writers. Views expressed in the publication are that of the
authors, and do not necessarily reflect the views of Dr. Babasaheb Ambedkar Open
University. All products and services mentioned are owned by their respective
copyright’s holders, and mere presentation in the publication does not mean
endorsement by Dr. Babasaheb Ambedkar Open University. Every effort has been
made to acknowledge and attribute all sources of information used in preparation of
this learning material. Readers are requested to kindly notify missing attribution, if
any.

http://creativecommons.org/licenses/by/4.0/

Dr. Babasaheb
Ambedkar Open
University

MSCDS-204

Problem Solving Using Python

Block-1: Fundamentals of Python

Unit-1: Getting Started with Python 02

Unit-2: Variables and Data Types 14

Unit-3: Operators and Type Casting 31

Block-2: Flow Control Statements & Functions

Unit-1: Control Flow and Conditional Statements 63

Unit-2: Loop Control Structures 78

Unit-3: Functions 94

Unit-4: Modules 117

Block-3: Data Structures of Python

Unit-1: Lists & Tuples 130

Unit-2: Dictionaries 151

Unit-3: Sets 167

Unit-4: Strings 179

Block-4: OOP Concepts, Exception, File Handling and GUI

Unit-1: Introduction to Object Oriented Programming 196

Unit-2: Inheritance & Polymorphism 219

Unit-3: Exception Handling 244

Unit-4: File Handling & GUI 263

1

Block-1

Fundamentals of Python

2

Unit-1: Getting Started with
Python

Unit Structure

1.0. Learning Objectives

1.1. Introduction

1.2. Basic requirement to work with Python

1.3. Simple Python program and indentation

1.4. Basic syntax of Python program

1.5. Steps involved in Python program execution

1.6. Let us sum up

1.7. Check your Progress: Possible Answers

1.8. Assignments

1

3

1.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● What is Python and requirement to work with Python

● Understand how to write python programs
● Proper indentation required for program
● Basic understanding of code

1.1 INTRODUCTION

Python is a very popular, object-oriented and interactive language that can be

used in various fields like data analysis, computing, real time data processing

etc. It was developed by Guido van Rossum during 1985-1990. Python is an

open source programming language, code of it is available under GNU General

Public License (GPL). Python is a high level language, so it provides a very

easy way to write a program. Programs written in python are very easy to read.

In other languages like C / C++ we need to write lengthy code to perform small

tasks, but using python, it can be done in a few lines of code.

In this chapter we will see what are the basic requirements to work with the

Python programming language. Learn how to create a simple python program

and understand the requirement of indentation.

1.2 BASIC REQUIREMENT TO WORK WITH PYTHON

Before we can start writing a program in Python, we need to ensure that

appropriate software is installed on our computers. The first thing you need to

do is to install Python if not already installed. The official Python website

(https://www.python.org/) hosts the latest stable versions that can be

downloaded and installed. The latest version is Python 3.x. Python runs on all

major operating systems, including Windows, MacOS, Linux and other Unix-

based systems.

4

The installation process is very straightforward and can be easily completed. It

might differ a bit in different operating systems. The basic steps have been

mentioned here for your reference:

● On Windows, download the executable installer in your machine. Once

downloaded double click on the installer and follow the instructions.

Make sure to check the box that says “Add Python to PATH.”

● On MacOS and Linux, Python is usually pre-installed, but it can be

updated using the terminal or installed via a package manager like

Homebrew in (Mac) or apt in (Linux).

To check whether Python is installed on your computers one can open the

terminal window and type python3 at the prompt. If Python is installed, we will

be taken to a Python prompt similar to the one shown here (it might differ based

on the operating system that we are using. The one shown here is from MacOS

and Ubuntu Linux):

Python 3.8.9 (default, Apr 13 2022, 08:48:07)

[Clang 13.1.6 (clang-1316.0.21.2.5)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Python 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> is known as Python prompt. As python is an interactive language, we

can directly interact with the python terminal. We can type the command on the

terminal and the python interpreter will execute it. Let us write our first Python

code on the prompt and see its output. Type print("Hello World") at the prompt

and then press Enter key. You will see an output similar to one shown in

Example 1.1:

Example 1.1: Working on Python prompt

>>> print("Hello World")

Hello World

>>>

5

The code in the Example 1.1 has used two concepts of Python; first is called

function and second is a string. Both these concepts will be discussed in detail

later, for now we need to understand that print() allows us to display contents

on our screen. Thus, the contents, Hello World are displayed on the screen as

soon as we press the Enter key.

It is also possible to perform mathematical operations at the prompt as shown

in Example 1.2.

 Example 1.2: Performing mathematical operations on Prompt

>>> 3 + 5

8

>>> 4 - 6

-2

>>> 9 * 2

18

>>> 7 / 14

0.5

>>>

As can be seen in the Example 1.2, we have performed four mathematical

operations, addition, subtraction, multiplication and division respectively.

In both the above examples we have worked on Python prompt directly. For

proper programming though we need to write a Python program. To write a

program we need a text editor or an Integrated Development Environment

(IDE). The most popular IDE for Python programming is PyCharm. It is a full

featured IDE, great for large projects and it comes with a lot of built-in tools. In

this book we will use a notepad available on the system to write a program.

6

1.3 SIMPLE PYTHON PROGRAM AND INDENTATION

Python programming language is an English like language. It only uses

indentation to define blocks within the program. There is no use of curly braces

{} or keywords like begin or end to define the blocks. Indentation means adding

white space in the starting of statements. Any block like if, while, function starts,

colon (:) is inserted and the statements under the block will have whitespace or

tab before them. The general rule of indentation says that each new level of

indentation is created using 4 spaces.

Python programming language has a large set of data types and supports more

structures to accommodate many types of data. As it supports a variety of data

structures by default, it is very popular amongst programmers these days. It

checks for errors and handles it more efficiently as compared to other

programming languages.

Let us write a small Python program to display a message “Hello Word” on the

screen. Open a notepad editor of your choice and write the given lines in it as

shown in Example 1.3.

Example 1.3: Simple Python program

Program to print Hello World

print(“Hello World”)

OUTPUT:

Hello World

Save the file with extension .py, Let us save it as HelloWorld.py. Once the file

has been saved we can execute the program using Terminal. Open terminal on

your computer, go to the path of the folder where our file is stored and type

command python3 HelloWorld.py and press Enter key. This command will

execute our code and generate the output on the terminal. The output of the

HelloWorld.py file will be a single line Hello World as seen above.

7

Let us have a look at another simple Python program given in Example 1.4 that

shows the use of indentation.

Example 1.4: Python program showing indentation

Program to show use of indentation

age = 25

if age >= 18:

 print("You can vote.")

else:

 print("You cannot vote.")

OUTPUT:

You can vote.

The program shown in Example 1.4 starts with a comment line that defines the

purpose of the program. Line 2 defines a variable called age and assigns value

25 to it. The statement if age >= 18: checks whether the value stored in age is

greater than or equals to 18 or not. Observe the spaces before the statement

print("You can vote.")

This is what indentation is, it tells the compiler that the current statement is part

of the ‘if’ block. The else statement in the program begins a new block that is

executed only when the condition in the if statement is not satisfied (not true).

The statement print("You cannot vote.") is again indented as it belongs to the

else block. Thus, we can say that in this program the statements, age = 25, if

age >= 18: and else: have top level indentation.

The output of this program will always be ‘You can vote’ as the value of age is

25 which is greater than or equals to 18

Note:

● Indentation is used to mark the start and end of code blocks.

● If proper indentation is not used in a Python program we will get an

IndentationError because it can't determine which statements belong

to which block.

8

Check Your Progress-1

a) The Python program has extension .pyc. (True/False)

b) It is also possible to perform mathematical operations at the Python

prompt. (True/False)

c) The tern IDE refers to Internal Development Environment.

(True/False)

d) Indentation is not important in python. (True/False)

e) The print() function can be used to display the content as output on

the screen. (True/False)

1.4 BASIC SYNTAX OF PYTHON PROGRAM
A Python program consists of three main components; statements, comments

and indentation. Statements are the instructions that Python executes. A

statement can be a variable assignment, decision making, a loop or a function

call.

Comments are used to make the code more readable and explainable. A single

line comment in Python begins with the # symbol. The statement written after

will be ignored by the interpreter. It can be used for understanding code. For

multiple line comments we can use triple quotes (''' or """) before and after the

comment statements. The following example shows the use of comments.

As mentioned earlier Python uses indentation, i.e. whitespace at the beginning

of a line, to define blocks of code, such as decision making, loops and functions.

As such a Python program has a free format syntax. The general syntax of

using a function in a Python program is as mentioned:

def func():

 statement1

 statement2

 ..

 ..

 statement N

New statement out of block

9

Python uses a newline (\n) character as the end of the statement. When the

statements of one block completes, the new statement outside the block will

not have any whitespace or tab before it.

Python is a case sensitive language, meaning the same name with different

cases will be considered a different name in python. For example, ‘python’ and

‘Python’ both are different.

At times when writing a program, a sentence may become too long. Such a

sentence can be converted to multiple lines with the use of backslash (\)

character. For example, if we are initializing a variable where the statement is

of two lines, so for better readability, we can add backslash (\) to break the line.

The Python program given in Example 1.5 shows the use of all the above

mentioned features.

Example 1.5: Sample Python program showing its components

''' A program to show the basic syntax of a python program. It uses a function

to compare two parameters. The function checks whether num1 is greater,

lesser or equal to num2 and prints appropriate messages. It also shows use

of backslash character'''

#Function compare

def compare(num1, num2):

 if num1 > num2:

 print(f"{num1} is greater.")

 elif num1 < num2:

 print(f"{num2} is greater.")

 else:

 print("Both numbers are equal.")

Get user input

num1 = int(input("Enter the first number: "))

num2 = int(input("Enter the second number: "))

10

Function call

compare(num1, num2)

use of backslash

statement="This line has been made too long to accommodate"\

" in a single line to show the use of backslash characters."

print(statement)

OUTPUT-SCENARIO 1:

Enter the first number: 5

Enter the second number: 8

8 is greater.

This line has been made too long to accommodate in a single line to show

the use of backslash characters.

OUTPUT- SCENARIO 2:

Enter the first number: 6

Enter the second number: 2

6 is greater.

This line has been made too long to accommodate in a single line to show

the use of backslash characters.

OUTPUT- SCENARIO 3:

Enter the first number: 5

Enter the second number: 5

Both numbers are equal.

This line has been made too long to accommodate in a single line to show

the use of backslash characters.

The Python program shown here is designed to compare two numbers provided

by the user. It determines their relationship, whether one is greater, lesser, or if

they are equal. The initial four lines are multiline comments that explain the

purpose of the program. These lines are ignored by the interpreter. Then we

have defined a function named compare(num1, num2), which accepts two

parameters, num1 and num2, representing the two numbers to be compared.

Inside the function, conditional statements if, elif and else are used to check

whether num1 is greater than, less than, or equal to num2. An appropriate

11

message is printed based on the comparison. The program then prompts the

user to input two integers. As all data entered by the user through the keyboard

in Python is in the form of text the int() function is used to convert the text into

integer. Next, the compare() function is called by passing the numbers entered

by the user, and the result is displayed to the user as can be seen in OUTPUT-

SCENARIO 1, OUTPUT- SCENARIO 2 and OUTPUT- SCENARIO 3. The last

process that this program does is to assign a multiline value to a variable

statement and print it on the screen. Observe that in all three outputs the

statement has been displayed as a single line.

1.5 STEPS INVOLVED IN PYTHON PROGRAM
EXECUTION

Let’s understand how python programs execute. Python is an interpreted

language. Interpreter reads a single line from code and translates it and

executes it at the same time. Python Interpreter works in the same way. It will

read one by one lines from the program and execute it and generate the output.

The steps involved in the execution of Python program are shown herewith:

Step 1: The first step is to write the Python program using a text editor.

(You can use an integrated development environment (IDE) also).

Step 2: Save the program with a .py extension.

Step 3: Run the program using the python3 command on the terminal.

When the program is run, the Python interpreter first performs

lexical analysis. Here the source code is broken into tokens that

represent the smallest units of meaning, such as keywords,

operators, and identifiers.

Step 4: The tokens are then parsed to generate an Abstract Syntax Tree

(AST) that represents the program's syntax and ensures that the

code is grammatically correct. If the program is not grammatically

correct we will get an error and the program will stop.

12

Step 5: Once the code is parsed, Python compiles the AST into bytecode.

Bytecode is a lower-level, platform-independent representation of

the source code.

Step 6: The bytecode is sent then to the Python Virtual Machine, which is

responsible for interpreting and executing the bytecode on the

system's hardware. The PVM converts the bytecode into machine

code that the operating system can execute.

Step 7: The PVM executes the program line by line. It performs tasks such

as mathematical operations, function calls, and I/O operations.

Step 8: After execution, the program may produce output, such as

displaying results to the console, writing to files, or any other

operation mentioned by the user.

Though eight steps have been mentioned here the user generally does not get

aware about internal details of step 3 to step 7.

Check Your Progress-2

a) To create a block in a Python program, we need to enter colon (:) at

the end of the statement. (True/False)

b) PVM executes the program line by line. (True/False)

c) Python is a compiled language. (True/False)

d) A new line character is used to write a string in multi-line. (True/False)

e) A multiline comment is enclosed within ''' and '''. (True/False)

1.6 LET US SUM UP

In this chapter we have discussed what Python is and learnt about the basic

syntax of Python programs. We have written simple Python code and saw how

to execute it. We also learnt the importance and use of indentation, comments

and multiple line separators. The last section explained the detailed steps

involved in the execution of a Python program.

13

1.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a False

1-b True

1-c False

1-d False

1-e True

2-a True

2-b True

2-c False

2-d False

2-e True

1.8 ASSIGNMENTS

1. What is Python?

2. How can we run the python code?

3. What is meant by case sensitivity in python?

4. How can the comments be added in python code?

5. How can we write one python statement in multiple lines?

6. List steps involved in the execution of a Python program.

14

Unit-2: Variables and Data
Types

Unit Structure

2.0. Learning Objectives

2.1. Introduction

2.2. Variables

2.3. Data types

2.4. Let us sum up

2.5. Check your Progress: Possible Answers

2.6. Assignments

2

15

2.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand how to create a variable
● Understand the use of data types with variables
● Understand the use of type casting

● Write programs to understand how variables are used

2.1 INTRODUCTION

After understanding the basic structure of python programming, now it's time to

know how we can store the required data and use it in our program.

Programming is all about using and processing the data. We always try to

perform some operations on the data. So, it is very important to understand

how we can access the data in the Python program.

Data that is useful for programming may be in the form of names, numbers or

combinations of both the numbers and words. To use data in the program, we

have to give the data holder a name. Without giving the name, we cannot

access it multiple times in our code.

In this chapter we will learn what a variable is, how to define and use variables

in Python programming. We will also learn the concept of data types and look

into the data types that are supported in Python.

2.2 VARIABLES
Variables refer to the names of an entity that stores the data value. A variable

declaration creates a memory space to store the value of data. We can refer to

the data by using the variable name. Variables are very important concept in

programming because of the reasons as mentioned herewith:

1. We can access the same data multiple times using a variable. For

example, if we have performed some time-consuming operation and its

result is stored in a variable, then we can access the result again and

again without executing the same operations again.

16

2. By giving useful names to variables, we can give meaning to the value

stored in it. For example, value 75 is a number, but if we store 75 in a

variable called marksOfPython, it has a meaning which tells the user that

it refers to the marks in the subject of Python.

3. Variables allow users to handle data easily. Data can be very huge in

size, we can access it using the name of a variable instead of memory

address. For example, if we have created a variable to access a file, we

can perform any operation using a variable on the file.

In Python, we can create a variable by writing its name and assigning a value

to it. Value can be assigned to the variable by making use of assignment

operator (=). The general syntax to define a variable and assign a value to it is

as mentioned:

variable_name = value

Example 2.1 demonstrates the program that shows how to declare a variable

and assign a value to it.

Example 2.1: Declaring variable and printing the value of it

Program to create a variable and print it

subject = “Python”

print(subject)

OUTPUT:

Python

The above example creates a variable named subject and stores the value

“Python” in it. The Python interpreter will automatically decide the type of data

and store it accordingly in the memory. In Python we can check the data type

of the variable that has been created by using the type() function. Example 2.2

shows a program to demonstrate the use of type() function.

17

Example 2.2: Checking the type of created variable.

#Program to check the type of variable

subject = "Python"

print(subject)

print(type(subject))

marks = 59

print(marks)

print(type(marks))

OUTPUT:

Python

<class 'str'>

59

<class 'int'>

In the above program we have defined two variables: subjects and marks. The

variable subject has been assigned a string “Python” while variable marks is

assigned integer value 59. Thus, when we try to find out the type of data that is

stored in both these variables using statements print(type(subject)) and

print(type(marks)), Python returns <class 'str'> and <class 'int'> respectively.

We can create variables with any name. But it is very important to give

meaningful names to the variables. If we create some variables as a = 21, we

may not understand the exact meaning and use of this variable. Instead, if we

create a variable as age = 21, by reading the variable name itself we can

understand that it stores a value that refers to the age of a person or any other

entity.

It is always better to use long names in place of short names when defining a

variable. One of the good practices of programming is to use camel case

notation to create variables. A camel case notation uses multiple words to

define a single variable. For example, we can create variables such as

studentName, marksOfPython, dateOfBirth that stores the name of a student,

his marks in the subject of Python and his birthdate. We can also use another

18

convention called snake case or lowercase with underscore to define a variable.

Some examples of snake case variable names are student_name,

marks_of_python, date_of_birth.

Variable name is known as an identifier in a programming language. We must

follow some predefined rules when creating an identifier. The rules are as listed:

1. Identifiers can be created using alphabets (A-Z, a-z), digits(0-9) and

underscore(_) only.

2. Any other special character (symbols) and white space are not allowed.

3. First letter in the identifier must be an alphabet or an underscore.

Table 2.1 gives examples of some valid and invalid identifiers (variables).

Table 2.1: Example of valid and invalid identifiers

Valid identifiers Invalid identifiers

student_name

SubjectCode1

a121

name_of_student

_collegeCode

123greetings

2Subjects

age of student@

#name

Birth date

Variable names in Python are case sensitive. It means that entities, ‘name’,

‘NAME’ and ‘Name’ will be treated as three different variables. Example 2.3

shows a program to demonstrate the case sensitivity of variables.

Example 2.3: Check the case sensitivity of the variable

#Program to check case sensitivity of variable names

subject = "Python"

print("subject :", subject)

SUBJECT = "Maths"

print("SUBJECT :",SUBJECT)

print("Subject :",Subject)

19

OUTPUT:

subject : Python

SUBJECT : Maths

Traceback (most recent call last):

 File "12_3.py", line 6, in <module>

 print("Subject :",Subject)

NameError: name 'Subject' is not defined

In the above program we have defined two variables with name: subject and

SUBJECT. They have been assigned values ‘Pyhton’ and ‘Maths’ respectively.

We have then printed the values of both the variables. Observe that when we

use statement print("Subject :",Subject) we get an error, NameError: name

'Subject' is not defined. This clarifies that subject, SUBJECT and Subject are

treated as different variables in Python.

Python supports the concept of multiple assignment in a single statement using

assignment operator. This concept allows us to assign the same value to

multiple variables or specified values to each variable using only one

assignment statement. The general syntax to assign same values to multiple

variables is as mentioned:

variable_name1 = variable_name2 = ….. variable_namen = value

Example 2.4 shows a program to demonstrate the use of assigning the same

value to multiple variables using a single assignment statement.

Example 2.4: Assign same value to multiple variables

Program to assign same value to multiple variables

marksOfPython = marksOfJava = marksOfC = 75

print("Python Marks: ",marksOfPython)

print("Java Marks: ",marksOfJava)

print("C Marks: ",marksOfC)

totalMarks = marksOfPython + marksOfJava + marksOfC

print("Total Marks: ",totalMarks)

20

OUTPUT:

Python Marks: 75

Java Marks: 75

C Marks: 75

Total Marks: 225

In the above program variables marksOfPython, marksOfJava and marksOfC

have each been assigned an integer value 75 using the statement

marksOfPython = marksOfJava = marksOfC = 75. The program then prints the

value of each of these variables. It then assigns the addition of all these values

to variable totalMarks and finally prints its value.

The general syntax to assign different values to multiple variables using single

assignment statement is as mentioned:

variable_name1, variable_name2 , .. variable_namen = value1, value2,..

valuen

Example 2.5 shows a program to demonstrate the use of assigning a different

value to multiple variables using a single assignment statement.

Example 2.5: Assign different value to multiple variables

Program to assign different values to multiple variables

marksOfPython, marksOfJava, marksOfC = 80,90,75

print("Python Marks: ",marksOfPython)

print("Java Marks: ",marksOfJava)

print("C Marks: ",marksOfC)

totalMarks = marksOfPython + marksOfJava + marksOfC

print("Total Marks: ",totalMarks)

OUTPUT:

Python Marks: 80

Java Marks: 90

C Marks: 75

Total Marks: 245

21

In the above program variables marksOfPython, marksOfJava and marksOfC

have each been assigned different integer values using the statement

marksOfPython, marksOfJava, marksOfC = 80,90,75. The program then prints

the value of each of these variables. It then assigns the addition of all these

values to variable totalMarks and finally prints its value.

Check Your Progress – 1

a) A variable declaration creates a memory space to store the value of

data. (True/False)

b) The Python interpreter does not decide the type of data for a variable.

(True/False)

c) The NameError: name 'Test' is not defined, indicates the variable Test

is not defined in the program. (True/False)

d) SubjectCode$1 is a valid variable name. (True/False)

e) Python supports a concept of multiple assignment in single statement.

(True/False)

2.3 DATA TYPES

Every data stored within a variable that is used in a program is of some specific

type.

The operations we perform on variables, will vary depending on the type of data

stored in them. For example, we can perform arithmetic operations on numeric

data, logical operations can be performed on Boolean data, string operations

can be implemented on text type data. So, it is very much important to know

the type of data.

The concept of data type provides the idea of value that can be stored in a

variable and the actions that can be applied to it. Python is considered to be a

dynamically typed language, meaning that variable type is determined at

runtime based on the value they are allocated. Thus, like many of the other

programming languages we do not need an explicit declaration of data type in

Python. Programming in Python requires an understanding of data types

22

because they facilitate efficient data manipulation and a wide range of activities,

from text processing and data storage to mathematical computations.

Some of the standard (built-in) data types defined in Python are Text, Numeric,

Sequence, Mapping, Set, Boolean, Binary and None. Let us discuss each of

these data types in detail.

Text (String) Data type:

The data of text type is stored as a string. A string usually refers to a set or

collection of characters. The string data type can be used for any type of

collection of characters. The text data type is represented by the str class in

Python. A string variable have three important properties:

1. Characters: The individual letters in the string are called characters of

string.

2. Length: Count of the number of characters in the string is called length

of string.

3. Sequence: the characters in the string may appear in a particular

sequence, which means each character has a numbered position within

the string.

String is a fundamental data type of Python. We often need to use string to print

some message or to assign value to the variable. Everything that we enclose

within a single quote ('), double quote (") or triple quote (''') is called a string

literal. The quotes we use marks the start and end of the string and is known

as a delimiter.

The delimiters are interchangeable, that is when we use single quotes as a

delimiter then double quotes can be used as a character within the string and

vice versa. The program in Example 2.6 demonstrates the use of delimiters as

string characters.

23

Example 2.6: Use of delimiter as string character

Program to understand use of string delimiters

myString = "We've got good book to study Python"

print(myString)

myString1 = 'We have got good book named "Python Programming" to study'

print(myString1)

OUTPUT:

We've got good book to study Python

We have got good book named "Python Programming" to study

In the above program two strings myString and myString1 have each been

assigned text values. In the variable myString double quote (") has been used

as a delimiter while single quote (') has been used as a character within a

string. Observe that the single quote has been displayed in output along with

other characters. Similarly, in the variable myString1 single quote (') has been

used as a delimiter while double quote (") has been used as a character within

a string.

Once a string has been defined, we can perform operations like fetching a

single character or fetching a sub string (set of characters) from the string using

indexing and slicing. It is also possible to concatenate two strings and create a

new string. Each character within the string has a numbered position called

index. The general representation of a string is shown in Figure 2.1.

Figure 2.1: Representation of string

We can access any character at any position in the string using square brackets

[].

24

Concatenation

Two strings can be combined to form a new string using concatenation

operation. The + operator when used with strings performs this operation. The

general syntax to perform concatenation is as mentioned:

newString = string1 + string2 + … + stringn

The program in Example 2.7 demonstrates various forms of slicing along with

concatenation operation.

Example 2.7: Different operations on string

Program to demonstrate slicing and concatenation operation

myString = "my country"

print("Original String: ",myString)

indexChar=myString[4] # Fetch the character at index 4

print("Character at index 4 is: ",indexChar)

str=myString[0:4]. # Fetch first four characters

print("First 4 characters are: ",str)

str1=myString[:4] #Omit first number in range

print("First 4 characters are: ",str1)

str2=myString[5:] #Omit last number in range

print("Substring from 5th index to end of string is: ",str2)

newString = str1 + " " + str2 #Concatenation of strings

print("Concatenated String: ",newString)

OUTPUT:

Original String: my country

Character at index 4 is: o

First 4 characters are: my c

First 4 characters are: my c

Substring from 5th index to end of string is: untry

Concatenated String: my c untry

25

In the above program a string myString has been assigned a value “my

country”. We have then fetched and printed the character (‘o’) at 4rth index. We

have then created three strings namely: str, str1 and str2 using slicing

techniques explained previously and printed their values. Finally, we have

concatenated the string str1 (“my c”), a space and the string str2 (“untry”) and

generated a new string newString with value “my c untry”. We will discuss the

concept of string in detail in later chapters.

Numeric Data type:

Numeric data type can be categorized into two types: integer and float. Integer

numbers are whole numbers and floats are decimal numbers. We can perform

arithmetic operations such as addition (+), subtraction (-), and division (/) on

numeric type data. Example 2.8 demonstrates the use of numeric data types in

python.

Example 2.8: Operations on numeric data type

Operations on numeric data type

intVarX = 15

intVarY = 23

floatVarZ = 3.14

Addition

intSum = intVarX + intVarY

print("Sum of two integers: ",intSum)

mixSum = intVarX + floatVarZ

print("Sum of mixed data type variables: ",mixSum)

Division

intDiv = intVarX / intVarY

print("Division of two integers: ",intDiv)

mixDiv = intVarX / floatVarZ

print("Division of mixed data type variables: ",mixDiv)

26

Multiplication

intMul = intVarX * intVarY

print("Multiplication of two integers: ",intMul)

mixMul = intVarX / floatVarZ

print("Multiplication of mixed data type variables: ",mixMul)

OUTPUT:

Sum of two integers: 38

Sum of mixed data type variables: 18.14

Division of two integers: 0.6521739130434783

Division of mixed data type variables: 4.777070063694267

Multiplication of two integers: 345

Multiplication of mixed data type variables: 4.777070063694267

The program above shows the basic arithmetic operations that can be

performed with numeric data. Observe that the data type of the output depends

on the data types of the operands used. For the sum and multiplication

operations the integer operands have resulted in an integer output. In all other

cases the data type of the output will be <class 'float'>.

Sequence Data type:

Sequence data types in Python include List, Tuple and Range. A list is an

ordered, mutable collection of items. A tuple is an ordered, immutable collection

of items. A range is an immutable sequence of numbers. Different operations

like indexing, slicing etc can be performed on these sequences. We will learn

the sequence data type in detail in the coming chapters.

Mapping Data type:

A dictionary (dict) is considered to be a mapping data type. It is an unordered

and mutable collection of key-value pairs. Operations like retrieving a value

using a key, modifying key-value pairs or removing a key-value pair can be

performed in the dictionary. The detailed discussion on the dictionary will be

done in later chapters.

27

Set Data type:

A set is an unordered collection of unique items. Operations like adding items,

removing items, performing union, intersection, or finding differences etc can

be performed on sets. The detailed discussion on the dictionary will be done in

later chapters.

Boolean Data type:

The boolean (bool) data type represents one of two values: True or False. We

can usually perform comparison or logical operations on this data type.

Binary Data type:

At times we need to work with binary data. In Python Bytes and Bytearray are

used to store binary data. Bytes refer to an immutable sequence of bytes, while

Bytearray refers to a mutable sequence of bytes. Example 2.9 demonstrates

the use of binary data type in python.

Example 2.9: Use of binary data type

Program to show use of binary data type

byteData = b"Python Program"

print("Byte Literal : ",byteData)

Accessing bytes

firstByte = byteData[0]

print("Data of first byte :",firstByte)

secondByte = byteData[1]

print("Data of second byte :",secondByte)

Creating bytearray

byteArray = bytearray([80, 121, 116, 104, 111, 110])

print("Values in array: ",byteArray)

28

OUTPUT:

Byte Literal : b'Python Program'

Data of first byte : 80

Data of second byte : 121

Values in array: bytearray(b'Python')

In the above program the statement byteData = b"Python Program" creates a

byte literal. A byte literal in Python is represented by a string prefixed with the

letter b. It is used to store the string "Python Program" as a sequence of bytes.

When b is prefixed to a string, each character in the string is represented by its

corresponding ASCII or Unicode value when it is stored in memory. For

example, the character 'P' is represented as 80, character 'y' is represented as

121 in ASCII and so on. The statement print("Byte Literal : ", byteData) displays

the byte literal on the screen. Here, b in the output indicates that the string is a

byte object. Then we have tried to access individual elements located at index

0 and 1 from the byte literal. The statement byteArray = bytearray([80, 121, 116,

104, 111, 110]) creates a mutable byte array. The elements within it can be

changed. The bytearray() function here takes a list of integers as an argument,

these integers represent byte (ASCII) values for each character. The list

elements 80, 121, 116, 104, 111 and 110 corresponds to the ASCII values for

each of the characters in the word "Python" as can be seen in the output.

None Data type:

The None data type represents the absence of a value or a null value. Such a

data type is used for assignment or comparison. Example 2.10 demonstrates

the use of none data type in python.

Example 2.10: Use of None data type

Program to show use of None data type

varNone = None

varInt = 99

29

isNone = (varNone is None)

print(isNone) # Output: True

print(varInt == None)

OUTPUT:

True

False

In the above program we have defined and declared two variables: varNone

and varInt. The variable varNone is assigned the value None. None is a special

constant that represents a null value in Python (Observe that it is not enclosed

in a single or double quote). The variable varInt is assigned an integer value

99. The statement isNone = (varNone is None) first checks whether the value

of variable varNone is null. The is operator here checks if two variables refer to

the same object in memory. Since variable varNone was explicitly set to None,

this condition returns True. The last statement print(varInt == None) compares

the value of variable varInt (which is 99) to None. In this case, 99 == None

returns False.

Check Your Progress – 2

a) The 'int' data type is used to store decimal numbers in Python. (True/False)

b) The 'str' data type is used to store sequences of characters in Python.

(True/False)

c) The 'set' data type allows duplicate elements to be stored in Python.

(True/False)

d) Python supports automatic type conversion between 'int' and 'float' values.

(True/False)

e) The `bool` data type in Python only has two possible values: 'True' and

'False'. (True/False)

30

2.4 LET US SUM UP

In this chapter we have discussed what a variable is, how to define and assign

value to it. We also saw how multiple operations can be done using a single

assignment statement. We further looked at the basic data types supported by

Python. We understood the use of the data types like Text, Numeric, Sequence,

Mapping, Set, Boolean, Binary and None.

2.5 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b False

1-c True

1-d False

1-e True

2-a False

2-b True

2-c False

2-d True

2-e True

2.6 ASSIGNMENTS

1. What is a variable?

2. Explain how a single value can be assigned to multiple variables using

an assignment statement?

3. What is the importance of data type?

4. Explain what is the use of text data type. How can we find out the length

of the text variable?

5. Explain the use of binary data types.

31

Unit-3: Operators and Type
Casting

Unit Structure

3.0. Learning Objectives

3.1. Introduction

3.2. Operators

3.3. Type Casting

3.4. Let us sum up

3.5. Check your Progress: Possible Answers

3.6. Assignments

3

32

3.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand the use of operators
● Implementation of operators for different use
● Understand the type casting of different variables

● Write programs to use operators and type casting

3.1 INTRODUCTION

In the previous chapter we looked into the basics of variables and datatypes.

Using variables, we are able to perform different operations on it. To perform

the operations, we need to use a different set of operators.

Python supports a wide range of operators. Operators are special symbols

which are useful when we need to perform operations on the operands (variable

or constants). In this chapter we will learn what operator is, we will also look

into different types of operators and their usage. Lastly, we will learn the

concept of type casting.

3.2 OPERATORS

Operators are the special symbols or keywords which are useful to perform

operations on various variables and constant values. Operators are the building

blocks of a program, they allow us to implement a wide range of operations

including simple arithmetic operations, complex logical operations and data

manipulation. Python's operators work well with a wide range of data types, it

thus increases the language's efficiency and versatility.

Python supports different categories of operators, like arithmetic, comparison,

logical, bitwise, assignment, membership, and identity operators. It is very

important to understand how the operators work to implement it effectively in

our programs. In this section, we will discuss operators in detail.

33

Arithmetic Operators:

The arithmetic operators in Python are used to perform basic mathematical

operations like addition, subtraction, multiplication, etc. Table 3.1 shows the list

of arithmetic operators along with its description and example.

Table 3.1: Arithmetic Operators

Operator Description Example Use

+ Addition 11 + 3
- Subtraction 7 – 3
* Multiplication 8 * 3
/ Division 7 / 2
// Floor Division 9 // 2

% Modulus
(remainder)

11 % 2

** Exponentiation 3 ** 2

Each of the operators shown in Table 3.1 performs a specific mathematical

operation in Python. Let us discuss them one by one.

Addition (+): The addition operator returns a sum of numeric values or it can

also be used to concatenate (join) strings. Few examples of using addition

operator are as mentioned:

>>> print(11 + 3 + 2 + 7)

23

>>> print('Hello' + ' ' + 'Good Morning')

Hello Good Morning

Subtraction (-): The subtraction operator is used to subtract a set of numeric

values. Few examples of using subtraction operator are as mentioned:

>>> print(11 - 3)

8

>>> print(11 - 3 - 2 - 7)

-1

34

Multiplication (*): The multiplication operator is used to multiply numeric

values or it can also be used to repeat strings. Few examples of using

multiplication operator are as mentioned:

>>> print(8 * 3)

24

>>> print('Hi' * 3)

HiHiHi

>>> print('Hi ' * 3)

Hi Hi Hi

Observe the difference in the output of print('Hi' * 3) and print('Hi ' * 3). In the

first case we get repetition of string without a blank space.

Division (/): The division operator is used to divide a set of numeric values.

The division operation always returns a decimal value. Few examples of using

division operator are as mentioned:

>>> print(7 / 2)

3.5

>>> print(10 / 2)

5.0

>>> print(3.14 / 1.4)

2.242857142857143

>>> print(7 / 2 / 4)

0.875

Floor Division (//): The floor division operator is used to divide a set of numeric

values, after dividing it truncates the decimal part. Few examples of using floor

division operator are as mentioned:

35

>>> print(7 // 2)

3

>>> print(10 // 2)

5

>>> print(7 // 2 // 4)

0

>>> print(3.14 // 1.4)

2.0

>>> print(3.14 // 2)

1.0

Note:

● If all operands of floor division are integers, we will get an integer

value as output.

● If even one operand of the floor division is decimal, we will get a

truncated decimal value as output.

Modulus (%): The modulus operator is used to perform a division operation, it

returns a remainder that is obtained from the division of numeric values. Few

examples of using modulus operator are as mentioned:

>>> print(11 % 2)

1

>>> print(15 % 3)

0

>>> print(17.5 % 3)

2.5

>>> print(17 % 3.5)

3.0

36

Note:

● For 17.5 % 3 the result is calculated as 17.5 - (3 * 5) = 17.5 - 15 =

2.5

● For 17 % 3.5 the result is calculated as 17 - (3.5 * 4) = 17 - 14 = 3

Exponentiation (**): The exponent operator raises the first number to the

power of the second. Few examples of using exponent operator are as

mentioned:

>>> print(3 ** 2)

9

>>> print(3.5 ** 2)

12.25

The Python program in Example 3.1 demonstrates the use of arithmetic

operators.

#program to understand various arithmetic operators.

var1=25

var2=3

#op + will add var1 and var2

add=var1+var2

print("Addition of ",var1," and ",var2," is ",add)

op – will subtract var1 from var2

sub=var1-var2

print("Subtraction of ",var1," from ",var2," is ",sub)

op * will multiply var1 and var2

mul=var1*var2

37

print("Multiplication of ",var1," and ",var2," is ",mul)

op / will divide var1 with var2

div=var1/var2

print("Division of ",var1," and ",var2," is ",div)

op // will divide var1 with var2 and truncate the decimal part

floorDiv=var1//var2

print("Floor division of ",var1," and ",var2," is ",floorDiv)

op % will divide var1 with var2 and return the remainder

mod=var1%var2

print("Modulus division of ",var1," with ",var2," is ",mod)

op ** will raises var1 to the power of var2

exp=var1**var2

print("Exponential of ",var1," with ",var2," is ",exp)

OUTPUT:

Addition of 25 and 3 is 28

Subtraction of 25 from 3 is 22

Multiplication of 25 and 3 is 75

Division of 25 and 3 is 8.333333333333334

Floor division of 25 and 3 is 8

Modulus division of 25 with 3 is 1

Exponential of 25 with 3 is 15625

The above program demonstrates the use of various arithmetic operators in

Python. It begins by initializing two variables, var1 and var2 with values 25 and

3 respectively. The program then performs addition, subtraction, multiplication,

division, floor division, modulus and exponentiation operations on var1 and var2

and prints the result of each of these operations.

