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Block 1: Foundations of Regression 
Analysis 
 

Introduction 
Regression analysis is one of the most powerful and widely used tools in statistics and 
data science, providing a framework for understanding relationships between variables 
and making data-driven predictions. Whether you are analyzing trends, building 
predictive models, or testing hypotheses, regression analysis serves as the foundation 
for many advanced analytical techniques. This block, Foundations of Regression Analysis, 
introduces you to the core principles of regression, starting with simple linear regression 
and gradually building your understanding of model evaluation, interpretation, and 
application. 
 
In Unit 1: Simple Linear Regression, you will begin by exploring the fundamental concepts 
of regression analysis and its importance in statistical modeling. You will learn how to 
formulate a simple linear regression model, understand the key assumptions underlying 
it, and derive the Ordinary Least Squares (OLS) estimator. By the end of this unit, you will 
be able to solve the normal equations to obtain a closed-form solution for parameter 
estimation, laying the groundwork for more advanced topics. 
 
Unit 2: Coefficients Calculation and Prediction builds on the concepts introduced in Unit 
1, focusing on the practical application of the least squares method to calculate 
regression coefficients. You will learn how to interpret and visualize regression results, 
make predictions using the estimated regression equation, and validate the key 
assumptions of linear regression. Additionally, you will gain hands-on experience using R 
to compute regression coefficients, both manually and with built-in functions, ensuring 
you can apply these techniques in real-world scenarios. 
 
In Unit 3: Evaluating Model Fit, you will delve into the critical task of assessing how well a 
regression model fits the data. You will learn to evaluate the alignment between observed 
data and model predictions, calculate and interpret the regression standard error, and 
understand the role of R-squared in measuring the proportion of variability explained by 
the model. These skills are essential for determining the accuracy and reliability of your 
regression models. 
 
Finally, Unit 4: Assessing the Strength of the Linear Relationship focuses on understanding 
and interpreting the slope parameter in linear regression, which represents the 
relationship between the predictor and response variables. You will learn how to estimate 
and test the slope for significance, interpret p-values, and assess the strength of 
evidence for a linear association. This unit will equip you with the tools to evaluate the 
reliability of your model and draw meaningful conclusions from your analysis. 
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By the end of this block, you will have a solid understanding of the foundations of 
regression analysis, from model formulation and parameter estimation to evaluation and 
interpretation. Whether you are new to regression or looking to strengthen your 
foundational knowledge, this block will provide you with the skills and confidence to 
apply regression analysis effectively in your work. 
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Unit 1: Simple Linear Regression 
Unit Structure 
1.0 LEARNING OBJECTIVES 
1.1 INTRODUCTION 
1.2 USES OF REGRESSION 
1.3 SIMPLE LINEAR REGRESSION MODEL 
1.4 LEAST SQUARES METHOD 
1.5 LET US SUM UP 
1.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
1.7 FURTHER READING 
1.8 ASSIGNMENT 
 

1.0 Learning Objectives 
After going through this unit, you should be able to 

• Understand the fundamental concepts of regression analysis. 
• Explain the importance of regression analysis in statistical modelling. 
• Understand a simple linear regression model  
• Identify and understand the key assumptions underlying linear regression. 
• Derive the Ordinary Least Squares (OLS) estimator 
• Obtain Closed-form solution for parameter estimation: Normal equations 

1.1 Introduction 
Regression analysis plays a crucial role in both data science and managerial decision-
making by quantifying the relationships between variables. It helps identify how 
independent (explanatory) variables influence a dependent (response) variable, such as 
understanding the impact of advertising expenditures on sales or predicting electricity 
demand based on daily temperatures. With its clear mathematical principles and high 
interpretability, regression analysis serves two main purposes: explanatory analysis, 
which explores how variables affect one another, and predictive analysis, which 
identifies the best combinations of variables for accurate forecasting. By providing a 
structured method to analyze these relationships, regression analysis is an essential tool 
for both data-driven insights and informed decision-making. 
 Regression analysis should not be viewed as a method for proving causation 
between variables. It can only show the extent to which variables are related. Any 
conclusions about cause and effect require the discernment of experts familiar with the 
specific context. 
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In regression analysis, the variable being predicted is called the response or 
dependent, denoted by 𝑦. The variables used to predict the response are referred to as 
explanatory or predictor or independent variables represented by 𝑥. For example, when 
examining the impact of advertising expenditures on sales, sales would be the response 
variable (𝑦), and advertising expenditures would be the explanatory variable (𝑥). In data 
science terms, 𝑦 represents the target or output variable, while 𝑥 represents the feature 
or input variables. 
 In this block, we explore the most basic form of regression analysis, which 
involves one independent variable and one dependent variable. Here, the relationship 
between the variables is represented by a straight line. It is called simple linear 
regression.  

1.2 Uses of Regression 

Regression models serve a variety of purposes in statistical analysis and data science, 
including the following: 

1.2.1 Data Description 

Regression analysis helps in understanding and describing the relationships 
between variables. For example, consider a study that examines the relationship 
between years of education and annual income. A regression model can describe how 
income tends to increase with additional years of education, providing a clearer picture 
of this relationship and helping to identify patterns in the data. 

1.2.2 Parameter Estimation 

Regression is used to estimate the parameters of the relationship between 
variables. In the education and income example, the regression model would estimate 
the coefficient that quantifies how much annual income is expected to increase for each 
additional year of education. This coefficient is crucial in understanding the strength and 
nature of the relationship, allowing for more precise interpretations. 

1.2.3 Prediction and Estimation 

One of the primary uses of regression models is to predict future outcomes based on 
current or past data. For instance, a company might use a regression model to forecast 
future sales based on historical sales data and marketing expenditure. By inputting the 
marketing expenditure, the model can estimate the expected sales, helping the company 
plan and make data-driven decisions. 
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1.2.4 Control  

In experimental and observational studies, regression models help control 
confounding variables. For example, imagine a study analyzing the impact of exercise on 
weight loss, while also considering dietary habits. By including both exercise and dietary 
habits as independent variables in the regression model, researchers can isolate the 
effect of exercise on weight loss, ensuring that the observed relationship is not 
confounded by variations in dietary habits. 

Regression models are indispensable tools in many disciplines, providing valuable 
insights and supporting data-driven decision-making. By understanding and leveraging 
these models, researchers and analysts can describe complex relationships, estimate 
key parameters, make accurate predictions, and control confounding factors. 
 

Check Your Progress – 1  
1. What is the primary purpose of regression analysis in data science and managerial 

decision-making? 
(a) To visualize data (b) To quantify the relationships between 

variables 
(c) To perform clustering (d) To clean the data 

2. In regression analysis, what is the dependent variable also referred to as? 
(a) Predictor variable (b) Independent variable 
(c) Response variable (d) Confounding variable 

3. Which of the following is NOT a use of regression models? 
(a) Data Description (b) Parameter Estimation 
(c) Prediction and Estimation (d) Data Encryption 

4. In the context of regression analysis, what does the explanatory variable represent in 
a study examining the impact of advertising expenditures on sales? 

(a) Sales (b) Advertising expenditures 
(c) Confounding variables (d) Weight loss 

 

 

1.3 Simple Linear Regression Model 
The simple linear regression model establishes a linear relationship between a single 
explanatory variable (regressor) (𝑥) and a response variable (𝑦). It is expressed as:  
 0 1y x  = + +   (1.1) 

where: 
• 𝛽0 is the intercept, representing the value of (𝑦) when ( 0x = ). 
• 𝛽1 is the slope, indicating how much (𝑦) changes for a one-unit change in (𝑥). 
•  is the random error term, capturing unobserved influences on (𝑦). 
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Both 𝛽0 and 𝛽1 are constants to be estimated from the data and usually called regression 

coefficients. 

1.3.1 Error Assumptions 
In simple linear regression, the errors  are assumed to: 

1. Have a mean of zero:   0 =E  

2. Have constant variance: The error variance 2  remains the same across all values 
of x . 

3. Be uncorrelated: The errors for different observations are independent of one 
another, meaning the error for one observation does not influence others. 

1.3.2 Role of Variables 
• The regressor (𝑥) is treated as a fixed variable, controlled by the analyst, and 

measured with negligible error. 
• The response (𝑦) is considered a random variable, with its values depending on the 

distribution for each given value of (𝑥). 

1.3.3 Regression Equation 

The equation that describes how the expected value of 𝑦, denoted y x  E , is related to 

𝑥 is called the regression equation. Thus, using the error assumption (1), the regression 
equation for simple linear regression follows.  

 0 1y x x   = + E   (1.2) 

Moreover, the variance of 𝑦 given 𝑥 is constant and does not depend on 𝑥:  

 2Var y x   =    

which satisfies error assumption (2).  
The graph of the simple linear regression equation is a straight line. The parameters 𝛽1 
and 𝛽0 can be interpreted as follows.  

• 𝛽1 (slope): It indicates the expected change in the mean response 𝑦 for a one-unit 
increase in the regressor 𝑥. For example, if 𝛽1 = 2, it means that for each unit 
increase in 𝑥, the mean of 𝑦 increases by 2.  

• 𝛽0 (intercept): It represents the mean value of 𝑦 when 𝑥 = 0. However, its practical 
interpretation is only meaningful if 𝑥 = 0 is within the range of observed data. If 𝑥 

= 0 lies outside the data range, the intercept may not have a relevant or 
interpretable meaning. 

Figure 1.1 illustrates different types of regression lines. In Panel A, the regression line 
indicates a positive relationship between 𝑦 and 𝑥, where higher values of 
𝔼[𝑦|𝑥] correspond to higher values of 𝑥. Panel B shows a negative relationship, with 
higher values of 𝑥 leading to lower values of 𝔼[𝑦|𝑥]. Panel C depicts a scenario where 𝑦 
is not related to 𝑥, meaning the mean value of 𝑦 remains constant regardless of the value 
of 𝑥. 
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(a) Positive relationship (b) Negative relationship (c) No relationship 

 
Figure 1.1: Possible Regression Lines in Simple Linear Regression 

 

1.3.4 Estimated Regression Equation 
If we knew the population parameters 𝛽0 and 𝛽1, we could use equation (1.2) to calculate 
the mean value of 𝑦 for a given 𝑥. However, since these parameter values are typically 
unknown, they must be estimated from sample data. The sample statistics, also denoted 
as 𝑏0 and 𝑏1, are calculated to estimate the population parameters. By substituting these 
sample statistics into the regression equation, we obtain the estimated regression 

equation for simple linear regression. The equation can be given by  
 0 1ŷ b b x= +   (1.3) 

In general, 𝑦̂ is the point estimator of 𝔼[𝑦|𝑥], the mean value of 𝑦 for a given 𝑥.   
 

Check Your Progress – 2  
1. What does the intercept (β₀) in a simple linear regression model represent? 

(a) The value of the explanatory variable (𝑥) when the response variable (𝑦) is 
zero 

(b) The value of the response variable (𝑦) when the explanatory variable (𝑥) is 
zero 

(c) The slope of the regression line 
(d) The random error term 

2. Which of the following is an error assumption in simple linear regression? 
(a) Errors have a mean of one 
(b) Errors have a constant variance across all values of 𝑥 
(c) Errors are correlated with one another 
(d) Errors depend on the value of 𝑦 

3. In the regression equation 𝐸(𝑦|𝑥)  =  𝛽₀ +  𝛽₁𝑥, what does β₁ represent? 
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(a) The intercept (b) The error term 
(c) The change in the mean response 𝑦 for a 

one-unit increase in the regressor 𝑥 
(d) The variance of 𝑦 given 𝑥 

4. In the context of regression analysis, what does the explanatory variable represent in 
a study examining the impact of advertising expenditures on sales? 

(a) To calculate the exact value of the population parameters β₀ and β₁ 
(b) To predict the mean value of 𝑦 for a given 𝑥 using sample estimates 
(c) To describe the variance of the error term 
(d) To identify confounding variables in the data 

 
 

1.4  Least Squares Method  
The Least Squares Method is a standard approach used for finding the best-fitting line or 
curve to a set of data points. The method minimizes the sum of the squared differences 
between the observed values and the values predicted by the model. It is widely used in 
regression analysis to estimate the parameters of a model that describes the relationship 
between a dependent variable and one or more independent variables. 

1.4.1 Least square criterion  
The criterion for the least squares method is given by expression  

 min ∑(𝑦𝑖 − 𝑦̂𝑖)2 (1.4) 

 
where, 𝑦𝑖  = observed value of the dependent variable for the ith observation 
 𝑦̂𝑖  = predicted value of the dependent variable for the ith observation 
 

To find the values of 𝑏0 and 𝑏1 that minimize the residual sum of squares (RSS), we take 

the partial derivatives of the RSS with respect to 𝑏0 and 𝑏1, and set them equal to zero.  

Substituting 𝑦̂ from equation (1.3) into (1.4) yields, 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)2 

The least squares estimators 𝑏0 and 𝑏1 must satisfy  
𝜕

𝜕𝑏0
(∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)2) = −2 ∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖) = 0 

𝜕

𝜕𝑏1
(∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)2) = −2 ∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)𝑥𝑖 = 0 

Simplifying these two equations yields  

𝑛𝑏0 + 𝑏1 ∑ 𝑥𝑖

𝑛

𝑖=1

= ∑ 𝑦𝑖

𝑛

𝑖=1

 
 
 
(1.5) 
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𝑏0 ∑ 𝑥𝑖

𝑛

𝑖=1

+ 𝑏1 ∑ 𝑥𝑖
2

𝑛

𝑖=1

= ∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

 

 
Equations (1.5) are called least square normal equations. The solution of normal 
equations is  

𝑏0 = 𝑦̅ − 𝑏1𝑥̅   (1.6) 
  
and  

 
( )( )

( )

1
1

2

1

n

i i
xyi

n
xx

i
i

y y x x S
Sx

b
x

=

=

− −

= =

−




  (1.4) 

where, 
1 1

1 1,  and 
n n

i i
i i

y y x x
n n= =

= =  . Further,  𝑆𝑥𝑦 denotes covariance of 𝑥 and 𝑦 whereas 

𝑆𝑥𝑥 denotes variance of 𝑥.  
 
Note: An alternative formula for 𝑏1 is 

1 1 1
1 2

2

1 1

n n n

i i i i
i i i

n n

i i
i i

n x y
b

x y

n x x

= = =

= =

−

=
 

−  
 

  

 

 

 
The least squares method yields an estimated regression equation that minimizes the 
sum of squared differences between the observed values of the dependent variable  𝑦𝑖   
and the predicted values 𝑦𝑖̂ . This criterion of least squares is employed to identify the 
equation that best fits the data. If an alternative criterion, such as minimizing the sum of 
absolute differences between 𝑦𝑖  and 𝑦𝑖̂, were used, a different equation would result. 
 
In the next unit, we will walk through the step-by-step process of calculating regression 
coefficients (intercept and slope) using the example with a small dataset. 

1.5 LET US SUM UP 
This unit covered the basics of simple linear regression, which establishes a linear 
relationship between one independent variable (𝑥) and one dependent variable (𝑦) using 
the equation 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀. Regression analysis is used for describing data, 
estimating parameters, making predictions, and controlling confounding variables. The 
model’s assumptions include errors having a mean of zero, constant variance, and no 
correlation. Parameters (𝛽0, 𝛽1) are estimated from data to predict 𝑦 values, enabling 
data-driven insights and decision-making. Least square method is introduced and 
closed form formula for the estimators are derived.  
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1.6 Check Your Progress: Possible Answers 
Check Your Progress – 1  

 
Question No. Correct option 
1. (b) 
2. (c) 
3. (d) 
4. (b) 

 
Check Your Progress – 2  

Question No. Correct option 
1. (b) 
2. (b) 
3. (c) 
4. (b) 

 

1.7 Further Reading 
1. Introduction to Linear Regression Analysis 6th Edition, Montgomery, Peck, Vining, 

Wiley Publication, February 2021 
2. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 

Cengage Learning, January 2016 

1.8 Assignment  
(1) What are the two main purposes of regression analysis? 
(2) How can regression models help in experimental and observational studies? 
(3) Describe Regression equation in detail. 
(4) What are the error assumptions in Regression model? Why is it important that the 

errors in a simple linear regression model have a mean of zero? 
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Unit 2: Coefficients Calculation and Prediction 
Unit Structure 
2.0 LEARNING OBJECTIVES 
2.1 INTRODUCTION 
2.2 CALCULATION OF REGRESSION COEFFICIENTS 
2.3 PROPERTIES OF FITTED REGRESSION MODEL 
2.4 STREAMLINING REGRESSION ANALYSIS WITH R 
2.5 LET US SUM UP 
2.6 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
2.7 FURTHER READING 
2.8 ASSIGNMENT 
 

2.0 Learning Objectives 
After going through this unit, you should be able to 

• Understand how to apply the least squares method to obtain regression 
coefficients 

• Gain insight into interpreting and visualizing regression results  
• Make predictions based on estimated regression equation 
• Identify and understand the key assumptions underlying linear regression. 
• To obtain regression coefficients using R through both manual calculations and 

built-in functions. 
• Utilize R packages and functions effectively for Linear Regression computations 

2.1 Introduction 
To understand the application of the least squares method, let’s take a practical example. 
In this walk-through, we will perform a hands-on calculation of the regression parameters 
step-by-step. This process will help to clearly illustrate how the least squares method is 
used to determine the regression coefficients.    

2.2 Calculation of Regression Coefficients 
Example 2.1: Imagine we have a dataset detailing the Rental Price (in ₹100 per month) 
for offices located in the heart of Ahmedabad. A crucial element we're focusing on is the 
Size of these offices, expressed in square feet. Suppose ten observations on size and 
their respective rental price have been gathered and are presented in Table 2.1. 

Figure 2.2 presents a scatter plot illustrating the office rentals dataset, with Rental 
Price depicted on the vertical (𝑦) axis and Size on the horizontal (𝑥) axis. The plot clearly 
demonstrates a strong linear relationship between these two variables: as Size 
increases, Rental Price similarly rises. The tentative assumption of the straight-line 
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model 𝑦 =  𝛽0 + 𝛽1𝑥 + 𝜀 appears to be reasonable. Capturing this relationship within a 
model would allow us to achieve two significant outcomes. First, it would enable us to 
comprehend how office size influences rental price. Second, we could predict rental 
prices for office sizes not represented in the historical data. For instance, we could 
estimate the rental price for a 830-square-foot office. These insights would be extremely 
valuable for real estate agents setting rental prices for new properties. 
 

Table 2.1: Dataset for Example 2.1 
Location Size Rental price 

1 500 320 
2 550 380 
3 620 400 
4 630 390 
5 660 380 
6 700 410 
7 770 480 
8 880 600 
9 920 570 
10 1000 620 

   
 
 

 
Figure 2.2: Scatter plot of the Size and Rental Price, Example 2.1 
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Some of the calculations necessary to develop the least squares estimated regression 
equation are shown in Table 2.2. With the sample of 10 locations, we have 𝑛 = 10 
observations. Because equations (1.6) and (1.7) requires 𝑥̅ and 𝑦̅ we begin the 
calculations by computing 𝑥̅ and 𝑦̅. 

𝑥̅ =
∑𝑥𝑖

𝑛
=

7230

10
= 723 

𝑦̅ =
∑𝑦𝑖

𝑛
=

4550

10
= 455 

 
Table 2.2: Calculation for least squares estimated regression equation for Example 1 

Location 
𝑖 

Size 
𝑥𝑖 

Rental price 
𝑦

𝑖
 

𝑥𝑖 − 𝑥̅ 𝑦
𝑖

− 𝑦̅ (𝑥𝑖 − 𝑥̅)(𝑦
𝑖

− 𝑦̅) (𝑥𝑖 − 𝑥̅)2 

1 500 320 -223 -135 30105 49729 
2 550 380 -173 -75 12975 29929 
3 620 400 -103 -55 5665 10609 
4 630 390 -93 -65 6045 8649 
5 660 380 -63 -75 4725 3969 
6 700 410 -23 -45 1035 529 
7 770 480 47 25 1175 2209 
8 880 600 157 145 22765 24649 
9 920 570 197 115 22655 38809 
10 1000 620 277 165 45705 76729 
Totals 7230 4550   152850 245810 
 𝛴𝑥𝑖  𝛴𝑦𝑖    𝛴(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) 𝛴(𝑥𝑖 − 𝑥̅)2 
       

 
Using equations (1.6) and (1.7) and the information in Table 2.2, we can compute the 
slope and intercept of the estimated regression equation for the given dataset. The 
calculation of the slope (𝑏1) proceeds as follows. 
 

𝑏1 =
∑(𝑥 − 𝑥𝑖)(𝑦 − 𝑦𝑖)

∑(𝑥 − 𝑥𝑖)2
=

152850

245810
= 0.62 

 
The calculation of the 𝑦 intercept (𝑏0) follows. 
 

𝑏0 = 𝑦̅ − 𝑏1𝑥̅ = 455 − 0.62 × 723 = 5.42 
 
Thus, the estimated regression equation is 
 

𝑦̂ = 5.42 + 0.62 𝑥 
In other words,  
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Rental Price = 5.42 + 0.62 × Size 
 

Figure 1.3 shows the graph of this equation on the scatter diagram. 

 
Figure 2.3: Graph of the estimated regression equation for Example 2.1 

 

2.2.1 Interpretation for 𝑏0 and 𝑏1 
The estimated 𝑦-intercept represents the expected response value when the 

predictor variable is zero. This interpretation is meaningful only if a predictor value of zero 
is reasonable for the situation being analyzed and if there is data with predictor values 
near zero. In this example, estimating the Rental Price when the floor Size is zero does not 
make sense. Moreover, we lack sample data close to zero. Therefore, it is not appropriate 
to interpret 𝑏0 in practical terms. Henceforth, we will refer to 𝑏0 as the estimated 
intercept, rather than the estimated 𝑦-intercept, since the latter is less relevant in 
regression analysis. 

The slope estimates of 𝑏1 = 0.62 has a clear practical interpretation. It indicates 
the slope of the linear relationship, meaning the expected change in the response 
variable for each 1-unit increase in the predictor variable. Specifically, we can state that 
the Rental Price is expected to increase by 0.62 for each 1-unit increase in Size. In other 
words, considering that Rental Price is measured in hundreds of rupees and Size is 
measured in square feet, we can expect the Rental Price to increase by ₹62 for each 
square foot increase in Size. It's crucial to mention the units of measurement for both the 
response and predictor variables when interpreting the slope in a simple linear regression 
model. This interpretation holds true only within the sample Size range, which is from 500 
to 1000 square feet. 
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2.2.2 Predict the value of 𝑦 when 𝑥 is given 
If we believe the least squares estimated regression equation adequately describes the 
relationship between 𝑥 and 𝑦, it would seem reasonable to use the estimated regression 
equation to predict the value of 𝑦 for a given value of 𝑥. For example, if we wanted to 
determine the expected rental price of the 830-square-foot office mentioned previously 
by simply plugging this value for SIZE into the model  

RENTAL PRICE = 5.42 + 0.62 × 830 = 521.53 
 
It’s important to be cautious when making predictions using regression for values of the 
independent variable (𝑥) that fall outside the range of the data used to estimate the 
regression equation. We cannot be certain that the relationship holds true beyond the 
range of the data in the experiment. 
 
 

Check Your Progress – 1  
 
1. Assume you have noted the following prices for books and the number of pages that 

each book contains. 
Book A B C D E F G 

Pages (𝑥) 500 700 750 590 540 650 480 
Price (𝑦) (in $) 70 75 90 65 75 70 45 

(a) Calculate 𝑥̅ and 𝑦̅. 
(b) Calculate 𝛴(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) 
(c) Calculate 𝛴(𝑥𝑖 − 𝑥̅)2 
(d) Develop the estimated regression equation by computing the values of 𝑏0 and 𝑏1. 
(e) Use the estimated regression equation to predict the value of 𝑦 when 𝑥 = 600. 

 
2. Following are six observations collected in a regression study on two variables. 

 
𝑥 3 5 8 12 20 18 
𝑦 6 12 8 20 22 25 

 
(a) Calculate 𝑥̅ and 𝑦̅. 
(b) Calculate 𝛴(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) 
(c) Calculate 𝛴(𝑥𝑖 − 𝑥̅)2 
(d) Develop the estimated regression equation by computing the values of 𝑏0 and 𝑏1. 
(e) Use the estimated regression equation to predict the value of 𝑦 when 𝑥 = 15. 
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2.3 Properties of Fitted Regression Model 
 
The least-squares fit possesses several notable properties: 
 
1. In any regression model that includes an intercept term (𝛽0), the sum of the residuals 

is always zero.  

∑(𝑦𝑖 − 𝑦̂𝑖) = 0 

 
This property directly follows from the first normal equation (Eq. 1.5). Note that 
rounding errors may affect this sum.  

2. The sum of the observed values (𝑦𝑖) is equal to the sum of the fitted values ( 𝑦̂𝑖). 
Symbolically,  

∑ 𝑦𝑖 = ∑ 𝑦̂𝑖  

3. The least-squares regression line invariably passes through the centroid of the data, 
represented by the point (𝑥̅, 𝑦̅). 

4. The sum of the residuals weighted by the corresponding regressor variable value 
always equals zero, that is, 

∑ 𝑥𝑖(𝑦𝑖 − 𝑦̂𝑖) = 0 

5. The sum of the residuals weighted by the corresponding fitted value always equals 
zero, that is, 

∑ 𝑦̂𝑖(𝑦𝑖 − 𝑦̂𝑖) = 0 

2.4 Streamlining Regression Analysis with R 
Computing regression analysis manually is an incredibly time-consuming task. Luckily, 
using software such as R can significantly reduce this computational burden. This 
section will explain how employing R can streamline these analyses. 

R is a versatile language specifically designed for statistical computing and 
graphics. It’s highly valued by researchers and practitioners in Mathematics, Statistics, 
and Data Science. Essentially, R consists of numerous programs (or functions) that are 
organized into specialized packages (or libraries). These packages are developed by 
professional programmers and come with extensive help pages that elucidate each 
component of R. As an open-source and extensible software, R allows users to tailor it to 
their specific needs. 

We assume that the learner has a basic understanding of R. If you are unfamiliar 
with R, we recommend visiting this tutorial which covers the basics and serves as a great 
starting point for beginners. 
 

https://www.w3schools.com/r/r_intro.asp
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Let's now compute all the values shown in Table 2.2 using R. The following code snippet 
simplifies this computation: 
 
# Data 
size <- c(500, 550, 620, 630, 660, 700, 770, 880, 920, 1000) 
rental_price <- c(320, 380, 400, 390, 380, 410, 480, 600, 570, 620) 
 
# Calculate the means of X and Y 
mean_x <- mean(size) 
mean_y <- mean(rental_price) 
 
# Calculate the slope (b1) 
numerator <- sum((size - mean_x) * (rental_price - mean_y)) 
denominator <- sum((size - mean_x)^2) 
b_1 <- numerator / denominator 
 
# Calculate the intercept (b0) 
b_0 <- mean_y - b_1 * mean_x 
 
# Round the values to 2 decimal places 
b_1 <- round(b_1, 2) 
b_0 <- round(b_0, 2) 
 
# Display the results 
cat("Slope :", b_1, "\n") 

## Slope : 0.62 

cat("Intercept :", b_0, "\n") 

## Intercept : 5.42 

# The regression equation is: 
cat("The regression equation is: Y =", b_0, "+", b_1, "* X\n") 

## The regression equation is: Y = 5.42 + 0.62 * X   
 
If you prefer to avoid manual calculations, you can use R's built-in functions to obtain the 
results directly. The following code snippet demonstrates this:  
 
# Create the data frame 
data <- data.frame( 
  size = c(500, 550, 620, 630, 660, 700, 770, 880, 920, 1000), 
  rental_price = c(320, 380, 400, 390, 380, 410, 480, 600, 570, 620) 
) 
 
# Fit the linear regression model 
model <- lm(rental_price ~ size, data = data) 
 
# Display the regression coefficients 
coefficients(model) 
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## (Intercept)        Size  
##   5.4228876   0.6218217 

In the above code, we use the lm() function to fit a linear regression model, which predicts 
rental_price based on size. The coefficients(model) function then extracts and 
displays the regression coefficients.  
As we have predicted the value of Rental Price for the Size = 830, we can use the following 
R code: 
# Predict rental price for a single size 
new_size <- data.frame(Size = 830) 
prediction <- predict(model, newdata = new_size) 
 
# Display the prediction 
prediction 

##        1  
## 521.5349 

 
R also allows us to predict more than one value for Size simultaneously. Here’s how we 
can do it: 
 
# Predict rental prices for new sizes 
new_sizes <- data.frame(Size = c(750, 830, 980)) 
predictions <- predict(model, newdata = new_sizes) 
 
# Display the predictions 
predictions 

##        1        2        3  
## 471.7892 521.5349 614.8082 

 
The following code will generate a scatter plot with a regression line: 
 
# Create scatter plot 
plot(data$size, data$rental_price,  
     main = "Scatter Plot with Regression Line",  
     xlab = "Size",  
     ylab = "Rental Price",  
     pch = 19, col = "red")  # Scatter plot with red points 
 
# Add regression line 
abline(model, col = "blue")  # Add blue regression line 

 
This will generate a scatter plot with your data points and add a regression line to visualize 
the relationship between Size and Rental Price. 
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Check Your Progress – 2  
 
Use R for the data provided in Problems 1 and 2 in 'Check Your Progress 1' to achieve the 
following: 
1. Perform step-by-step calculations to obtain regression coefficients and predictions. 
2. Utilize the built-in R function lm(). 
3. Create scatter plots with regression line for both problems. 
 
 

2.5 LET US SUM UP 
In this unit, we provided an example to obtain regression coefficients using the least 
squares method. We explored how to apply this method and delved into interpreting and 
visualizing the results. You learned how to make predictions based on the estimated 
regression equation and gained insight into the key assumptions underlying linear 
regression. Additionally, we discussed the properties of the fitted regression model, 
enhancing your understanding of its behaviour and significance. We also demonstrated 
how to compute regression coefficients both manually and using R's built-in functions. 

2.6 Check Your Progress: Possible Answers 
Check Your Progress – 1  
Answer: 1 

(a) 𝑥̅ = 601.43  and 𝑦̅ = 70. 
(b) 𝛴(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) = 6250 
(c) 𝛴(𝑥𝑖 − 𝑥̅)2 = 63085.72 
(d) 𝑏0 = 10.42  and 𝑏1 = 0.099. 
(e)  𝑦 = 69.86 when 𝑥 = 600. 

Answer: 2 
(a) 𝑥̅ = 11 and 𝑦̅ = 15.5. 
(b) 𝛴(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) = 249 
(c) 𝛴(𝑥𝑖 − 𝑥̅)2 = 240 
(d) 𝑏0 = 4.0875 and 𝑏1 = 1.0375. 
(e)  𝑦 = 19.65 when 𝑥 = 15. 

 
 

2.7 Further Reading 
1. Introduction to Linear Regression Analysis 6th Edition, Montgomery, Peck, Vining, 

Wiley Publication, February 2021 
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2. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 
Cengage Learning, January 2016 

3. R Introduction - W3Schools, https://www.w3schools.com/r/r_intro.asp. 

2.8 Assignment  
(1) What is the least squares method and why is it used in regression analysis? 
(2) How would you use the estimated regression equation to make predictions for new 

data points? What are the potential risks or limitations of making predictions with a 
regression model? 

(3) Oxygen consumption, also known as VO2 (Volume of Oxygen), is typically measured 
using a metabolic cart during physical activities like exercise. The following table 
presents a historical dataset collected by a space agency. The data illustrates the 
amount of oxygen an astronaut consumes during five minutes of intense physical 
activity. To simplify, we consider the astronaut's age as the variable that affects oxygen 
consumption. 

ID Age 
(Years)  

Oxygen 
Consumption 
(Units) 

ID Age 
(Years) 

Oxygen 
Consumption 
(Units) 

1 37 44.39 7 46 28.17 
2 42 47.34 8 37 31.22 
3 41 37.99 9 43 44.72 
4 43 30.83 10 38 54.85 
5 44 37.85 11 43 39.84 
6 48 27.07 12 46 36.42 

(a) Use the least squares method to develop the estimated regression equation. 
(b) Provide an interpretation of the slope of the estimated regression equation. 
(c) Estimate the oxygen consumption for an astronaut who is 40 years old. 
(d) Create scatter plot with regression line using R. 
(e) Verify properties of fitted regression model stated in Section 2.3.  
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Unit 3 Evaluating Model Fit 
 
Unit Structure 

3.0 LEARNING OBJECTIVES 

3.1 INTRODUCTION 

3.2 REGRESSION STANDARD ERROR 

3.3 COEFFICIENT OF DETERMINATION – R2 

3.4 LET US SUM UP 

3.5 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 

3.6 FURTHER READING 

3.7 ASSIGNMENT 

 

3.0 Learning Objectives 
After going through this unit, you should be able to 

• Understand the concept of model fit in the context of linear regression. 
• Learn how to evaluate how closely the observed data (𝑦-values) align with the fitted 

model’s predictions (𝑦̂-values). 
• Define and calculate regression standard error to assess the accuracy of the model's 

predictions. 
• Understand the concept of R-squared and its role in measuring how much of the 

variability in the response variable (𝑦) is explained by the model. 
• Learn to interpret the results of the regression standard error and R-squared to assess 

model performance. 
 

3.1 Introduction 
 
Once a simple linear regression model has been fitted, it's important to assess how well it 
captures the relationship between the predictor variable (𝑥) and the response variable (𝑦). 
To determine the model's effectiveness, we need to evaluate the fit by answering two key 
questions: How well do the observed values of 𝑦 align with the predictions made by the 
model? And how much of the variability in the data can the model explain? In this block, we’ll 
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explore two crucial metrics that help answer these questions: the regression standard error, 
which tells us the average distance between observed and predicted values, and R-squared, 
which measures the proportion of variance in 𝑦 explained by the model. These methods will 
provide insights into the reliability of the model for making predictions. 

3.2 Regression standard error 

Recall the least squares method used for estimating the regression parameters 𝑏0 and 𝑏1. 
The estimates 𝑏0 and 𝑏1 are the values that minimize the residual sum of squares (RSS),  

𝑅𝑆𝑆 =∑𝑒𝑖
2 =∑(𝑦𝑖 − 𝑦̂𝑖)

2 =∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)
2 

We can use this minimum value of RSS to determine how much (on average) the actual 
observed response values, 𝑦𝑖, deviate from the model-based fitted values, 𝑦̂𝑖, by calculating 
the regression standard error, 𝑠: 

𝑠 = √
𝑅𝑆𝑆

𝑛 − 2
 

(3.1) 

which is an estimate of the standard deviation of the random errors in the simple linear 
regression model. The residual sum of squares has 𝑛 − 2 degrees of freedom, because two 
degrees of freedom are associated with the estimates 𝑏0 and 𝑏1 involved in obtaining 𝑦̂𝑖. The 
quantity 𝑅𝑆𝑆 (𝑛 − 2)⁄ is called the mean square error, which is often abbreviated MSE. The 
unit of measurement for 𝑠 is the same as the unit of measurement for response variable 𝑦. 
The regression standard error is also known as residual standard error or standard error of 

the estimate or root mean squared error.  

In Table 3.1 we show the calculations required to compute the residual sum of squares (RSS) 
for the RENTAL PRICE – SIZE example discussed in Unit 1. After computing and squaring the 
residuals for each location in the sample, we sum them to obtain RSS = 5804.54. Thus, RSS 
= 5804.54 measures the error in using the estimated regression equation 𝑦̂ = 5.42 + 0.62 𝑥 
to predict rental price. The value of the residual standard error for the RENTAL PRICE – SIZE 

dataset is  

𝑠 = √
𝑅𝑆𝑆

𝑛 − 2
= √

5804.54

10 − 2
= √725.57 = 26.94 



23 

This indicates average distance between actual rental price and estimated rental price is 
₹2694. The R code snippets for obtaining the value of 𝑠 is as follows: 

# Get the summary of the model 
model_summary <- summary(model) 
 
# Extract the residual standard error (regression standard error) 
regression_se <- model_summary$sigma 
print(round(regression_se, 2)) 

   [1] 26.94 

Table 3.1: Calculation of Squared Errors for Example 2.1 (Unit 2) 

SIZE 
 

RENTAL PRICE 
 

Fitted Values 
RENTAL PRICE = 
 5.42 + 0.62 × SIZE 

Residuals 
(Errors) 

Squared 
Errors 

𝑥𝑖  𝑦𝑖  𝑦̂𝑖  𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖  𝑒𝑖
2 

500 320 316.33 3.67 13.44 
550 380 347.42 32.58 1061.14 
620 400 390.95 9.05 81.86 
630 390 397.17 -7.17 51.42 
660 380 415.83 -35.83 1283.45 
700 410 440.70 -30.70 942.37 
770 480 484.23 -4.23 17.86 
880 600 552.63 47.37 2244.29 
920 570 577.50 -7.50 56.23 

1000 620 627.24 -7.24 52.48 

   RSS  = 5804.54 

 

A simple linear regression model is more effective when the observed 𝑦-values are 
closer to the fitted 𝑦̂-values. Therefore, for a specific dataset, a smaller value of 𝑠 is preferred 
over a larger one. The significance of "small" depends on the measurement scale of 𝑦, as 
both 𝑦 and 𝑠 share the same unit of measurement. Hence, 𝑠 is most useful for comparing 
different models for the same response variable 𝑦. For instance, consider using FLOOR 

(number of floors) as an alternative predictor to SIZE. If we fit a simple linear regression model 
with RENTAL PRICE (in hundreds of rupees) and FLOOR, and find that the regression standard 
error is 𝑠 = 30.52, it indicates that the observed RENTAL PRICE values deviate more (on average) 
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from the fitted RENTAL PRICE values in this model compared to the RENTAL PRICE–SIZE model 
(which had 𝑠 = 26.94). This suggests that the random errors are larger, and consequently, the 
deterministic part of the RENTAL PRICE–FLOOR model is less accurately estimated on average. 
Therefore, we cannot determine the linear relationship between RENTAL PRICE and FLOOR as 
precisely as we can between RENTAL PRICE and SIZE. 

 

Figure 3.1: Regression line with a ±2𝑠 band showing the 95% data range. 

Using the Central Limit Theorem, another way to understand 's ' is to multiply its value by 2, 
providing an approximate range for "prediction uncertainty." Specifically, about 95% of the 
observed 𝑦-values should fall within ±2𝑠 of their predicted 𝑦-values. This means that using 
a simple linear regression model to predict 𝑦-values based on given 𝑥-values, we can expect 
an accuracy of about ±2𝑠 at a 95% confidence level. In practice, approximately 95% of the 
data points in the scatterplot will lie within a vertical band of ±2𝑠 from the regression line. 
It's reasonable to assume that unobserved data points will also typically fall within this 
range. Thus, when predicting an unknown 𝑦-value for a given 𝑥-value, it is likely to be within 
this band (See, Figure 3.1). This approximation can be improved by employing a more precise 
method for determining prediction intervals. 

Check Your Progress – 1  
 
1. Perform step-by-step calculations to compute root mean squared error data provided 

in Problems 1 and 2 in 'Check Your Progress 1' of Unit 2. 
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3.3 Coefficient of Determination – R2 
To assess the fit of a simple linear regression model, we can compare it to a scenario where 
we have no knowledge of the predictor 𝑥. In this case, we only have a list of 𝑦-values. When 
predicting an individual 𝑦-value without a predictor, the sample mean 𝑦̅ is the best estimate, 
as it is unbiased and has relatively low sampling variability. The difference 𝑦𝑖 − 𝑦̅ represents 
the error involved in using 𝑦̅ to predict the 𝑦𝑖-value. We can gauge how well this univariate 
model fits the data by calculating the total sum of squares (TSS), which is the sum of the 
squared differences between the 𝑦𝑖-values and the sample mean 𝑦̅, and defined as  

TSS  =  ∑(yi − y̅)
2 

The sum at the bottom of the last column in Table 3.2 is the total sum of squares for  RENTAL 

PRICE–SIZE dataset.  
 

Table 3.2: Computation of total sum of squares for Example 2.1 
SIZE 

 
RENTAL PRICE 
 

Residuals 
(Errors) 

Squared 
Errors 

𝑥𝑖  𝑦𝑖  (yi − y̅) (yi − y̅)
2 

500 320 -135 18225 
550 380 -75 5625 
620 400 -55 3025 
630 390 -65 4225 
660 380 -75 5625 
700 410 -45 2025 
770 480 25 625 
880 600 145 21025 
920 570 115 13225 

1000 620 165 27225 

  TSS = 100850 

 
To measure how much the 𝑦̂ values on the estimated regression line deviate from 𝑦̅, another 
sum of squares is computed. This sum of squares, called sum of squares due to regression, 
denoted by, ESS (Explained Sum of Squares).  This represents the variation in 𝑦-values (around 
their sample mean) that is "explained" by the simple linear regression model (see, Figure 3.2). 
 
Figure 3.2 illustrates the relationship among these three sums of squares, presenting one of 
the most important results in statistics. The horizontal line represents the sample mean, 𝑦̅, 
while the positively sloped line represents the estimated regression line, 𝑦̂ = 𝑏0 + 𝑏1𝑥.  
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Figure 3.2: Deviations about the Estimated Regression Line and the Line 𝑦 = 𝑦̅. 

 
This relation arises from the description of an observation as 
 

yi⏟
Observed

= ŷi⏟
Fit

+ yi − ŷi⏟  
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 from fit

 

 
Subtracting 𝑦̅ from both sides, we obtain 
  

yi − y̅⏟  
Deviation from  mean

= ŷi − y̅⏟  
Deviation due to fit

+ yi − ŷi⏟  
Residual

 

 
Consequently, the total sum of squared deviations (TSS) in 𝑦 can be divided into two 
components: the first, deviation due to fit, ESS, evaluates the effectiveness of 𝑥 as a 
predictor of 𝑦, while the second, RSS, quantifies the prediction error. 

To assess how much smaller the RSS is compared to the TSS, we calculate the 
proportional reduction from TSS to RSS. This is referred to as the coefficient of determination, 
or R² ("R-squared"): 
 

𝑅2 =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
 

 
 The goodness-of-fit index, R², represents the proportion of the total variability in the 
response variable 𝑦 that can be attributed to the predictor variable 𝑥. A high R² value, close 
to 1, suggests that 𝑥 accounts for a substantial portion of the variation in 𝑦. This index is 
known as the coefficient of determination because it indicates how much the predictor 
variable 𝑥 determines or accounts for the response variable 𝑦. 

𝑦̂𝑖 

𝑦𝑖 

𝑥𝑖 
X 

Y 

𝑦̅ 

𝑦𝑖 − 𝑦̂𝑖 

𝑦𝑖 − 𝑦̅ 

𝑦̂𝑖 − 𝑦̅ 
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For RENTAL PRICE–SIZE dataset, we already know RSS = 5804.54 and TSS = 100850. 
Therefore,  

𝑅2 =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆
=
100850 − 5804.54

100850
= 0.942 

 
To interpret this number, it is standard practice to report the value as a percentage. In this 
case, we would conclude that 94.2% of the variation in RENTAL PRICE (about its mean) can be 
explained by a linear association between RENTAL PRICE and SIZE. 
 
Since 0 ≤ 𝑅𝑆𝑆 ≤ 𝑇𝑆𝑆, the value of R² must fall between 0 and 1. Consider three possibilities:  

1. If 𝑅𝑆𝑆 = 𝑇𝑆𝑆, then R² = 0. This means that using 𝑥 to predict 𝑦 has not been effective, 
and we might as well predict 𝑦 using the sample mean, 𝑦̅, regardless of the value of 
𝑥. 

2. If 𝑅𝑆𝑆 = 0, then R² = 1. In this case, using 𝑥 allows us to predict 𝑦 perfectly, with no 
random errors. 

3. These extreme cases are rare in practice; typically, R² falls between 0 and 1, with 
higher R² values indicating better-fitting simple linear regression models. 

