e | Open University

for All
Sy (Established by Government of Gujarat)

@ saou | DF: Babasaheb Ambedkar
@

Object Oriented
Programming using Java
(Core Java)

AVA

IRTUAL
ACHINE S

< —

Bachelor of Science (Hons.)

BSCIT - 304 Information Technology

Object Oriented
Programming using
Java

Dr. Babasaheb Ambedkar Open University

Office Automation Tools

Content Editor

Dr. Himanshu Patel

Assistant Professor

School of Computer Science

Dr. Babasaheb Ambedkar Open University, Ahmedabad

Content Reviewer

Prof. (Dr.) Nilesh Modi

Professor and Director

School of Computer Science

Dr. Babasaheb Ambedkar Open University, Ahmedabad

Printed and published by: Dr. Babasaheb Ambedkar

Ahmedabad

Open University,

Acknowledgement: The content in this block is modifications based on work created and

shared by the David J. Eck, Department of Mathematics and Computer Science, Hobart and

William Smith Colleges Geneva, NY 14456 for the book titled “Introduction to Programming

Using Java” and is used according to terms described in Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

[@1ose)

ISBN:

Dr. Babasaheb BSCIT-304
Eﬁﬁ?g Ambedkar Open
forall University

Object Oriented Programming using Java

Block-1: Introduction to Programming

UNIT-1
The Mental Landscape 002
UNIT-2
Programming in the Small I.: Names and Things 026
UNIT-3
Programming in the Small Il: Control 060
UNIT-4
Programming in the Large I. Subroutines 079

Block-2: Programming in the Large

UNIT-1
Programming in the Large II: Objects and Classes 104
UNIT-2
Programming in the Large Ill: Inheritance and Interface 124
UNIT-3
More on class and object 147

Block-3: Data Structure

UNIT-1
ArrayList 168

UNIT-2
Linked Data Structures 182

Block-4: Streams and Multithreaded Programming

UNIT-1
Input/Output Streams, Files, and Networking 196
UNIT-2
Threads and Multiprocessing 216

Block-5: Introduction to GUI Programming

UNIT-1
AWT Controls 230
UNIT-2
Event Delegation Model 254
UNIT-3

Graphics Class 267

vi

Block-1

Introduction to Programming

1

Unit 1. The Mental Landscape

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. The Fetch and Execute Cycle: Machine Language
1.4. Asynchronous Events: Polling Loops and Interrupts
1.5. The Java Virtual Machine

1.6. Fundamental Building Blocks of Programs

1.7. Objects and Object-oriented Programming

1.8. The Modern User Interface

1.9. The Internet and Beyond

1.10. LetUs Sum Up

1.11. Further Reading

1.12. Assignments

1.1 LEARNING OBJECTIVES

After studying this unit student should be able to understand:

e the basics of what computers are and how they work

e idea of what a computer program is and how one is created

e Fundamental Building Blocks of Programs

e Java Virtual Machine

e Java language in particular and

e about the modern computing environment for which Java is designed.

1.2 INTRODUCTION

When you begin a journey, it's a good idea to have a mental map of the terrain
you’ll be passing through. The same is true for an intellectual journey, such as learning
to write computer programs. In this case, you'll need to know the basics of what
computers are and how they work. You’'ll want to have some idea of what a computer
program is and how one is created.

Since you will be writing programs in the Java programming language, you’ll
want to know something about that language in particular and about the modern
computing environment for which Java is designed.

As you read this chapter, don’t worry if you can’t understand everything in detail.
(In fact, it would be impossible for you to learn all the details from the brief expositions
in this chapter.)

Concentrate on learning enough about the big ideas to orient yourself, in
preparation for the rest of the book. Most of what is covered in this chapter will be
covered in much greater detail later in the book.

1.3 The Fetch and Execute Cycle: Machine Language

A computer is a complex system consisting of many different components. But
at the Heart or the brain, if you want of the computer is a single component that does
the actual computing. This is the Central Processing Unit, or CPU. In a modern
desktop computer, the CPU is a single “chip” on the order of one square inch in size.
The job of the CPU is to execute programs.

A program is simply a list of unambiguous instructions meant to be followed
mechanically by a computer. A computer is built to carry out instructions that are
written in a very simple type of language called machine language. Each type of

3

computer has its own machine language, and the computer can directly execute a
program only if the program is expressed in that language. (It can execute programs
written in other languages if they are first translated into machine language.)