38

Comparison or Relational Operators:

The comparison or relational operators in Python are used to compare two

values; it returns a Boolean result as True or False. Table 3.2 shows the list of

comparison operators along with its description and example.

Table 3.1: Arithmetic Operators

Operator Description Example Use

== Equal to 15 == 15

!= Not equal to 15 != 13

> Greater than 15 > 13

< Less than 13 < 15

>= Greater or equal 15 >= 15

<= Less or equal 13 <= 15

Let us discuss the comparison operators one by one.

Equal to (==): The equal to operator checks whether two numeric or string

values are equal. If both operands are the same it returns True, otherwise it

returns False. Few examples are as mentioned:

>>> print(15 == 15)

True

>>> print(15 == 14)

False

>>> print("Hi" == "Hi")

True

>>> print("Hi" == "Bye")

False

39

Not equal to (!=): The not equal to operator checks whether two numeric or

string values are different. If both operands are different it returns True,

otherwise it returns False. Few examples are as mentioned:

>>> print(15 != 15)

False

>>> print(15 != 14)

True

>>> print("Hi" != "Hi")

False

>>> print("Hi" != "Bye")

True

Greater than (>): The greater than operator checks whether the value of first

operand is greater than the value of second operand (in case of string it

compares the ASCII values of the letters). If it is greater, we get True as output

otherwise we get False. Few examples are as mentioned:

>>> print(15 > 14)

True

>>> print(15 > 19)

False

>>> print("Hi" > "Bye")

True

>>> print("Hi" > "Hello")

True

>>> print("Hi" > "Hi")

False

>>> print("Ape" > "Ate")

False

40

Less than (<): The less than operator checks whether the value of the first

operand is lesser than the value of second operand. If it is lesser, we get True

as output otherwise we get False. Few examples are as mentioned:

>>> print(15 < 14)

False

>>> print(12 < 14)

True

>>> print("Ape" < "Ate")

True

>>> print("Hi" < "Hello")

False

>>> print("Hi" < "Hi")

False

Greater or equal (>=): The greater than or equal operator checks whether the

value of first operand is greater than or equal to the value of second operand

(in case of string it compares the ASCII values of the letters). If it is greater or

equal, we get True as output otherwise we get False. Few examples are as

mentioned:

>>> print(15 >= 14)

True

>>> print(15 >= 19)

False

>>> print(15 >= 15)

True

>>> print("Hi" >= "Hello")

True

>>> print("Hi" >= "Hi")

True

>>> print("Ape" >= "Ate")

False

41

Less or equal (<=): The less than or equal operator checks whether the value

of the first operand is lesser than or equal to the value of the second operand.

If it is lesser or equal, we get True as output otherwise we get False. Few

examples are as mentioned:

>>> print(15 <= 14)

False

>>> print(15 <= 15)

True

>>> print(11 <= 14)

True

>>> print("Ape" <= "Ate")

True

>>> print("Hi" <= "Hi")

True

>>> print("Hi" <= "Hello")

False

The Python program in Example 3.2 demonstrates the use of comparison

operators.

Example 3.2: Example of Comparison Operators

Program to examine the use of Comparison Operators.

perOfStud1=90

perOfStud2=90

print("Output of == operator:")

check = perOfStud1 == perOfStud2

print("",perOfStud2," == ",perOfStud1," : ",check)

perOfStud2=92

42

print("Output of != operator")

check = perOfStud1 != perOfStud2

print("",perOfStud2," != ",perOfStud1," : ",check)

print("Output of > operator")

check = perOfStud2 > perOfStud1

print("",perOfStud2," > ",perOfStud1," : ",check)

print("Output of < operator")

check = perOfStud1 < perOfStud2

print("",perOfStud1," < ",perOfStud2," : ",check)

print("Output of >= operator")

check = perOfStud2 >= perOfStud1

print("",perOfStud2," >= ",perOfStud1," : ",check)

print("Output of <= operator")

check = perOfStud1 <= perOfStud2

print("",perOfStud1," <= ",perOfStud2," : ",check)

OUTPUT:

Output of == operator:

 90 == 90 : True

Output of != operator

43

 92 != 90 : True

Output of > operator

 92 > 90 : True

Output of < operator

 90 < 92 : True

Output of >= operator

 92 >= 90 : True

Output of <= operator

 90 <= 92 : True

The Python program in Example 3.2 demonstrates the use of comparison

operators in different conditions. The example compares the percentage of two

students using different comparison operators.

Logical Operators

The logical operators in Python are used to combine the result of more than

one conditional statement. Table 3.3 shows the list of logical operators along

with its description and example.

Table 3.3: Logical Operators

Operator Description Example Use

and
True if all conditional

statements return True
(5 > 3) and (8 > 5)

or
True if one conditional

statement returns True
(5 > 3) or (8 < 5)

not Inverts the Boolean result not(5 > 3)

Let us discuss the logical operators one by one.

44

AND (‘and’): The logical operator and, when used in conjunction with

conditional statements, returns True only if all the conditions used in an

expression return True. In all other cases it will return false. Few examples are

as mentioned:

>>> print((15 > 14) and (12 > 10) and (14 > 10))

True

>>> print((15 > 14) and (12 > 10) and (14 > 17))

False

>>> print(('Hi' >= 'Hi') and (12 > 10) and (14 > 17))

False

>>> print(('Hi' >= 'Hi') and (12 > 10) and (14 < 17))

True

OR (‘or’): The logical operator or, when used in conjunction with conditional

statements, returns True if at least one of the conditions used in an expression

returns True. In all other cases it will return false. Few examples are as

mentioned:

>>> print((15 > 14) or (12 < 10) or (14 == 10))

True

>>> print((15 < 14) or (12 < 10) or (14 == 10))

False

>>> print(('Hi' == 'Hi') or (12 > 10) or (14 < 17))

True

>>> print(('Hi' >= 'Hello') or (12 < 10) or (14 > 17))

True

NOT (‘not’): The logical operator not, when used in conjunction with conditional

statements reverses the result of a condition. Few examples are as mentioned:

45

>>> print(not((15 > 14) or (12 < 10) or (14 == 10)))

False

>>> print(not('Hi' >= 'Hello'))

False

>>> print(not(14 == 10))

True

The Python program in Example 3.3 demonstrates the use of logical

operators.

Example 3.3: Example of Logical Operators

#Program to use Logical Operators

perOf10th=78

perOf12th=65

check = (perOf10th >= 70) and (perOf12th >= 60)

print("",perOf10th," >= 70 AND ",perOf12th," >= 60 :",check)

check = (perOf10th >= 70) or (perOf12th >= 80)

print("",perOf10th," >= 70 OR ",perOf12th," >= 60 :",check)

check = not(perOf10th >= 70)

print(" NOT ",perOf10th," >= 70 ",check)

OUTPUT:

78 >= 70 AND 65 >= 60 : True

78 >= 70 OR 65 >= 60 : True

NOT 78 >= 70 False

Example 3.3 demonstrates the use of logical operators. Here, perOf10th and

perOf12th are two variables that store the percentage of 10th and 12th. We are

comparing the percentage of 10th and 12th to check whether it is greater than

70 and 60 using ‘and’ operator, it will return true. The ‘or’ operator will check

whether the percentage of 10th is greater or equals to 70 or percentage of 12th

is greater or equals to 80, it will return ‘true’ because perOf10th = 78 and it is

>=70.

46

Bitwise Operators

Bitwise operators in Python are used to perform operations on individual bits of

the stored integer value. These operators work directly on the binary

representation of numbers rather than the decimal numbers. Table 3.4 shows

the list of bitwise operators along with its description and example.

Table 3.4: Bitwise Operators

Operator Description Example Use

& AND 5 & 3

| OR 5 | 3

^ XOR 5 ^ 3

~ NOT ~5

<< Left Shift 5 << 1

>> Right Shift 5 >> 1

Let us discuss the logical operators one by one.

AND (&): The bitwise & operator compares each bit of two numbers and returns

1 if both bits are 1, otherwise it returns 0. For example, assume that we have

numbers 15 and 10. First, convert the numbers 15 and 10 to their binary

representations. The number 15 in decimal is represented as 1111 in binary.

Similarly, the number 10 in decimal is represented 1010 in binary. Now perform

the bitwise and of both these binary numbers. The result of this operation is

binary 1010 which when converted to decimal number gives decimal number

10. Figure 3.1 shows the bitwise AND operation.

Figure 3.1: Bitwise AND operation

47

Few examples are as mentioned:

>>> print(15 & 10)

10

>>> print(15 & 15)

15

>>> print(5 & 15)

5

>>> print(25 & 15)

9

OR (|): The bitwise | operator compares each bit of two numbers and returns

1 if either of the bits is 1 or both the bits are 1, otherwise it returns 0. Figure 3.2

shows the bitwise OR operation on 15 and 10.

Figure 3.2: Bitwise OR operation

Few examples are as mentioned:

>>> print(15 | 10)

15

>>> print(15 | 15)

15

>>> print(5 | 15)

15

>>> print(25 | 15)

31

48

XOR (^): The bitwise ^ operator (exclusive OR) operator compares each bit of

two numbers and returns 1 if the bits are different, otherwise it returns 0. Figure

3.3 shows the bitwise XOR operation on 15 and 10.

Figure 3.3: Bitwise XOR operation

Few examples are as mentioned:

>>> print(15 ^ 10)

5

>>> print(15 ^ 15)

0

>>> print(5 ^ 15)

10

>>> print(25 ^ 15)

22

NOT (~): The bitwise NOT operator flips all the bits of a numeric value, it turns

all 1s into 0s and vice-versa. Figure 3.4 shows the bitwise NOT operation on

numeric value 10.

Figure 3.4: Bitwise NOT operation

49

Few examples are as mentioned:

>>> print(~15)

-16

>>> print(~10)

-11

>>> print(~-5)

4

>>> print(~-25)

24

Note:

● The negation operation is also known as the "one's

complement".

Left Shift (<<): The left shift << operator shifts the bits of a number to the left

by a specified number of positions. Figure 3.5 shows the bitwise left shift

operation on numeric value 10.

Figure 3.5: Bitwise Left shift operation with 1 bit and 2 bits

Few examples are as mentioned:

>>> print(10 << 1)

20

>>> print(10 << 2)

40

>>> print(-10 << 1)

-20

>>> print(-10 << 2)

-40

50

Note:

● Each left shift by one position effectively multiplies the number

by 2.

Right Shift (>>): The right shift >> operator shifts the bits of a number to the

right by a specified number of positions. Figure 3.6 shows the bitwise left shift

operation on numeric value 10.

Figure 3.6: Bitwise Right shift operation with 1 bit and 2 bits

Few examples are as mentioned:

>>> print(10 >> 1)

5

>>> print(10 >> 2)

2

>>> print(-10 >> 1)

-5

>>> print(-10 >> 2)

-3

Note:

● Each right shift by one position effectively divides the number by

2 and discards the remainder.

51

The Python program in Example 3.4 demonstrates the use of bitwise operators.

Example 3.4: Example of bitwise Operators

#Program to check the usefulness of bitwise operators.

var1=5

var2=2

check=var1 & var2

print("",var1," & ",var2," : ",check)

check=var1 | var2

print("",var1," | ",var2," : ",check)

check=var1 ^ var2

print("",var1," ^ ",var2," : ",check)

check= ~var2

print("~",var2," : ",check)

check=var1 << var2

print("",var1," << ",var2," : ",check)

check=var1 >> var2

print("",var1," >> ",var2," : ",check)

OUTPUT:

5 & 2 : 0

 5 | 2 : 7

 5 ^ 2 : 7

~ 2 : -3

 5 << 2 : 20

 5 >> 2 : 1

Example 3.4 demonstrates the example of bitwise operators. The bitwise

operator performs binary operations on the operands. In the example, var1 and

var2 are variables of integer type having values 5 and 2 respectively. The output

shows results of different bitwise operations performed on both these variables.

52

Check Your Progress – 1

a) Operators are special symbols or keywords of Python. (True/False)

b) The ‘+’ operator can be used with strings. (True/False)

c) The comparison operator when used returns a string. (True/False)

d) The AND operator will return True if both the conditions of an expression

result in TRUE. (True/False)

e) Bitwise operator will perform operations on bits of the numeric operands.

(True/False)

Assignment Operators:

The assignment operators in Python are used to assign values to the variables

used in the program. Table 3.5 shows the list of assignment operators along

with its description and example.

Table 3.5: Assignment Operators

Operator Description Example Use

=
Assigns the value on the RHS of the

expression to the variable on the LHS of the

expression.

x = 5

+=
Adds the value on the RHS of the expression

to the variable on the LHS of the expression

and assigns the result to the variable on LHS.

x += 3

becomes

x = x + 3

-=

Subtracts the value on the RHS of the

expression from the variable on the LHS of the

expression and assigns the result to the

variable on LHS.

x -= 3

becomes

x = x - 3

*=

Multiplies the value on the RHS of the

expression by the variable on the LHS of the

expression and assigns the result to the

variable on LHS.

x *= 3

becomes

x = x * 3

/=

Divides the variable on the LHS of the

expression by the value on the RHS of the

expression and assigns the result to the

variable on LHS.

x /= 3

becomes

x = x / 3

//=

Performs floor division of the variable on the

LHS of the expression by the value on the RHS

of the expression and assigns the result to the

variable on LHS.

x //= 3

becomes

x = x // 3

53

%=

Performs modulus division of the variable on

the LHS of the expression by the value on the

RHS of the expression and assigns the result

to the variable on LHS.

x %= 3

becomes

x = x % 3

**=

Performs exponentiation of the variable on the

LHS of the expression by the value on the RHS

of the expression and assigns the result to the

variable on LHS.

x **= 3

becomes

x = x ** 3

&=

Performs bitwise AND of the variable on the

LHS of the expression by the value on the RHS

of the expression and assigns the result to the

variable on LHS.

x &= 3

becomes

x = x & 3

|=

Performs bitwise OR of the variable on the

LHS of the expression by the value on the RHS

of the expression and assigns the result to the

variable on LHS.

x |= 3

becomes

x = x | 3

^=

Performs bitwise XOR of the variable on the

LHS of the expression by the value on the RHS

of the expression and assigns the result to the

variable on LHS.

x ^= 3

becomes

x = x ^ 3

<<=

Performs bitwise left shift of the variable on the

LHS of the expression by the value on the RHS

of the expression and assigns the result to the

variable on LHS.

x <<= 3

becomes

x = x << 3

>>=

Performs bitwise right shift of the variable on

the LHS of the expression by the value on the

RHS of the expression and assigns the result

to the variable on LHS.

x >>= 3

becomes

x = x >> 3

The Python program in Example 3.5 demonstrates the use of various

assignment operators.

Example 3.5: Example of Assignment Operator

Program to demonstrate assignment operations

number = 5

const = 3

print("Number = ",number)

54

print("Constant = ",const)

number += const

print("Value of number after addition of const",number)

number *= const

print("Value of number after multiplication of const",number)

number -= const

print("Value of number after subtraction of const",number)

number /= const

print("Value of number after division by const",number)

number //= const

print("Value of number after floor division by const",number)

number %= const

print("Value of number after modulo by const",number)

number **= const

print("Value of number after exponential by const",number)

number = 15

print("New value of number ",number)

number &= const

print("Value of number after bitwise AND by const",number)

number |= const

print("Value of number after bitwise OR by const",number)

number ^= const

print("Value of number after bitwise XOR by const",number)

55

number <<= const

print("Value of number after left shift by const",number)

number >>= const

print("Value of number after right shift by const",number)

print("Final value of number is ",number)

OUTPUT:

Number = 5

Constant = 3

Value of number after addition of const 8

Value of number after multiplication of const 24

Value of number after subtraction of const 21

Value of number after division by const 7.0

Value of number after floor division by const 2.0

Value of number after modulo by const 2.0

Value of number after exponential by const 8.0

New value of number 15

Value of number after bitwise AND by const 3

Value of number after bitwise OR by const 3

Value of number after bitwise XOR by const 0

Value of number after left shift by const 0

Value of number after right shift by const 0

Final value of number is 0

56

Example 3.5 demonstrates the use of assignment operators. In the example,

number and const are variables having values 5 and 3 respectively. The output

shows results of different assignments performed on both these variables.

Observe that we have reassigned the value of variable number to 15 before

performing the bitwise assignments. This was necessary as the value of the

variable number has become 7.0 after performing the division. It is not possible

to perform bitwise operations with decimal values.

Membership Operators

The membership operators check for membership of an element within a

sequence. Table 3.6 shows the list of membership operators along with its

description and example.

Table 3.6: Membership Operators

Operator Description Example

in True if present 'a' in 'apple'

not in True if not present 'b' not in 'apple'

The Python program in Example 3.6 demonstrates the use of membership

operators.

Example 3.6: Example of Member Operator

The above program the membership operator 'g' in text checks for the

occurrence of the lowercase 'g' in the string. In the string "Good Morning", the

character 'g' is present at the end of the string, so operator 'g' in text will return

True. The membership operator 'm' not in text checks if the lowercase 'm' is not

found in the string. In the string "Good Morning", Upper case 'M' is present but

lower case 'm' is not present, hence we False in output.

Program to show use of membership operator

text = "Good Morning"

print("Small g in text",'g' in text)

print("Small m not in text",'m' not in text)

OUTPUT:

Small g in text True

Small m not in text True

57

Identity Operators

The identity operators are used to compare the memory locations of two

objects. These operators are used to check whether two variables point to the

same object in memory or not. Table 3.7 shows the list of identity operators

along with its description and example.

Table 3.7: Identity Operators

Operator Description Example Use

is True if both objects point to same location x is y

is not
True if both objects do not point to same

location
x is not y

The Python program in Example 3.7 demonstrates the use of membership

operators.

Example 3.7: Example of Identity Operator

Program to show use of identity operator

list1 = [10, 20, 30, 'Python', 3.14, 7.28]

list2 = list1

print("Are list1 and list2 in same location :",list1 is list2)

list3 = [10, 20, 30, 'Python', 3.14, 7.28]

print("Are list1 and list3 in same location :",list1 is list3)

list3 = [10, 20, 30, 'Python', 3.14, 7.28]

print("Are list3 and list1 not in same location :",list1 is not list3)

OUTPUT:

Are list1 and list2 in same location : True

Are list1 and list3 in same location : False

Are list3 and list1 not in same location : True

58

The above program demonstrates the use of the identity operator (is and is not)

in Python. It checks if two variables list1 and list2 refer to the same memory

location or not. Initially a list named list1 is defined along with values. Then list2

is assigned to list1, Thus, both list1 and list2 now point to the same memory

location. The statement, list1 is list2 hence returns True.

We then create a new list named list3 with the same contents as that of list1,

but it is a different object in memory. Therefore, the statement list1 is list3 will

return False because although the content is the same, they are not the same

object in memory. Finally, the statement list1 is not list3 will return True, since

list1 and list3 are different objects.

Check Your Progress – 2

a) The ‘=’ and ‘==’ operators will perform the same operation. (True/False)

b) The assignment operation x += 3 becomes x + 3 = x. (True/False)

c) The ‘is’ operator will return true if both the operands are in the same

memory location. (True/False)

d) The ‘in’ and ‘not in’ operators are membership operators. (True/False)

e) The operation number &= const can only be performed when both

number and const are of integer type. (True/False)

3.2 TYPE CASTING

Python is a dynamically typed language. It will assign the data type to the

variable according to the data stored in it. Sometimes we need to convert data

from one type to another to perform operations. The process of converting a

data type into another is known as type casting. Python provides various built-

in functions to perform type casting, making it a versatile and user-friendly

language for managing data types. Type casting can be done in two ways

namely: implicit and explicit.

59

Implicit Type Casting
Implicit type casting occurs automatically in Python when it is safe to perform.

This happens during operations where Python converts smaller data types into

larger data types to prevent data loss. Example 3.8 demonstrates the implicit

type casting done by Python.

Example 3.8: Implicit Type Casting example

Program to Implicit type casting example

var1 = 10 # Integer Variable

var2 = 2.5 # Float Variable

add = var1 + var2 # Integer is implicitly converted to float

print("Addition of",var1," and ",var2,"is",add)

print("Datatype of variable add is",type(add))

OUTPUT

Addition of 10 and 2.5 is 12.5

Datatype of variable add is <class 'float'>

In the above program variable var1 is of integer type and var2 is in float type,

when we perform addition operation on it, Python compiler will first implicitly

convert the integer variable var1 to float, then add it to the float variable var2

and assign the result to variable add. When we print the datatype of variable

add, we get <class 'float'> as output, indicating that variable add stores a float

value.

Explicit Type Casting
Explicit type casting, also known as type conversion, requires the programmer

to manually convert one data type into another using Python’s built-in functions.

The list of common functions used for explicit type casting is as mentioned:

Common Functions for Explicit Type Casting:

● int() – Converts a value to an integer.

● float() – Converts a value to a float.

60

● str() – Converts a value to a string.

● list() – Converts an iterable to a list.

● tuple() – Converts an iterable to a tuple.

● set() – Converts an iterable to a set.

● bool() – Converts a value to a Boolean.

Example 3.9 demonstrates the example of explicit type casting using above

listed functions.

Example 3.9: Example of Explicit Type casting

#Program of Explicit type casting examples

num = 5.8

num_int = int(num) # Truncates the decimal part

print("Float",num,"converted to integer",num_int,"using int().")

print("Datatype of num is",type(num))

print("Datatype of num_int is",type(num_int))

str1 = "10.5"

num_float = float(str1)

print("String",str1,"converted to float",num_float,"using float().")

print("Datatype of str1 is",type(str))

print("Datatype of num_float is",type(num_float))

n = 100

n_str = str(n)

print("Integer",n,"converted to string",n_str,"using str().")

print("Datatype of n is",type(n))

print("Datatype of n_str is",type(n_str))

OUTPUT:

Float 5.8 converted to integer 5 using int().

Datatype of num is <class 'float'>

Datatype of num_int is <class 'int'>

String 10.5 converted to float 10.5 using float().

Datatype of str1 is <class 'str'>

Datatype of num_float is <class 'float'>

Integer 100 converted to string 100 using str().

Datatype of n is <class 'int'>

Datatype of n_str is <class 'str'>

61

In the given example, the num variable stores the value of float type, we are

explicitly converting it into integer type with the use of int(). It will truncate the

decimal part of the data and store it into the num_int variable. Another variable

str1 is a string, we are converting it into a float number using float(). Using the

string data, we cannot perform arithmetic operations; if we convert it to a

numeric data type, we can perform any arithmetic operation on it. Lastly, we

have converted an integer variable n into a string using str().

Check Your Progress – 3

a) Implicit type casting will be performed by Python automatically.

(True/False)

b) Python can convert float variables to integer variables automatically.

(True/False)

c) The float variable can be converted to integer type using int().

(True/False)

d) If variable var=”20”, then var1=int(var) is the correct conversion.

(True/False)

3.4 LET US SUM UP

In this chapter we have discussed various operators and use of those

operators. Now we are capable of comparing the result of various conditions

and perform as per the result of different conditions. The data type casting is

also discussed. When we want to perform the conversion of data types, we can

use explicit type casting. Python performs implicit type casting as and when

required.

3.5 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a False

1-b True

1-c False

1-d True

62

1-e True

2-a False

2-b False

2-c True

2-d True

2-e True

3-a True

3-b False

3-c True

3-d True

3.6 ASSIGNMENTS

1. What is an Operator? Explain types of operators.

2. Explain the use of arithmetic operators with examples.

3. Explain how member operators work with examples.

4. What is type casting?

5. Explain the types of typecasting with examples.

6. Write a program:

● That takes two numbers and prints their sum, difference,

product, and quotient.

● That checks if a number is greater than 100.

● To determine if a person is eligible to vote (age >= 18 and

citizen).

● To swap two numbers using bitwise XOR.

● To demonstrate the use of left and right shifts.

63

Block-2
Flow Control Statements and

Functions

64

Unit-1: Control Flow and
Conditional Statements

Unit Structure

1.0. Learning Objectives

1.1. Introduction

1.2. If Statement

1.3. If..else Statements

1.4. If..elif Statements

1.5. Nest conditional statements

1.6. Let us sum up

1.7. Check your Progress: Possible Answers

1.8. Assignments

1

65

1.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand how to use decision making in program
● Use if statement to make a decision

● Use if..else statements to make a decision

● Use if..elif statements to make a decision

● Use nested conditional statements to make a decision

1.1 INTRODUCTION

So far, we have worked with python programs that follow a sequential structure,

where instructions are executed one by one in the exact order as they appear

in the program. When the program execution starts, first statement is executed,

then second, third and so on. The program execution comes to an end as soon

as the last statement is executed.

However, in real life applications, there are often scenarios where we want

certain parts of the program to execute only when specific conditions are met.

An example of such a scenario is to decide whether a person can vote in

elections or not? The answer to this question is based on the age of the person.

Hence we need to check the condition whether the age of the person is greater

than or equals to 18 or not.

To handle such situations, it is necessary to change the flow of instructions

within a program. Python language provides special types of statements known

as conditional statements or decision structure statements. These statements

allows us to navigate from one part of the program to another based on the

outcome of certain conditions. Python language provides keywords like if, elif

and else that can be used for decision making. In this chapter we will learn how

to use such keywords.

66

1.2 if STATEMENT

The simplest type of conditional statement in Python can be created using the

if keyword. The statement thus formed is commonly known as the if statement.

It is used in programs for decision-making, as it enables us to alter the flow of

program execution based on specific conditions.

The flow diagram of the if statement is shown in Figure 1.1 below:

The structure the if statement is mentioned below:

if (test-expression):

 Block of code

We can execute a single statement or block of statements when the test

expression is evaluated as TRUE. No statements under if statement are

executed when the test expression is evaluated as FALSE. It is not compulsory

to write the test expression in brackets. The test expression usually is used to

compare two variables using relational operators like = = (equals to), != (not

equals to), > (greater than), < (less than), >= (greater than equal to) and <=

(less than equal to).

The example of how to use an if statement in a Python program is given in the

program of Example 1.1.

67

Example 1.1: Decision making using if statement and fixed variable values

Program to check whether coin 1 is less than coin 2 when coins have
static values
coin1 = 5
coin2 = 10
if (coin1 < coin2):
 print("coin1 is less than coin2")

OUTPUT:
coin1 is less than coin2

In the above program the first line is known as comment. Here we have taken

two variables named coin1 and coin2. We have assigned fixed integers values

5 and 10 to them respectively. Then using the test expression (coin1 < coin2),

we check if the value of variable coin1 is less than the value of variable coin2.

As can be seen the value of variable coin1 is 5 which is less than the 10 (value

of variable in coin2), we print the message ‘coin1 is less than coin2’. As we

have fixed the values of both the variables we will get the same answer every

time we execute this program.

Let us modify the above program such that the values of variables are entered

by the user and may change every time. The modified Python program is given

in Example 1.2.

Example 1.2: Decision making using if statement and values taken from user

Program to check whether coin 1 is less than coin 2 using dynamic values

coin1 = int(input("Enter value of coin1: "))

coin2 = int(input("Enter value of coin2: "))

if (coin1 < coin2):

 print("coin1 is less than coin2")

OUTPUT – SCENARIO 1:

Enter value of coin1: 5

Enter value of coin2: 10

coin1 is less than coin2

OUTPUT – SCENARIO 2:

Enter value of coin1: 10

Enter value of coin2: 5

68

In the above program the values of variables coin1 and coin2 are to be given

by users at the time of execution. Only integer numbers will be accepted as we

have applied the constraint int on input. Then we compare the values in coin1

and coin2 using the test expression (coin1 < coin2). As can be seen in OUTPUT

– SCENARIO 1 the user has entered integer value 5 in coin1 and 10 in coin2,

as 5 is less than 10 we print the message ‘coin1 is less than coin2’. When we

run the program again as shown in OUTPUT – SCENARIO 2 the code under

the if statement is not executed. This happened because the user entered

integer value 10 in coin1 and 5 in coin2. As 10 is greater than 5 the test

expression (coin1 < coin2) returned FALSE and thus no message was printed.

Note: The if statement can be written in single line as shown in the

example below. Such statement is called Short Hand if statement.

if (coin1 < coin2): print("coin1 is less than coin2")

1.3 if..else STATEMENTS

The simple if statement has only one statement block, which gets executed

when the test expression returns TRUE. What if we want to execute some other

statement block if the test expression returns FALSE? In such cases, the

combination of if…else statements is used. The flow diagram of the if..else

statements is shown in Figure 1.2:

69

The structure the if..else statements is mentioned below:

if (test-expression):

 True block code

else:

 false block code

The example of how to use if..else statements in Python program is given in the

program of Example 1.3.

Example 1.3: Decision making using if..else statements

Program to check whether a person with specific age can vote or not.

age = int(input("Enter your age: "))

if (age >= 18):

 print("You can vote")

else:

 print("Sorry you will have to wait to vote")

OUTPUT – SCENARIO 1:

Enter your age: 20

You can vote

OUTPUT – SCENARIO 2:

Enter your age: 12

Sorry you will have to wait to vote

In the above program the user is prompted to enter the value of variable age.

Then we compare the value entered using the test expression (age >= 18). As

can be seen in OUTPUT – SCENARIO 1 the user has entered an integer value

20 in age, as 20 is greater than 18 we print the message ‘You can vote’. When

we run the program again as shown in OUTPUT – SCENARIO 2 the code under

else statement is executed. This happened because the user has entered

integer value 12 in age. As 12 is less than 18 the test expression (age >= 18)

returned FALSE, thus the else statement block showing the message ‘Sorry

you will have to wait to vote’ was executed.

70

Check Your Progress-1

a) The if statement is used for two way branching. (True/False)

b) Given value of a=3 and b=5 the statement; if (a > b): print (b) will print 5.

(True/False)

c) For two way decision making we can use if..elif statements. (True/False)

d) The condition statements return boolean values. (True/False)

1.4 if..elif STATEMENTS

The if..else statements allowed us to make two way decisions. In real life

examples we need to evaluate multiple conditions one by one to solve a

problem. To support such cases, the combination of if…elif statements is used.

Here elif is a short form of else if. The flow diagram of the if..elif statements is

shown in Figure 1.3:

The structure the if..elif statements is mentioned below:

if (test-expression 1):

 Code of Block 1

elif (test-expression 2):

 Code of Block 2

.

.

71

elif (test-expression n):

 Code of Block n

else:

 Default block code

The example of how to use if..elif statements in Python program is given in the

program of Example 1.4.

Example 1.4: Decision making using if..elif statements

Program to check what is the Grade of a student.

marks = int(input("Enter marks of student: "))

if (marks > 69):

 print("You have got A+ grade.")

elif (marks > 59):

 print("You have got A grade.")

elif (marks > 49):

 print("You have got B grade.")

elif (marks > 35):

 print("You have got C grade.")

else:

 print("You have got D grade.")

OUTPUT – SCENARIO 1:

Enter marks of student: 75

You have got A+ grade.

OUTPUT – SCENARIO 2:

Enter marks of student: 65

You have got A grade.

OUTPUT – SCENARIO 3:

Enter marks of student: 55

You have got B grade.

OUTPUT – SCENARIO 4:

Enter marks of student: 45

You have got C grade.

72

OUTPUT – SCENARIO 5:

Enter marks of student: 30

You have got D grade.

In the above program the user is prompted to enter the value of variable marks.

Then we compare the value entered using test expression (marks > 69). As can

be seen in OUTPUT – SCENARIO 1 the user has entered integer value 75 in

marks, as 75 is greater than 69 we print the message ‘You have got A+ grade.’.

All the remaining conditions are ignored as soon as one of the test expressions

is evaluated to TRUE. When we run the program again as shown in OUTPUT

– SCENARIO 2 the code under the first elif statement is executed and so on.

Observe that in OUTPUT – SCENARIO 5 the message under the else block is

shown as none of the previous test expressions were evaluated to TRUE.

Note:

● The else block in the if..elif statements is optional.

● The if..elif structure with multiple elif statement is also known as

if..else ladder.

1.5 NESTED CONDITIONAL STATEMENTS

Until now we saw programs wherein, we executed only a single statement after

fulfilment of a condition. What happens if we need to execute multiple

statements on fulfilment of a condition. Also, can one of these statements be a

condition itself?

The program given in Example 1.4 though seems to work correctly, may give

wrong outputs in cases where the user enters marks greater than 100 or less

than 0. The Python program given in the program of Example 1.5 is a modified

version of Example 1.4.

73

Example 1.5: Decision making using nested conditional statements

Program to check what is the Grade of a student.

marks = int(input("Enter marks of student: "))

if (marks >= 0 and marks <= 100):

 # Statements to be executed when marks >= 0 and marks <= 100 is TRUE

 if (marks > 69):

 print("You have got A+ grade.")

 elif (marks > 59):

 print("You have got A grade.")

 elif (marks > 49):

 print("You have got B grade.")

 elif (marks > 35):

 print("You have got C grade.")

 else:

 print("You have got D grade.")

else:

 # Statement to be executed when marks >= 0 and marks <= 100 is

FALSE

 print("You have entered wrong marks.")

OUTPUT – SCENARIO 1:

Enter marks of student: 75

You have got A+ grade.

OUTPUT – SCENARIO 2:

Enter marks of student: 200

You have entered wrong marks.

OUTPUT – SCENARIO 3:

Enter marks of student: -10

You have entered wrong marks.

In the above program we have used the concept of nested conditional

statements. The user is prompted to enter the value of variable marks. Then

we compare the value entered using test expression (marks >= 0 and marks

74

<= 100). The test expression used here has made use of the logical operator

AND. It ensures that the value of marks should be in the range of 0 to 100.

As can be seen in OUTPUT – SCENARIO 1 the user has entered integer value

75 in marks, as 75 is greater than 0 and less than 100, we print the message

‘You have got A+ grade.’. All the remaining conditions are ignored. When we

run the program again as shown in OUTPUT – SCENARIO 2 and 3, the test

expression (marks >= 0 and marks <= 100) evaluates to FALSE as the user

has entered 200 and -10. Thus the message under the else block ‘You have

entered wrong marks.’ is shown.

Note:

● In Example 1.5 we have used if..elif statements under the if

statement code block.

● This is known as nesting of if..elif under if statement

● It is possible to nest any conditional statement within each other.

So far we have used only integer values as input in the programs. The text

expression of conditional statements can work with float, string, list, tuple,

dictionary, set or other data types too. You will learn about them in the coming

chapters. Let us look at a python program that uses conditional statements with

characters and numbers both. Example 1.6 shows uses of nested conditional

statements.

 Example 1.6: Decision making using nested conditional statements

Program to check whether entered value is character or number.

If the value entered is character then check whether it is vowel or

consonant.

If the value entered is positive integer then check whether it is even or

odd.

data = input("Enter single character or positive integer: ")

if (data.isalpha() and len(data) == 1):

 # Statements to be executed when data is character

 if (data == 'a' or data == 'e' or data == 'i' or data == 'o' or data == 'u'):

75

 print("You have entered a vowel.")

 elif (data == 'A' or data == 'E' or data == 'I' or data == 'O' or data == 'U'):

 print("You have entered a vowel.")

 else:

 print("You have entered a consonant.")

elif (data.isdigit()):

 # Statement to be executed when data is number

 if (int(data) % 2 == 0):

 print("You have entered an even number.")

 else:

 print("You have entered an odd number.")

else:

 print("You have not entered a single character or positive integer.")

OUTPUT – SCENARIO 1:

Enter single character or positive integer: e

You have entered a vowel.

OUTPUT – SCENARIO 2:

Enter single character or positive integer: q

You have entered a consonant.

OUTPUT – SCENARIO 3:

Enter single character or positive integer: test

You have not entered a single character or positive integer.

OUTPUT – SCENARIO 4:

Enter single character or positive integer: 5

You have entered an odd number.

OUTPUT – SCENARIO 5:

Enter single character or positive integer: 18

You have entered an even number.

OUTPUT – SCENARIO 6:

Enter single character or positive integer: 35.6

You have not entered a single character or positive integer.

76

The above program checks whether the entered value is character or number.

If the value entered is character then we further check whether the character is

vowel or consonant. If the value entered is positive integer then we check

whether it is even or odd. In all other cases we print a message 'You have not

entered a single character or positive integer.'. Here the test expression

(data.isalpha() and len(data) == 1) ensures that the value entered is a single

digit alphabet in upper or lower case. The test expressions (data == 'a' or data

== 'e' or data == 'i' or data == 'o' or data == 'u') and (data == 'A' or data == 'E'

or data == 'I' or data == 'O' or data == 'U') ensures that value entered is vowel.

The test expression (data.isdigit()) ensures that the value entered is a positive

integer. Observe that we have nested if..elif statements under if block and

if..else statements under elif block.