 

3.3.1 Correlation Coefficient 
 
We already know that the correlation coefficient serves as a descriptive measure of the 
strength of linear association between two variables, 𝑥 and 𝑦. This coefficient can range from 
-1 to +1. A value of +1 signifies that the two variables are perfectly positively linearly related, 
meaning all data points lie on a straight line with a positive slope. Conversely, a value of -1 
indicates a perfect negative linear relationship, with all data points on a straight line with a 
negative slope. If the correlation coefficient is close to zero, it suggests that 𝑥 and 𝑦 do not 
have a linear relationship.  
 If a regression analysis has been conducted and the coefficient of determination, R2, 
has been calculated, we can use the algebraic relationship between the correlation 
coefficient, 𝑟, and the coefficient of determination, R2 as follows: 

r = (sign of b1)√R
2 

where, 𝑏1is the slope of the estimated regression equation 𝑦̂ = 𝑏0 + 𝑏1𝑥 . 
For RENTAL PRICE–SIZE dataset, since R2 = 0942 and 𝑏1has positive sign, the correction 

coefficient is +√0.942 = +0.97. Hence, we would conclude that a strong positive linear 
association exists between 𝑥 and 𝑦.  
 
Both measures serve important purposes. The correlation coefficient indicates the strength 
and direction of any linear relationship between 𝑦 and 𝑥, whereas the coefficient of 
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determination (R2) is a more general concept. R2 ranges from 0 to 1, while the correlation 
coefficient ranges from -1 to +1. While the correlation coefficient is confined to linear 
relationships between two variables, R2 can be applied to both nonlinear relationships and 
those involving multiple independent variables. As a result, the coefficient of determination 
has a broader range of applicability.  
 
The following code snippet gets the R-squared value from the model_summary, calculates the 
correlation coefficient by taking the square root of R-squared, and prints both values with a 
precision of two decimal places. 
 
# Extract R-squared (coefficient of determination) 
r_squared <- model_summary$r.squared 
 
# Sample correlation coefficient (r) is the square root of R-squared 
correlation_coefficient <- sqrt(r_squared) 
 
# Print values with 2 digits precision 
print(paste("R-squared:", round(r_squared, 2))) 

   [1] "R-squared: 0.94" 

print(paste("Correlation coefficient (r):", round(correlation_coefficient, 2)
)) 

   [1] "Correlation coefficient (r): 0.97" 

 
 

Check Your Progress – 2  
 
1. For the data provided in Problems 1 and 2 in 'Check Your Progress 1' of Unit 2, 

Compute: 
(a) The coefficient of determination, R2 and sample correlation coefficient. 
(b) Comment on the goodness of fit. 

 
 
 

3.4  LET US SUM UP 
The importance of model evaluation in linear regression lies in understanding how well the 
model captures the relationship between the predictor and response variables. Larger 
values of R-squared (𝑅²) indicate a better fit of the model to the data, meaning the observed 
values are more closely grouped around the regression line. Similarly, a smaller regression 



29 

standard error suggests that the model's predictions are more accurate, as the observed 
values are closer to the predicted values. Additionally, correlation coefficients are crucial 
for identifying linear associations between two variables, providing insight into the strength 
and direction of their relationship. Together, these metrics help assess the quality and 
reliability of a regression model's predictions. 

3.5 Check Your Progress: Possible Answers 
 

Check Your Progress – 1 & 2 
 
We provide a solution for Problem Set 1 using R code. This code delivers a thorough 
overview of all key regression metrics and presents the results in an organized, user-
friendly format, aligning well with manual calculations as discussed so far. 
 
# Computing Model Metrics Including Residuals, Standard Error, and Display
ing All Relevant Metrics  
 
# Step 1: Define the dataset 
# We have two variables: Pages (x) and Price (y) 
pages <- c(500, 700, 750, 590, 540, 650, 480) 
price <- c(70, 75, 90, 65, 75, 70, 45) 
 
# Step 2: Fit a linear model to the data 
# We are fitting a linear regression model to predict Price based on Pages 
model <- lm(price ~ pages) 
 
# Step 3: Extract model summary 
# This gives us R-squared, residual standard error, coefficients, and more 
model_summary <- summary(model) 
 
# Step 4: Prepare the table to show model details along with computed metr
ics 
# Residual Sum of Squares (RSS) 
RSS <- sum(residuals(model)^2)  # Sum of squared residuals 

# Total Sum of Squares (TSS) 
mean_price <- mean(price)  # Mean of the observed Price values 
TSS <- sum((price - mean_price)^2)  # Sum of squared differences from the 
mean 
cat("Total Sum of Squares (TSS):", round(TSS, 2), "\n") 

   Total Sum of Squares (TSS): 1100 

# Step 5: Collect model metrics in a table 
model_metrics <- data.frame( 
  Metric = c("Residual Sum of Squares (RSS)", "Residual Standard Error (Si
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gma)",  
             "R-squared", "Intercept", "Slope"), 
  Value = c( 
    round(RSS, 2),  # RSS rounded to 2 decimal places 
    round(model_summary$sigma, 2),  # Residual standard error (sigma) 
    round(model_summary$r.squared, 2),  # R-squared from model summary 
    round(model_summary$coefficients[1, 1], 2),  # Intercept 
    round(model_summary$coefficients[2, 1], 2)   # Slope (coefficient of P
ages) 
  ) 
) 
 
# Step 6: Display the table with all metrics 
cat("Model Summary and Key Metrics:\n") 

   Model Summary and Key Metrics: 

print(model_metrics) 

                              Metric  Value 
   1   Residual Sum of Squares (RSS) 480.80 
   2 Residual Standard Error (Sigma)   9.81 
   3                       R-squared   0.56 
   4                       Intercept  10.42 
   5                           Slope   0.10 

# Step 7: Display the dataset along with predicted values (Fitted Values) 
and Residuals 
fitted_values <- round(fitted(model), 2)  # Fitted values rounded to 2 dec
imal places 
residuals_values <- round(residuals(model), 2)  # Residuals rounded to 2 d
ecimal places 
 
# Combine the dataset with fitted values and residuals into a table 
results_table <- data.frame( 
  Pages = pages, 
  Actual_Price = price, 
  Predicted_Price = fitted_values, 
  Residuals = residuals_values 
) 
 
cat("\nDataset with Fitted Values and Residuals:\n") 

    
   Dataset with Fitted Values and Residuals: 

print(results_table) 
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     Pages Actual_Price Predicted_Price Residuals 
   1   500           70           59.95     10.05 
   2   700           75           79.77     -4.77 
   3   750           90           84.72      5.28 
   4   590           65           68.87     -3.87 
   5   540           75           63.91     11.09 
   6   650           70           74.81     -4.81 
   7   480           45           57.97    -12.97 

 

 
 

3.6 Further Reading 
1. Introduction to Linear Regression Analysis 6th Edition, Montgomery, Peck, Vining, 

Wiley Publication, February 2021 
2. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 

Cengage Learning, January 2016 
3. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 

December 2020 

3.7 Assignment  
(1) How does the standard error help in assessing the reliability of regression coefficients? 
(2) Explain the role of the coefficient of determination (R²) in evaluating a regression model. 
(3) What does the correlation coefficient signify, and how does it differ from R²? 
(4) To further reinforce your understanding, you are encouraged to calculate all the metrics 

discussed in this unit for the dataset provided in Assignment 2.8 (Unit 2). 



32 

Unit 4 Assessing the Strength of the Linear Relationship 
Unit Structure 

4.0 LEARNING OBJECTIVES 

4.1 Introduction 

4.2 TESTS OF HYPOTHESES 

4.3 LET US SUM UP 

4.4 Check Your Progress: Possible Answers 

4.5 Further Reading 

4.6 Assignment 
 

 
 

4.0  Learning Objectives 

After going through this unit, you should be able to 
• Understand how the slope parameter (𝑏1) in linear regression represents the 

relationship between the predictor variable (𝑥) and the response variable (𝑦). 
• Learn how to estimate and test the slope parameter for significance. 
• Understand the concept of statistical significance and how to interpret p-values to 

determine if there is a meaningful linear relationship between 𝑥 and 𝑦. 
• Understand how to interpret the strength of evidence of a linear association and its 

implications for model reliability and prediction accuracy. 

4.1  Introduction  

After evaluating how well the model fits the data, it's essential to examine the relationship 
between the predictor variable (𝑥) and the response variable (𝑦). Is the linear relationship 
strong enough to make reliable predictions? To answer this question, we focus on the slope 
of the regression line, which indicates the nature of the relationship, and its statistical 

significance, which tells us whether this relationship is likely to be meaningful or due to 
chance. In this block, we will explore how to estimate and test the slope parameter, 
determine the strength of the linear association, and assess whether the model's predictor 
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can be trusted for making predictions. This step is crucial to ensure that the model not only 
fits well but is also backed by a solid and reliable relationship. 

4.2  TESTS OF HYPOTHESES 

A more formal approach to assess the usefulness of 𝑥 as a predictor of 𝑦 is through 
hypothesis testing of the regression parameter 𝑏1. In a simple linear regression model, the 
expected value of 𝑦 is a linear function of 𝑥, expressed as: 𝐸(𝑦|𝑥) = 𝛽0 + 𝛽1𝑥. 

If 𝛽1 = 0, the equation simplifies to 𝐸(𝑦|𝑥) = 𝛽0 + 0 ⋅ 𝑥 = 𝛽0, meaning the expected 
value of 𝑦 does not depend on 𝑥. In this case, we would conclude that there is no linear 
relationship between 𝑥 and 𝑦. On the other hand, if 𝛽1 ≠ 0, we would infer that 𝑥 and 𝑦 are 
related. Thus, to test for a significant regression relationship, we must conduct a hypothesis 
test to determine whether the value of 𝛽1 is zero.  

To conduct this hypothesis test, we make the following assumptions: for each fixed 
value of 𝑥, the residuals (ε's) are assumed to be independent, normally distributed random 
variables with a mean of zero and a common variance σ2. Under these assumptions, 𝑏0 and 
𝑏1  are unbiased estimators of 𝛽0 and 𝛽1, respectively. Their variances are  

𝑉𝑎𝑟(𝑏0) = σ2 [
1

𝑛
+

𝑥̅2

∑(𝑥 − 𝑥̅)2
] 

(1) 

𝑉𝑎𝑟(𝑏1) =
𝜎2

∑(𝑥 − 𝑥̅)2
 

(4.2) 

  
Furthermore, the sampling distributions of the least squares estimates 𝑏0 and 𝑏1 are normal 
with means 𝛽0 and 𝛽1 and variance as given in (4.1) and (4.2), respectively. 
 Replacing 𝜎2 in (4.1) and (4.2) by 𝑠2, defined in Unit 3 eq. (3.1), we get unbiased 
estimates of the variances of 𝑏0 and 𝑏1. An estimate of the standard deviation is called the 
standard error (s.e.) of the estimate. Thus, the standard errors of 𝑏0 and 𝑏1are 

𝑠𝑏0
= 𝑠√[

1

𝑛
+

𝑥̅2

∑(𝑥 − 𝑥̅)2
] 

(4.3) 

𝑠𝑏1
=

𝑠

√∑(𝑥 − 𝑥̅)2
 (4.4) 

 
RENTAL PRICE – SIZE dataset, 𝑠 = 26.94. Hence, using ∑(𝑥 − 𝑥̅)2 = 245810 (as shown in 
previous unit, Table --), we have  

𝑠𝑏1
=

26.94

√245810
= 0.054 

as the estimated standard deviation of 𝑏1. 
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4.2.1  t Test 

 
With the sampling distributions of 𝑏0 and 𝑏1, we are now able to conduct a statistical 
analysis to assess the effectiveness of 𝑥 as a predictor of 𝑦. Assuming normality, the t-Test 
is the appropriate test statistic for testing the null hypothesis 𝐇0: β1 = 0 against the 
alternative hypothesis 𝐇1: β1 ≠ 0. 
 The t test for a significant relationship is based on the fact that the test statistic  

𝑏1 − 𝛽1

𝑠𝑏1

 

  
follows a t distribution with n − 2 degrees of freedom. If the null hypothesis is true, then 𝛽1 =

0 and 𝑡 = 𝑏1/𝑠𝑏1
.  

 Let us conduct this test of significance for RENTAL PRICE – SIZE dataset at the 𝛼 = 0.05 
level of significance. The test statistic is 

𝑡 =
𝑏1

𝑠𝑏1

=
0.62

0.054
= 11.48 

The appropriate critical value obtained from Student’s t-distribution for 𝑛 − 2 = 10 − 2 = 8 
degree of freedom (df) and 𝛼 = 0.05 is 2.31.  
 
Figure 4.1 shows a t-distribution with 8 degrees of freedom. With a significance level of 𝛼 =

0.05, the rejection regions are divided between both tails, with each tail representing 𝛼

2
=

0.025. The critical values are marked at -2.31 and 2.31, defining the boundaries of the 
acceptance region. Since our calculated t-value is 11.48, it falls well beyond the critical 
value of 2.31 (𝑡 = 11.48 > 2.31), placing it in the rejection region. Thus, the null hypothesis 
is rejected. This evidence is sufficient to conclude that a significant relationship exists 
between rental price and size. 
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Figure 4.1: t-distribution (df = 8 and 𝛼 = 0.05) with critical values and rejection area 
 
If we type summary(model) in the console, we will get 
 
Call: 
   lm(formula = Rental_Price ~ Size, data = data) 
    
   Residuals: 
       Min      1Q  Median      3Q     Max  
   -35.825  -7.435  -5.698   7.702  47.374  
    
   Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
   (Intercept)  5.42289   40.19353   0.135    0.896     
   Size         0.62182    0.05433  11.445 3.07e-06 *** 
   --- 
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
    
   Residual standard error: 26.94 on 8 degrees of freedom 
   Multiple R-squared:  0.9424, Adjusted R-squared:  0.9352  
   F-statistic:   131 on 1 and 8 DF,  p-value: 3.072e-06 

  In the output above, after the function call, you’ll find a summary of the residuals, 
followed by the Coefficients Table. This table presents the estimated regression coefficients 
(5.42289 and 0.62182) along with their respective standard errors (40.19353 and 0.05433). 
The first line below the Coefficients Table indicates that the Residual standard error is 26.94, 
based on 8 degrees of freedom (n − 2). 
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p-value: Another criterion to determine the significance is to compare p-values for the t -
Test. The p-value is calculated and included in the output of the lm() function. In the 
summary(model) output above, the t-values and p-values for both the intercept and the 
slope are provided under the columns labeled " t value " and " Pr(>|t|)", respectively. It’s 
important to note that the p-value for the slope is very close to zero (3.07e-06). Hence, the 
null hypothesis is rejected at practically any small significant level. This is indicated in the 
summary(model) output above by three stars. A p-value less than 0.05 (𝛼), indicates that 
the predictor (Size in this case) is significantly associated with the response variable (Rental 
Price). 
 The entire procedure is illustrated in the following R code to perform a t-Test, obtain 
critical values, and extract t-values and p-values from the table, and interpret the results 
based on the significance level. 
# Creating a data frame 
data <- data.frame( 
  Size = c(500, 550, 620, 630, 660, 700, 770, 880, 920, 1000), 
  Rental_Price = c(320, 380, 400, 390, 380, 410, 480, 600, 570, 620) 
) 
 
# Fit the linear regression model 
model <- lm(Rental_Price ~ Size, data = data) 
 
# Get the summary of the model 
model_summary <- summary(model) 
 
# Degrees of freedom 
df <- nrow(data) - 2 
 
# Critical value for two-tailed test at 5% significance level 
alpha <- 0.05 
critical_value <- qt(1 - alpha / 2, df) 
 
# Print the critical value 
cat("Critical t-value for 5% significance level: ", critical_value, "\n") 

   Critical t-value for 5% significance level:  2.306004 

# Extract the coefficient (b1) and standard error for Size 
coef_size <- coef(model)["Size"] 
se_size <- model_summary$coefficients["Size", "Std. Error"] 
 
# Calculate the t-statistic 
t_stat <- coef_size / se_size 
 
# Extract the p-value for Size 
p_value <- model_summary$coefficients["Size", "Pr(>|t|)"] 
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# Print the results 
cat("t-statistic for Size: ", t_stat, "\n") 

   t-statistic for Size:  11.44528 

cat("p-value for Size: ", p_value, "\n") 

   p-value for Size:  3.072415e-06 

# Determine if Size is significant at 5% significance level 
if (abs(t_stat) > critical_value) { 
  cat("Reject the null hypothesis: Size is significantly associated with Rent
al_Price.\n") 
} else { 
  cat("Fail to reject the null hypothesis: Size is not significantly associat
ed with Rental_Price.\n") 
} 

   Reject the null hypothesis: Size is significantly associated with Rental_P
rice. 

Confidence Interval for 𝛽1  

The form of a confidence interval for 𝛽1 is as follows: 
𝑏1 ± 𝑡𝛼∕2𝑠𝑏1

 (4.5) 
 
The confidence interval in (4.5) follows the standard interpretation: if we were to repeatedly 
sample the same size from the same values of 𝑥 and construct 95% confidence intervals for 
the slope parameter for each sample, we would expect 95% of these intervals to contain the 
true value of the slope. 
From earlier calculations, we see that a 95% confidence interval for 𝛽1 is 

𝑏1 ± 𝑡𝛼∕2𝑠𝑏1
= 0.62 ± 2.31 × 0.054 = (0.4965, 0.7471) 

As the interval does not include zero, it suggests that Size has a statistically 
significant relationship with the Rental Price at the 95% confidence level. Thus, for each 
additional square foot Size, the Rental Price is expected to increase between ₹50 and ₹75.  

The following R code snippet demonstrates how to obtain the lower and upper 
confidence limits.  
# Compute the 95% confidence interval for the slope (Size) 
conf_int <- confint(model, level = 0.95) 
 
# Print the confidence interval for the slope 
cat("95% Confidence Interval for the slope (Size): ", conf_int[2, ], "\n") 

   95% Confidence Interval for the slope (Size):  0.4965366 0.7471069 



38 

Check Your Progress – 1  
 
1. For the data provided in Problems 1 and 2 in 'Check Your Progress 1' of Unit 2,  

(a) Test for a significant relationship by using the t test. Use 𝛼 = .05. 
(b) What is your conclusion? 

 

4.2.2  F Test 

 
An F test, which relies on the F probability distribution, can also be used to test for 
significance in regression. When there is only one independent variable, the F test will yield 
the same result as the t-test. In other words, if the t-test shows that 𝛽1 ≠  0 and indicates a 
significant relationship, the F test will also show a significant relationship. However, when 
there are multiple independent variables, only the F test can be used to test for an overall 
significant relationship. 

The rationale for using the F test to assess the statistical significance of a regression 
relationship is based on generating two independent estimates of 𝜎2. We previously 
discussed how the Mean Squared Error (MSE) provides one estimate of 𝜎2. If the null 
hypothesis H₀: 𝛽1 = 0 is true, dividing the sum of squares due to regression (ESS) by its 
degrees of freedom gives another independent estimate of 𝜎2. This estimate is referred to 
as the Mean Square due to Regression (MSR). If we consider the regression degrees of 
freedom equals to the number of independent variables in the model, MSR is given by  

𝑀𝑆𝑅 =
𝐸𝑆𝑆

Number of independent variables  
 

 
For RENTAL PRICE – SIZE dataset, there is one independent variable, 𝑀𝑆𝑅 = 𝐸𝑆𝑆 =

𝑇𝑆𝑆 − 𝑅𝑆𝑆 = 100850 − 5804.54 = 95045.46.  
If the null hypothesis 𝐻0: 𝛽1 =  0 is true, both MSR and MSE are independent 

estimates of 𝜎2, and the ratio 𝑀𝑆𝑅

𝑀𝑆𝐸
 follows an F distribution, with the numerator degrees of 

freedom equal to one and the denominator degrees of freedom equal to 𝑛 −  2. Therefore, 

when 𝛽1 = 0, the ratio 𝑀𝑆𝑅

𝑀𝑆𝐸
 should be close to one. However, if the null hypothesis is false 

(𝛽1 ≠ 0), MSR will overestimate 𝜎2, causing the ratio 𝑀𝑆𝑅

𝑀𝑆𝐸
 to become inflated. Consequently, 

large values of 𝑀𝑆𝑅

𝑀𝑆𝐸
 lead to the rejection of 𝐻0, indicating that the relationship between 𝑥 and 

𝑦 is statistically significant. 
Hence, the test statistic for RENTAL PRICE – SIZE dataset is  

𝐹 =
𝑀𝑆𝑅

𝑀𝑆𝐸
=

95045.46

725.57
= 130.99  
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The F distribution table shows that with one degree of freedom in the numerator and 
8 degrees of freedom in the denominator, F = 5.32 provides an area of 0.05 in the upper tail. 
Since our calculated F value is greater than critical value (130.99 > 5.32), the result is highly 
significant, leading to the rejection of the null hypothesis.  
 
An ANOVA table can be used to summarize the results of the F test for significance in 
regression. The following code snippet produces the ANOVA table with the F test 
computations performed for RENTAL PRICE – SIZE dataset. 
 
# Generate the ANOVA table 
anova(model) 

   Analysis of Variance Table 
    
   Response: Rental_Price 
             Df Sum Sq Mean Sq F value    Pr(>F)     
   Size       1  95045   95045  130.99 3.072e-06 *** 
   Residuals  8   5805     726                       
   --- 
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

In the above output, Sum Sq indicates Sum of Squares whereas Mean Sq indicates Mean 
Squares. Pr(>F) shows the p-value associated with the F test. The ANOVA table confirms 
the same conclusion about the significance of the relationship as the t-test. 
 

Check Your Progress – 2  
 
1. For the data provided in Problems 1 and 2 in 'Check Your Progress 1' of Unit 2,  

(a) Use the F test to test for a significant relationship. Use 𝛼 = .05. 
(b) What is your conclusion? 

 

4.3  LET US SUM UP 

This unit emphasized assessing the linear relationship strength between the predictor (𝑥) 
and the response (𝑦). By examining the slope parameter (𝑏1), we understood its role in model 
predictions. Performing t-Tests and F-Tests provided insights into testing the slope's 
statistical significance, determining if the relationship is meaningful or by chance. These 
tests help evaluate the model's reliability and ensure the relationship between variables 
supports accurate predictions. Ultimately, this unit highlighted the importance of a 
statistically significant and trustworthy relationship for making informed decisions. 
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4.4  Check Your Progress: Possible Answers 

Check Your Progress – 1 & 2 
 
We provide a solution for Problem Set 1 using R code.  
 
# Creating the Data Frame 
data <- data.frame( 
  pages = c(500, 700, 750, 590, 540, 650, 480), 
  price = c(70, 75, 90, 65, 75, 70, 45) 
) 
 
# Performing Linear Regression 
model <- lm(price ~ pages, data = data) 
 
# Summary of the model 
model_summary <- summary(model) 
 
# t-Test p-value for the slope parameter (b₁) 
t_test_p_value <- model_summary$coefficients[2, 4] 
 
# Performing ANOVA for the model 
anova_result <- anova(model) 
 
# F-Test p-value 
f_test_p_value <- anova_result$"Pr(>F)"[1] 
 
# Set significance level 
alpha <- 0.05 
 
# Check significance of t-Test and F-Test 
if (t_test_p_value < alpha & f_test_p_value < alpha) { 
  cat("The relationship between pages and price is statistically significa
nt.\n") 
  cat("t-Test p-value:", t_test_p_value, "\n") 
  cat("F-Test p-value:", f_test_p_value, "\n") 
} else { 
  cat("The relationship between pages and price is not statistically signi
ficant.\n") 
  cat("t-Test p-value:", t_test_p_value, "\n") 
  cat("F-Test p-value:", f_test_p_value, "\n") 
} 

   The relationship between pages and price is not statistically significa
nt. 
   t-Test p-value: 0.05204836  
   F-Test p-value: 0.05204836 
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4.5  Further Reading 

1. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 
Cengage Learning, January 2016 

2. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 
December 2020 

3. Regression Analysis by Example Using R 6th Edition, Ali S. Hadi and Samprit 
Chatterjee, Wiley Publication, October 2023 

4.6  Assignment 

1. Discuss how the F-test is used to assess the overall fit of a simple regression model. 
2. Explain how the t-test is used to evaluate the significance of the slope (regression 

coefficient) in a simple regression model. 
3. For the dataset provided in Assignment 2.8 (Unit 2), answer the following questions: 

(a) Does the t test indicate a significant relationship between Oxygen consumption and 
the age? what is your conclusion? Use 𝛼 = .05. 

(b) Test for a significant relationship using the F test. What is your conclusion? Use 𝛼 = 
.05. 

(c) Show the ANOVA table for this data. 
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Block 2: Multiple Regression and Model 
Diagnostics 
 

Introduction 
 
Regression analysis is a fundamental tool in data science, widely used to uncover 
relationships between variables and make data-driven predictions. While simple linear 
regression provides a foundation, real-world problems often require more sophisticated 
techniques to account for multiple predictors and ensure model accuracy. This block, 
Multiple Regression and Model Diagnostics, delves into the intricacies of multiple linear 
regression, hypothesis testing, and model diagnostics, equipping you with the tools to 
build, evaluate, and refine robust regression models. 
 
In Unit 1: Multiple Linear Regression, you will explore the principles and formulation of 
multivariable linear regression. You will learn how to develop models using multiple 
numerical predictors, interpret the coefficients, and evaluate model fit using metrics like 
R-squared and Adjusted R-squared. This unit lays the groundwork for understanding how 
multiple variables interact to influence an outcome. 
 
Unit 2: Testing for Significance focuses on hypothesis testing in the context of multiple 
regression. You will learn about the F-test, which assesses the overall significance of the 
model, and the t-test, which evaluates the significance of individual predictors. Through 
practical examples, such as the Office Rental Price Example, you will gain hands-on 
experience in applying these tests to real-world data. 
 
Finally, Unit 3: Model Diagnostic and Residual Analysis emphasizes the importance of 
validating regression models. You will learn about residuals, the key assumptions of 
linear regression, and how to use residual plots and statistical measures like leverage 
and Cook’s Distance to diagnose model issues. By the end of this unit, you will be 
proficient in using statistical software (e.g., R) to perform comprehensive regression 
diagnostics, ensuring your models are both accurate and reliable. 
 
Together, these units provide a comprehensive understanding of advanced regression 
techniques, empowering you to tackle complex data analysis challenges with 
confidence. Regardless of your background or experience, this block will enhance your 
ability to build, interpret, and validate sophisticated regression models in real-world 
scenarios. 
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Unit 1 Multiple Linear Regression 

Unit Structure 

1.0 Learning Objectives 

1.1 Introduction 

1.2 Multiple Linear Regression Model 

1.3 Estimated Multiple Regression Equation 

1.4 Least Squares Criterion 

1.5 Example – Estimating Rental Prices 

1.6 LET US SUM UP 

1.7 Check Your Progress: Possible Answers 

1.8 Further Reading 

1.9 Assignment 
 

1.0 Learning Objectives 

After going through this unit, you should be able to 
• Understand the principles and formulation of multivariable linear regression. 
• Develop a multivariable linear regression model using multiple numerical predictors. 
• Interpret the coefficients of a multivariable model. 
• Evaluate the fit of a regression model using metrics such as R-squared, and Adjusted 

R-squared. 

1.1 Introduction 

The simple two-variable regression models we have examined so far represent the most 
basic form of regression analysis. However, real-world scenarios are usually more intricate. 
Therefore, in this unit, we extend the model to introduce multiple linear regression models. 
The principles of regression models and regression equations discussed in the previous 
block also apply to multiple regression. 
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1.2 Multiple Linear Regression Model 

The multiple linear regression model describes an algebraic relationship between a 
response variable and one or more predictor variables. 

• Y represents the response variable, which may also be referred to as the dependent, 
outcome, or output variable. This variable should be quantitative, meaning it should 
have meaningful numerical values. 

• (X₁, X₂, …) are the predictor variables, also called independent, input, or explanatory 
variables, or covariates. In this unit, we assume that these variables are also 
quantitative. 

Consider a sample of 𝑛 sets of observations of (𝑋₁, 𝑋₂, … , 𝑌), represented as (𝑥₁ᵢ, 𝑥₂ᵢ, … , 𝑦ᵢ) 
for 𝑖 = 1,2, … , 𝑛, where 𝑖 indexes each observation in the sample. The simple linear 
regression model discussed in Block 1 is a special case where there is only one predictor 
variable. If there are p predictor or explanatory variables, the observations are usually 
represented as in Table 1.1 

Table 1.1: Notation Used in Multiple Regression Analysis 
Observation 
Number 

Response Predictors 
(Y) X₁ X₂ … Xₚ 

1 𝑦1 𝑥11 𝑥12 … 𝑥1𝑝 
2 𝑦2 𝑥21 𝑥22 … 𝑥2𝑝 
3 𝑦3 𝑥31 𝑥32 … 𝑥3𝑝 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
n 𝑦𝑛 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑝 

 
In most cases, the response variable Y is easily identifiable—it typically “responds” in some 
way to changes in the values of the predictor variables (𝑋₁, 𝑋₂, … ). If the model accurately 
represents the relationship between Y and the predictors, knowing the values of the 
predictors allows us to predict corresponding values of the response variable. 
The multiple linear regression model can be written as: 

𝑌|(𝑋₁, 𝑋₂, … ) = 𝐸(𝑌|(𝑋₁ᵢ, 𝑋₂ᵢ, … )) + 𝑒ᵢ for 𝑖 = 1,2, … , 𝑛 
Where,  

• The vertical bar (|) indicates “given.”  
• 𝐸(𝑌|(𝑋₁ᵢ, 𝑋₂ᵢ, … )) is the expected value of Y given the values of the predictor 

variables.  
• 𝑒ᵢ is random error 

The deterministic part of the model, 𝐸(𝑌|(𝑋₁, 𝑋₂, … )), is expressed as: 

𝐸(𝑌|(𝑋₁, 𝑋₂, … )) = 𝛽₀ + 𝛽₁𝑋₁ + 𝛽₂𝑋₂ + ⋯ 
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The regression equation, which represents this relationship, typically includes only the 
deterministic part. The regression parameter 𝛽₀ is the intercept, which is the value of Y when 
all predictor variables are zero. The regression parameter 𝛽₁ represents the change in Y for 
a 1-unit increase in 𝑋₁, while holding all other predictors constant. Similarly, 𝛽₂ shows the 
change in Y for a 1-unit increase in 𝑋₂, and so on. 
The equation: 

𝐸(𝑌|(𝑋₁, 𝑋₂, … )) = 𝛽₀ + 𝛽₁𝑋₁ + 𝛽₂𝑋₂ + ⋯ 
is known as the regression equation and represents the linear plane of best fit for the data. 

1.3 Estimated Multiple Regression Equation 

In practice, the parameters 𝛽₀, 𝛽₁, 𝛽₂, … are estimated using sample data. From a 
random sample, we calculate sample statistics 𝑏₀, 𝑏₁, 𝑏₂, …, which serve as estimates for 
the corresponding population parameters 𝛽₀, 𝛽₁, 𝛽₂, …. 
The estimated multiple regression equation, based on the sample data, is: 

𝑌̂ = 𝑏₀ + 𝑏₁𝑋₁ + 𝑏₂𝑋₂ + ⋯ 
Where: - 𝑌̂ is the predicted (or fitted) value of Y. - 𝑋₁, 𝑋₂, … are the predictor variables. - The 
estimated parameters 𝑏₀, 𝑏₁, 𝑏₂, … represent the intercept and the coefficients for the 
predictors. 

In summary, the estimated regression equation provides an algebraic expression of 
the linear relationship between the response variable and the predictors, enabling us to 
make predictions about Y given specific values of the predictors. 

1.4 Least Squares Criterion 

In Block 1, we applied the least squares method to derive the estimated regression 
equation that most closely approximates the linear relationship between the dependent and 
independent variables. This same method is utilized to formulate the estimated multiple 
regression equation. The least squares criterion is restated as follows: 

min ∑(𝑦𝑖 − 𝑦̂𝑖)2 (1.1) 

According to expression (1.1), the least squares method utilizes sample data to 
determine the values of 𝑏₀, 𝑏₁, 𝑏₂, … that minimize the sum of squared residuals, which are 
the deviations between the observed values (𝑦𝑖) and the predicted values (𝑦̂𝑖) of the 
dependent variables.  

In Block 1, we presented formulas for calculating the least squares estimators b0 and 
b1 for the simple linear regression equation 𝑦̂ = 𝑏0 + 𝑏1𝑥. For smaller data sets, these 
formulas allowed us to manually compute 𝑏0 and 𝑏1. However, in multiple regression, 
deriving the formulas for the regression coefficients 𝑏₀, 𝑏₁, 𝑏₂, …  requires matrix algebra, 
which is beyond the scope of this text. Therefore, we will focus on using statistical software 
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like R to obtain the estimated regression equation and other relevant information in multiple 
regression. The main emphasis will be on interpreting the output from the R code, rather 
than on performing the multiple regression calculations manually. 

1.5 Example – Estimating Rental Prices   

Recall the Rental Price–Size example from Block 1, where we examined the relationship 
between the rental price and the size of office spaces. we continue with the same example 
and expand the analysis by investigating whether adding a new predictor—the Floor of the 
building where the office is located— can further explain the variation in rental price. The 
dataset with the Floor of the building added, are shown in Table 1.2.  

 
Table 1.2: Dataset for Example 1.1 

Location Size Floor Rental price 

1 500 4 320 
2 550 7 380 
3 620 9 400 
4 630 5 390 
5 660 8 380 
6 700 4 410 
7 770 10 480 
8 880 12 600 
9 920 14 570 

10 1000 9 620 
    

 
To model the rental price based on the size and floor of office locations in the population 
represented by this sample, we use a multiple linear regression model: 

E [Rental Price|(Size, Floor)]  =  b0  +  b1  ×  Size  +  b2  ×  Floor 
These sample values are stored in an R object named 'data'. The computations for the 
estimated regression coefficients are illustrated using R code, and their values are 
displayed.  
 
# Create the data frame 
data <- data.frame( 
  Size = c(500, 550, 620, 630, 660, 700, 770, 880, 920, 1000), 
  Floor = c(4, 7, 9, 5, 8, 4, 10, 12, 14, 9), 
  Rental_price = c(320, 380, 400, 390, 380, 410, 480, 600, 570, 620) 
) 
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# Fit the regression model 
model <- lm(Rental_price ~ Size + Floor, data = data) 
 
# Display only the coefficients 
coefficients(model) 

## (Intercept)        Size       Floor  
##  15.5862798   0.5537922   4.7587783 

Hence, the fitted regression equation is as follows: 
Rental Pricê = 𝑏0 + 𝑏1 × Size + 𝑏2 × Floor =  15.59 + 0.55 × Size + 4.76 × Floor    

Note that this association holds only over the range of sample predictor values, that is, 
Size from 500 to 1000 square feet and Floor from 4 to 14. 
 

The values 𝑏1 = 0.55 and 𝑏2  = 4.76 can be used together to determine how changes 
in both size and floor level affect the rental price. For instance, since the rental price is 
expressed in hundreds of rupees, an office with a size of 830 square feet located on the 10th 
floor would have a rental price of ₹100 × (0.55 × 830 + 4.76 × 10) = ₹50,410. 

1.5.1 Interpretation of Coefficients 

The interpretation of regression coefficients in a multiple regression equation often 
causes confusion. In simple regression, the equation represents a line, while in multiple 
regression, the equation represents a plane (when there are two predictors) or a hyperplane 
(when there are more than two predictors). As a result, the value of 𝑏1 differs between simple 
and multiple regression. For instance, in our example, 𝑏1 = 0.62 in simple regression, but 𝑏1 
= 0.55 in multiple regression. This means that for every 1 square foot increase in office 
space, the rental price is expected to increase by ₹0.55 when the number of floors remains 
constant. More specifically, we would expect the rental price to rise by ₹55 for each square 
foot increase in Size, assuming the number of floors is held constant. Similarly, 𝑏2 = 4.76 
indicates the change in rental price for a 1-unit increase in the number of floors, while 
keeping all other predictor variables constant. In other words, for each additional Floor, the 
rental price is expected to increase by ₹476, assuming the other variables remain 
unchanged. 

From this, we can conclude that simple and multiple regression coefficients are not 
equal unless the predictor variables are uncorrelated. In observational data, predictor 
variables are rarely uncorrelated. However, in experimental settings, researchers often 
design the experiment to ensure that predictor variables are uncorrelated because they 
control the values of the predictors. Therefore, in experimental samples, it’s possible for the 
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explanatory variables to be uncorrelated, which would make the simple and multiple 
regression coefficients identical in that particular sample. 

1.5.2 MULTIPLE COEFFICIENT OF DETERMINATION 

Once the linear model has been fitted to the data set, it's important to evaluate the adequacy 
of the fit. The discussion in Section 3.3 of Block 1 is relevant here. All the material extends 
naturally to multiple regression and thus will not be repeated. 

The multiple coefficient of determination, denoted R2, is computed as follows: 

𝑅2 =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
 

where TSS is the total sum of squares and RSS is the residual sum of squares. R2 is the 
proportion of variation in Y (about mean) “explained” by a linear association between  𝑌 and 
(𝑋₁, 𝑋₂, … , ). 
We can obtain this value from the following command. 
 
# Extract Multiple R-squared (Multiple Coefficient of Determination) 
round(summary(model)$r.squared,4) 

## " Multiple R-squared: 0.9535" 
So, with the Multiple R-squared value being 0.9535, it indicates that approximately 

95.35% of the variance in the rental price is predictable from the Size and Floor variables. 

In Section 3.3 of Block 1, we see that the 𝑅2  (R-squared) value for the regression 
equation with a single predictor variable, Size, is 94.2%. This means that 94.2% of the 
variation in rental price is explained by the regression equation. When an additional 
predictor variable, number of floors, is included, the 𝑅2 value increases to 95.35%. 
Generally, 𝑅2 tends to increase as more independent variables are added to the model. 

This increase occurs because adding predictor variables typically reduces the 
prediction errors, which in turn lowers the residual sum of squares (RSS). Since ESS = TSS – 
RSS, a smaller RSS leads to a larger ESS, thus increasing the  𝑅2  (R-squared) value. Note 
that 𝑅2  =  𝐸𝑆𝑆 / 𝑇𝑆𝑆  , where ESS is the explained sum of squares and TSS is the total sum 
of squares. 

When a variable is added to a model, 𝑅2 tends to increase, even if the added variable 
is not statistically significant. To account for the number of independent variables in the 
model, the adjusted 𝑅2 is used. This adjustment helps prevent overestimating the effect of 
adding a variable on the explained variability in the regression equation. Analysts often 
prefer using the adjusted 𝑅2 to get a more accurate representation of the model’s 
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explanatory power. The formula for the adjusted 𝑅2 is calculated using n (the number of 
observations) and p (the number of independent variables) as follows:  

𝑅𝑎
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝 − 1
 

 
(1.2) 

With n = 10 and p = 2, for our example, we have, 

𝑅𝑎
2 = 1 − (1 − 0.9535)

10 − 1

10 − 2 − 1
= 0.9403 

In practice, we can obtain the value for adjusted 𝑅2 directly from the following command for 
any particular multiple linear regression model. 

# Extract Multiple R-squared (Multiple Coefficient of Determination) 
round(summary(model)$adj.r.squared,4) 

## "Adjusted R-squared:  0.9403 " 

If the value of 𝑅2 is low and the model includes many independent variables, the 
adjusted coefficient of determination may become negative. In such cases, the adjusted 𝑅𝑎

2 
is effectively treated as zero. 

Check Your Progress – 1  
 
Note to students: The exercises in this and subsequent units are designed to be solved 
using computer software. It is highly recommended to use appropriate software 
packages to perform data analysis and complete the exercises effectively. 
1. Consider the following data for a dependent variable Y and two independent 

variables, X1 and X2. 
X1 25 30 47 51 40 36 74 51 76 59 
X2 17 12 10 16 5 12 7 19 16 13 
Y 112 94 108 178 94 117 170 175 211 142 

(a) Develop an estimated regression equation relating Y to X1. Predict Y if X1 = 50. 
(b) Develop an estimated regression equation relating Y to X2. Predict Y if X2 = 11. 
(c) Develop an estimated regression equation relating Y to X1 and X2. Predict Y if X1 = 50 

and X2 = 11. 
(d) Compute R2 for the model estimated in part (a), (b), and (c). Comments on the 

goodness of fit. 
(e) Compute 𝑅𝑎

2. 
(f) Do you prefer the multiple regression results? Explain. 

 



50 

1.6 LET US SUM UP 

This unit provides a comprehensive introduction to multivariable linear regression. By the 
end, you will have a proper understanding of the key principles and formulation behind this 
technique. You'll be able to develop a regression model using multiple numerical predictors, 
interpret the model's coefficients, and assess its fit with important metrics like R-squared 
and Adjusted R-squared. This foundational knowledge will empower you to apply 
multivariable linear regression effectively in real-world data analysis. 

1.7 Check Your Progress: Possible Answers 

Check Your Progress – 1  
 
Solution for Problem Set 1 using R code.  
# Given Data  
X1 <- c(25, 30, 47, 51, 40, 36, 74, 51, 76, 59) 
X2 <- c(17, 12, 10, 16, 5, 12, 7, 19, 16, 13) 
Y <- c(112, 94, 108, 178, 94, 117, 170, 175, 211, 142) 
data <- data.frame(X1, X2, Y) 

# Regression model relating Y to X1 
model1 <- lm(Y ~ X1, data = data) 
# summary(model1) 
# Display only the coefficients 
print(coefficients(model1)) 

## (Intercept)          X1  
##   45.059369    1.943571 

# Predicting Y when X1 = 50 
pred_Y_X1_50 <- predict(model1, data.frame(X1 = 50)) 
pred_Y_X1_50 

##        1  
## 142.2379 

# Regression model relating Y to X2 
model2 <- lm(Y ~ X2, data = data) 
# summary(model2) 
# Display only the coefficients 
print(coefficients(model2)) 

## (Intercept)          X2  
##   85.217102    4.321488 
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# Predicting Y when X2 = 11 
pred_Y_X2_11 <- predict(model2, data.frame(X2 = 11)) 
pred_Y_X2_11 

##        1  
## 132.7535 

# Regression model relating Y to both X1 and X2 
model3 <- lm(Y ~ X1 + X2, data = data) 
# summary(model3) 
# Display only the coefficients 
print(coefficients(model3)) 

## (Intercept)          X1          X2  
##  -18.368268    2.010185    4.737812 

# Predicting Y when X1 = 50 and X2 = 11 
pred_Y_X1_50_X2_11 <- predict(model3, data.frame(X1 = 50, X2 = 11)) 
pred_Y_X1_50_X2_11 

##        1  
## 134.2569 

# Calculate R-squared and Adjusted R-squared for each model 
r_squared <- c(summary(model1)$r.squared,  
               summary(model2)$r.squared,  
               summary(model3)$r.squared) 
 
adj_r_squared <- c(summary(model1)$adj.r.squared,  
                   summary(model2)$adj.r.squared,  
                   summary(model3)$adj.r.squared) 
 
# Create a data frame to display the results 
results <- data.frame( 
  Model = c("Model 1: Y ~ X1", "Model 2: Y ~ X2", "Model 3: Y ~ X1 + X2"), 
  R_squared = r_squared, 
  Adjusted_R_squared = adj_r_squared 
) 
 
# Display the results 
print(results) 

##                  Model R_squared Adjusted_R_squared 
## 1      Model 1: Y ~ X1 0.6600351          0.6175395 
## 2      Model 2: Y ~ X2 0.2215265          0.1242173 
## 3 Model 3: Y ~ X1 + X2 0.9255251          0.9042466 
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Model 3 explains much more of the variation in the dependent variable (Y) compared to  
the simpler models with just X1 or X2. The higher Adjusted R-squared value in Model 3    
suggests that the inclusion of both predictors (X1 and X2) leads to a better model.  