When the CPU executes a program, that program is stored in the computer’s
main memory (also called the RAM or Random Access Memory). In addition to the
program, memory can also hold data that is being used or processed by the program.
Main memory consists of a sequence of locations. These locations are numbered,
and the sequence number of a location is called its address. An address provides a
way of picking out one particular piece of information from among the millions stored
in memory. When the CPU needs to access the program instruction or data in a
particular location, it sends the address of that information as a signal to the memory;
the memory responds by sending back the value contained in the specified location.
The CPU can also store information in memory by specifying the information to be
stored and the address of the location where it is to be stored.

On the level of machine language, the operation of the CPU is fairly
straightforward (although it is very complicated in detail). The CPU executes a
program that is stored as a sequence of machine language instructions in main
memory. It does this by repeatedly reading, or fetching, an instruction from memory
and then carrying out, or executing, that instruction. This process fetches an
instruction, execute it, fetch another instruction, execute it, and so on forever is called
the fetch-and-execute cycle. With one exception, which will be covered in the next
section, this is all that the CPU ever does. (This is all really somewhat more
complicated in modern computers. A typical processing chips these days contains
several CPU “cores,” which allows it to execute several instructions simultaneously.
And access to main memory is speeded up by memory “caches,” which can be more
quickly accessed than main memory and which are meant to hold data and instructions
that the CPU is likely to need soon. However, these complications don’t change the
basic operation.)

A CPU contains an Arithmetic Logic Unit, or ALU, which is the part of the
processor that carries out operations such as addition and subtraction. It also holds a
small number of registers, which are small memory units capable of holding a single
number. A typical CPU might have 16 or 32 “general purpose” registers, which hold
data values that are immediately accessible for processing, and many machine
language instructions refer to these registers. For example, there might be an
instruction that takes two numbers from two specified registers, adds those numbers
(using the ALU), and stores the result back into a register. And there might be
instructions for copying a data value from main memory into a register, or from a
register into main memory.

The CPU also includes special purpose registers. The most important of these
Is the program counter, or PC. The CPU uses the PC to keep track of where it is in
4

the program it is executing. The PC simply stores the memory address of the next
instruction that the CPU should execute. At the beginning of each fetch-and-execute
cycle, the CPU checks the PC to see which instruction it should fetch. During the
course of the fetch-and-execute cycle, the number in the PC is updated to indicate the
instruction that is to be executed in the next cycle. Usually, but not always, this is just
the instruction that sequentially follows the current instruction in the program. Some
machine language instructions modify the value that is stored in the PC. This makes
it possible for the computer to “jump” from one point in the program to another point,
which is essential for implementing the program features known as loops and
branches that are discussed in Section 1.6.

A computer executes machine language programs mechanically that is without
understanding them or thinking about them simply because of the way it is physically
put together.

This is not an easy concept. A computer is a machine built of millions of tiny
switches called transistors, which have the property that they can be wired together
in such a way that an output from one switch can turn another switch on or off. As a
computer computes, these switches turn each other on or off in a pattern determined
both by the way they are wired together and by the program that the computer is
executing.

Machine language instructions are expressed as binary numbers. A binary
number is made up of just two possible digits, zero and one. Each zero or one is called
a bit. So, a machine language instruction is just a sequence of zeros and ones. Each
particular sequence encodes some patrticular instruction. The data that the computer
manipulates is also encoded as binary numbers. In modern computers, each memory
location holds a byte, which is a sequence of eight bits. A machine language
instruction or a piece of data generally consists of several bytes, stored in consecutive
memory locations. For example, when a CPU reads an instruction from memory, it
might actually read four or eight bytes from four or eight memory locations; the memory
address of the instruction is the address of the first of those bytes.

A computer can work directly with binary numbers because switches can readily
represent such numbers: Turn the switch on to represent a one; turn it off to represent
a zero. Machine language instructions are stored in memory as patterns of switches
turned on or off. When a machine language instruction is loaded into the CPU, all that
happens is that certain switches are turned on or off in the pattern that encodes that
instruction. The CPU is built to respond to this pattern by executing the instruction it
encodes; it does this simply because of the way all the other switches in the CPU are
wired together.

So, you should understand this much about how computers work: Main memory
holds machine language programs and data. These are encoded as binary numbers.
5

The CPU fetches machine language instructions from memory one after another and
executes them. Each instruction makes the CPU perform some very small tasks, such
as adding two numbers or moving data to or from memory. The CPU does all this
mechanically, without thinking about or understanding what it does and therefore the
program it executes must be perfect, complete in all details, and unambiguous
because the CPU can do nothing but execute it exactly as written.