Check Your Progress-2

a) For multiway way decision making we can use if..elif statements

(True/False)

b) The else block in if..elif is compulsory. (True/False)

c) The statement block under conditional statements can have multiple

statements. (True/False)

d) The text expression of a conditional statement can work with integer

values only. (True/False)

e) If “bat” == “BAT” is a valid conditional statement. (True/False)

1.6 LET US SUM UP

In this unit we have discussed the concept of decision making. You have got a

detailed understanding of how to use different conditional statements like if,

if..else and if..elif. We also understood the concept of using conditional

statements within conditional statements; thus learnt how nesting of conditions

can be done.

77

1.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a False

1-b False

1-c True

1-d True

2-a True

2-b False

2-c True

2-d False

2-e True

1.8 ASSIGNMENTS

● What is the disadvantage of using conditional statements?

● Explain the use of the if…else statement.

● What do you mean by nested if statement?

● State the importance of using if..elif statement.

● Write a program to perform the following activities:

o Check whether the given number is positive or negative.

o Calculate value of expression I = (P * R * N) / 100, only when P, R

and N have values greater than 0.

o Enter the value of two numbers, num1 and num2. Find whether

num1 is less than, greater than or equal to num2.

o Enter the value of three numbers, num1, num2 and num3. Find out

which number is the greatest of the three.

o Enter two names, name1 and name2. Check whether the names

are same or not.

78

Unit-2: Loop Control Structures

Unit Structure

2.0. Learning Objectives

2.1. Introduction

2.2. for Statement

2.3. while Statement

2.4. Skipping part of a loop

2.5. Nested loops

2.6. Let us sum up

2.7. Check your Progress: Possible Answers

2.8. Assignments

2

79

2.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand how to use repetition in the program
● Use while statement to perform repetition

● Use for statement to perform repetition

● Understand the concept of nested loops

● Use nested loops to perform repetition

2.1 INTRODUCTION

In the previous chapter we worked with python programs that allowed us to use

decision making in our programs. In many real life applications, there are often

scenarios where we want to execute a block of code multiple times based or

certain decisions or unconditionally. All programming languages offer loop

control structures that allow programmers to execute a statement or set of

statements multiple times.

When looping is implemented in a program, the a statement or set of

statements are executed multiple times until some defined condition is satisfied.

The looping construct is composed of two parts: a control statement and body

of the loop.

Python language provides keywords like for and while that can be used for

performing repetition in the programs. In this chapter we will learn how to use

such keywords.

2.2 for STATEMENT

The for statement generally known as for loop is used in the program when we

want to repetitively execute a statement or set of statements for a fixed number

of times. The for loop is used for iterating over a sequence of values in a list, a

tuple, a dictionary, a set, a string or integer values. In this chapter we will see

how to use a for loop with integers. The flow diagram of the generic for

statement is shown in Figure 2.1:

80

The general structure of the for statement is mentioned below:

for variable in range([value1], value2, [incr]):

 Block of code

In the above structure range function has been used. Here value1 is the start

value of the variable. If it is not specified as it is optional the initial value will be

equal to 0 (zero). The term value2 is the end value of the variable excluding

value2. The term incr specifies the value to be added to a variable in each

iteration. The square brackets indicate that this value is optional too. If not

specified the value 1 is added to the variable by default. The flow diagram of

the for statement that uses integers is shown in Figure 2.2:

81

The example of how to use a for statement in a Python program is given in the

program of Example 2.1.

Example 2.1(a) and 2.1(b): Print a series of number using for loop

Program 2.1(a)

#Print series of number between 1 to

5

for num in range(1, 5):

 print(num)

Program 2.1(b)

#Print series of number between 0

to 5

for num in range(5):

 print(num)

OUTPUT:

1

2

3

4

OUTPUT:

0

1

2

3

4

In the above program 2.1(a) we have taken a variable num. Then in the for loop

we have given a range of 1 to 5 (value1 = 1 and value2 = 5). Here the increment

value has not been specified. Thus initially variable num would be assigned

with integer value 1 and with every iteration integer value 1 will be added to the

existing value of num.

Program 2.1(b) is also printing a series of numbers. Here we have given only

one value 5. This value is by default assigned to value2. The default starting

value thus becomes 0 and the default increment value is 1. Thus we get 0 to 4

as output. Observe that the last value printed in both programs is 4 and not 5.

Note:

● The for loop is also known as counter controlled loop.

● If value1 is not specified its default value is 0 (zero).

● If incr is not specified its default is 1.

● If value1 is specified and is greater than value2, then loop will not

be executed.

82

Let us look at another Python program given in Example 2.2 that uses a for loop

to print the odd numbers between 1 to 10.

Example 2.2: Print odd numbers between 1 to 10 using for loop

Program to print odd numbers between 1 to 10

for num in range(1, 10, 2):

 print(num)

OUTPUT:

1

3

5

7

9

In the above program we have taken a variable num. Then in the for loop we

have given a range of 1 to 10 (value1 = 1 and value2 = 10). Here the increment

value has been given as 2. Thus initially variable num would be assigned with

integer value 1 and with every iteration integer value 2 will be added to the

existing value of num.

2.3 while STATEMENT

With the for loop we executed instructions for an already known number of

times. What if we do not know the exact number of times we want to execute

an instruction? In such cases, the while statement is used. The flow diagram of

the while statement is shown in Figure 2.3:

83

The structure the while statement is mentioned below:

while (test-expression):

 Code block

The example of how to use a while statement in a Python program is given in

the program of Example 2.3.

Example 2.3: Program to find sum of entered numbers

Program to print sum of entered numbers

number = int(input("Enter a number: "))

sum = number

while (number != 0):

 number = int(input("Enter a number: "))

 sum = sum + number

print(f"Sum = {sum}")

OUTPUT – SCENARIO 1:

Enter a number: 2

Enter a number: 3

Enter a number: 0

Sum = 5

OUTPUT – SCENARIO 2:

Enter a number: 0

Sum = 0

In the above program the user is prompted to enter the value of the variable

number. This number is then assigned to the variable sum. Then we compare

the test expression (number != 0) to check whether the value of the number is

0 or not. If it is not 0 (zero) we enter inside the while loop. The body of the loop

contains two instructions. The first instruction again requires us to enter a value

in a variable number. The value of the number is then added into the previous

value of variable sum. The execution control will now again go back to test

expression and evaluate it. If the test expression is evaluated to TRUE the

instructions in the while loop will be executed again. If the test expression is

evaluated to FALSE, the statement after the while loop will be executed.

84

As can be seen in OUTPUT – SCENARIO 1; the user has entered integer value

2 in variable number, thus the variable sum will be assigned value 2. Now as

2 is not equals to 0, we enter the while loop. The new value of the number is 3,

thus the sum will now become 5. Also as 3 is not equals to 0, we once again

enter into the while loop. Now the user has entered 0, thus the value of sum

remains 5. When the control is transferred to test expression, we get expression

(0 != 0), which results in FALSE. Thus the while loop ends and we get the output

as 5. Observe that the while loop was executed two times.

When we run the program again as shown in OUTPUT – SCENARIO 2; the

user has entered integer value 0 in the variable number, thus the variable sum

will be assigned value 0. Now for test expression, we get expression (0 != 0),

which results in FALSE. Thus the while loop ends and we get the output as 0.

Observe that the while loop was not executed even once in the scenario 2.

Note:

● As we check the test expression before entering the loop, while

loop is also known as entry-controlled loop.

● print(f"Sum = {sum}") is used to concatenate a message “Sum =”

and value of variable given in curly brackets, here {sum} .

The two loop constructs for and while can be used interchangeably. Let us re-

write the program given in Example 2.2 using a while loop. The modified Python

program is given in Example 2.4

Example 2.4: Print odd numbers between 1 to 10 using while loop

Program to print odd numbers between 1 to 10 using while loop

num = 1

while (num < 10):

 print(num)

 num = num + 2

85

OUTPUT:

1
3
5
7
9

In the above program the variable num is assigned integer value 1. Then we

compare the test expression (num < 10) to check whether the value of num is

less than 10 or not. If the test expression evaluates to TRUE we print the value

of variable num and add an integer value 2 to the existing value of num. This

process goes on till the value of variable num becomes equal to or greater than

10. The given program is going to always execute for five times.

Activity 2.1:

Modify the program given in Example 2.4 to ask an end number from the

user. Then print all odd numbers starting from 1 till the end number. For

example if the user enter end number as 20 then program should print odd

numbers between 1 to 20.

Check Your Progress-1

a) In for loop it is compulsory to specify increment value. (True/False)

b) The for loop will execute only if value1 is less than value2. (True/False)

c) The for loop will execute till the value of variable becomes equal to value2.

(True/False)

d) The for loop is also known as counter controlled loop. (True/False)

e) The while loop is executed only when the test expression is evaluated to

FALSE. (True/False)

f) The while loop may or may not be executed even once based on the value

of test expression. (True/False)

g) The while loop is also known as entry controlled loop. (True/False)

86

2.4 SKIPPING PART OF LOOP
Sometimes during the execution of a program we may want to terminate a loop

without executing some instructions. Or at times we may want to skip some of

the instructions but still continue iterations of the loop. Python provides three

keywords; break, continue and pass to handle such cases.

The break keyword:

The break keyword is used to terminate the loop, when encountered within the

loop it stops further execution of the loop. It can be used with both for and while

loop.

The example of how to use break keyword in a Python program is given in the

program of Example 2.5.

Example 2.5: Program showing use of break

Program to check whether entered number is odd

Shows use of while loop and break

while (1):

 num = int(input("Enter a number: "))

 remainder = num % 2

 if (remainder == 0):

 print(f"{num} is an even number. While loop ends here.")

 break

 else:

 print(f"{num} is an odd number\n")

OUTPUT – SCENARIO 1:

Enter a number: 3

3 is an odd number

Enter a number: 5

5 is an odd number

Enter a number: 6

6 is an even number. While loop ends here.

87

OUTPUT – SCENARIO 2:

Enter a number: 4

4 is an even number. While loop ends here.

In the above program the program execution starts from the line while(1). As

the test expression has value 1, it will always evaluate to TRUE. Now, the first

statement under the while loop will be executed. The user is prompted to enter

the value of variable num. Then the variable remainder assigned a value using

expression num % 2. We have then used the if statement to decide whether the

loop should be continued or stopped. The test expression in if checks whether

the value of variable remainder is 0. In case the value is 0, we print a message

and exit the while loop. The while loop is continued otherwise until the user

enters an even number.

As can be seen in OUTPUT – SCENARIO 1; the while loop is executed three

times. When the user enters integer value 3 in num, we get a message “3 is an

odd number” and the loop continues. When the user enters integer value 5 in

num, we get a message “5 is an odd number” and the loop continues. When

the user enters integer value 6 in num, we get a message “6 is an even number.

While loop ends here.”

When we run the program again as shown in OUTPUT – SCENARIO 2; we get

the message “4 is an even number. While loop ends here.”; in the first instance

only. There is no further repetition of the while loop.

Note:

● The while loop implemented in Example 2.5 is known as exit

control loop as we decided to continue or stop the loop at the

time of exit.

● In most cases the break statement will be used along with if or

if..else statement.

● If a break statement is used without an if statement, then the loop

will terminate immediately.

88

● The test expression in loops needs to be used carefully. Using

wrong test expressions may lead to infinite loops.

● Infinite loops are the loops that go on executing as the test

expression never evaluates to FALSE.

The continue keyword:

The continue keyword is used to skip some instructions within the loop and go

back to check the test expression. The keyword continue can also be used for

and while loop.

Let us modify the program in Example 2.5 to ensure that only positive numbers

are checked when considering odd or even numbers. Example 2.6 shows the

modified program.

Example 2.6: Program showing use of continue keyword

Program to check whether entered number is odd

Shows use of while loop, continue and break

while (1):

 num = int(input("Enter a number: "))

 if (num <= 0):

 continue

 remainder = num % 2

 if (remainder == 0):

 print(f"{num} is an even number. While loop ends here.")

 break

 else:

 print(f"{num} is an odd number\n")

OUTPUT – SCENARIO 1:

Enter a number: -3

Enter a number: 3

3 is an odd number

Enter a number: 4

4 is an even number. While loop ends here.

89

OUTPUT – SCENARIO 2:

Enter a number: -1

Enter a number: 0

Enter a number: 2

2 is an even number. While loop ends here.

The above program is performing the same operation as the program in

Example 2.5. A minor change has been done in this program though. After

accepting the value of variable num from the user we have used the if statement

to decide whether the flow control of loop should come back to test expression

(1) or the execution is continued or stopped.

As can be seen in OUTPUT – SCENARIO 1; the while loop is executed three

times. When the user enters integer value -3 in num, we are asked to enter the

value of num again. When the user enters integer value 3, we get a message

“3 is an odd number” and the loop continues. When the user enters integer

value 4 in num, we get a message “4 is an even number. While loop ends here.”

When we run the program again as shown in OUTPUT – SCENARIO 2; we are

asked to enter the value of num again in both cases when the user entered -1

and 0. When the user enters integer value 2 in num, we get message “2 is an

even number. While loop ends here.”; There is no further repetition of the while

loop.

The pass keyword:

The pass keyword is used to do nothing within the loop. The keyword pass can

also be used for and while loop. Example 2.7 shows the use of the pass

keyword.

Example 2.7: Program showing use of pass keyword

#Program showing example of pass

for num in range(10, 15):

 if num % 2 == 0:

 pass # Do nothing for even numbers

 else:

 print(f"{num} is odd")

OUTPUT:

11 is odd

13 is odd

90

In the above program a for loop that starts from value 10 to 15 has been used.

Here for values 10, 12 and 14 the pass statement is executed, effectively

skipping any action. When num is odd (11,13), the program prints the message

indicating the number is odd.

2.5 NESTED LOOPS
The for and while statements are used for repetitions of certain statements.

Thus, it is possible to use these statements as part of loops themselves. A

nested loop is created when a for or while statement is used within a for or while

loop. The program given in Example 2.8 shows an example of using nested

loops.

 Example 2.8: Example of using nested loops

#Program showing example of nested loop

num = int(input("Enter a number: "))

for o_ctr in range(1, num): # Outer loop

 for i_ctr in range(1, 11): # Inner loop

 product = o_ctr * i_ctr

 print(f"{o_ctr} * {i_ctr} = {product}")

 print("\n") # New line after each row

OUTPUT:

Enter a number: 3

1 * 1 = 1

1 * 2 = 2

1 * 3 = 3

1 * 4 = 4

1 * 5 = 5

1 * 6 = 6

1 * 7 = 7

1 * 8 = 8

1 * 9 = 9

1 * 10 = 10

91

2 * 1 = 2

2 * 2 = 4

2 * 3 = 6

2 * 4 = 8

2 * 5 = 10

2 * 6 = 12

2 * 7 = 14

2 * 8 = 16

2 * 9 = 18

2 * 10 = 20

In the above program we have used the concept of nested loops. The user is

prompted to enter the value of variable num. This value is used as the maximum

range of the outer loop. The inner loop is predefined to run for ten times starting

from 1 to 10.

As can be seen in OUTPUT; the user has entered integer value 3 in num. Thus

the outer loop is executed two times for o_ctr value 1 and 2. For every instance

of outer loop the inner loop is executed ten times from i_ctr value changing from

1 to 10.

Let us have a look at another example that shows the use of nested loops. The

program given in Example 2.9 shows an example of using a nested loop to

draw a pattern.

Number of rows in the triangle

rows = int(input("Enter number of rows: "))

if (rows > 1):

 o_ctr = 1

 while (o_ctr < rows + 1):

 for i_ctr in range(o_ctr):

 print('*', end=' ')

 o_ctr = o_ctr + 1

 print("\n") # Move to the next line after finishing one row

else:

 print("Rows should be greater than 1\n")

92

OUTPUT – SCENARIO 1:

Enter number of rows: 1

Rows should be greater than 1

OUTPUT – SCENARIO 2:

Enter number of rows: 4

*
* *
* * *
* * * *

In the above program we have used both while and for loops. The user is

prompted to enter the value of variable rows. If the value of rows is greater than

1, then the nested loop is executed. As can be seen in OUTPUT – SCENARIO

1; as the user has entered 1 we get the message “Rows should be greater than

1”. As seen in OUTPUT – SCENARIO 2; when the user enters 4 we get a

pattern of stars.

Check Your Progress-2

a) The break statement stops execution of a loop. (True/False)

b) The break statement cannot be used in the for loop. (True/False)

c) The continue statement skips some statements of the loop and comes out

of the loop. (True/False)

d) The pass statement when used in a loop does no activity. (True/False)

e) To avoid creating infinite loops it is better to use continue keyword along

with if or if..else statements. (True/False)

f) It is possible to use a for loop within a while loop and vice versa.

(True/False)

2.6 LET US SUM UP

In this unit we have discussed the concept of loops. You have got a detailed

understanding of how to use loops like for and while. We further learnt how to

use keywords like break, continue and pass if some statements in the loop need

to be skipped. We also understood the concept of using loop within a loop.

93

2.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS
1-a False

1-b True

1-c False

1-d True

1-e False

1-f True

1-g True

2-a True

2-b False

2-c False

2-d True

2-e True

2-f True

2.8 ASSIGNMENTS
● Explain the purpose of using a loop in your programs.

● What is the difference between entry controlled and exit controlled loop?

● Explain how we can skip a part of a loop using break and continue

statements.

● Explain the concept of nested loop with appropriate examples.

● Write a program to perform following activities:

o Find the factorial of a number using a loop.

o Find the sum of the first 50 even numbers.

o Print a Fibonacci series till given position. A Fibonacci series starts with

0. If the user enters 4, the program should print 0, 1, 1, 2. If the user

enters 7, the program should print 0, 1, 1, 2, 3, 5, 8.

o Find the sum of the first 5 square numbers.

o Print the following patterns for a given number of rows as mentioned:

* * * *
* * *
* *
*

*
* *
* * *

 * *
 *

94

Unit-3: Functions in Python

Unit Structure

3.0. Learning Objectives

3.1. Introduction

3.2. Function and its type

3.3. Types of parameters

3.4. Anonymous functions

3.5. Recursive functions

3.6. Scope of variable

3.7. Let us sum up

3.8. Check your Progress: Possible Answers

3.9. Assignments

3

95

3.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand what is function
● Use a function in a program

● Understand different types of arguments used in function

● Understand what is anonymous function

● Understand and use recursive function in a program

● Understand the scope of variables

3.1 INTRODUCTION

Till now we worked with small python programs that allowed us to perform a

specific task. The real life applications though have a very high number of lines.

In such cases it is better to break the code into smaller parts.

Python language provides us a concept called functions to assist converting

long codes into smaller parts. In this chapter we will learn what a function is,

which are the different types of functions. We will also learn how to use a

function in a Python program.

3.2 FUNCTION AND ITS TYPE

A function in Python is a block of code that contains a set of statements that

can be reused to perform a specific task. A function once defined helps us to

organize a program, make it more readable, and allow reuse of code. There are

two categories of functions in Python; Built-in and User defined.

Built-in Functions

A built-in function in Python is a function that is readily available for use without

the need for any additional imports or definitions. These functions are part of

Python's standard library and provide essential functionalities that help

programmers perform common tasks efficiently. As these functions are part of

Python's standard library they are also known as library functions. In previous

chapters we have already used a few built-in functions like print (to print on

screen), input (to take data from user), int (to convert entered data to integer

96

value). Python has a rich collection of built-in functions. To get the details of

these functions we need to explore the builtin module. We will be using various

built-in functions in the chapters to come.

User defined Functions

A function created by the programmer (user) is known as a user defined

function. These functions are created to help programmers perform some

specific tasks efficiently. Once a function has been created it can be reused

multiple times within a program.

A function after its execution is completed may return a value or may return

nothing. The general syntax of a function is as follows:

def function-name(P1 : datatype,…,Pn : datatype):

 statement 1

:

statement n

return expression

Here def is a keyword that is used to define a function. The function-name here

represents a unique name of the function. P1… Pn are known as input

parameters, each parameter needs to have a data type. Specifying parameters

is not compulsory, hence we may have functions without parameters also.

Statement 1 to Statement n combined is known as function body. The last line

return expression is optional. If specified it states that after execution of the

function body, the value stored in the expression will be returned back by the

function. The Python program given in Example 3.1 shows how to create a

function that does not return anything.

Example 3.1: Program to check whether a number is even or odd

#Program using a function to check whether a number is even or odd

Function EvenOdd

def EvenOdd(num:int):

 if (num % 2 == 0):

 print(f"{num} is even.")

97

 else:

 print(f"{num} is odd.")

Program Logic

number = int(input("Enter a number: "))

if (number > 0):

 EvenOdd(number) #Function call statement

else:

 print(f"{number} is negative.")

print("Welcome to the world of Python functions.")

OUTPUT– SCENARIO 1:

Enter a number: 2

2 is even.

Welcome to the world of Python functions.

OUTPUT– SCENARIO 2:

Enter a number: 45

45 is odd.

Welcome to the world of Python functions.

OUTPUT– SCENARIO 3:

Enter a number: -10

-10 is negative.

Welcome to the world of Python functions.

In the above program we have defined a function EvenOdd that accepts an

integer parameter num. The function is used to check whether the remainder

of num%2 is zero or not. If the remainder is zero we print a message indicating

that the number is even. Otherwise we print a message indicating that the

number is odd.

The function EvenOdd on its own will not be able to perform any operation. To

execute the instructions defined in the function, it needs to be called. Observe

that under the line Program Logic we have accepted a value of variable number

from the user. We have then checked whether the value is greater than zero, if

98

so we have called the function and passed the value of the number in it. Refer

statement EvenOdd(number) this line is known as a function call.

As can be seen in OUTPUT – SCENARIO 1; the user has entered integer value

2 in variable number, as it was greater than zero a function call EvenOdd(2)

was executed and we got messages “2 is even.” and “Welcome to the world of

Python functions.”. When we run the program again as shown in OUTPUT –

SCENARIO 2; the user has entered integer value 45 in variable number, as it

was greater than zero a function call EvenOdd(45) was executed and we got

messages “45 is odd.” and “Welcome to the world of Python functions.”. In

OUTPUT-SCENARIO 3; the user entered integer value -10 in variable number,

as it is less than zero, function was not called and we got messages “-10 is

negative.” and “Welcome to the world of Python functions.”.

Figure 3.1 shows the control and data flow of the program when a function call

is made with the value of number.

99

Observe the sequence of actions in the Figure 3.1:

1. When the function EvenOdd(number) is called, the program's control

transfers to the function definition and assigns the value of number to

num.

2. All the code inside the function EvenOdd() is executed.

3. The control of the program jumps to the next statement after the function

call.

Let us now write a program that uses a function that returns a value back.

Example 3.2 shows such a program.

#Program using a function to calculate factorial of a number

def factorial(num):

 result = 1

 if (num > 1):

 for ctr in range(1, num + 1):

 result *= ctr

 return result

Program Logic

number = int(input("Enter a number: "))

if (number > 0):

 fact = factorial(number) #Function call statement

 print(f"The factorial of {number} is {fact}.")

else:

 print(f"{number} is negative. Factorial is not defined for negative numbers.")

print("Welcome to the world of Python functions.")

OUTPUT– SCENARIO 1:

Enter a number: 6

The factorial of 6 is 720.

Welcome to the world of Python functions.

OUTPUT– SCENARIO 2:

Enter a number: -10

-10 is negative. Factorial is not defined for negative numbers.

Welcome to the world of Python functions.

100

In the above program we have defined a function factorial that accepts

parameter num. The function is used to return the factorial of parameter num.

Initially a variable result with value 1 is defined. Then we check whether the

value of num is greater than 1 or not. If value is 1 we return the default value of

result i.e. 1. Otherwise we calculate the factorial of num using the for loop and

return the new value of result.

Under the line Program Logic we have accepted a value of variable number

from the user. We have then checked whether the value is greater than zero, if

so we have called the function and passed the value of the number in it (refer

statement fact = factorial (number)). Observe that as the function factorial is

returning a value we have called the function and assigned its value to variable

fact. If required we can now perform further operations with the value stored in

variable fact.

As can be seen in OUTPUT – SCENARIO 1; the user has entered integer value

6 in variable number, as it was greater than zero a function call factorial(6) was

executed and we got messages “The factorial of 6 is 720.” and “Welcome to the

world of Python functions.”. When we run the program again as shown in

OUTPUT – SCENARIO 2; the user has entered integer value -10 in variable

number, as it was less than zero, function was not called and we got messages

“-10 is negative. Factorial is not defined for negative numbers.” and “Welcome

to the world of Python functions.”.

Figure 3.2 shows the control and data flow of the program when a function call

is made with the value of number.

101

Observe the sequence of actions in the Figure 3.2:

1. When the function factorial(number) is called, the program's control

transfers to the function definition and assigns the value of number to

num.

2. All the code inside the function factorial() is executed.

3. The value of result is returned back in the statement where the function

call is made. The value is then assigned to variable fact.

4. The control of the program jumps to the next statement after the function

call.

Note:

● A function needs to be defined before it can be called.

● Specifying the data types of parameters is not compulsory.

● The return statement is optional.

● It is possible to specify the return type of function also.

● To specify data type of the return value the def line will become:

def function-name(P1 : datatype,…,Pn : datatype) 🡪 return_type:

102

● A function can be defined in four ways:

o A function with no parameters and no return value

o A function with no parameters and a return value

o A function with parameters and no return value

o A function with parameters and a return value

● Example 3.1 was an example of a function with parameters and

no return value

● Example 3.2 was an example of a function with parameters and a

return value

Check Your Progress-1

a) Function allows us to reuse the code. (True/False)

b) To use a built-in function, we need to first define it. (True/False)

c) To create a user defined function we need to use keyword def.

(True/False)

d) A function will always return a value. (True/False)

e) Specifying data type of a return value is compulsory in Python.

(True/False)

f) A user defined function can be called even before it is defined.

(True/False)

3.3 TYPE OF PARAMETERS

By now we know that there are two aspects of function; first is function definition

and second is function call. Function definition allows us to write a logic to

perform a specific task, while function call allows us to use this logic in our

program. Functions in Python can accept parameters also known as arguments

in various forms, allowing for flexibility and readability in code. The arguments

in Python can be classified four types as mentioned:

● Positional Arguments

● Keyword Arguments

● Default Arguments

● Variable length Arguments

103

Positional Arguments

The positional arguments are the most common type of arguments. They are

passed to the function in the order they are defined. The final result of the

function will always depend on the order in which the parameters are passed.

Example 3.3 shows the use of positional parameters.

Example 3.3: Program to show use of positional parameter

#Program to show use of positional parameter

def subtract(num1, num2):

 return num1 - num2

result = subtract(5, 8) # num1=5, num2=8

print(f"Subtraction of 5 and 8 is {result}.")

result = subtract(8, 5) # num1=8, num2=5

print(f"Subtraction of 8 and 5 is {result}.")

OUTPUT:

Subtraction of 5 and 8 is -3.

Subtraction of 8 and 5 is 3.

In the above program we have defined a function subtract that accepts two

numbers.

Observe that in the program we have made two calls to the function;

subtract(5, 8)

and subtract(8, 5). Here when the first function call subtract(5, 8) is made then

num1 is assigned value 5 and num2 is assigned value 8. We thus get the output

message “Subtraction of 5 and 8 is -3.” When the second call subtract(8, 5) is

made then num1 is assigned value 8 and num2 is assigned value 5. We thus

get the output message “Subtraction of 8 and 5 is 3.”

As can be observed from the output the values passed in the function call are

mapped based on the position of the parameters in function definition.

104

Keyword Arguments

The keyword arguments are passed using the name of the parameter defined

in the function. This allows users to specify values without worrying about their

order while calling the function. Example 3.4 shows the use of keyword

arguments.

Example 3.4: Program to show use of keyword parameter

#Program to show use of keyword parameter

def subtract(num1, num2):

 return num1 - num2

a = int(input("Enter first number: "))

b = int(input("Enter second number: "))

result = subtract(num1=a, num2=b)

print(f"Subtraction result is {result}.")

result = subtract(num2=b, num1=a)

print(f"Subtraction result is {result}.")

OUTPUT:

Enter first number: 8

Enter second number: 3

Subtraction result is 5.

Subtraction result is 5.

In the above program we have used the same subtract function as that of

Example 3.3. Further values of two numbers have been accepted in variable a

and b. When the first function call subtract(num1=a, num2=b) is made then

num1 is assigned value of variable a (8 in this case) and num2 is assigned

value of variable b (3 in this case). We thus get the output message “Subtraction

result is 5.” When the second call subtract(num2=b, num1=a) is made we still

get the same output message “Subtraction result is 5.”

105

The above output shows that the position of an argument does not matter if the

keyword of the argument is specified. The keyword ensures that the value

passed will go to the same parameter in function irrespective of its position

when function is called.

Default Arguments

While defining a function it is possible to assign a default value to a parameter.

If the user does not provide a value for such a parameter during the function

call then the default value is used. If the user provides a value then the new

value is used. Example 3.5 shows the use of default arguments.

Example 3.5: Program to show use of default parameter

Program to show use of default parameter

def multiply(num1, num2=10):

 return num1 * num2

a = int(input("Enter first number: "))

b = int(input("Enter second number: "))

result = multiply(a). # call with only one parameter

print(f"Multiplication result is {result}.")

result = multiply(a, b)

print(f"Multiplication result is {result}.")

OUTPUT:

Enter first number: 25

Enter second number: 5

Multiplication result is 250.

Multiplication result is 125.

In the above program we have used a function multiply, that accepts two

parameters num1 and num2. The parameter num2 has been assigned a default

value 10. Further values of two numbers have been accepted in variable a and

b. When the first function call multiply(a) is made then num1 is assigned value

of a (25 in this case), as the value of num2 is not specified it is assigned default

106

value (10 in this case). We thus get the output message “Multiplication result is

250.” When the second call multiply(a,b) is made then num1 is assigned value

of variable a (25 in this case), as the value of num2 is assigned value of variable

b (5 in this case). We thus get the output message “Multiplication result is 125.”

Observe that when a new value has been specified the default value is

overwritten.

Variable length Arguments

Many times it may happen that we do not know in advance how many

arguments will be passed to the function. To handle such situations Python

provides use of *args for non-keyword arguments and **kwargs for keyword

arguments. The parameter *args, also known as arbitrary positional arguments,

allows us to accept multiple positional arguments as a tuple. The parameter

**kwargs also known as arbitrary keyword arguments allows us to accept

multiple keyword arguments as a dictionary. Example 3.6 shows the use of

arbitrary positional arguments.

Example 3.6: Program to show use of arbitrary positional arguments

Program to show use of arbitrary positional arguments

def Add_Numbers(*args):

 return sum(args)

print(f"Addition = {Add_Numbers(1, 2, 3, 4, 5)}")

print(f"Addition = {Add_Numbers(10, 20, 30, 40, 50, 60)}")

OUTPUT:

Addition = 15

Addition = 210

In the above program we have used a function Add_Numbers, that accepts

arbitrary positional arguments using *args. The function returns the addition of

the values passed to it as tuple using built-in library function sum. We have

made two calls to the function. First call Add_Numbers(1, 2, 3, 4, 5) gives us

output 15, while second call Add_Numbers(10, 20, 30, 40, 50, 60) gives us

output 210. Note that the number of parameters and values passed in both the

107

function calls are different. Example 3.7 shows the use of arbitrary keyword

arguments.

Example 3.7: Program to show use of arbitrary keyword arguments

Program to show use of arbitrary keyword arguments

def print_student_details(**kwargs):

 for key, value in kwargs.items():

 print(f"{key}: {value}")

name = input("Enter name of student: ")

age = int(input("Enter age of student: "))

city = input("Enter city of student: ")

print_student_details(Name=name, Age=age, City=city)

OUTPUT:

Enter name of student: Vidita

Enter age of student: 20

Enter city of student: Ahmedabad

Name: Vidita

Age: 20

City: Ahmedabad

In the above program we have defined a function print_student_details that

takes variable-length keyword arguments (**kwargs). The **kwargs syntax

allows the function to accept any number of keyword arguments as a dictionary.

Each keyword argument is accessible as a key-value pair inside the function.

The for loop iterates over each key-value pair in the kwargs dictionary (data

passed by user). The kwargs.items() returns a view of the dictionary’s items,

which is then unpacked into key and value. The print statement formats and

outputs each key and its corresponding value.

The program prompts the user to enter the details about a student (name, age,

and city) and passes these details to the function. For the input seen in the

example the kwargs dictionary will look like {"Name": "Vidita", "Age": 20, "City":

"Ahmedabad"}.

108

Note:

Understanding how to use different types of function arguments will

enable us to write more flexible and readable Python programs.

Check Your Progress-2

a) Python arguments can be classified in _________ types.

b) The __________ arguments are initialized with a predefined value.

c) The __________ arguments can be passed without worrying about its

position during function call.

d) The _________ parameter is used when arbitrary positional arguments

are to be passed.

e) The **kwargs parameter is used when arbitrary __________ arguments

are to be passed.

f) Parameters are not ____________ in function.

3.4 ANONYMOUS FUNCTION

Anonymous functions, or lambda functions, allows us to create small, unnamed

functions in Python. They are particularly useful in functional programming

paradigms where functions are passed as arguments to other functions. The

syntax of lambda function is:

variable_name = lambda argument_list: expression

A lambda function is defined using the lambda keyword instead of def keyword.

It is followed by a list of parameters separated by comma, a colon, and an

expression (logic to be executed). The lambda functions are limited to a single

expression and cannot contain multiple statements. Example 3.8 shows the use

of lambda function.

109

Example 3.8: Program to show use of lambda function

Program to show use of lambda function

square = lambda x: x * x

number = int(input("Enter a number: "))

result = square(number)

print(f"Square of {number} is {result}")

OUTPUT:

Enter a number: 6

Square of 6 is 36

In the above program we have created an anonymous function (lambda

function) and have assigned it to the variable square. The function takes one

parameter x. The expression x * x is the body of the function. It computes the

square of x. When the function is called result = square(number), the lambda

function stored in square is called with the arguments as value of variable

number (6 in this case). This triggers the evaluation of the expression x * x. The

result of this multiplication, 36, is stored in the variable result. A message

“Square of 6 is 36“ is then printed.

Example 3.9 gives an example of another lambda function that uses if..else as

its body.

Example 3.9: Program to show use of lambda function

Program to show use of lambda function

greater = lambda x, y: x if x > y else y

num1 = int(input("Enter first number: "))

num2 = int(input("Enter second number: "))

result = greater(num1, num2)

print("Greater number is:", result)

110

OUTPUT – SCENARIO 1:

Enter first number: 8

Enter second number: 19

Greater number is: 19

OUTPUT – SCENARIO 2:

Enter first number: -10

Enter second number: -20

Greater number is: -10

In the above program we have created an anonymous function (lambda

function) and have assigned it to the variable greater. The function takes two

parameters x and y. The expression x if x > y else y is the body of the function.

It checks which value is greater. When the function is called result =

greater(num1, num2), the lambda function stored in greater is called with the

arguments as values of variable num1 and num2 (8 and 19 in this case). This

triggers the evaluation of the expression x if x > y else y. The result of this

evaluation is stored in the variable result. A message “Greater number is: 19 “

is then printed in OUTPUT – SCENARIO 1.

3.5 RECURSIVE FUNCTIONS

Till now, we have written only a single function in our program. In real life, it is

very common to have multiple functions within a program. It is also possible for

one function to call another function.

A recursive function can be defined as a function that calls itself. The recursive

functions are made of the base case and the recursive case. The base case is

used to stop the recursion, while the recursive part is where the function calls

itself again and again. The program given in Example 3.10 shows an example

of using a recursive function in a Python program.

111

Example 3.10: Example of using recursive function

Program showing example of recursive function

def GCD(num1, num2):

 # Base case

 if num2 == 0:

 return num1

 else:

 # Recursive case with updated values

 new_num1 = num2

 new_num2 = num1 % num2

 num1 = new_num1

 num2 = new_num2

 return GCD(num1,num2)

num1 = int(input("Enter first number: "))

num2 = int(input("Enter second number: "))

result = GCD(num1,num2)

if (result < 0):

 result = result * -1

print(f"GCD of {num1} and {num2} is {result}")

OUTPUT- SCENARIO 1:

Enter first number: 48

Enter second number: 18

GCD of 48 and 18 is 6

OUTPUT- SCENARIO 2:

Enter first number: -12

Enter second number: 8

GCD of -12 and 8 is 4

In the above program we have used the concept of recursive functions. The

user is prompted to enter the value of variables num1 and num2. These values

are then passed as parameters to function GCD(num1, num2) during the

function call. When the function GCD() starts execution the base case checks

112

if num2 is 0 (zero). If it is, the function returns the value of num1 (GCD of any

number and 0 is the number itself). If num2 is not 0 (zero), the function calls

itself recursively by changing the values of num1 and num2. For every iteration

the variable new_num1 is assigned the value of num2 and new_num2 is

assigned the remainder of num1 divided by num2 (num1 % num2). We then

modify the value of num1 and num2 by assigning the value of new_num1 and

new_num2 to them. This process continues till we reach the base case (the

value of num2 becomes 0). When the value of num2 becomes 0, we return the

updated value of num1. The variable result is assigned this value. If the value

of the result is negative we multiply -1 with it to get a positive value. Finally we

print the value of result.

Let us look at how the answer in OUTPUT-SCENARIO 1 has been obtained.

Here the user has entered values 48 and 18 in num1 and num2 respectively.