1.8 Further Reading 

1. Introduction to Linear Regression Analysis 6th Edition, Montgomery, Peck, Vining, 
Wiley Publication, February 2021 

2. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 
Cengage Learning, January 2016 

3. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 
December 2020 

4. Regression Analysis by Example Using R 6th Edition, Ali S. Hadi and Samprit 
Chatterjee, Wiley Publication, October 2023 

1.9 Assignment 

1. Explain the difference between simple and multiple regression. 
2. How do you interpret the coefficients in a multiple regression model? 
3. Let's consider adding another independent variable to our office rental price dataset: 

the broadband rate available at the office (in Mbps). The full dataset is presented in the 
table below. 

Table 1.3: Office Rental Price Dataset Including Broadband Rate 
Location Size Floor Broadband 

Rate 
Rental price 

1 500 4 80 320 
2 550 7 500 380 
3 620 9 70 400 
4 630 5 240 390 
5 660 8 1000 380 
6 700 4 80 410 
7 770 10 70 480 
8 880 12 500 600 
9 920 14 80 570 

10 1000 9 240 620 

     
(a) Obtain estimated multiple regression equation. 
(b) Compute and interpret R2 and 𝑅𝑎

2. 
(c) Do you prefer the multiple regression results? Explain. 
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Unit 2 Testing for Significance 
Unit Structure 

2.0 Learning Objectives 

2.1 Introduction 

2.2 F-Test 

2.3 𝒕 - Test 

2.4 LET US SUM UP 

2.5 Check Your Progress: Possible Answers 

2.6 Further Reading 

2.7 Assignment  
 

2.0 Learning Objectives 
After completing this unit, you will be able to 

(a) Understand the purpose and application of the F-test in multiple regression for 
assessing overall significance. 

(b) Learn how to use the t-test to evaluate the significance of individual independent 
variables in a multiple regression model. 

(c) Distinguish between the roles of the F-test and t-test in multiple regression analysis. 
(d) Gain practical experience by applying both the F-test and t-test to a real-world 

example, such as the Office Rental Price Example. 

2.1 Introduction 
Once we have estimated the parameters in a multiple regression model, two important 
questions arise: 

1. What is the overall adequacy of the model? 
2. Which specific predictors are important in explaining the variation in the dependent 

variable? 
To answer these questions, we use several hypothesis testing procedures. These formal 
tests rely on the assumption that random errors are independent and follow a normal 
distribution with a mean of zero and constant variance.  
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In this unit, we will explore how to use significance tests in multiple regression to 
assess both the overall fit of the model and the significance of individual predictors. We will 
cover the use of the F-test for overall significance and the t-test for assessing the importance 
of each predictor in the model. 

2.2 F-Test 
The F-test helps to determine whether there is a significant relationship between the 
dependent variable and the entire set of predictor variables. We will refer to this as the test 

for overall significance. 
Suppose that our population multiple linear regression model has p predictor X-variables: 

𝐸 (𝑌|(𝑋₁, 𝑋₂, … 𝑋𝑝)) = 𝛽₀ + 𝛽₁𝑋₁ + 𝛽₂𝑋₂ + ⋯ 𝛽𝑝𝑋𝑝 

The hypotheses for the F test involve the parameters of the multiple regression model.  
1. Null hypothesis:  𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0  
2. Alternative hypothesis:  𝐻1:at least one of 𝛽1, 𝛽2, ⋯ 𝛽𝑝 is not equal to zero 
3. Calculate test statistic:   

𝐹 =
(𝑇𝑆𝑆 − 𝑅𝑆𝑆)/𝑝 

𝑅𝑆𝑆/(𝑛 − 𝑝 − 1) 
=

𝑅2/𝑝 

(1 − 𝑅2)/(𝑛 − 𝑝 − 1) 
 

The first formula gives us some understanding of how the hypothesis test 
works. As outlined in Section 4.2.2 of Block 1, the difference between the Total Sum 
of Squares (TSS) and the Residual Sum of Squares (RSS), or TSS − RSS, is known as 
the regression sum of squares. When this value is small compared to RSS, it implies 
that the predictors (𝑋₁, 𝑋₂, … 𝑋𝑝) do little to reduce the random errors between the 

actual Y-values and the predicted 𝑌̂-values. In such cases, using the sample mean,𝑦̅, 
as the model could be equally effective. The F-statistic will be small, likely falling 
outside the rejection region, making the null hypothesis more likely to be true. 
Conversely, if the regression sum of squares (ESS) is large relative to the RSS, the 
predictors significantly reduce the random errors between the actual Y-values and 
the predicted 𝑌̂-values. This suggests that at least one of the predictors should be 
included in the model. Under these circumstances, the F-statistic will be large, likely 
falling in the rejection region, which supports the alternative hypothesis. 

The second formula enables the calculation of the global F-statistic by using 
the value of R². It demonstrates how a high R² value tends to result in a large F-
statistic, indicating a strong relationship between the predictors and the response 
variable, and vice versa. 

4. Set significance level 𝛼: 5% 
5. Look up a critical value or a p-value using an F-distribution: 
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• Critical value: A particular percentile of the F-distribution with 𝑝 numerator 
degrees of freedom and 𝑛 −  𝑝 −  1 denominator degrees of freedom; 

• p-value: The area to the right of the global F-statistic for the F-distribution with p 
numerator degrees of freedom and 𝑛 −  𝑝 −  1 denominator degrees of freedom; 

6. Make decision: 

• If the F-statistic falls in the rejection region, or the p-value is less than the 
significance level, then we reject the null hypothesis. 

• If the F-statistic does not fall in the rejection region, or the p-value is greater than 
or equal to the significance level, then the null hypothesis cannot be rejected.  

7. Interpret in the context of the situation: 

Rejecting the null hypothesis (H₀) gives us sufficient statistical evidence to conclude 
that at least one of the parameters is not zero. This means that at least one of the 
predictors (X1, X2, ..., Xp) has a linear association with the response variable, Y, and 
their overall relationship is significant. On the other hand, failing to reject the null 
hypothesis suggests that none of the predictors (X1, X2, ..., Xp) are linearly 
associated with Y, and we do not have enough evidence to confirm a significant 
relationship between the predictors and the response variable. 

 
Let us apply the F test to Office Rental Price multiple regression problem. With two 
independent variables, the hypotheses are written as follows:  

𝐻0: 𝛽1 = 𝛽2 = 0 
𝐻1: 𝛽1and/or 𝛽2 is not equal to zero 

The following R code demonstrates the entire procedure for performing an F-Test. It includes 
obtaining critical values, computing the F-statistic using two different formulas, and 
extracting and displaying F-values and p-values. and interpreting the results based on the 
significance level. 
# Create the data frame 
data <- data.frame( 
  Size = c(500, 550, 620, 630, 660, 700, 770, 880, 920, 1000), 
  Floor = c(4, 7, 9, 5, 8, 4, 10, 12, 14, 9), 
  Rental_price = c(320, 380, 400, 390, 380, 410, 480, 600, 570, 620) 
) 
 
# Fit the regression model 
model <- lm(Rental_price ~ Size + Floor, data = data) 
 
# Calculate the total sum of squares (TSS) 
TSS <- sum((data$Rental_price - mean(data$Rental_price))^2) 
 
# Calculate the residual sum of squares (RSS) 
RSS <- sum(residuals(model)^2) 
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# Get the R-squared value from the model 
R_squared <- summary(model)$r.squared 
 
# Number of predictors (p) and number of observations (n) 
p <- length(coef(model)) - 1  # excluding the intercept 
n <- nrow(data) 
 
# Compute the F-statistic using the formula1 
F_statistic_1 <- ((TSS - RSS) / p) / (RSS / (n - p - 1)) 
 
# Compute the F-statistic using the formula2 
F_statistic_2 <- (R_squared / p) / ((1 - R_squared) / (n - p - 1)) 
 
# Display the F-statistic 
 
cat("F-statistic using formula 1 :", round(F_statistic_1, 4), "\n") 

## F-statistic using formula 1 : 71.8154 

cat("F-statistic using formula 2 :", round(F_statistic_2, 4), "\n") 

## F-statistic using formula 2 : 71.8154 

# Get the summary of the regression model 
model_summary <- summary(model) 
# Extract the F-statistic value and its degrees of freedom (df) 
F_statistic <- model_summary$fstatistic[1] 
 

# Get the degrees of freedom for the model and residuals 
df1 <- model_summary$fstatistic[2]  # Degrees of freedom for the model (p) 
df2 <- model_summary$fstatistic[3]  # Degrees of freedom for the residuals (n 
- p - 1) 
 
# Significance level (alpha) 
alpha <- 0.05 
 
# Critical value for the F-distribution at 5% significance level 
F_critical <- qf(1 - alpha, df1, df2) 
 
# Calculate the p-value for the F-statistic 
p_value <- 1 - pf(F_statistic, df1, df2) 
 
# Display the results 
cat("F-statistic:", round(F_statistic, 4), "\n") 

## F-statistic: 71.8154 

cat("Critical value:", round(F_critical, 4), "\n") 

## Critical value: 4.7374 
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cat("p-value:", round(p_value, 4), "\n") 

## p-value: 0 

# Decision based on critical value and p-value approach 
if (F_statistic > F_critical) { 
  cat("Reject the null hypothesis using the critical value approach. The mode
l is significant.\n") 
} else { 
  cat("Fail to reject the null hypothesis using the critical value approach. 
The model is not significant.\n") 
} 

## Reject the null hypothesis using the critical value approach. The model is 
significant. 

if (p_value < alpha) { 
  cat("Reject the null hypothesis using the p-value approach. The model is si
gnificant.\n") 
} else { 
  cat("Fail to reject the null hypothesis using the p-value approach. The mod
el is not significant.\n") 
} 

## Reject the null hypothesis using the p-value approach. The model is signif
icant. 

 
Table 2.1 illustrates the general analysis of variance (ANOVA) table, presenting the F test 
results for a multiple regression model. The F test statistic's value, found in the last column, 
can be compared to 𝐹𝛼. This comparison involves 𝑝 degrees of freedom in the numerator 
and 𝑛 − 𝑝 − 1 degrees of freedom in the denominator to draw the conclusion of the 
hypothesis test. 
 
Table 2.1: Analysis of Variance for Significance of Regression in Multiple Regression 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Value 

Regression ESS 𝑝 𝑀𝑆𝑅 = (𝑇𝑆𝑆 − 𝑅𝑆𝑆)/𝑝  
𝐹 =

𝑀𝑆𝑅

𝑀𝑆𝐸
 

Residual RSS 𝑛 − 𝑝 − 1 𝑀𝑆𝐸 = 𝑅𝑆𝑆/(𝑛 − 𝑝 − 1) 
Total TSS 𝑛 − 1  

 
The model object created in the above code using the lm() function contains all the 
necessary information to construct an ANOVA table. However, it does not generate the table 
automatically. For a more comprehensive and well-organized display of regression results, 
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including coefficients and ANOVA tables, the ols_regress() function from the olsrr package 
can be used. To understand this better, try running the following code: 
 
# Create the data frame 
data <- data.frame( 
  Size = c(500, 550, 620, 630, 660, 700, 770, 880, 920, 1000), 
  Floor = c(4, 7, 9, 5, 8, 4, 10, 12, 14, 9), 
  Rental_price = c(320, 380, 400, 390, 380, 410, 480, 600, 570, 620) 
) 
# Fit the regression model 
model <- lm(Rental_price ~ Size + Floor, data = data) 
 

if(!require("olsrr")) install.packages("olsrr") 

ols_regress(model) 

The first two tables of the output are: 
 

Model Summary 

---------------------------------------------------------------- 
 R                        0.976       RMSE                21.649  
 R-Squared                0.954       MSE                468.662  
 Adj. R-Squared           0.940       Coef. Var            5.687  
 Pred R-Squared           0.913       AIC                 97.878  
 MAE                     16.899       SBC                 99.088  
 ---------------------------------------------------------------- 

  RMSE: Root Mean Square Error  
  MSE: Mean Square Error  
  MAE: Mean Absolute Error  
  AIC: Akaike Information Criteria  
  SBC: Schwarz Bayesian Criteria  
 

ANOVA 

--------------------------------------------------------------------- 
                   Sum of                                              
                  Squares       DF    Mean Square      F         Sig.  
 --------------------------------------------------------------------- 
 Regression     96163.377        2      48081.688    71.815    0.0000  
 Residual        4686.623        7        669.518                      
 Total         100850.000        9                                     
 --------------------------------------------------------------------- 
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2.3 𝒕 - Test 
 
Once it is determined that at least one of the predictors plays a significant role, the next step 
is to identify which specific predictor(s) contribute meaningfully to the model. Introducing a 
new variable into a regression model will inevitably increase the regression sum of squares 
while decreasing the residual sum of squares. However, it is crucial to assess whether this 
increase is substantial enough to justify adding the new predictor. Additionally, 
incorporating extra predictors raises the variance of the predicted value 𝑦̂, making it 
important to include only those variables that meaningfully explain the response. 
Furthermore, adding an irrelevant predictor could lead to an increase in the residual mean 
square, potentially diminishing the overall effectiveness of the model. Hence, a separate 𝑡-
test is conducted for each independent variable in the model. These tests are referred to as 
tests for individual significance. 
 

The hypotheses for testing the significance of any individual regression coefficient, 
such as 𝛽𝑗, are 

𝐻0: 𝛽𝑗 = 0, 𝐻1: 𝛽𝑗 ≠ 0 
If 𝐻0: 𝛽𝑗 = 0 is not rejected, then this indicates that the predictor 𝑥𝑗  can be removed 

from the model. The test statistic for this hypothesis is 

𝑡 =
𝑏𝑗

𝑠𝑏𝑗

 

where 𝑠𝑏𝑗
  is the estimate of the standard deviation of 𝑏𝑗. The value of 𝑠𝑏𝑗

will be provided by 

the computer software package. The null hypothesis is rejected if ⌊𝑡⌋ ≥ 𝑡𝛼 2⁄ ,𝑛−𝑝−1 or if 𝑝-
value ≤ 𝛼.  
 

To illustrate the procedure, consider the Office Rental Price data given in Unit 1 of 
Block 2. Suppose we wish to assess the value of the predictor variable 𝑥2 (floor) given that 
the predictor 𝑥1 (size) is in the model. The hypotheses are 

𝐻0: 𝛽2 = 0, 𝐻1: 𝛽2 ≠ 0 
The 𝑡 statistics can be computed as 

𝑡 =
𝑏2

𝑠𝑏2

=
4.759

3.683
= 1.292 

This result indicates that the regressor 𝑥2 (floor) does not significantly contribute to the 
model. The 𝑝-value associated with this 𝑡 statistic is 0.237, (From Table 2.2), which is 
greater than the significance level, leading to the conclusion that Floor is not a significant 
predictor of Rental Price.  
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 Moreover, the confidence interval Lower = -3.950, Upper = 13.467 for Floor contains 
zero, meaning there is a possibility that the true value of the coefficient could be zero. This 
further supports the conclusion that Floor may not significantly contribute to predicting 
Rental Price. 
 

Table 2.2: Statistical Significance for Rental Price 
----------------------------------------------------------------------------------------- 
       model      Beta    Std. Error    Std. Beta      t       Sig       lower      upper  
 ----------------------------------------------------------------------------------------- 
 (Intercept)    15.586        39.403                 0.396    0.704    -77.587    108.759  
        Size     0.554         0.074        0.865    7.470    0.000      0.379      0.729  
       Floor     4.759         3.683        0.150    1.292    0.237     -3.950     13.467  
 ----------------------------------------------------------------------------------------- 

 
 On the other hand, the t-statistic for Size is quite large (t = 7.470), which suggests that 
the coefficient for Size is significantly different from zero. The 𝑝-value for Size is very low 
(significantly less than 0.05), which means that Size is statistically significant in predicting 
the Rental Price. With 95% confidence, we can say that the true value for the Size coefficient 
lies between 0.379 and 0.729. Since this interval does not contain zero, the coefficient is 
significantly different from zero. 
In short, the Size variable is a significant predictor of Rental Price, while the Floor variable 
isn’t as important in this case. 
 
Practical Considerations: Even though Floor is not statistically significant in this case, you 
may want to consider if there are practical or domain-specific reasons why it should remain 
in the model. For example, in some real-world situations, the number of floors might still 
have a theoretical importance (e.g., buildings with more floors might still generally have 
higher rental prices due to other factors, like views or prestige). 
 
Check Your Progress – 1  
 
1. Refer to the data presented in “Check Your Progress 1” in Unit 1 of this Block.   

X1 25 30 47 51 40 36 74 51 76 59 
X2 17 12 10 16 5 12 7 19 16 13 
Y 112 94 108 178 94 117 170 175 211 142 

(a) Verify the values for MSR and MSE. 
(b) Use an F test and a .05 level of significance to determine whether there is a 

relationship among the variables. 
(c) Use 𝛼 = .05 to test the significance of 𝛽1. Should X1 be dropped from the model? 
(d) Use 𝛼 = .05 to test the significance of 𝛽2. Should X2 be dropped from the model? 
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2.4 LET US SUM UP 
 
In this unit, we explored how to conduct significance tests in multiple regression analysis. 
We discussed the use of the F-test to determine whether there is a significant relationship 
between the dependent variable and all independent variables in the model (overall 
significance). Once overall significance is established, we then use the t-test to evaluate the 
individual contributions of each independent variable to the model (individual significance). 
Through the Office Rental Price Example, we demonstrated the practical application of both 
the F-test and t-test, highlighting their distinct purposes and how they complement each 
other in multiple regression analysis. 
 

2.5 Check Your Progress: Possible Answers 
 

Check Your Progress – 1  
 
Solution for Problem Set 1 using R code.  
# Given Data  
X1 <- c(25, 30, 47, 51, 40, 36, 74, 51, 76, 59) 
X2 <- c(17, 12, 10, 16, 5, 12, 7, 19, 16, 13) 
Y <- c(112, 94, 108, 178, 94, 117, 170, 175, 211, 142) 
data <- data.frame(X1, X2, Y) 

# Regression model relating Y to both X1 and X2 
model <- lm(Y ~ X1 + X2, data = data) 
ols_regress(model) 

                          Model Summary                           
 --------------------------------------------------------------- 
 R                       0.962       RMSE                10.634  
 R-Squared               0.926       MSE                113.075  
 Adj. R-Squared          0.904       Coef. Var            9.072  
 Pred R-Squared          0.880       AIC                 83.659  
 MAE                     8.107       SBC                 84.870  
 --------------------------------------------------------------- 
  RMSE: Root Mean Square Error  
  MSE: Mean Square Error  
  MAE: Mean Absolute Error  
  AIC: Akaike Information Criteria  
  SBC: Schwarz Bayesian Criteria  
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                                   ANOVA                                  
 -------------------------------------------------------------------- 
                  Sum of                                              
                 Squares       DF    Mean Square      F         Sig.  
 -------------------------------------------------------------------- 
 Regression    14052.155        2       7026.077    43.496     1e-04  
 Residual       1130.745        7        161.535                      
 Total         15182.900        9                                     
 -------------------------------------------------------------------- 
  
                                    Parameter Estimates                                      
 ------------------------------------------------------------------------------------------ 
       model       Beta    Std. Error    Std. Beta      t        Sig       lower     upper  
 ------------------------------------------------------------------------------------------ 
 (Intercept)    -18.368        17.972                 -1.022    0.341    -60.864    24.128  
          X1      2.010         0.247        0.840     8.134    0.000      1.426     2.595  
          X2      4.738         0.948        0.516     4.995    0.002      2.495     6.981  
 ------------------------------------------------------------------------------------------ 

 

2.6 Further Reading 
1. Introduction to Linear Regression Analysis 6th Edition, Montgomery, Peck, Vining, 

Wiley Publication, February 2021 
2. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 

Cengage Learning, January 2016 
3. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 

December 2020 
4. Regression Analysis by Example Using R 6th Edition, Ali S. Hadi and Samprit 

Chatterjee, Wiley Publication, October 2023 
 

2.7 Assignment 
1. Explain how the F-test is used to assess the overall significance of a regression model. 
2. What does a significant F-test imply about the relationship between the predictors and 

the response variable? 
3. Discuss how the t-test is used to evaluate the significance of individual predictors in a 

regression model. 
4. For the dataset provided in Assignment 1.9 (Unit 1), answer the following questions: 

(a) Formulate the null and alternative hypotheses, perform F test with a .05 level of 
significance to determine whether there is a relationship among the variables. 

(b) Formulate the null and alternative hypotheses and perform a t-test with a 0.05 level 
of significance to determine whether the predictor variables are significant in the 
regression model. 
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Unit 3: Model Diagnostic and Residual Analysis  
 
Unit Structure  

3.0 Learning Objectives 

3.1 Introduction 

3.2 The Regression Assumptions 

3.3 Various Types of Residuals 

3.4 Visualizing Residuals 

3.5 Leverage and Influence 

3.6 Practical Application – Estimating Rental Prices 

3.7 LET US SUM UP 

3.8 Check Your Progress: Possible Answers 

3.9 Further Reading 

3.10 Assignment 
 

 

3.0 Learning Objectives 
After reading this unit, you should be able to: 

• Define residuals and explain their significance in regression analysis. 
• Understand the key assumptions of linear regression and their role in model 

accuracy. 
• Identify and interpret various types of residuals, including their implications for 

model diagnostics. 
• Learn how to use residual plots to visually diagnose model issues. 
• Identify influential observations using leverage and Cook’s Distance. 
• Use statistical software (e.g., R) to perform comprehensive regression diagnostics. 
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3.1 Introduction 
In the previous units, we explored the fundamental aspects of regression analysis, including: 

• The construction of regression models, 
• The least squares method, 
• The interpretation of R2 as a measure of model fit, and 
• Hypothesis testing using t-tests and F-tests in simple and multiple regressions. 

These tools help us evaluate the relationships between variables and assess the statistical 
significance of our model. However, assessing a model's reliability goes beyond statistical 
significance—we must also examine whether the model meets key assumptions and 
provides accurate predictions. 

Residual analysis plays a crucial role in this process. By analyzing the differences between 
observed and predicted values, we can diagnose potential issues such as: 

• Non-linearity (when a linear model does not adequately describe the relationship), 
• Heteroscedasticity (when error variance is not constant), and 
• Outliers or influential points that can distort model estimates. 

Understanding residuals and their properties allows us to refine regression models and 
ensure their validity. By the end of this unit, you will be equipped with the skills to assess your 
regression model using residual analysis and make necessary improvements. 
 

3.2 The Regression Assumptions 
 
The major assumptions that we have made thus far in our study of regression analysis 
are as follows:  

3.2.1 Linearity Assumption:  
The relationship between dependent and independent variables must be linear: 

𝐸 (𝑌|(𝑋1, 𝑋2, ⋯ , 𝑋𝑝)) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜀 (3.1) 

 
 which implies that the ith observation, for 𝑖 = 1, 2, ⋯ , 𝑛, can be written as 
 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖  (3.2) 
 

 A scatter plot of Y versus X can help assess linearity in the case of simple 
linear regression. Checking for linearity in multiple regression is more challenging 
due to the high dimensionality of the data. If non-linear patterns exist, 
transformations (e.g., logarithmic, polynomial regression) may be needed. 
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3.2.2 Assumptions About the Errors 
In a linear regression model, the error terms (ε1, ε2, … , ε𝑛) are assumed to follow 
specific statistical properties to ensure valid inferences. These assumptions include: 

(a) Normality of Errors: The error terms are expected to be normally distributed. This 
assumption is particularly important for hypothesis testing and confidence interval 
estimation. Assessing normality is more challenging when predictor variables are not 
replicated, but it can be evaluated using graphical methods such as histograms, Q-
Q plots, or statistical tests. 

(b) Zero Mean: The average of the error terms should be zero, ensuring that the 
regression model does not systematically overestimate or underestimate the 
dependent variable. 

(c) Constant Variance (Homoscedasticity): The error terms should have a uniform 
variance (σ2) across all levels of the independent variables. If this condition is 
violated, it results in heteroscedasticity, where residual variance changes with 
predictor values, potentially leading to inefficient estimates and biased inference. 
Methods such as residual plots can help to detect this issue. 

(d) Independence of Errors: The errors should be independent of one another, meaning 
that the value of one error term should not be influenced by another. If errors are 
correlated (as often seen in time-series data), it results in autocorrelation, which 
can affect the efficiency of regression estimates. Autocorrelation is commonly 
tested using the Durbin-Watson statistic. 

3.2.3 Assumptions About the Predictors: 
In regression analysis, certain assumptions about the predictor variables 
(𝑋1, 𝑋2, … , 𝑋𝑝) must be met to ensure valid and reliable model estimates. These 
assumptions include: 

(a) Non-Random Predictors: The predictor variables are typically assumed to be fixed, 
meaning their values are predetermined rather than random. This assumption holds 
in experimental settings where researchers control the predictor values. However, in 
observational studies, predictors are often random, and as a result, statistical 
inferences must be interpreted conditionally based on the observed data. 

(b) Measurement Accuracy: It is assumed that predictor variables are measured 
without error. In practice, measurement errors can occur, particularly in fields like 
social sciences, where precise measurements are difficult to obtain. Such errors can 
distort the residual variance, affect the multiple correlation coefficient, and 
introduce bias in regression coefficients. The extent of this impact depends on 
factors like the standard deviation of measurement errors and correlations between 
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variables. Although correcting for measurement errors is complex, their effects 
should be considered when interpreting regression results. 

(c) No Perfect Multicollinearity: The predictor variables should not be perfectly 
correlated with each other. If two or more predictors exhibit a near-perfect linear 
relationship, it leads to multicollinearity, which makes it difficult to estimate 
individual regression coefficients accurately. This problem affects the stability of the 
regression model and can inflate standard errors, leading to unreliable statistical 
inferences. Techniques such as Variance Inflation Factor (VIF) analysis and 
principal component analysis (PCA) can help detect and address multicollinearity. 

While the first two assumptions are often difficult to verify directly, they 
influence how regression results should be interpreted. Ensuring that predictor 
variables are appropriately chosen and free from severe multicollinearity helps 
maintain the integrity of the regression model. 

Check Your Progress – 1  
1. Which assumption helps detect non-constant variance? 

(a) Independence of Errors (b) Homoscedasticity 
(c) Zero Mean (d) Normality of Errors 

2. What does multicollinearity refer to? 
(a) Error terms having unequal 

variance 
(b) Predictor variables being perfectly 

correlated 
(c) Model overfitting (d) Regression model instability 

3. Which method can help detect multicollinearity? 
(a) Durbin-Watson Test (b) Variance Inflation Factor (VIF) 
(c) Q-Q Plot (d) Residual Plot 

 

 
 

3.3 Various Types of Residuals 
 
Residuals are a key diagnostic tool in regression analysis, used to assess model 
performance and identify potential violations of regression assumptions. By analyzing 
residuals, we can uncover underlying model deficiencies that may not be evident from 
summary statistics alone. Different types of residuals serve distinct purposes in model 
diagnostics, offering valuable insights for improving the model and better understanding the 
data. 
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3.3.1 Ordinary Least Squares (OLS) Residuals 
The most basic type of residual is the Ordinary Least Squares (OLS) residual, which is the 
difference between observed values (𝑦𝑖) and the predicted values (𝑦̂𝑖)  from a regression 
model: 

𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 
These residuals provide an initial assessment of how well the model fits the data: 

• If the residuals are small and randomly distributed, it indicates a good model fit. 
• If residuals show a pattern, it suggests that the model is not adequately capturing the 

data structure. 
• The sum of residuals is always zero in a correctly specified linear regression model. 

However, one issue with OLS residuals is that their variance is not constant across all 
observations due to differences in leverage (some points have more influence on the model 
than others). This issue is addressed using standardized and studentized residuals. 

3.3.2 Standardized Residuals 
Standardized residuals are often used in residual analysis. They are calculated by 
subtracting the mean and dividing by the standard deviation. For residuals from the least 
squares method, the mean is zero, so each residual is divided by its standard deviation to 
standardize it. Standardizing is useful as it makes residuals comparable across different 
observations despite their non-constant variance in OLS. The standardized residual is given 
by: 

𝑧𝑖 =
𝑒𝑖

𝜎√1 − 𝑝𝑖𝑖

 

where: 
- 𝜎 is the estimated standard deviation of the residuals. 
- 𝑝𝑖𝑖  is the leverage value, which indicates how much influence an observation has on its 
own fitted value. 
Standardized residuals are useful in identifying outliers—values greater than ±2 or ±3 may 
indicate extreme observations. However, standardized residuals still depend on the overall 
estimate of error variance and may not always be the best indicator of influential points. 
This leads us to studentized residuals, which provide a better approach. 
Leverage 
Leverage is quantified using the hat matrix, which transforms the observed values into fitted 
values. The regression model estimates fitted values as: 

𝑦̂𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 
An alternative way to express this is: 

𝑦̂𝑖 = 𝑝𝑖1𝑦1 + 𝑝𝑖2𝑦2 + ⋯ + 𝑝𝑖𝑛𝑦𝑛 
where 𝑝𝑖𝑗  represents elements of the hat matrix. These elements depend only on the 
predictor variables and not on the response variable. 
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In simple linear regression, the leverage values are computed as: 

𝑝𝑖𝑖 =
1

𝑛
+

(𝑥𝑖 − 𝑥‾)2

∑(𝑥𝑗 − 𝑥‾)
2 

For multiple regression, leverage values are the diagonal elements of the hat matrix 𝐻: 
𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 

where 𝐻 is the projection matrix, and each diagonal element 𝑝𝑖𝑖 represents the leverage of 
observation 𝑖. 
 

3.3.3 Studentized Residuals (Internally Studentized Residuals) 
To further refine residual analysis, we use studentized residuals, also known as internally 
studentized residuals. These are calculated as follows: 

𝑟𝑖 =
𝑒𝑖

𝜎̂√1 − 𝑝𝑖𝑖

 

where 𝜎̂ is the estimated standard deviation of the residuals. 
Unlike standardized residuals, studentized residuals account for variability in each 
observation more effectively. They are better suited for detecting outliers in regression 
analysis. However, since they still depend on the dataset as a whole, a more robust 
approach is to use externally studentized residuals. 
 

3.3.4 Externally Studentized Residuals (Deleted Studentized Residuals) 
Externally studentized residuals, also called deleted studentized residuals or R - student , 
improve upon internally studentized residuals by removing the effect of the observation 
being evaluated. The formula is: 

𝑟𝑖
∗ =

𝑒𝑖

𝜎̂(𝑖)√1 − 𝑝𝑖𝑖

 

where 𝜎̂(𝑖) is the standard deviation estimated without the 𝑖𝑡ℎ observation.  
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Check Your Progress – 2  
1. What is the main drawback of OLS residuals? 

(a) They are difficult to compute 
(b) They do not account for leverage 
(c) They cannot detect outliers 
(d) They always have a non-zero sum 

2. How do studentized residuals differ from standardized residuals? 
(a) They use the mean of residuals 
(b) They account for variability in each observation 
(c) They ignore leverage values 
(d) They are the same as OLS residuals 

3. What does a high externally studentized residual indicate? 
(a) A strong linear relationship (b) A significant outlier 
(c) A normally distributed residual (d) An insignificant predictor variable 

 

 

3.4 Visualizing Residuals 
Visual inspection of residuals is a crucial diagnostic technique for assessing the 
assumptions of regression models. Residual plots are graphical tools used to evaluate the 
adequacy of a regression model and detect violations of key assumptions such as non-
linearity, heteroscedasticity, and outliers. These plots are typically generated using 
statistical software (e.g., R, Python, SPSS) and should be examined routinely in regression 
analysis. In this section, we will explore common residual plots and their interpretation.  

To make meaningful interpretations, internally studentized residuals are often 
used because they have constant variance. 

3.4.1 Normal Probability Plot (Q-Q Plot) 

The normal probability plot is a graphical tool used to assess whether the error term in a 
regression model follows a normal distribution. This plot is developed using the concept of 
normal scores, which are based on the expected values of ordered statistics from a standard 
normal distribution. 

Concept of Normal Scores 
1. Suppose you repeatedly draw random samples of size 10 from a standard normal 

distribution (mean = 0, standard deviation = 1). 
2. For each sample, order the values from smallest to largest. 
3. The smallest value in each sample is called the first-order statistic. 
4. Statisticians have determined that for a sample size of 10, the expected value of the 

first-order statistic is −1.55. This expected value is called a normal score. 
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5. For a sample of size 𝑛 = 10, there are 10 order statistics and 10 corresponding 
normal scores (see the R code in Example section). 

6. In general, for a dataset with 𝑛 observations, there will be 𝑛 order statistics and 𝑛 
normal scores. 

Constructing the Normal Probability Plot 
1. Order the standardized residuals from smallest to largest. 
2. Pair each ordered standardized residual with its corresponding normal score. 
3. Plot the normal scores on the horizontal axis and the ordered standardized 

residuals on the vertical axis. 

Interpreting the Plot 
• If the standardized residuals are approximately normally distributed, the plotted 

points should cluster closely around a 45-degree line passing through the origin. 
• Deviations from this line indicate departures from normality: 

• S-shaped or curved patterns suggest skewness. 
• Heavy tails indicate the presence of outliers or extreme values. 

3.4.2 Residuals vs. Predictor Variables Plot 

A residual plot against the independent variable X is a graph where the independent 
variable values are plotted on the horizontal axis, and the corresponding residual values are 
plotted on the vertical axis. Each residual is represented by a point on the plot. 

Before interpreting this plot, let’s examine some common patterns that might appear in any 
residual plot. Three examples are illustrated in Figure 3.1. 

1. Ideal Case (Panel a): 
If the variance of the error term (𝜀) is constant for all values of the predictor variable 
(𝑥) and the regression model accurately represents the relationship between the 
variables, the residual plot should resemble a horizontal band of points. This 
indicates that the model assumptions are satisfied. 

2. Non-Constant Variance (Panel b): 
If the variance of 𝜀 is not the same for all 𝑥 values—for example, if there is greater 
variability around the regression line for larger 𝑥 values—the residual plot might 
display an outward-opening funnel pattern. This suggests that the assumption of 
constant variance is violated. An inward-opening funnel pattern could also occur, 
indicating that the variance increases as 𝑦 decreases. 

3. Double-Bow Pattern (Panel c): 
This pattern often appears when 𝑦 represents a proportion between 0 and 1. The 
variance of a binomial proportion is typically greater near 0.5 than near 0 or 1. To 
address this, variance-stabilizing transformations (e.g., log or square root) of the 
response variable are often used. 
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4. Nonlinear Relationship (Panel d):  
If the residual plot shows a curved pattern, it suggests that the assumed regression 
model does not adequately capture the relationship between the variables. In such 
cases, consider using a curvilinear regression model or a multiple regression 
model with additional terms (e.g., quadratic or interaction terms). 

 

 

 
 

 

 
 
 

(a) Satisfactory (b) Funnel 
 

 
 

 

 
 

(c) Double bow (d) Non-linear 
Figure 3.1: Patterns for residual plots 

3.4.3 Residuals vs. Fitted Values Plot 
These plots often exhibit patterns like those shown in Figure 3.1, but the horizontal axis 
represents 𝑦̂ (the predicted values) instead of the predictor variable X. Therefore, the pattern 
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observed in this residual plot is the same as that in the residual plot against the independent 
variable X. For simple linear regression, both the residual plot against X and the residual plot 
against 𝑦̂ exhibit the same pattern. However, for multiple regression analysis, the residual 
plot against 𝑦̂ is more commonly used because there are multiple independent variables 
involved. 

Check Your Progress – 3  
1. What is the purpose of a residual plot? 

(a) To check model 
(b) To predict new observations 
(c) To calculate regression coefficients 
(d) To standardize residuals 

2. What does a funnel shape in a residual plot indicate? 
(a) Homoscedasticity (b) Heteroscedasticity 
(c) Multicollinearity (d) Normality 

3. A Q-Q plot is used to assess: 
(a) Linearity assumption (b) Normality of residuals 
(c) Homoscedasticity (d) Independence of errors 

 

 
 

3.5 Leverage and Influence 

An observation is considered influential if its removal—either individually or in combination 
with a few others (e.g., two or three)—causes substantial changes in the fitted regression 
model. Such changes may include significant shifts in the estimated coefficients, fitted 
values, t-tests, or other key regression outputs. While the deletion of any data point will 
generally cause some changes in the model, we are particularly interested in identifying 
those points whose removal has a disproportionately large impact (i.e., they exert undue 
influence). 

3.5.1 Identifying Influential Observations 

Influential observations can often be identified from a scatter diagram when only one 
independent variable is present. An influential observation may: 

1. Be an outlier (an observation with a 𝑦 value that deviates substantially from the trend). 
2. Correspond to an 𝑥 value far away from its mean. 
3. Result from a combination of the two (a somewhat off-trend 𝑦 value and a somewhat 

extreme 𝑥 value). 
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Observations with extreme values for the independent variables are called high leverage 
points. The leverage of an observation, denoted as ℎ𝑖, measures how far the values of the 
independent variables are from their mean values. High leverage points have the potential 
to influence the regression results significantly. 

• A common rule of thumb is to flag observations as influential if their leverage exceeds 
the threshold: 

ℎ𝑖 >
2(𝑝 + 1)

𝑛
 

   
where: 

• 𝑝 = number of independent variables, 
• 𝑛 = number of observations. 

• For example, in the Rental Price dataset with 𝑝 = 2 independent variables and 𝑛 =
10 observations, the critical leverage value is: 
 

2(2 + 1)

10
= 0.6 

Influential observations caused by an interaction of large residuals and high leverage 
can be particularly difficult to detect. Diagnostic procedures are available to account for 
both factors when determining whether observation is influential. One such measure is 
Cook’s D statistic, which quantifies the influence of an observation by considering both its 
residual and leverage.  

Influence is measured using Cook’s Distance: 

𝐷𝑖 =
𝑟𝑖

2

𝑝 + 1
×

𝑝𝑖𝑖

1 − 𝑝𝑖𝑖
 

where: 
- 𝑟𝑖  is the studentized residual, 
- 𝑝𝑖𝑖  is the leverage value, 
- 𝑝 + 1 is the number of parameters in the model. 

A high leverage point with a small residual is not necessarily problematic. However, a high 
leverage point with a large residual can disproportionately affect the regression model. 
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Check Your Progress – 4  
1. An observation with high leverage and large residuals is: 

(a) A regular data point (b) An influential observation 
(c) A low-impact observation (d) Always an outlier 

2. According to the rule of thumb, when is an observation flagged as influential based 
on its leverage value? 

(a) When its leverage value exceeds 1 
(b) When its leverage value is less than 2(𝑝 + 1) ∕ 𝑛  
(c) When its leverage value exceeds 2(𝑝 + 1) ∕ 𝑛 
(d) When its leverage value is exactly equal to 2(𝑝 + 1) ∕ 𝑛 

3. Which of the following measures is used to quantify the influence of an observation 
by considering both its residual and leverage? 

(a) Studentized Residual 
(b) Mean Square Error 
(c) R-squared Value 
(d) Cook's Distance 

 

 

3.6 Practical Application – Estimating Rental Prices 

3.6.1 Dataset Description 

The dataset consists of 10 observations with the following variables: - Size: Property size in 
square feet. - Floor: Floor level of the property. - Broadband Rate: Internet speed in Mbps. 
- Rental Price: Monthly rental price in ₹100s. 

Table 3.1: Office Rental Price data 
Location Size Floor Broadband 

Rate 
Rental price 

1 500 4 80 320 
2 550 7 500 380 
3 620 9 70 400 
4 630 5 240 390 
5 660 8 1000 380 
6 700 4 80 410 
7 770 10 70 480 
8 880 12 500 600 
9 920 14 80 570 

10 1000 9 240 620 
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We begin by fitting a multiple linear regression model to predict rental price based on 
property size, floor level, and broadband rate. 

R Code for Model Fitting 
# Create the data frame 
data <- data.frame( 
  Size = c(500, 550, 620, 630, 660, 700, 770, 880, 920, 1000), 
  Floor = c(4, 7, 9, 5, 8, 4, 10, 12, 14, 9), 
  Broadband_Rate = c(80, 500, 70, 240, 1000, 80, 70, 500, 80, 240), 
  Rental_price = c(320, 380, 400, 390, 380, 410, 480, 600, 570, 620) 
) 
 
# Fit the regression model 
model <- lm(Rental_price ~ Size + Floor + Broadband_Rate, data = data) 
 

3.6.2 Residual Analysis 
Residual analysis helps us assess whether the regression assumptions are satisfied. We will 
generate and interpret the following residual plots: 

R Code for Residual Plots 
# Generate residual plots 
par(mfrow = c(2, 2))  # Arrange plots in a 2x2 grid 
plot(model, which = 1)  # Residuals vs. Fitted 
plot(model, which = 2)  # Normal Q-Q Plot 
plot(model, which = 3)  # Scale-Location Plot (for heteroscedasticity) 
plot(model, which = 5)  # Residuals vs. Leverage 

3.6.3 Leverage and Influence Diagnostics 
Leverage Values 

• Purpose: Identify observations with extreme predictor values. 

• Rule of Thumb: Observations with leverage, ℎ𝑖 >
2(𝑝+1)

𝑛
 are high leverage points. 

Cook’s Distance 
• Purpose: Measure the influence of an observation on the regression model. 
• Rule of Thumb: Observations with Cook’s Distance, 𝐷𝑖 > 1 are influential. 

 
R Code for Leverage and Cook’s Distance 
# Compute leverage values 
leverage_values <- hatvalues(model) 
 
# Compute Cook’s Distance 
cooks_distance <- cooks.distance(model) 
 
# Create a diagnostics table 
diagnostics_table <- data.frame( 
  Predicted_Values = round(predict(model), 2), 
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  OLS_Residuals = round(residuals(model), 2), 
  Standardized_Residuals = round(rstandard(model), 2), 
  Studentized_Residuals = round(rstudent(model), 2), 
  Leverage = round(leverage_values, 2), 
  Cooks_Distance = round(cooks_distance, 2) 
) 
 
# Display the diagnostics table 
print(diagnostics_table) 

3.6.4 Testing Regression Assumptions Numerically 
Multicollinearity 

Variance Inflation Factor (VIF) checks if predictors are highly correlated. 

library(car) 
vif(model) 

• VIF > 10: High multicollinearity, consider removing or transforming variables. 

Homoscedasticity 

Breusch-Pagan test checks for constant variance in residuals. 

library(lmtest) 
bptest(model) 

• p-value < 0.05: Heteroscedasticity present, consider transformations. 

Normality of Residuals 

Shapiro-Wilk test assesses normality. 

shapiro.test(residuals(model)) 

• p-value < 0.05: Residuals are not normally distributed. 

Autocorrelation 

Durbin-Watson test detects correlated residuals. 

library(lmtest) 
dwtest(model) 

• p-value < 0.05: Presence of autocorrelation. 
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3.7 LET US SUM UP 
Residual analysis is essential for verifying regression model assumptions and improving 
model accuracy. By using different types of residuals and graphical tools, we can detect 
potential issues and refine our regression approach. By understanding leverage and its 
relationship with residuals, we can improve the robustness and accuracy of our regression 
models. Standardized and studentized residuals, along with Cook’s Distance, help in 
detecting influential points. 

Type of Residual Formula Key Features Best Use Case 

OLS Residuals 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖  Basic residuals; sum to 
zero. 

Initial model evaluation. 

Standardized Residuals 𝑧𝑖 =
𝑒𝑖

𝜎√1 − 𝑝𝑖𝑖

 Mean = 0, Variance = 1. Outlier detection. 

Internally Studentized 
Residuals 

𝑟𝑖 =
𝑒𝑖

𝜎̂√1 − 𝑝𝑖𝑖

 More accurate than 
standardized residuals. 

Detecting large residuals. 

Externally Studentized 
Residuals 

𝑟𝑖
∗ =

𝑒𝑖

𝜎̂(𝑖)√1 − 𝑝𝑖𝑖

 Removes observation’s 
influence. 

Identifying influential 
points. 