Here is a schematic view of this first-stage understanding of the computer:

Memory
C PU 10001010} (Location 0)
00001100] (Location 1)
10111000} (Location 2)
Reglsters Data to Memory) 01000001 }{Location 3)
7100001011 |(Location 4)
“Data from Memory LLL011101](Location 5)
\ N , 10110000} (Location 6)
ALU 01010010 (Location 7)
11111010} (Location 8)
»] 01001100} (Location 9)
[PC] Address for 00100011](Location 10)
reading/writing 00011010] (Location 11)
data

1.4 Asynchronous Events: Polling Loops and Interrupts

The CPU spends almost all of its time fetching instructions from memory and
executing them. However, the CPU and main memory are only two out of many
components in a real computer system. A complete system contains other devices
such as:

e A hard disk or solid-state drive for storing programs and data files. (Note that
main memory holds only a comparatively small amount of information, and
holds it only as long as the power is turned on. A hard disk or solid-state drive
is used for permanent storage of larger amounts of information, but programs
have to be loaded from there into main memory before they can actually be
executed. A hard disk stores data on a spinning magnetic disk, while a solid-
state drive is a purely electronic device with no moving parts.)

e A keyboard and mouse for user input.

¢ A monitor and printer which can be used to display the computer’s output.

¢ An audio output device that allows the computer to play sounds.

e A network interface that allows the computer to communicate with other
computers that are connected to it on a network, either wirelessly or by wire.

6

e A scanner that converts images into coded binary numbers that can be stored
and manipulated on the computer.

The list of devices is entirely open ended, and computer systems are built so that they
can easily be expanded by adding new devices. Somehow the CPU has to
communicate with and control all these devices. The CPU can only do this by
executing machine language instructions (which is all it can do, period). The way this
works is that for each device in a system, there is a device driver, which consists of
software that the CPU executes when it has to deal with the device. Installing a new
device on a system generally has two steps: plugging the device physically into the
computer, and installing the device driver software. Without the device driver, the
actual physical device would be useless, since the CPU would not be able to
communicate with it.
k %k ok

A computer system consisting of many devices is typically organized by
connecting those devices to one or more busses. A bus is a set of wires that carry
various sorts of information between the devices connected to those wires. The wires
carry data, addresses, and control signals. An address directs the data to a particular
device and perhaps to a particular register or location within that device. Control
signals can be used, for example, by one device to alert another that data is available
for it on the data bus. A fairly simple computer system might be organized like this:

CPU Empty Siot
for fulure
kA IMen‘vc;l ','] ID;S‘« Dnve] Expansion
Input/ Data
Output Address
Controller Control
IDnsplay I IKeyt:oardl Network
Interface

Now, devices such as keyboard, mouse, and network interface can produce
input that needs to be processed by the CPU. How does the CPU know that the data
is there? One simple idea, which turns out to be not very satisfactory, is for the CPU
to keep checking for incoming data over and over. Whenever it finds data, it processes
it. This method is called polling, since the CPU polls the input devices continually to
see whether they have any input data to report. Unfortunately, although polling is very
simple, it is also very inefficient. The CPU can waste an awful lot of time just waiting
for input.

To avoid this inefficiency, interrupts are generally used instead of polling. An
interrupt is a signal sent by another device to the CPU. The CPU responds to an
interrupt signal by putting aside whatever it is doing in order to respond to the interrupt.

7

Once it has handled the interrupt, it returns to what it was doing before the interrupt
occurred. For example, when you press a key on your computer keyboard, a keyboard
interrupt is sent to the CPU. The CPU responds to this signal by interrupting what it is
doing, reading the key that you pressed, processing it, and then returning to the task
it was performing before you pressed the key.

Again, you should understand that this is a purely mechanical process: A device
signals an interrupt simply by turning on a wire. The CPU is built so that when that
wire is turned on, the CPU saves enough information about what it is currently doing
so that it can return to the same state later. This information consists of the contents
of important internal registers such as the program counter. Then the CPU jumps to
some predetermined memory location and begins executing the instructions stored
there. Those instructions make up an interrupt handler that does the processing
necessary to respond to the interrupt. (This interrupt handler is part of the device driver
software for the device that signalled the interrupt.) At the end of the interrupt handler
is an instruction that tells the CPU to jump back to what it was doing; it does that by
restoring its previously saved state.

Interrupts allow the CPU to deal with asynchronous events. In the regular fetch-
and-execute cycle, things happen in a predetermined order; everything that happens
is “synchronized” with everything else. Interrupts make it possible for the CPU to deal
efficiently with events that happen “asynchronously,” that is, at unpredictable times.

As another example of how interrupts are used, consider what happens when
the CPU needs to access data that is stored on a hard disk. The CPU can access data
directly only if it is in main memory. Data on the disk has to be copied into memory
before it can be accessed.