Thus the first call to function is GCD(48,18). As the value of num2 is not zero,

a recursive call is made with new values of num1 and num2 GCD(18, 48 % 18)

which is GCD(18, 12). The function calls are further repeated with values

GCD(12, 18 % 12) which is GCD(12, 6) and GCD(6, 12 % 6) which is GCD(6,

0). As the value of num2 is 0 the function returns value 6, which is the GCD of

48 and 18.

Note:

● In Python, the maximum number of times a function can run

recursively is by default set to 1000.

● This means that a function can call itself recursively up to 1000 times.

● After the 1000th iteration we will get an error “RecursionError:

maximum recursion depth exceeded in comparison”.

3.6 SCOPE OF VARIABLE

Observe that in Example 3.10, the function GCD has been recursively called

with variables num1 and num2. How is it that two different functions or recursive

functions can use the same variable names?. This feature is provided by a

property called scope of variable. The scope of a variable refers to the context

113

within which that variable is accessible (used, modified) or visible. In general

the variables are said to have two scopes: global and local. Thus we say that

we have a global variable or a local variable.

Global Variable:

The global variables are defined outside the function (usually in the beginning

of the program) and can be accessed anywhere (including other functions) in

the program.

Local Variable:

The local variable is defined inside a function and is local to that function. Such

variables cannot be accessed outside of the functions where they are defined.

The local variables are created when a function is called and are destroyed

when the function exits.

The program given in Example 3.11 shows the use of scope of variables in a

Python program.

 Example 3.11: Example of scope of variable

Program showing example of scope of variable

num = 15. # Global variable accessible in entire program

def print_num():

 num = 10 # Local variable scope limited to function print_num

 print(f"num is local variable of print_num and its value is {num}")

def sqr(num):

 print(f"num can be accessed from function sqr and its value is {num}")

 result = num * num

 return result

print(f"num can be accessed from the program and its value is {num}")

print_num()

result = sqr(num)

print(f"Square of {num} is {result}")

114

OUTPUT:

num can be accessed from the program and its value is 15

num is local variable of print_num and its value is 10

num can be accessed from function sqr and its value is 15

Square of 15 is 225

The program given in example 3.11 defines a global variable num. This variable

is accessible across the entire program including the two functions print_num

and sqr. Observe that the function print_num also defines a variable with the

name num. Thus there exists two variables named num in the program at this

point. To avoid any confusion between the two variables Python assigns scope

to each of these variables.

The function print_num defines a variable num and assigns it a value 10. As

the name of the variable defined in the function print_num is the same as that

of the global variable, the value of global variable num will not be used in this

function. Thus within the function print_num the variable num is known as local

variable and its value will be 10.

The function sqr accepts the value of variable num and calculates its square

and assigns it to the variable result (local variable of function sqr). It then returns

the value of the variable result to the calling function.

As can be seen in OUTPUT; first we get the message “num can be accessed

from the program and its value is 15”. Then as function print_num is called we

get the message “num is local variable of print_num and its value is 10”. The

control then moves to the statement that calls function sqr(num). The value of

the global variable num is passed to the function. We first get a message “num

can be accessed from function sqr and its value is 15”. The function then

calculates the square and returns back value 225. Thus we get the final

message “Square of 15 is 225”.

115

Check Your Progress-3

a) Anonymous functions are also known as ___________ functions.

b) A function that calls itself is known as ___________ function.

c) After the 1000th call the recursive functions will generate an error

message. (True/False)

d) The variables defined in Python can have a __________ scope or a global

scope.

e) A variable that is accessible in the entire program or different functions

within the program is known as a local variable. (True/False)

3.7 LET US SUM UP

In this unit we have discussed the concept of functions. You have got a detailed

understanding of what a function is, types of functions, different types of

parameters used in function, anonymous function and recursive functions. You

have also got an understanding of different scopes of variables. Further you are

now aware of how to define and use a function in a program. The use of function

makes the program more readable and concise.

3.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b False

1-c True

1-d False

1-e False

1-f False

2-a four

2-b default

2-c keyword

2-d *args

2-e keyword

116

2-f compulsory/mandatory

3-a lambda

3-b recursive

3-c True

3-d local

3-e False

3.9 ASSIGNMENTS

● Differentiate between user defined function and built in functions.

● State the advantages of using a function in a program.

● State the advantages of using library functions in a program.

● Explain the concept of recursive functions.

● Define Global variable and local variable.

● What do you mean by scope of a variable?

● Write a program to perform the given activity:

o Write a user defined function which will display the sum of a series.

given a number N the function should print the value of 1 + 2 + 3 + 4

+….. + N.

o Write a user defined function which will calculate the value of x to the

power n.

o Write a user defined function to find minimum from the given two

numbers.

o Read a number in your program, pass it to the user defined function

as an argument and display whether the given number is positive or

negative.
o Write a user defined function to print a Fibonacci series till given

position. A Fibonacci series starts with 0. If the user enters 4, the

program should print 0, 1, 1, 2. If the user enters 7, the program

should print 0, 1, 1, 2, 3, 5, 8.

117

Unit-4: Modules in Python

Unit Structure

4.0. Learning Objectives

4.1. Introduction

4.2. Modules and its type

4.3. Standard Modules

4.4. Custom Modules

4.5. Let us sum up

4.6. Check your Progress: Possible Answers

4.7. Assignments

4

118

4.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand what is a module

● Use a module in a program

● Understand different types of modules

4.1 INTRODUCTION

In the previous chapter we learnt how to convert small repetitive tasks into a

function. The use of functions make our programs modular. This approach is

good for small programs. The real life applications have thousands of lines of

code. In such cases we need to store a function definition for a longer period of

time. Also it is better to divide the code into as many smaller parts as possible

to maintain the code properly.

Python language provides us a concept called module to assist us in

segmenting the reusable functions and the core logic part of the program. In

this chapter we will learn what a module is, which are the different types of

modules. We will also learn how to use a module in a Python program.

4.2 MODULES AND ITS TYPE

A module in Python is a file containing Python definitions, executable

statements and classes. To create a module in Python we need to create a file

name with extension .py similar to a normal Python program. For example if we

create a file named mymodule.py then “mymodule” will be used as a module

name. A module once created can be reused as many times as we want in

different programs. There are two categories of modules in Python; Standard

and Custom.

Standard Modules

Python comes with a library of standard modules. Some of these modules are

built into the interpreter. These modules provide access to operations that are

not part of the core of the language but are nevertheless built in, either for

119

efficiency or to provide access to operating system primitives such as system

calls. Such modules at times also depend on the underlying platform.

Custom Modules

The modules created by the programmer (user) are known as custom modules.

These modules help the programmer to segment large pieces of code into

multiple files. It also assists in project development by multiple programmers.

To use a module in a Python program or interpreter we need to use the keyword

import. The general syntax of using a module in a Python program is as follows:

import module_name

Modules can import other modules. The import statement is usually written at

the beginning of a module or a Python program. But it is not compulsorily

required to do so. A module can contain executable statements, function

definitions as well as classes. These statements are intended to initialize the

module. They are executed only the first time the module name is encountered

in an import statement.

Each module has its own private namespace, which is used as the global

namespace by all functions defined in the module. Thus, one can use global

variables in the module without worrying about accidental clashes with a user’s

global variables. The import statement brings all the contents from a given

module into a requested environment.

If the user does not want to import all the definitions from the module but only

needs a selected few definitions, then an alternate form of import shown

herewith can be used.

from module_name import def_name1, def_name2,…., def_nameN

here def_name1, def_name2,…., def_nameN are the definitions that are

imported in the requested environment.

The from..import statement can also be used to import all definitions from a

module. To do so the syntax is as mentioned:

from module_name import *

120

Rather than duplicating definitions into several programs, we may define the

frequently used functions in a separate module and then import the complete

module or required definition. This makes the program more readable and

problems if any can be found easily.

Check Your Progress-1

a) A module is a single program with multiple definitions. (True/False)

b) To maintain definitions for a long duration, we have ______ types of

modules.

c) The keyword include is used to add a module in a Python program.

(True/False)

d) A module file has extension .mod in Python. (True/False)

e) It is possible to include some required definitions in a Python program.

(True/False)

4.3 STANDARD MODULES

Python has a huge list of standard modules that can be used by a programmer.

Though discussing all of them is out of scope of this book. We will try to look

into one or two commonly used modules.

Assume that the user wants to write a program to calculate the circumference

of a circle. We know that the circumference of circle is calculated as 2 * 𝜋 * r,

The value of 𝜋 in our case will be taken from the math module. Example 4.1

shows the use of the math module.

Example 4.1: Program to show use of standard module

#Program to show use of standard module

import math

radius = float(input("Enter the radius of the circle: "))

if (radius < 0):

 print("Radius cannot be negative.")

else:

121

 circum = 2 * math.pi * radius

 print(f"The circumference of the circle with radius {radius} is {circum:.2f}")

OUTPUT-SCENARIO 1:

Enter the radius of the circle: 5.5

The circumference of the circle with radius 5.5 is 34.56

OUTPUT-SCENARIO 2:

Enter the radius of the circle: -10

Radius cannot be negative.

In the above program we have imported the math module to access the value

of constant 𝜋. The program then prompts the user for the value of radius. If the

value greater than zero (0) the circumference of circle is calculated using

equation circum = 2 * math.pi * radius. Observe the use of math.pi here. The

term here indicates that we are trying to access a value of pi from a module

named math. We thus get the output message “The circumference of the circle

with radius 5.5 is 34.56” as seen in OUTPUT-SCENARIO 1. The use of 2f in

{circum:.2f} limits the output of the circumference to two digit decimal only.

When a value less than zero (0) is entered we get the output message “Radius

cannot be negative.” as seen in OUTPUT-SCENARIO 2.

In the above example we directly used the term math.pi, what if the user does

not know which value or definition to use from the module? In such cases the

user can take help of the following built in function:

print(dir(module_name))

The dir function when passed with the name of the module will list all the

function and constant names in a module. Figure 4.1 shows how the dir function

can be used to get the required information.

122

Here, we have first gone to the Python interpreter in the terminal by typing

python3. Then we have imported the math module (>>> import math). We have

then used the statement print(dir(math)) to look into the values and definitions

of the math module. As can be observed we can see a sorted list of names.

The names that begin with an underscore are default Python attributes

associated with the module. For example, the __name__ attribute contains the

name of the module, other terms enclosed in single quotes are either constants

or functions.

A user can check whether the term is a constant or function by using print

function as shown:

>>> print(math.radians)

<built-in function radians>

>>> print(math.pi)

3.141592653589793

In the interpreter when we type print(math.radians) we get a message <built-

in function radians>, thus indicating that radians is a function. On the other

hand when we type print(math.pi) we get a value 3.141592653589793,

indicating that pi is a constant. Observe that the output in Figure 4.1 has many

terms including factorial and gcd in it. Let us now try to use the functions

factorial and gcd in our program. Example 4.2 shows the Python program that

uses both these functions.

123

Example 4.2: Program to show use of selective functions from a module

#Program to show use of selective functions from a module

from math import factorial,gcd

number = int(input("Enter a number: "))

if (number < 0):

 print("Number is negative.")

else:

 fact = factorial(number)

 print(f"The factorial of {number} is {fact}")

 result = gcd(6,number)

 print(f"The GCD of 6 and {number} is {result}")

OUTPUT-SCENARIO 1:

Enter a number: 4

The factorial of 4 is 24

The GCD of 6 and 4 is 2

OUTPUT-SCENARIO 2:

Enter a number: -15

Number is negative.

In the above program we have imported two functions factorial and gcd from

the math module. The program then prompts the user for the value of the

number. If the value is greater than zero (0) the factorial of the number is

calculated. We also calculate the greatest common divisor of 6 and the number.

Observe the use of factorial(number) and gcd(6,number). Here we have not

preceded the usage of both the functions with “math.”, as we have only included

the functions.

When the user enters value 4 in number, we get the output message “The

factorial of 4 is 24” and “The GCD of 6 and 4 is 2” as seen in OUTPUT-

SCENARIO 1. When a value less than zero (0) is entered we get the output

message “Number is negative.” as seen in OUTPUT-SCENARIO 2.

Note:
The user can get the list and details of the standard modules at
https://docs.python.org/3/py-modindex.html

https://docs.python.org/3/py-modindex.html

124

4.4 CUSTOM MODULES

We saw examples of how to use standard modules in our program. During

creation of a big project at times it so happens that users need to create their

own modules. The modules created by users are known as custom modules.

Let us now try and create a custom module. Assume that the user wants to look

at different operations of a circle like calculate the area, circumference and

diameter. We will first create a custom module called circle.py and create all

the required functions in it. The code of the module will look as shown in

Example 4.3

Example 4.3: Contents of circle.py

Creation of custom module circle

import math as m

def Area(radius):

 return m.pi * radius * radius

def Circumference(radius):

 return 2 * m.pi * radius

def Diameter(radius):

 return 2 * radius

In the above code we have imported the standard module math with a short

name m. Using the short name can save us typing time in some cases. Observe

the use of m.pi instead of math.pi here. We have also defined three functions

that calculate area, circumference and diameter of a circle if radius is given as

input to them. This file will be treated as a custom module when used in any

Python program. Example 4.4 shows how to use a custom module.

Example 4.4: Program to show use of custom module

#Program to show use of custom module

import circle as C

radius = float(input("Enter a radius: "))

125

if (radius < 0):

 print("Radius cannot be negative.")

else:

 area = C.Area(radius)

 print(f"The area of circle with radius {radius} is {area:.2f}")

 circum = C.Circumference(radius)

 print(f"The circumference of circle with radius {radius} is {circum:.2f}")

 dia = C.Diameter(radius)

 print(f"The diameter of circle with radius {radius} is {dia:.2f}")

OUTPUT – SCENARIO 1:

Enter a radius: 6.5

The area of circle with radius 6.5 is 132.73

The circumference of circle with radius 6.5 is 40.84

The diameter of circle with radius 6.5 is 13.00

OUTPUT – SCENARIO 2:

Enter a radius: -5

Radius cannot be negative.

In the above program we have imported the custom module circle as C. The

program then prompts the user for the value of radius. If the value greater than

zero (0) then area, circumference and diameter of the circle is calculated using

functions defined in circle.py. Observe the use of C.Area(radius),

C.Circumference(radius) and C.Diameter(radius). When user enters 6.5 as

value of radius we get the output message “The area of circle with radius 6.5 is

132.73”, “The circumference of circle with radius 6.5 is 40.84” and “The

diameter of circle with radius 6.5 is 13.00” as seen in OUTPUT-SCENARIO 1.

When a value less than zero (0) is entered we get the output message “Radius

cannot be negative.” as seen in OUTPUT-SCENARIO 2.

It is also possible to get the help of the circle module also. Figure 4.2 shows the

output of the dir function that gives us the required information from the circle

module.

126

Here, we have gone to the Python interpreter in the terminal by typing python3.

Then we have imported the circle module. We have then used the statement

print(dir(circle)) to look into the values and definitions of the circle module. As

can be observed we can see a sorted list of names.

Let us have a look at another example that uses both the standard as well as

custom module. We will now use a standard module named sys, this module is

used to access system specific parameters and functions. We will make use of

the module circle that we have previously created. Example 4.5 shows a Python

program that passes command line arguments to the functions and performs

the required operations.

Example 4.5: Program to show use of command line arguments

#Program to show use of command line arguments

import sys

from circle import Area as A

print("First command line argument: ",sys.argv[0])

print("Second command line argument: ",sys.argv[1])

radius = float(sys.argv[1])

if (radius < 0):

 print("Radius cannot be negative.")

else:

 area = A(radius)

 print(f"The area of circle with radius {radius} is {area:.2f}")

OUTPUT – SCENARIO 1:

First command line argument: 4_5.py

Second command line argument: 6.5

The area of circle with radius 6.5 is 132.73

127

OUTPUT – SCENARIO 2:

First command line argument: 4_5.py

Second command line argument: -15

Radius cannot be negative.

In the above program we have imported a standard module sys and a function

Area as A from the custom module circle. Once the sys module is imported we

get access to the argv[] array that is used to store or represent the command

line arguments. The program then prints the value of the first and second

command line argument that is passed by the user. The next statement

converts the value of argv[1] to float and assigns it to variable radius. If the

value is greater than zero (0) then the area of the circle is calculated. Observe

the use of area = A(radius), Here we have not preceded the usage of the

function with “circle.”, as we have only included the function. We thus get the

output message “First command line argument: 4_5.py”, “Second command

line argument: 6.5” and “The area of circle with radius 6.5 is 132.73” as seen

in OUTPUT-SCENARIO 1.

Here the first output “First command line argument: 4_5.py” represents the

name of the Python program. The second output “Second command line

argument: 6.5” represents the value of radius the user wants to pass. The third

output shows the area of the circle. When a value less than zero (0) is entered

we get the output message “First command line argument: 4_5.py”, “Second

command line argument: -15” and “Radius cannot be negative.” as seen in

OUTPUT-SCENARIO 2.

Note:

To execute the Python program shown in Example 4.5 we need to type

the following commands in the terminal to get output 1 and 2

respectively:

● python3 4_5.py 6.5

● python3 4_5.py -15

128

Check Your Progress-2

a) The functions print(dir(module_name)) can be used to find details about

a specific module. (True/False)

b) The modules available in the Python library are known as ______

modules.

c) The __name__ attribute contains the name of the module. (True/False)

d) To use command line arguments in a Python program we need to import

the _____ module.

e) It is possible to give a short name to the module when using it in a Python

program. (True/False)

f) Both the standard and custom module can be used together in a Python

program. (True/False)

4.5 LET US SUM UP

In this unit we have discussed the concept of modules. You have got a detailed

understanding of what a module is, types of modules. You have also got an

understanding of how to look for help when looking into standard modules.

Further you are now aware of how to define and use a module in a program.

The use of modules allows the user to segregate core logic of the program and

the functions that are reused again and again. The use of module also makes

the program more readable and concise.

4.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b two

1-c False

1-d False

1-e True

2-a True

2-b standard

2-c True

129

2-d sys

2-e True

2-f True

4.7 ASSIGNMENTS

● What is a module? How are modules different from functions?

● Explain how modules can be imported in a Python program or another

module.

● How can we get the details of the contents written in the module file?

● State the advantages of using modules in a program.

● Create modules that perform the given activity and use them in Python

programs:

o A module that defines function Series and Fibonacci.

▪ The Series function will display the sum of a series. given a

number N the function should print the value of 1 + 2 + 3 + 4

+….. + N.

▪ The Fibonacci function will print a Fibonacci series till given

position N. If the user enters N=4, the program should print 0,

1, 1, 2.
o A module that defines functions Square and Cube.

▪ The Square function returns the square of the given number.

▪ The Cube function returns the cube of the given number.

o A module that defines function Max and Min

▪ The Max function returns the maximum of the given two

numbers.

▪ The Min function returns the minimum of the given two

numbers.

130

Block-3
Data Structures of Python

131

Unit-1: Lists and Tuples

Unit Structure

1.0. Learning Objectives

1.1. Introduction

1.2. Creating, Accessing and Updating the List

1.3. List operations and functions

1.4. Tuples: Immutable Sequences

1.5. Slicing and Indexing in Lists and Tuples

1.6. Let us sum up

1.7. Check your Progress: Possible Answers

1.8. Assignments

1

132

1.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand the concepts of lists and tuples in Python.

● Learn how to create, access, and update lists.

● Apply common list operations and functions.

● Understand tuples as immutable sequences and learn how to use them

effectively.

● Use slicing and indexing techniques for both lists and tuples.

1.1 INTRODUCTION

A data structure in a programming language is used to organize, store, process

and manage data. The sequence is Python's most basic data structure. Each

component of a sequence is assigned a number that denotes its index or

location. The first index is 0, the second is 1, and so on. You can do specific

things with each type of sequence. Some of these operations include indexing,

slicing, adding, multiplying, and performing membership checks.

Lists and tuples are essential sequential or linear data structures in Python for

storing collections of elements. Despite their initial similarities, each has unique

characteristics and applications. Tuples are immutable and cannot be altered

once defined, whereas lists are mutable, which means they can be changed

after creation.

In this chapter we will create, access, and manipulate lists and tuples using

Python's built-in functions and methods. We will also look at other operations

that can be performed on these data structures.

1.2 CREATING, ACCESSING AND UPDATING THE LIST

As mentioned, a List is a sequential data structure in Python. It is used for

storing collection of elements. In Python, a list is created by placing items inside

square brackets [], separated by commas. A list can hold items of different data

types, such as integer, string, float or even other list. The general syntax used

to create a list is as mentioned:

133

list_name = [value1, value2, ..., valueN]

The example of how to create a list in Python is given in the program of Example

1.1.

Example 1.1: Creation of List

Program to create a list of integers and strings

num_list = [10, 20, 30, 40, 50]
print(num_list)

list of string values

fruits_list = ["Apple", "Banana", "Cherry", "Grapes"]
print(fruits_list)

OUTPUT:
[10, 20, 30, 40, 50]

['Apple', 'Banana', 'Cherry', 'Grapes']

In the above program the two lists num_list and fruits_list have been created

and initialized with a set of integer and string values respectively. The print

function is used to display the contents stored in both the lists as can be seen

in the output.

Accessing Elements in a List:

Once the list has been created it is possible to access the elements of the list

and perform operations on it. Each element of a list is stored at a specific index.

In Python lists are zero-indexed, it means that the first element of the list has

index value = 0. You can access elements of the list using their index positions.

The general syntax to access a list element is as mentioned:

list_variable[index]

Once an element is accessed, we can use it to perform operations or print the

value. The Python program in Example 1.2 shows how to access and print the

value of an element at a specific index.

134

Example 1.2: Accessing elements of a List

Program to access elements from a list

fruits_list = ["Apple", "Banana", "Cherry", "Grapes"]
print(fruits_list[2])

print(fruits_list[-1])

OUTPUT:
Cherry

Grapes

In the above program a list fruits_list has been initialized with values "Apple",

"Banana", "Cherry" and "Grapes" respectively. The print function is used to print

the value of the element at a specific index. Here as Apple is stored at index

value 0, Banana is stored at index value 1. Thus, when we use the statement

print(fruits_list[2]), we get output as Cherry. Observe that we can also use a

negative index to access elements from the end of the list. Thus, the statement

print(fruits_list[-1]) results into Grapes as output.

Updating values in the lists

The lists in Python are mutable, hence we can modify individual elements of a

list or even entire slices of a list. Once a list is created, one or more elements

of a list can be easily updated by giving the element index or the slice on the

left-hand side of the assignment operator. The general syntax to update is as

mentioned:

For updating an element: list[index] = new value

For updating a slice: list[start:end] = new values

Example 1.3 shows how to update an element at a specific index as well as

how to update a slice.

Example 1.3: Updating a List

Program to update elements from a list

num_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print("Original List: ",num_list)

135

#Updating an element

num_list[5] = 100

print("Updated list: ",num_list)

#Updating a slice

num_list[7:9] = [45, 55, 65]

print("List after slice update: ", num_list)
OUTPUT:

Original List: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Updated list: [1, 2, 3, 4, 5, 100, 7, 8, 9, 10]

List after slice update: [1, 2, 3, 4, 5, 100, 7, 45, 55, 65, 10]

The above program demonstrates how to update a specific element in a Python

list by using its index. As lists are mutable the statement num_list[5] = 100

updates the value of the 6th element stored at index 5 from 6 to 100. Thus, the

updated list now becomes [1, 2, 3, 4, 5, 100, 7, 8, 9, 10]. The program also

shows an example of updating a slice. The statement num_list[7:9] = [45, 55,

65] updates the values stored at index 7, 8 and 9, hence the final list becomes

: [1, 2, 3, 4, 5, 100, 7, 45, 55, 65, 10].

Check Your Progress-1

a) A list is a grouping of indexed, changeable, and ordered items.

(True/False)

b) To create a list in python { } bracket is used. (True/False)

c) In python list, the first element of the list has index value

1.(True/False)

d) Python lists are capable of storing elements of several data types,

such as texts, floats, and integers. (True/False)

e) List_name(value) is the syntax used to access a list element.

(True/False)

136

1.3 LIST OPERATIONS AND FUNCTIONS

The list, in Python is very versatile and powerful. The list supports many

operations like indexing, slicing, updating, adding/removing elements and

others. Knowing how to manipulate lists is crucial for efficient Python

programming, regardless of the size of the dataset one is dealing with. Let us

now have a look at some basic list operations that can be performed using +, *

and ‘in’ operators. Table 1.1 gives the details of the operation that can be

performed.

Table 1.1: Basic operations on List

Operator Operation Description

+ Concatenation Creates new list by merging two lists

* Repetition
Makes a list's items appear a

predetermined amount of times.

in Membership

Determines if an element is present in the

list. It returns a Boolean value ‘true’ if the

element is present otherwise returns ‘false’.

Let us now write a program that performs all the operations mentioned in Table

1.1. Example 1.4 shows how to perform basic operations on a list.

Example 1.4: Basic operations on List

Program to perform basic operation on a list

list1 = [1, 3, 5]

list2 = [2, 4, 6]

#Concatenate a list

combined_list = list1 + list2

print("List 1: ",list1)

print("List 2: ",list2)

print("Concatenated List: ",combined_list)

137

#Repetition of list

repeated_list = list1 * 2

print("Repeated List: ",repeated_list)

#Membership in list

print(3 in repeated_list)

print("3" in repeated_list)
OUTPUT:

List 1: [1, 3, 5]

List 2: [2, 4, 6]

Concatenated List: [1, 3, 5, 2, 4, 6]

Repeated List: [1, 3, 5, 1, 3, 5]

True

False

The above program defines two lists list1 and list2 with values 1, 3, 5 and 2, 4,

6 respectively. The statement combined_list = list1 + list2 concatenates the

lists and creates a new list with values 1, 3, 5, 2, 4, 6. The statement

repeated_list = list1 * 2 creates a new list named repeated_list and assigns it

values 1, 3, 5, 1, 3, 5. (Here the contents of list1 are repeated twice). Observe

the output of statements print(3 in repeated_list) and print("3" in repeated_list).

The first statement results in the output as True (as integer 3 is part of the list)

while the second statement results in the output False (as character 3 is not

part of the list).

List Functions
Python provides many inbuilt methods that can be used with lists to manipulate

the data quickly. These methods work only on lists. They do not work on the

other sequence data types that are not mutable. Table 1.2 gives the list of

methods along with its description.

138

Table 1.2: List Functions

Method Description Syntax

append() To add item at the end of the list list.append(element)

insert() To a specific item at a given index. list.insert(index,element)

extend()
To add all of the elements from

another list to the existing list.

list1.extend(list2)

pop() To remove and return an element

from a given index or the last element

(in absence of index)

list.pop()

list.pop(index)

sort() To sort the elements of the list in

ascending order. You can sort a list in

descending order using the sort()

method with the reverse=True

parameter, or the sorted() function.

list.sort()

list.sort(reverse=True)

reverse() To place the list in reverse order list.reverse()

len()
Returns the number of items in the

list.
len(list)

min() Returns the smallest item in the list. min(list)

max() Returns the largest item in the list. max(list)

sum() Returns the total of all the list's

numerical elements.
sum(list)

Let us now write a program that uses all the methods in Table 1.2. Example 1.5

shows how to use these methods with lists.

Example 1.5: Using methods with List

Program to use methods and list

list1 = [1, 2, 3, 4, 5]

list2 = [7, 8, 9]

print("Original List1: ",list1)

list1.append(6)

print("Appended List1: ",list1)

139

list1.extend(list2)

print("Extended List1: ",list1)

list1.insert(10,0)

print("List after insert at index 10: ",list1)

list1.pop()

print("List after pop operation: ",list1)

list1.pop(0)

print("List after pop operation at index 0: ",list1)
OUTPUT:

Original List1: [1, 2, 3, 4, 5]

Appended List1: [1, 2, 3, 4, 5, 6]

Extended List1: [1, 2, 3, 4, 5, 6, 7, 8, 9]

List after insert at index 10: [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]

List after pop operation: [1, 2, 3, 4, 5, 6, 7, 8, 9]

List after pop operation at index 0: [2, 3, 4, 5, 6, 7, 8, 9]

The above program defines two lists list1 and list2 with values 1, 2, 3, 4, 5 and

7, 8, 9 respectively. The statement list1.append(6) adds a new element at the

end of the list1. Thus, the new list has values 1, 2, 3, 4, 5, 6. The statement

list1.extend(list2) extends list1 and adds elements of list2 in it. The list1 now

becomes 1, 2, 3, 4, 5, 6, 7, 8, 9. The statement list1.insert(10,0) inserts a new

element with value 0 at index 10 of the list. The list1 now becomes 1, 2, 3, 4, 5,

6, 7, 8, 9, 0. We then use the statement list1.pop(), this modifies the list1 back

to 1, 2, 3, 4, 5, 6, 7, 8, 9. The last statement list1.pop(0) removes the element

at index 0 and the final value of list1 is 2, 3, 4, 5, 6, 7, 8, 9,

Let us now write a program that uses the sorting and reversing methods.

Example 1.6 shows how to use these methods with list.

140

Example 1.6: Sort and reverse methods with List

Program to use methods for sorting list

list1 = [1, 2, 3, 4, 5]

list2 = ["Grapes", "Banana", "Apple", "Kiwi", "Avocado"]

print("Original List1: ",list1)

print("Original List2: ",list2)

list1.sort(reverse=True)

print("List in descending order: ",list1)

list2.sort()

print("List2 in ascending order: ",list2)
OUTPUT:
Original List1: [1, 2, 3, 4, 5]

Original List2: ['Grapes', 'Banana', 'Apple', 'Kiwi', 'Avocado']

List in descending order: [5, 4, 3, 2, 1]

List2 in ascending order: ['Apple', 'Avocado', 'Banana', 'Grapes', 'Kiwi']

The above program defines two lists; list1 that contains integer values and list2

that contains strings. The statement list1.sort(reverse=True) rearranges the

values of list1 in reverse order. Thus, the new values of list1 are 5, 4, 3, 2, 1.

The next statement list2.sort() sorts the list2 in ascending order based on the

alphabets used in the string. Thus, the output of the sorted list is 'Apple',

'Avocado', 'Banana', 'Grapes', 'Kiwi'

Let us now write a program that uses the aggregate methods. Example 1.7

shows how to use these methods with list.

Example 1.7: Aggregate methods with List

Program to use aggregate methods and list

list = [10, 2, 30, 4, 50]

print("Original List: ",list)

print("Elements in list: ",len(list))

print("Minimum element in the list: ",min(list))

print("Maximum element in the list: ",max(list))

print("Sum of elements in the list: ",sum(list))

141

OUTPUT:
Original List: [10, 2, 30, 4, 50]

Elements in list: 5

Minimum element in the list: 2

Maximum element in the list: 50

Sum of elements in the list: 96

The above program defines a list that contains integer values. We have

performed operations to find the number of elements, minimum and maximum

elements and sum of all the elements in the list.

Check Your Progress-2

a) The insert() method is used to add an element to the end of a list in

Python. (True/False)

b) Consider following python code:

 list1 = [1, 2, 3, 4]

 list1.pop(2)

 print(list1)

The output of the given code is: [1, 2, 4] (True/False)

c) By default, the pop() method removes a list's final element unless an

index is supplied. (True/False)

d) The len() method can only be used on lists which contain numeric

values. (True/False)

e) The + operator can be used to concatenate two lists, creating a new

list by merging their elements. (True/False)

1.4 TUPLES: IMMUTABLE SEQUENCES

A tuple is an immutable linear data structure. In contrast to lists, once a tuple is

defined, the elements in it cannot be altered. In all other ways the tuple and list

are essentially the same. Tuples are typically used when you want a collection

of items that should not change during the execution of the program.

142

A tuple is created by placing the value of elements inside a parenthesis () or

by simply separating each element by using a comma.

The general syntax of using tuple is as mentioned:

Tuple = (value 1,value 2,….,value n)

Tuple = “value 1”, “value 2”, value 3, …. , “value n”

here value 1, value 2, …, value n, can be an integer value, a floating number,

a character, or a string.

The example of how to create a tuple in a Python program is given in the

program of Example 1.8.

Example 1.8: Creation of Tuple

Program to create a tuple of integers and strings

#Tuple of integers

tuple1=(1,2,3,4,5)

print("Tuple 1: ",tuple1)

#Tuple of strings

tuple2=("abc","def","pqr")

print("Tuple 2: ",tuple2)

#Mix value tuple

tuple3 = "abc", 1, "def", 5

print("Tuple 3: ",tuple3)

OUTPUT:
Tuple 1: (1, 2, 3, 4, 5)

Tuple 2: ('abc', 'def', 'pqr')

Tuple 3: ('abc', 1, 'def', 5)

In the above program the three tuples; tuple1, tuple2 and tuple3 have been

created and initialized. The values of tuple1 are a set of integers, tuple2

contains string values. The tuple3 is a tuple that contains mixed values of both

strings and integers. The print function is used to display the contents stored in

all the tuples as can be seen in the output.

143

Accessing Elements in a Tuple:

Similar to list once a tuple has been created it is possible to access its elements

and perform operations on it. Each element in the tuple is also stored at a

specific index. The general syntax to access a tuple element is as mentioned:

tuple_variable[index]

Once an element is accessed, we can use it to perform operations or print the

value. Example 1.9 shows how to access and print the value of an element at

a specific index.

Example 1.9: Accessing elements of a tuple

Program to access elements from a tuple

tuple = (1, 2, 3, 4, 5)

print("Element at index 2 in tuple: ",tuple[2])

tuple1 = "abc", 1, "def", 5

print("Element at index 0 in tuple1: ",tuple1[0])

print("Element at last index in tuple1: ",tuple1[-1])

OUTPUT:
Element at index 2 in tuple: 3

Element at index 0 in tuple1: abc

Element at last index in tuple1: 5

In the above program the variable tuple has been initialized with integer values.

The tuple1 is initialized with mixed data. The print function is used to print the

value of the element at a specific index. Thus when we use the statement

print("Element at index 2 in tuple: ",tuple[2]), we get output as 3. Similarly, when

we use the statement print("Element at index 0 in tuple1: ",tuple1[0]) we get

output as ‘abc’. Observe that we can also use a negative index to access

elements from the end of the tuple. Thus, the statement print("Element at last

index in tuple1: ",tuple1[-1]) results into 5 as output.

Immutability in Tuple

The tuple, in Python are immutable, hence we cannot modify elements of a

tuple. Any attempt to change the elements of tuple will result in an error.

Example 1.10 shows what happens if we try to update an element in a tuple.

144

Example 1.10: Updating a Tuple

Program to update elements from a tuple

tuple = (1, 2, 3, 4, 5)

tuple[0] = 30

print (tuple)

OUTPUT:
Traceback (most recent call last):

 File "31_10.py", line 3, in <module>

 tuple[0] = 30

TypeError: 'tuple' object does not support item assignment

The above program demonstrates what happens if we try to update an element

of a tuple. Observe that we have not been able to execute the program as we

get an error. The statement “TypeError: 'tuple' object does not support item

assignment” makes it very clear that a tuple element cannot be assigned.

Check Your Progress-3

a) A tuple is a mutable linear data structure. (True/False)

b) Consider the following code:

 tuple1 = (1, 2, 3, 4, 5)

 print(tuple1[-1])

The output of the given code is: 5 (True/False)

c) Tuples cannot hold a mix of data types such as integers, strings, and

floats. (True/False)

d) The immutability of tuples means that any attempt to change one of

their elements will result in a TypeError. (True/False)

1.5 SLICING AND INDEXING IN LISTS AND TUPLES

We have already looked at the concept of index and slicing in the previous

sections. In Python, slicing and indexing are techniques used to access

elements in sequences like lists and tuples. Let us have a relook at these

techniques.

145

Indexing
Indexing in Python is used to retrieve a single element from a list or a tuple

based on its position. The index values in Python start at 0 for the first element,

1 for the second, and so on. It is also possible to use negative indexes in

Python. Here -1 refers to the last element, -2 refers to the second-last element,

and so on. Let us have a look at a simple example as shown in Example 1.11.

Example 1.11: Use of indexing in a List and Tuple

Program to show use of indexing in list and tuple

List Example

list = [10, 20, 30, 40, 50]

print("Element at index 0: ",list[0])

print("Last element of list: ",list[-1])

Tuple Example

tuple = ('a', 'b', 'c', 'd', 'e', 'f')

print("Element at index 1: ",tuple[1])

print("Element at second last index: ",tuple[-2])

OUTPUT:
Element at index 0: 10

Last element of list: 50

Element at index 1: b

Element at second last index: e

In the above program we have initialized a variable list with integer values and

the variable tuple is initialized with characters. The print function is used to print

the value of the element at a specific index. Thus, when we use the statements;

print("Element at index 0: ",list[0]) and print("Last element of list: ",list[-1]), we

get output 10 and 50. Similarly, when we use the statements; print("Element at

index 1: ",tuple[1]) and print("Element at second last index: ",tuple[-2]), we get

output as ‘b’ and ‘e’.

146

Slicing
At times when we work with lists and tuples, we need to extract a subset of the

data that is given to us. The concept of slicing allows us to extract a subset of

elements from a list or tuple. The general syntax to use the slicing is as

mentioned:

sequence[start : end : step]

Where:

start is the index to begin slicing (default is 0)

end is the index to stop slicing (exclusive).