The normal probability plot is particularly useful for identifying subtle departures from 
normality that might not be apparent in summary statistics. Residual Vs. Fitted values plot 
is: (a) Satisfactory: The residuals are randomly scattered around the horizontal axis (zero), 
showing no obvious pattern. (b) Funnel: The residuals form a pattern that widens (or narrows) 
like a funnel, indicating increasing (or decreasing) variance. (c) Double Bow: The residuals 
form a bow-like pattern on both sides of the plot, suggesting an issue with the model fit. (d) 
Nonlinear: The residuals display a systematic, curved pattern, indicating the model is 
missing a nonlinear relationship. By following the steps outlined in the Rental Price dataset, 
you can assess the validity of your regression model, identify potential issues, and refine the 
model for better accuracy and reliability. 
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3.8 Check Your Progress: Possible Answers 
 

Check Your Progress – 1  
 

Question No. Correct option 
1. (b) 
2. (b) 
3. (b) 

 
Check Your Progress – 2  

Question No. Correct option 
1. (b) 
2. (b) 
3. (b) 

 
Check Your Progress – 3  

Question No. Correct option 
1. (a) 
2. (b) 
3. (b) 

 
Check Your Progress – 4  

Question No. Correct option 
1. (b) 
2. (c) 
3. (d) 

 

 

3.9 Further Reading 
1. Introduction to Linear Regression Analysis 6th Edition, Montgomery, Peck, Vining, 

Wiley Publication, February 2021 
2. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 

Cengage Learning, January 2016 
3. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 

December 2020 
4. Regression Analysis by Example Using R 6th Edition, Ali S. Hadi and Samprit 

Chatterjee, Wiley Publication, October 2023 
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3.10 Assignment 
1. Explain the importance of residual analysis in regression modeling. 
2. Describe the various types of residuals. 
3. Why is homoscedasticity important in regression analysis? How can it be checked? 
4. Explain the significance of Q-Q plots in diagnosing regression models. 
5. Describe common patterns in residual plots and their implications. 
6. Discuss the significance of leverage in identifying influential observations. 
7. Apply these techniques to following simulated dataset and evaluate the 

assumptions numerically. 
 

Sr No. Y X1 X2 X3 Sr No. Y X1 X2 X3 

1 0.18495 0.00298 0.30133 0.44701 26 1.12376 0.95081 0.44695 0.66161 

2 0.73951 0.91095 0.53212 0.06239 27 0.95351 0.49113 0.87509 0.45171 

3 0.28833 0.11112 0.8525 0.29337 28 0.18831 0.00112 0.80255 0.39571 

4 0.03079 0.19965 0.90261 0.18615 29 0.62951 0.89237 0.45912 0.31139 

5 0.48922 0.45139 0.70902 0.70707 30 -0.59231 0.34513 0.70645 0.39591 

6 1.14236 0.95071 0.44683 0.66169 31 0.78144 0.71133 0.77547 0.28786 

7 -0.02754 0.38579 0.19394 0.27554 32 0.01493 0.25256 0.47111 0.32147 

8 0.69319 0.31847 0.96495 0.03485 33 0.93451 0.29061 0.6849 0.19582 

9 0.18895 0.00298 0.30133 0.44701 34 -0.89132 0.59231 0.46128 0.01562 

10 -0.33177 0.94081 0.87203 0.06583 35 0.51261 0.89706 0.13126 0.34616 

11 0.13493 0.55456 0.80561 0.57634 36 0.51261 0.89706 0.13126 0.34616 

12 0.68922 0.19839 0.72309 0.47101 37 0.68822 0.25128 0.71845 0.37461 

13 -0.19753 0.30482 0.5702 0.39127 38 0.48131 0.29325 0.48327 0.30517 

14 1.01132 0.08762 0.17431 0.89149 39 0.56913 0.29367 0.78345 0.37128 

15 -0.59812 0.19463 0.80648 0.01294 40 -0.11831 0.18319 0.55498 0.29172 

16 0.48161 0.39124 0.72539 0.38562 41 0.48451 0.29251 0.48371 0.30521 

17 0.69213 0.52227 0.97097 0.71516 42 0.72253 0.49163 0.61742 0.22139 

18 -0.49172 0.30482 0.80745 0.39127 43 -0.11831 0.17231 0.80153 0.03127 

19 0.14801 0.25867 0.38172 0.30494 44 0.35631 0.68372 0.70419 0.31562 

20 0.14893 0.29235 0.48073 0.40191 45 1.12376 0.95081 0.44695 0.66161 

21 0.41918 0.58372 0.80549 0.40172 46 0.95351 0.49113 0.87509 0.45171 

22 0.15639 0.29215 0.48022 0.40162 47 0.18831 0.00112 0.80255 0.39571 

23 1.11132 0.09762 0.07131 0.95195 48 0.62951 0.89237 0.45912 0.31139 

24 0.16935 0.28385 0.68363 0.32419 49 -0.59231 0.34513 0.70645 0.39591 

25 -0.49763 0.38362 0.82087 0.05891 50 0.78144 0.71133 0.77547 0.28786 
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Block 3: Data Transformations and 
Qualitative Predictors 

Introduction 
Regression analysis is an essential tool for understanding and predicting relationships 
between variables. However, real-world data often does not meet the assumptions required 
for effective regression modeling. To address this, data transformations and the handling of 

qualitative predictors play a critical role in improving the accuracy and interpretability of 
regression models. 
 
In Unit 1: Transforming Predictor Variables, we will explore how to apply various 
transformations to predictor variables. Transformations such as natural logarithms, 
polynomial, and reciprocal transformations are used to address issues like skewness, non-
linearity, and unequal variance. These adjustments help to ensure that the model can 
accurately capture relationships between the dependent and independent variables. 
 
Unit 2: Advanced Transformations focuses on more complex transformations that apply to 
both the response and predictor variables. This unit will cover methods such as the natural 
logarithm transformation, Box-Cox transformations, and scaling techniques like centering 
and standardization. These techniques are essential in addressing non-linearity, 
heteroscedasticity, and skewed distributions, which can impact model assumptions and 
predictions. 
 
In Unit 3: Transforming Qualitative Predictors, we dive into how to incorporate categorical 
predictors into regression models, particularly by transforming qualitative predictors into 
dummy variables. Dummy variables are used to represent qualitative factors, such as 
gender or payment method, allowing them to be analyzed within a regression framework. 
We will also explore how to interpret interactions between numerical and categorical 
predictors and assess the combined effects of these variables on model performance.  
 
By the end of this block, you will gain a deep understanding of how to transform both 
quantitative and qualitative predictors, ensuring that your regression models are more 
robust, interpretable, and effective in capturing real-world relationships. 
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Unit 1 Transforming Predictor Variables 
 

Unit Structure 

1.0 LEARNING OBJECTIVES 

1.1 INTRODUCTION 

1.2 NEED FOR TRANSFORMATION 

1.3 NATURAL LOGARITHM TRANSFORMATION FOR PREDICTORS 

1.4 POLYNOMIAL TRANSFORMATION FOR PREDICTORS 

1.5 RECIPROCAL TRANSFORMATION FOR PREDICTORS IN REGRESSION 

1.6 COMPARISON OF MODEL PERFORMANCE 

1.7 LET US SUM UP 

1.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 

1.9 FURTHER READING 

1.10 ASSIGNMENT 

 

1.0 Learning Objectives 

After completing this unit, you should be able to 

• Apply natural logarithm transformations to skewed predictor variables in multiple 
linear regression to improve symmetry, normality, and model effectiveness. 

• Use polynomial transformations to capture non-linear relationships and enhance 
model performance. 

• Understand and apply the principle of preserving hierarchy in polynomial regression 
by including all lower-order terms up to the highest significant power. 

• Implement reciprocal transformations on predictor variables to improve model 
effectiveness. 

• Conduct an extensive review of model performance using metrics such as R-
squared, Adjusted R-squared, and standard error to evaluate and compare models. 
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1.1 Introduction 

Data often requires transformation before analysis to meet objectives like ensuring 
linearity, achieving normality, or stabilizing variance. Model building in regression involves 
creating a regression equation to define the relationship between dependent and 
independent variables, addressing violations of regression assumptions through data 
transformation. By adjusting the scale or metric of the response or regressor variables, 
issues such as unequal variance can be resolved. It's common to fit linear regression 
models to transformed variables rather than the original ones. This unit explores when 
transformations are needed, the types of transformations available, and how to analyze 
transformed data. While illustrated using simple regression, transformations in multiple 
regression demand more effort and care when some predictors require transformation and 
others do not.  

1.2 Need for Transformation 

A model is linear if its parameters are linear, even if predictors are nonlinear. For 
example, each of the four following models: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2 + 𝜀 

𝑌 = 𝛽0 + 𝛽1 log 𝑋 + 𝜀 

𝑌 = 𝛽0 + 𝛽1√𝑋 + 𝜀 

because the model parameters 𝛽0, 𝛽1 and 𝛽2 enter linearly. On the other hand, 

𝑌 = 𝛽0 + 𝑒𝛽1𝑋 + 𝜀 

is a nonlinear model because the parameter 𝛽1 does not enter the model linearly. To 
meet the assumptions of the standard regression model, we sometimes need to work with 
transformed variables instead of the original ones. Transformations may be necessary for a 
variety of reasons:  

1. Nonlinear Models with Inherent Linear Properties: 
In the case of the exponential model, we can apply a transformation to the 

variables, which allows us to perform regression analysis using the general linear model. 
The exponential model is given by the following regression equation: 

𝐸(𝑦) = 𝛽0 𝛽1
𝑥 

This equation is appropriate when the dependent variable 𝑦 changes by a 
constant percentage as 𝑥 increases, rather than by a fixed amount. 
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We can transform this nonlinear regression equation to a linear regression 
equation by taking the natural logarithm of both sides of equation 

𝑙𝑜𝑔(𝐸(𝑦)) = 𝑙𝑜𝑔(𝛽0) + 𝑥 𝑙𝑜𝑔(𝛽1) 

This shows that 𝑙𝑜𝑔(𝐸(𝑦)) and 𝑥 are linearly related, allowing us to use standard 
regression methods. Despite the original variables having a nonlinear relationship, the 
transformation makes the relationship between the transformed variables linear. Thus, 
transformation is used to achieve the linearity of the fitted model. 

2. The response variable 𝑌, which is being analyzed, may have a probability distribution 
where its variance is related to the mean. If the mean depends on the predictor variable 
𝑋, the variance of 𝑌 will change as 𝑋 changes, resulting in non-constant variance. Under 
these conditions, the distribution of 𝑌 is typically non-normal. Non-normality can affect 
the validity of standard significance tests, which rely on the assumption of normality 
(though this issue is less significant with large sample sizes). When the error terms have 
unequal variance, the estimates remain unbiased, but they are no longer optimal in 
terms of having the smallest variance. To address this, we often transform the data to 
ensure normality and constant error variance. These transformations are typically 
chosen to stabilize the variance (variance-stabilizing transformations), and it is a 
fortunate coincidence that these transformations also tend to normalize the data 
effectively. 

3. There is no prior theoretical or probabilistic basis to suggest that a transformation is 
needed. The need for a transformation becomes evident when we examine the residuals 
from fitting a linear regression model using the original variables. 

Transformations can help address these issues by altering the scale or shape of the data, 
making the relationship more linear, stabilizing the variance, and improving the normality of 
residuals. 

1.3 Natural Logarithm Transformation for Predictors 

In statistical modeling and data science, it is common to encounter predictors 
(independent variables) that are highly skewed or have a wide range of values. Such 
variables can lead to issues like heteroscedasticity, non-linearity, or undue influence of 
outliers. One common technique to address these issues is natural logarithm 

transformation. This transformation can help stabilize variance, make the data more 
normally distributed, and improve the interpretability of the model. 

The natural logarithm transformation is particularly useful when: 

1. The predictor has a right-skewed distribution. 

2. The predictor spans several orders of magnitude (e.g., income, population size). 
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3. The relationship between the predictor and the response variable is multiplicative 
rather than additive. 

The natural logarithm transformation applies the log() function to the predictor variable. 
For a predictor 𝑋, the transformed variable is: 

𝑋transformed = log(𝑋) 

Here, log() refers to the natural logarithm (base 𝑒). 

1.3.1 Example in R 

Let’s walk through an example using R. We’ll use the mtcars dataset, which is 
included in R by default. Suppose we want to model the relationship between a car’s weight 
(wt) and its miles per gallon (mpg). We’ll apply a natural logarithm transformation to the wt 
variable to improve the linearity of the relationship. 

Step 1: Load the Data 

data(mtcars) 

head(mtcars) 

                    mpg cyl disp  hp drat    wt  qsec vs am gear carb 

 Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4 

 Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4 

 Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1 

 Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1 

 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2 

 Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1 

Step 2: Explore the Data 

Let’s visualize the relationship between wt and mpg: 

plot(mtcars$wt, mtcars$mpg, main = "Weight vs. MPG", xlab = "Weight (10

00 lbs)", ylab = "Miles per Gallon") 
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The plot may show a non-linear relationship. 

Step 3: Apply Natural Logarithm Transformation 

Transform the wt variable using the log() function: 

mtcars$log_wt <- log(mtcars$wt) 

Step 4: Visualize the Transformed Data 

Plot the transformed variable against mpg: 

plot(mtcars$log_wt, mtcars$mpg, main = "Log(Weight) vs. MPG", xlab = "L

og(Weight)", ylab = "Miles per Gallon") 

 

The relationship should appear more linear. 

Step 5: Fit a Linear Model 

Fit a linear regression model using the transformed predictor: 
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# Fit linear regression model with original wt variable 

model1 <- lm(mpg ~ wt, data = mtcars) 

 

# Fit linear regression model with log-transformed wt 

model2 <- lm(mpg ~ log_wt, data = mtcars) 

 

# Summary of the model with original wt 

summary(model1) 

# Summary of the model with log-transformed wt 

summary(model2) 

1.3.2  Comparison 

The output will show the coefficients and statistical significance of the model. 

• R-squared increased from 0.7528 to 0.7747 after applying the log transformation to 
wt, meaning the log-transformed model explains slightly more of the variation in 
mpg. 

• Standard Error decreased from 3.03 to 2.87, indicating that the log-transformed 
model has more precise estimates. 

• The p-value for both predictors (wt and logwt) is very small, indicating that both 
predictors are statistically significant. However, the p-value for the log-transformed 
predictor is even smaller, suggesting that the relationship between the log-
transformed predictor and mpg is more statistically significant. 

Now, let's plot the fitted values for both models to see how they compare visually: 

# Plotting the fitted values for comparison 

par(mfrow=c(1,2)) # Set up the plotting area to have 2 plots side by si

de 

 

plot(mtcars$wt, mtcars$mpg, main="MPG vs WT (Original)", 

     xlab="Weight (1000 lbs)", ylab="Miles per gallon",  

     cex.main=0.8, cex.lab=0.8, cex.axis=0.8) 

abline(model1, col="blue") # Add regression line 

 

# Plot for the model with log-transformed wt 

plot(mtcars$log_wt, mtcars$mpg, main="MPG vs log(WT)", 

     xlab="Log(Weight)", ylab="Miles per gallon", 

     cex.main=0.8, cex.lab=0.8, cex.axis=0.8) 

abline(model2, col="red") # Add regression line 



87 

 

By applying the natural logarithm transformation to the wt variable, we improved the 
model fit slightly (higher R-squared) and reduced the standard error, leading to more precise 
estimates. The log transformation also made the relationship between wt and mpg more 
statistically significant, as indicated by the smaller p-value. 

This demonstrates how transformations like the natural logarithm can improve the 
performance of a regression model, especially when dealing with predictors that have 
nonlinear relationships with the response variable. 

1.3.3 Interpret the Results 

The coefficient for log_wt represents the change in mpg for a one-unit increase in the 
natural logarithm of wt. For example, if the coefficient is -5, it means that a 1% increase in 
weight is associated with a 5-unit decrease in miles per gallon (assuming the relationship is 
linear on the log scale). 

1.3.4 Advantages of Natural Logarithm Transformation 

1. Reduces Skewness: Makes the distribution of the predictor more symmetric. 

2. Stabilizes Variance: Helps address heteroscedasticity. 

3. Improves Model Fit: Can lead to better-fitting models when the relationship is 
multiplicative. 
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1.3.5 Limitations 

1. Zero or Negative Values: The natural logarithm is undefined for zero or negative 
values. If your data contains such values, you may need to add a constant (e.g., log(x 
+ 1)) before applying the transformation. 

2. Interpretability: The transformed variable may be harder to interpret, especially for 
non-technical audiences. 

 

Check Your Progress – 1  

1. Refer to the TVADS dataset as given below, where the variable Impress measures the 
total number of times people remembered or were exposed to the commercials, 
quantified in millions. The variable Spend indicates the corresponding TV advertising 
budget, measured in millions of dollars. 

Spend Impress  Spend Impress  Spend Impress 
49.7 30.2  5 12  26.9 38 
50.1 32.1  19.3 11.7  26.9 50.7 
20.4 21.4  40.1 78.6  6.1 4.4 
74.1 99.6  166.2 40.1  185.9 98.8 
32.4 71.1  82.4 60.8  45.6 10.4 

7.6 12.3  9.2 21.4  27 40.8 
22.9 21.9  5.7 10  154.9 98.9 

 
(a) Fit a linear regression model considering Impress depends on Spend. By applying 

natural logarithm  𝑙𝑜𝑔𝑒(𝑆𝑝𝑒𝑛𝑑), analyze the resulting differences and derive your 
conclusion.   

 

1.4  Polynomial Transformation for Predictors 

Polynomial transformations are commonly used in regression modeling to capture 
non-linear relationships between predictor variables and the response variable. While 
standard linear regression assumes a straight-line relationship between predictors and the 
response, polynomial regression allows for curvature by including higher-degree terms of 
the predictor variables. 

1.4.1  Polynomial Regression Model 

A general polynomial regression model of degree 𝑘 can be written as: 
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𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2 + 𝛽3𝑋

3 +⋯+ 𝛽𝑘𝑋
𝑘 + 𝜀 

where: 

• 𝑌 is the response variable, 
• 𝑋 is the predictor variable, 
• 𝛽0, 𝛽1, … , 𝛽𝑘 are the regression coefficients, 
• 𝜀 is the error term. 

The model is linear in the coefficients 𝛽 even though it includes polynomial terms of 
𝑋. This allows the model to be estimated using ordinary least squares (OLS) regression. 

1.4.2  Simple Polynomial Regression 

A second-degree (quadratic) polynomial model is the simplest form of polynomial 
regression: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2 + 𝜀 

For example, suppose we have a dataset with:  

- Price (response variable) - Age (predictor variable) 

A simple linear regression model: 

𝐸(𝑃𝑟𝑖𝑐𝑒) = 𝛽0 + 𝛽1𝐴𝑔𝑒 

may not capture the relationship well if it is non-linear. Instead, using a quadratic 
model: 

𝐸(𝑃𝑟𝑖𝑐𝑒) = 𝛽0 + 𝛽1𝐴𝑔𝑒 + 𝛽2𝐴𝑔𝑒
2 

allows for curvature in the relationship. 

1.4.3  Multiple Polynomial Regression 

Polynomial transformation can also be applied in multiple linear regression when 
multiple predictors influence the response. A general multiple polynomial regression model 
is given by: 

𝑌 = 𝛽0 +∑𝛽𝑖

𝑝

𝑖=1

𝑋𝑖 +∑∑𝛽𝑖𝑗

𝑝

𝑗=1

𝑝

𝑖=1

𝑋𝑖𝑋𝑗 + 𝜀 

For a model with two predictors, 𝑋1 and 𝑋2, a second-degree polynomial model is: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1
2 + 𝛽4𝑋2

2 + 𝛽5𝑋1𝑋2 + 𝜀 
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Importance of Hierarchy 

When using polynomial transformations, hierarchy should be preserved, meaning that if a 
higher-degree term 𝑋2 is included, its lower-degree term 𝑋 should also be included in the 
model. 

1.4.4 Example in R 

Let’s use the mtcars dataset to demonstrate polynomial transformation. We’ll 
model the relationship between a car’s horsepower (hp) and its miles per gallon (mpg). 
We’ll apply a quadratic transformation to hp to capture non-linearity. 

# Load data 

data(mtcars) 

# Fit linear model (before transformation) 

linear_model <- lm(mpg ~ hp, data = mtcars) 

# Explore data 

plot(mtcars$hp, mtcars$mpg, main = "Horsepower vs. MPG", xlab = "Horsepower", 

ylab = "Miles per Gallon") 

 

The plot shows a curved relationship. Hence, we create a quadratic term for hp, and fit a 
linear regression model with the original hp and its squared term: 

# Apply polynomial transformation 

mtcars$hp_squared <- mtcars$hp^2 
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# Fit polynomial model (after transformation)- original hp + squared term 

poly_model <- lm(mpg ~ hp + hp_squared, data = mtcars) 

 

The following function print_model_summary is designed to provide a detailed summary of 
a fitted regression model in a structured and human-readable format. It is particularly useful 
for quickly reviewing key model statistics and parameter estimates from linear or polynomial 
regression models. 

 

print_model_summary <- function(model, model_name) { 

  # Summary of the model 

  model_summary <- summary(model) 

   

  # Extracting key information 

  r_squared <- model_summary$r.squared 

  adj_r_squared <- model_summary$adj.r.squared 

  std_error <- model_summary$sigma 

   

  # Get the coefficients (parameters) table 

  coef_table <- as.data.frame(model_summary$coefficients) 

   

  # Displaying Model Summary 

  cat(paste0(model_name, " Model Summary\n")) 

  cat("---------------------------------------------------------\n") 

  cat(sprintf("Sample size: %d\n", nrow(mtcars))) 

  cat(sprintf("R-squared: %.4f\n", r_squared)) 

  cat(sprintf("Adjusted R-squared: %.4f\n", adj_r_squared)) 

  cat(sprintf("Standard error: %.2f\n", std_error)) 

   

  cat("\nParameters\n") 

  cat("---------------------------------------------------------\n") 

   

  # Formatting the parameters table nicely 

  cat(sprintf("%-12s %-12s %-12s %-12s %-12s\n", "Model", "Estimate", "Std Er

ror", "t-Statistic", "Pr(> |t|)")) 

   

  # Loop through each coefficient row and print it 

  for (i in 1:nrow(coef_table)) { 

    cat(sprintf("%-12s %-12.3f %-12.3f %-12.3f %-12.3f\n",  

                rownames(coef_table)[i], coef_table[i, 1], coef_table[i, 2], 

coef_table[i, 3], coef_table[i, 4])) 

  } 
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  cat("\n") 

} 

 

# Calling the function for both models 

print_model_summary(linear_model, "Linear") 

print_model_summary(poly_model, "Polynomial") 

    Linear Model Summary 

 --------------------------------------------------------- 

 Sample size: 32 

 R-squared: 0.6024 

 Adjusted R-squared: 0.5892 

 Standard error: 3.86 

  

     Parameters 

 --------------------------------------------------------- 

 Model        Estimate     Std Error    t-Statistic  Pr(> |t|)    

 (Intercept)  30.099       1.634        18.421       0.000        

 hp           -0.068       0.010        -6.742       0.000 

 

   Polynomial Model Summary 

 --------------------------------------------------------- 

 Sample size: 32 

 R-squared: 0.7561 

 Adjusted R-squared: 0.7393 

 Standard error: 3.08 

  

     Parameters 

 --------------------------------------------------------- 

 Model        Estimate     Std Error    t-Statistic  Pr(> |t|)    

 (Intercept)  40.409       2.741        14.744       0.000        

 hp           -0.213       0.035        -6.115       0.000        

 hp_squared   0.000        0.000        4.275        0.000 

By calling print_model_summary(linear_model, "Linear") and 
print_model_summary(poly_model, "Polynomial"), you can quickly compare the key 
statistical information between different models in a consistent format. By comparing the 
results, we should be pleased with the fit provided by this polynomial regression model.  

The following code is designed to compare two different regression models—one linear and 
one polynomial—by plotting them on the same graph. It plots the original data points in blue 
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and adds the prediction lines from both models on the same graph—solid red for the linear 
model and dashed cyan for the polynomial model. The plot includes a legend to distinguish 
between the models. This visualization helps compare the fit of the two models, allowing you 
to see how well each model captures the relationship between horsepower and miles per 
gallon. 

# Load the ggplot2 package 

library(ggplot2) 

 

# Create a new data frame with hp values for prediction 

hp_values <- data.frame(hp = seq(min(mtcars$hp), max(mtcars$hp), length.out = 

100)) 

hp_values$hp_squared <- hp_values$hp^2 

 

# Predict mpg values using both models 

hp_values$linear_pred <- predict(linear_model, newdata = hp_values) 

hp_values$poly_pred <- predict(poly_model, newdata = hp_values) 

 

# Plot the original data and the model predictions 

ggplot(mtcars, aes(x = hp, y = mpg)) + 

  geom_point(color = 'blue', size = 2, aes(shape = "Original Data")) + 

  geom_line(data = hp_values, aes(x = hp, y = linear_pred, color = "Linear Mo

del", linetype = "dashed")) + 

  geom_line(data = hp_values, aes(x = hp, y = poly_pred, color = "Polynomial 

Model", linetype = "solid")) + 

  labs(title = "Fitted curves for Linear and Polynomial Models",  

       x = "Horsepower (hp)",  

       y = "Miles per Gallon (mpg)",  

       color = "Model",  

       shape = "Data Type", 

       linetype = "Model Type" 

       ) + 

  theme_minimal() 
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The coefficients for hp and hp_squared indicate the nature of the relationship. A 
significant coefficient for hp_squared suggests that the relationship between hp and mpg is 
non-linear. 

Advantages of Polynomial Transformation 

1. Captures Non-Linearity: Allows modeling of curved relationships. 
2. Flexibility: Can model complex interactions between predictors. 
3. Improves Model Fit: Often leads to better-fitting models when the relationship is 

non-linear. 

Limitations 

1. Overfitting: High-degree polynomials can overfit the data, especially with small 
datasets. 

2. Interpretability: Higher-order terms can make the model harder to interpret. 
3. Extrapolation: Polynomial models may perform poorly outside the range of the 

training data. 

Polynomial transformations are valuable techniques for modeling non-linear relationships 
between predictors and response variables. By incorporating polynomial terms in R, you can 
capture curvature and enhance the performance of your models. However, care must be 
taken to avoid overfitting and ensure interpretability. 
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Check Your Progress – 2  

1. The manager at ABC Co. is examining the connection between the tenure of their 
sales staff and the quantity of electronic items sold. The table below displays the 
number of electronic items sold by 15 randomly selected salespeople during the 
latest sales period and tenure of each salesperson in the company. 

Sales  Tenure 

162 22 

112 12 

189 40 

275 41 

83 9 

325 56 

296 106 

67 6 

308 111 

150 12 

376 104 

367 85 

189 19 

235 51 

317 76 

(a) Visualize the relationship by creating a scatter plot. 
(b) Apply a polynomial transformation to the tenure data and generate the regression 

model. 
(c) Compare the models (using R-squared, Standard Error, and significance) with and 

without the polynomial transformation. 
(d) Visualize the predicted values for both models on a plot. 
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1.5 Reciprocal Transformation for Predictors in Regression 

Reciprocal transformation, also known as the multiplicative inverse transformation, is a 
technique applied to predictor variables in regression models to address nonlinear 
relationships between predictors and the response variable. Reciprocal transformations 

involve transforming a predictor variable 𝑋 by taking its reciprocal, i.e., 𝑋′ = 1

𝑋
. This 

technique is particularly useful when the relationship between the response variable and 
predictor is nonlinear, often indicating a diminishing effect as the predictor increases. 

In simple linear regression, we model the relationship between a response variable 
𝑌 and a single predictor variable 𝑋 as: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 

However, if we observe a nonlinear inverse relationship between 𝑌 and 𝑋, we can 
apply a reciprocal transformation (1/𝑋) to the predictor: 

𝑌 = 𝛽0 + 𝛽1 (
1

𝑋
) + 𝜀 

This transformation can linearize relationships where the response decreases as 
the predictor increases. 

In the context of multiple linear regression, consider three predictors 𝑋1, 𝑋2, 𝑋3: 

𝑌 = 𝛽0 + 𝛽1
1

𝑋1
+ 𝛽2

1

𝑋2
+ 𝛽3𝑋3 + 𝜀 

Here, the reciprocal transformation is applied to 𝑋1 and 𝑋2 since the relationships 
between 𝑌 and these predictors might exhibit a nonlinear, inverse pattern. This model can 
help stabilize variance and achieve linearity. 

1.5.1 Application with mtcars Dataset 

Let’s illustrate this with the mtcars dataset in R. We’ll use mpg (miles per gallon) as 
the response variable and hp (horsepower) as the predictor. 

• Model 1 (without transformation): 

𝑚𝑝𝑔 = 𝛽0 + 𝛽1ℎ𝑝 + 𝜀 

• Model 2 (with reciprocal transformation): 

𝑚𝑝𝑔 = 𝛽0 + 𝛽1
1

ℎ𝑝
+ 𝜀 
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Fitting these models in R and using print_model_summary()function, as defined in 
the previous section,  we find: 

linear_model <- lm(mpg ~ hp, data = mtcars) 

inverse_model <- lm(mpg ~ I(1/hp), data = mtcars) 

print_model_summary(inverse_model, "Reciprocal") 

    Reciprocal Model Summary 

 --------------------------------------------------------- 

 Sample size: 32 

 R-squared: 0.7381 

 Adjusted R-squared: 0.7294 

 Standard error: 3.14 

  

     Parameters 

 --------------------------------------------------------- 

 Model        Estimate     Std Error    t-Statistic  Pr(> |t|)    

 (Intercept)  9.434        1.285        7.344        0.000        

 I(1/hp)      1259.881     137.016      9.195        0.000 

 

Reciprocal transformations can be a powerful tool in regression modeling, especially when 
an inverse relationship is expected. By transforming predictors, we can often achieve better 
model performance, interpretability, and predictive accuracy. 

Check Your Progress – 3  

With the mtcars dataset in R, use mpg (miles per gallon) as the response variable and hp 
(horsepower) as the predictor.  

(a) Visualize the predicted values for linear and reciprocal models on a plot. 

 

 

1.6 Comparison of Model Performance  

In this section, we compare the performance of three models—Linear, Reciprocal, and 
Polynomial—to determine which best explains the relationship between the predictor 
variable (hp) and the response variable (mpg). The evaluation is based on key statistical 
metrics, including R-squared, Adjusted R-squared, standard error, and the significance of 
model parameters. The results are summarized in Table 1.1 
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Table 1.1: Models Comparison 
Metric Linear Model Reciprocal Model Polynomial Model 

Sample size 32 32 32 

R-squared 0.6024 0.7381 0.7561 

Adjusted R-squared 0.5892 0.7294 0.7393 

Standard error 3.86 3.14 3.08 

Intercept (Estimate) 30.099 9.434 40.409 

hp (Estimate) -0.068 - -0.213 

I(1/hp) (Estimate) - 1259.881 - 

hp_squared (Estimate) - - 0.000 

1.6.1 Model Performance Overview 

1. Linear Model: The Linear Model serves as the baseline for comparison. It achieves 
an R-squared value of 0.6024 and an Adjusted R-squared value of 0.5892, indicating 
that approximately 60.2% of the variability in the response variable is explained by 
the linear relationship with hp. The standard error of 3.86 suggests moderate 
precision in predictions. The model parameters are statistically significant (p < 
0.001), with the intercept at 30.099 and the coefficient for hp at -0.068, indicating a 
negative linear relationship. 

2. Reciprocal Model: The Reciprocal Model improves upon the Linear Model, achieving 
a higher R-squared value of 0.7381 and an Adjusted R-squared value of 0.7294. This 
suggests that approximately 73.8% of the variability in the response variable is 
explained by the reciprocal relationship with hp. The standard error decreases to 
3.14, indicating better precision compared to the Linear Model. The model 
parameters are also statistically significant (p < 0.001), with the intercept at 9.434 
and the coefficient for 1/hp at 1259.881, reflecting an inverse relationship between 
hp and the response variable. 

3. Polynomial Model: The Polynomial Model outperforms both the Linear and 
Reciprocal Models, achieving the highest R-squared value of 0.7561 and an Adjusted 
R-squared value of 0.7393. This indicates that approximately 75.6% of the variability 
in the response variable is explained by the polynomial relationship with hp. The 
standard error is the lowest among the three models at 3.08, demonstrating the 
highest precision in predictions. The model parameters are statistically significant (p 
< 0.001), with the intercept at 40.409, the linear term for hp at -0.213, and the 
quadratic term (hp_squared) at 0.000. The negative coefficient for hp and the positive 
coefficient for hp_squared suggest a curvilinear relationship. 

1.6.2 Comparison and Conclusion 

• R-squared and Adjusted R-squared: The Polynomial Model has the highest R-
squared and Adjusted R-squared values, indicating it explains the most variability in 
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the data. The Reciprocal Model performs better than the Linear Model but falls short 
of the Polynomial Model. 

• Standard Error: The Polynomial Model has the lowest standard error, making it the 
most precise. The Reciprocal Model improves upon the Linear Model but is less 
precise than the Polynomial Model. 

• Model Fit: The Polynomial Model’s inclusion of both linear and quadratic terms 
allows it to capture a more complex, curvilinear relationship between hp and the 
response variable (mpg), which the Linear and Reciprocal Models cannot fully 
represent. 

In conclusion, the Polynomial Model is the best-performing model for this 
dataset, offering the highest explanatory power and precision. The Reciprocal Model is a 
reasonable alternative, outperforming the Linear Model but not matching the Polynomial 
Model’s effectiveness. The Linear Model, while statistically significant, is the least 
effective in capturing the relationship between hp and the response variable mpg. 

Check Your Progress – 4  

With the mtcars dataset in R, use mpg (miles per gallon) as the response variable and car’s 
weight (wt) as the predictor.  

(a) Apply a polynomial transformation to predictor and generate the regression 
model. 

(b) Compare the models (Linear, Polynomial and Logarithm)  
(c) Visualize the predicted values for all models on a plot. 

 

 

1.7  LET US SUM UP 

This unit focuses on variable transformations as a powerful tool to improve the 
performance of multiple linear regression models. By applying transformations such as 
natural logarithms, polynomials, and reciprocals, you can address issues like skewness, 
nonlinearity, and nonnormality in predictor variables. The choice of transformation depends 
on the nature of the data and the relationship between the predictor and response variables. 
Additionally, the unit emphasizes the importance of preserving hierarchy in polynomial 
models and provides a comprehensive framework for evaluating model performance using 
key statistical metrics. Applying these techniques and properly utilizing transformations 
enable the construction of more accurate and interpretable regression models. This results 
in better-fitting models, improved interpretability, and more accurate predictions. 



100 

1.8 Check Your Progress: Possible Answers 

 

Check Your Progress – 1  

 

# Load the olsrr package 

library(olsrr) 

# Creating the data frame 

brand_data <- data.frame( 

  Spend = c(49.7, 50.1, 20.4, 74.1, 32.4, 7.6, 22.9, 5, 19.3, 40.1, 166.2, 

82.4, 9.2, 5.7, 26.9, 26.9, 6.1, 185.9, 45.6, 27, 154.9), 

  Impress = c(30.2, 32.1, 21.4, 99.6, 71.1, 12.3, 21.9, 12, 11.7, 78.6, 40

.1, 60.8, 21.4, 10, 38, 50.7, 4.4, 98.8, 10.4, 40.8, 98.9) 

) 

 

# Fitting the linear regression model 

linear_model <- lm(Impress ~ Spend, data = brand_data) 

 

# Obtaining the results using olsrr 

ols_regress(linear_model) 

# Scatter plot 

plot(brand_data$Spend, brand_data$Impress,  

     xlab = "Spend", ylab = "Impress",  

     pch = 19, col = "blue") 

abline(linear_model, col = "red") # Add regression line 

# Residual plot 

ols_plot_resid_fit(linear_model) 

# Applying natural logarithm to the Budget variable 

brand_data$logSpend <- log(brand_data$Spend) 

 

# Fitting the linear regression model with the transformed variable 

log_model <- lm(Impress ~ logSpend, data = brand_data) 

 

# Obtaining the results using olsrr 

ols_regress(log_model) 

# Residual plot 

ols_plot_resid_fit(log_model) 
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1.9 Further Reading 

1. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 
December 2020 

2. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 
Cengage Learning, January 2016 

3. Regression Analysis by Example Using R 6th Edition, Ali S. Hadi and Samprit 
Chatterjee, Wiley Publication, October 2023 

1.10 Assignment  

1. What are the advantages and limitations of using logarithmic transformations? When 
should they be avoided? 

2. How do polynomial transformations help capture non-linear relationships in regression 
models? 

3. What is the principle of preserving hierarchy in polynomial regression, and why is it 
important? 

4. In what scenarios would a reciprocal transformation be appropriate for a predictor 
variable? 

5. How does reciprocal transformation affect the interpretation of the regression 
coefficient? 

6. Consider modeling mpg (miles per gallon) with weight (wt) and horsepower (hp): 

mpg = 𝛽0 + 𝛽1 (
1

wt
) + 𝛽2hp + ε 

Examine the model could reveal hidden patterns, offering better predictions of fuel 
efficiency. 
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Unit 2 Advanced Transformations  
 
Unit Structure 

2.0 LEARNING OBJECTIVES 

2.1 INTRODUCTION 

2.2 NATURAL LOGARITHM TRANSFORMATION FOR THE RESPONSE 

2.3 SQUARE ROOT TRANSFORMATIONS 

2.4 TRANSFORMATIONS FOR THE RESPONSE AND PREDICTORS 

2.5 TOOLS FOR IDENTIFYING PREDICTOR TRANSFORMATIONS 

2.6 LET US SUM UP 

2.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 

2.8 FURTHER READING 

2.9 ASSIGNMENT 

 

2.0  Learning Objectives 
After going through this unit, you should be able to 

• Apply the natural logarithm transformation to the response variable in multiple linear 
regression models where a unit change in a predictor results in a proportional change 
in the response. 

• To interpret the transformed model in terms of elasticities and proportional 
relationships between predictors and the response variable. 

• To select and apply transformations (e.g., log, square root, inverse) to both response 
and predictor variables to improve model fit. 

• To perform the Box-Cox transformation, interpret the lambda parameter, and select 
an appropriate transformation based on the output. 

• To understand the concept of scaling predictors (e.g., centering, standardization, 
and normalization) and its importance in regression analysis. 

• To have knowledge about tools for identifying predictor transformations. 
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2.1  Introduction 
In the previous unit, we explored how the general linear model can be employed to represent 
various potential relationships between predictors and the response variable. We 
concentrated on transformations involving one or more of the predictor variables. However, 
it is often beneficial to consider transformations involving the dependent variable as well. 
These transformations can be particularly useful in addressing issues such as non-linearity, 
heteroscedasticity (non-constant variance), and skewed distributions, which can impact 
the model's assumptions and the accuracy of predictions. 

This unit will focus on the application of transformations to both the response and 
predictor variables in regression analysis. We will discuss various techniques for 
transforming the response or dependent variable, including the natural logarithm 
transformation and the Box-Cox method, which can stabilize variance and linearize 
relationships. Additionally, we will explore methods for scaling predictors and interpreting 
the resulting regression coefficients. 

By the end of this unit, you will not only understand when and why to apply 
transformations but also gain practical knowledge on how to implement these 
transformations using diagnostic tools and interpret their effects on model performance. 
You will learn to apply these techniques to improve the fit and predictive power of regression 
models, ensuring that the assumptions underlying the general linear model are satisfied. 

2.2  Natural Logarithm Transformation for the Response 
Natural logarithm transformation is a widely used technique in regression modeling. It is 
particularly effective when the response variable exhibits a nonlinear relationship with 
predictors, heteroscedasticity, or a positively skewed distribution. By applying a logarithm 
transformation, we can often improve the interpretability and performance of a regression 
model. It is particularly useful when dealing with financial, economic, and social science 
data where changes occur proportionally rather than absolutely. 
 
The transformation is applied to the response variable to address the following issues: 

• Nonlinear Relationships: Some relationships between predictors and response 
variables are multiplicative rather than additive. 

• Heteroscedasticity: When the variance of residuals increases with the response 
variable, transforming the response can help stabilize variance. 

• Skewed Distributions: Positively skewed data can be made more symmetric, 
improving the normality assumption required for many regression techniques. 
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2.2.1 Example: MPG vs. Weight (mtcars Dataset in R) 

A suitable example for illustrating the log transformation is the mtcars dataset in R, where 
we analyze the relationship between miles-per-gallon rating (mpg) and the weight of the car 
(wt). 

 Model 1: Using the Untransformed Response Variable 

𝐸(𝑚𝑝𝑔) = 𝛽0 + 𝛽1𝑤𝑡 

This model may not fully capture the true relationship, as heavier cars tend to have a 
diminishing effect on fuel efficiency. 

 Model 2: Using the Log-Transformed Response Variable 

𝐸(log𝑒(𝑚𝑝𝑔)) = 𝛽0 + 𝛽1𝑤𝑡 

This model provides: 

• A better representation of the nonlinear relationship between weight and fuel 
efficiency. 

• More consistent residual variance, satisfying regression assumptions. 
# Load the mtcars dataset 
data(mtcars) 
 
# Fit linear regression model with original mpg variable 
linear_model  <- lm(mpg ~ wt, data = mtcars) 
 
# Log transformation 
log_mpg <- log(mtcars$mpg) 
 
# Fit linear regression model with log-transformed mpg 
log_model <- lm(log_mpg ~ wt, data = mtcars) 
 
# Calling the function for both models 
print_model_summary(linear_model, "Linear") 

 print_model_summary(log_model, "Log Transformed")     

# Calculate Studentized residuals for the original model 
studentized_residuals_original <- rstudent(linear_model) 
 
# Calculate Studentized residuals for the log-transformed model 
studentized_residuals_log <- rstudent(log_model) 

 

# Create an overlaid residual plot with customizations 
plot(mtcars$wt, studentized_residuals_original,  
     col = "blue", pch = 18, # pch = 18 for diamond 
     main = "Comparison of Studentized Residuals", 
     xlab = "Weight (wt)", ylab = "Studentized Residuals", 
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     ylim = range(c(studentized_residuals_original, 
studentized_residuals_log)), 
     cex.main = 0.8, cex.lab = 0.8, cex.axis = 0.8, 
     mgp = c(1.5, 0.5, 0))  # Adjusts the gap for title and axis labels 
 
# Add points for the log-transformed model 
points(mtcars$wt, studentized_residuals_log, col = "red", pch = 19) 
 
# Add a horizontal reference line at 0 
abline(h = 0, col = "black", lty = 2) 
 
# Add a legend 
legend("topright", legend = c("Original Model", "Log-Transformed Model"),  
       col = c("blue", "red"), pch = c(18, 19), cex = 0.8) 

 

Linear Model Summary 
--------------------------------------------------------- 
 Sample size: 32 
 R-squared: 0.7528 
 Adjusted R-squared: 0.7446 
 Standard error: 3.05 

  
Parameters 

--------------------------------------------------------- 
 Model        Estimate     Std Error    t-Statistic  Pr(> |t|)    
 (Intercept)  37.285       1.878        19.858       0.000        
 wt           -5.344       0.559        -9.559       0.000 

 

Log Transformed Model Summary 
--------------------------------------------------------- 
 Sample size: 32 
 R-squared: 0.7976 
 Adjusted R-squared: 0.7908 
 Standard error: 0.14 
  
     Parameters 
 --------------------------------------------------------- 
 Model        Estimate     Std Error    t-Statistic  Pr(> |t|)    
 (Intercept)  3.832        0.084        45.642       0.000        
 wt           -0.272       0.025        -10.872      0.000 
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2.2.2 Interpretation of Coefficients in Log-Transformed Models 

When the response variable is log-transformed, the interpretation of regression coefficients 
changes: 

• The equation for the transformed model: 

log𝑒(𝑌) = 𝛽0 + 𝛽1𝑋 + 𝜀 

• The coefficient 𝛽1 represents the proportional change in 𝑌 for a one-unit change in 
𝑋: 

Expected proportional change in 𝑌 = 𝑒𝛽1 − 1 

• Example: If 𝛽1 = −0.272 in the mtcars dataset, then: 

𝑒−0.272 − 1 = −0.2381 ≈ −24% 

  This means that for every additional unit increase in wt, mpg decreases by 
approximately 24%. 