Step is the interval (default is 1)

Table 1.3 shows the different ways in which the start, end and step values are

used in list or tuple. The value of var in the below table refers to a list or tuple

variable.

Table 1.3: Slicing Options

Usage Description

var[start:end] Extracts a subset of elements starting from index start to

end-1 i.e inclusive of start, exclusive of end.

Var[start:end:step] Extracts a subset of elements starting from index start to

end-1 with a step size of step.

Var[:end] Extracts a subset of elements from the beginning (index

0) up to end-1.

Var[start:] Extracts a subset of elements from start to the end of the

list.

Var[::-1] Reverses the list by using a negative step.

Var[:end:step] Extracts a subset of elements from the beginning to end-

1 with a step size of step.

Var[start::step] Extracts a subset of elements from start to the end of the

list with a step size of step.

Var[-n:] Extracts the last n elements of the list.

Var[:-n] Extracts the list excluding the last n elements.

147

Let us have a look at an example of slicing given in Example 1.12.

Example 1.12: Use of slicing in a List and Tuple

Program to show use of slicing in list and tuple

#List Example

list1 = [10, 20, 30, 40, 50]

print("Elements from index 1 to 3: ",list1[1:4])

print("Elements till index 2: ",list1[:3])

print("Alternate Elements : ",list1[::2])

print("All Elements from end to index 0: ",list1[::-1])

Tuple example

tuple1 = ('a', 'b', 'c', 'd', 'e')

print("Elements from index 1 to 3: ",tuple1[1:4])

print("Elements till index 1: ",tuple1[:2])

print("All Elements from end to index 0: ",tuple1[::-1])

OUTPUT:

Elements from index 1 to 3: [20, 30, 40]

Elements till index 2: [10, 20, 30]

Alternate Elements : [10, 30, 50]

All Elements from end to index 0: [50, 40, 30, 20, 10]

Elements from index 1 to 3: ('b', 'c', 'd')

Elements till index 1: ('a', 'b')

All Elements from end to index 0: ('e', 'd', 'c', 'b', 'a')

Observe that the output of the program is as per the description mentioned in

Table 1.3.

148

Check Your Progress-4

a) Consider the following code:

 tuple1 = ('a', 'b', 'c', 'd', 'e')

 print(tuple1[::-1])

The output of the given code is: ('e', 'd', 'c', 'b', 'a') (True/False)

b) The concept of indexing allows us to extract a subset of elements

from a list or tuple. (True/False)

c) In Python, Index begins with the first element at 1 and finishes with

the last element at -1. (True/False)

d) The slicing syntax var[start:] is used to extracts a subset of elements

from start to the end of the list. (True/False)

e) In Python, negative indices can be used for both indexing and slicing.

(True/False)

1.6 LET US SUM UP

In this unit, we learned about two of Python's essential data structures: lists and

tuples. Lists are mutable, allowing modifications after creation, while tuples are

immutable, providing a way to store unchangeable data. We explored various

operations, functions, and methods that allow you to manipulate lists, and we

saw how tuples offer a stable, unchanging sequence. Slicing and indexing

techniques were discussed as ways to access specific parts of these data

structures.

1.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b False

1-c False

1-d True

1-e False

2-a False

2-b True

149

2-c True

2-d False

2-e True

3-a False

3-b True

3-c False

3-d True

4-a True

4-b False

4-c False

4-d True

4-e True

1.8 ASSIGNMENTS

1. What is the key difference between a list and a tuple?

2. How do you access the second element in the list items = ["item1",

"item2", "item3", "item4"]?

3. What does the method append() do in a list?

4. Give an example for a nested list.

5. Write a python program to print the list elements using a for loop.

6. Write difference between indexing and slicing.

7. How to access each tuple element in reverse order using the help

of slicing?

8. Create a list of five student names and perform the following:

● Add two more names to the list.

● Remove the first name from the list.

● Replace the third name with another name of your choice.

● Print the final list.

9. Create a list of ten numbers and perform the following operations:

● Slice the list to get the first three elements.

● Slice the list to get the last three elements.

● Slice the list with a step of 2.

10. Write a program to find the sum of all even numbers in a list.

150

11. Write a program that reverses a list using a loop.

12. Write a Python program that create given tuple and perform

following:

tuple1 = (10,50,20,40,30)

● To display the elements 10 and 50 from tuple1

● To display the length of a tuple1.

● To find the minimum element from tuple1.

● To add all elements in the tuple1.

● To display the same tuple1 multiple times.

151

Unit-2: Dictionaries

Unit Structure

2.0. Learning Objectives

2.1. Introduction

2.2. Dictionary and its operations

2.3. Dictionary Methods

2.4. List vs Dictionary

2.5. Let us sum up

2.6. Check your Progress: Possible Answers

2.7. Assignments

2

152

2.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand what dictionaries are and how they differ from other data

structures.

● Understand creating and accessing elements in dictionaries.

● Learn common dictionary use cases and operations.

● Use built-in dictionary methods effectively.

● Implement programs using dictionaries.

2.1 INTRODUCTION

Python has a rich collection of built-in data structures, dictionary is one of them.

The dictionary holds information as key-value pairs. It provides a way to access

data by using meaningful association of keys and its corresponding values.

In this chapter we will create, access, and manipulate dictionaries using

Python's built-in functions and methods. We will also look into different

operations that can be performed in the dictionary.

2.2 DICTIONARY AND ITS OPERATIONS

Dictionary is a data structure in which we store values as a pair of keys and its

associated value. Each key is separated from its value by using a colon (:), and

consecutive items of the dictionary are separated by using a comma. Keys are

unique and immutable. Values can be of any data type and can repeat. The

entire items in a dictionary are enclosed in curly brackets { }.

The general syntax of creating a dictionary is as mentioned:

dictionary_name = {key 1 : value 1, key 2 : value 2, ..., key n : value n}

The Python program given in Example 2.1 shows how to create a dictionary.

153

Example 2.1: Creation of dictionary

Program to create a dictionary

dict = {

 "Rollno": "A01",

 "Name": "Advika",

 "Course": "MScIT"

 }

print("Dictionary:", dict)

OUTPUT:

Dictionary: {'Rollno': 'A01', 'Name': 'Advika', 'Course': 'MScIT'}

In the above program we have created a dictionary with name dict. The

dictionary 'dict' contains three key-value pairs. Each key i.e "Rollno", “Name”

and “Course” is unique, and its corresponding values are provided after colon.

The dictionary has been defined and initialized in multiple lines for better

understanding.

Alternatively we can write the definition in a single line as mentioned:

dict = {"Rollno": "A01", "Name": "Advika", "Course": "MScIT"}

The print function is used to display the contents stored in the dictionary as can

be seen in the output.

The dictionary can be used in many applications. Their use is ideal in following

few cases:

● Mapping relationships (e.g., student roll numbers to names).

● Storing configuration data.

● Representing structured data (e.g., JSON objects).

Let us now look at some common operations that can be performed using a

dictionary.

154

Accessing Values

The first and foremost operation many users perform is to access the values

within a dictionary once it has been defined. The values in the dictionary are

accessed with the help of a key. The Python program given in Example 2.2

shows how to access values from a dictionary.

Example 2.2: Accessing values from dictionary

Program to access value from a dictionary

dict = {"Rollno": "A01", "Name": "Advika", "Course": "MScIT"}

print("Rollno: ",dict['Rollno'])

print("Name: ",dict['Name'])

print("Course: ",dict['Course'])

OUTPUT:

Rollno: A01

Name: Advika

Course: MScIT

In the above program we have used the contents of the dictionary 'dict' used

in Example 2.1. As can be seen in the program the values of the key’s Rollno,

Name and Course is accessed by using square brackets as shown in

statements, print("Rollno: ",dict['Rollno']), print("Name: ",dict['Name']) and

print("Course: ",dict['Course']). It returns corresponding values A01, Advika and

MScIT as seen in the output.

Adding a pair in a Dictionary

To add a new entry or a key-value pair in a dictionary, we need to specify the

key-value pair as we had done for the existing pairs at the time of definition.

The general syntax to add an element in a dictionary is as mentioned:

dictionary_ variable[new_key]= new_val

The Python program given in Example 2.3 shows how to add a new pair value

in a dictionary.

155

Example 2.3: Adding new value pair in dictionary

Program to access value from a dictionary

dict = {"Rollno": "A01", "Name": "Advika", "Course": "MScIT"}

print("Rollno: ",dict['Rollno'])

print("Name: ",dict['Name'])

print("Course: ",dict['Course'])

#new entry

dict["Semester"]=3

print("Semester added later: ",dict['Semester'])

OUTPUT:

Rollno: A01

Name: Advika

Course: MScIT

Semester added later: 3

The program shown in Example 2.3 is similar to that of Example 2.2. Here we

have added a new key value pair using statement dict["Semester"]=3. The key

Semester thus becomes the fourth key of the dictionary and is assigned value

3.

Modifying a value associated with key in a Dictionary

To modify a value associated with a particular key, we can just overwrite the

existing value. It is similar to adding a new pair, except that the key name

remains the same.

The Python program given in Example 2.4 shows how to modify a value

associated with a particular key in a dictionary.

Example 2.4: Modifying value associated to a key in dictionary

Program to modify value associated to a key in dictionary

dict = {"Rollno": "A01", "Name": "Advika", "Course": "MScIT"}

print("Rollno: ",dict['Rollno'])

print("Name: ",dict['Name'])

print("Course: ",dict['Course'])

156

#Updated entry

dict["Course"]="BScIT"

print("Course after update: ",dict['Course'])

OUTPUT:

Rollno: A01

Name: Advika

Course: MScIT

Course after update: BScIT

The program shown in Example 2.3 is similar to that of Example 2.2. Here we

have modified the value associated with the key Course by using statement

dict["Course"]="BScIT". Thus, the initial output of the key Course is MScIT

which later gets modified to BScIT.

Note:

A key in a dictionary itself cannot be modified as it is immutable. But it

is possible to delete the key.

Deleting Items in dictionary

There are multiple ways that can be used to delete a key value pair in a

dictionary. It is possible to delete a specific key or an entire dictionary.

Using del

We can delete one or more key value pairs or an entire dictionary using the del

keyword. The general syntax to delete a particular key is as mentioned:

del dictionary_name[key]

Similarly, an entire dictionary can be deleted using the syntax:

del dictionary_name

The Python program given in Example 2.5 shows how to delete a particular key

in a dictionary.

157

Example 2.5: Delete operation in dictionary

Program to show delete operation in dictionary

dict = {"Rollno": "A01", "Name": "Advika", "Course": "MScIT"}

print(dict)

#Delete course

del dict["Course"]

print("After deleting Course")

print("Rollno: ",dict['Rollno'])

print("Name: ",dict['Name'])

print("Course: ",dict['Course'])

OUTPUT:

{'Rollno': 'A01', 'Name': 'Advika', 'Course': 'MScIT'}

After deleting Course

Rollno: A01

Name: Advika

Traceback (most recent call last):

 File "32_5.py", line 11, in <module>

 print("Course: ",dict['Course'])

KeyError: 'Course'

The program shown in Example 2.5 has a dictionary with three key value pairs.

Initially when we print the contents of each key the associated value gets

printed. Then we have deleted the key Course by using statement del

dict["Course"]. Now when we try to print the values again, we get the associated

values of the first two keys. The statement print("Course: ",dict['Course']) at line

13, though generates an error KeyError: 'Course' indicating that the said key is

not present in the dictionary.

158

Let us also see an example of how to delete an entire dictionary. The Python

program given in Example 2.6 shows how to delete a dictionary.

Example 2.6: Delete a dictionary

Program to delete a dictionary

dict = {"Rollno": "B01", "Name": "Dhyey", "Course": "MScIT"}

print(dict)

#Delete dictionary

del dict

print(dict)

OUTPUT:

{'Rollno': 'B01', 'Name': 'Dhyey', 'Course': 'MScIT'}

Traceback (most recent call last):

 File "32_6.py", line 7, in <module>

 print(dict)

NameError: name 'dict' is not defined

The program shown in Example 2.6 has a dictionary with three key value pairs.

Initially when we print the contents of each key the associated value gets

printed. Then we have deleted the dictionary by using statement del dict. Now

when we try to print the values again, print statement at line 7, though generates

an error “NameError: name 'dict' is not defined” indicating that the said

dictionary has been removed from the current scope. After this, the dict variable

no longer exists in memory.

pop() method

Another method to remove or delete key-value pairs from a dictionary is the

pop() method. The general syntax of using pop() method is as mentioned:

dict_name.pop('key')

The Python program given in Example 2.7 shows how to use a pop() method

in a dictionary.

159

Example 2.7: Use of pop() method in a dictionary

Program to pop an element from a dictionary

dict = {"Rollno": "B01", "Name": "Dhyey", "Course": "MScIT", "Sem": 2}

print("Before Removal:", dict)

removed_value = dict.pop("Course")

print("Removed 'Course':", removed_value)

print("After Removal:", dict)

OUTPUT:

Before Removal: {'Rollno': 'B01', 'Name': 'Dhyey', 'Course': 'MScIT', 'Sem': 2}

Removed 'Course': MScIT

After Removal: {'Rollno': 'B01', 'Name': 'Dhyey', 'Sem': 2}

The program shown in Example 2.7 has a dictionary with four key value pairs.

Initially when we print the contents of each key the associated value gets

printed. Then we have popped the key ‘Course’ from the dictionary by using

statement removed_value = dict.pop("Course"). The value that has been

removed using pop is stored in the variable removed_value. Now when we try

to print the dictionary values again, we get the output After Removal: {'Rollno':

'B01', 'Name': 'Dhyey', 'Sem': 2}.

in operator

The in operator checks whether the specified key exists in the given dictionary

or not. It returns a boolean value true if the key is present in a dictionary

otherwise it returns false. The general syntax of using the in operator is as

mentioned:

key in dictionary_name

The Python program given in Example 2.8 shows how to use the in operator in

a dictionary.

160

Example 2.8: Use of in operator within a dictionary

Program to use in operator within a dictionary

dict = {"Rollno": "A01", "Name": "Advika", "Course": "MScIT"}

print("Is 'Name' a key?", "Name" in dict)

print("Is 'Sem' a key?", "Sem" in dict)

OUTPUT:

Is 'Name' a key? True

Is 'Sem' a key? False

The program shown in Example 2.8 has a dictionary with three key value pairs.

The statement print("Is 'Name' a key?", "Name" in dict) checks if the key called

Name exists in the dictionary, it returns value ‘True’ as the key is part of the

dictionary. The next statement print("Is 'Sem' a key?", "Sem" in dict) checks if

the key called Sem exists in the dictionary, it returns value ‘False’ as the key is

not part of the dictionary.

Iterating through a dictionary

One of the basic operations performed on the dictionary would be to iterate

through the entire dictionary key value pairs one by one. It is possible to iterate

through a dictionary using key, value or key-value pairs. The general syntax to

use this feature is as mentioned:

Iteration using Syntax

Key for key in dictionary_name.keys():

Value for value in dictionary_name.values():

Pair for key, value in dictionary_name.items():

The Python program given in Example 2.9 shows how to iterate through the

dictionary using all the above mentioned options.

161

Example 2.9: Iteration within a dictionary

Program to show iteration within a dictionary

dict = {"Rollno": "A01", "Name": "Advika", "Course": "MScIT", "Sem":2}

print("*** Iteration using key ***")

for key in dict.keys():

 print(key)

print("*** Iteration using value ***")

for value in dict.values():

 print(value)

print("*** Iteration using pair ***")

for key, value in dict.items():

 print(key,": ",value)

OUTPUT:

*** Iteration using key ***

Rollno

Name

Course

Sem

*** Iteration using value ***

A01

Advika

MScIT

2

*** Iteration using pair ***

Rollno : A01

Name : Advika

Course : MScIT

Sem : 2

The program shown in Example 2.9 has a dictionary with four key value pairs.

Observe the output, here for the statement for key in dict.keys(): we are getting

in output only the keys. The print statement after for value in dict.values():

displays only values pertaining to each key. Lastly we get a list of all key value

pairs.

162

Check Your Progress-1

a) A dictionary's keys are immutable and distinct. (True/False)

b) A key-value pair is deleted from a dictionary using the pop() method,

but the deleted value is not returned. (True/False)

c) The in operator can be used to check if a key exists in a dictionary.

(True/False)

d) Both the entire dictionary and a particular key-value pair can be

removed with the del keyword. (True/False)

e) The items() method in a dictionary returns only the keys. (True/False)

2.3 DICTIONARY METHODS
Python has a rich collection of built-in methods that can be used with a

dictionary. We already saw the use of methods like keys(), values() and items().

Let us explore some more methods in this section.

len()

The len() method is used to find the length of the dictionary. It provides the total

number of items (key-value pairs) within a dictionary.

get(key, default)

The get() method is used to retrieve the value for the specified key. It can also

be used to give a default value if the key doesn’t exist in the dictionary.

clear()

The clear() method is used to remove all elements from the dictionary. Thus

after performing this operation the dictionary will not contain any key value pair.

update(other_dict)

To merge two dictionaries, we use the update() method. It updates the values

of any keys that are already present in the original dictionary by appending key-

value pairs from one dictionary to another. The key is inserted as a new key-

value pair if it is not present in the original dictionary.

The Python program given in Example 2.10 demonstrates the use of all the

above methods.

163

Example 2.10: Use of different methods

Program to use different methods

dict = {"Fruit": "Apple", "Vegetable": "Onion", "Flower": "Rose", "Animal":

"Dog"}

print("Fruit:", dict.get("Fruit"))

print("Tree :", dict.get("Tree", "Not Found"))

print("Length: ", len(dict))

dict.update({"Tree": "Banyan", "Fruit": "Grapes"})

print("After Update:", dict)

dict.clear()

print("After clear:", dict)

OUTPUT:

Fruit: Apple

Tree : Not Found

Length: 4

After Update: {'Fruit': 'Grapes', 'Vegetable': 'Onion', 'Flower': 'Rose', 'Animal':

'Dog', 'Tree': 'Banyan'}

After clear: {}

The program shown in Example 2.10 has a dictionary with four key value pairs.

The statement print("Fruit:", dict.get("Fruit")) checks if the key called Fruit exists

in the dictionary, as can be seen in the dictionary keys we have the said key.

Thus we get the value of Apple as output. The next statement print("Tree :",

dict.get("Tree", "Not Found")) checks if the key called Tree exists in the

dictionary, as the key is not part of the dictionary it returns value ‘Not Found’

specified as default value. The statement print("Length: ", len(dict)) prints 4 as

output as there are four key value pairs in the dictionary. The statement

dict.update({"Tree": "Banyan", "Fruit": "Grapes"}) updates the current

dictionary. The operation adds a key Tree with value Banyan and updates the

value of key Fruit to Grapes. The statement dict.clear() empties the dictionary

and thus when we try to print the dictionary we get an empty set {} as output.

164

Check Your Progress-2

a) The len() method returns the total number of key-value pairs in a

dictionary. (True/False)

b) The get() method always raises an error if the specified key does not

exist in the dictionary. (True/False)

c) After using the clear() method, the dictionary will be represented as

an empty dictionary {}. (True/False)

d) The update() method merges another dictionary into the existing one,

updating values for matching keys and adding new key-value pairs.

(True/False)

2.4 LIST vs DICTIONARY

We have learnt about lists in the previous chapter. List is a sequence. In this

section we will discuss the difference between a list and a dictionary.

List vs Dictionaries

Having seen what a dictionary is and how to create it, let us now look at the

difference between a list and a dictionary. Table 2.1 shows the differences.

Table 2.1: difference between List and Dictionary

List Dictionary

An ordered collection of elements

accessed by index.

An unordered collection of key-value

pairs accessed by key.

Access elements using integer index. Access elements using keys which can

be descriptive labels.

Elements can repeat. Keys must be unique, but values can

repeat.

Best for ordered collections (e.g.,

sequences).

Best for mapping relationships (e.g.,

data lookups).

165

Check Your Progress-3

a) A list is an ordered collection of elements accessed by index.

(True/False)

b) In a list, each element must be unique. (True/False)

c) A dictionary is best used for ordered collections like sequences.

(True/False)

2.5 LET US SUM UP

In this unit, we explored the concept of a dictionary available in Python.

Dictionary is a powerful and versatile data structure used to store data as key-

value pairs. We looked at the syntax of the dictionary and its distinctive features.

Dictionaries are excellent for use cases such as facilitating fast lookups,

organizing structured data, and mapping relationships. We also learnt how to

use fundamental methods like keys(), values(), items(), get(), and update() that

make dictionary management easier. Common actions like adding, updating,

accessing, and removing key-value pairs were also demonstrated.

2.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b False

1-c True

1-d True

1-e False

2-a True

2-b False

2-c True

2-d True

3-a True

3-b False

3-c False

166

2.7 ASSIGNMENTS

1. Define a dictionary with an appropriate example.

2. What is the main difference between lists and dictionaries?

3. How do you add a new key-value pair to a dictionary?

4. Name three methods of dictionaries and their purposes.

5. How do you remove an element from a dictionary?

6. Write a Python program

● To create a dictionary

● To add an element to dictionary

● To display the length of the dictionary.

● To update an element in the dictionary.

● To remove all elements from the dictionary.

7. Create a dictionary to store details about your favorite book (title, author,

year, category). Create a menu driven program which allows three

operations: Add, update, and remove keys.

8. Write a program to count the occurrences of each character in a string

using a dictionary.

9. Implement a phonebook using a dictionary where names are keys and

phone numbers are values.

10. Write a program to merge two dictionaries.

11. Write a Python program to get the top three items in a shop. Sample

data: {'item1': 45.50, 'item2':35, 'item3': 41.30, 'item4':55, 'item5': 24}

Expected Output:

item4: 55

item1: 45.5

item3: 41.3

167

Unit-3: Sets

Unit Structure

3.0. Learning Objectives

3.1. Introduction

3.2. Sets use cases and operations

3.3. Sets and Methods

3.4. List vs Set

3.5. Let us sum up

3.6. Check your Progress: Possible Answers

3.7. Assignments

3

168

3.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand the concept of sets in Python.

● Differentiate between lists and sets.

● Recognize use cases for sets and perform basic set operations.

● Use built-in set methods effectively.

3.1 INTRODUCTION

To store multiple items using a single variable in Python we can use its built-in

data type called set. Sets are mutable, unordered, and do not allow use of

duplicate elements. The sets thus are helpful in situations where membership

checks and uniqueness are required. We can add, remove, or modify elements

dynamically within a set as they are mutable.

In this chapter we will create, access, and manipulate sets using Python's built-

in functions and methods. We will also look at other operations that can be

performed on sets.

3.2 SETS USECASES AND OPERATIONS

A set is an iterable, unordered collection data type in Python that has no

duplicate elements. Even while sets are changeable, that is, you may add or

remove components after they are created, individual things within a set must

be immutable and cannot be changed directly. The set is represented by values

enclosed in curly braces { }.

The general syntax used to create a set is as mentioned:

set_name = [value1, value2, ..., valueN]

The Python program in Example 3.1 shows how to create and print the values

of a set.

169

Example 3.1: Creation of Set

Program to create a set of integers and strings

num_set = {10, 20, 30, 40, 50, 10, 20}

print(num_set)

Set of string values

fruits_set = {"Apple", "Banana", "Cherry", "Grapes"}

print(fruits_set)

OUTPUT-SCENARIO 1:

{40, 10, 50, 20, 30}

{'Grapes', 'Apple', 'Cherry', 'Banana'}

OUTPUT-SCENARIO 2:

{40, 10, 50, 20, 30}

{'Cherry', 'Apple', 'Grapes', 'Banana'}

In the above program the two sets num_set and fruits_sets have been created

and initialized with a set of integer and string values respectively. The print

function is used to display the contents stored in both the sets as can be seen

in the output.

The set num_set is initialized with seven elements and the set fruits_set is

initialized with four elements. Observe that both the outputs show only five

elements when we try to print the values of the set num_set. Here the duplicate

values are ignored. Further we can see that the order in which the values are

initialized in both sets and the order in which they are displayed has changed.

The set element thus cannot be referred to by an index or a key.

Note:

It is possible that the users may get different output then the ones shown in

OUTPUT-SCENARIO 1 and OUTPUT-SCENARIO 2.

170

Use cases of Sets

Sets in Python are commonly used for removing duplicates or data filtering,

membership testing and performing mathematical operations like unions,

intersections, and differences on sets. Let us now see how these operations

are performed.

Removing Duplicates or data filtering

Eliminating duplicate values from a collection is one of the most popular

applications for sets. Duplicate values are automatically eliminated when we

convert a list to a set because sets can only contain unique objects. The Python

program in Example 3.2 shows how to create a list that contains duplicate

values and generate a set with unique values.

Example 3.2: Removing duplicates from list and creating a set

Program to remove duplicates from list and create a set

fruits_list = ["Apple", "Banana", "Cherry", "Grapes", "Banana", "Mango"]

unique_data = set(fruits_list)

print(unique_data)

OUTPUT-1:

{'Banana', 'Mango', 'Grapes', 'Cherry', 'Apple'}

OUTPUT-2:

{'Cherry', 'Mango', 'Grapes', 'Apple', 'Banana'}

In the above program a list fruits_list has been created and initialized with six

elements, where the term “Banana” is duplicated. The statement unique_data

= set(fruits_list) first converts the list into a set and then assigns it a name

unique_data. Thus, when we print the value in the set unique_data, both the

outputs show only five elements as the duplicate values have been removed.

Further we can see that in both the outputs the order of display of elements is

not the same.

171

Membership Testing

When it comes to determining if an element is a member of the collection, sets

are highly effective. As sets employ hash tables internally, membership testing

(both in and not in) with sets is quicker than with lists. The Python program in

Example 3.3 shows how to perform membership testing.

Example 3.3: Example of membership testing in a set

Program to show membership testing in a set

fruits = {"Apple", "Banana", "Cherry", "Grapes", "Mango"}

print("Apple" in fruits)

print("Guava" not in fruits)

print("Guava" in fruits)

OUTPUT:
True

True

False

In the above program a set named fruits has been created and initialized with

five elements. The statement print("Apple" in fruits) gives output as True, as the

element is part of the set. The statement print("Guava" not in fruits) gives output

as True, as the element is not part of the set. Similarly, when the in membership

is tested for “Guava” the statement print("Guava" in fruits) gives output as

False, as the element is not part of the set.

Mathematical Operations on Sets

In mathematics the use of operations like union, intersection, difference, and

symmetric difference are widely used. These mathematical operations can be

performed easily using sets in Python. These operations are performed with

sets using the symbols as mentioned:

● Union (|) : Combines elements from two sets.

● Intersection (&) : Finds common elements from two sets.

● Difference (-): Finds elements in one set but not the other.

● Symmetric Difference (^): Finds elements in either set but not in both.

172

The Python program in Example 3.4 shows how to perform mathematical

operations using sets.

Example 3.4: Example of mathematical operations on set

Program to show example of mathematical operations on set

set1 = {1, 2, 3, 5, 8, 13}

set2 = {3, 4, 5, 6, 7, 8}

u_set = set1 | set2

print("Union: ",u_set)

i_set = set1 & set2

print("Intersection: ",i_set)

d_set = set1 - set2

print("Difference: ", d_set)

sd_set = set1 ^ set2

print("Symmetric Difference: ", sd_set)

OUTPUT:

Union: {1, 2, 3, 4, 5, 6, 7, 8, 13}

Intersection: {8, 3, 5}

Difference: {1, 2, 13}

Symmetric Difference: {1, 2, 4, 6, 7, 13}

In the above program two sets; set1 and set2 have been created and initialized

with six integer elements each. The statement u_set = set1 | set2 creates a new

set u_set as a union of the two sets. When we print the value of u_set, we get

a set with nine elements after removal of duplicate elements from both sets.

The statement i_set = set1 & set2 creates a new set i_set as an intersection of

the two sets. When we print the value of i_set, we get a set with three elements

that are common in set1 and set2.

173

The statement d_set = set1 - set2 creates a new set d_set as a difference of

the two sets. When we print the value of d_set, we get a set with three elements

that are present in set1 but not present in set2.

Similarly, the statement sd_set = set1 ^ set2 creates a new set sd_set as a

symmetric difference of the two sets. When we print the value of sd_set, we get

a set with six elements that are present in either set1 or set2 but not in both.

Check Your Progress-1

a) A set is an unordered collection of unique elements in Python.

(True/False)

b) A key or index can be used to access the elements in a set.

(True/False)

c) When a list is converted into a set, duplicate values are automatically

removed. (True/False)

d) The mathematical operation Symmetric Difference (^) finds

elements in either set but not in both. (True/False)

e) The union of two sets includes only the common elements between

them. (True/False)

3.3 SETS AND METHODS

Python has a rich collection of built-in methods that can be used with sets.

These methods can be used to add, remove, update or perform different

operations on set. Let us explore some of these methods in this section.

add()

The add method is used to add a single element to an existing set. If the

element we are trying to add already exists then no change occurs.

remove()

The remove method is used to remove the specified element from an existing

set. While trying to remove the element if the element is not found then the

program raises a KeyError and terminates.

174

discard()

The discard method is similar to remove method i.e. it removes the specified

element from an existing set, but it does not raise an error if the element is not

found.

update(list)

The update method is used to add multiple elements to the set from an iterable

like list or tuple.

pop()

The pop method is used to remove and return an arbitrary element from the

set. It raises a KeyError if the set is empty.

clear()

The clear method is used to remove all elements from the given set. If the set

the user is trying to clear does not exist then the program raises a NameError

and terminates. The Python program given in Example 3.5 demonstrates the

use of all the above methods.

Example 3.5: Use of different methods

Program to use different methods with set

set1 = {1, 2, 3, 5, 7}

print("Initial Set: ",set1)

set1.add(4)

print("Set after adding element: ",set1)

set1.remove(3)

print("Set after removing element: ",set1)

set1.discard(9)

set1.update([2, 3, 13, 14, 15])

print("Set after updating element: ",set1)

popped_element = set1.pop()

175

print("Popped Element: ",popped_element)

print("After pop set1: ",set1)

set1.clear()

print(set1)

OUTPUT:

Initial Set: {1, 2, 3, 5, 7}

Set after adding element: {1, 2, 3, 4, 5, 7}

Set after removing element: {1, 2, 4, 5, 7}

Set after updating element: {1, 2, 3, 4, 5, 7, 13, 14, 15}

Popped Element: 1

After pop set1: {2, 3, 4, 5, 7, 13, 14, 15}

set()

The program shown in Example 3.5 has a set with five elements {1, 2, 3, 5, 7}.

The statement set1.add(4) adds a new element in the set. Thus, when we print

the set, we get six elements {1, 2, 3, 4, 5, 7} as output. The statement

set1.remove(3) removes the element 3 from the set. When we print this new

set, we get only five elements {1, 2, 4, 5, 7} as output. The statement

set1.discard(9) tries to remove an element having value 9, though it is not part

of the set no error is generated.

The statement set1.update([2, 3, 13, 14, 15]) updates the set. The operation

adds three new values 13, 14 and 15 into the set. The values 2 and 3 are

ignored as they are already part of the set. The updated set now contains nine

elements {1, 2, 3, 4, 5, 7, 13, 14, 15}. The statement popped_element =

set1.pop() removes the element with value 1 and assigns it to variable

popped_element. Thus, we now get a set with eight elements {2, 3, 4, 5, 7, 13,

14, 15}. Lastly, the statement set1.clear() removes all the elements from the set

and so when we try to print the set, we get an empty set() as output.

176

Check Your Progress-2

a) A set can have more than one element added at once using the add()

method. (True/False)

b) The discard() method raises a KeyError if the element to be removed

is not present in the set. (True/False)

c) The update() method can be used to add elements from an iterable

like a list or tuple to a set. (True/False)

d) The pop() method removes and returns an arbitrary element from the

set, raising a KeyError if the set is empty. (True/False)

e) The set is empty when all of its elements are removed using the clear()

method. (True/False)

3.4 LIST vs SET
The set items are unchangeable and are not sorted, also duplicate values are

not permitted in the set. The term "unordered" here refers to a set of elements

that lack a clear order. Set objects cannot be accessed by index or key, and

they may display in a different order each time you use them. Any two items in

a set cannot have the same value. Lists and sets are both collections of items,

although they differ in many ways. The difference between list and set is shown

in Table 3.1.

Table 3.1: Difference between List and Set

Feature Set List

Definition A collection of unordered,

unique items.

An ordered collection of items.

Mutability Mutable (It is possible to add

or remove elements)

Mutable (It is possible to add,

remove, or modify elements).

Duplicates Does not allow duplicate

elements as a part of a single

set. When a set is created or

updated duplicates are

automatically removed.

Allows duplicate elements.

177

Indexing Not supported Supports indexing

Use Cases Useful for membership

testing, removing duplicates,

and mathematical operations

like union or intersection.

Useful for maintaining a

sequence of items with order and

duplicates.

Syntax Defined using curly braces {} Defined using square brackets []

3.5 LET US SUM UP

In this chapter, you have learned how to use a set. Sets are unordered

collections that do not allow duplicates. We also learnt how to perform different

set operations like union, intersection, difference and symmetric difference. We

looked into common methods available for manipulating sets in Python. Finally,

we compared and looked at differences between set and list.

3.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b False

1-c True

1-d True

1-e False

2-a False

2-b False

2-c True

2-d True

2-e True

3.7 ASSIGNMENTS
1. What is a set?

2. Write the difference between set and list.

3. What will be the output of the following code?

 set_x = {1, 2, 3, 3}

 print(len(set_x))

178

4. Name two methods to remove elements from a set.

5. List types of basic set operations.

6. Create a Python script that takes a list of numbers and returns a set of

unique numbers.

7. Write a program to find the union and intersection of two sets.

8. Write a program to find Unique Words in a Sentence.

9. Write a program to find Elements Present in One Set but Not in Another.

10. Write a program that counts Unique Characters in a String.

179

Unit-4: Strings

Unit Structure

4.0. Learning Objectives

4.1. Introduction

4.2. String Manipulation and Formatting

4.3. String Methods and Operations

4.4. Regular Expressions

4.5. Let us sum up

4.6. Check your Progress: Possible Answers

4.7. Assignments

4

180

4.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Learn how to create, manipulate, and format strings.

● Understand what strings are and their role.

● Explore various string methods and operations.

● Understand use of regular expressions.

4.1 INTRODUCTION

A string is a collection of characters. Strings are important because they contain

the majority of the data we use on a regular basis. For instance, if we wish to

store student information, such as their name, address, course, email address,

etc., all of these are strings. A string is represented by the str datatype in

Python. Python doesn't have an individual datatype for character; it handles

strings and characters almost similarly.

In this chapter we will learn about what a string is and how to perform different

operations on the strings.

4.2 STRING MANIPULATION AND FORMATTING

A string can be created in Python by allocating a collection of characters to a

string variable. To create a text string, we need to enclose the set of characters

within a single, double, or triple quotation marks. The general syntax used to

create a string is as mentioned:

string_variable = 'string value'

string_variable = “string value”

string_variable = '''string value'''

The example of how to create a string in a Python program is given in the

program of Example 4.1.

181

Example 4.1: Creation of String

Program to create a string using single, double and triple quotes

single_quote = 'Hello'

double_quote = "World"

triple_quote = '''Welcome to Core Python Programming!

Here is an example of a string with triple quote...

String declaration demo.... '''

print(single_quote)

print(double_quote)

print(triple_quote)

OUTPUT:
Hello

World

Welcome to Core Python Programming!

Here is an example of a string with triple quote...

String declaration demo....

In the above program the three strings, single_quote, double_quote and

triple_quote have been created and initialized with string values respectively.

The print function is used to display the contents stored in all string variables

as can be seen in the output. There is no difference between the strings defined

using a single and double quote, both these strings work in the similar manner.

However, triple quotes are usually utilized to define multi-line strings. Observe

that when we print the value of the string stored in variable triple_quote, we get

a display in multiple lines.

String Indexing

Python strings are character sequences, therefore indexing can be used to

retrieve individual characters. Strings are indexed starting from 0 and -1 from

end. The general syntax to access a string element is as mentioned:

string_variable[index]

182

By specifying the position number through an index, we can refer to the

individual elements of a string. Example 4.2 shows how to access and print the

value of an element at a specific index.

Example 4.2: Accessing elements of a String using index

Program to access elements from string

str1 = "Python"

print(str1[0])

print(str1[-1])

OUTPUT:
P

n

The string str1 in the program above has been initialized with the value ‘Python’.

The print function is used to print the value of the element at a specific index.

Here, we have demonstrated how to use an index to access a string element

both forward and backward. The statement print(str1[0]) thus, gives output ‘P’

from the beginning of the string, while the statement print(str1[-1]) gives output

‘n’ from the end of the string based on the negative index.

String Slicing

It is a process of extracting multiple characters from the string. We can give the

range of indexes to fetch a substring from the given string. Like indexing, we

have to specify the range of characters with the use of colon (:) inside the

square bracket. For example, str[0:4] will return the first 5 characters from index

0 to 4 of the string variable str. If we omit the first parameter in range, it will

automatically fetch characters from the first character (index 0) to a given range

character. Hence, the statement str[:4] is equivalent to the statement str[0:4]. If

we omit the last number in the range, then it will return all the characters up till

the last character within the string, starting from the specified character. The

statement str[4:] will return all the characters starting from index 4 till the end of

the string.