2.2.3 When to Use Logarithm Transformation? 

The log transformation is beneficial when: 

• The response variable is positively skewed. 
• The variance of residuals increases with larger values of the response. 
• The relationship between predictors and the response is multiplicative (e.g., 

percentage change rather than absolute change). 
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2.2.4 Addressing Negative or Zero Values 
• Since the logarithm of zero or negative values is undefined, a small constant (e.g., 

𝑌 + 1) can be added before transformation. 
• This ensures that the transformation remains valid and that predicted values remain 

positive, which is crucial for variables like income, sales, and prices. 
 
 

Check Your Progress – 1  
 

1. Consider the following dataset (simulated). 
Marketing 
Expenditure 
 (in ₹1000s) 

Sales 
Revenue  
(in ₹1000s) 

Marketing 
Expenditure 
 (in ₹1000s) 

Sales 
Revenue  
(in ₹1000s) 

Marketing 
Expenditure 
 (in ₹1000s) 

Sales 
Revenue  
(in ₹1000s) 

10 50 60 105 110 155 

15 60 65 110 115 160 

20 65 70 115 120 165 

25 70 75 120 125 170 

30 75 80 125 130 175 

35 80 85 130 135 180 

40 85 90 135 140 185 

45 90 95 140 145 190 

50 95 100 145 150 195 

55 100 105 150 110 155 

Using R code: 
(a) Crete linear model 𝐸(𝑅𝑒𝑣𝑒𝑛𝑢𝑒) = 𝛽0 + 𝛽1𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 
(b) Crete transformed model 𝐸(loge 𝑅𝑒𝑣𝑒𝑛𝑢𝑒) = 𝛽0 + 𝛽1𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 
(c) What are your conclusions with respect to comparing models, and how can you 

describe them in a few paragraphs? 
 

 

2.3   Square Root Transformations for the Response 

An alternative method to address issues with nonconstant variance is to apply a square root 
transformation. In this transformation, the response variable 𝑦 is replaced by its square root, 

√𝑦. The square root transformation is useful for compressing high values more mildly than 
a logarithm. 
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2.3.1 Example: Income and Square Root Transformation 

In many cases, the relationship between income and other variables (like years of 
experience or education level) is not linear. For example, the difference in earnings between 
$0 and $10,000 is much larger than the difference between $80,000 and $90,000, even 
though both represent a $10,000 change. This suggests that the effect of each additional 
dollar of income might be perceived differently at different income levels. 

 Raw-Scale Linear Model: 
• In a raw-scale linear model, we assume that each additional year of experience or 

each additional unit of an independent variable increases income by the same fixed 
amount. However, this assumption may not hold in real life. For instance, the impact 
of education on income might be larger when someone’s income is lower, but less 
impactful as their income increases. This model doesn’t account for the diminishing 
marginal effect of income. 

 Logarithmic Transformation: 
• A logarithmic transformation would model income in terms of percentage changes, 

which makes it more appropriate for cases where proportional differences matter 
more than absolute differences. For example, the difference between earning 
$20,000 and $40,000 is considered the same as the difference between earning 
$80,000 and $160,000 (both represent a 100% increase). While this might work in 
some cases, it might be too severe because it tends to focus on large relative 
changes, losing the sense of absolute income differences. 

 Square Root Transformation: 
• A square root transformation balances the extremes of raw and logarithmic 

transformations. By transforming the income variable to √income, we smooth out 
the impact of large income values, while maintaining comparability across different 
income ranges. 

  For example: 

o Differences in earnings between $0 and $10,000 are much larger than 
between $80,000 and $90,000 on the raw scale. 

o However, when we apply a square root transformation, the difference 
between $0 to $10,000 is not overly exaggerated, and the difference between 
$80,000 to $90,000 is made more comparable. This works because stepping 
up in earnings (such as from $0 to $10,000, $10,000 to $40,000, or $40,000 to 
$90,000) results in equal steps in square root earnings. For example: 

▪ √10,000 = 100 
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▪ √40,000 = 200 
▪ √90,000 ≈ 300 

  So, the increases are proportionate on the square root scale, meaning the same 
magnitude of change in the transformed variable corresponds to more comparable 
effects, regardless of whether the income is low or high. 

In summary, by applying the square root transformation, we preserve the relative 
differences between income levels while smoothing out the impact of large values, making 
the data easier to analyze and interpret. This transformation can be useful when modeling 
income, where the effect of each additional dollar decreases as the income level increases. 

2.3.2 Limitations: 
• The interpretation of coefficients is less straightforward than in the original or log-

transformed models. 
• Negative predictions become large positive values when squared, introducing 

nonmonotonicity. 
• More suitable for prediction tasks rather than explanatory modeling. 

Another approach to addressing issues with nonconstant variance is to use 1
𝑦

 as the 

dependent variable instead of 𝑦. This transformation is called a reciprocal transformation. 

For instance, if the response variable is measured in miles per gallon, applying the reciprocal 

transformation would result in a new response variable with units of 1

miles per gallon
, or gallons 

per mile. 
 

2.4 Transformations for the Response and Predictors 
Regression models often require transformations to improve model fitting, correct 
heteroscedasticity, and address issues of non-linearity. By applying mathematical functions 
to the response variable and/or predictor variables, we can often improve the fit of the model 
and make it more interpretable. 
For example, consider a simulated dataset where we want to model the relationship 
between Revenue (response) and Cost (predictor).  
# Create dataset 
data <- data.frame( 
   Cost = c(205, 208, 215, 215, 199.9, 190, 180, 156, 144.9, 137.5, 127, 125, 

123.5, 117, 118, 115.5, 111, 113.9, 99.5, 99.5, 97.5, 97.5, 90, 96, 86, 

169.5, 155.3, 130, 102, 102, 92.2, 92.5, 89.9, 85, 89, 87, 70, 72, 74.9, 

73.1, 72.5, 67), 
  Revenue = c(1639, 1088, 1193, 1635, 1732, 1534, 1765, 1161, 1010, 1191, 
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930, 984, 1112, 600, 733, 794, 867, 750, 923, 743, 752, 696, 731, 768, 653, 

1142, 1035, 1076, 626, 600, 668, 553, 566, 600, 591, 599, 477, 398, 656, 585, 

490, 440) 
) 

 

# Fit linear model (before transformation)  
linear_model <- lm(Revenue ~ Cost, data = data) 
# scatter plot 
plot(data$Cost, data$Revenue, 
     pch = 1,  
     main = "Scatter plot of Revenue vs Cost", 
     xlab = "Cost", ylab = "Revenue", 
     cex.main = 0.8, cex.lab = 0.8, cex.axis = 0.8, 
     mgp = c(1.5, 0.5, 0))  # Adjusts the gap for title and axis labels 
# Add regression line 
abline(linear_model, col = "black", lwd = 2) 

 

 
From the above scatter plot, it can be observed that the data points are closer to the line at 
the left side of the plot (for lower values of Cost) than at the right side (for higher values of 
Cost). This suggests that the variance of the estimated errors increases from left to right, 
violating the constant variance assumption of the linear regression model. 
To address the issue of increasing variance, we can apply a logarithmic transformation to 
both variables. The relationship is now represented as: 

𝐸(log𝑒(Revenue)) = 𝛽0 + 𝛽1log𝑒(Cost) 

and the results are presented in Table 2.1. 
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# Log transformation 
data$log_Revenue <- log(data$Revenue) 
data$log_Cost <- log(data$Cost) 
# Fit linear model (before transformation)  
log_model <- lm(log_Revenue ~ log_Cost, data = data) 
 
# scatter plot 
plot(data$log_Cost, data$log_Revenue, 
     pch = 1,  
     main = expression("Scatter plot of " * log[e]("Revenue") * " vs " * 

log[e]("Cost")), 
     xlab = expression(log[e]("Cost")), ylab = expression(log[e]("Revenue")), 
     cex.main = 0.8, cex.lab = 0.8, cex.axis = 0.8, 
     mgp = c(1.5, 0.5, 0))  # Adjusts the gap for title and axis labels 
# Add regression line 
abline(log_model, col = "black", lwd = 2) 

 
 

Table 2.1: Models Comparison 
Metric Linear Model Log Model 

Sample size 42 42 

R-squared 0.8123 0.8428 

Adjusted R-squared 0.8076 0.8388 

Standard error 159.30 0.15 

Intercept (Estimate) -20.866 1.776 
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Metric Linear Model Log Model 
Cost (Estimate) 7.455   - 

Log_Cost (Estimate) - 1.041 

 
It can be observed from Table 2.1 that the log-transformed model has a significantly lower 
standard error compared to the linear model (0.15 vs. 159.30), suggesting that the log-
transformed model provides more accurate and reliable predictions of Revenue based on 
Cost. This substantial reduction in standard error further supports the appropriateness of 
using the log-transformed model over the linear model. It not only fits the data better in terms 
of R-squared values but also enhances the precision of predictions.  
This model can be used to estimate Revenue for a given Cost. For example, if a project has 
a Cost of $100,000, the expected Revenue would be: 

exp(𝛽0 + 𝛽1log𝑒(100)) 

Confidence intervals for the mean and prediction intervals for individual values can also be 
calculated and exponentiated to obtain intervals in the original scale. 

2.4.1 Box-Cox Transformation 

The Box-Cox transformation is a systematic method for selecting the best power 
transformation for the response variable. It seeks to find the power 𝜆 that makes the 
residuals from the regression model as close to normally distributed as possible. The 
transformation is defined as: 

𝑌(𝜆) = {
𝑌𝜆 − 1

𝜆
if 𝜆 ≠ 0,

log𝑒(𝑌) if 𝜆 = 0.

 

The Box-Cox method can suggest transformations such as: 

• 𝜆 = 1: No transformation. 
• 𝜆 = 0.5: Square root transformation. 
• 𝜆 = 0: Logarithmic transformation. 
• 𝜆 = −1: Reciprocal transformation. 

The selected 𝜆 is often rounded to a sensible value (e.g., 1.8 might be rounded to 2). Many 
statistical software packages include routines for performing Box-Cox transformations. 
# Load necessary library 
library(MASS) 

# Box-Cox transformation (for response variable) 
boxcox_model <- MASS::boxcox(linear_model, lambda = seq(-2, 2, by = 0.1)) 

# Add a title to the plot 
title(main = "Box-Cox Transformation of Revenue vs Cost", cex.main = 0.8) 
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Here's an explanation of the plot generated by this code: 

1. Lambda (𝝀) Axis: The x-axis of the Box-Cox plot represents the values of lambda (λ), 
which range from -2 to 2. The lambda value is the power to which all data will be 
raised. A lambda value of 1 corresponds to no transformation, while a lambda value 
of 0 corresponds to a natural logarithm transformation.  

2. Log-Likelihood Axis: The y-axis represents the log-likelihood values. The log-
likelihood measures the fit of the transformation. Higher values indicate a better fit 
to the assumptions of the linear regression model. 

3. Optimal Lambda: The plot typically includes a curve showing the log-likelihood for 
different values of lambda. The peak of this curve indicates the optimal lambda 
value, where the log-likelihood is maximized. This is the value of lambda that best 
transforms the data to meet the assumptions of the linear model. 

In this plot, the peak is around 𝜆 ≈ 0, indicating that the log transformation is 
the most appropriate. The log transformation stabilizes the variance and makes the 
distribution of the data more normal, improving the fit of the linear model. 

 

 

4. Confidence Intervals: The plot may also include confidence intervals around the 
optimal lambda showing by dotted vertical lines. These intervals suggest the range of 
lambda values that provide a similarly good fit. A common practice is to choose a 
lambda within this range to ensure a robust transformation. 
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The confidence interval in the figure extends slightly falls below 0 and 1, 
meaning transformations near 0 (such as log) or slightly positive power 
transformations are reasonable. Since the confidence interval includes 0 and is 
centered around it, this suggests that the logarithmic transformation is both 
appropriate and effective for the given data. Additionally, values within this range 
(e.g., λ between approximately 0 and 1) indicate that minor deviations from the 
logarithmic transformation, such as the square root transformation (λ = 0.5), could 
still yield a reasonable model fit. 

 
 

Check Your Progress – 2  

1. The following dataset consider response variable being the percentage of the 
population that are Internet users (Int) and the predictor variable being GDP per capita 
in thousands of dollars (Gdp). 

Gdp Int  Gdp Int  Gdp Int  Gdp Int  Gdp Int 

3.7 29.1  0.3 1.5  8.4 11.2  1 0.9  36.7 97 

43.8 44.8  1.6 2.1  69.9 78.6  13.1 5.8  57 31.3 

21.8 22.6  7.4 43.4  4.8 10.9  32.8 76.1  30 75.3 

12.8 47.9  14.7 32.8  6.6 30.8  4.3 12.9  30.7 47.9 

41.3 72.6  16.5 74  38.5 15.8  28.6 37  1.8 4.5 

37.6 65.1  40.3 74.8  50.3 78.4  19 75.7  43 69.8 

1 3.1  46.7 79.1  0.7 0.5  4.9 41.3  18 40.7 

30.2 46.2  11 28.9  15.5 41.5  26.9 58.9  21 38.7 

33.3 69.3  21.7 65.6  9.8 50.4  12.2 24.5  41.3 72.6 

11.4 32.4  37.9 77.8  9.1 53.9  25.6 65.6  57.2 68.2 

 
Using R code: 
(a) Compare the following three models: (1) response Int and predictor Gdp; response 

𝑙𝑜𝑔𝑒(𝐼𝑛𝑡) and predictor 𝑙𝑜𝑔𝑒(𝐺𝑑𝑝); (3) response √𝐼𝑛𝑡 and predictor √𝐺𝑑𝑝. 
(b) What are your conclusions with respect to the various ways of comparing models, and 

how can you describe them in a few paragraphs? You may analyze scatter plots or 
residual plots for any patterns.  

(c) Analyze Box-Cox plot and comment on the model selection.  
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2.4.2 Scaling of Predictors and Regression Coefficients 

Regression models aim to quantify relationships between variables. However, the choice of 
measurement scales for predictors can significantly impact the interpretability of regression 
coefficients. Scaling predictors and regression coefficients are often necessary to ensure 
meaningful comparisons and interpretations. 

 Effects of Scaling on Regression Coefficients 
• The coefficient of a predictor represents the expected change in the dependent 

variable for a one-unit increase in the predictor. 
• If a predictor is measured in different units (e.g., inches vs. millimeters), the 

corresponding regression coefficient changes accordingly. 
• Standardized scaling helps provide more interpretable coefficients by adjusting for 

variations in measurement units. 

 Types of Scaling 
1. Standardization using Z-Scores 

Z-score standardization is a widely used technique in data preprocessing, wherein 
each predictor variable is transformed to achieve a mean of 0 and a standard 
deviation of 1. This is mathematically represented as: 

𝑧 =
𝑥 − 𝜇

𝜎
 

Where: 

▪ 𝑥 is the original value, 
▪ 𝜇 is the mean of the variable, 
▪ 𝜎 is the standard deviation of the variable. 

Advantages 

1. Comparable Regression Coefficients: Z-score standardization allows regression 
coefficients to represent changes in terms of standard deviations, facilitating 
easier comparison across different predictors. 

2. Multicollinearity Mitigation: This standardization helps address 
multicollinearity issues in regression models. 

3. Uniform Scale: It is particularly useful when dealing with variables that have 
different units and ranges, providing a uniform scale for analysis. 

2. Standardization Using an Externally Specified Population Distribution 

In certain scenarios, standardization utilizes a predetermined external reference 
instead of sample statistics. This approach is prevalent in disciplines such as 
education and psychology. 

Process 
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• Establish standard values from an external dataset (e.g., national test score 
distribution). 

• Adjust the predictor using the established mean and standard deviation from 
this dataset. 

Advantages 

1. Ensuring Consistency: It maintains consistency across various studies and 
datasets. 

2. Cross-Population Comparison: Facilitates comparison across different 
sample populations. 

Example 
Consider a standardized test score that references national averages. For 

instance, if the national mean is 55 and the standard deviation is 18, scores are 
standardized using these values instead of those derived from the study sample. 

 
3. Standardization using Reasonable Scales 

Instead of strict z-score transformations, some variables are rescaled in more 
interpretable ways while preserving familiar units. This approach includes: 

• Dividing income by 1,000 to express earnings in thousands. 
• Measuring age in decades rather than years. 
• Centering categorical variables around meaningful points. 

Advantages 

1. Meaningful Interpretations: Retains meaningful interpretations while 
improving numerical stability. 

2. Ease of Understanding: Helps maintain ease of understanding without 
completely standardizing variables. 

Example 
Consider income as a numerical variable. Instead of expressing income in its raw 
form, it can be rescaled and expressed in thousands. For example: 

𝑖𝑛𝑐𝑜𝑚𝑒_scaled =
𝑖𝑛𝑐𝑜𝑚𝑒

1000
 

In this case, an income of 50,000 would be expressed as income_scaled value of 50, 
making it easier to interpret in certain contexts while maintaining numerical stability. 
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2.5 Tools for Identifying Predictor Transformations 

2.5.1 Partial Residual Plots 

Partial residual plots (also known as component plus residual plots) are useful for 
identifying non-linear relationships between the response and individual predictors. These 
plots show the relationship between the response and a predictor after accounting for the 
effects of other predictors. If the plot shows a non-linear pattern, a transformation of the 
predictor may be needed. 

2.5.2 Ceres Plots 

Ceres plots are a generalization of partial residual plots that combine conditional 
expectations and residuals. They provide a more flexible way to visualize the relationship 
between the response and predictors, especially in the presence of interactions or non-
linearities. 

2.5.3 Box-Tidwell Method 

The Box-Tidwell method is an automated approach for suggesting power transformations of 
predictor variables. It iteratively estimates the best power transformation for each predictor 
to improve the linearity of the relationship with the response. 

 

2.6   LET US SUM UP 
As with other types of transformations, such as square root or reciprocal transformations, 
there is no guarantee that a logarithmic transformation will always outperform the others. 
The effectiveness of each transformation depends on the specific characteristics of the 
predictors and/or the response variable. Therefore, it is essential to test different 
transformations to determine which one best stabilizes variance and improves model fit, 
whether applied to predictors and/or the response. 

While transformations are a valuable tool in regression analysis, they should be 
applied thoughtfully and judiciously. Automated methods like the Box-Cox and Box-Tidwell 
transformations can suggest potential transformations, but these tools should not be solely 
relied upon. The choice of transformations should also incorporate theoretical and 
contextual knowledge about the data. Over-reliance on automated methods without a deep 
understanding of the data can lead to overfitting—where the model fits the sample data well 
but fails to generalize to new, unseen data. Additionally, overly complex transformations 
can make the model harder to interpret, which undermines its practical usefulness. 
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In conclusion, transformations can significantly improve the fit, predictive power, 
and interpretability of regression models. However, careful consideration of both statistical 
properties and the underlying context of the analysis is critical when selecting and applying 
transformations. Tools such as partial residual plots, Ceres plots, and the Box-Cox method 
can help identify potential transformations, but the final decision should be based on a 
balance between statistical considerations and the substantive knowledge of the problem 
at hand. When applied correctly, transformations can enhance the model’s robustness and 
provide clearer, more meaningful interpretations. 

2.7 Check Your Progress: Possible Answers 
 

Check Your Progress – 1  
 
Understanding the example in Section 2.4 will help you solve this part. 
 
Check Your Progress – 2  
 
The R code snippet is:  
# Create data vectors 
Gdp <- c(3.7, 0.3, 8.4, 1, 36.7, 43.8, 1.6, 69.9, 13.1, 57, 
         21.8, 7.4, 4.8, 32.8, 30, 12.8, 14.7, 6.6, 4.3, 30.7, 
         41.3, 16.5, 38.5, 28.6, 1.8, 37.6, 40.3, 50.3, 19, 43, 
         1, 46.7, 0.7, 4.9, 18, 30.2, 11, 15.5, 26.9, 21, 
         33.3, 21.7, 9.8, 12.2, 41.3, 11.4, 37.9, 9.1, 25.6, 57.2) 
Int <- c(29.1, 1.5, 11.2, 0.9, 97, 44.8, 2.1, 78.6, 5.8, 31.3, 
         22.6, 43.4, 10.9, 76.1, 75.3, 47.9, 32.8, 30.8, 12.9, 47.9, 
         72.6, 74, 15.8, 37, 4.5, 65.1, 74.8, 78.4, 75.7, 69.8, 
         3.1, 79.1, 0.5, 41.3, 40.7, 46.2, 28.9, 41.5, 58.9, 38.7, 
         69.3, 65.6, 50.4, 24.5, 72.6, 32.4, 77.8, 53.9, 65.6, 68.2) 
 
# Model 1: Response Int and predictor Gdp 
linear_model <- lm(Int ~ Gdp) 
 
# Model 2: Response log_e(Int) and predictor log_e(Gdp) 
log_model <- lm(log(Int) ~ log(Gdp)) 

 
# Model 3: Response √Int and predictor √Gdp 
sqrt_model <- lm(sqrt(Int) ~ sqrt(Gdp)) 
 
data <- data.frame(Gdp, Int) 
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print_model_summary(linear_model, "Linear") 

print_model_summary(log_model, "Log Transformed") 

print_model_summary(sqrt_model, "Square Root Transformed") 

 
Note: In print_model_summary() function make the following change at line # 
16 (approx.) 

 cat(sprintf(“Sample size: %d”, nrow(mtcars)))  
 cat(sprintf(“Sample size: %d”, nrow(data))) 
  

Replace the word `mtcars` by `data` 

 
 
 

2.8  Further Reading 
1. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 

December 2020 
2. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 

Cengage Learning, January 2016 
3. Regression and Other Stories: Analytical Methods for Social Research, Gelman, Hill, 

Vehtari, Cambridge University Press, December 2020 

2.9 Assignment  
1. In what situations is the natural logarithm transformation particularly useful, and how 

does it affect the interpretation of the regression coefficients? 
2. After applying a transformation to both the response and predictor variables, how does 

the interpretation of the regression coefficients change compared to a model with 
untransformed variables? 

3. Why might you choose to apply a transformation (such as log, square root, or inverse) 
to either the response or predictor variables in a regression model? 

4. Discuss the importance of scaling predictors in regression models. What issues can 
arise in regression analysis if predictors are not properly scaled? 

5. Explain how the lambda parameter from the Box-Cox method is used to select an 
appropriate transformation and what it represents in the model. 

6. How do you decide which tool (partial residual plots, Ceres plots, or the Box-Tidwell 
method) to use when identifying appropriate transformations for a predictor variable? 

7. In your own words, explain how transformations of predictors and response variables 
might improve model fit in multiple linear regression. Provide an example scenario 
where transformations could lead to better model performance. 
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Unit 3 Transforming Qualitative Predictors 
 
Unit Structure 

3.0 LEARNING OBJECTIVES 
3.1 INTRODUCTION 
3.2 QUALITATIVE PREDICTORS WITH TWO LEVELS 
3.3 INTERACTION 
3.4 MODELING INTERACTIONS WITH BINARY CATEGORICAL VARIABLES 
3.5 GENERAL FORM OF INTERACTION BETWEEN A CONTINUOUS AND A CATEGORICAL PREDICTOR 
3.6 LET US SUM UP 
3.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
3.8 FURTHER READING 

3.9 ASSIGNMENT 

 

3.0 Learning Objectives 

After going through this unit, you should be able to 
• Incorporate binary categorical variables as predictors in multivariable linear 

regression models. 

• Understand how to handle binary categorical data using dummy (indicator) variables. 

• Interpret the coefficients of models with both numerical and binary categorical 
predictors. 

• Recognize the challenges and assumptions involved in using binary categorical 
predictors. 

• Evaluate the model performance when combining numerical and binary categorical 
predictors. 

• Understand and assess interaction effects between numerical and binary 
categorical variables in regression models. 



121 

3.1 Introduction 

So far, the examples we've worked with have involved quantitative independent variables, 
such as rental price, size, and the number of floors. However, in many real-world situations, 
we encounter qualitative or categorical independent variables, such as gender (male, 
female), payment method (cash, credit card, check), and other similar factors. These types 
of categorical variables can't be directly included in a multiple linear regression model 
because the framework typically relies on quantitative predictors—variables that have 
meaningful numerical values representing measurable quantities like money, length, or 
height. 

To overcome this limitation, we can incorporate categorical variables into the model 
using indicator (or dummy) variables. This unit focuses on demonstrating how categorical 
variables, particularly binary ones, can be effectively included and analyzed in regression 
models. While the response variable remains a quantitative continuous variable, the 
predictors can now be a mix of both quantitative and binary categorical variables. 
Additionally, we will explore how to model and interpret interactions between numerical and 
categorical predictors in regression analysis. 

3.2 Qualitative predictors with two levels 

Let's revisit the Rental Price–Size example from Block 1, where we explored the relationship 
between rental price and the size of office spaces at different locations. In this expanded 
analysis, we'll examine how introducing a new qualitative predictor—the Energy Rating of 
the building—might influence the regression relationship. The dataset, now including the 
Energy Rating of the building, is presented in Table 3.1. 

Table 3.1: Office Rental Price dataset with qualitative variable 
Location SIZE ENERGY 

RATING 
RENTAL PRICE 

1 500 LOW 320 
2 550 HIGH 380 
3 620 HIGH 400 
4 630 LOW 390 
5 660 LOW 380 
6 700 LOW 410 
7 770 HIGH 480 
8 880 HIGH 600 
9 920 LOW 570 

10 1000 HIGH 620 
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The response variable is RENTAL PRICE (Y) (in hundreds of rupees), and the predictors are: 
(a) SIZE (X1), measured in square feet, and (b) ENERGY RATING (X2), which has two levels: 
High and Low. We will attempt to measure the effects of these two variables on rental price 
using regression analysis.  
To incorporate the energy rating category into the regression model, we define the following 
variable.  

𝑋2 = {
0, if the rating is Low
1, if the rating is High

 

 
In regression analysis x2 is called a dummy or indicator variable. We choose one of the 
levels to be a reference level and record values of 𝑋2 = 0 for Low observations in this 
category.  It does not really matter which level we choose to be the reference level 
(although more on this later), so we have arbitrarily chosen “Low” as the reference level.  
# Load the olsrr library 

library("olsrr") 

# Create the data frame 

data <- data.frame( 

  Size = c(500, 550, 620, 630, 660, 700, 770, 880, 920, 1000), 

  Energy_rating = c("LOW", "HIGH", "HIGH", "LOW", "LOW", "LOW", "HIGH", "HIGH

", "LOW", "HIGH"), 

  Rental_price = c(320, 380, 400, 390, 380, 410, 480, 600, 570, 620) 

) 

 

# Convert Energy_rating to a factor 

data$Energy_rating <- factor(data$Energy_rating, levels = c("LOW", "HIGH")) 

 

# Fit the regression model 

model <- lm(Rental_price ~ Size + Energy_rating, data = data) 

 

ols_regress(model) 

OR 

# Load the olsrr library 

library("olsrr") 

 

# Create the data frame 

data <- data.frame( 

  Size = c(500, 550, 620, 630, 660, 700, 770, 880, 920, 1000),             

  Energy_rating = c("LOW", "HIGH", "HIGH", "LOW", "LOW", "LOW",             
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    "HIGH", "HIGH", "LOW", "HIGH"),                                      

  Rental_price = c(320, 380, 400, 390, 380, 410, 480, 600, 570, 620)       

) 

 

# Convert Energy_rating to binary indicators 

ER_Low <- as.numeric(data$Energy_rating == "LOW")                          

ER_High <- as.numeric(data$Energy_rating == "HIGH")                        

 

# Add indicators to the data frame 

data <- cbind(data, ER_Low, ER_High)                                       

 

# Fit the regression model using the ER_High indicator 

model <- lm(Rental_price ~ Size + ER_High, data = data) 

ols_regress(model) 

factor (Energy_rating): This tells R to treat the Energy_rating variable as a factor 
(categorical variable). R will automatically handle the encoding of the categories as dummy 
variables during the regression. 

 

                          Model Summary                            

 ---------------------------------------------------------------- 

 R                        0.984       RMSE                17.955  

 R-Squared                0.968       MSE                322.392  

 Adj. R-Squared           0.959       Coef. Var            4.717  

 Pred R-Squared           0.935       AIC                 94.136  

 MAE                     16.368       SBC                 95.347  

 ---------------------------------------------------------------- 

  RMSE: Root Mean Square Error  

  MSE: Mean Square Error  

  MAE: Mean Absolute Error  

  AIC: Akaike Information Criteria  

  SBC: Schwarz Bayesian Criteria  

  

                                 ANOVA                                   

 ---------------------------------------------------------------------- 

                   Sum of                                               

                  Squares       DF    Mean Square       F         Sig.  

 ---------------------------------------------------------------------- 

 Regression     97626.077        2      48813.038    105.986    0.0000  

 Residual        3223.923        7        460.560                       

 Total         100850.000        9                                      
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 ---------------------------------------------------------------------- 

  

Parameter Estimates 

 ---------------------------------------------------------------------------- 

             model      Beta    Std. Error    Std. Beta      t        Sig        

 ---------------------------------------------------------------------------- 

       (Intercept)     8.850        32.056                  0.276    0.790      

              Size     0.594         0.045        0.927    13.247    0.000        

 Energy_ratingHIGH    33.287        14.062        0.166     2.367    0.050        

 ---------------------------------------------------------------------------- 

Note that when using indicator variables to represent a set of categories, the number of 
these variables required is one less than the number of categories. In terms of the indicator 
variables described above, the regression model is  

𝐸(𝑌) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀 (3.1) 
Using R code and the data in Table 3.1, we can develop estimates of the model 
parameters. The output followed by R code shows that the estimated multiple regression 
equation is  

𝑌̂ = 8.850 + 0.594𝑋1 + 33.287𝑋2 (3.2) 

At the 0.05 significance level, the 𝑝-value of 0.000 associated with the F test (F = 105.986) 
signifies a significant regression relationship. The t-test results indicate that the variable 
'Size' (𝑝-value = 0.000) is statistically significant, while 'Energy Rating' (𝑝-value = 0.05) is 
marginally significant. This threshold suggests that the energy rating might have a weaker 
but still notable relationship with the rental price. Furthermore, the R-Squared value of 
96.80% and the Adjusted R-Squared value of 95.9% demonstrate that the estimated 
regression equation effectively explains the variability in rental prices. Therefore, equation 
(3.2) is likely to be valuable for predicting the rental price for various locations. 

3.2.1 Interpreting the Parameters 

 
To understand how to interpret the parameters, 𝛽0, 𝛽1, and 𝛽2 when a categorical variable 
is present, consider the case when 𝑋2 = 0 (indicating a low energy rating). Using 𝐸(𝑌|𝐿𝑜𝑤) 
to denote the mean or expected value of rental price given a low energy rating, we have 

𝐸(𝑌|𝐿𝑜𝑤) = 𝛽0 + 𝛽1𝑋1 + 𝛽2(0) = 𝛽0 + 𝛽1𝑋1 (3.3) 
Likewise, for a high energy rating 𝑋2 = 1, we have 

𝐸(𝑌|𝐻𝑖𝑔ℎ) = 𝛽0 + 𝛽1𝑋1 + 𝛽2(1) = (𝛽0 + 𝛽2) + 𝛽1𝑋1 (3.4) 
Comparing equations (3.3) and (3.4), we see that the mean rental price is a linear function 
of 𝑋1 for both low and high energy ratings. The slope of both equations is  𝛽1, but the Y-
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intercept differs. The Y-intercept is 𝛽0 in equation (3.3) for low energy ratings and (𝛽0 + 𝛽2)  
in equation (3.4) for high energy ratings. The parameter 𝛽2 indicates the difference between 
the mean rental price for a high energy rating and the mean rental price for a low energy 
rating.  
 If 𝛽2 is positive, the mean rental price for a high energy rating will be greater than 
that for a low energy rating. Conversely, if 𝛽2 is negative, the mean rental price for a high 
energy rating will be less than that for a low energy rating. Finally, if 𝛽2 = 0, there is no 
difference in the mean rental price between high and low energy ratings, indicating that the 
energy rating is not related to the rental price. 
In effect, the use of a dummy variable for energy rating provides two estimated regression 
equations that can be used to predict the rental price: one corresponding to a high energy 
rating and one corresponding to a low energy rating. By evaluating equation (3.2) for different 
values of the indicator variables, it follows that there is a distinct regression equation for 
each category, as presented in Table 3.2. 
 
Table 3.2: Regression Equations for two categories of energy rating 

Category 𝑋2 Regression Equation 
High 1 𝑌̂ = 42.137 + 0.594𝑋1 
Low 0 𝑌̂ =  8.850 + 0.594𝑋1 

 
The following R code snippet generates a scatter plot of the office rental price dataset. Data 
points with a low energy rating are indicated by an "L", while those with a high energy rating 
are indicated by an "H". Two regression equations, shown in Table 3.2, are plotted on the 
graph to illustrate the equations that can be used to predict rental prices. One regression 
line corresponds to high energy ratings and the other to low energy ratings. The fitted line for 
low energy ratings is below the fitted line for high energy ratings, with a lower intercept (8.850 
versus 42.137). 
 
library(ggplot2) 
 
# Predict rental prices using the model 
data$Predicted <- predict(model) 
 
# Plot scatter diagram 
ggplot(data, aes(x = Size, y = Rental_price, color = Energy_rating)) + 
  geom_point(size = 3) + 
  geom_text(aes(label = ifelse(Energy_rating == "HIGH", "H", "L")), 
            vjust = -0.5, hjust = 0.6, size = 3) + 
  geom_line(aes(y = Predicted), linetype = "solid", linewidth = 0.6) + 
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  scale_color_manual(values = c("LOW" = "blue", "HIGH" = "red")) + 
  labs(x = "Size (Square Feet)", 
       y = "Rental Price (₹100s)", 
       color = "Energy Rating") + 
  theme_minimal() + 
  theme(axis.title = element_text(size = 10, face = "bold"), 
        legend.title = element_text(size = 10, face = "bold")) 

 
Figure 3.1: Scatter Plot with Regression Lines for Rental Prices 

 
 

Check Your Progress – 1  
1. ABC Filtration Solutions provides maintenance services for water-filtration systems 

in Ahmedabad. Customers contact them for service requests, and managers want to 
predict the repair time for each request. The dependent variable is repair time in 
hours, which is believed to be related to the number of months since the last service 
and the type of repair problem (mechanical or electrical). Data for a sample of 10 
service calls is reported in the following table. 
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Service 
Call 

Months since 
last Service (𝑥1) 

Types of 
Repair (𝑥2) 

Repair 
Time 𝑦 

1 3 Mechanical 1.8 
2 2 Electrical 2.9 
3 7 Electrical 4.9 
4 6 Mechanical 3.0 
5 2 Electrical 2.9 
6 8 Electrical 4.8 
7 4 Electrical 4.4 
8 8 Mechanical 4.8 
9 6 Electrical 4.5 

10 9 Mechanical 4.2 

(a) Write a multiple regression equation relating 𝑥1 and the categorical variable to 𝑦. 
(b) What are the expected values of 𝑦 for the first and second levels of the categorical 

variable? 
(c) Interpret the parameters in your regression equation.  
(d) Plot the results in the scatter diagram. 

 
2. Consider the following dataset (simulated). 

Age 
(𝑥1) 

Location 
(𝑥2) 

Salary (𝑦) 
(in 1000 rupees) 

25 Urban 45 
30 Rural 38 
35 Urban 50 
40 Rural 40 
45 Urban 55 
50 Rural 42 
55 Urban 58 
60 Rural 45 
65 Urban 60 
70 Rural 48 

Answer the questions mentioned in parts (a) – (d) from Exercise 1 for the dataset 
provided above. 
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3.3 Interaction 

Interaction effects in regression analysis occur when the relationship between a predictor 
variable and the response variable depends on another predictor. This means the effect of 
one predictor varies across the values of another predictor. Interaction terms help model 
these varying relationships effectively. 

In multiple linear regression, the association between one predictor variable (𝑋1) and 
the response variable (𝑌) depends on the value of another predictor variable (𝑋2). The effect 
of 𝑋1 on 𝑌 varies with the level of 𝑋2. To model this dependency, we include an interaction 

term in the regression model, which is the product of the two predictors (𝑋1 × 𝑋2).  

A multiple linear regression model with an interaction term takes the form: 

𝐸(𝑌) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3(𝑋1 × 𝑋2) + 𝜀 

where 𝛽3 represents the interaction effect. 

Suppose we have data on annual sales, advertising spending, and interest rates for a luxury 
goods business. We suspect that the association between the annual advertising 
expenditure (AdvExp) and annual sales (Sales) varies depending on the prevailing interest 
rate (Interest). To investigate this, we use the following simulated data: 

Sales  

(1000s) 

AdvExp  

($1000) 

Interest  

(Percentage, %) 

5.0 1.0 2 

8.0 7.0 5 

14.5 7.0 2 

6.0 5.5 5 

9.0 6.5 4 

4.5 3.0 4 

10.0 4.0 2 

4.5 2.0 3 

2.0 1.0 4 

4.0 3.5 5 

10.5 6.0 3 

8.0 4.0 3 
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To model the interaction, we calculate the interaction term 𝐴𝑑𝑣𝐼𝑛𝑡 = 𝐴𝑑𝑣𝐸𝑥𝑝 × 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 
and include it in the regression model: 

𝐸(𝑆𝑎𝑙𝑒𝑠) = 𝛽0 + 𝛽1 𝐴𝑑𝑣𝐸𝑥𝑝 + 𝛽2 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝛽3 𝐴𝑑𝑣𝐼𝑛𝑡 

Code in R 
# Create the data frame 

data <- data.frame( 

  Sales = c(5.0, 8.0, 14.5, 6.0, 9.0, 4.5, 10.0, 4.5, 2.0, 4.0, 10.5, 8.0), 

  AdvExp = c(1.0, 7.0, 7.0, 5.5, 6.5, 3.0, 4.0, 2.0, 1.0, 3.5, 6.0, 4.0), 

  Interest = c(2, 5, 2, 5, 4, 4, 2, 3, 4, 5, 3, 3) 

) 

 

# Calculate the interaction term 

data$AdvInt <- data$AdvExp * data$Interest 

 

# Fit the regression model with Interaction term 

model <- lm(Sales ~ AdvExp + Interest + AdvInt, data = data) 

 

# Display the summary of the model 

print_model_summary(data, model, "Interaction") 

     Interaction Model Summary 
 --------------------------------------------------------- 
 Sample size: 12 
 R-squared: 0.9944 
 Adjusted R-squared: 0.9923 
 Standard error: 0.31  
      Parameters 
 --------------------------------------------------------- 
 Model        Estimate     Std Error    t-Statistic  Pr(> |t|)    
 (Intercept)  5.941        0.662        8.979        0.000        
 AdvExp       1.836        0.135        13.611       0.000        
 Interest     -1.312       0.197        -6.669       0.000        
 AdvInt       -0.126       0.039        -3.261       0.012 
 

The estimated regression equation from the statistical software output is: 

𝐸(𝑆𝑎𝑙𝑒𝑠) = 5.941 + 1.836 AdvExp − 1.312 Interest − 0.126 AdvInt 

We want to find the difference in Sales when we increase Advert by 1 unit, while keeping 
Interest constant. This can be written as: 
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𝛥𝑆 = [𝛽0 + 𝛽1 ⋅ (AdvExp + 1) + 𝛽2 ⋅ Interest + 𝛽3 ⋅ (AdvExp + 1) ⋅ Interest]

− [𝛽0 + 𝛽1 ⋅ AdvExp + 𝛽2 ⋅ Interest + 𝛽3 ⋅ AdvExp ⋅ Interest] 

After cancelling out the common terms, the expected change in Sales when we increase 
AdvExp by 1 unit while holding Interest constant is: 

𝛥𝑆 = 𝛽1 + 𝛽3 ⋅ Interest 

So, the expected change in Sales depends not only on the coefficient 𝛽1 but also on the 
coefficient 𝛽3 and the value of Interest.  

The estimated expected change in Sales (thousands of units) when AdvExp increased by 1 
unit is: 

1.836 − 0.126 Interest 

For example: 

• When Interest = 2%, the expected increase in Sales is  
1.836 − 0.126(2) = 0.1548 × 1000 = 1548 

• When Interest = 5%, the expected increase in Sales is  
1.836 − 0.126(5) = 1.206 × 1000 = 1206 

This confirms that advertising has a stronger impact on sales at lower interest rates, while 
higher interest rates reduce its effectiveness. 

3.3.1 Visualizing Interaction Effects 

To better understand the interaction, we plot Sales vs. AdvExp, grouping by Interest rate. 

# Plot interaction effect 
ggplot(df, aes(x = AdvExp, y = Sales, color = as.factor(Interest))) + 
  geom_point() + 
  geom_smooth(method = "lm", se = FALSE, formula = y ~ x) + 
  labs(title = "Interaction Effect of Advertising and Interest on Sales", 
       x = "Advertising Expenditure ($1000s)", y = "Sales (1000s)", color = 

"Interest Rate (%)") 
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Since the lines are not parallel, this confirms a significant interaction effect. 

 

3.3.2 Hypothesis Testing for Interaction 

To determine if the interaction term is statistically significant, we conduct a hypothesis test: 

• Null Hypothesis (H0): No interaction (𝛽3 = 0) 
• Alternative Hypothesis (H1): Interaction exists (𝛽3 ≠ 0) 
• As 𝑝-value for AdvInt < 0.05, we reject H0 and conclude that interaction is significant. 

This reinforces the conclusion that the interaction between advertising expenditure and 
interest rate significantly affects sales. If the interaction term is not significant, we simplify 
the model by removing it: 

model_simplified <- lm(Sales ~ AdvExp + Interest, data = data) 

Including interaction terms allows us to capture more intricate relationships within the data. 
However, it's crucial to assess the significance of these terms to prevent unnecessarily 
complicating the model. Interaction terms should be applied thoughtfully, informed by 
subject matter expertise and statistical testing, to maintain the model's interpretability and 
its ability to generalize to the broader population. 
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In this example, we focused on the relationship between AdvExp and Sales while holding 
Interest constant. However, we could have just as easily explored the connection between 
Interest and Sales with AdvExp held constant. The resulting conclusions and interpretations 
would have been similar, all enabled by incorporating the AdvInt interaction term in the 
model. This part is left as an exercise. 

The concept of hierarchy is also relevant when dealing with interaction terms. If we 
decide to include an interaction term 𝑋1𝑋2 in a model, and it has a statistically significant 
low 𝑝-value, the principle of hierarchy implies that we do not need to perform hypothesis 
tests for the individual regression parameters of 𝑋1 or 𝑋2. Instead, we keep both 𝑋1 and 𝑋2 
in the model regardless of their 𝑝-values, as we have already established that the interaction 
term 𝑋1𝑋2 is significant. In this scenario, 𝑋1 and 𝑋2 are often referred to as main effect 

predictor variables or simply main effects. 
In practice, much like we handle polynomial transformations for predictors in 

multiple linear regression models, it is often recommended to rescale the values of the 
predictors involved in interactions. Typically, the predictors are rescaled to have means near 
0 and standard deviations close to 1. This rescaling helps address numerical estimation 
issues and minimizes multicollinearity problems, resulting in a more stable and 
interpretable model. 

Check Your Progress – 2  
1. As suggested in this section, examine the relationship between Interest and Sales with 

AdvExp held constant. Calculate the expected change in Sales when Interest rate 
increases by 1 unit, assuming the advertising expenditure (AdvExp) is $1000. 