183

By providing the start and end indexes, slicing allows us to retrieve a portion of

a string. The general syntax to access a string element is as mentioned:

string_variable[start: stop: step]

Where:

start is the index to begin slicing (default is 0)

end is the index to stop slicing (exclusive).
step is the interval (default is 1)

If the values for start and stop parameters are not specified, then slicing is done

from 0th to n-1th elements. If the value of parameter step is not specified, then

the default value 1 is considered. Program in Example 4.3 shows how to access

and print the value of a string using the concept of slicing.

Example 4.3: Accessing elements of a String using slicing

Program to access elements from a string

str1 = "Python"

print(str1[0:3]) # Substring from index 0 to 2

print(str1[::2]) # Characters at every second position

OUTPUT:
Pyt

Pto

Here, we have demonstrated how to access portions of string using the concept

of slicing. The statement print(str1[0:3]) extracts substring from index 0 to 2.

The statement print(str1[::2]) extracts Pto, that is it extracts characters at every

second position of the original string.

String Formatting

At times we need to join the values of a string and an integer variable. It is

though not possible to concatenate a string and in integer using ‘+’ operator as

learnt in string concatenation operation earlier. In Python the code given in

Example 4.4 will generate an error.

184

#Program with error
age = 36
person_detail = "My name is Tejas, I am " + age
print(person_detail)

OUTPUT:
Traceback (most recent call last):
 File "test.py", line 2, in <module>
 person_detail = "My name is Tejas, I am " + age
TypeError: can only concatenate str (not "int") to str

It is possible to combine strings and numbers by using the f-string or the

format() method. The f-string was introduced in Python 3.6, and is now the

preferred way of formatting strings. To specify a string as an f-string, simply put

a character ‘f’ as a prefix of the string literal, and add curly brackets {} as

placeholders for variables and other operations. The general syntax to use f-

string is as mentioned:

f'write string here { variable name } with remaining string'

Example 4.5 shows how to access and print the value of a string with the use

of f-string.

Example 4.5 Creating string with the use of f-string

Program to use string and variable with f-string

name = "Tejas"

age = 36

city = "Ahmedabad"

personDetail = f"My name is {name}, I am {age} years old and live in {city}."

print(personDetail)

OUTPUT:
My name is Tejas, I am 36 years old and live in Ahmedabad.

Here, the statement, "My name is {name}, I am {age} years old and live in {city}."

is f-string. We can use single quote, double quote or triple quote with f-string.

Using the f-string we are able to concatenate the string and values of variables

mentioned within the curly brackets {}. Thus, here name is replaced with a string

185

“Tejas”, age is replaced with an integer “36” and city is replaced with a string

“Ahmedabad” in the output. This formatting syntax is powerful and easy to use.

Check Your Progress-1

a) In Python, multi-line strings are usually created with triple quotes.

(True/False)

b) In Python, string indexing starts from 1 for the first character of the string.

(True/False)

c) Negative indexing in Python allows access to characters from the end of

the string. (True/False)

d) Slicing a string in Python requires specifying all three parameters: start,

stop, and step. (True/False)

e) The f-string formatting method in Python requires placing curly brackets

{} around variables to include their values in the string. (True/False)

4.3 STRING METHODS AND OPERATIONS

Many operations can be performed with strings, which makes it one of the most

used data types in Python. We can perform many operations on strings using

many of the available built-in Python methods. All the Python's string methods

return a new string with the modified characteristics. These methods do not

alter the original string. Let us now have a look at some inbuilt string methods

available in Python.

String Methods
Table 4.1 gives the list of methods that can be used with string. It also gives its

description and syntax.

Table 4.1: List of String Functions

Method Description Syntax

len() Returns the length of a string. len(string)

186

upper() Converts all characters in a string to

uppercase.

string.upper()

lower() Converts all characters in a string to

lowercase.

string.lower()

find() Returns the lowest index in the

string where the substring is found.

string.find(substring)

strip() Removes the leading and trailing

whitespaces.

string.strip()

replace() Replaces the occurrences of a

substring within a string.

string.replace(old, new)

split() Splits the string at the specified

delimiter and returns a list of

substrings.

string.split(delimiter)

join() Concatenates the elements of an

iterable with a specified separator.

string.join(iterable)

startswith() Checks if the string starts with the

specified prefix.

string.startswith(prefix)

endswith() Checks if the string ends with the

specified suffix.

string.endswith(suffix)

Let us now write a program that uses all the methods mentioned in Table 4.1.

Examples 4.6 and 4.7 show how to use these methods with strings.

Example 4.6: Using inbuilt string methods

Program to use inbuilt string methods

string1="Python"

string2=" Python Programming "

lenOfstring1 = len(string1)

print("Length of string1: ",lenOfstring1)

lowerCaseString = string1.lower()

187

print("Lower Case string1: ",lowerCaseString)

upperCaseString = string1.upper()

print("Upper Case string1: ",upperCaseString)

subString = string2.find(string1)

print("Lowest index at which string1 is found: ",subString)

strippedString = string2.strip()

print("Stripped string2: ",strippedString)

print(f"Length of original string2 = {len(string2)}")

print(f"Length of stripped string2 = {len(strippedString)}")

OUTPUT:
Length of string1: 6

Lower Case string1: python

Upper Case string1: PYTHON

Lowest index at which string1 is found: 2

Stripped string2: Python Programming

Length of original string2 = 22

Length of stripped string2 = 18

The program demonstrates the use of various inbuilt string methods available

in Python. The len() method returns a length of string1 which is 6. The lower()

and upper() methods convert the value "Python" of string1 to its lowercase

equivalent ("python") and uppercase equivalent ("PYTHON") respectively. The

find() method locates the substring "Python" (value of string1) within string

"Python Programming" (value of string2), it returns the index 2, as we have

added two blank spaces in the beginning of the string2. The strip() method

removes leading and trailing spaces from the string "Python Programming"

(value of string2). The difference can be observed when we print the lengths of

variables string2 and strippedString. The length of the original string is shown

as 22, while that of the stripped string is 18. This indicates that four blank

spaces have been removed from the original string.

188

Example 4.7: Second example of using inbuilt string methods

Program to use inbuilt string methods

string = "Python Programming"

newString = string.replace("Python", "Java")

print("New string after word replacement: ",newString)

string1 = "Python,Java,C++"

list_languages = string1.split(",")

print("Split List: ",list_languages)

print("Joined using |: "," | ".join(list_languages))

print("Starts with word Python: ",newString.startswith("Python"))

print("Ends with word Programming:", newString.endswith("Programming"))

OUTPUT:

New string after word replacement: Java Programming

Split List: ['Python', 'Java', 'C++']

Joined using |: Python | Java | C++

Starts with word Python: False

Ends with word Programming: True

In the above program the replace() method substitutes the substring "Python"

with "Java" in the variable string and assigns the new string to variable

newString. The resulting string now is "Java Programming". The split() method

divides the contents of string1 "Python,Java,C++" using ‘,’ as a separator and

creates a list named list_languages. The contents of the variable list_languages

thus become ['Python', 'Java', 'C++']. The join() method combines this list into

the string "Python | Java | C++" using " | " as a separator. The startswith()

method checks whether the variable newString that contains string "Java

Programming" begins with "Python". It returns False. Similarly, the endswith()

method checks if the variable newString ends with "Programming", it returns

True.

189

Check Your Progress-2

a) The total number of characters in a string is returned by the len() function.

(True/False)

b) The find() method returns the index of the first occurrence of a substring

within a string. (True/False)

c) A string can be divided into a list of substrings using the join() method.

(True/False)

d) If a string ends with a particular suffix, it is checked using the startswith()

method. (True/False)

e) The split() method returns a list of substrings based on a specified

delimiter. (True/False)

4.4 REGULAR EXPRESSIONS

A regular expression is a collection of characters with a very specific syntax

that we may use to match or locate other characters or groups of characters.

The terms regex and regexp are frequently used to describe regular

expressions. Text manipulation, validation, and search are common uses for

them. The built-in re module in Python makes it easy to work with regular

expressions. The details about how to work with modules will be covered in

later chapter. The general syntax used to import the re module is as mentioned:

import re

The re module in Python gives full support for regular expressions of Pearl style.

When a regular expression is implemented or used incorrectly, the re module

raises the re.error exception.

Regular Expression Functions

The re module offers a set of functions that allows us to search a string for a

match. Table 4.2 gives a list of RegEx functions along with its description.

190

Table 4.2: RegEx Functions

Function Description

findall() Returns a list containing all matches.

search() Returns a match object if there is a match anywhere in the string.

split() Returns a list where the string has been split at each match.

sub() Replaces one or many matches with a string.

Let us now write a program that uses all the methods in Table 4.2. Example 4.8

shows how to use these methods.

Example 4.8: Using RegEx methods

Program to use methods of RegEx

import re
string1 = "the demo of python program"

print("findall(): ",re.findall("th", string1))
print("search(): ",re.search("python", string1))
print("split(): ",re.split(" ", string1))
print("sub(): ",re.sub(" ", "*", string1))

OUTPUT:
findall(): ['th', 'th']

search(): <re.Match object; span=(12, 18), match='python'>

split(): ['the', 'demo', 'of', 'python', 'program']

sub(): the*demo*of*python*program

The example demonstrates the use of common regex methods in Python. The

findall() method searches for all occurrences of the substring "th" within string1,

it returns ['th', 'th'] as the characters appear twice. The search() method locates

the first occurrence of the substring "python" in string1, returning a match object

indicating its position (span=(12, 18)) and value ('python'). The split() method

splits the string at every blank space (" "), producing a list of words: ['the',

'demo', 'of', 'python', 'program']. Finally, the sub() method replaces all blank

spaces with an asterisk ("*"), resulting in the string

"the*demo*of*python*program".

191

Special Characters

As the name suggests, there are some characters with special meanings, also

known as Metacharacters. To understand the RE analogy, Metacharacters are

useful and important. They will be used in functions of module re. Table 4.3

gives a list of special characters along with its description.

Table 4.3: Special Characters

Characters Description

. Dot - It matches any characters except the newline character.

^ Caret - It is used to match the pattern from the start of the string.

(Starts With)

$ Dollar - It matches the end of the string before the new line

character. (Ends with)

* Asterisk - It matches zero or more occurrences of a pattern.

+ Plus - It is used when we want a pattern to match at least one.

? Question mark - It matches zero or one occurrence of a

pattern.

{} Curly Braces - It matches the exactly specified number of

occurrences of a pattern

[] Bracket - It defines the set of characters

| Pipe - It matches any of two defined patterns.

The example of how to use RegEx special characters specified in table 4.3 is

given in the Python program of Example 4.9.

192

Example 4.9: Use of special characters

Program to use special characters with regular expression function

import re

string1 = "hello world"

.Dot - Any character (except newline character)

word = re.findall("he..o", string1)

print(word)

#Check if the string starts with 'hello':

word = re.findall("^hello", string1)

if word:

 print("Yes, the string starts with 'hello'")

else:

 print("No match")

#Check if the string ends with 'world':

word = re.findall("world$", string1)

if word:

 print("Yes, the string ends with 'world'")

else:

 print("No match")

#Search for a sequence that starts with "he", followed by 0 or more any

characters, and an "o":

word = re.findall("he.*o", string1)

print(word)

#Search for a sequence that starts with "he", followed by 1 or more (any)

characters, and an "o":

word = re.findall("he.+o", string1)

print(word)

#Search for a sequence that starts with "he", followed by 0 or 1 character,

and an "o":

word = re.findall("he.?o", string1)

print(word)

193

#Search for a sequence that starts with "he", followed by exactly any 2

characters, and an "o":

word = re.findall("he.{2}o", string1)

print(word)

#Find all lowercase characters alphabetically between "e" and "r":

word = re.findall("[e-r]", string1)

print(word)

#Check if the string contains either "hello" or "hi":

word = re.findall("hello|hi", string1)

print(word)

if word:

 print("Yes, there is at least one match!")

else:

 print("No match")

OUTPUT:
['hello']

Yes, the string starts with 'hello'

Yes, the string ends with 'world'

['hello wo']

['hello wo']

[]

['hello']

['h', 'e', 'l', 'l', 'o', 'o', 'r', 'l']

['hello']

Yes, there is at least one match!

This example demonstrates various regex patterns and their applications using

the re.findall() function in Python. The pattern he..o matches any sequence of

characters starting with ‘he’, followed by any two characters, and ending with

character ‘o’, it returns ['hello'] as output. The ^hello pattern checks if the string

starts with the character sequence “hello”, as the string starts with hello we get

“Yes, the string starts with 'hello'” as output. The pattern world$ confirms that

194

the string ends with the character sequence “world”, resulting in the output “Yes,

the string ends with 'world'”. The pattern he.*o matches sequences starting with

characters “he”, followed by zero or more occurrences of characters, and

ending with character “o”, the output we get here is ['hello wo']. The pattern

he.+o does the same match but it requires at least one character between

characters “he” and “o”. The pattern he.?o matches character sequence “he”,

optionally followed by one character, and ending with character “o”, this match

returns an empty list ([]). The pattern he.{2}o matches the character sequence

“he”, followed by exactly two characters, and character “o”; it returns ['hello'] as

output. The character range [e-r] finds all lowercase letters between characters

“e” and “r”, it returns a list ['h', 'e', 'l', 'l', 'o', 'o', 'r', 'l']. Finally, the pattern hello|hi

checks for either the string “hello” or string “hi”, in our example we find a

confirmed match as ['hello'].

Check Your Progress-3

a) The re module in Python is used for regular expressions. (True/False)

b) The re.findall() method modifies the original string. (True/False)

c) The re.split() function returns a list after splitting a text at each instance of

the given pattern. (True/False)

d) Regular expressions use metacharacters such as. (dot), * (asterisk), and

+ (plus) to define flexible matching rules. (True/False)

e) The caret (^) matches the start of a string, while the dollar sign ($) matches

the end of a string. (True/False)

4.5 LET US SUM UP

In this unit, we explored the versatility of strings in Python, which consist of a

series of characters. We explored the string manipulation features, such as

indexing, slicing, and formatting, which make working with strings quick and

easy. Built-in functions like lower(), replace(), split(), and join() further improve

string operations by facilitating smooth changes and transformations. We also

looked at regular expressions, which offer powerful pattern matching

capabilities for complicated string operations.

195

4.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b False

1-c True

1-d False

1-e True

2-a True

2-b True

2-c False

2-d False

2-e True

3-a True

3-b False

3-c True

3-d True

3-e True

4.7 ASSIGNMENTS
1. What is a string in Python?

2. Write the output of the following code:

 text = "Hello Python"

 print(text[6:])

3. What does the strip() method do?

4. How would you search for a pattern in a string?

5. Write a Python program to count the number of vowels in a string

using a loop.

6. Create a program that accepts a string and removes all spaces

using string methods.

7. Write a regex pattern to validate an email address.

8. Develop a program to find and replace a word in a string without

using the replace method.

9. Given a string of comma-separated numbers, write a program to

calculate the sum of all numbers.

196

Block-4
OOP Concepts, Exception,

File Handling and GUI

197

Unit-1: Introduction to Object
Oriented Programming

Unit Structure

1.0. Learning Objectives

1.1. Introduction

1.2. Why Object-Oriented Programming?

1.3. Real World Analogy

1.4. Understanding Classes & Objects

1.5. Attributes and Methods

1.6. The self keyword

1.7. Constructor Methods

1.8. Let us sum up

1.9. Check your Progress: Possible Answers

1.10. Assignments

1

198

1.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand the key concepts of Object-Oriented Programming (OOP).

● Differentiate between classes and objects.

● Use attributes and methods in classes to create programs.

● Apply the self keyword to manage object-specific behavior.

● Recognize the benefits of using OOP in software development.

1.1 INTRODUCTION

Till now, we are using a procedural method to write Python programs, which

splits the program into methods and executes a set of codes either in sequence

or in response to pre-set conditions. This methodology of Python programming

works well for smaller programs, but as programs grow in size and complexity,

it becomes harder to keep everything organized.

Think about instances in day-to-day life: we usually come across an item (or

objects) with related data and some related processes. Let's use an automobile

as an illustration. A car's colour, model, and speed are examples of its qualities.

But an automobile can do more than just sit; it can accelerate, start, and stop.

Attempting to represent all of these characteristics and functions in terms of

processes is extremely difficult.

In order to solve the stated problem, Object-oriented programming has been

introduced by Python. It is the method of organizing code into objects, through

which we can represent real-world entities in our programs.

An object is like a real-world thing you can interact with, and it’s created based

on a class. A class acts like a blueprint, defining what properties (also called

attributes) the object will have and what actions (known as functions) it can

perform. By using an Object-oriented approach, you can write code that’s

cleaner, more organized, and easier to reuse, especially when programs start

to grow.

199

1.2 WHY OBJECT-ORIENTED PROGRAMMING? (OOP)

We have already seen that the OOP approach (classes and objects) allow us

to organize our code well, but you may be wondering by now - why should we

use Object-Oriented Programming at all? Why not stick to the traditional

procedural approach?

The answer lies in how we deal with complexity. As programs get bigger,

keeping the code manageable becomes tougher. One loses perspective on

what each part does and how they interact. OOP solves these by simply

allowing us to code in a more human-alike way.

Just envision how you interact with things around you. When you use your

phone, you are not interested in how its inner circuitry works. You just care

about its exciting features like making calls, using social media apps, taking

pictures or listening to music/podcasts. This is precisely what OOP performs; it

allows us to focus on what an object does and worries less about the internal

complexity.

Here are some good reasons why OOP is useful:

● Better Organization

In OOP, related data and actions can be organized into classes. Rather than

scattering variables and functions all over the code, everything pertaining to

an object-a Car or Phone-is grouped into one unit. Thus, the program cuts

down on the confusion and becomes easier to develop.

● Reusability

One of the most important advantages of OOP is that we can reuse the

existing code. For example, if we have already created a class to represent

a car, we don't have to write that code again when adding another car to

your program. We can simply instantiate a new object from class Car.

● Scalability

OOP helps to take programs to a new dimension of scaling with easy

adaptability. For example, new classes can be created based on an existing

one using inheritance. Hence, the programmer has the opportunity to simply

200

add new features to the existing code without modifying or breaking old

code.

● Cleaner Code and Maintenance

In OOP, code becomes more modular and cleaner; the maintenance is also

easier. When a problem occurs, we can simply identify the particular class

or object giving rise to the error without bothering about the rest of the

program.

● Closer to Real Life

OOP mimics how we view the world. We deal with objects everyday-cars,

telephones, people, or books, -all having properties and behaviors. OOP

provides a natural way of coding these concepts, rendering it easier to write

and understand programs.

In conclusion, Object-Oriented Programming gives us the opportunity to write

clean and organized programs while ensuring scalability. It enables users to

break down real-world problems into smaller, more manageable problems that

can be solved in an efficient manner.

1.3 REAL WORLD ANALOGY

Imagine you are organizing a library. One library might have hundreds,

sometimes thousands, of books. Each book contains specific details like its title,

author, genre, and the number of pages. These are the details that tell you what

the book is like and help locate it, so you may be able to borrow it and take

good care of it.

Now, what can you do with a book? You can read it, stick in bookmarks, lend it

to a friend, or take it back to the library. Those are the few possible things a

book could be acting upon. You don't need to know how a book is printed or

bound before you can use one. You just know how to interact with a book.

Managing a library becomes possible and efficient when one line of designation

is taken for handling books. Instead of each book building up its system, each

stanza applies equally to every other book: that is, their issuing, receiving back,

201

or finding stanzas work on every item in the library at all times. This ensures

sufficient management of the library as the size of books grows.

Just like with programming, OOP allows us to structure management of

complexity in programming. Use it as a recommended and systematized style

of treating pieces of a program-the bits that perform some work and those that

hold some bit of information, without having to mind about how everything else

works. In other words, you can manage growth in complexity in programming

with the same ease as you organize a library so that you aren't overwhelmed

by the fresh growth in its collection.

1.4 UNDERSTANDING CLASSES AND OBJECTS

A Class is a blueprint for creating objects, while an object is the instance of that

class. It defines the structures and behaviours that the objects will have. A class

may be associated with a recipe, while the objects are the actual dishes

prepared as per the recipe. Example 4.1 shows the creation of classes in

python.

 Example 4.1: Creating Class and Object

Program to create a class and object.

Creating a class

class Car:

 pass # Placeholder, meaning the class is currently empty

Creating objects

carObject1 = Car()

carObject2 = Car()

print(car1)

print(car2)

OUTPUT

<__main__.Car object at 0x...>

<__main__.Car object at 0x...>

202

So as shown in the above program, Car is the class, while car1 and car2 are

two separate objects created from the class Car.

Note:

● A class defines the structure and behavior of its objects.

● Objects are specific instances of a class, each having its own

identity.

1.5 ATTRIBUTES AND METHODS

In OOP an attribute and a method are basic concepts of a class. These

concepts define the structure (data) and behaviour (functions) of objects. Let’s

dive deeper to understand attributes and methods with practical examples and

applications.

What are Attributes?

Attributes are the features or properties of an object. They are similar to

variables of type data that yield some specific data related to an object.

For example, for a class Car:

Attributes can be name, company, and colour.

In Python, attributes are defined inside a class and accessed with the dot (.)

operator.

Types of Attributes:

1. Instance attributes: Specific to an object; each object maintains its own

unique set of instance attributes.

2. Class attributes: shared by all objects of the class.

Example 4.2: Attributes in Class

Program to demonstrate usage of attributes in a class.

class Car:

 # Class attribute

 noOfWheels = 4

203

 def __init__(self, name, company, colour):

 # Instance attributes

 self.name = name

 self.company = company

 self.colour = colour

Creating objects

carObject1 = Car(“Swift”, “Maruti”, “White”)

carObject2 = Car(“i10”, “Hyundai”, “Black”)

Accessing attributes of first object

print(carObject1.name)

print(carObject1.company)

print(carObject1.colour)

print(carObject1. noOfWheels)

Accessing attributes of second object

print(carObject2.name)

print(carObject2.company)

print(carObject2.colour)

print(carObject2. noOfWheels)

OUTPUT OF PRINTING THE ATTRIBUTES OF FIRST OBJECT:

Swift

Maruti

White

4

OUTPUT OF PRINTING THE ATTRIBUTES OF SECOND OBJECT:

i10

Hyundai

Black

4

204

The above program in example 4.2 demonstrates the usage of instance

attribute and class attribute in a class. The Car class is declared with attributes

to signify the various details about a Car. It contains both instance and class

attributes.

1. Instance Attributes (name, company, colour):

These are defined in the __init__ method and are unique to each object.

Each individual car will thus have its own values for the name, company,

and colour.

2. Class Attributes (noOfWheels):

The attribute is defined outside of any other methods and shared across

all objects of the Car class. All the car objects will have four wheels as

their default value.

Two objects, carObject1 and carObject2, have been instantiated with differing

instance attribute values. Using the dot (.) operator, the attributes of each object

are accessed.

What are Methods?

Methods are the actions or behaviours that an object of a class can perform.

They are somewhat similar to functions but are defined in a class and operate

on an object's attributes. With methods, we typically would either interact with

the object's data or perform specific actions with the object's attributes.

For example, in a class Car, methods can be start(), stop() or accelerate() .

Types of Methods

1. Instance Methods: These are the most commonly used methods.

They can read and modify instance attributes and perform actions

specific to their objects. Instance methods must have as their first

parameter the object that calls the method.

2. Class Methods: These methods must work on class attributes, shared

across all objects of that class. They are declared on a class either via

the classmethod decorator and must admit cls as their first parameter

(referring to the class itself).

205

3. Static Methods: Static methods themselves do not directly operate on

instance attributes nor class methods. Instead, they are used at times

when no data neither class nor object will need to be made available.

They are declared using the staticmethod decorator.

A program in example 4.3 demonstrates how different types of methods can be

used in a class:

Example 4.3: Methods in Class

Program to demonstrate usage of methods in a class.

class Car:

 # Class attribute

 noOfWheels = 4

 def __init__(self, name, company, colour):

 # Instance attributes

 self.name = name

 self.company = company

 self.colour = colour

 # Instance method to display details of the car

 def displayCar(self):

 print(f"Car Name: {self.name}")

 print(f"Company: {self.company}")

 print(f"Colour: {self.colour}")

 # Instance method to change the colour of the car

 def changeCarColour (self, newClr):

 self.colour = newClr

 print(f"The color of {self.name} has been changed to {newClr}.")

 # Class method to modify class attribute

 @classmethod

 def updateNoOfWheels(cls, newNumOfWheels):

 cls.noOfWheels = newNumOfWheels

 print(f"Number of wheels has been changed to {newNumOfWheels}.")

 # Static method to calculate mileage of a car

 @staticmethod

 def getMileage(distance, fuel):

 return distance / fuel

Creating an object of the class Car

carObject1 = Car(“Swift”, “Maruti”, “White”)

206

Accessing instance methods of the class Car

carObject1.displayCar()

carObject1.changeCarColour("Blue")

carObject1. displayCar()

Accessing class method of the class Car

print(f"Original number of wheels: {Car.noOfWheels}")

Car.updateNoOfWheels(6)

print(f"Updated number of wheels: {Car.noOfWheels}")

Accessing static method

mileageCar = Car.getMileage(300, 20)

print(f"Mileage of the car: {mileageCar} km/l")

OUTPUT OF INSTANCE METHOD:

Car Name: Swift

Company: Maruti

Colour: White

The color of Swift has been changed to Blue.

Car Name: Swift

Company: Maruti

Colour: Blue

OUTPUT OF CLASS METHOD:

Original number of wheels: 4

Number of wheels has been changed to 6.

Updated number of wheels: 6

OUTPUT OF STATIC METHOD:

Mileage of the car: 15.0 km/l

The above program in example 4.3 demonstrates the usage of various types of

methods in a class. The Car class is declared with attributes and three types

(instance, class and static) of methods.

1. Instance Methods:

● displayCar(): Prints details of a specific car object (name, company,

and colour). This method uses self to access instance attributes.

● changeCarColour(newClr): This shows instance methods that can

modify attributes of an object. It changes the colour attribute of a

specific car object to a new value (newClr).

207

2. Class Method:

● updateNoOfWheels(cls, newNumOfWheels): It modifies the class

attribute noOfWheels, shared by all objects of the class. Uses the cls

keyword to access and update the class attribute.

3. Static Method:

● getMileage(distance, fuel): A utility method that accepts distance

travelled and fuel consumed and calculates and returns mileage.

There are no dependencies on either instance or class attributes.

Table 1.1 gives the comparison of different methods used in the program.

Table 1.1: Comparison of Methods

Method
Type

Decorator
First

Parameter
Objective

Instance
Method

None self
Operates on instance
attributes and specific objects.

Class
Method

@classmethod cls
Operates on class attributes
and affects all objects of the
class.

Static
Method

@staticmethod None
General-purpose methods;
does not use class or instance
data.

Note:

● In a class, attributes describe "what an object has," while

methods describe "what an object does."

● Attributes and methods, taken together, encapsulate the data and

behaviour of objects and support the principles of Object-

Oriented Programming in Python.

● Attributes and methods are accessed using the dot (.) operator.

Check your progress - 1

a) An object is a template or class instance that contains data and

methods. (True/False)

b) Attributes capture the activities of an object. (True/False)

208

c) Methods are functions defined by a class to act or apply to the object

attributes. (True/False)

d) A class is a blueprint for creating objects. (True/False)

1.6 THE self KEYWORD

In Python, the self keyword is a critical part in defining and working with

attributes and instance methods in a class. It allows access to the attributes

and methods of the object that calls the method of a class.

What is self?

● Represents the Instance: The self keyword is a reference to the current

instance of the class. It is used to access the attributes and methods

associated with that specific object.

● Mandatory in Instance Methods: When defining an instance method, the

first parameter must always be self. This lets Python know that the

method is tied to the object.

● Not a Reserved Keyword: While self is a convention, you can technically

use any valid variable name as the first parameter in instance methods.

However, sticking to self ensures readability and consistency.

Why do we need self?

● Separation of instance variables from local variables: Without self, the

method cannot differentiate between attributes of an instance and local

variables.

● Binding data to a particular object: Each object has its own set of

attributes, and through self, the method modifies and fetches attributes

related to the object.

● Allows for clearer readability: The use of self makes it clear that the

attributes and methods belong to the object.

Let’s understand the usage of 'self' with the multiple examples presented in the

below section:

209

Example 4.4: Basic usage of ‘self’ keyword

Program to demonstrate the usage of self.

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def greetings(self):

 print(f"Hello, my name is {self.name} and I am {self.age} years old.")

Creating objects

personObject1 = Person("Mohan", 15)

personObject2 = Person("Rohan", 20)

Accessing methods

personObject1.greetings()

personObject2.greetings()

OUTPUT

Hello, my name is Mohan and I am 15 years old.

Hello, my name is Rohan and I am 20 years old.

In the above example, self.name and self.age are attributes of the specific

instance of the object that called the method (personObject1 or personObject2).

Example 4.5: Changing the attributes using self

Program to demonstrate the usage of self.

class Account:

 def __init__(self, accHolder, balance):

 self. accHolder = accHolder

 self.balance = balance

 def deposit(self, amount):

 self.balance += amount

 print(f"{amount} deposited. Updated balance is {self.balance}.")

210

 def withdraw(self, amount):

 if amount > self.balance:

 print(“Can’t withdraw, Not enough balance!")

 else:

 self.balance -= amount

 print(f"{amount} withdrawn. Updated balance is {self.balance}.")

Creating an object

account = Account("Mohan", 500)

Performing operations

account.deposit(500)

account.withdraw(900)

account.withdraw(500)

OUTPUT

500 deposited. Updated balance is 1000.

900 withdrawn. Updated balance is 100.

Can’t withdraw, Not enough balance!

In the above example, the use of self.balance guarantees that any changes

made to the balance are associated with the specific account object.

Example 4.6: Using self with multiple objects

Program to demonstrate the usage of self.

class Rectangle:

 def __init__(self, length, width):

 self.length = length

 self.width = width

 def calculateArea(self):

 return self.length * self.width

Creating objects two rectangles

rectObject1 = Rectangle(3, 7)

rectObject2 = Rectangle(9, 15)

print(f"Area of first rectangle is: { rectObject1.calculateArea()}")

print(f"Area of second rectangle is: { rectObject2.calculateArea()}")

211

OUTPUT

Area of first rectangle is: 21

Area of first rectangle is: 135

In the above example, self.length and self.width make sure that every rectangle

object defines its own length/width independent of other rectangle objects.

Common mistakes when using self:

1. While defining methods: This is caused by omitting self in method

definitions and leads to a TypeError.

Example 4.7: Omitting self: Use case- 1

Program to demonstrate the usage of self.

class Welcome:

 def greetings():

 print("Hello!")

obj = Welcome()

obj. greetings()

OUTPUT

TypeError: greetings() takes 0 positional arguments but 1 was given

#correct version of above mentioned code

#include self in method definition

class Welcome:

 def greetings(self):

 print("Hello!")

obj = Welcome()

obj. greetings()

OUTPUT

Hello!

2. While accessing attributes: As shown in the example 4.8, without the

self keyword, python treats the variable as a local variable.

212

Example 4.8: Omitting self: Use case- 2

Program to demonstrate the usage of self.

class MathmaticalOp:

 def __init__(self, number):

 number = number # This does not assign to the instance attribute

number

 def showNumber(self):

 print(self.value)

obj= MathmaticalOp(10)

obj.showNumber()

OUTPUT

AttributeError: MathmaticalOp object has no attribute number

#correct version of above mentioned code

#include self in while assigning the instance attribute

class MathmaticalOp:

 def __init__(self, number):

 self.number = number

 def showNumber(self):

 print(self.number)

obj= MathmaticalOp(10)

obj.showNumber()

OUTPUT

Hello!

Note:

● The "self" keyword allows us to bind the instance attributes and

methods to the particular object that is calling them.

● The “self” keyword enhances the clarity of the code, showing

clearly which attributes and methods belong to an object.

● Using the “self” keyword properly forms the backbone of writing

robust and maintainable object-oriented programs.

213

1.7 CONSTRUCTOR METHODS

In Object-Oriented Programming, constructors are special methods used for

the initialization of various attributes of an object when an object is created. In

general, the constructor can be viewed as a special method that "constructs" or

"sets up" any object and prepares it for use.

In Python, constructors are introduced by the method called __init__, which is

automatic whenever a new object from the class is instantiated.

Why Do We Need Constructors?

In most cases, an object has to have some attributes or values assigned to it

right from the start. Such a process of performing the action manually will

consume lots of effort. Assigning values through a constructor will help in

avoiding this redundant work by enabling the object to have values defined and

assigned upon creation. This shortens the coding, sets consistency, and yields

cleaner code.

Major Features of Constructors in Python:

● Special Method: The constructor is defined through the __init__ method

which is a reserved method in Python.

● Self-invocation: When an object is created, the __init__ method is

automatically invoked.

● Initializing the Object: The constructor is used to set initial values into the

attributes of any object.

● Custom Values: We can define some parameters in the constructor to

accept values from the user and initialize its attributes with it.

Syntax to Create a Constructor:

Example 4.9 shows the simple syntax of a constructor in Python.

214

Example 4.9: Constructor Syntax

Program to demonstrate the creation of Constructor.

class ClassName:

 def __init__(self, parameters):

 # Constructor code

● self: The first parameter of the constructor, like all methods in Python, is

self. This references the instance of the class being created.

● parameters: These are optional. If provided, they permit the user to pass

values to initialize the attributes of the object.

Constructor in a Class

Now, Let’s look at a simple code in example 4.10 to understand how a

constructor works:

Example 4.10: Constructor in a Class

Program to demonstrate the Constructor in a class.

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

Creating objects of the class Person

personObject1 = Person("Mohan", 20)

personObject2 = Person("Rohan", 15)

Accessing attributes

print(f"First Person: { personObject1.name}, Age: { personObject1.age}")

print(f"Second Person: { personObject2.name}, Age: { personObject2.age}")

OUTPUT

First Person: Mohan, Age: 20

Second Person: Rohan, Age: 15

215

In above code:

● The __init__ method(constructor) accepts three parameters, namely,

self, name, and age.

● The moment this statement is executed, personObject1 =

Person("Mohan", 20), the __init__method gets automatically invoked.

● Similarly, personObject2 = Person("Rohan", 15) will be executed, it

creates another object with its own name and age.

Default Constructor

As shown in the example 4.11, In the case of no parameters passed during

object creation, we may have to define a constructor with no arguments. This

is known as the default constructor.

Example 4.11: Default Constructor

Program to demonstrate the default constructor in a class.

class Animal:

 def __init__(self):

 self.species = "Not Known!"

Creating an object

animalObject = Animal()

Accessing the attribute

print(f"Species of an animal: {animalObject.species}")

OUTPUT

Species of an animal: Not known!

Constructor with Default Values

As shown in the example 4.12, We can furthermore assign default values to

constructor parameters that let us create the objects with user-defined values.

216

Example 4.11: Constructor with default values

Program to demonstrate the default values in a constructor.

class Car:

 def __init__(self, company="NotKnown", colour="White"):

 self.company = company

 self.colour = colour

Creating objects

carObject1 = Car("Swift", "Black")

carObject2 = Car() # Uses default values

Accessing attributes

print(f"First Car Object: Company={car1.brand}, Colour={car1.colour}")

print(f"Second Car Object: Company={car2.brand}, Colour={car2.colour}")

OUTPUT

First Car Object: Company=Swift, Colour=Black

Second Car Object: Company =NotKnown, Colour=White

Note:

● Use of constructors plays an important role in the development

of scalable and maintainable object-oriented systems.

● Constructors automatically configure attributes at object

creation time and eliminate redundant codes.

● Allow passing parameters to adjust object attributes while

allowing for default values.

Check your progress - 2

a) The self keyword applies to the class itself, not to an instance of it.

(True/False)

b) A constructor method is called when an object is created and used for

initializing the object attributes. (True/False)

c) An object can only have one constructor method. (True/False)

217

d) All methods within classes are mandatory to include the self keyword.

(True/False)

e) The self keyword must be present in static methods. (True/False)

1.8 LET US SUM UP

In this unit, the fundamentals of object-oriented programming were introduced.

You gained insights into classes and objects in a way that classes can be seen

as blueprints for creating objects. Attributes and methods assist in defining the

properties and behaviour of the objects. You used the self keyword when

referring to the instance of the object itself. The unit also covers constructor

methods, designed to initialize objects with specific values when they are

created.

1.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a False

1-b False

1-c True

1-d True

2-a False

2-b True

2-c False

2-d False

2-e False

1.10 ASSIGNMENTS

1. Write the basic concepts of classes and objects with their advantages and

disadvantages.

2. Explain the difference between attributes and methods.

3. Explain the self keyword in a class.

4. What is the constructor method and what is its most important role in

object creation?

218

5. Write a Python program implementing the below functionalities using

classes and methods:

o Create a class Number to check whether a given number is positive

or negative.

o Create a class InterestCalculator, which computes the value of I =

(P*R*N)/100 if the values of P, R, and N are greater than 0.

o Create a class Comparison to read two numbers num1 and num2;

then, determine whether num1 is less than, greater than or equal to

num2.

o Create a class LargestNumber that takes three numbers num1,

num2, and num3 to find the greatest of three numbers.

o Create a class NameChecker to enter two names, name1 and

name2, and check whether they are similar or not.