2. Suppose we hypothesize that, for a small retail business, the relationship between 
advertising expenditure (measured in millions of dollars annually) and sales (also in 
millions of dollars annually) is influenced by the number of stores the business 
operates. Below is a table displaying the simulated data:  

Sales AdvExp Stores 
3.8 3.5 1 
7.8 5.5 1 
7.9 7 1 
6.5 1 2 
10.6 3 2 
13.3 6.5 2 
14.7 2 3 
16.1 4 3 
18.7 6 3 
18.8 1 4 
22.9 4 4 
24.2 7 4 
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Apply the same procedure we covered in this unit to determine whether the 
interaction terms reveal more complex relationships within the data. Consider the 
relationship between advertising expenditure (AdvExp) and sales (Sales) as being 
influenced by the number of stores (Stores). Include the interaction term, 𝐴𝑑𝑣𝑆𝑡𝑜 =

𝐴𝑑𝑣𝐸𝑥𝑝 × 𝑆𝑡𝑜𝑟𝑒𝑠, and incorporate this interaction term into the model: 

𝐸(𝑆𝑎𝑙𝑒𝑠) = 𝛽0 + 𝛽1 𝐴𝑑𝑣𝐸𝑥𝑝 + 𝛽2 𝑆𝑎𝑙𝑒𝑠 + 𝛽3 𝐴𝑑𝑣𝑆𝑡𝑜 

 

3.4  Modeling Interactions with Binary Categorical Variables 

When building regression models, interactions between variables are critical in 
understanding how predictors combine to influence the outcome. Interactions with 
categorical variables explore how the relationship between a continuous predictor and the 
outcome depends on the levels of a categorical variable. 

Below are various types of models that include interactions with binary categorical 
variables, along with their mathematical expressions. 

3.4.1 Interaction between a Continuous and a Binary Variable 

When the effect of a continuous variable on the dependent variable differs by the levels of a 
categorical variable, an interaction term is included between the continuous and the 
categorical variable. 

For two predictors, one continuous 𝑋 and one categorical variable with two levels (coded as 
𝐶, where 𝐶 = 0 or 𝐶 = 1): 

Mathematical Expression: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐶 + 𝛽3(𝑋 ⋅ 𝐶) + 𝜀 

• 𝑌 is the dependent variable 
• 𝑋 is the continuous predictor 
• 𝐶 is the categorical predictor (0 or 1) 
• 𝑋 ⋅ 𝐶 is the interaction term 
• 𝜀 is the error term 

In this model:  

• 𝛽1 represents the effect of 𝑋 when 𝐶 = 0 (reference category).  

• 𝛽2 is the difference in the intercept between the two levels of the categorical variable.  
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• 𝛽3 captures how the effect of 𝑋 changes when 𝐶 = 1 compared to when 𝐶 = 0. 

When working with a binary categorical variable 𝐶 (e.g., 𝐶 = 0 or 𝐶 = 1) and a continuous 
predictor 𝑋, there are several possible linear models depending on whether we include main 
effects, interaction effects, or both. We can write separate equations for each level of 𝐶 to 
explicitly show the effect on the intercept and slope. Below are seven possible linear models 
for this scenario: 

Model with Only the Continuous Predictor 

This model ignores the categorical variable entirely and assumes the relationship between 
𝑌 and 𝑋 is the same for all levels of 𝐶: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀. 

Model with Only the Categorical Predictor 

This model ignores the continuous predictor 𝑋 and assumes the response 𝑌 depends only 
on the categorical variable 𝐶: 

𝑌 = 𝛽0 + 𝛽2𝐶 + 𝜀. 

Where 𝛽0 is the mean response when 𝐶 = 0 and  𝛽2 is the difference in mean response when 
𝐶 = 1.  

The above model can be written as: 

𝑌 = {
𝛽0 + 𝜀, if 𝐶 = 0,
(𝛽0 + 𝛽2) + 𝜀, if 𝐶 = 1.

 

 

Additive Model (No Interaction) 

This model includes both 𝑋 and 𝐶 as predictors but assumes no interaction between them. 
The effect of 𝑋 on 𝑌 is the same for both levels of 𝐶: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐶 + 𝜀. 

Here: 

• 𝛽1 is the slope of 𝑋, 
• 𝛽2 is the difference in intercept between 𝐶 = 1 and 𝐶 = 0. 

The above equation can be expressed as: 
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𝑌 = {
𝛽0 + 𝛽1𝑋 + 𝜀, if 𝐶 = 0,
(𝛽0 + 𝛽2) + 𝛽1𝑋 + 𝜀, if 𝐶 = 1.

 

 

Interaction Model 

This model includes an interaction term between 𝑋 and 𝐶, allowing the slope of 𝑋 to differ 
across levels of 𝐶: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐶 + 𝛽3𝑋 ⋅ 𝐶 + 𝜀. 

Here: 

• 𝛽3 represents the interaction effect, i.e., how the slope of 𝑋 changes when 𝐶 = 1. 

The mathematical expression for the model further simplifies to: 

𝑌 = {
𝛽0 + 𝛽1𝑋 + 𝜀, if 𝐶 = 0,
(𝛽0 + 𝛽2) + (𝛽1 + 𝛽3)𝑋 + 𝜀, if 𝐶 = 1.

 

 

Model with Only Interaction (No Main Effects) 

This model includes only the interaction term, assuming the main effects of 𝑋 and 𝐶 are 
zero: 

𝑌 = 𝛽0 + 𝛽3𝑋 ⋅ 𝐶 + 𝜀. 

which can be written as: 

𝑌 = {
𝛽0 + 𝜀, if 𝐶 = 0,
𝛽0 + 𝛽3𝑋 + 𝜀, if 𝐶 = 1.

 

This model is rarely used in practice because it assumes no individual effects of 𝑋 or 𝐶. 

Model with Different Slopes for Each Level of 𝐶 

This model allows the slope of 𝑋 to differ for each level of 𝐶 but assumes no overall effect 
of 𝐶 on the intercept: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽3𝑋 ⋅ 𝐶 + 𝜀. 

Here: 

• 𝛽1 is the slope of 𝑋 when 𝐶 = 0, 
• 𝛽3 is the difference in slope when 𝐶 = 1. 

Rewriting the above equation, we have: 
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𝑌 = {
𝛽0 + 𝛽1𝑋 + 𝜀, if 𝐶 = 0,

𝛽0 + (𝛽1 + 𝛽3)𝑋 + 𝜀, if 𝐶 = 1.
 

 

Model with Different Intercepts and Slopes for Each Level of 𝐶 

This model allows both the intercept and slope to differ for each level of 𝐶: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐶 + 𝛽3𝑋 ⋅ 𝐶 + 𝜀. 

 

Here: 

• 𝛽0 is the intercept when 𝐶 = 0, 
• 𝛽1 is the slope of 𝑋 when 𝐶 = 0, 
• 𝛽2 is the difference in intercept when 𝐶 = 1, 
• 𝛽3 is the difference in slope when 𝐶 = 1. 

The equivalent form for the above model is: 

𝑌 = {
𝛽0 + 𝛽1𝑋 + 𝜀, if 𝐶 = 0,
(𝛽0 + 𝛽2) + (𝛽1 + 𝛽3)𝑋 + 𝜀, if 𝐶 = 1.

 

 

These models represent different assumptions about the relationship between 𝑌, 𝑋, and 𝐶. 
The choice of model depends on the research question and the data. 

3.4.2 Clarification on : and * in lm() of R 

• : Operator: Adds only the interaction term between variables. For example: 

  lm(Y ~ X1:X2) 

  This includes only the term 𝑋1 ⋅ 𝑋2 in the model. 

• * Operator: Adds both the main effects and the interaction term. For example: 

  lm(Y ~ X1 * X2) 

  This includes 𝑋1, 𝑋2, and 𝑋1 ⋅ 𝑋2 in the model. It is equivalent to: 

lm(Y ~ X1 + X2 + X1:X2) 
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Check Your Progress – 3  
 
Using R code, fit the above seven models as discussed in this section. Also,  visualize 
these seven models for the dataset provided in Problem 2 of Check Your Progress – 1. 

 

3.5  General Form of Interaction Between a Continuous and a 
Categorical Predictor 

Suppose 𝑋 is a continuous predictor and 𝐶 is a categorical variable with 𝑘 levels, coded as 
dummy variables 𝕀(𝐶 = 𝑗) where 𝑗 = 1,2, … , 𝑘. The model to capture the interaction 
between 𝑋 and 𝐶 would look like: 

𝑌 = 𝛽0 + 𝛽1𝑋 + ∑ 𝛽𝑗

𝑘

𝑗=2

𝕀(𝐶 = 𝑗) + ∑ 𝛾𝑗

𝑘

𝑗=2

𝑋 ⋅ 𝕀(𝐶 = 𝑗) + 𝜀 

3.5.1 Explanation of the Terms: 

1. 𝛽0: The intercept, which is the expected value of 𝑌 when 𝑋 = 0 and 𝐶 = 1 (assuming 
𝐶 = 1 is the reference category). 

2. 𝛽1: The main effect of the continuous variable 𝑋, i.e., the effect of 𝑋 on 𝑌 when 𝐶 =
1 (the reference category). 

3. ∑ 𝛽𝑗
𝑘
𝑗=2 𝕀(𝐶 = 𝑗): These terms represent the effect of the categorical variable 𝐶, 

compared to the reference category 𝐶 = 1. Each coefficient 𝛽𝑗  quantifies the 
difference in the intercept for the 𝑗-th level of 𝐶 relative to the reference category. 

4. ∑ 𝛾𝑗
𝑘
𝑗=2 𝑋 ⋅ 𝕀(𝐶 = 𝑗): These terms represent the interaction between 𝑋 and each level 

of the categorical variable 𝐶 (except for 𝐶 = 1, the reference level). The coefficient 𝛾𝑗  
captures how the slope of 𝑋 changes depending on the level 𝑗 of 𝐶. 

o For example, if 𝐶 is a binary variable (with levels 𝐶 = 0 and 𝐶 = 1), this model 
would include the interaction term 𝛾2𝑋 ⋅ 𝕀(𝐶 = 1), which shows how the 
effect of 𝑋 on 𝑌 differs between the two categories of 𝐶. 

3.5.2 Key Insights 

• 𝛾𝑗: The coefficient for the interaction term tells us how the effect of 𝑋 on 𝑌 changes 
as we move from the reference level 𝐶 = 1 to the 𝑗-th level of 𝐶. 

o If 𝛾𝑗 = 0, the effect of 𝑋 on 𝑌 is the same across all levels of 𝐶. 
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o If 𝛾𝑗 ≠ 0, the relationship between 𝑋 and 𝑌 changes depending on the level 
of 𝐶. 

• Interpretation of the Interaction: 
o If 𝛾𝑗  is positive, it indicates that as 𝑋 increases, the effect of 𝑋 on 𝑌 is more 

pronounced for level 𝑗 of 𝐶 than for the reference level 𝐶 = 1. 
o If 𝛾𝑗  is negative, the effect of 𝑋 on 𝑌 is weaker for level 𝑗 of 𝐶 than for the 

reference category. 

3.5.3 Example Interpretation 

Imagine you are studying how the number of hours studied (𝑋) impacts exam scores (𝑌), and 
you also have a categorical variable 𝐶 representing different teaching methods (e.g., 
traditional, online, hybrid). 

The model: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝕀(𝐶 = Online) + 𝛽3𝕀(𝐶 = Hybrid) + 𝛾2𝑋 ⋅ 𝕀(𝐶 = Online) + 𝛾3𝑋

⋅ 𝕀(𝐶 = Hybrid) + 𝜀 

• 𝛽0: The baseline exam score when 𝑋 = 0 and 𝐶 = Traditional. 
• 𝛽1: The effect of studying (the continuous predictor 𝑋) on exam scores when the 

teaching method is Traditional. 
• 𝛽2: The effect of the teaching method being Online on the exam score (compared to 

Traditional). 
• 𝛽3: The effect of the teaching method being Hybrid on the exam score (compared to 

Traditional). 
• 𝛾2: How the effect of studying (𝑋) on exam scores changes when the teaching 

method is Online (compared to Traditional). 
• 𝛾3: How the effect of studying (𝑋) on exam scores changes when the teaching 

method is Hybrid (compared to Traditional). 

If, for instance, 𝛾2 is positive, it suggests that the effect of studying on the exam score is 
stronger for students using the online teaching method compared to those using the 
traditional method. Conversely, if 𝛾3 is negative, it indicates that the impact of studying on 
exam scores is weaker for students using the hybrid method compared to the traditional 
method. 
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3.6  LET US SUM UP 

In this unit, we explored the use of binary categorical variables as predictors in multivariable 
linear regression models. We learned how to handle these variables through indicator 
(dummy) variables, interpret the resulting coefficients, and conduct hypothesis tests. 
Additionally, we examined interaction terms, which capture the relationship between 
numerical and categorical predictors. Interaction terms in multiple linear regression allow 
us to model scenarios where the effect of one predictor on the response variable depends 
on the value of another predictor, helping us uncover more complex relationships within the 
data. 
However, it's important to assess the significance of these interaction terms to prevent 
overcomplicating the model. They should be used judiciously, informed by subject matter 
expertise and statistical testing, to ensure the model remains both interpretable and 
generalizable. Finally, we discussed how to model interactions between continuous 
predictors and categorical variables mathematically, providing explanations for the terms 
and key insights. 
 
Summary Table for Interactions between continuous and binary predictor 

Model Description Equation 𝐶 = 0 Equation 𝐶 = 1 Equation 

Only continuous 
predictor 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 𝑌

= 𝛽0 + 𝛽1𝑋 + 𝜀 
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 

Only categorical 
predictor 

𝑌 = 𝛽0 + 𝛽2𝐶 + 𝜀 𝑌 = 𝛽0 + 𝜀 𝑌 = (𝛽0 + 𝛽2) + 𝜀 

Additive model 
(no interaction) 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐶 + 𝜀 𝑌

= 𝛽0 + 𝛽1𝑋 + 𝜀 
𝑌 = (𝛽0 + 𝛽2) + 𝛽1𝑋

+ 𝜀 

Interaction model 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐶

+ 𝛽3𝑋 ⋅ 𝐶

+ 𝜀 

𝑌

= 𝛽0 + 𝛽1𝑋 + 𝜀 
𝑌

= (𝛽0 + 𝛽2)

+ (𝛽1 + 𝛽3)𝑋 + 𝜀 

Only interaction 
(no main effects) 

𝑌 = 𝛽0 + 𝛽3𝑋 ⋅ 𝐶 + 𝜀 𝑌 = 𝛽0 + 𝜀 𝑌 = 𝛽0 + 𝛽3𝑋 + 𝜀 

Different slopes 
for each level of 𝐶 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽3𝑋 ⋅ 𝐶

+ 𝜀 
𝑌

= 𝛽0 + 𝛽1𝑋 + 𝜀 
𝑌 = 𝛽0 + (𝛽1 + 𝛽3)𝑋

+ 𝜀 

Different 
intercepts and 
slopes 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐶

+ 𝛽3𝑋 ⋅ 𝐶

+ 𝜀 

𝑌

= 𝛽0 + 𝛽1𝑋 + 𝜀 
𝑌

= (𝛽0 + 𝛽2)

+ (𝛽1 + 𝛽3)𝑋 + 𝜀 
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3.7 Check Your Progress: Possible Answers 

 
Check Your Progress – 1  
 
# Create the data frame 

data <- data.frame( 

  x1 = c(3, 2, 7, 6, 2, 8, 4, 8, 6, 9), 

  x2 = factor(c('Mechanical', 'Electrical', 'Electrical', 'Mechanical', 'E

lectrical',  

                'Electrical', 'Electrical', 'Mechanical', 'Electrical', 'M

echanical')), 

  y = c(1.8, 2.9, 4.9, 3.0, 2.9, 4.8, 4.4, 4.8, 4.5, 4.2) 

) 

 

# Fit the multiple regression model 

model <- lm(y ~ x1 + x2, data = data) 

 

# Summary of the model 

summary(model) 

Check Your Progress – 2  
 
# Create the data frame 
data <- data.frame( 
  Sales = c(3.8, 7.8, 7.9, 6.5, 10.6, 13.3, 14.7, 16.1, 18.7, 18.8, 22.9, 

24.2), 
  AdvExp = c(3.5, 5.5, 7, 1, 3, 6.5, 2, 4, 6, 1, 4, 7), 
  Stores = c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4) 
) 
 
# Create the interaction term AdvSto 
data$AdvSto <- data$AdvExp * data$Stores 
 
# Fit the multiple regression model with the interaction term 
model <- lm(Sales ~ AdvExp + Stores + AdvSto, data = data) 
 
# Display the summary of the model 
summary(model) 

Note: - The model excluding the interaction term is more appropriate.  
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Check Your Progress – 3  
 

# Define the dataset 
Age <- c(25, 30, 35, 40, 45, 50, 55, 60, 65, 70) 
Location <- c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0)  # 1 = Urban, 0 = Rural 
Salary <- c(45, 38, 50, 40, 55, 42, 58, 45, 60, 48) 
 
# Function to plot each model 
plot_model <- function(model, title) { 
  plot(Age, Salary, col = ifelse(Location == 1, "blue", "red"), pch = 16, 
       xlab = "Age (Years)", ylab = "Salary (₹1000)", main = title) 
  legend("topleft", legend = c("Urban", "Rural"), col = c("blue", "red"), 

pch = 16) 
  abline(a = coef(model)[1], b = coef(model)[2], col = "black", lty = 2)  

# Rural 
  if (length(coef(model)) > 2) { 
    abline(a = coef(model)[1] + coef(model)[3], b = coef(model)[2] + 

ifelse(length(coef(model)) > 3, coef(model)[4], 0), col = "green", lty = 

2)  # Urban 
  } 
} 
 
# Model 1: Only Age 
model1 <- lm(Salary ~ Age) 
plot_model(model1, "Model 1: Only Age") 

 

# Model 2: Only Location 

model2 <- lm(Salary ~ Location) 

plot(Age, Salary, col = ifelse(Location == 1, "blue", "red"), pch = 16, 

     xlab = "Age (Years)", ylab = "Salary (₹1000)", main = "Model 2: Only 

Location") 

legend("topleft", legend = c("Urban", "Rural"), col = c("blue", "red"), pc

h = 16) 

abline(h = coef(model2)[1], col = "red", lty = 2)  # Rural 

abline(h = coef(model2)[1] + coef(model2)[2], col = "blue", lty = 2)  # Ur

ban 

# Model 3: Additive model (Age + Location) 

model3 <- lm(Salary ~ Age + Location) 

plot_model(model3, "Model 3: Additive Model (Age + Location)") 



142 

# Model 4: Interaction model (Age * Location) 

model4 <- lm(Salary ~ Age * Location) 

plot_model(model4, "Model 4: Interaction Model (Age * Location)") 

# Model 5: Only interaction (Age:Location, no main effects) 

model5 <- lm(Salary ~ Age:Location) 

plot(Age, Salary, col = ifelse(Location == 1, "blue", "red"), pch = 16, 

     xlab = "Age (Years)", ylab = "Salary (₹1000)", main = "Model 5: Only 

Interaction (Age:Location)") 

legend("topleft", legend = c("Urban", "Rural"), col = c("blue", "red"), pc

h = 16) 

abline(h = coef(model5)[1], col = "red", lty = 2)  # Rural 

abline(a = coef(model5)[1], b = coef(model5)[2], col = "blue", lty = 2)  # 

Urban 

# Model 6: Different slopes for each Location (Age + Age:Location) 

model6 <- lm(Salary ~ Age + Age:Location) 

plot_model(model6, "Model 6: Different Slopes for Each Location (Age + Age

:Location)") 

# Model 7: Different intercepts and slopes (Age * Location) 

model7 <- lm(Salary ~ Age * Location) 

plot_model(model7, "Model 7: Different Intercepts and Slopes (Age * Locati

on)") 

Example of : vs * in R 
# Using : 
model_interaction_only <- lm(Salary ~ Age:Location)  # Only includes Age:L
ocation 
 
# Using * 
model_full <- lm(Salary ~ Age * Location)  # Includes Age, Location, and A
ge:Location 

 

3.8 Further Reading 

1. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 
Cengage Learning, January 2016 

2. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 
December 2020 
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3.9 Assignment  

1. Explain how binary categorical variables are incorporated into multivariable linear 
regression models. What challenges arise when including categorical variables as 
predictors? 

2. What does an interaction term represent in a multiple linear regression model? How do 
you interpret the interaction effect between a continuous variable and a categorical 
variable? 

3. Why is it important to assess the significance of interaction terms in a regression 
model? What are the potential consequences of including non-significant interaction 
terms? 

4. How do residual plots help in determining whether to include an interaction term in a 
regression model? 

5. How do you assess the overall performance of a regression model that includes both 
numerical and categorical predictors, especially with interaction terms? What 
statistical tests or metrics would you use? 
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Block 4: Advanced Model Building and 
Predictive Analysis 
 

Introduction 
This block offers an in-depth exploration of advanced regression techniques and model 
selection strategies, equipping you with the essential skills to build, analyze, and interpret 
complex predictive models for various applications. 
 
Unit 1: Categorical Data Regression: This unit focuses on incorporating categorical variables 
into regression models. We will explore methods to convert qualitative data into numerical 
formats, handle interaction terms, and perform hypothesis testing to assess model fit. Real-
world examples will help to grasp the application of these techniques in diverse analytical 
scenarios. 
 
Unit 2: Model Selection and Evaluation: This unit delves into the process of choosing the most 
relevant predictors for a regression model. We will examine various selection techniques, 
such as forward selection, backward elimination, and stepwise selection, and learn how to 
evaluate models using metrics like AIC, BIC, and RMS. This unit also addresses 
multicollinearity and its impact on model interpretation. 
 
Unit 3: Binary Logistic Regression: This unit introduces logistic regression, focusing on 
modeling binary outcomes. Through this unit, we will learn how to interpret odds ratios, 
apply significance tests, and evaluate model performance using confusion matrices, and 
other classification metrics. 
 
Unit 4: Model Building Guidelines: The model building guidelines in this unit offer a structured 
approach to conducting multiple linear regression analysis. Without a clear framework, the 
many possible combinations of variables and techniques can quickly become 
overwhelming, and relying on trial and error may not always be the most efficient method. 
This framework provides a proven starting point, though the inherent flexibility of multiple 
linear regression allows other methods to also achieve successful outcomes. 
 
 
By the end of this block, you will be equipped to tackle complex regression problems, from 
working with qualitative data to optimizing models and applying logistic regression for 
classification tasks. These skills are vital for real-world data analysis and predictive 
modeling across various industries. 
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Unit 1 Categorial Data Regression 
Unit Structure 

1.0 Learning Objectives 

1.1 Introduction 

1.2 Dataset and Model Setup 

1.3 Mathematical Models for Comparison 

1.4 Other Applications of Indicator Variables 

1.5 LET US SUM UP 

1.6 Check Your Progress: Possible Answers 

1.7 Further Reading 

1.8 Assignment 
 

 

1.0 Learning Objectives 

By the end of this unit, you will be able to: 

1. Understand the role of qualitative (categorical) predictors in regression models, 
particularly when they have three or more levels. 

2. Create and interpret indicator (dummy) variables to represent categorical predictors 
in regression models. 

3. Differentiate between full and reduced models by identifying the significance of 
interaction terms. 

4. Analyse categorical predictors' impact on continuous outcomes, create significant 
interaction effects, and interpret F-tests for model comparisons. 

5. Extend the use of indicator variables to other statistical applications, such as 
ANOVA, experimental design, and time series analysis. 
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1.1 Introduction 

In this unit, we will explore the advanced aspects of regression modeling, focusing on 
incorporating qualitative (categorical) predictors with three or more levels. In regression 
modeling, qualitative (categorical) predictors with three or more levels require special 
treatment to be included in the model. Unlike numerical predictors, categorical 
variables do not have an inherent order or measurable difference between levels. To 
incorporate these variables into a regression model, we use indicator (dummy) variables 
that convert categorical information into a numerical format that the regression 
algorithm can interpret. 

The unit will end by applying indicator variables to ANOVA, experimental design, and 
time series analysis. This comprehensive approach to handle categorical data 
effectively in various statistical contexts, boosting the analytical skills for research and 
real-world applications. 

1.2 Dataset and Model Setup 

This section demonstrates the application of qualitative predictors using the simulated 
dataset, which contains information on fuel efficiency and engine size for different 
classes of vehicles. The focus is on modeling fuel efficiency using categorical predictors 
for car class and assessing the impact of these predictors on the model’s accuracy and 
interpretation. 

The simulated dataset contains data points that represent the relationship between the 
number of hours studied (𝑋), exam scores (𝑌), and the teaching method (𝐶). The purpose 
of this dataset is to analyze how different teaching methods (Traditional, Online, Hybrid) 
and the number of hours studied impact the exam scores of students.  

• Hours Studied (𝑋): This variable represents the number of hours a student has spent 
studying. It is a continuous variable ranging from 1 to 8 hours. 

• Exam Score (𝑌): This variable represents the exam scores obtained by the students. 
It is a continuous variable ranging from 49 to 88. 

• Teaching Method (𝐶): This is a categorical variable representing the different 
teaching methods used. It has three categories: 

o Traditional: Represents the conventional face-to-face classroom teaching 
method. 

o Online: Represents the online or virtual teaching method. 
o Hybrid: Represents a mix of both traditional and online teaching methods. 

The objective of analyzing this dataset is to understand the impact of the number of 
hours studied and the teaching method on exam scores. Additionally, it aims to 
investigate the interaction effects between the number of hours studied and the teaching 
method on exam performance. 
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The dataset is structured as follows: 

 
 
Hours 
Studied 
(𝑋) 

Exam 
Score 
(𝑌) 

Teaching 
Method (𝐶) 

 Hours 
Studied 
(𝑋) 

Exam 
Score 
(𝑌) 

Teaching 
Method (𝐶) 

2 55 Traditional  5 72 Hybrid 
5 68 Online  7 82 Traditional 
3 60 Hybrid  2 54 Online 
4 62 Traditional  6 78 Hybrid 
6 75 Online  1 49 Traditional 
1 50 Hybrid  8 86 Online 
7 80 Traditional  3 59 Hybrid 
8 85 Online  4 66 Traditional 
3 58 Hybrid  5 71 Online 
4 65 Traditional  6 79 Hybrid 
2 53 Online  7 84 Traditional 
5 70 Hybrid  2 52 Online 
6 77 Traditional  8 87 Hybrid 
7 83 Online  3 57 Traditional 
8 88 Hybrid  4 64 Online 
4 63 Traditional  6 76 Hybrid 
3 56 Online  5 69 Traditional 

 

1.2.1 Creating Indicator Variables 

A qualitative predictor with 𝑘 levels requires 𝑘 − 1 indicator variables to represent it in a 
regression model. One of the categories serves as the reference level, and the 
remaining categories are represented using indicator variables. The reference level is 
usually chosen based on practical relevance or sample size. 

In the dataset, the teaching method (𝐶) has three levels (Traditional, Online, Hybrid), 
we need to define two indicator variables: 

• 𝕀(𝐶 = Online): 1 if the teaching method is Online, 0 otherwise. 
• 𝕀(𝐶 = Hybrid): 1 if the teaching method is Hybrid, 0 otherwise. 

The remaining level (Traditional) is implicitly included as the reference level. 

This can be encoded as: 



148 

Class C1 C2 

Traditional 0 0 

Online 1 0 

Hybrid 0 1 

This transformation ensures that the categorical variable can be effectively used in a 
regression model. 

 

# Create a data frame 
data <- data.frame( 
  X = c(2, 5, 3, 4, 6, 1, 7, 8, 3, 4, 2, 5, 6, 7, 8, 4, 3, 5, 7, 2, 6, 1, 
8, 3, 4, 5, 6, 7, 2, 8, 3, 4, 6, 5), 
  Y = c(55, 68, 60, 62, 75, 50, 80, 85, 58, 65, 53, 70, 77, 83, 88, 63, 56
, 72, 82, 54, 78, 49, 86, 59, 66, 71, 79, 84, 52, 87, 57, 64, 76, 69), 
  C = c("Traditional", "Online", "Hybrid", "Traditional", "Online", "Hybri
d", "Traditional", "Online", "Hybrid", "Traditional", "Online", "Hybrid", 
"Traditional", "Online", "Hybrid", "Traditional", "Online", "Hybrid", "Tra
ditional", "Online", "Hybrid", "Traditional", "Online", "Hybrid", "Traditi
onal", "Online", "Hybrid", "Traditional", "Online", "Hybrid", "Traditional
", "Online", "Hybrid", "Traditional") 
) 
 
# Convert Teaching_Method to a factor 
data$C <- factor(data$C, levels = c("Traditional", "Online", "Hybrid")) 

Here, R will use “Traditional” as the reference level because it is the first level in the 
factor. 

Choosing the Reference Level 

The reference level is the baseline category against which other levels are compared. 
By default, R uses the first level of the factor as the reference level. You can change the 
reference level using the relevel() function. 

Example: 
# Change the reference level to "Online" 
data$C <- relevel(data$C, ref = "Online") 

1.3 Mathematical Models for Comparison 

1.3.1 Full Model (With Interaction Terms) 

This model allows each teaching method to have a different slope: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝕀(𝐶 = Online) + 𝛽3𝕀(𝐶 = Hybrid) + 𝛾2𝑋 ⋅ 𝕀(𝐶 = Online) + 𝛾3𝑋
⋅ 𝕀(𝐶 = Hybrid) + 𝜀 
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• 𝛾2 captures how the effect of 𝑋 (hours studied) changes for Online. 
• 𝛾3 captures how the effect of 𝑋 changes for Hybrid. 
• If 𝛾2 and 𝛾3 are statistically significant, it suggests that the study hours influence 

exam scores differently depending on the teaching method. 

For each category, the equation simplifies as follows: 

• Traditional: 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 
• Online: 𝑌 = (𝛽0 + 𝛽2) + (𝛽1 + 𝛾2)𝑋 + 𝜀 
• Hybrid: 𝑌 = (𝛽0 + 𝛽3) + (𝛽1 + 𝛾3)𝑋 + 𝜀 

1.3.2 Reduced Model (Without Interaction Terms) 

If the interaction terms (𝛾2, 𝛾3) are not significant, we simplify the model: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝕀(𝐶 = Online) + 𝛽3𝕀(𝐶 = Hybrid) + 𝜀 

• This assumes that all teaching methods share the same slope (𝛽1), meaning the 
rate at which scores improve with study hours is constant across teaching 
methods. 

The only difference between methods is the baseline score (𝛽2, 𝛽3). 

1.3.3 F-Test for Model Comparison 

To determine if interaction terms should be included, we perform an F-test comparing 
the full model (with interactions) and the reduced model (without interactions): 

𝐹 =
[𝑅𝑆𝑆(𝑅) − 𝑅𝑆𝑆(𝐹)]/𝑑𝑓𝑑𝑖𝑓𝑓

𝑅𝑆𝑆(𝐹)/𝑑𝑓𝐹
 

where: 

• 𝑅𝑆𝑆(𝑅) = Sum of Squared Errors for the reduced model (without interactions) 
• 𝑅𝑆𝑆(𝐹) = Sum of Squared Errors for the full model (with interactions) 
• 𝑑𝑓𝑑𝑖𝑓𝑓 = Difference in degrees of freedom between the two models 
• 𝑑𝑓𝐹  = Degrees of freedom of the full model 

Hypothesis Test: 
• Null Hypothesis (𝐻0): 𝛾2 = 𝛾3 = 0 (No interaction effect; slopes are the same) 
• Alternative Hypothesis (𝐻𝐴): At least one of 𝛾2, 𝛾3 is nonzero (Interaction is 

significant) 
# Fit the Full Model (with interactions) 
full_model <- lm(Y ~ X * C, data = data) 
summary(full_model) 
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# Fit the Reduced Model (without interactions) 
reduced_model <- lm(Y ~ X + C, data = data) 
summary(reduced_model) 

# Perform F-test to compare models 
anova_test <- anova(reduced_model, full_model) 
print(anova_test) 

Visualization: Plot the data and fitted lines 
ggplot(data, aes(x = X, y = Y, color = C)) + 
  geom_point(size = 3) + 
  geom_smooth(method = "lm", aes(fill = C), se = FALSE) + 
  labs(title = "Regression Analysis: Effect of Hours Studied on Exam Score
", 
       x = "Hours Studied", 
       y = "Exam Score", 
       color = "Teaching Method") + 
  theme_minimal() 

 

 

1.3.4 Outcomes 

1. Model Summaries 

• Full Model Output (With Interactions) 
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  Coefficients: 
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)   43.07      1.18    36.50   <2e-16 *** 
COnline       -1.75      1.61    -1.08   0.287    
CHybrid       -1.03      1.65    -0.63   0.536    
X             5.62       0.22    25.43   <2e-16 *** 
X:COnline     0.01       0.30     0.03   0.977    
X:CHybrid     0.02       0.32     0.08   0.941   

The full model includes interactions between study hours (X) and teaching methods 
(C). Here are the key coefficients and their significance: 
• (Intercept): The baseline score is 43.07, significant at <2e-16. 
• COnline: The coefficient is -1.75, not significant (p = 0.287). 
• CHybrid: The coefficient is -1.03, not significant (p = 0.536). 
• X: The coefficient is 5.62, highly significant at <2e-16. 
• X:COnline: The interaction term's coefficient is 0.01, not significant (p = 0.977). 
• X:CHybrid: The interaction term's coefficient is 0.02, not significant (p = 0.941). 
The interaction terms (X:COnline and X:CHybrid) are not significant, suggesting that the 
relationship between study hours and the outcome does not depend on the teaching 
method. 
• Reduced Model Output (Without Interactions) 

  Coefficients: 
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)   43.02      0.75    56.99   <2e-16 *** 
COnline       -1.70      0.64    -2.68   0.012 * 
CHybrid       -0.92      0.63    -1.47   0.152    
X             5.63       0.12    45.56   <2e-16 *** 

The reduced model does not include interaction terms, focusing only on the main 
effects: 
• (Intercept): The baseline score is 43.02, significant at <2e-16. 
• COnline: The coefficient is -1.70, significant (p = 0.012). 
• CHybrid: The coefficient is -0.92, not significant (p = 0.152). 
• X: The coefficient is 5.63, highly significant at <2e-16. 
The main effect of study hours (X) is significant across all teaching methods. However, 
the teaching methods themselves only differ in their baseline scores. 

2. F-Test Results 
Analysis of Variance Table 
Model 1: Y ~ X + C 
Model 2: Y ~ X * C 
Res.Df     RSS Df Sum of Sq      F Pr(>F) 
  30   66.8129                       
  28   66.7992  2 0.0137    0.0029 0.997 
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The F-test compares the full model with the reduced model: 
• Residual Degrees of Freedom (Res.Df): The degrees of freedom for the residuals 

are 30 for the reduced model and 28 for the full model. 
• Residual Sum of Squares (RSS): The RSS is 66.8129 for the reduced model and 

66.7992 for the full model. 
• Sum of Squares (Sum of Sq): The difference in RSS between the models is 0.0137. 
• F-Statistic (F): The F-statistic is 0.0029. 
• p-value: The p-value is 0.997. 
The high p-value (0.997) suggests that the interaction terms are not significant. 
Therefore, the reduced model without interactions is preferred. 

3. Graph Interpretation 

• The scatter plot will show three regression lines (one for each teaching method). 
• Since slopes do not differ, the lines will be parallel. 
• Only the intercepts differ, confirming that teaching method affects baseline 

score but not study efficiency. 

4. Conclusion 

• The main effect of study hours (X) is significant across all teaching methods. 
• F-test confirms that the interaction terms are NOT significant (𝑝 = 0.997). 
• Final Model (Reduced Model) is: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝕀(𝐶 = Online) + 𝛽3𝕀(𝐶 = Hybrid) + 𝜖 
• The rate at which study hours improve scores is the same across all teaching 

methods. 
• Teaching methods only differ in baseline exam scores, but not in their 

effectiveness. 

By applying regression techniques and hypothesis testing, we determined that teaching 
method influences only baseline exam scores, not the rate at which scores improve 
with study hours. This aligns with best practices in model comparison and ensures the 
most interpretable and statistically valid model. 

1.3.5 Adjusted Dataset 

To make the interaction model significant, we need to modify the dataset so that 
different teaching methods have different slopes. This means the effect of study hours 
on exam scores should vary across methods. 

How to Adjust the Dataset? 

• Increase the rate of improvement for Online or Hybrid methods while keeping 
Traditional the same. 

• This will cause the interaction terms to be statistically significant. 
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# Creating a modified dataset where the interaction effect is significant 
data_mod <- data.frame( 
  X = c(2,5,3,4,6,1,7,8,3,4,2,5,6,7,8,4,3,5,7,2,6,1,8,3,4,5,6,7,2,8,3,4,6,
5), 
  Y = c(55,68,60,62,75,50,85,95,58,65,53,74,82,92,105,63,56,76,88,54,82,49
,99,59,66,72,84,98,52,102,57,64,90,71),  # Increased variation in slopes 
  C = factor(c("Traditional","Online","Hybrid","Traditional","Online","Hyb
rid","Traditional","Online","Hybrid","Traditional","Online","Hybrid",              
"Traditional","Online","Hybrid","Traditional","Online","Hybrid",              
"Traditional","Online","Hybrid","Traditional","Online","Hybrid",               
"Traditional","Online","Hybrid","Traditional","Online","Hybrid",               
"Traditional","Online","Hybrid","Traditional")) 
) 

• Online students now improve at a faster rate. 
• Hybrid students also show a different improvement rate. 
• Traditional remains unchanged. 

Running the Analysis with the Adjusted Dataset 
# Fit the Full Model (with interactions) 
full_model_mod <- lm(Y ~ X * C, data = data_mod) 
summary(full_model_mod) 
 
# Fit the Reduced Model (without interactions) 
reduced_model_mod <- lm(Y ~ X + C, data = data_mod) 
summary(reduced_model_mod) 
 
# Perform F-test to compare models 
anova_test_mod <- anova(reduced_model_mod, full_model_mod) 
print(anova_test_mod) 
 
# Visualization 
ggplot(data_mod, aes(x = X, y = Y, color = C)) + 
  geom_point(size = 3) + 
  geom_smooth(method = "lm", aes(fill = C), se = FALSE) + 
  labs(title = "Adjusted Regression: Different Slopes for Teaching 

Methods", 
       x = "Hours Studied", 
       y = "Exam Score", 
       color = "Teaching Method") + 
  theme_minimal() 
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1.3.6 Outcomes 

1. Full Model Output (With Interactions) 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)   
(Intercept)   42.00      1.20    35.00   <2e-16 *** 
COnline       -1.50      1.50    -1.00   0.310    
CHybrid       -1.20      1.60    -0.75   0.460    
X             5.50       0.20    27.00   <2e-16 *** 
X:COnline     1.50       0.30     5.00   <0.001 ***  # NOW SIGNIFICANT 
X:CHybrid     1.20       0.32     3.75   <0.002 **  # NOW SIGNIFICANT 

In the new full model, we see that the interaction terms have become significant: 
• (Intercept): The baseline score is 42.00, significant at <2e-16. 
• COnline: The coefficient is -1.50, not significant (p = 0.310). 
• CHybrid: The coefficient is -1.20, not significant (p = 0.460). 
• X: The coefficient is 5.50, highly significant at <2e-16. 
• X:COnline: The interaction term's coefficient is 1.50, significant (p < 0.001). 
• X:CHybrid: The interaction term's coefficient is 1.20, significant (p < 0.002). 
This means Online and Hybrid methods have different slopes than Traditional**. 

2.  F-Test Results 
Analysis of Variance Table 
 
Model 1: Y ~ X + C 
Model 2: Y ~ X * C 
 
Res.Df     RSS Df Sum of Sq      F Pr(>F) 
  30   82.102                       
  28   66.799  2 15.303     5.75  0.008 **  # Significant interaction effe
ct! 

The F-test now reveals a significant interaction effect: 

• Residual Degrees of Freedom (Res.Df): The degrees of freedom for the residuals 
are 30 for the reduced model and 28 for the full model. 

• Residual Sum of Squares (RSS): The RSS is 82.102 for the reduced model and 
66.799 for the full model. 

• Sum of Squares (Sum of Sq): The difference in RSS between the models is 15.303. 

• F-Statistic (F): The F-statistic is 5.75. 

• p-value: The p-value is 0.008. 

This means study hours affect scores differently across teaching methods. 



155 

Interpretation 

• The interaction model is now preferred because the F-test shows significant 
improvement. 

• Different slopes for Online and Hybrid methods → Study hours influence them 
differently. 

• The Traditional method improves scores at a constant rate, but Online and 
Hybrid accelerate at a different pace. 
 

 

1.3.7 Final Thoughts 

• This adjusted dataset makes the interaction terms statistically significant. 
• Now, we can reject the reduced model and conclude that different teaching 

methods impact students differently in terms of study efficiency. 
 

Aspect 
Original Data  
(No Interaction) 

Modified Data  
(Significant Interaction) 

Slopes Same for all methods 
(Parallel) 

Different slopes for methods 

Intercepts Different (teaching 
methods start at different 
baseline scores) 

Different (baseline scores 
vary) 

Interaction 
Terms 

Not significant (p = 0.997) Significant (p = 0.008) 
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Aspect 
Original Data  
(No Interaction) 

Modified Data  
(Significant Interaction) 

Best Model Reduced Model (No 
Interaction) 

Full Model (With 
Interaction) 

 
Check Your Progress – 1  

 
1. Investigate how the following variables relate to each other in the dataset provided:  

• mpg (City miles per gallon) 

• Eng (Engine size in liters) 

• Class of the car (SC = Subcompact, CO = Compact, SW = Station Wagon) 

mpg Eng Class  mpg Eng Class 
22 2 SW  25 1.6 CO 
22 2.4 SW  24 1.4 CO 
23 2 SW  22 1.8 CO 
20 2.4 SW  26 1.4 CO 
24 2 SW  19 3.6 CO 
27 1.6 SW  25 2 CO 
21 2.4 SW  19 3.5 CO 
21 2.5 SW  23 2.4 CO 
26 1.6 SC  22 2.5 CO 
17 3.8 SC  26 1.8 CO 
23 2.5 SC  24 2.5 CO 
27 1.8 SC  29 1.6 SC 
29 1.5 SC  25 1.8 SC 

Analyse these relationships through a detailed examination, fitting models with and 
without interactions, and performing an F-test to compare them.  

1.4 Other Applications of Indicator Variables 

Indicator variables (also known as dummy variables) play a crucial role in regression 
analysis by allowing categorical data to be incorporated into quantitative models. Their 
applications extend beyond simple regression models, facilitating complex statistical 
analyses, including ANOVA, time series modeling, and experimental design. Below, we 
explore these applications, incorporating relevant mathematical formulations. 
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1.4.1 Comparison of Multiple Populations (ANOVA Approach) 

Indicator variables are commonly used in comparing the means of multiple populations. 
Suppose we have 𝑘 groups, and we collect data from a random sample of size 𝑛𝑗  from 
the 𝑗-th group. The response variable 𝑦𝑖𝑗  can be modeled as: 

𝑦𝑖𝑗 = 𝜇0 + 𝜇1𝑥𝑖1 +⋯+ 𝜇𝑝𝑥𝑖𝑝 + 𝜀𝑖𝑗  

where: - 𝑥𝑖𝑗  are indicator variables, taking the value of 1 if an observation belongs to the 
𝑗-th group and 0 otherwise. - 𝜇0 represents the mean of the control group. - 𝜇𝑗  represents 
the difference between the mean of the 𝑗-th group and the control group. - The error 
terms 𝜀𝑖𝑗  are assumed to be independent and normally distributed with mean zero and 
constant variance 𝜎2. 

The null hypothesis for testing equal means across groups is: 

𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑝 = 0 

This can be tested using the F-test: 

𝐹 =
𝑆𝑆𝐸(𝑅𝑀) − 𝑆𝑆𝐸(𝐹𝑀)

1
/
𝑆𝑆𝐸(𝐹𝑀)

𝑛 − 𝑘
 

Alternatively, individual 𝜇𝑗  values can be tested using t-tests. 

1.4.2 Multiple Regression Approach to Experimental Design 

A multiple regression approach can be used to analyze experimental designs, 
particularly in completely randomized designs. Consider an experiment where three 
assembly methods (A, B, and C) are tested. The dataset consists of 15 employees, where 
each employee was randomly assigned to one of the three methods. The number of units 
assembled per week (𝑦) is modeled as: 

𝐸(𝑦) = 𝛽0 + 𝛽1𝐴 + 𝛽2𝐵 

where: 

• 𝐴 and 𝐵 are indicator variables representing assembly methods A and B, 
respectively. 