219

Unit-2: Inheritance and

Polymorphism

Unit Structure

2.0. Learning Objectives

2.1. Introduction

2.2. Inheritance and Polymorphism

2.3. Encapsulation and Data Hiding

2.4. Abstract Classes and Interfaces

2.5. Let us sum up

2.6. Check your Progress: Possible Answers

2.7. Assignments

2

220

2.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand the principles of inheritance and polymorphism in Python

● Differentiate between types of inheritance

● Implement method overriding and understand its applications

● Describe encapsulation and data hiding, and implement it effectively

● Recognize the importance of abstract classes and interfaces in object-

oriented programming

2.1 INTRODUCTION

In the earlier chapter, we learnt the general concepts of OOP in Python, namely

classes, objects, attributes, and methods. We investigated how these concepts

allow one to organize code into logical structures, making the code cleaner,

modular, and reusable. This mimics the real world, where objects have specific

properties and behaviors; for example, a car would have attributes such as

color and speed and methods such as acceleration and braking.

While the earlier chapter introduced a necessary foundation for understanding

the definition and operation of individual objects, it fell short of defining how

objects relate to one another. In practical applications, relations between

objects are very crucial, such as:

● A car is a type of vehicle but possesses unique features (Inheritance).

● Another vehicle may vary in the way it behaves, and thus the vehicle

may start or stop by virtue of the configuration of such a vehicle, be it a

car or bicycle (Polymorphism).

In this chapter, we will look into the relationships as modeled via Inheritance

and Polymorphism-Legacies which are absolutely vital pillars of OOP.

Inheritance is a mechanism that allows one class to inherit the attributes and

methods of another class, thereby permitting an overlap and reuse of codes.

Polymorphism lets the method of a class behave differently based on which

object has called it, thereby adding flexibility and extendibility to the programs.

221

On completing this chapter, you will understand how these concepts can be

harnessed in the design of scalable and efficient systems along with an

application of these concepts in Python.

2.2 INHERITANCE AND POLYMORPHISM

Inheritance is one of the key principles of Object-Oriented Programming (OOP).

According to its definition, a new class, the child class, can inherit attributes and

methods from an existing class, the parent class. This makes it possible for a

developer to reuse code while building a hierarchical relationship among the

classes, mirroring reality.

For illustration, in a system which manages vehicles:

So, we have:

● Parent Class: Vehicle class with attributes such as speed, company and

method definitions such as methods start() and stop().

● Child Class: Car and Bicycle, which inherit these properties and

behaviors and may also define their own attributes and methods like

numberOfDoors, an attribute for cars or pedal(), a method for bicycles.

Why Use Inheritance?

● Code Reusability: Common attributes and methods would be defined

in a parent class for child classes to inherit.

● Logical Hierarchy: Develops relationships across many entities, which

simplifies understanding of the system and maintains it in the long run.

● Extensibility: New features can always be added to child classes with

absolutely no effect on the parent class.

● Polymorphism: It provides a foundation for overriding child class

methods. Thus, different official behavior for each subclass can be

provided.

222

Key features of Inheritance

1. Inheritance Hierarchy: The inheriting class acquires the attributes and

methods of the base class by extending without modification. For

instance:

● A base class Employee will have generic attributes such as name

and salary.

● A derived class Manager will include department or any other

attribute that is specific for it.

2. super() Function: When the super() function is used in a derived class,

it gives access to the method of the base class in order to modify it in the

derived class context. This helps to resolve conflicts when two methods

share the same name.

3. Overriding methods: Child classes can redefine methods of the parent

class to provide specific behavior. This is central to the concept of

polymorphism, which is discussed in more detail later in this chapter.

Example 2.1: Program to demonstrate the concept of Inheritance

Program to demonstrate the concept of Inheritance

Parent class

class Vehicle:

 def __init__(self, company, model):

 self.company = company

 self.model = model

 def printData(self):

 return f"Vehicle company: {self.company}, Model: {self.model}"

Child class

class Car(Vehicle):

 def __init__(self, company, model, noOfDoors):

 # Use super() to call the parent class's __init__ method

 super().__init__(company, model)

 self.noOfDoors = noOfDoors

 def printData(self):

 # Use super() to include details from the parent class

 parentClassData = super().printData()

 return f"{parentClassData}, Doors: {self.noOfDoors}"

223

vehicleObj = Vehicle("Generic Brand", "X")

carObj = Car("Swift", "ZXI", 4)

print(vehicleObj.printData())

print(carObj.printData())

OUTPUT:

Vehicle company: Generic Brand, Model: X

Vehicle company: Swift, Model: ZXI, Doors: 4

The above program shows the inheritance of the Car class from the Vehicle

class, inheriting attributes and methods, while also adding its own. The parent

class, Vehicle, consists of two attributes, company and model, and a method

printData which prints these details. Car extends this base functionality by

introducing an additional attribute, noOfDoors, which represents the number of

doors relative to cars. Using the super() function, the Car class invokes the

parent class's __init__ method to initialize the inherited attributes, company and

model, to avoid redundancy. The printData method is also overridden in Car to

include the parent class’s details (retrieved using super().printData()) along with

the number of doors, demonstrating how inheritance allows code reuse and

extension.

Types of Inheritance

1. Single Inheritance: It occurs when a child class derives from just one

parent class. Arguably, this is the most basic form of inheritance,

whereby a child class has the access to all attributes and methods of the

parent class. A parent-child relationship is direct where one class is child

to one single class, thus easing code reuse and extensibility. which is

discussed in more detail later in this chapter. The Python program in

Example 2.2 demonstrates the concept of single inheritance.

Example 2.2: Concept of single inheritance

Program to demonstrate the concept of single Inheritance

Parent class

class Parent:

 def parentMethod(self):

 print("This is parent class")

224

Child class

class Child(Parent):

 def childMethod(self):

 print("This is child class”)

childObj = Child()

childObj.parentMethod()

childObj.childMethod()

OUTPUT

This is parent class

This is child class

The above python code is the demonstration of single inheritance in

Python, where the child class is derived from the parent class. The child

class introduces a new method called childMethod, which prints a

message different from that of the parent class. By virtue of the

inheritance from Parent, the child class automatically acquires the ability

to call the method parentMethod, which is shown when the childObj

invokes the parentMethod by the statement childObj.parentMethod().

The child class can, in addition, call its own method, childMethod,

illustrated by childObj.childMethod(). The resulting output displays the

messages coming from both parents and children, thus showing that a

child class accesses both its methods and those inherited from the

parent class.

2. Multiple Inheritance: It occurs when a child class gets its properties

from two or more parent classes. Thus, the child class garners strength

from the combination and extension of the functionalities of several

parent classes. However, it will lead to a problem if its parent classes

communicate contradictory information through methods or attributes.

The resolution of the conflict is ordered through Method Resolution

Order (MRO), which brings an element of order in providing the methods

and attributes in a predictable chain.

225

Example 2.3: Concept of multiple inheritance

Program to demonstrate the concept of multiple Inheritance

Parent class 1

class Father:

 def fatherMethod(self):

 print("This is a father class.")

Parent class 2

class Mother:

 def motherMethod(self):

 print("This is a mother class.")

Child class

class Child(Father, Mother):

 def childMethod (self):

 print("This is a child class.")

childObj = Child()

childObj.fatherMethod()

childObj.motherMethod()

childObj.childMethod()

OUTPUT

This is a father class.

This is a mother class.

This is a child class.

The above python code demonstrates multiple inheritance in Python,

with the child class inheriting from two parent classes: Father and

Mother. The father class has a method fatherMethod that prints a

message and the mother class has a method motherMethod that prints

something different from that of the father. Inheriting both of these

methods, the child class also defines its own method, childMethod,

which prints its own unique message. When an object of the child class

226

(childObj) is created, it can have access to methods inherited from both

parent classes (fatherMethod and motherMethod) including its own

childMethod. The output confirms that the child class is able to access

methods from both parent classes; such capabilities of accessing via

multiple inheritance allow the child class to inherit behaviors from more

than one parent.

3. Hierarchical Inheritance: It occurs when multiple child classes have a

single parent class. The modeling is based on reuse of the code since

all child classes will share the same behavior and attributes defined in

the parent class. It would be helpful in creating a centralized parent class

in one area where other extended child classes will branch off.

Example 2.4: Concept of hierarchical inheritance

Program to demonstrate the concept of hierarchical Inheritance

Parent class 1

class Animal:

 def animalMethod(self):

 print("This is animal method.")

Child class 1

class Dog(Animal):

 def dogMethod(self):

 print("This is a dog method.")

Child class 2

class Cat(Animal):

 def catMethod(self):

 print("This is a cat method.")

dogObject = Dog()

catObject= Cat()

dogObject.dogMethod()

catObject.catMethod()

OUTPUT

This is a dog method.

This is a cat method.

227

In this program, hierarchical inheritance is illustrated in Python, where

more than one child class inherits from a single parent class. The Animal

class acts as a parent which has a definition of its method,

animalMethod. This behavior represents things that are common to all

animals. The Dog and Cat classes inherit from Animal; hence, they are

referred to as child classes of Animal class. In turn, each child class

enacts one from its own unique methods, for the Dog class the

dogMethod and for the Cat class the catMethod. Instances of Dog and

Cat that are created namely; dogObject and catObject call the methods

common for both classes, showing how, in particular, the child class can

both have a different implementation of a method and inherit the

common behavior from its parent class, Animal. The output shows

working methods from both the child classes independently.

4. Multilevel Inheritance: It occurs when a child class inherits from

another parent class whose own parent class derives from another. That

means multiple inheritance exists in a line: the attributes and methods

will propagate through many levels. They can help create a more

sophisticated hierarchy, but imploding inheritance also requires limited

manageability if the whole structure is too deep.

 Example 2.5: Concept of multilevel inheritance

Program to demonstrate the concept of multilevel Inheritance

#Grand Parent class

class Grandparent:

 def grandparentMethod (self):

 print("This is a Grandparent class.”)

#Parent class

class Parent(Grandparent):

 def parentMethod(self):

 print("This is a parent class.")

#Child class

class Child(Parent):

 def childMethod(self):

 print("This is a child class.")

228

childObject = Child()

childObject.grandparentMethod()

childObject.parentMethod()

childObject.childMethod()

OUTPUT

This is a Grandparent class.

This is a parent class.

This is a child class.

This program illustrates multilevel inheritance in Python, wherein a class

inherits from one class, itself a subclass of another class, forming a chain

or hierarchy of inheritance. The Grandparent class is to the top most

class with a definition of a method named the grandparentMethod. The

Parent class has a link span from Grandparent whereby it even adds in

its own method the parentMethod. Then Child, from Parent, provides his

method the childMethod. When an object of the Child class is created

(childObject), it can access not only its method but also the methods

contained in its, Parent class, and Grandparent classes. Hence, this

reflects how multilevel inheritance allows the child class to inherit

behavior in relation to various levels of a method access. The output

demonstrates that the child object invoked the methods that were called

on him, those pertaining to the grandparent, parent, and child classes

respectively, reflecting their inherited structure.

Polymorphism

Polymorphism, from Greek words which mean "many forms", is a central

concept of object-oriented programming, which means that the same function

or method might act differently, depending upon the object or class through

which it is being called. In essence, polymorphism is a certain quality through

which the same interface is allowed to be used by an assortment of differing

data types or classes; it allows significant flexibility in invoking methods over

various objects. Polymorphism has two major types:

1. Compile-time Polymorphism (Overloading): It arises due to the

existence of several methods with the same name that vary in their

number or type of parameters. However, the notion of method

229

overloading is quite rare in Python because Python has not supported

this concept the way Java or C++ has done. In Python, a method

behaves at runtime, and therefore, method overloading is generally

avoided by default or by variable-length argument lists.

 Example 2.6: Concept of Compile-time Polymorphism

Program to demonstrate the concept of compile-time polymorphism

class Operation:

 def sum(self, no1, no2=0, no3=0): # Default values simulate overloading

 return no1+ no2 + no3

opObject = Operation()

Calling a function with one parameter

print(opObject.sum(5))

Calling a function with two parameters

print(opObject.sum(5, 10))

Calling a function with three parameters

print(opObject.sum (5, 10, 15))

OUTPUT

5

15

30

The above program shows how to implement compile-time

polymorphism (method overloading) in Python. Here, the sum method

of the Operation class takes three arguments but uses assigned values

of 0 for the other two arguments. This enables the method to be invoked

with one, two, or three function arguments, simulating method

overloading. In the case of the invocation with one argument,

opObject.sum(5), the second and third arguments by default become 0,

resulting in answer 5. When the method is invoked with two arguments,

opObject.sum(5, 10), the second argument will determine the answer,

and the third will be 0, giving an answer 15. Finally, when three

arguments are supplied opObject.sum(5, 10, 15), the answer will be 30.

This demonstrates how they behave differently with function invocation

230

based on the number of arguments supplied: that is how compile-time

polymorphism using default arguments is achieved.

2. Run-time Polymorphism (Overriding): This kind of polymorphism is,

on the other hand, a trend in Python. It occurs when a method is defined

with the same name in a child class as that of one in the parent class,

only the implementation in the child class is much different from that in

the parent class. This allows various behaviors to be performed on

runtime based on the type of object making a method call. This is also

known as method overriding.

 Example 2.7: Concept of Run-time Polymorphism

Program to demonstrate the concept of run-time polymorphism

class Animal:

 def makSound(self):

 print("Some generic animal sound.")

class Dog(Animal):

 def makeSound(self):

 print("Bark!")

class Cat(Animal):

 def makeSound(self):

 print("Meow!")

dogObject = Dog()

catObject = Cat()

Calling the same method on different objects

dogObject.makeSound()

catObject.makeSound()

OUTPUT

Bark!

Meow!

The above program shows how a run-time polymorphism in Python

works. Run time polymorphism is also known as method overriding. The

Animal class has a makeSound method, which prints a generic animal

sound. The subclasses of Animal include Dog and Cat, each of which

231

overrides the makeSound method to output a specific sound pertaining

to that animal, a bark for the Dog and a Meow for the Cat. When the

objects of Dog and Cat (dogObject and catObject) are created, the

makeSound method is called on both objects. Even though the method

is being called on both objects by the same name (makeSound), the

actual method that gets executed is determined at runtime based on the

type of the object. So, for dogObject, the method from Dog class is

executed, which prints "Bark!"; and for catObject it is executed from Cat

class, which prints "Meow!" This dynamic dispatch is clearly seen when

the method called is not the one defined in the reference but the one

actually defined in that class (the object type).

Note:

● Inheritance provides a way for objects of some classes to inherit

properties and behaviors from objects of other classes, providing an

easier way to reuse code and reduce redundancy.

● Polymorphism allows a single interface to stand for different

underlying forms (such as two methods sharing the same name

behaving differently according to huge differences in the arena of

necessity).

● Method overriding is a feature of polymorphism allowing the

subclass to implement its own version of the method declared in a

parent class.

● Inheritance helps in establishing a hierarchical relationship among

classes, which eases the organization and maintenance of code.

● Polymorphism adds flexibility and scalability to the objects, treating

such objects as instances of their parent class or interface and still

calling implementations dedicated to subclasses.

Check Your Progress-1

a) Inheritance allows a subclass to inherit properties and methods from its

parent class. (True/False)

232

b) Polymorphism means that a method must have the same implementation in

all classes. (True/False)

c) Method overriding is an example of compile time polymorphism. (True/False)

d) Inheritance reduces code redundancy by allowing code reuse. (True/False)

e) A subclass cannot modify the behavior of a method inherited from its parent

class. (True/False)

f) Polymorphism allows objects of different classes to be treated as objects of

a common parent class. (True/False)

g) Inheritance is only used to extend the functionality of a class and cannot alter

existing functionality. (True/False)

h) Polymorphism and inheritance are completely independent and cannot be

used together. (True/False)

2.3 ENCAPSULATION AND DATA HIDING

Encapsulation and data hiding are key principles of Object-Oriented

Programming (OOP). They make sure that the inner workings of a class remain

hidden from the outside world and that only essential information and

functionalities are exposed. All this does not only add to system security but

also makes it easier for future maintenance and ongoing projects of scaling and

improvement processes.

Encapsulation: Operations on Data and Bindings

Encapsulation refers to the act of binding data (attributes), and methods

(functions) that apply to those data into one cohesive unit. Most of the time it is

accomplished by defining a class. It black-boxes the class implementation. For

example:

● A BankAccount holds balance and account_number as its attributes and

deposit() and withdraw() as its methods. The user doesn't need to

understand how the methods work in the background but only knows

what they can do for the user.

233

Data Hiding: Protecting Internal State

Since data hiding allows the setter and getter without exposing the public

interface, its functionality is very important for:

● Preventing unauthorized access to crucial information by external

entities.

● Control over how data is accessed or modified.

In Python, data hiding is applied by the access specifiers:

● Public: accessible from anywhere (default).

● Protected: this is indicated by a single underscore _ and suggests an

intended restricted access but technically, it is still accessible.

● Private: this is represented by a double underscore __ which strictly

forbids outside access to class attributes.

Advantages of Encapsulation and Data Hiding

1. Increased Security: Encapsulation provides a way to safeguard

sensitive data through the use of access modifiers such as private,

protected, or public. A controlled point of access (such as getter and

setter methods) for specific aspects of an object shields it from

unauthorized or accidental access. In this manner, accidental or

fraudulent manipulation of the data is limited and also protects the object

state.

2. Data Control: Encapsulation provides you with a way to place rules and

validation checks when attributes of an object are being modified. For

example, you may check the inputs in the setter function before changing

the property. This way, the state of the object is always in accordance

with the expected line of thinking. For example, a setAge() function may

confirm that age is a positive number before updating the attribute.

3. Flexibility: The architecture of the whole object can be changed without

making the change to the portion that makes use of this object. For

example, you could implement this data into a better algorithm or into a

234

database or into a file, and not even slightly change the external

interface. This layer of abstraction protects the user of the class from

being affected by internal changes, thus ensuring long-term flexibility in

development and maintenance.

4. Modularity: Encapsulation associates related data and methods into

self-contained units called classes. This makes codebases more

organized and more easily understandable. Each class focuses on one

task defined by the principle of single responsibility. Such modularity

helps in maintaining, testing, and debugging, since each class can now

be developed and maintained independently, without side effects on

other parts of the application.

Example 2.8: Implementation of Encapsulation and Data Hiding

Program to showcase implementation of Encapsulation and Data Hiding

Encapsulation with Public Access

class Car:

 def __init__(self, company, color):

 self.company = company # Public attribute

 self.color = color # Public attribute

 def displayData(self):

 print(f"Car company: {self. company}, Color: {self.color}")

Creating an object

carObject = Car("Swift", "white")

car.displayData()

OUTPUT:

Car company: Swift, Color: white

Example 2.9: Implementation of Encapsulation and Data Hiding

Program to showcase implementation of Encapsulation and Data Hiding

Encapsulation with Private Attributes (Data Hiding)

class BankAccount:

 def __init__(self, balance):

 self.__balance = balance # Private attribute

235

 def deposit(self, amount):

 if amount > 0:

 self.__balance += amount

 print(f"{amount} deposited successfully.")

 def withdraw(self, amount):

 if amount > self.__balance:

 print("Insufficient balance!")

 else:

 self.__balance -= amount

 print(f"{amount} withdrawn successfully.")

 def getBalance(self):

 return self.__balance # Getter method to access private attribute

Creating an object

accountObject = BankAccount(2000)

accountObject.deposit(100)

print(accountObject.getBalance())

accountObject.withdraw(5000)

OUTPUT:

100 deposited successfully.

2100

Insufficient balance!

The programs shown in above two examples give an example of encapsulation

and data hiding. The Car class in Example 2.8 has public attributes, while the

BankAccount class in Example 2.9 has private attributes. The Car class

encapsulates the properties (company and color) and methods within a single

unit. These properties are public and can be accessed and modified both within

the class and externally. The output of displayData() exhibits encapsulation by

providing a neat interface to access the attributes. However, as the attributes

are public, there is no restriction against direct access or constraints against

making an invalid value assignment that may later ruin data integrity. For

example, to change the color, somebody could set the color attribute to "".

The contrast, then, is drawn with the BankAccount class because its __balance

attribute is kept hidden behind the double underscore prefix; direct access to

the attribute from outside the class is not possible. It is only controlled through

236

method invocation: deposit(), withdraw(), and getBalance(). All these methods

observe user supplied constraints on the parameters; for example, deposits

must be at least positive amounts and withdrawal requests could not exceed

the balance available. It ensures that the state of the account is consistent and

shouldn't allow direct changes to the attribute that wouldn't typically happen

during an accidental or malicious addition. The encapsulated methods form a

clear and secure interface for data access of the object-the benefits of

encapsulation and data hiding hence becomes apparent in comparison.

2.4 ABSTRACT CLASSES AND INTERFACE

Abstraction is a very powerful concept in object-oriented programming that

allows the programmer to specify what the general structure of a class should

look like without providing its whole implementation. This is accomplished with

the use of abstract classes and interfaces which provide a blueprint for deriving

classes.

Both abstract classes and interfaces serve to enforce consistency throughout

the different areas of a program by insisting that all derived classes implement

certain methods. This comes in very handy for large systems where several

developers have to work on different components of the system since it ensures

uniformity and thus eliminates implementation errors.

What is an abstract class?

An abstract class is a class that cannot be instantiated directly. Instead, it is

meant to be used as a base from which other classes can derive. This includes:

● Abstract methods (methods without any implementation).

● Concrete methods (methods with a complete implementation).

Python supports abstract classes in the abc (Abstract Base Class) module.

Key features of abstract class:

1. Blue print for the derived classes: Abstract class defines methods that

derived classes should implement, thus ensuring the same behavior.

2. Partial implementation: They may include concrete methods in some

cases to distribute code among derived classes.

237

3. No instantiation: Abstract classes cannot be instantiated; creating an

object of an abstract class leads to TypeError.

As shown in the Example 2.10, to define an abstract class, use the ABC class

from the abc module. Abstract methods are defined using the @abstractmethod

decorator.

Example 2.10: Program showing use of abstract class

Program to showing use of abstract class

from abc import ABC, abstractmethod

Abstract class

class Vehicle(ABC):

 @abstractmethod

 def startEngine(self):

 pass

 @abstractmethod

 def stopEngine(self):

 pass

 def honk(self):

 print("Vehicle is honking.")

Derived class

class Car(Vehicle):

 def startEngine(self):

 print("Car engine started.")

 def stopEngine(self):

 print("Car engine stopped.")

carObject = Car()

carObject.startEngine()

carObject.honk()

OUTPUT:

Car engine started.

Vehicle is honking.

In the above the Vehicle class is defined as an abstract class with the ABC

module in conjunction with the @abstractmethod decorator. The abstract

methods include startEngine and stopEngine, which are not implemented in the

238

abstract class but must be implemented by all instantiable subclasses. In

addition, the Vehicle class contains a regular method named honk, which can

be inherited by its subclasses with a default implementation. The Car class is a

concrete subclass of Vehicle: it implements the abstract methods startEngine

and stopEngine, thus becoming concrete and available for instantiation. In this

program there exists a sample object of the Car class called carObject. When

the statement carObject.startEngine() is executed, the overridden method in

the Car class runs and produces the output "Car engine started." Afterward, the

honk method, defined in the superclass Vehicle, is called with the output

"Vehicle is honking."

This opens the door to abstract classes, giving a general way to design

subclasses in such a way that they make sure of general specifications of

behavior, while letting subclasses provide their particular implementations

against each one of the abstract methods.

What is Interface?

An interface is a collection of methods that a class must implement. Unlike an

abstract class, an interface does not provide any method implementation but

solely focuses on a method signature. In Python, interfaces are implemented

using abstract classes where all methods are abstract.

Distinctive Features of Interfaces

• Contract Enforcement: Interfaces make sure that all classes implementing

the interface adhere to a predefined structure.

• Multiple Inheritance Support: Python provides for a class to implement

multiple abstract external interfaces which in turn make possible a combined

setting.

• Language-agnostic Behavior: Interfaces are a common concept across

all programming languages, making Python’s implementation compatible

with similar constructs in other languages.

239

Example 2.11: Program showing implementation of interface

Program to showing implementation of interface

from abc import ABC, abstractmethod

Interface

class PaymentGateway(ABC):

 @abstractmethod

 def processPayment(self, amount):

 pass

 @abstractmethod

 def refundPayment(self, amount):

 pass

class PayPal(PaymentGateway):

 def processPayment(self, amount):

 print(f"Processing payment of {amount} through PayPal.")

 def refundPayment(self, amount):

 print(f"Refunding payment of {amount} through PayPal.")

paypalObject = PayPal()

paypalObject. processPayment (1000)

paypalObject.refundPayment(500)

OUTPUT:

Processing payment of 1000 through PayPal.

Refunding payment of 500 through PayPal.

The above program shows how to implement interfaces in Python using the

ABC module and the @abstractmethoddecorator. The PaymentGateway class

represents an interface where the abstract methods processPayment and

refundPayment are declared but we cannot define their implementations. In this

way, any class that inherits from PaymentGateway must provide methods

according to a preset contract for consistent behavior across different payment

gateway implementations.

The PayPal class implements the PaymentGateway interface by providing

concrete definitions for both the processPayment and refundPayment methods.

The processPayment method simulates processing a payment in a specified

amount through PayPal in the real sense while the refundPayment method

240

achieves this goal by simulating refunding of some amount from the same

payment gateway.

The PayPal class creates an object paypalObject. Methods are called through

this object. When the statement paypalObject.processPayment(1000) is

executed, it returns "Processing payment of 1000 through PayPal." In the same

way, the statement paypalObject.refundPayment(500) returns "Refunding

payment of 500 through PayPal.". This program demonstrates how interfaces

support flexible and extendable designs that enforce subclasses to realize a

certain set of required methods, thus supporting polymorphism and establishing

a common interface.

Abstract Classes Vs Interfaces

Abstract classes and interfaces are powerful tools used in the design of a robust

scalable system. They help to organize code, maintain certain standards, and

allow for reuse of different components, hence finding such a broad application

in object-oriented programming. For programmers who know how to properly

employ them, abstract classes and interfaces afford the programmer the

creation of systems which will, in the course of time, be simpler to maintain,

expand, and troubleshoot. Table 2.1 shows the differences between abstract

classes and interface.

Table 2.1: Abstract Classes vs Interfaces

Feature Abstract Classes Interfaces

Definition
Can have both concrete

and abstract methods.

Focus on defining method

signatures only.

Purpose
Used for partial

implementation.

Used as a contract for

implementation.

Instantiation
Cannot be instantiated

directly.

Cannot be instantiated

directly.

Inheritance
Single or multiple

inheritance allowed. Multiple inheritance allowed.

Implementation
May include shared code

for derived classes.

Does not include any

implementation.

241

Note:

● Encapsulation is an influential approach for combining the related

data and methods within a class, thereby hiding the inner details of

implementation from the external world.

● Data hiding is a mechanism, where the attributes of an object are

made inaccessible for modification.

● Encapsulation can improve security for sensitive information from

unauthorized access.

● Abstract classes provide a template from which other classes can

derive, allowing them to implement abstract methods while

inheriting the common functionality.

● Interfaces are completely abstract specifications that depict a

contract to which the class must adhere, that is: an interface should

declare member methods that classes must provide specific

implementations for.

● Both abstract classes and interfaces provide polymorphism, in that

objects can nonetheless be treated generically yet maintain their

specific behavior.

Check Your Progress-2

a) Data hiding refers to the practice of restricting the access privilege of

some ________ within a class so that it denies unauthorized access

to exposed data.

b) Encapsulation is used to ensure the ________ of an object is

maintained by validating input prior to changing the values.

c) An abstract class gives a ________ to other classes and thereby

enforces their proper implementation.

d) An abstract class as well as an interface allows ________, treating

different classes similarly while still acting in different ways.

e) Encapsulation is henceforth a better measure to ensure ________ of

sensitive information by allowing access control via getters and

setters.

f) Encapsulation is the process of combining attributes and functions into

a single unit called a ________.

242

2.5 LET US SUM UP

This unit covered key object-oriented programming concepts. Inheritance gives

you code reuse and hierarchical relationships, while polymorphism allows

methods to perform differently in different contexts through overriding and

overloading. Encapsulation and data hiding apply to the bundling of data in

classes with restricting access to the data by private and public modifiers.

Abstract classes and interfaces are blueprints for extending systems, wherein

abstract classes open onto implementation while interfaces maintain an

equilibrium by requiring certain methods of implementation classes. The

principles work in harmony to provide flexible, maintainable designs for

systems.

2.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b False

1-c False

1-d True

1-e False

1-f True

1-g False

1-h False

2-a Attributes

2-b State

2-c Blueprint

2-d Polymorphism

2-e Security

2-f Class

243

2.7 ASSIGNMENTS

1. Define encapsulation and explain its importance in object-oriented

programming.

2. Explain the purpose of inheritance and how it promotes code reuse.

3. What is polymorphism, and how does it improve flexibility in

programming?

4. Differentiate between method overriding and method overloading with

examples.

5. Compare and contrast the use of abstract classes and interfaces with

examples.

6. Write a Python program which implements the following functionalities:

o Design a system for different types of employees (e.g., Manager,

Engineer, Intern). Each employee type should have a work() method,

which behaves differently based on the employee role. Use

inheritance and method overriding to implement this functionality.

o Create a class Student with private attributes for name, age, and

grade. Use getter and setter methods to access and modify these

values while ensuring validation (e.g., grade should be between 0

and 100).

o Create an interface Vehicle with methods start(), stop(), and

fuelEfficiency(). Implement this interface in classes Car and Truck,

each with unique behaviors for starting, stopping, and calculating fuel

efficiency.

o Create an abstract class Shape with a method area(). Derive two

classes, Circle and Rectangle, where each class implements the

area() method to calculate the area specific to its shape.

o Develop a simple payment system where an abstract class

PaymentMethod defines the method processPayment(). Implement

this method in subclasses CreditCard and PayPal, with different logic

for processing payments.

244

Unit-3: Exception Handling

Unit Structure

3.0. Learning Objectives

3.1. Introduction

3.2. Understanding Exceptions in Python

3.3. The try, except and finally blocks

3.4. Raising Exceptions

3.5. Custom Exceptions

3.6. Let us sum up

3.7. Check your Progress: Possible Answers

3.8. Assignments

3

245

3.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Define and understand the concept of exceptions.

● Identify some common run-times errors in the Python programming

language and learn how to tackle them.

● Effectively use try, except, and finally blocks to handle exceptions.

● Understand the purpose and use of the else clause in exception

handling.

● Raise and handle custom exceptions with the raise keyword.

● Design robust Python programs by utilizing advanced exception-

handling mechanisms.

3.1 INTRODUCTION

Errors and exceptions are an indispensable part of programming. Errors tell us

that our program is not functioning as expected. Scenarios that can stop

program execution are, for example, if a number is being divided by zero or if

one tries to open a non-existent file. Such situations in Python bring about

exceptions.

Exception handling is a powerful tool that is very useful to the programmer to

gracefully manage unexpected conditions without aborting the program. The

built-in mechanisms in Python allow the programmer to catch the exception,

check on its cause, and possibly recover from it.

3.2 UNDERSTANDING EXCEPTIONS IN PYTHON
What are exceptions?

They are the runtime errors which cause program interruption. They do not

belong to the group of errors caused by incorrect syntax, but are caused by

program execution. For example, consider these exceptions:

● ZeroDivisionError: Division by zero.

● ValueError: The value provided to a function is not within its expected

range/type.

● FileNotFoundError: Attempting to read a file that does not exist.

246

Key Characteristics of Exceptions

● Unpredictable: Exceptions arise from unexpected events, such as invalid

input, unavailable resources, or logical errors within the program.

● Interruptive: An exception will cause the normal flow of the program to

end, immediately unless the exception is handled.

● Recoverable: By suitably putting up an exception-handling interface, the

application continues ordinarily or returns to execution.

Common Causes of Exceptions

● Invalid Input: Providing data that is either of the wrong type or that has

an incorrect value. Example: Supplying a string rather than a number to

a mathematical operation.

● File Operations: Operations involving non-existent files or files with no

permission to access them. Example: Attempting to access a non-

existing file.

● Arithmetic Operation: When operations of an undefined kind are

performed between two mathematical entities.

● Out-of-Bound Indexing: When a user accesses an item of a list or

dictionary incorrectly using an invalid index or key.

● Another wicked source of exceptions are network errors: all sorts of

issues associated with the loss of connectivity or lack of availability of

the server in networked applications.

Error V/s exception

Though the terms "errors" and "exceptions" are sometimes used

interchangeably, they have different meanings:

● Errors: Issues caused by the programmer's own syntax or logic that may

be unresolvable. Examples include errors like:

o Syntax errors (missing colons or parentheses).

o Indentation errors.

● Exceptions: These are run-time events that interfere with the continuity

of a program execution but are manageable through the exception-

handling mechanisms.

247

The Python program given in Example 3.1 shows the difference between

error v/s exception.

Example 3.1: Program to differentiate between Error and Exception

#Program to differentiate between Error and Exception

Example of Error

if True # Omission of colon

 print("Above statement will generate syntax error.")

Example of Exception

divOutput = 50/0 # Generates ZeroDivisionError

print("divOutput.")

In above code difference between Error and Exception is demonstrated:

● Error: In Python, every if statement must be followed by a ':' to indicate

the start of the block of code. By not including the colon after if True, you

get a SyntaxError. The code could not be executed by the interpreter of

Python, which reported a SyntaxError because of the missing colon.

● Exception: In the try block, the value 50 is attempted to be divided by 0.

Since division by zero is not permissible in mathematics, it raises a

ZeroDivisionError in Python. Instead of crashing the program, if the

exception was handled correctly in the except block, an appropriate

message to the user could have been displayed"

Various types of Exceptions in Python

Python has many built-in exceptions for a variety of error types. These

exceptions are structured in a hierarchy where the BaseException is positioned

at the top. Table 2.1 lists exception, their reason and an example.

248

Table 3.1: List of Exception

Exceptions Hierarchy

In Python, exceptions are arranged in a hierarchy starting from subclass

BaseException.

● BaseException: It is the top-level class for all exceptions.

o Exception: It is the base class from which most runtime

exceptions are derived.

▪ ArithmeticError would raise exceptions including the

ZeroDivisionError.

▪ A LookupError would raise exceptions including the
IndexError and KeyError.

Let us Visualize the hierarchy of some of the classes of Exception as shown in

the Figure 3.1

Name Reason Example

ZeroDivisionError Divide by zero. 50 / 0

ValueError Invalid value provided for a

function or method.

float("abc")

IndexError Fetching a value from invalid

index

lstNums [10] for a list

of size 5

KeyError Accessing an invalid key from a

dictionary.

dictData['invalid_key']

FileNotFoundError Trying to open a non-existent

file.

open(missingFile.txt')

TypeError Using a mathematical operation

on incompatible types.

"textualdata" + 10

249

Figure 3.1: Hierarchy of Exceptions

Benefits of using exception handling

▪ Better User Experience Betterment: Allows the program not to terminate

suddenly and provide appropriate error messages.

▪ Program Continuity: Ensures execution of important functions like writing

back files or cleaning resources.

▪ Debug Support: Helps identify errors and log them for further

improvement.

3.3 THE try, except, AND finally BLOCKS

Python's try, except, and finally constructs provide the basis for the exception-

handling mechanism. These blocks enable python programmers to distinguish

those parts of codes that are prone to errors, grant ability to control exception

conditions gracefully, and guarantee the executing of cleanup operations

irrespective of an error.

Structure and Purpose of try, except and finally blocks

1. try block:

● Code that might throw an exception.

● If an exception is raised, the rest of the try block is skipped, and

control goes to the corresponding except block.

● If no exception occurs, the try block is completed normally, and the

except block is passed over.

 BaseException

 SystemExit KeyboardInterrupt GeneratorExit Exception

 ArithmeticError

FloatingPointErro

r

 OverflowError

 ZeroDivisionError

 LookupError

 IndexError

 KeyError

250

2. except block:

● Handles specific or general exceptions raised in the try block.

● You can define multiple except blocks to handle different exceptions

differently.

3. finally block:

● Contains clean-up code that is guaranteed to run after the try block,

regardless of whether an exception occurred.

● Commonly used to release resources like file handles, database

connections, or network sockets.

4. Else block(Optional):

● An else block may only be executed if the try block has no

exceptions.

● This will usually contain code that should be executed if no

exceptions happen.

Code snippet in example 3.2 demonstrates the basic structure of try, catch and

finally block.

Example 3.2: Try, Catch and Finally block

#Code snippet to demonstrate try, catch and finally block

try:

 # Code that may generate an exception

except SpecificException as e:

 # Code to handle the exception

except AnotherException:

 # Handle another exception

else:

 # Code to run if no exception occurs

finally:

 # Cleanup code that always executes

Let us explore the structure of exception handling in detail with examples and

use cases.

251

1. The try block: It contains the code that might throw exceptions. It

isolates the error-prone logic from the rest of the program. If an exception

occurs, the rest of the statements in the try block will not be executed

and the interpreter will jump to the appropriate except block.

Example 3.3 demonstrates the usage of try block for exception handling.