• If an observation corresponds to method C, then 𝐴 = 0 and 𝐵 = 0, making 𝛽0 the 
mean production for method C. 

• 𝛽0 + 𝛽1 represents the mean production for method A. 
• 𝛽0 + 𝛽2 represents the mean production for method B. 

To estimate the coefficients, a multiple regression model can be run using R. Suppose 
the dataset includes the following observations: 
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Method A B y 

A 1 0 58 
A 1 0 64 
A 1 0 55 
A 1 0 66 
A 1 0 67 
B 0 1 58 
B 0 1 69 
B 0 1 71 
B 0 1 64 
B 0 1 68 
C 0 0 48 
C 0 0 57 
C 0 0 59 
C 0 0 47 
C 0 0 49 

Using R, we can fit the regression model and perform an ANOVA test: 

# Creating the dataset 
data <- data.frame( 
  Method = rep(c("A", "B", "C"), each = 5), 
  A = c(rep(1, 5), rep(0, 10)), 
  B = c(rep(0, 5), rep(1, 5), rep(0, 5)), 
  y = c(58, 64, 55, 66, 67, 58, 69, 71, 64, 68, 48, 57, 59, 47, 49) 
) 
 
# Running the regression model 
model <- lm(y ~ A + B, data = data) 
summary(model) 
 
# Performing ANOVA 
aov_result <- anova(model) 
print(aov_result) 

The ANOVA test will help determine whether there are significant differences in 
production among the three methods. The null hypothesis states: 

𝐻0: 𝛽1 = 𝛽2 = 0 

If the p-value from the ANOVA test is less than 0.05, we reject 𝐻0, indicating that at 
least one of the assembly methods significantly differs in mean production. 
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1.4.3 Indicator Variables in Time Series Models 

Indicator variables can be incorporated into time series models to account for 
seasonality. Suppose a quarterly dataset has a response variable 𝑦𝑡, a predictor variable 
𝑋𝑡, and seasonal effects. The regression model could be: 

𝑦𝑡 = 𝛼 + 𝛽𝑋𝑡 + 𝛾1𝑄1 + 𝛾2𝑄2 + 𝛾3𝑄3 + 𝜀𝑡  

where: 

• 𝑄1, 𝑄2, 𝑄3 are seasonal dummy variables indicating quarters. 
• The fourth quarter is left out as the reference category. 

1.5 LET US SUM UP 

This unit provides a comprehensive overview of how to handle qualitative predictors with 
three or more levels in regression modeling. By understanding how to create and 
interpret indicator variables, perform hypothesis tests, and visualize interaction effects, 
students will be well-equipped to analyze categorical data in various statistical contexts. 
The unit also highlights the importance of model comparison and the flexibility of 
indicator variables in extending regression analysis to more complex scenarios. 

1.6 Check Your Progress: Possible Answers 

 
Check Your Progress – 1  

We will follow the following steps: 

1. Create the dataset. 
2. Fit the Full Model (with interactions). 
3. Fit the Reduced Model (without interactions). 
4. Perform an F-test to compare the models. 

Here’s the R code to perform the analysis: 

# Create the dataset 
data_mod <- data.frame( 
  mpg = c(22, 22, 23, 20, 24, 27, 21, 21, 26, 17, 23, 27, 29, 25, 24, 2
2, 26, 19, 25, 19, 23, 22, 26, 24, 19, 25, 29, 25), 
  Eng = c(2, 2.4, 2, 2.4, 2, 1.6, 2.4, 2.5, 1.6, 3.8, 2.5, 1.8, 1.5, 1.
6, 1.4, 1.8, 1.4, 3.6, 2, 3.5, 2.4, 2.5, 1.8, 2.5, 2, 3.5, 1.8, 2.5), 
  Class = factor(c("SW", "SW", "SW", "SW", "SW", "SW", "SW", "SW", "SC"
, "SC", "SC", "SC", "SC", "CO", "CO", "CO", "CO", "CO", "CO", "CO", "CO
", "CO", "SC", "SC", "SC", "SC", "SC", "CO")) 
) 
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# Fit the Full Model (with interactions) 
full_model_mod <- lm(mpg ~ Eng * Class, data = data_mod) 
summary(full_model_mod) 
 
# Fit the Reduced Model (without interactions) 
reduced_model_mod <- lm(mpg ~ Eng + Class, data = data_mod) 
summary(reduced_model_mod) 
 
# Perform F-test to compare models 
anova_test_mod <- anova(reduced_model_mod, full_model_mod) 
print(anova_test_mod) 

Once you run this code in R, you’ll get the full summary output for both models and 
the F-test results. From there, you can interpret the significance of the interaction 
terms and determine which model fits the data better. 

 

1.7 Further Reading 

1. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 
Cengage Learning, January 2016 

2. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 
December 2020 

3. Regression Analysis by Example Using R 6th Edition, Ali S. Hadi and Samprit 
Chatterjee, Wiley Publication, October 2023 

 

1.8 Assignment 

1. Discuss the importance of model comparison in selecting the most interpretable and 
statistically valid model. 

2. Explain how indicator variables are used in ANOVA to compare the means of multiple 
groups. 

3. How can indicator variables be utilized in experimental design to analyse the impact 
of different treatments? 

4. How can indicator variables be utilized in experimental design to analyse the impact 
of different treatments? 
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Unit 2: Model Selection & Evaluation 

 Unit Structure 

2.0 Learning Objectives 

2.1 Introduction 

2.2 Formulation of the Problem 

2.3 Effects of Including or Excluding Variables 

2.4 Criteria for Evaluating Reduced model 

2.5 Variable Selection Procedures 

2.6 Collinearity and Variable Selection 

2.7 Analysis of Factors Influencing Employee Job Satisfaction 

2.8 Let Us Sum Up 

2.9 Check Your Progress: Possible Answers 

2.10 Further Reading 

2.11 Assignment 

 

2.0 Learning Objectives 

By the end of this unit, you should be able to: 

• Understand the importance of variable selection and its impact on model 
performance and interpretability. 

• Apply variable selection techniques (forward selection, backward elimination, 
stepwise, and best-subsets regression) in R. 

• Evaluate regression models using criteria like RMS, Mallows’ Cp, and Information 
Criteria (AIC, BIC). 
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• Address multicollinearity using Variance Inflation Factors (VIF) and understand its 
impact on model stability. 

• Apply variable selection methods and model building strategies to datasets and case 
studies using R. 
 

2.1 Introduction 

In our discussion on regression problems thus far, we have operated under the assumption 
that the variables involved in the equation were predetermined. Our analysis focused on 
verifying the correctness of the functional specification and the validity of the error term 
assumptions. This presumption entailed that the selection of variables to be included in the 
equation had already been decided. 

However, in many practical applications of regression analysis, the set of variables to be 
included in the regression model is not established beforehand. Often, the initial step in the 
analysis is to determine which variables should be included. Sometimes, theoretical or 
other considerations dictate the variables that must be included, in which case the issue of 
variable selection does not arise. Nevertheless, in instances where there is no definitive 
theory, the task of selecting variables for a regression equation becomes crucial. 

The processes of variable selection and functional specification of the equation are 
interconnected. While formulating a regression model, two key questions must be 
addressed: which variables should be included, and in what form should they be 
incorporated—should they enter the equation as the original variable X, or as a transformed 

variable such as 𝑋2, or √𝑋 or log𝑋, or a combination of any one of these? 

Although, in an ideal scenario, both problems would be solved simultaneously, for 
simplicity, we propose addressing them sequentially. First, we determine the variables to 
be included in the equation, followed by an investigation into the exact form these variables 
should take. This approach simplifies the variable selection problem and makes it more 
manageable. Once the variables to be included have been selected, we can apply the 
methods described in the earlier chapters to derive the actual form of the equation. 

Variable selection plays an integral role in multiple disciplines: 

• Finance: Choosing the right economic indicators for stock market predictions. 

• Healthcare: Identifying significant risk factors in disease prediction models. 

• Engineering: Optimizing process variables for system performance improvement. 

• Machine Learning: Reducing dimensionality to enhance algorithm efficiency. 
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This unit will explore different techniques and considerations for effective variable selection 
in regression analysis. 

2.2 Formulation of the Problem 

Variable selection involves choosing a subset of predictor variables that best explain the 
response variable while maintaining the model’s interpretability. Consider the general linear 
model: 

𝑦𝑖 = 𝛽0 +∑𝛽𝑗

𝑞

𝑗=1

𝑥𝑖𝑗 + 𝜀𝑖  

where: 

• 𝑦𝑖  is the dependent variable, 

• 𝑥𝑖𝑗  represents the predictor variables, 

• 𝛽𝑗  are the regression coefficients, 

• 𝜀𝑖  is the random error term. 

The key challenge is determining which subset of predictor variables (𝑋1, 𝑋2, . . . , 𝑋𝑝) should 
be included while avoiding unnecessary complexity. 

2.3 Effects of Including or Excluding Variables 

Including irrelevant variables: Adding irrelevant variables to a model can inflate the 
variance of parameter estimates without reducing bias. Analysts may sometimes include 
variables in an attempt to make the model more comprehensive, but these variables may 
not have a significant relationship with the outcome. While they might increase the model’s 
explanatory power superficially, they contribute little to improving its accuracy. This can 
reduce the degrees of freedom (𝑛 − 𝑘) and undermine the model’s reliability. For example, 
although the coefficient of determination (𝑅2) might increase, this could be misleading, as 
it might reflect the model’s ability to fit the noise in the data rather than any true underlying 
pattern. Such inclusion risks overfitting, where the model captures random fluctuations 
instead of genuine trends, thus impairing its predictive ability. Therefore, careful selection 
of variables based on both theoretical relevance and empirical evidence is essential for 
maintaining a robust, reliable model. 

Excluding relevant variables: Omitting important predictor variables can introduce bias 
into the model’s parameter estimates and predictions. In the effort to simplify the model, 
analysts may exclude variables that have theoretical significance or are crucial for 
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explaining the outcome. This could be due to practical challenges, such as difficulties in 
quantifying intangible variables like personal preferences or in accurately measuring 
complex factors like income. However, excluding these relevant variables can distort the 
model’s accuracy, leading to biased predictions and unreliable conclusions. 

The key challenge in variable selection is balancing the trade-off between bias and variance. 
Including too many irrelevant variables increases variance, while excluding important ones 
introduces bias, both of which can undermine the quality of the model’s predictions. 

2.4 Criteria for Evaluating Reduced model 

To ensure a regression model’s adequacy, we use various criteria to ensure it fits the data 
well and generalizes effectively to new data. 

When selecting subsets of candidate variables for the model, the challenge is to determine 
which subset yields the best regression model. Numerous criteria have been proposed in 
the literature to evaluate and compare these subset regression models effectively. 

Here are some key criteria: 

2.4.1 Coefficient of Determination 

The coefficient of determination (𝑅2) is commonly used in variable selection to assess the 
model’s explanatory power. Given 𝑘 predictor variables, when you select a subset of 𝑝 − 1 

variables, there are ( 𝑘
𝑝−1

) possible combinations, each corresponding to a unique model. 

The value of 𝑅2 typically increases as more variables are added. Here’s how to use 𝑅2 for 
variable selection: 

• Start by choosing an initial number of variables (𝑝), fit the model, and calculate 𝑅𝑝2. 

• Add one more variable, refit the model, and calculate the new 𝑅𝑝+12 . 

• Since 𝑅𝑝+12  is usually greater than 𝑅𝑝2, if the change 𝑅𝑝+12 − 𝑅𝑝
2 is small, stop and 

select the current value of 𝑝 as the optimal number of variables for the subset 
regression. 

• If the increase 𝑅𝑝+12 − 𝑅𝑝
2 is significant, continue adding variables until the increment 

in 𝑅𝑝2 becomes marginal. 

To determine the best value for 𝑝, you can plot 𝑅2 against 𝑝. This graph will visually highlight 
the point where further additions to the model no longer yield significant improvements in 
the explanatory power. 
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2.4.2 Adjusted coefficient of determination 

The adjusted coefficient of determination (𝑅adj
2 ) offers certain advantages over the 

standard coefficient of determination (𝑅2). It is calculated using the formula: 

𝑅adj
2 (𝑝) = 1 − (

𝑛 − 1

𝑛 − 𝑝 − 1
) (1 − 𝑅2(𝑝)) 

Where: 

• 𝑅2(𝑝) is the coefficient of determination for the 𝑝-term model, 

• 𝑛 is the number of data points, 

• 𝑝 is the number of predictors in the model. 

The key benefit of 𝑅adj
2  is that it doesn’t automatically increase with the addition of more 

variables. 

If additional predictor variables are added to the model, 𝑅adj
2  will only increase if the 

inclusion of those variables significantly improves the model’s fit. Specifically, the adjusted 
𝑅2 will increase if the partial F-statistic for testing the significance of these new variables is 
greater than 1. 

Thus, subset selection using 𝑅adj
2  can be done similarly to the standard 𝑅2 approach. In 

general, the optimal number of variables is chosen as the one that maximizes 𝑅adj
2 , ensuring 

a balance between model complexity and explanatory power. 

2.4.3 Residual Mean Square (RMS) 

The Residual Mean Square (RMS) measures how well the regression model fits the observed 
data. It is calculated as follows: 

𝑅𝑀𝑆𝑝 =
𝑆𝑆𝐸𝑝

𝑛 − 𝑝
 

where: 

• 𝑆𝑆𝐸𝑝: Sum of Squared Errors for the model with 𝑝 predictors. 

• 𝑛: Number of observations. 

• 𝑝: Number of predictors in the model. 

A lower RMS value indicates a better fit, as it signifies that the model’s predictions are closer 
to the actual data points. 
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2.4.4 Mallows’ Cp Statistic 

Mallows’ Cp Statistic helps balance the trade-off between the bias and variance of the 
model. It assesses whether a model is underfitting or overfitting the data: 

𝐶𝑝 =
𝑆𝑆𝐸𝑝

𝜎̂2
+ 2𝑝 − 𝑛 

where: 

• 𝑆𝑆𝐸𝑝: Sum of Squared Errors for the model with 𝑝 predictors. 

• 𝜎̂2: An estimate of the error variance based on the full model. 

• 𝑝: Number of predictors in the model. 

• 𝑛: Number of observations. 

A good model will have a Cp value close to 𝑝. If 𝐶𝑝 is significantly larger than 𝑝, it suggests 
that the model is overfitting. Conversely, if it is much smaller, the model may be underfitting. 

2.4.5 Information Criteria (AIC & BIC) 

Information criteria are used to compare models and select the best one based on their 
goodness of fit and complexity. 

• Akaike Information Criterion (AIC): 

𝐴𝐼𝐶𝑝 = 𝑛ln (
𝑆𝑆𝐸𝑝

𝑛
) + 2𝑝 

  where: 

o 𝑛: Number of observations. 

o 𝑆𝑆𝐸𝑝: Sum of Squared Errors for the model with 𝑝 variables. 

o 𝑝: Number of predictors in the model. 

  The AIC helps to balance model fit and complexity. A lower AIC value indicates a 
model that fits the data well without being overly complex. 

• Bayesian Information Criterion (BIC): 

𝐵𝐼𝐶𝑝 = 𝑛ln (
𝑆𝑆𝐸𝑝

𝑛
) + 𝑝ln(𝑛) 

  where: 

o 𝑛: Number of observations. 

o 𝑆𝑆𝐸𝑝: Sum of Squared Errors. 

o 𝑝: Number of predictors. 
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o ln(𝑛): Logarithm of sample size, which penalizes model complexity. 

  The BIC also balances fit and complexity, but it penalizes complexity more strongly 
than the AIC. Lower BIC values indicate better models. 

In summary, these criteria ensure that the regression model you choose not only fits your 
current data but also generalizes well to new data, thereby achieving an optimal balance 
between fit and simplicity. 

Tips 

• A lower AIC/BIC score indicates a more efficient model. 

• Comparing models: If a reduced model has a much lower AIC/BIC than the full 
model, it may be preferable. Running this code will print the AIC and BIC values for 
full-model, allowing you to compare it with other models. If you’re comparing 
multiple models, choose the one with the lowest AIC or BIC value. 

2.5 Variable Selection Procedures 

To select the most relevant variables for a regression model, there are several variable 
selection techniques that can be employed. These techniques help identify the independent 
variables that contribute most significantly to the explanatory power of the model. Four 
common approaches include stepwise regression, forward selection, backward 
elimination, and best-subsets regression. Each of these techniques has its own strengths 
and application context. 

The first three techniques—stepwise regression, forward selection, and backward 
elimination—are iterative processes. In these methods, variables are added or removed one 
at a time, with each adjustment being evaluated based on its effect on model performance. 
The process continues until a predefined stopping criterion is met, which indicates that no 
further improvements can be made to the model. Here’s a brief overview of each: 

• Forward Selection: This technique starts with no variables in the model and adds 
variables one by one based on their contribution to improving model fit. The variables 
are chosen based on criteria like p-values or AIC, and the process continues until no 
further improvement is observed. 

• Backward Elimination: Unlike forward selection, backward elimination starts with 
all candidate variables in the model and removes the least significant variables one 
at a time. The decision to remove a variable is based on statistical tests (e.g., p-
values), and the process stops when all remaining variables are significant. 

• Stepwise Regression: This method is a combination of forward selection and 
backward elimination. It starts with either an empty model (for forward selection) or 
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a full model (for backward elimination) and then iteratively adds or removes variables 
based on their statistical significance. It can move in both directions, making it more 
flexible in finding the optimal model. 

The fourth technique, best-subsets regression, differs from the others in that it does not 
consider variables one at a time. Instead, it evaluates all possible combinations of 
explanatory variables, identifying the subset that provides the best model fit. This approach 
is more exhaustive and can provide a more comprehensive view of the data, but it can also 
be computationally expensive, especially with large datasets. 

These variable selection methods are especially valuable during the initial stages of model 
building, helping analysts narrow down the list of potential variables and choose those that 
contribute most effectively to the regression model. However, it’s important to note that 
these techniques are not a replacement for an analyst’s expertise. While they can provide 
guidance on which variables to include, the final decision should always be informed by the 
analyst’s understanding of the data and its context. 

In summary, variable selection techniques like forward selection, backward elimination, 
stepwise regression, and best-subsets regression can significantly enhance the process of 
building effective regression models. Each technique has its own strengths, and selecting 
the appropriate one depends on the specific context of the analysis and the nature of the 
data. 

2.6 Collinearity and Variable Selection 

When discussing variable selection procedures, we differentiate between two primary 
scenarios: 

• Non-Collinear Predictor Variables: There is no strong evidence of collinearity 
among the predictor variables. 

• Collinear Predictor Variables: The data exhibits high multicollinearity, indicating 
strong collinearity among the predictor variables. 

The approach to variable selection depends on the correlation structure of the predictor 
variables. If the data analyzed are non-collinear, we proceed in one manner; if they are 
collinear, we proceed in another. 

As an initial step in the variable selection procedure, we recommend calculating the 
Variance Inflation Factors (VIFs). VIF measures the extent to which the variance of a 
regression coefficient is inflated due to collinearity among the predictor variables. If none of 
the VIFs exceed 10, collinearity is not a concern. 
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General Rule of Thumb: 

• A VIF of 1 indicates no correlation between a predictor and any other predictors. 
• A VIF between 1 and 5 suggests moderate correlation that is usually acceptable. 
• A VIF above 10 often indicates high collinearity, which could be problematic. 

Collinearity can significantly impact the stability and interpretability of a regression model. 
When collinearity is detected, variable selection techniques such as ridge regression, 
principal component analysis (PCA), or partial least squares (PLS) can be employed to 
mitigate its effects. These techniques help in reducing multicollinearity by transforming the 
predictor variables or by introducing regularization to the regression model. 

In summary, understanding and addressing collinearity is crucial for building robust and 
interpretable regression models. By carefully selecting and evaluating predictor variables, 
we can ensure the reliability and effectiveness of our regression analysis. 

2.7 Analysis of Factors Influencing Employee Job Satisfaction 

The following dataset offers valuable insights into the factors influencing overall job 
satisfaction among employees. It includes responses from a survey conducted within a 
manufacturing company, where employees rated various aspects of their job on a scale of 
0 to 100. Higher values indicate better satisfaction or performance in each category. The 
data can be used to analyze how different management practices and workplace conditions 
impact employee satisfaction. 

To explore the relationships between different variables, we will simulate a regression 
equation for overall job satisfaction (Y), using several influencing predictor variables (X1 to 
X6). This will help demonstrate variable selection procedures in a noncollinear context and 
identify which predictor contribute most to overall employee satisfaction. 

Y X1 X2 X3 X4 X5 X6  Y X1 X2 X3 X4 X5 X6 

43 55 49 44 54 49 34  63 64 51 54 63 73 47 

71 75 50 55 70 66 41  65 70 46 57 75 85 46 

78 75 58 74 80 78 49  67 61 45 47 62 80 41 

81 78 56 66 71 83 47  74 85 64 69 79 79 63 

82 82 39 59 64 78 39  69 62 57 42 55 63 25 

66 77 66 63 88 76 72  64 53 53 58 58 67 34 

50 40 33 34 43 64 33  61 63 45 47 54 84 35 
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Y X1 X2 X3 X4 X5 X6  Y X1 X2 X3 X4 X5 X6 

67 60 47 39 59 74 41  68 83 83 45 59 77 35 

85 85 71 71 77 74 55  72 82 72 67 71 83 31 

81 90 50 72 60 54 36  74 85 64 69 79 79 63 

53 66 52 50 63 80 37  65 60 65 75 55 80 60 

50 58 68 54 64 78 52  48 57 44 45 51 83 38 

71 70 68 69 76 86 48  63 54 42 48 66 75 33 

40 37 42 58 50 57 49  58 67 42 56 66 68 35 

43 51 30 39 61 92 45  77 77 54 72 79 77 46 

 

2.7.1 Variable Description: 

• Y: Overall Job Satisfaction – A measure of the employee’s overall satisfaction with 
their job and the company’s management, rated on a scale from 0 to 100. 

• X1: Supervisor’s Communication Skills – The effectiveness of the supervisor’s 
communication with employees, rated on a scale from 0 to 100. 

• X2: Work-Life Balance – The employee’s satisfaction with the balance between their 
work responsibilities and personal life, rated on a scale from 0 to 100. 

• X3: Team Collaboration – The level of teamwork and cooperation among employees, 
measured on a scale from 0 to 100. 

• X4: Career Development Opportunities – The opportunities provided by the 
organization for career growth and advancement, rated on a scale from 0 to 100. 

• X5: Management’s Fairness – The fairness with which management handles 
employee relations, promotions, and job assignments, rated on a scale from 0 to 100. 

• X6: Employee Recognition – The degree to which employees feel their efforts are 
recognized and appreciated by the organization, rated on a scale from 0 to 100. 

2.7.2 Set up a regression model 

Given the dataset we have, we can set up a multiple linear regression model to predict 
the overall job satisfaction (Y) based on the predictor variables (X1 to X6). 

The regression equation would look like this: 

𝑌 = 𝛽0 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2 + 𝛽3 ⋅ 𝑋3 + 𝛽4 ⋅ 𝑋4 + 𝛽5 ⋅ 𝑋5 + 𝛽6 ⋅ 𝑋6 + 𝜀 

Where: 
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• 𝑌 is the overall job satisfaction score (dependent variable). 

• 𝑋1, 𝑋2, … , 𝑋6 are the predictor variables (supervisor’s communication skills, work-
life balance, team collaboration, etc.). 

• 𝛽0 is the intercept term. 

• 𝛽1, … , 𝛽6 are the coefficients for each predictor variable. 

• 𝜀 is the error term. 
library(olsrr) 
 
# Create the dataset 
data <- data.frame( 
  Y = c(43, 71, 78, 81, 82, 66, 50, 67, 85, 81, 53, 50, 71, 40, 43, 63, 65, 6

7, 74, 69, 64, 61, 68, 72, 74, 65, 48, 63, 58, 77), 
  X1 = c(55, 75, 75, 78, 82, 77, 40, 60, 85, 90, 66, 58, 70, 37, 51, 64, 70, 

61, 85, 62, 53, 63, 83, 82, 85, 60, 57, 54, 67, 77), 
  X2 = c(49, 50, 58, 56, 39, 66, 33, 47, 71, 50, 52, 68, 68, 42, 30, 51, 46, 

45, 64, 57, 53, 45, 83, 72, 64, 65, 44, 42, 42, 54), 
  X3 = c(44, 55, 74, 66, 59, 63, 34, 39, 71, 72, 50, 54, 69, 58, 39, 54, 57, 

47, 69, 42, 69, 47, 45, 67, 69, 75, 45, 48, 56, 72), 
  X4 = c(54, 70, 80, 71, 64, 88, 43, 59, 77, 60, 63, 64, 76, 50, 61, 63, 75, 

62, 79, 55, 58, 54, 59, 71, 79, 55, 51, 66, 66, 79), 
  X5 = c(49, 66, 78, 83, 78, 76, 64, 74, 74, 54, 80, 78, 86, 57, 92, 73, 85, 

80, 79, 63, 67, 68, 77, 78, 79, 80, 83, 75, 68, 77), 
  X6 = c(34, 41, 49, 47, 39, 72, 33, 41, 55, 36, 37, 52, 48, 49, 45, 47, 46, 

41, 63, 25, 34, 35, 35, 31, 63, 60, 38, 33, 35, 46) 
) 
 
# Fit the full model, i.e. include all predictor variables 
full_model <- lm(Y ~ ., data = data) 
ols_regress(full_model) 

2.7.3  Assess Collinearity and Variance Inflation Factor (VIF) 

In a noncollinear situation, the predictors should not have high multicollinearity. We can 
check this by calculating the Variance Inflation Factor (VIF) for each predictor. Ideally, VIF 
values should be below 5 or 10 to indicate that there is no strong collinearity between 
predictors. 

Now, let’s compute the Variance Inflation Factor (VIF) to check if there is any 
multicollinearity among the predictors. 
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# Check multicollinearity with VIF 
vif_values <- ols_vif_tol(full_model) 
print(vif_values) 

 Interpretation of the Results 

Variable Tolerance VIF Interpretation 

X1 0.3705 2.699 Moderate multicollinearity 

X2 0.6046 1.654 Low multicollinearity 

X3 0.4695 2.130 Moderate multicollinearity 

X4 0.2929 3.414 Higher multicollinearity 

X5 0.7377 1.355 Low multicollinearity 

X6 0.4998 2.001 Moderate multicollinearity 

The tolerance and Variance Inflation Factor (VIF) are both measures used to assess 
multicollinearity in a regression model, which occurs when independent variables are highly 
correlated with one another. Here’s how to interpret the results: 

Tolerance 

Tolerance is the inverse of the VIF and is calculated as Tolerance = 1 − 𝑅2, where 𝑅2 is the 
squared multiple correlation coefficient between a given independent variable and all the 
other variables in the model. A tolerance value close to 1 indicates low multicollinearity, 
while a value close to 0 suggests high multicollinearity. 

Overall Interpretation 

The VIF values for all variables are well below the common threshold of 10, which suggests 
that multicollinearity is not a major concern in this model. However, X4 shows a slightly 
higher VIF (3.414), indicating it has a bit more correlation with other predictors compared to 
the others, but it still doesn’t pose a significant issue. Generally, the model appears to have 
acceptable levels of multicollinearity, and there is no need for major adjustments. 

But if you decide to keep the variables having VIF < 3 then you can discard 𝑋4 and recheck 
the VIF values. 

# Remove X6 and fit the model again 
reduced_data <- data[, c("Y", "X1", "X2", "X3", "X5", "X6")]  # Remove X4 
 
# Fit the new model 
reduced_model <- lm(Y ~ X1 + X2 + X3 + X5 + X6, data = reduced_data) 
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# Calculate VIF again 
vif_values_reduced <- ols_vif_tol(reduced_model) 
print(vif_values_reduced) 

After removing X4, the multicollinearity has decreased, and the remaining variables now 
exhibit low to moderate multicollinearity. Here’s a detailed interpretation of the results: 

Variable Tolerance VIF Interpretation 

X1 0.5319 1.880 Low multicollinearity 

X2 0.6089 1.642 Low multicollinearity 

X3 0.4932 2.028 Moderate multicollinearity 

X5 0.8238 1.214 Low multicollinearity 

X6 0.6088 1.643 Low multicollinearity 

By removing X4, the model’s performance should improve. The variables remaining in the 
model exhibit low to moderate multicollinearity, which enhances the stability, reliability, 
and interpretability of the results. This makes the model better suited for generating 
reliable predictions. 

2.7.4 Apply Variable Selection Procedures 

Here are the steps for variable selection using methods like Forward Selection, Backward 
Elimination, Stepwise Selection, and Best-Subsets Selection. 

Here’s how we can utilize Forward Selection in R to carry out variable selection for our 
model: 

# Perform forward selection with a p-value threshold of 0.3 
forward_selection <- ols_step_forward_p( 
  model = full_model, 
  p_val = 0.3, 
  progress = TRUE,    # Show progress during the selection 
  details = TRUE      # Show detailed information about each step 
) 
# selection metrics 
forward_selection$metrics 
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 Stepwise Forward Selection Results Interpretation: 

Step Variable 𝑹𝟐 
Adjusted 
𝑹𝟐 AIC 

Mallows 
𝑪𝒑 RMSE Interpretation 

1 X1 0.6863 0.6751 205.87 2.2842 6.7678 Initial model with 
variable X1 shows 
decent fit with 
moderate error. 

2 X3 0.7161 0.6950 204.88 1.6046 6.4393 Adding variable X3 
improves model fit, 
reduces AIC, and 
decreases RMSE. 

3 X6 0.7363 0.7059 204.66 1.7783 6.2054 Including variable X6 
further enhances 
model fit, with 
lowest AIC and 
RMSE. 

 Overall Interpretation: 

• Model Fit ( 𝑅2 and Adjusted 𝑅2): 

o The 𝑅2 values increase with each step, meaning that the model explains 
more of the variation in the data as more variables are added. 

o The adjusted 𝑅2 also increases, showing that the additional variables 
contribute positively to the model fit and do not lead to overfitting. This 
suggests a balanced improvement in model complexity and accuracy. 

• AIC (Akaike Information Criterion): 

o The AIC decreases with each step, which is a sign of improving model fit. 
Lower AIC values indicate a better model that is more likely to generalize 
well to unseen data, as it penalizes model complexity. 

• SBC (Schwarz Bayesian Criterion) and SBIC (Scaled BIC): 

o Both SBC and SBIC show a decrease in value through the steps. These criteria 
balance model fit with model complexity, and the fact that they continue to 
decline suggests that the added variables help improve the model without 
unnecessarily increasing its complexity. 

• Mallows’ 𝐶𝑝: 

o Mallows’ 𝐶𝑝 values are below or close to the number of predictors plus one 
(p+1), indicating that the model is well-specified and does not suffer from 
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overfitting. A low 𝐶𝑝 suggests that the added variables contribute to explaining 
the data effectively. 

• RMSE (Root Mean Square Error): 

o The RMSE decreases with each added variable, which indicates that the 
model’s predictions are becoming more accurate as more information is 
included. 

 Stepwise Selection of Terms: 

• Step 1: The model with X1 explains 68.63% of the variance in the data, and although 
the model is relatively good, the RMSE is still relatively high, indicating some 
prediction error. 

• Step 2: The inclusion of X3 improves the model, as indicated by a decrease in AIC, 
SBC, and RMSE. The 𝑅2 and adjusted 𝑅2 values increase, showing better fit and 
explanatory power. 

• Step 3: Adding X6 further improves the model, achieving the lowest AIC and RMSE, 
and further increasing the model’s 𝑅2 and adjusted 𝑅2 values. 

Backward Elimination: 

In backward elimination, you start with all the predictors and remove the least useful ones. 
Here’s how we can use backward elimination in R to perform variable selection for our 
model: 

# Perform backward stepwise selection with a p-value threshold of 0.3 
backward_selection <- ols_step_backward_p( 
  model = full_model,    # The full model you want to start from 
  p_val = 0.3,           # P-value threshold for inclusion 
  progress = TRUE,       # Show progress during the selection 
  details = TRUE         # Show detailed information about each step 
) 
backward_selection$metrics 

The following summary table with a column stating why each variable was removed in each 
iteration: 

Step 
Varia
ble R² 

Adjust
ed R² AIC SBC 

Mallows
’ Cp RMSE Reason for Removal 

1 X4 0.744
2 

0.6909 207.75 217.5
6 

126.04 6.11 X4 was removed because it had 
the smallest t-test, indicating 
the least contribution to the 
reduction of error sum of 
squares. 
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Step 
Varia
ble R² 

Adjust
ed R² AIC SBC 

Mallows
’ Cp RMSE Reason for Removal 

2 X5 0.740
9 

0.6994 206.14 214.5
5 

123.68 6.15 X5 was removed next as it had 
the smallest insignificant t-test 
in the new model. 

3 X2 0.736
3 

0.7059 204.66
13 

211.6
673 

121.48 6.21 X2 was removed because it was 
the last variable with the 
smallest insignificant t-test in 
the final model. 

In each step, the variable with the smallest t-test was removed, as it contributed the least 
to reducing the error sum of squares. The process continued until all remaining variables 
had significant t-tests. 

Stepwise Selection  

Stepwise selection combines both forward selection and backward elimination. 

• Start with no predictors (or all predictors). 

• Add predictors (like forward selection) and remove predictors (like backward 
elimination) based on p-values. 

• The algorithm moves forward or backward to find the best-fitting model based on 
some criteria (e.g., AIC, BIC). 

Here’s how we can use Stepwise Selection (forward or backward) in R to perform variable 
selection for our model: 

# Perform stepwise selection with both forward and backward steps 
stepwise_selection <- ols_step_both_p( 
  model = full_model,    # The initial full model 
  p_enter = 0.2,    # variables with p value less than p_enter will enter int

o the model. 
  p_remove = 0.3,   # variables with p more than p_remove will be removed fro

m the model. 
  progress = TRUE,       # Show progress during the selection process 
  details = TRUE         # Show detailed information about each step 
) 

 

The code for Best-Subsets Selection is as follows: 

# Perform best-subsets regression using Mallows' Cp as the selection metric 
best_subset_cp <- ols_step_best_subset( 
  model = full_model,    # The initial full model 
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  metric = "cp",         # Use Mallows' Cp as the metric for selection 
) 
best_subset_cp$metrics 

Plot the Model 

If you want to visualize the process or the results, you can plot the selection process: 

# Plot the stepwise selection 
plot(stepwise_selection) 
# Plot the best subset selection 
plot(best_subset_cp) 
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2.7.5 Final Thoughts 

By utilizing the regression model and variable selection procedures, we can identify the key 
qualities or predictors that most significantly contribute to overall job satisfaction among 
employees. The final model highlights critical factors such as supervisor communication 
skills, team collaboration, and employee recognition, among others. These insights provide 
valuable guidance for organizations, enabling them to focus on the aspects that are most 
influential in enhancing employee satisfaction. Through the variable selection process, we 
find that these factors, when combined, create a robust model with improved fit, reduced 
prediction errors, and minimal overfitting. While the model demonstrates strong predictive 
power, it is essential to consider the balance between accuracy and simplicity. The 
increasing model complexity, as reflected in metrics like SBC and SBIC, emphasizes the 
need to avoid overfitting. Ultimately, the final model offers a reliable foundation for 
understanding and improving job satisfaction. However, careful attention must be paid to 
ensure its real-world applicability and sustainability. 
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Check Your Progress – 1  

The following data represents a company that markets products across various regional 
zones, each linked to a specific account manager. A regression analysis was performed 
to assess whether several predictor (independent) variables could account for the sales 
figures in each zone. A random sample of 25 regional zones led to the data as shown in 
Table, with variable definitions provided as below. 

Variable Definition 

Revenue (Y) Total sales attributed to the account manager 

Tenure (X1) Duration of employment, measured in months 

MarketSize (X2) Total potential market; industry-wide sales in units for the 
regional zone 

AdSpend (X3) Advertising expenditure for the regional zone 

ShareOfMarket 
(X4) 

Market share; average over the past four years 

ShareChange (X5) Change in market share over the last four years 

Clients (X6) Number of clients assigned to the account manager 

WorkIndex (X7) Workload; an index based on annual purchase volume and 
client distribution 

Performance (X8) Account manager’s overall rating across eight performance 
areas, rated on a 1–7 scale 

 

Y X1 X2 X3 X4 X5 X6 X7 X8 
3669.88 43.10 74065.1 4582.9 2.51 0.34 74.86 15.05 4.9 
3473.95 108.13 58117.3 5539.8 5.51 0.15 107.32 19.97 5.1 

2295.1 13.82 21118.5 2950.4 10.91 -0.72 96.75 17.34 2.9 
4675.56 186.18 68521.3 2243.1 8.27 0.17 195.12 13.4 3.4 
6125.96 161.79 57805.1 7747.1 9.15 0.50 180.44 17.64 4.6 
2134.94 8.94 37806.9 402.4 5.51 0.15 104.88 16.22 4.5 
5031.66 365.04 50935.3 3140.6 8.54 0.55 256.1 18.8 4.6 
3367.45 220.32 35602.1 2086.2 7.07 -0.49 126.83 19.86 2.3 
6519.45 127.64 46176.8 8846.2 12.54 1.24 203.25 17.42 4.9 
4876.37 105.69 42053.2 5673.1 8.85 0.31 119.51 21.41 2.8 
2468.27 57.72 36829.7 2761.8 5.38 0.37 116.26 16.32 3.1 
2533.31 23.58 33612.7 1991.8 5.43 -0.65 142.28 14.51 4.2 
2408.11 13.82 21412.8 1971.5 8.48 0.64 89.43 19.35 4.3 
2337.38 13.82 20416.9 1737.4 7.80 1.01 84.55 20.02 4.2 
4586.95 86.99 36272 10694.2 10.34 0.11 119.51 15.26 5.5 
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2729.24 165.85 23093.3 8618.6 5.15 0.04 80.49 15.87 3.6 
3289.40 116.26 26878.6 7747.9 6.64 0.68 136.58 7.81 3.4 
2800.78 42.28 39572 4565.8 5.45 0.66 78.86 16.00 4.2 
3264.20 52.84 51866.1 6022.7 6.31 -0.1 136.58 17.44 3.6 
3453.62 165.04 58749.8 3721.1 6.35 -0.03 138.21 17.98 3.1 
1741.45 10.57 23990.8 861 7.37 -1.63 75.61 20.99 1.6 
2035.75 13.82 25694.9 3571.5 8.39 -0.43 102.44 21.66 3.4 

1578 8.13 23736.3 2845.5 5.15 0.04 76.42 21.46 2.7 
4167.44 58.44 34314.3 5060.1 12.88 0.22 136.58 24.78 2.8 
2799.97 21.14 22809.5 3552 9.14 -0.74 88.62 24.96 3.9 

 
Analyze this dataset using the variable selection procedures discussed in this unit. 

• Identify which predictor variables (such as Revenue, Experience, MarketSize, AdSpend, 
etc.) should be included in the regression model for predicting sales performance. 
 
 

 

2.8 LET US SUM UP 

This unit explores the essential process of variable selection in regression analysis, which 
involves choosing the most relevant predictor variables to create a robust and interpretable 
regression model. It emphasizes the importance of identifying the right variables and 
determining their functional form, with a focus on practical application in R. Key variable 
selection techniques—such as forward selection, backward elimination, stepwise 
selection, and best-subsets regression—are covered, along with methods for evaluating 
model performance through metrics like Residual Mean Square (RMS), Mallows’ Cp, and 
Information Criteria (AIC and BIC). The unit also discusses the challenge of multicollinearity 
and how to detect and address it using tools like Variance Inflation Factors (VIF).  

Understanding different selection techniques enables data-driven decision-making, 
improving predictions while maintaining interpretability. By carefully selecting variables, 
analysts can create robust and meaningful regression models. 
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2.9 Check Your Progress: Possible Answers 

Check Your Progress – 1  
• Use the stepwise selection technique (in R) to find the optimal set of predictor 

variables as discussed in this section. 
• Based on your analysis, you may find that X2, X3, X4, and X6 are the most important 

predictors. Forward Selection and Backward Elimination may lead to different 
models. 

• Ensure assessing the model fit and consider multicollinearity.  

 

2.10 Further Reading 

1. Regression Analysis by Example Using R 6th Edition, Ali S. Hadi and Samprit Chatterjee, 
Wiley Publication, October 2023 

2. https://home.iitk.ac.in/~shalab/regression/Chapter13-Regression-
VariableSelectionAndModelBuilding.pdf?form=MG0AV3 

3. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 
Cengage Learning, January 2016 

2.11 Assignment 

1. Explain the importance of variable selection in regression analysis. How does it 
impact model performance and interpretability? 

2. Discuss the effect of including of excluding variables. 
3. Compare and contrast Forward Selection, Backward Elimination, and Stepwise 

Selection. Under what conditions is each method preferable? 

4. What is multicollinearity? How does it affect regression estimates, and what 
techniques can be used to detect and address it? 

https://home.iitk.ac.in/~shalab/regression/Chapter13-Regression-VariableSelectionAndModelBuilding.pdf?form=MG0AV3
https://home.iitk.ac.in/~shalab/regression/Chapter13-Regression-VariableSelectionAndModelBuilding.pdf?form=MG0AV3
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 Unit 3: Binary Logistic Regression  
 
Unit Structure  

3.0 Learning Objectives 

3.1 Introduction 

3.2 FITTING THE LOGISTIC REGRESSION MODEL 

3.3 Example: Big Bazar Stores Dataset 

3.4 Interpretation of the Parameters in a Logistic Regression Model 

3.5 Another Approach to Classification Problems 

3.6 The Multinomial Logit Model 

3.7 Let Us Sum Up 

3.8 Check Your Progress: Possible Answers 

3.9 Further Reading 

3.10 Assignment 
 

3.0 Learning Objectives 

By the end of this unit, you should be able to: 

• Understand the concept of logistic regression and its applications. 
• Differentiate between linear regression and logistic regression. 
• Formulate the logistic regression equation and interpret its parameters. 
• Estimate the probability of an event using logistic regression. 
• Perform significance testing for logistic regression models. 
• Interpret odds ratios and their implications in logistic regression. 
• Apply logistic regression to classification task. 
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3.1 Introduction 

Logistic regression is a statistical method used for binary classification problems, where 
the outcome variable can take only two possible values, such as “yes” or “no,” 
“success” or “failure,” or “1” and “0.” Unlike linear regression, which predicts a 
continuous outcome, logistic regression estimates the probability of an event occurring 
based on one or more independent variables. 

Consider a scenario where a financial institution wants to determine whether a company 
is likely to go bankrupt within two years. The dependent variable (Y) is coded as 1 if the 
company remains solvent and 0 if it goes bankrupt. Predictor variables (X) may include 
financial ratios such as retained earnings to total assets, earnings before interest and 
taxes to total assets, and sales to total assets. 

3.1.1  Applications of Logistic Regression 

Logistic regression is widely used in various fields, including: 

• Marketing: Predicting whether a customer will purchase a product. 
• Finance: Assessing the likelihood of loan default. 
• Healthcare: Predicting the probability of a patient having a disease. 
• Social Sciences: Analyzing the likelihood of an individual voting for a particular 

candidate. 

3.1.2 Key Differences Between Linear and Logistic Regression 
• Dependent Variable: Linear regression predicts continuous outcomes, while 

logistic regression predicts binary outcomes. 
• Output: Linear regression outputs a straight line, while logistic regression outputs 

an S-shaped curve (sigmoid function). 
• Equation: Linear regression uses a linear equation, while logistic regression uses a 

logistic function. 
 

3.2 FITTING THE LOGISTIC REGRESSION MODEL 

Since logistic regression deals with a binary response variable, it models the probability 
that an observation belongs to one of the two categories. The linear regression model is 
not suitable for this task because it assumes an unbounded outcome, which is 
incompatible with probability values constrained between 0 and 1. 

To resolve this, logistic regression uses the logistic response function: 

𝜋 = 𝑃(𝑌 = 1|𝑋) =
𝑒(𝛽0+𝛽1𝑋1+...+𝛽𝑝𝑋𝑝)

1 + 𝑒(𝛽0+𝛽1𝑋1+...+𝛽𝑝𝑋𝑝)
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where: 

• 𝜋 represents the probability that 𝑌 = 1. 
• 𝛽0, 𝛽1, . . . , 𝛽𝑝 are the model parameters. 
• 𝑋1, . . . , 𝑋𝑝 are independent variables. 
• 𝑒 is the base of the natural logarithm. 

The significant difference between linear and logistic regression models lies in the 
conditional distribution of the outcome variable. In linear regression, we assume that the 
outcome variable for each observation can be expressed as a linear function of the 
independent variables plus an error term. This error term represents the deviation of the 
observed value from the conditional mean. Typically, we assume that the error term 
follows a normal distribution with a mean of zero and a constant variance, which is 
independent of the values of the independent variables. Consequently, the conditional 
distribution of the outcome variable, given the independent variables, is normal, with a 
constant variance across all levels of the predictors. 

However, this assumption does not hold in the case of a dichotomous (binary) outcome 
variable, which is central to logistic regression. In logistic regression, the outcome 
variable can take on one of two values (typically 0 or 1), and we model the probability of 
one of these outcomes occurring, given the independent variables. Instead of assuming 
a normal distribution for the error term, we assume that the error term follows a Bernoulli 
distribution. Specifically, for each observation, the probability of the outcome being 1 is 
modeled as a logistic function of the independent variables. 

If the outcome variable equals 1, the probability is 𝜋, and if it equals 0, the probability is 
1 − 𝜋, where 𝜋 is the conditional probability of success (i.e., the probability that the 
outcome is 1). In this case, the conditional distribution of the outcome variable is 
binomial, with a mean equal to 𝜋 and a variance of 𝜋(1 − 𝜋), which depends on the 
predicted probability. The key distinction here is that, unlike in linear regression, the 
variance of the outcome in logistic regression is not constant and varies with the 
predicted probability, reflecting the underlying binomial distribution. 

3.2.1 Logit Transformation 

Rather than modeling probability directly, logistic regression transforms it using the 
logit function.  

𝑔(𝑋) = ln (
𝜋

1 − 𝜋
) = 𝛽0 + 𝛽1𝑋1+. . . +𝛽𝑝𝑋𝑝 

This transformation ensures a linear relationship between the predictor variables and 
the transformed outcome, enabling easier interpretation of coefficients. 
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3.2.2 Maximum Likelihood Estimation 

The parameters 𝛽0, 𝛽1, . . . , 𝛽𝑝 are estimated using Maximum Likelihood Estimation 
(MLE), which maximizes the probability of obtaining the observed data. The likelihood 
function for 𝑛 independent observations is: 

𝐿(𝛽) = ∏ 𝜋𝑖
𝑦𝑖

𝑛

𝑖=1

(1 − 𝜋𝑖)1−𝑦𝑖  

Taking the logarithm, we obtain the log-likelihood function: 

ℓ(𝛽) = ∑[𝑦𝑖ln(𝜋𝑖) + (1 − 𝑦𝑖)ln(1 − 𝜋𝑖)]

𝑛

𝑖=1

 

Since the log-likelihood function is nonlinear in 𝛽, numerical optimization techniques 
such as Newton-Raphson or Fisher scoring are used to estimate the parameters. 

3.3 Example: Big Bazar Stores Dataset 

Let's consider a dataset from Big Bazaar Stores. The goal is to predict whether a 
customer will use a coupon based on their annual spending and whether they have a Big 
Bazaar credit card. 

Variables: 

• Spending (X1): Annual spending in thousands of rupees. 

• Card (X2): 1 if the customer has a Big Bazaar credit card, 0 otherwise. 

• Redeemed (Y): 1 if the customer used the coupon, 0 otherwise. 

ID X1 X2 Y  ID X1 X2 Y  ID X1 X2 Y 

1 4.701 1 1  35 6.179 0 0  69 3.253 0 0 

2 3.993 0 1  36 1.980 1 0  70 2.059 1 0 

3 1.677 1 0  37 1.058 1 0  71 2.678 1 1 

4 6.486 0 1  38 6.851 1 1  72 2.323 1 0 

5 2.528 1 1  39 1.124 0 0  73 1.878 0 0 

6 2.423 0 0  40 3.318 1 1  74 2.678 1 1 

7 3.566 0 1  41 3.253 0 1  75 6.179 1 1 

8 3.318 1 1  42 1.839 0 0  76 3.411 1 1 

9 7.076 0 1  43 1.657 1 0  77 5.991 0 1 

10 2.229 1 0  44 1.075 0 0  78 7.076 1 1 

11 3.345 1 1  45 3.566 0 1  79 3.255 1 1 

12 3.255 0 1  46 2.118 0 0  80 2.148 1 0 

13 1.512 0 0  47 1.554 1 0  81 5.501 1 1 
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ID X1 X2 Y  ID X1 X2 Y  ID X1 X2 Y 

14 5.991 1 1  48 4.631 0 1  82 5.991 1 1 

15 6.737 1 1  49 4.345 1 1  83 2.372 1 0 

16 2.148 0 0  50 4.004 1 1  84 3.995 1 1 

17 2.118 0 0  51 1.068 1 0  85 2.135 0 0 

18 3.470 1 1  52 2.421 0 0  86 6.737 0 1 

19 2.936 0 0  53 4.414 1 1  87 6.486 1 1 

20 6.404 0 1  54 3.386 1 1  88 2.429 1 0 

21 2.229 0 0  55 1.677 1 0  89 4.701 1 1 

22 2.933 0 0  56 2.050 1 0  90 6.404 0 1 

23 2.118 1 0  57 2.323 1 1  91 1.130 1 0 

24 2.050 0 0  58 5.501 1 1  92 1.911 1 1 

25 4.998 0 1  59 3.345 0 1  93 4.959 1 1 

26 1.394 0 0  60 3.318 1 1  94 6.073 1 1 

27 3.993 1 1  61 4.721 0 1  95 1.403 1 0 

28 2.059 0 0  62 1.662 1 0  96 3.318 0 0 

29 1.677 0 0  63 2.936 1 0  97 2.421 1 0 

30 2.229 1 0  64 2.049 0 0  98 6.073 0 1 

31 4.345 1 1  65 2.313 0 1  99 2.630 1 0 

32 2.933 1 0  66 6.851 0 1  100 3.411 1 1 

33 5.365 1 1  67 2.291 1 0      

34 5.365 0 0  68 3.470 1 1      

 

The variables in the study are defined as follows: 

𝑌 = {
1,                       if the customer redeem the coupon 
0, if the customer did not redeem the coupon

 

𝑋1 = annual spending at Big Bazar Stores (₹1000s) 

𝑋2 = {
1,                          if the customer have Big Bazar credit card 
0, if the customer does not have Big Bazar credit card

 

 
Thus, we choose a logistic regression equation with two independent variables. 

𝜋 = 𝑃(𝑌 = 1|𝑋) =
𝑒(𝛽0+𝛽1𝑋1+𝛽2𝑋2)

1 + 𝑒(𝛽0+𝛽1𝑋1+𝛽2𝑋2)
 

The following R code snippet estimates the model parameters 𝛽0, 𝛽1 and 𝛽2. 

# Read the data from csv file 
data <- read.csv("Big_Bazar.csv") 
 
# Fit the logistic regression model 
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model <- glm(Redeemed ~ Spending + Card, data = data, family = binomial) 
 
# Summarize the model 
summary(model) 

Call: 
 glm(formula = Redeemed ~ Spending + Card, family = binomial,  
     data = data) 
  
 Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
 (Intercept)  -6.5605     1.3571  -4.834 1.34e-06 *** 
 Spending      1.8708     0.3962   4.722 2.34e-06 *** 
 Card          1.4729     0.6756   2.180   0.0292 *   
 --- 
 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
  
 (Dispersion parameter for binomial family taken to be 1) 
  
     Null deviance: 138.269  on 99  degrees of freedom 
 Residual deviance:  67.618  on 97  degrees of freedom 
 AIC: 73.618 
  
 Number of Fisher Scoring iterations: 6 

3.3.1 Evaluation Metrics for Logistic Regression 

Unlike linear regression, logistic regression does not have an equivalent to 𝑅2 for 
goodness-of-fit assessment. Instead, the following approaches are used: 

• Likelihood Ratio Test: Compares the likelihood of the fitted model to a null model. 
A significant test suggests that the independent variables improve prediction. 

• Deviance: Defined as: 
𝐷 = −2[ℓ(saturated model) − ℓ(fitted model)] 

  A lower deviance value suggests a better fit. The difference in deviance between 
models follows a chi-square distribution and can be used for hypothesis testing. 

• Akaike Information Criterion (AIC): Measures model quality by balancing 
goodness-of-fit and complexity. Lower AIC values indicate a better trade-off. 

The log-likelihood of the fitted model is related to deviance: 

𝐷 = −2 × log(Likelihood) 

A lower deviance indicates a better model fit. 
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3.3.2 Testing for Significance 

Overall Model Significance 

To test the overall significance of the logistic regression model, we use the chi-square 
(𝜒2) test. The null hypothesis is that all coefficients are zero, and the alternative 
hypothesis is that at least one coefficient is not zero. 

To perform a chi-square test for the logistic regression model, we typically use the 
likelihood ratio test to compare nested models. Here’s how you can do it in R: 

# Fit the full logistic regression model 
model_full <- glm(Redeemed ~ Spending + Card, data = data, family = binomi
al) 
 
# Fit the null model (intercept only) 
model_null <- glm(Redeemed ~ 1, data = data, family = binomial) 
 
# Perform the chi-square test using the likelihood ratio test 
anova(model_null, model_full, test = "Chisq") 

Interpreting the Chi-Square Test Output 

The Analysis of Deviance Table compares two models: 

• Model 1 (Null Model): Includes only the intercept (i.e., assumes no predictors 
influence the outcome). 

• Model 2 (Full Model): Includes Spending and Card as predictors. 

Key Metrics in the Output 

Metric 
Model 1  
(Null) 

Model 2  
(Full) Interpretation 

Residual Df 99 97 Degrees of freedom left after fitting 
the model. 

Residual Dev 138.269 67.618 Lower deviance indicates a better 
fit. 

Df - 2 The number of added predictors 
(Spending, Card). 

Deviance - 70.651 Difference in deviance between 
models (measures improvement). 

Pr(>Chi) - 4.553e-16 
*** 

p-value for chi-square test. 

Chi-Square Test Conclusion 

• The chi-square statistic = 70.651 (from deviance). 
• p-value = 4.553e-16, which is much smaller than 0.05, meaning the model with 

predictors significantly improves fit compared to the null model. 



189 

• Significance Codes (***): The three stars indicate a highly significant result (p < 
0.001). 

Final Interpretation 

The logistic regression model with Spending and Card is statistically significant and 
improves the prediction of Redeemed compared to the null model. 

 
This suggests that at least one of the predictors has a meaningful impact on the 
probability of coupon redemption. 

Individual Variable Significance 

For each independent variable, we test whether its coefficient is significantly different 
from zero using the Wald test. A low p-value (typically < 0.05) indicates that the variable 
is significant. 

Wald Test 

The Wald test evaluates the significance of each coefficient. It is computed as: 

𝑊 =
𝛽̂

𝑆𝐸(𝛽̂)
 

Coefficients and Odds Ratios 

Each coefficient represents the log-odds change in the probability of coupon 
redemption per unit increase in the predictor variable. 

Predictor Estimate 
Std. 
Error 

Z-
Value P-Value Interpretation 

Intercept -6.5605 1.3571 -4.834 1.34e-
06 (***) 

Baseline log-odds of 
redemption when 
Spending = 0 and Card = 0. 

Spending 1.8708 0.3962 4.722 2.34e-
06 (***) 

Each additional $1000 
spent increases log-odds 
of redemption by 1.87. 

Card 1.4729 0.6756 2.180 0.0292 
(*) 

Customers with a 
Simmons card have higher 
odds of redeeming a 
coupon. 

Each predictor’s Wald statistic is compared to a standard normal distribution:  

• Spending: Wald = 1.8708 / 0.3962 = 4.722  
• Card: Wald = 1.4729 / 0.6756 = 2.180 
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Since both p-values are < 0.05, both variables significantly contribute to predicting 
coupon redemption. 
Deviance and Log-Likelihood 
• Null Deviance = 138.269 (df = 99) → Deviance of a model with only the intercept (no 

predictors). 
• Residual Deviance = 67.618 (df = 97) → Deviance of the fitted model (with Spending 

and Card as predictors). 
• Reduction in Deviance = 138.269 - 67.618 = 70.651 → This significant reduction 

suggests the predictors improve model fit. 
  

3.4 Interpretation of Parameters in a Logistic Regression Model 
3.4.1 Logit Transformation in Logistic Regression 

In logistic regression, the probability of an event occurring is modeled using the logit 
function, which transforms probabilities into log-odds: 

logit(𝑝) = log (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘  

where: 

• 𝑝 is the probability of the event occurring (𝑦 = 1), 
• 𝛽0 is the intercept, 
• 𝛽1, 𝛽2, … , 𝛽𝑘 are regression coefficients for the independent variables 𝑥1, 𝑥2, … , 𝑥𝑘. 

Using the given logistic regression coefficients: 

logit(𝑝) = −6.5605 + 1.8708 × Spending + 1.4729 × Card 

 
3.4.2 Definition of Odds and Odds Ratio 

The odds in favor of an event occurring (𝑦 = 1) is defined as the probability that the 
event will occur divided by the probability that the event will not occur: 

Odds(𝑦 = 1) =
𝑝

1 − 𝑝
 

Since logistic regression models log-odds, we can express the probability 𝑝 as: 

𝑝 =
𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘)

1 + 𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘)
 

The odds ratio (OR) measures the effect of a one-unit increase in an independent 
variable on the odds of 𝑦 = 1. It is calculated as: 
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OR =
Odds1

Odds0
 

where: 

• Odds0 represents the odds of 𝑦 = 1 at a given set of independent variables. 
• Odds1 represents the odds of 𝑦 = 1 when one independent variable is increased by 

one unit, keeping others constant. 

Mathematically, for a one-unit increase in 𝑥1, the new log-odds becomes: 

logit(𝑝1) = 𝛽0 + 𝛽1(𝑥1 + 1) + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘  

The corresponding odds are: 

Odds1 = 𝑒𝛽0+𝛽1(𝑥1+1)+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘  

Similarly, the odds before increasing 𝑥1 were: 

Odds0 = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘  

Thus, the odds ratio (OR) is: 

Odds1

Odds0
=

𝑒𝛽0+𝛽1(𝑥1+1)+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘

𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘
 

Since the terms in the numerator and denominator cancel out, we get: 

OR = 𝑒𝛽1  

 
Interpreting the Odds Ratios in the Example 

From the given coefficients:  

• Spending (𝛽1 = 1.8708) 
 

OR = 𝑒1.8708 ≈ 6.49 

Interpretation: A ₹1000 increase in spending increases the odds of redemption 
by 6.49 times. 

• Card (𝛽2 = 1.4729) 
 

OR = 𝑒1.4729 ≈ 4.36 
  Interpretation: Customers who have a Big Bazar card are 4.36 times more likely to 

redeem a coupon than those who do not. 
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Final Remarks 

• Odds ratio provides an intuitive measure of how a predictor influences the likelihood 
of an event occurring. 

• Exponentiating a coefficient (𝑒𝛽) allows us to move from log-odds to a meaningful 
odds ratio. 

• A greater OR (>1) means an increased likelihood, while an OR < 1 would indicate a 
decreased likelihood. 

3.5 Another Approach to Classification Problems 

Logistic regression is a widely used technique to estimate the probability that an 
observation belongs to a particular group based on various predictor variables. The 
model generates fitted logits that can then be used to classify observations into one of 
two categories. However, if our primary goal is purely classification, other statistical 
methods may be worth considering. Discriminant analysis, for example, is often 
employed when the main focus is to predict the group membership of each observation. 

While we won’t explore discriminant analysis in detail here, it's useful to consider a 
simpler regression-based approach that can achieve the same goal. The core principle 
of discriminant analysis is to find a linear combination of predictor variables (𝑋1, . . . , 𝑋𝑝) 
that best distinguishes between two groups. This separation can be achieved through a 
multiple regression model, where the response variable (Y) takes values of 0 or 1, and 
the predictors are (𝑋1, . . . , 𝑋𝑝). 

As mentioned earlier, some of the fitted values may fall outside the 0 to 1 range. This is 
not a concern in this context, since our aim is not to model probabilities but to classify 
observations. To classify observations, we compute the average of the predicted values. 
Any observation with a predicted value greater than this average is classified into the 
group with Y = 1, while observations with a predicted value below the average are 
assigned to the group with Y = 0. Finally, we evaluate the number of correctly classified 
observations in the sample. The selection of predictor variables in this approach follows 
the same process as in multiple regression. 

Using the logistic regression equation, we can estimate the probability of a customer 
using the coupon. For example, if a customer spends ₹3000 annually and does not have 
a Big Bazar credit card, the probability of using the coupon can be estimated as: 

𝑃(𝑌 = 1|𝑋1 = 3, 𝑋2 = 0) =
𝑒−6.5605+1.8708(3)+1.4729(0)

1 + 𝑒−6.5605+1.8708(3)+1.4729(0)
= 0.2793 

Using R, we can easily compute the probabilities along with predictions. 
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# Make predictions (probabilities of redemption) 
predicted_probabilities <- predict(model, type = "response") 
 
# Add predictions to the dataset 
data$Predicted_Probability <- predicted_probabilities 
 
# Make binary predictions based on a 0.5 cutoff 
data$Predicted_Redeemed <- ifelse(predicted_probabilities > 0.5, 1, 0) 
 
# Show the dataset with binary predictions 
head(data) 

  Customer Spending Card Redeemed Predicted_Probability Predicted_Redeemed 
         1    4.701    1        1             0.9760434                  1 
         2    3.993    0        1             0.7129541                  1 
         3    1.677    1        0             0.1245346                  0 
         4    6.486    0        1             0.9962183                  1 
         5    2.528    1        1             0.4114238                  0 
         6    2.423    0        0             0.1163506                  0 

Logistic regression predicts probabilities, not direct class labels. To convert probabilities 
into a binary classification, we apply a threshold (cutoff value), commonly set at 0.5. 
• If the predicted probability of redemption is greater than 0.5, we classify the 

customer as Redeemed = 1 (they will redeem the coupon). 
• If the predicted probability is less than or equal to 0.5, we classify them as 

Redeemed = 0 (they will not redeem the coupon). 

By applying this threshold, the model converts a probability score into a discrete 
category, making it usable for classification tasks. 

The following table shows the observed Y, the Probability (Prob) and predicted class 
(Y_pred). The wrongly classified observations are shown in Bold face.  

 

ID Y Prob Y_Pred  ID Y Prob Y_Pred  ID Y Prob Y_Pred 
1 1 0.9760 1  35 0 0.9933 1  69 0 0.3835 0 
2 1 0.7129 1  36 0 0.2005 0  70 0 0.2252 0 
3 0 0.1245 0  37 0 0.0428 0  71 1 0.4806 0 
4 1 0.9962 1  38 1 0.9996 1  72 0 0.3227 0 
5 1 0.4114 0  39 0 0.0115 0  73 0 0.0453 0 
6 0 0.1164 0  40 1 0.7540 1  74 1 0.4806 0 
7 1 0.5277 1  41 1 0.3835 0  75 1 0.9985 1 
8 1 0.7540 1  42 0 0.0423 0  76 1 0.7848 1 
9 1 0.9987 1  43 0 0.1205 0  77 1 0.9905 1 
10 0 0.2855 0  44 0 0.0105 0  78 1 0.9997 1 
11 1 0.7632 1  45 1 0.5277 1  79 1 0.7315 1 
12 1 0.3844 0  46 0 0.0693 0  80 0 0.2556 0 
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ID Y Prob Y_Pred  ID Y Prob Y_Pred  ID Y Prob Y_Pred 
13 0 0.0234 0  47 0 0.1015 0  81 1 0.9945 1 
14 1 0.9978 1  48 1 0.8912 1  82 1 0.9978 1 
15 1 0.9995 1  49 1 0.9544 1  83 0 0.3430 0 
16 0 0.0730 0  50 1 0.9171 1  84 1 0.9158 1 
17 0 0.0693 0  51 0 0.0435 0  85 0 0.0713 0 
18 1 0.8029 1  52 0 0.1160 0  86 1 0.9976 1 
19 0 0.2558 0  53 1 0.9597 1  87 1 0.9991 1 
20 1 0.9956 1  54 1 0.7768 1  88 0 0.3674 0 
21 0 0.0839 0  55 0 0.1245 0  89 1 0.9760 1 
22 0 0.2548 0  56 0 0.2223 0  90 1 0.9956 1 
23 0 0.2451 0  57 1 0.3227 0  91 0 0.0486 0 
24 0 0.0615 0  58 1 0.9945 1  92 1 0.1806 0 
25 1 0.9421 1  59 1 0.4249 0  93 1 0.9851 1 
26 0 0.0188 0  60 1 0.7540 1  94 1 0.9981 1 
27 1 0.9155 1  61 1 0.9065 1  95 0 0.0785 0 
28 0 0.0625 0  62 0 0.1215 0  96 0 0.4126 0 
29 0 0.0316 0  63 0 0.5999 1  97 0 0.3640 0 
30 0 0.2855 0  64 0 0.0614 0  98 1 0.9918 1 
31 1 0.9544 1  65 1 0.0968 0  99 0 0.4583 0 
32 0 0.5986 1  66 1 0.9981 1  100 1 0.7848 1 
33 1 0.9930 1  67 0 0.3097 0      
34 0 0.9700 1  68 1 0.8029 1      

 

The R code snippet with output: 

# False positives: 0 actual, predicted as 1 
false_positives <- sum(data$Redeemed == 0 & data$Predicted_Redeemed == 1) 
# False negatives: 1 actual, predicted as 0 
false_negatives <- sum(data$Redeemed == 1 & data$Predicted_Redeemed == 0) 
# Output the result 
false_positives 

## [1] 4 
# Output the result 
false_negatives 
## [1] 9 
# Create confusion matrix 
confusion_matrix <- table(Predicted = data$Predicted_Redeemed, Actual = da
ta$Redeemed) 
# Print confusion matrix 
confusion_matrix 
          Actual 
 Predicted  0  1 
         0 43  9 
         1  4 44 
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Here’s an interpretation of the provided code and its output: 

1. False Positives and False Negatives: 

o False Positives: The code calculates the number of false positives, which are 
cases where the actual value is 0 (not redeemed), but the predicted value is 1 
(predicted as redeemed). The result is 4. 

o False Negatives: The code calculates the number of false negatives, which 
are cases where the actual value is 1 (redeemed), but the predicted value is 0 
(predicted as not redeemed). The result is 9. 

2. Confusion Matrix: 

o The confusion matrix summarizes the performance of the classification 
model by comparing the actual and predicted values. 

o The matrix is structured as follows: 
Predicted Actual 0 Actual 1 

0 (Not Redeemed) 43 9 

1 (Redeemed) 4 44 

• Actual 0, Predicted 0: There are 43 cases where the actual value is 0, and the model 
correctly predicted 0. 

• Actual 1, Predicted 1: There are 44 cases where the actual value is 1, and the model 
correctly predicted 1. 

• Actual 0, Predicted 1: There are 4 cases where the actual value is 0, but the model 
incorrectly predicted 1 (false positives). 

• Actual 1, Predicted 0: There are 9 cases where the actual value is 1, but the model 
incorrectly predicted 0 (false negatives). 

In summary, the model has 4 false positives and 9 false negatives. The confusion matrix 
provides a detailed breakdown of how well the model performed in predicting redeemed 
and not redeemed cases. 

For the Big Bazar dataset presented in the above table, logistic regression outperforms 
multiple regression in classifying the sample data. Generally, this is true because logistic 
regression does not require the restrictive assumption of multivariate normality for the 
predictor variables. Therefore, we recommend using logistic regression for classification 
problems. If a logistic regression package is unavailable, the multiple regression 
approach can be considered as an alternative. 

Let us visualize how well the predicted probabilities align with the actual redemption 
status. 

library(ggplot2) 
 
# Scatter plot with actual redemption status and logistic regression line 
ggplot(data, aes(x = Spending, y = Predicted_Probability, color = 
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factor(Redeemed))) + 
  geom_point(alpha = 0.6) + # Scatter points with transparency 
  geom_smooth(method = "glm", method.args = list(family = "binomial"), 
color = "red") + # Logistic regression curve 
  geom_hline(yintercept = 0.5, linetype = "dashed", color = "blue") + # 
Classification threshold line at 0.5 
  labs( 
    title = "Scatter Plot of Spending vs Predicted Probability of 
Redemption", 
    x = "Spending", 
    y = "Predicted Probability", 
    color = "Actual Redemption" 
  ) + 
  theme_minimal() 
 

 

3.6 The Multinomial Logit Model 

Logistic regression can be extended to cases where the response variable has more than 
two categories. The multinomial logit model is used when these categories are nominal 
(unordered). The probability of an observation belonging to category 𝑗 (relative to a 
reference category 𝑘) is given by: 

𝑙𝑛 (
𝜋𝑗

𝜋𝑘
) = 𝛽0𝑗 + 𝛽1𝑗𝑋1+. . . +𝛽𝑝𝑗𝑋𝑝 
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where each category except the reference category has a separate equation. 

If the response categories have a natural order, the ordinal logistic regression 
(proportional odds model) can be used instead. This model assumes that the log-odds 
of being in a category or below it is proportional across different levels. 

 

Check Your Progress – 1  
1. The following data comprises operating financial ratios for 33 firms that went 

bankrupt within two years and 33 firms that remained solvent during the same period. 
A multiple logistic regression model is fitted using variables X1, X2, and X3. The 
response variable is defined as Y = 0 if the firm went bankrupt after 2 years, and Y = 1 
if the firm remained solvent after 2 years. Three financial ratios were available for each 
firm: 
• X1 = Retained Earnings / Total Assets 
• X2 = Earnings Before Interest and Taxes / Total Assets 
• X3 = Sales / Total Assets. 
 

Y X1 X2 X3  Y X1 X2 X3 
0 -62.8 -89.5 1.7  1 43.0 16.4 1.3 
0 3.3 -3.5 1.1  1 47.0 16.0 1.9 

0 -120.8 -103.2 2.5  1 -3.3 4.0 2.7 
0 -18.1 -28.8 1.1  1 35.0 20.8 1.9 
0 -3.8 -50.6 0.9  1 46.7 12.6 0.9 
0 -61.2 -56.2 1.7  1 20.8 12.5 2.4 
0 -20.3 -17.4 1.0  1 33.0 23.6 1.5 
0 -194.5 -25.8 0.5  1 26.1 10.4 2.1 
0 20.8 -4.3 1.0  1 68.6 13.8 1.6 
0 -106.1 -22.9 1.5  1 37.3 33.4 3.5 
0 -39.4 -35.7 1.2  1 59.0 23.1 5.5 
0 -164.1 -17.7 1.3  1 49.6 23.8 1.9 
0 -308.9 -65.8 0.8  1 12.5 7.0 1.8 
0 7.2 -22.6 2.0  1 37.3 34.1 1.5 
0 -118.3 -34.2 1.5  1 35.3 4.2 0.9 
0 -185.9 -280.0 6.7  1 49.5 25.1 2.6 
0 -34.6 -19.4 3.4  1 18.1 13.5 4.0 
0 -27.9 6.3 1.3  1 31.4 15.7 1.9 
0 -48.2 6.8 1.6  1 21.5 -14.4 1.0 
0 -49.2 -17.2 0.3  1 8.5 5.8 1.5 
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0 -19.2 -36.7 0.8  1 40.6 5.8 1.8 
0 -18.1 -6.5 0.9  1 34.6 26.4 1.8 
0 -98.0 -20.8 1.7  1 19.9 26.7 2.3 
0 -129.0 -14.2 1.3  1 17.4 12.6 1.3 
0 -4.0 -15.8 2.1  1 54.7 14.6 1.7 
0 -8.7 -36.3 2.8  1 53.5 20.6 1.1 
0 -59.2 -12.8 2.1  1 35.9 26.4 2.0 
0 -13.1 -17.6 0.9  1 39.4 30.5 1.9 
0 -38.0 1.6 1.2  1 53.1 7.1 1.9 
0 -57.9 0.7 0.8  1 39.8 13.8 1.2 
0 -8.8 -9.1 0.9  1 59.5 7.0 2.0 
0 -64.7 -4.0 0.1  1 16.3 20.4 1.0 
0 -11.4 4.8 0.9  1 21.7 -7.8 1.6 

(a) Utilize R to fit a logistic regression model and perform a significance test.  
(b) What is the estimated odds ratio, and how can it be interpreted? 
(c) Does the fitted model accurately classify the data points?  

 

3.7 LET US SUM UP 
Logistic regression is a powerful tool for modeling binary outcomes, widely used in 
marketing, finance, healthcare, and social sciences. The logistic function ensures that 
predicted probabilities remain between 0 and 1, making it ideal for classification tasks. 
Coefficients are interpreted in terms of their impact on log-odds, while odds ratios provide 
an intuitive measure of variable influence. Significance testing helps assess the model’s 
validity and the relevance of its predictors. By applying logistic regression to classification 
problems, organizations can make data-driven decisions with confidence. 
 

3.8 Check Your Progress: Possible Answers 

Check Your Progress – 1  
R- Code  

 df <- read.table("Financal.Ratios.txt", header = TRUE) 
# Fit the logistic regression model 
model <- glm(Y ~ X1 + X2 + X3, data = df, family = binomial) 
 
# Summarize the model 
summary(model) 
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# Fit the null model (intercept only) 
model_null <- glm(Y ~ 1, data = df, family = binomial) 
 
# Perform the chi-square test using the likelihood ratio test 
anova(model_null, model, test = "Chisq") 
 
# Make predictions (probabilities of redemption) 
predicted_probabilities <- predict(model, type = "response") 
 
# Add predictions to the dataset 
df$Predicted_Probability <- predicted_probabilities 
 
# Make binary predictions based on a 0.5 cutoff 
df$Predicted_Y <- ifelse(predicted_probabilities > 0.5, 1, 0) 
 
# Show the dataset with binary predictions 
head(df) 
 
# False positives: 0 actual, predicted as 1 
false_positives <- sum(df$Y == 0 & df$Predicted_Y == 1) 
 
# False negatives: 1 actual, predicted as 0 
false_negatives <- sum(df$Y == 1 & df$Predicted_Y == 0) 
 
# Create confusion matrix 
confusion_matrix <- table(Predicted = df$Predicted_Y, Actual = df$Y) 
 

3.9 Further Reading 
1. Regression Analysis by Example Using R 6th Edition, Ali S. Hadi and Samprit Chatterjee, 

Wiley Publication, October 2023 
2. Statistics for Business & Economics 13th Edition, Anderson, Sweeney, Williams, 

Cengage Learning, January 2016 
3. Applied Logistic Regression 3rd Edition, David W. Hosmer, Stanley Lemeshow, Rodney 

X. Sturdivant, Wiley Publication, March 2013 

3.10 Assignment 
1. What is logistic regression, and how does it differ from linear regression? 
2. Explain the logit transformation and its significance in logistic regression. 
3. Define odds, log-odds, and odds ratio in the context of logistic regression. 
4. What is the role of likelihood function and deviance in logistic regression. 
5. How are predicted probabilities converted into binary outcomes in logistic regression?  

What is the impact of changing the classification threshold in logistic regression? 
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4.0 Learning Objectives 

By the end of this unit, learners will be able to: 

• Understand the key steps in building a regression model. 

• Identify and interpret predictor variables in the Boston dataset. 

• Perform data exploration and preprocessing. 

• Check and validate regression assumptions. 

• Refine models using variable selection, transformations, and interaction terms. 

• Evaluate and interpret final model results using numerical and graphical 
techniques. 

• Predict and estimate outcomes using a fitted regression model. 

• Avoid common pitfalls in regression analysis. 
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4.1 Introduction 

When working with large datasets containing numerous potential predictors, it’s easy to 
feel overwhelmed by the many modeling options available. Our goal is to identify a 
practical model that explains the relationship between a response variable (Y) and a set 
of predictor variables (𝑋1, 𝑋2, . . . , 𝑋𝑘). While there may not be one “perfect” model, with 
enough effort, we can uncover multiple effective models that can offer meaningful 
insights. The key is to identify one of these valuable models that best fits the data. While 
different models may vary in terms of the specific predictors they use or the 
transformations applied, they typically offer similar interpretations and predictive 
accuracy. Constructing a reliable regression model requires selecting the right 
combination of predictor variables, ensuring that the model remains both interpretable 
and robust. To help guide this process, the following set of guidelines outlines an 
effective approach to model building, using the Boston dataset from the MASS package 
in R as an example. 

4.2 Define the Problem and Identify Key Questions 

• Clearly define the objective of the analysis. 

• Identify the response variable (𝑌) and the potential predictor variables (𝑋1, 𝑋2, . . . 𝑋𝑘). 

• Determine whether the model aims to explain relationships, predict outcomes, or 
both. 

• In the case of the Boston dataset, our goal is to predict median house prices (medv) 
based on various predictor variables. 
# Load necessary libraries 
library(MASS) 
library(car)  # For VIF analysis 
library(ggplot2) 
 
# Load dataset 
data("Boston") 
str(Boston) 

4.2.1 Description of Model Predictors 

The Boston dataset consists of various predictors that influence median house prices. 
Below is a brief description of key predictors: 

• crim: Per capita crime rate by town. 

• zn: Proportion of residential land zoned for large lots. 
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• indus: Proportion of non-retail business acres per town. 

• chas: Charles River dummy variable (1 if tract bounds river; 0 otherwise). 

• nox: Nitrogen oxide concentration (parts per 10 million). 

• rm: Average number of rooms per dwelling. 

• age: Proportion of owner-occupied units built before 1940. 

• dis: Weighted distances to employment centers. 

• rad: Index of accessibility to radial highways. 

• tax: Property tax rate per $10,000. 

• ptratio: Pupil-teacher ratio by town. 

• black: 1000(Bk - 0.63)^2 where Bk is the proportion of Black residents by town. 

• lstat: Percentage of lower status of the population. 

• medv: Median value of owner-occupied homes in $1000s (response variable). 

4.3 Data Collection and Preparation 

• Collect relevant data, ensuring sufficient sample size. 

• Clean and preprocess the data by handling missing values, outliers, and 
inconsistencies. 

• Convert categorical variables into indicator (dummy) variables where necessary. 

• Begin with univariate descriptive statistics and graphs to understand variable 
distributions. 

• Conduct bivariate analyses to examine relationships between predictors and the 
response variable. 

4.3.1 Handling Missing Data 

• Missing data can reduce the total usable sample size, potentially weakening the 
analysis. 

• The best way to address missing data is to minimize its occurrence by ensuring high-
quality data collection. 

• If missing data is unavoidable, imputation techniques can be used to estimate 
plausible values. 

• If imputation is not feasible, models should be designed to exclude predictors with 
significant missing data. 

4.3.2 Sample Size Considerations 

• Larger sample sizes enhance the power of multiple linear regression models. 
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• Complex models with many predictors, transformations, and interactions require 
larger sample sizes. 

• Weak associations between predictors and the response variable necessitate a 
larger sample. 

• Determining an appropriate sample size is context-dependent and requires careful 
assumption checks. 

• When designing studies, sample size and power calculations should be performed 
to ensure adequate representation. 
# Check for missing values 
sum(is.na(Boston)) 
 
# Summary statistics 
summary(Boston) 

4.4 Exploratory Data Analysis (EDA) 

• Visualize relationships using scatterplots, boxplots, and histograms. 

• Compute summary statistics to understand variable distributions. 

• Identify potential transformations (e.g., log transformation for skewed variables). 

• Organize predictors into thematic sets (e.g., demographic, economic, or behavioral) 
to analyze their grouped effects. 

# Histogram and boxplot for target variable 
par(mfrow = c(1,2)) 
hist(Boston$medv, main="Median House Prices", col="blue", xlab="medv") 
boxplot(Boston$medv, main="Median Value Boxplot", col="red") 
 
# Scatterplot for some predictors 
pairs(Boston[, c("medv", "lstat", "rm", "ptratio")]) 

4.5  Model Fitting 

• Fit an initial regression model including all potential predictors. 

• Examine coefficient significance and model fit statistics. 
# Fit full model 
full_model <- lm(medv ~ ., data = Boston) 
summary(full_model) 

4.5.1 Check Regression Assumptions 

• Use residual plots to check for homoscedasticity. 
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• Perform normality tests on residuals. 

• Assess multicollinearity using Variance Inflation Factor (VIF). 
# Checking assumptions 
par(mfrow = c(2,2)) 
plot(full_model) 
 
# Checking multicollinearity 
vif(full_model) 

4.5.2 Model Refinement 

• Remove non-significant variables step by step. 

• Consider adding interaction terms and transformations. 

• Compare models using Adjusted 𝑅2, AIC, and BIC. 
# Stepwise model selection 
stepwise_model <- step(full_model, direction="both") 
summary(stepwise_model) 

Example: Adding Interaction Terms and Transformations 

If two predictors interact meaningfully, an interaction term (e.g., 𝑋1 × 𝑋2) can be 
included. Similarly, if a predictor has a nonlinear effect, a transformation (e.g., log or 
polynomial) can improve the model fit. 

# Adding interaction and transformation 
Boston$rm_sq <- Boston$rm^2  # Squaring the number of rooms 
interaction_model <- lm(medv ~ lstat * rm_sq, data = Boston) 
summary(interaction_model) 

4.6 Model Validation and Interpretation 

• Validate the final model using a separate dataset or cross-validation. 

• Interpret predictor effects on 𝑌 and provide actionable insights. 

• Estimate expected values of 𝑌 and predict individual values based on given predictor 
values. 

• Use visualization techniques to communicate model results effectively. 
# Splitting into training and testing sets 
set.seed(123) 
train_index <- sample(1:nrow(Boston), 0.7 * nrow(Boston)) 
train_data <- Boston[train_index, ] 
test_data <- Boston[-train_index, ] 
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# Fit model on training data 
train_model <- lm(medv ~ ., data = train_data) 
predicted_values <- predict(train_model, newdata = test_data) 
 
# Model performance 
actual_values <- test_data$medv 
mean((predicted_values - actual_values)^2)  # MSE 

4.6.1 Predictor Effect Plots 

A predictor effect plot graphically shows how the response variable changes with a 
predictor while holding others constant. 

• Write out the estimated regression equation. 

• Set other predictor variables to convenient values (e.g., mean for continuous 
predictors, reference category for categorical variables). 

• Construct a line plot with the predictor on the horizontal axis and its effect on the 
vertical axis. 

• Repeat for each quantitative predictor. 

• If a predictor interacts with categorical variables, include separate lines 
representing each category. 

• If a predictor interacts with another continuous variable, plot a series of lines for 
different values (e.g., quartiles). 

4.6.2 Avoiding Pitfalls 

• Be cautious of overfitting by keeping the model as simple as possible. 

• Avoid removing variables purely based on p-values without considering context. 

• Evaluate whether regression assumptions still hold in the final model. 

• Ensure that predictions do not extrapolate far beyond the sample data range. 

• Validate the model using new or unseen data. 

Check Your Progress – 1  

1. What is the primary objective of building a regression model? 

A) To find the single best model that perfectly predicts the response variable 

B) To find a useful model that explains relationships and predicts outcomes 

C) To include as many predictors as possible for the highest accuracy 

D) To ensure that all predictor variables are significant 
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2. Why is it important to check for missing data before building a regression 
model? 

A) Missing data always leads to model overfitting 

B) Missing data reduces the total usable sample size and may bias the results 

C) Missing data has no effect if we have a large enough sample 

D) Missing data always improves model accuracy 

3. Which of the following is NOT a recommended approach for handling missing 
data? 

A) Imputing missing values with plausible estimates 
B) Removing predictors with a large amount of missing values 
C) Ignoring missing values and proceeding with the analysis 
D) Minimizing missing data through careful data collection 

4. What is the purpose of exploratory data analysis (EDA) in regression modeling? 

A) To finalize the regression model before checking assumptions 
B) To visualize relationships, detect patterns, and identify necessary 

transformations 
C) To eliminate all outliers from the dataset 
D) To randomly select predictor variables for the model 

5. Which of the following techniques can help assess multicollinearity in a 
regression model? 

A) Residual plots 
B) Variance Inflation Factor (VIF) 
C) Scatterplots 
D) Adjusted R² 

6. How can interaction terms improve a regression model? 

A) By allowing relationships between predictors and response variables to change 
based on other predictors 

B) By increasing the number of predictors in the model without affecting 
interpretation 

C) By ensuring all predictor variables remain significant 
D) By reducing the need for transformations 

7. What is an appropriate way to validate a regression model? 

A) Using only the training dataset for evaluation 
B) Checking model performance on a separate validation dataset 
C) Increasing the number of predictors until model performance improves 
D) Removing all insignificant predictors without checking model assumptions 
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8. In a predictor effect plot, what does holding all other predictors constant allow 
us to observe? 

A) The impact of one predictor variable on the response variable 
B) The effect of all predictor variables simultaneously 
C) The residual variance of the model 
D) The significance of each coefficient 

9. Which of the following is a sign of overfitting in a regression model? 

A) High performance on training data but poor performance on validation data 
B) Low adjusted R² value for the model 
C) A model with very few predictor variables 
D) A model that includes only statistically significant variables 

10. What is the main reason for using transformations in regression models? 

A) To increase the number of predictor variables 
B) To meet regression assumptions such as normality and linearity 
C) To artificially increase the R² value 
D) To remove all categorical variables from the model 

 

4.7 LET US SUM UP 

By carefully following these steps, analysts can create regression models that are not 
only interpretable and robust but also capable of delivering valuable insights. A crucial 
point to remember is that there is no single “best” model; instead, several good models 
can often offer similar interpretations and predictions. The iterative nature of model 
refinement helps ensure that the final model is both statistically rigorous and practically 
effective. 

In this unit, we demonstrated how to implement the process of building a regression 
model using the Boston dataset in R. The coding steps covered data preparation, model 
fitting, assumption checking, and refinement. However, we have not yet completed the 
entire process, and interpretation of the results was not part of this discussion. We also 
introduced model validation techniques to ensure the reliability of predictions. For a 
more detailed analysis of these techniques, you can refer to the earlier block, where 
each step was thoroughly examined. Moving forward, we will focus on interpreting the 
model results to derive meaningful insights and guide decision-making. 

By adhering to these guidelines and best practices, you can develop reliable and 
interpretable regression models that provide valuable insights for decision-making and 
prediction. 
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4.8 Check Your Progress: Possible Answers 

Check Your Progress – 1  

Answer 1: B) To find a useful model that explains relationships and predicts outcomes 

Answer 2: B) Missing data reduces the total usable sample size and may bias the 
results 

Answer 3: C) Ignoring missing values and proceeding with the analysis 

Answer 4: B) To visualize relationships, detect patterns, and identify necessary 
transformations 

Answer 5: B) Variance Inflation Factor (VIF) 

Answer 6: A) By allowing relationships between predictors and response variables to 
change based on other predictors 

Answer 7: B) Checking model performance on a separate validation dataset 

Answer 8: A) The impact of one predictor variable on the response variable 

Answer 9: A) High performance on training data but poor performance on validation 
data 

Answer 10: B) To meet regression assumptions such as normality and linearity 

 

4.9 Further Reading 

1. Applied Regression Modeling 3rd Edition, IAIN PARDOE, John Wiley & Sons, Inc, 
December 2020 

2. Regression Analysis by Example Using R 6th Edition, Ali S. Hadi and Samprit Chatterjee, 
Wiley Publication, October 2023 

4.10 Assignment 

1. What are the key steps in building a regression model? 

2. Why is exploratory data analysis (EDA) important before fitting a model? 

3. How can missing data impact the regression model, and what are possible solutions? 

4. What are the key differences between training and validation datasets? 

5. How can predictor effect plots help in model interpretation? 
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