Example 3.3: Try block

#program to demonstrate try block

try:

 no = int(input("Input a valid no: "))

 print(f"Output: {100 / no}")

except ZeroDivisionError:

 print("Error: Divide by zero")

except ValueError:

 print("Error: Not a valid no")

OUTPUT– SCENARIO 1:

Input: 5

Output: 20

OUTPUT– SCENARIO 2:

Input: 0

Output: Error: Divide by zero

OUTPUT– SCENARIO 3:

Input: “Number”

Output: Error: Not a valid no

The above python program demonstrates how to handle exceptions with a try

block containing multiple exceptions. The processes in this program illustrate

cases where user input may cause different types of runtime errors.

If the user inputs 0, then a ZeroDivisionError is raised and "Error: Divide by

zero" is shown. If non-numeric input is provided, then the ValueError is raised,

and "Error: Not a valid no" is shown. Thus, the program in such a situation will

handle the errors without crashing.

252

2. The except block: This block catches and handles exceptions raised

in the try block. It allows:

● Handling a specific exception type

● Handling multiple exception types in one block

● Catch-all with a generic except

Example 3.4 demonstrates the different ways of handling exceptions in

except block.

Example 3.4: Except block

#program to demonstrate except block

Handling Specific Exceptions

try:

 no = int(input("Input a valid no: "))

 print(f"Output: {100 / no}")

except ZeroDivisionError:

 print("Error: Divide by zero")

except ValueError:

 print("Error: Not a valid no")

Handling Multiple Exceptions

try:

 no = int(input("Input a valid no: "))

 print(f"Output: {100 / no}")

except (ZeroDivisionError, ValueError):

 print("Either division by zero or the input was not valid.")

Handling All Exceptions

try:

 no = int(input("Input a valid no: "))

 print(f"Output: {100 / no}")

except Exception as ex:

 print(f"An error occurred: {ex}")

The above python program covers use of except block in three different ways:

It makes use of separate except clauses to handle ZeroDivisionError and

ValueError, displaying specific messages; it demonstrates how you can group

exceptions in a tuple and handle multiple exceptions together in a single except

253

block by outputting a common message; and lastly it shows the catch-all except

Exception block which catches any error and prints the error message

dynamically for better debugging.

3. The else block: This block in exception handling is optional and runs

only when the code in the try block has no exceptions. This can be useful

for code depending on the successful completion of the try block.

Example 3.5 demonstrates the usage of the else block in exception

handling mechanism.

Example 3.5: Else block

#program to demonstrate else block

try:

 no = int(input("Input a valid no: "))

 print(f"Output: {100 / no}")

except ZeroDivisionError:

 print("Error: Divide by zero")

else:

 print("Code in try block executed without any errors!")

OUTPUT– SCENARIO 1:

Input: 5

Output: 20

Code in try block executed without any errors!

OUTPUT– SCENARIO 2:

Input: 0

Output: Error: Divide by zero

The above python program demonstrates the usage of else clause along with

exception handling. The else part executes as long as there is no exception

raised in the try part. If a number is entered that is valid, the computation result

is displayed, along with the message "Code in try block executed without any

errors!". If a ZeroDivisionError is raised, where the user inputs 0, the exception

block handles the exception and the else block is not executed.

254

4. The finally block: In this block the clean-up code will run after the try

and except blocks, no matter whether or not an exception was raised.

Usually, it is used for resource releases like file or database connection

closures. Example 3.6 demonstrates the usage of finally block in

exception handling mechanism.

Example 3.6: Finally block

#program to demonstrate finally block

try:

 demoFile = open("demo.txt", "r")

 txtData = demoFile.read()

 print(txtData)

except FileNotFoundError:

 print("Demo.txt file not found.")

finally:

 print("Closing the file in finally block")

 demoFile.close()

The above mentioned code showcases exception handling using the `finally`

block. Here, efforts are made to open and read the file `demo.txt`. If the

specified file does not exist, a FileNotFoundError exception is generated,

displaying the message: "Demo.txt file not found." Either way, in order to ensure

that the file gets closed and proper resource management is done, a `finally`

block will always execute.

Putting All Elements Together

By including all the components of exception handling mechanism (try, except,

else, finally), we can create fairly powerful exception handler code that

manages the errors gracefully and guarantees the cleanup of the resources

used. Example 3.7 showcases the usage of all four components of exception

handling.

255

Example 3.7: All blocks of Exception Handling

#program to demonstrate the usage of all blocks

try:

 no = int(input("Input a valid no: "))

except ZeroDivisionError:

 print("Error: Divide by zero!")

except ValueError:

 print("Error: Not a valid no!")

else:

 print(f"Output: {100 / no}")

finally:

 print("Execution completed Successfully!")

The above program demonstrates how to work with all blocks of exception

handling, that is: ̀ try`, ̀ except`, ̀ else`, and ̀ finally`. It tries to read the user input

and casts it into the integer type. If that input is not valid (non-numeric), then a

ValueError exception is being caught and the error message "Error: Not a valid

no!" will be displayed. This will prompt a ZeroDivisionError exception in case

the user enters `0` because in that case `100 / no` will not be possible, and the

negative exception message will be displayed. If no errors occur, the `else`

block executes the division and prints the result of `100 / no`. The `finally` block

always executes and prints "Execution completed Successfully!" which

guarantees a normal completion of the program, if any exceptions were thrown

or not.

Note:

● Exceptions are errors that arise when running a program and can be

handled using exception handling mechanisms.

● The try block contains the code that one anticipates might raise an

exception while the except block deals with it.

● The else block will only occur if the code within try did not throw any

errors.

● The finally block will always get executed, letting you do some cleanup

work, such as closing files or releasing resources.

256

Check Your Progress-1

a) A Python program terminates if an exception is not handled.

b) The try block is used to test a block of code for exceptions.

c) The except block is executed only when the try block does not raise

an exception.

d) The else block is mandatory in exception handling.

e) You can handle multiple exceptions in a single except block using a

tuple.

f) If a file operation raises an exception, the finally block ensures the file

is closed properly.

3.4 RAISING EXCEPTIONS

The raise statement in Python is used where one needs to raise an exception

on purpose. This is useful to enforce rules, validate inputs, and provide specific

signalization of error in certain cases. The raising of an exception will ensure

effective communication of errors while ensuring the arbitration at the

appropriate level of your program.

When should we raise exceptions?

● Input Validation: Input data does or does not conform to set standards.

● Flow Control: An alternative is to interrupt a thread of execution when

something unexpected occurs.

● Custom Messages: Provide error messages that have meaning specific

to the application.

The basic syntax for raising an exception is as follows:

raise ExceptionType("Error message")

● ExceptionType: Denotes the type of exception to raise (e.g., ValueError,

TypeError, RuntimeError).

● Error message: A string value which provides additional details about

the exception.

257

Raising built-in exceptions

Python offers a variety of built-in exceptions that may be raised when

warranted. Common examples include:

● ValueError: When a value is invalid.

● TypeError: For an invalid type.

● KeyError: As a result of a missing key in the dictionary.

● FileNotFoundError: For files that cannot be accessed.

Example 3.8 shows how to raise built-in exceptions in python.

Example 3.8: Program to raise built-in exception

#Program to raise built-in exeption

def getSquareRoot(no):

 if no < 0:

 raise ValueError("It's not possible to find the square root of a negative

number.")

 return no ** 0.5

try:

 output = getSquareRoot(-9)

 print(f"Square root is: {result}")

except ValueError as e:

 print(f"Error is: {e}")

OUTPUT

Error is: It's not possible to find the square root of a negative number.

The above example shows how to indicate and catch a built-in exception in

Python. The function getSquareRoot(no) calculates the square root of a

number. If the input is negative, this function raises a ValueError with the

message:"One cannot find the square root of negative numbers." The try block

here calls the function with -9, which raises the exception. The except block

catches the error and prints the message.

258

3.5 CUSTOM EXCEPTION

Python allows developers to create custom exceptions tailored to the specific

needs of an application. This feature is useful when built-in exceptions don’t

sufficiently describe the errors that may occur in your program.

Why Use Custom Exceptions?

● User-friendly error messages: Custom exceptions increase the

descriptiveness of error messages.

● Program Specific Needs: Address errors specific to the program domain,

like business rule validation.

● Custom exceptions allow modular and specific error handling.

How to Create a Custom Exception?

Custom exceptions are created in Python by subclassing the built-in Exception

class or any of its subclasses. That way, the new exception will inherit the

properties and behavior of the base exception class. Following code snippet

creates a simple custom exception class which can be used to raise custom

exceptions:

class CustomException(Exception):

 """Custom exception with a descriptive error message."""

 pass

Example 3.9 shows the python code to implement custom exception:

Example 3.9: Program to implement custom exception

Program to implement custom exception

class NegativeNoError(Exception):

 """Exception raised for invalid input: Negative no."""

 def __init__(self, no):

 self.no = no

 super().__init__(f"Negative number is inputted: {no}")

259

Example usage

try:

 no = int(input("Input a positive number: "))

 if no < 0:

 raise NegativeNoError(no)

 print(f"Number is valid: {no}")

except NegativeNoError as e:

 print(e)

OUTPUT – SCENARIO 1:

Input a positive number: 10

Number is valid: 10

OUTPUT – SCENARIO 2:

Input a positive number: -10

Negative number is inputted: -10

The above program illustrates the creation and use of user-defined exceptions

in Python. The NegativeNoError class, which is inherited from the built-in

Exception, is used to handle exceptions when a negative number is given. This

class is initialized with a custom error message. The try block takes user input

and converts it into an integer; in case of a negative input number, the

NegativeNoError exception is raised. The except block catches this exception

and prints the custom error message. The program, for instance, will print,

"Number is valid: 10" when the input is 10 and will print, "Negative number is

inputted: -10" in case you input -10.

Taking care of best practices while working with custom

exception

● Meaningful Names: The class name should clearly convey the nature of

the error (e.g., FileFormatError, InvalidInputError).

● Documentation Strings: A descriptive line mentioning the purposes of

the exceptions.

● Modular: Put related custom exceptions within a single module.

260

● Inheritance: Always inherit from Python's built-in Exception class,

ensuring you can tap into the whole Python exception-handling.

● Provide Contextual Information: Add characteristics or methods so that

it can better explain what went wrong.

Note:

● The raise statement in Python is used to force an exception.

● The raise statement can also have a message to provide a little

context about what went wrong.

● Custom exceptions are those exceptions defined by users and

derived from the built-in Exception class of Python.

● Custom exceptions can have a constructor (__init__) that accepts

extra information when raised.

● Defining meaningful custom exceptions helps in handling specific

error scenarios in a program.

Check Your Progress-2

a) A custom exception class should have a meaningful __________

method to describe the exception's details.

b) When creating a custom exception, the class name should follow the

__________ naming convention.

c) To raise a custom exception, use the statement: raise

__________("Error message").

d) Custom exceptions improve __________ by allowing developers to

define meaningful and descriptive errors.

e) To define a custom exception, you need to create a class that inherits

from the built-in __________ class.

3.6 LET US SUM UP

 In this unit, we learned all about exception handling. You have learned what

exceptions are, how they differ from errors, and why it is essential for them to

261

be handled in Python programs. The four blocks of exception handling (try,

except, else, and finally) were discussed, and how together they help in the

graceful management of runtime errors. The different method of explicitly

raising exceptions was also discussed: the raise statement allows you to

generate exceptions under what you specify as the conditions in your program.

You have also learned how to define specific error types for your program

needs and how to create and use custom exceptions. With this particular

knowledge, you can write very solid user-friendly computer programs that can

turn the errors and exceptions into opportunities for increasing robustness and

maintainability of applications.

3.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b True

1-c False

1-d False

1-e True

1-f True

2-a __str__

2-b PascalCase

2-c CustomException

2-d Code Readability

2-e Exception

3.8 ASSIGNMENTS

1. Discuss in detail the difference between the compile-time errors and

runtime exceptions.

2. Explain the purpose of using exception handling in a program.

3. What is the role of the try block in exception handling?

4. Differentiate between specific and generic exception handling based on

examples.

5. What is the importance of the finally block in exception handling?

262

6. Describe the significance of handling multiple exceptions in one single

try block.

7. Write a program to perform the activities given:

o Write a program to do simple arithmetic operations such as

addition, subtraction, multiplication, and division using two user-

input numbers and catch exceptions arising out of them.

o Write a program that handles KeyError by raising a message for

unknown keys in a dictionary.

o Design a program where an exception is defined by the user and

should be raised if for the given input the user value is not in the

given range (ex: 1 to 100).

o Develop a program that catches exceptions in typecasting

operations such as str to int and provides reasonable

explanations accordingly.

o Design a program responsible to catch ModuleNotFoundError if

the user imports some missing module and suggest other

alternatives to the user.

263

Unit-4: File Handling & GUI

Unit Structure

4.0. Learning Objectives

4.1. Introduction

4.2. File Handling in Python

4.3. Tkinter for GUI Development

4.4. Let us sum up

4.5. Check your Progress: Possible Answers

4.6. Assignments

4

264

4.0 LEARNING OBJECTIVE

After studying this unit student should be able to:

● Understand the importance of file handling in python programming

● Differentiate between various modes ('r', 'w', 'a', etc.) and use them

effectively.

● Identify the basic structure and utility of the Tkinter library in GUI

applications.

● Integrate file handling with GUI using Tkinter to make user-friendly

applications.

4.1 INTRODUCTION

In the previous chapter, we studied a concept called exception handling, which

is one of the most important things to keep in mind when creating robust error-

resilient programs. Exception handling basically helps the programmer to

anticipate potential runtime errors and handle them gracefully, so that the

application still functions as expected even when such unexpected things

happen. For instance, if a program attempts to open a file that doesn’t exist, a

FileNotFoundError might occur. With exception handling, this error can be

managed by providing the user with a meaningful message or alternative

actions, such as prompting for a different file path.

Building on that foundation, this chapter focuses on two other important goals

of computer programming: The data handling and the presentation of data

in a user-friendly way. File handling and GUIs make Python very efficient with

just such tasks. This section will cover these concepts and explain why they are

integral to creating practical, robust applications.

GUI applications, for instance, can ask for user inputs to be saved for future

retrieval. If no exception handling is done, the GUI program might crash

because of mistakes, such as non-existent file paths or file permission

problems. Incorporating exception handling principles (which was covered in

the last chapter) together with optimal file handling techniques, programmers

265

can develop robust applications capable of dealing with files quite readily and

also recovering in case of errors.

This chapter takes these ideas further with the introduction of Tkinter, Python's

built-in GUI development library, along with a showcase of how file handling

and GUI technologies can work hand in hand to produce interactive applications

that are robust and error-tolerant.

What is file handling?

File handling refers to interaction with file systems and storing information in

order to read, write, or modify data stored on the disk. Unlike data stored in

variables during program execution, files offer persistent storage that allows the

data to survive the program termination. These are the most notable features

of file handling:

● Data storage: It allows users to store data permanently on disk;

compared to temporary storage in RAM using variables.

● Portability: Files can be easily shared and opened in different systems.

● Organization: Efficient storage of logs, user preferences, and structured

datasets.

● Reusability: Read and process information already stored without

having to input it again.

The built-in functions and modes for performing file-operation tasks for Python

are as follows:

● R (read): To read the content from files.

● W (write): To write the content to files.

● A (append): To append and still preserve the existing content.

● B (binary): For non-text data, such as images and videos.

File handling is very important in many scenarios, like saving user data, writing

logs, or reading from a configuration file. For example, an application can save

user settings in a file for use the next time the app is run.

266

What is a GUI?

A Graphical User Interface allows the use of icons and activities such as click,

double click etc. for interaction with software. GUI replaces conventional text-

based input and considers elements like windows, buttons, text fields, and

menus to create a more intuitively navigable, friendly application. Advantages

of GUIs:

● Ease - Non-technical individuals can run the application directly without

having to memorize commands.

● Visual Feedback- The GUI offers visual feedback on the actions

performed, such as a message for the action of saving a file.

● User Experience: Modern software often depends on an interface that

is both appealing and highly functional.

Tkinter library of Python is a powerful GUI toolkit in Python. It is pre-installed

with Python and hence freely available to all developers. Some of the Tkinter

objects usually known as widgets are as mentioned:

● Labels: To display static text.

● Buttons: Trigger actions.

● Entry Boxes: To capture user input.

● Text Areas: For multi-line input.

A login form that we have been using for accessing emails is an example of a

simple GUI.

4.2 FILE HANDLING IN PYTHON

File handling is one of the core tasks in programming that makes it convenient

for applications to interact with the data stored on a computer disk. Python

makes file handling simple and powerful, placing tools at the developers'

disposal to read, write, modify, and manage files. This section discusses how

file handling is done and then shows practical implementation of different

operations that can be performed on file.

267

Understanding File Handling

File handling refers to the creation, reading, writing, and appending of data in

files. A file provides a means of persistent storage as opposed to volatile

memory like RAM, which clears memory after program termination. Key

characteristics of Python file handling features are:

● Ease of Learning: File handling in Python is simple and straightforward.

● Versatile: Supports both text and binary file operations.

● Exception handling: Runtime errors due to certain cases such as

absence of files are taken properly into account.

File operations in python

In Python, file handling is a well-structured process that includes aspects of

opening, manipulating, and closing files. Let us now look into these operations:

1. Opening a file: The first stage of file handling in python is to open a file.

This is done by using the built-in function open() which returns a file

object, acting as an interface to communicate with the file. The general

syntax for opening a file in python:

fileObject = open(nameOfFile, mode)

● nameOfFile: The name (or path) of the file to be opened. If the file is

not in the current directory, you must specify the full path of a file.

● mode: The mode in which the file will be opened (e.g., read, write,

append, etc.).

Table 4.1 shows the different modes in which a file can be opened in Python.

Table 4.1: Modes of opening a file

Mode Description

'r' Opens an existing file for reading.

'w'

Opens a file for writing. Creates a new file or overwrites an existing

file.

'a' Opens a file for appending. Adds data at the end of the file.

'x' Creates a new file. Throws an error if the file already exists.

'b' Binary mode. Used with 'r', 'w', or 'a' for binary files.

't' Text mode. Default mode for handling text files.

'+' Enables simultaneous reading and writing.

268

2. Writing to a file: The write() method allows you to write data into a file.

When a file is opened in write mode ("w"), if the file already exists then

the contents of that file are erased and new content is written. If the file

does not exist it is created.

The Python program in Example 4.1 shows how to write the data to a file.

Example 4.1: Program to write the data to a file

#Program to write the data

with open("txtdata.txt", "w") as file:

 file.write("Writing first line to a text file")

The above Python code demonstrates how to write data to a file using

the write() method. The statement with open("txtdata.txt", "w") as file:

opens a file name txtdata.txt in write mode("w") with the help of the

function open(). If this file is not present, it is created, while if it already

exists, its contents are erased. The statement file.write("Writing first line

to a text file") uses the write() method to write the string "Writing first line

to a text file" to a file. The with open(...) as file: block helps to

automatically close the file once the working with it is over, thus

preventing any problem with the handling of the file. This approach will

be helpful to store or log your data since, in this way, you can write text

to the file with less complication. When we execute this program, we will

not see any output on the screen. To see the output, we need to open

the file txtdata.txt that would be stored in the directory where your Python

program is. The file can be open in any text editor. A sample view of the

file is shown in Figure 4.1.

Figure 4.1: Contents of file

269

3. Reading from a file: File reading is perhaps the most common file

handling operation in Python. There are many methods that Python

provides for reading data, each meant for a specific case. The choice of

the method relies on the file structure and the amount of data you need

to process at the same time. Methods for reading the data:

a. read() method: This method reads the entire contents of a file in

one go. It is useful when the file is small or when you need to read

its contents all the way through.

b. readline() method: This method reads one line from the file at a

time. It is useful when reading logs or CSV data since log files

and CSV files can be usually processed on a per-line basis.

c. readlines() method: This method reads lines from the file and

returns a list of strings. In this list, each element constitutes a line

in the file.

d. Line-by-line reading with a loop: As the term mentions we use

a for loop to read the file object line by line. It works in a memory-

efficient way because the whole file is not loaded into memory.

The Python program in Example 4.2 showcases the different ways of

reading a file.

Example 4.2: Program to read the data from a file

Program to show multiple ways to use read method

Part 1 - Read the entire file using read() method

with open("txtfile.txt", "r") as file:

 data = file.read()

 print(data)

Part 2 - Reading one line at a time

with open("txtfile.txt", "r") as file:

 singleLine = file.readline()

 while singleLine:

 print(singleLine.strip()) # Removes extra newline characters

 singleLine = file.readline()

Part 3 - Reading all lines at once

with open("txtfile.txt", "r") as file:

 allLines = file.readlines()

270

 for singleLine in allLines:

 print(singleLine.strip())

Part 4 - Reading data line by line using loop

with open("txtfile.txt", "r") as file:

 for singleLine in file:

 print(singleLine.strip())

In the above program, four different ways to read the contents of a text

file called txtfile.txt are demonstrated. The first part of the code opens

the file in the read mode ("r") and utilizes the read() method to read the

entire content from the file in one go. The variable data stores the whole

text from the file and the statement print(data) is then used to print the

data fetched from the file.

The second part opens the file in the read mode. The program uses the

readline() method to read one line at a time. In the while loop, as long as

singleLine is of non-zero length, it reads from the file line by line. The

statement print(singleLine.strip()) uses the strip() method to remove any

extra newline characters at the end and prints the line. After printing the

readline() method is called once again to move to the next line of the

input.

In the third part, the readlines() method reads all the lines of the file into

a list. Each item in that list is a line from the file. The program cycles

through this list, stripping newlines and printing each line.

The fourth part reads a file named txtfile.txt line by line using a for loop

and prints each line after stripping the leading and trailing whitespace.

These methods give different ways of reading a file according to the

needs of the program. The read() method is used to get the entire file

content all at once if required, the readline() method is used for reading

a file line by line, whereas the method readlines() is used whenever all

271

lines need to be handled in a list. The choice to use the method depends

again on the file contents and size of the data.

4. Appending data to a file: Appending refers to adding data to the end

of a file, leaving its previous contents intact. It is performed in append

mode ("a").

The Python program in Example 4.3 shows how to append the data to

an existing file.

Example 4.3: Program to append the data to a file

#Program to append the data

with open("txtdata.txt", "a") as file:

 file.write("\nThis is an appended line.")

The above python code shows how to append contents to an existing file

using write() method in the append mode. The file is opened using

the statement with open("txtdata.txt", "a") as file:, If the file does not exist, it

will be created; otherwise, new content will be appended at the end of the

file, without affecting the already existing data. The statement

file.write("\nThis is an appended line.") then writes the text "\nThis is an

appended line." to the file - here, the newline character(\n) ensures that the

new text is written on a new line. This method is good for adding new

information to a file without destroying the already existing content. The

output will be similar to the one shown in Figure 4.2.

Figure 4.2: Output of an appended file

272

5. Closing a file: Closing a file releases resources and ensures that any

buffered data is written to the disk. While Python automatically closes

files opened within a with block, files opened manually must be closed

using the close() method.

The Python program in Example 4.4 shows how to explicitly close the

file using the close() method.

Example 4.4: Program to close a file

#Program to close a file

file = open("txtdata.txt", "r")

data = file.read()

print(data)

file.close()

OUTPUT:

Writing first line to a text file

This is an appended line.

Above python code demonstrates a manual approach to close a file after

reading the contents. It opens the file txtdata.txt in read mode ("r") using

the open() method and reads the contents into the variable data using

the read() method. The contents of variable data are then displayed on

the screen using statement print(data). After the reading is over, the

statement file.close() (program manually calls the close method) closes

the file. Closing a file is essential for releasing system resources and

making sure that changes made to the file are appropriately saved.

6. Dealing with binary files: In Python programming the data of objects

such as images, audio, video etc. are stored in binary format. Binary files

are used to store data in a binary format. If we try to open the contents

of a binary file in. a text editor, it will not be properly readable as in text

files. Binary files store data by writing a sequence of raw bytes instead

of characters readable for a human eye. Proper set of modes are needed

while performing the reading and writing operations on a binary file.

273

a. Writing to binary files: In order to write binary data to the file,

the file must be opened in binary write mode using "wb" option

with the open() method. The write() method is used to pass data

in the form of raw bytes, the string to be stored in binary form is

prefixed with the letter "b".

b. Reading from binary files: In order to read binary data from the

file, the file must be opened in binary read mode using "rb" option

with the open() method. Once in this mode, the read() method

then allows the reading of raw bytes from the file, it returns a byte

object.

Example 4.5 shows the Python program that uses binary write and read

mode to perform file operations.

Example 4.5: Program to show use of binary mode

Program to show use of binary mode

with open("binFile.bin", "wb") as file:

 file.write(b"Writing binary data to a file")

with open("binFile.bin", "rb") as file:

 data = file.read()

 print(data)

OUTPUT:

b'Writing binary data to a file'

The purpose of the above program is to demonstrate the file handling

operations in Python using the binary file. The statement with

open("binFile.bin", "wb") as file: creates and opens, a binary file called

binFile.bin. The "wb" mode (write binary) passed as a parameter to the

open() method ensures that the file is treated as a binary file. The

statement file.write(b"Writing binary data to a file") writes the string

"Writing binary data to a file" into the file using the write() method. The

letter "b" here ensures that the string will be stored in a binary format.

Similar to text files in this case also when the program is executed the

file named binFile.bin will be stored in the directory where the above

274

program is. Once the operation is over the file will be automatically

closed.

The statement with open("binFile.bin", "rb") as file: opens the created

binary file in binary read mode. The "rb" mode (read binary) passed as

a parameter to the open() method ensures that the file is read as a

binary file. The statement data = file.read() reads the binary data from

the file and stores it in the variable data. The last statement print(data)

then displays the contents on the screen.

Note:

● File handling allows Python programs to read from and write to

files to data storage.

● Once stored on the data storage files manipulation operations

can be performed.

● The open() method is used to open a file. It requires the file name

and mode ('r', 'w', 'a', 'b', etc.) as arguments.

● The with statement is used for file handling to ensure proper

closure of the file, even if an exception occurs.

● Binary mode ('b') is used to handle binary files, such as images

or audio, where data is read or written in bytes.

● Errors in file handling, such as trying to access a non-existent

file, can be managed using exception handling with try and

except blocks.

Check Your Progress-1

a) The try block is used to handle errors that may occur during file

operations. (True/False)

b) The with statement is not compatible with binary file operations.

(True/False)

c) The close() method is optional if the with statement is used for file

handling. (True/False)

275

d) The readlines() method reads a file line by line and returns a list of strings.

(True/False)

e) The write() method can write multiple lines to a file at once. (True/False)

f) Binary mode ('b') is used to handle files containing text data. (True/False)

4.3 TKINTER FOR GUI DEVELOPMENT

GUIs help make python applications more user friendly by giving visual

interaction instead of a sole reliance on text commands. Tkinter provides python

programmers with the simplest and most powerful forms of toolkit for building

GUI-based applications. It is included with Python installations and is an

efficient option for developing interactive programs. This section will discuss the

features of Tkinter, its components (widgets), and how to create dynamic GUIs.

What is Tkinter?

Tkinter is an acronym for Tk Interface, it is a Python binding to the Tk GUI

Toolkit. Tkinter is one of the most widely used toolkits for creating desktop

applications. It allows users to create applications that can have GUI windows.

To build windows Tkinter provides the user with different widgets such as

buttons, labels, and text boxes etc.

Why Tkinter?

● Simple to Use: Simple syntax and easy setup.

● Cross-Platform: Works on Windows, Mac OS, and Linux.

● Wide variety of widgets: Buttons, text boxes, labels, menus, etc.

● Event-driven programming: GUI applications respond to user actions

such as clicks and keystrokes.

● Preinstalled: It's part of the standard installation of Python. You don't

have to install Tkinter separately.

276

Anatomy of Tkinter Application

A Tkinter program broadly follows the following structure:

1. Import of the Tkinter Module: Either the entire Tkinter library or specific

components are imported.

2. Creates a Main Window: The main window is the root container for all

other widgets.

3. Add Widgets: Place elements within the window, such as buttons,

labels, or entry boxes.

4. Run the Event Loop: The mainloop() command begins the program's

event loop. This allows the application to be responsive to user events.

Example 4.6 shows the Python program that showcases the basic structure of

a GUI program using the Tkinter module.

Example 4.6: Basic GUI using Tkinter

Basic GUI using Tkinter

import tkinter as tk

Create the main application window

root = tk.Tk()

root.title("Basic graphical interface using python")

root.geometry("400x300") # Sets the size of window (width x height)

Run the event loop

root.mainloop()

The code demonstrates the simplest GUI that can be created in Python, using

the Tkinter library. The tkinter module is called and the application main window

is created using tk.Tk(), which is used to create a root window for the

application. The title() method sets the title of the window to "Basic graphical

interface using python," and the geometry() method sets the window size to 400

pixels in width and 300 pixels in height. The mainloop() method at the end starts

the Tkinter event loop and continues running it till the application window is

closed, and the user interaction is attended to.

277

This is basic code that serves as a basis for the construction of more

complicated GUI applications. The sample output of the code will be as seen in

Figure 4.3.

Figure 4.3: Sample window using Tkinter

Common Tkinter Widgets

Widgets are the building blocks of a Tkinter GUI. They allow users to interact

with the application visually, some of the commonly used widgets are as

mentioned:

Label:

A Label widget enables static text to be displayed in a GUI application. Labels

are often used as headings, instructions, or real-time status updates to a user.

They can also be customized in terms of fonts, colors, and alignment according

to the visual design of the application. Labels cannot be interacted with and are

for display purposes only.

Button:

A Button widget causes actions to be performed once clicked. Any button can

be configured to trigger a specific function or event, thus being an integral

component for interactivity in GUI applications. Buttons may be customized with

text, pictures, or icons and specific styles (color changes, resizing) for better

usability.

278

Entry:

An Entry widget gives users a one-line box in which to enter short information

such as names and passwords. It is often seen on forms or search bars to

capture user information. Some Entry widgets can also have input restrictions,

such as accepting only numeric characters or masking the input as the user is

typing.

Text:

A Text widget accepts multi-line input and output of texts. This allows the

handling of larger chunks of text, such as paragraphs or code snippets. In

respect to the Entry widget, a Text widget gives a lot of flexibility. It supports

things such as scrolling, text formatting, and editing, making it an advanced text

input or output requirement.

Frame:

A Frame widget serves as a container that can be used to organize other

widgets in a GUI. A Frame is used to handle grouping of widgets in a logical

way, which can serve to structure an application layout. Frames may also be

nested to allow for complicated layouts and can have borders, color, or padding

for visual separation and clarity. Table 4.2 summarizes the widgets.

Table 4.2: Commonly used widgets in Tkinter

Widget Description Example

Label Displays static text or images. tk.Label(root,

text="Login")

Button Adds clickable buttons for user actions. tk.Button(root,

text="Go!")

Entry Accepts single-line user input. tk.Entry(root)

Text Provides a multi-line text input area. tk.Text(root)

Frame Serves as a container for organizing widgets. tk.Frame(root)

Example 4.7 shows the code snippets of a Python program which showcases

the creation of different widgets using the Tkinter module.

279

Example 4.7: Code snippets to showcase creation of Widgets

#Program to showcase creation of Widgets

#Label

lbl = tk.Label(root, text=”This is a Label!")

lbl.pack() # Adds the label to the window

#Button

def on_ actionLogin ():

 print("Login Button Clicked!")

btnLogin = tk.Button(root, text="Login", command=actionLogin)

btnLogin.pack()

#Entry

txtEntry = tk.Entry(root)

txtEntry.pack()

def actionSubmit ():

 print(txtEntry.get()) # Fetches the user's input from entry widget

btnSubmit = tk.Button(root, text="Submit", command= actionSubmit)

btnSubmit.pack()

#Text

txtAddress = tk.Text(root, height=4, width=40)

txtAddress.pack()

#Frame

redFrame = tk.Frame(root, bg="red", height=200, width=400)

redFrame.pack()

The above code snippets show how to create and use various Tkinter widgets

in a simple GUI application. It has a Label widget that shows static text, "This

is a Label!" and it is packed into the window by using the pack() method. A

"Login" button is added to the window, which when pressed calls the

actionLogin function and prints a message to the console. An Entry widget is

also included, allowing users to enter single-line text, along with a "Submit"

280

button to call the get() method in order to print the entry widget's contents. Apart

from this, Text widget is also provided for allowing multiline texts such as

address input and anything else that is extensive in terms. The pack() method

is used consistently throughout for attaching widgets to the application window

and organizing them vertically. The above code shows a perfect example of

how Tkinter widgets can work together to make a GUI interactive and functional.

A simple application demonstrating the combined use of all

widgets

Example 4.8 shows the simple application built using Python which showcases

the usage of different widgets using the Tkinter module.

Example 4.8: Program to show combined usage of different widgets

#Program to show combined usage of different widgets

import tkinter as tk

def actionWelcome ():

 txtData = entryName.get()

 lblWelcome.config(text=f"Welcome, {txtData }!")

Create the main window

root = tk.Tk()

root.title("Greetings Application")

Add widgets

lblName = tk.Label(root, text="Enter your name:")

lblName.pack()

entryName = tk.Entry(root)

entryName.pack()

btnWelcome = tk.Button(root, text="Welcome", command=actionWelcome)

btnWelcome.pack()

281

lblWelcome = tk.Label(root, text="")

lblWelcome.pack()

Run the application

root.mainloop()

The code above presents a demonstration showing the combined use of

several Tkinter widgets to form a simple "Greetings Application." The main

window is created with tk.Tk() and entitled "Greetings Application." This window

contains a Label widget (lblName) that asks for the user's name, followed by

an Entry widget (entryName) for typing the names. A Button widget

(btnWelcome) is configured to call the actionWelcome function when clicked.

This function issues the user input from the Entry widget and, thus, updates

another Label widget (lblWelcome) to contain a personalized greeting. The

pack() method is used to align all widgets vertically within the window. The

application executes in a loop waiting for user interaction until the window is

closed. When this program is executed you will get a sample GUI as can be

seen in Figure 4.4.

Figure 4.4: Out of Example 4.8

Tkinter allows building GUI interfaces to be quite easy with its wide range of

widgets and tools aiding user-friendly applications. Mixing the Python event-

driven model with Tkinter and layout management provides developers with

building dynamic, interactive applications that could be used in a host of real-

life cases.

282

Note:

● Tkinter is Python’s standard library for creating graphical user

interfaces (GUIs), allowing users to interact with applications

visually.

● Tkinter is cross-platform, meaning GUIs built with it will work on

Windows, macOS, and Linux without modification.

● The Tk() class is used to create the main application window,

which serves as the container for all widgets.

● The mainloop() method starts the event loop, keeping the

application responsive to user actions like clicks or key presses.

● Widgets like Labels, Buttons, Entry boxes, and Text areas are the

building blocks of a Tkinter GUI.

Check Your Progress-2

a) The method __________ is responsible for keeping the Tkinter window

responsive to user actions.

b) The __________ widget is used to display static text or images in a

Tkinter application.

c) For making a clickable button in Tkinter, use the __________ widget.

d) The __________ widget is used to accept multiple lines of text from a user

or display long paragraphs.

e) A function assigned to a button in Tkinter, which gets executed upon a

click, is called a __________.

f) The __________ widget in Tkinter is useful for collecting single-line user

input, such as names or email addresses.

g) In Tkinter, the method __________ positions the widget in the application

window.

4.4 LET US SUM UP

This unit discusses the concepts of file handling and GUI development using

Tkinter in Python. You are acquainted with file handling's concept and different

modes for interacting with files, various operations associated with file handling

like reading, writing, appending, and handling binary files were discussed. We

283

also looked at how to build GUIs with Tkinter. We have discussed the anatomy

of a Tkinter application, widely used widgets, like Label, Button, Entry, and so

forth.

4.5 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a True

1-b False

1- c True

1-d True

1-e False

1-f False

2-a mainloop()

2-b Label

2-c Button

2-d Text

2-e command

2-f Entry

2-g pack()

4.6 ASSIGNMENTS

1. Explain the concepts of file handling, explaining its importance in Python

programming.

2. Write the objective and use of the open() function and its modes ('r', 'w', 'a',

etc.).

3. Differentiate between text files and binary files with examples.

4. Explain the fundamental components of a Tkinter application and their

roles.

5. Explain the purpose of the following Tkinter widgets: Label, Button, Entry,

and Canvas.

6. Write a Python program implementing the below functionalities

284

o Write a program to count the number of words in a file named

words.txt.

o Create a program to copy the contents of a file named source.txt into

another file named destination.txt.

o Develop a program to read a binary file and display its content in

hexadecimal format.

o Build a GUI that displays the content of a file in a Label widget after

selecting the file through a file dialog.

o Create a calculator GUI that performs basic arithmetic operations

using Entry widgets for input and Buttons for operations.

	cover page
	Credit Page
	Index
	B1_Unit1_Getting Started with Python 1-13
	B1_Unit2_Variables and Data Types 14-30
	B1_Unit3_Operators and TypeCasting
	B2-UNIT-1-Conditional Statements
	B2-UNIT-2-Loops
	B2-UNIT-3-Functions
	B2-UNIT-4-Modules
	B3-UNIT-1-List_Tuple
	B3-UNIT-2-Dictionaries
	B3-UNIT-3-Sets
	B3-UNIT-4-Strings
	B4-UNIT-1-Introduction to Object Oriented Programming
	B4-UNIT-2-Inheritance & Polymorphism
	B4-UNIT-3-ExceptionHandling
	B4-UNIT-4-File Handling & GUI