Unfortunately, on the scale of speed at which the CPU operates, the disk drive
is extremely slow. When the CPU needs data from the disk, it sends a signal to the
disk drive telling it to locate the data and get it ready. (This signal is sent
synchronously, under the control of a regular program.) Then, instead of just waiting
the long and unpredictable amount of time that the disk drive will take to do this, the
CPU goes on with some other tasks. When the disk drive has the data ready, it sends
an interrupt signal to the CPU. The interrupt handler can then read the requested data.

k % X
Now, you might have noticed that all this only makes sense if the CPU actually has
several tasks to perform. If it has nothing better to do, it might as well spend its time
polling for input or waiting for disk drive operations to complete. All modern computers
use multitasking to perform several tasks at once. Some computers can be used by
several people at once. Since the CPU is so fast, it can quickly switch its attention
from one user to another, devoting a fraction of a second to each user in turn. This
application of multitasking is called timesharing. But a modern personal computer with
just a single user also uses multitasking. For example, the user might be typing a paper
while a clock is continuously displaying the time and a file is being
8

downloaded over the network.

Each of the individual tasks that the CPU is working on is called a thread. (Or
a process; there are technical differences between threads and processes, but they
are not important here, since it is threads that are used in Java.) Many CPUs can
literally execute more than one thread simultaneously such CPUs contain multiple
“cores,” each of which can run a thread but there is always a limit on the number of
threads that can be executed at the same time.

Since there are often more threads than can be executed simultaneously, the
computer has to be able switch its attention from one thread to another, just as a
timesharing computer switches its attention from one user to another. In general, a
thread that is being executed will continue to run until one of several things happens:

e The thread might voluntarily yield control, to give other threads a chance to run.

e The thread might have to wait for some asynchronous event to occur. For
example, the thread might request some data from the disk drive, or it might
wait for the user to press a key. While it is waiting, the thread is said to be
blocked, and other threads, if any, have a chance to run. When the event
occurs, an interrupt will “wake up” the thread so that it can continue running.

e The thread might use up its allotted slice of time and be suspended to allow
other threads to run. Most computers can “forcibly” suspend a thread in this
way; computers that can do that are said to use pre-emptive multitasking. To
do pre-emptive multitasking, a computer needs a special timer device that
generates an interrupt at regular intervals, such as 100 times per second. When
a timer interrupt occurs, the CPU has a chance to switch from one thread to
another, whether the thread that is currently running likes it or not. All modern
desktop and laptop computers, and even typical smartphones and tablets, use
pre-emptive multitasking.

Ordinary users, and indeed ordinary programmers, have no need to deal with
interrupts and interrupt handlers. They can concentrate on the different tasks that they
want the computer to perform; the details of how the computer manages to get all
those tasks done are not important to them. In fact, most users, and many
programmers, can ignore threads and multitasking altogether. However, threads have
become increasingly important as computers have become more powerful and as they
have begun to make more use of multitasking and multiprocessing.

In fact, the ability to work with threads is fast becoming an essential job skill for
programmers.

Fortunately, Java has good support for threads, which are built into the Java
programming language as a fundamental programming concept. Programming with
threads will be covered in Block-3.

Just as important in Java and in modern programming in general is the basic
concept of asynchronous events. While programmers don’t actually deal with
interrupts directly, they do often find themselves writing event handlers, which, like
interrupt handlers, are called asynchronously when specific events occur. Such
“‘event-driven programming” has a very different feel from the more traditional straight-
through, synchronous programming. We will begin with the more traditional type of
programming, which is still used for programming individual tasks, but we will return
to threads and events later in the text, starting in Block-4

k %k Xk

By the way, the software that does all the interrupt handling, handles
communication with the user and with hardware devices, and controls which thread is
allowed to run is called the operating system. The operating system is the basic,
essential software without which a computer would not be able to function. Other
programs, such as word processors and Web browsers, are dependent upon the
operating system. Common desktop operating systems include Linux, various
versions of Windows, and Mac OS. Operating systems for smartphones and tablets
include Android and iOS.

1.5 The Java Virtual Machine

Machine language consists of very simple instructions that can be executed
directly by the CPU of a computer. Almost all programs, though, are written in high-
level programming languages such as Java, Python, or C++. A program written in a
high-level language cannot be run directly on any computer. First, it has to be
translated into machine language. This translation can be done by a program called a
compiler. A compiler takes a high-level-language program and translates it into an
executable machine-language program. Once the translation is done, the machine-
language program can be run any number of times, but of course it can only be run on
one type of computer (since each type of computer has its own individual machine
language). If the program is to run on another type of computer it has to be re-
translated, using a different compiler, into the appropriate machine language.

There is an alternative to compiling a high-level language program. Instead of
using a compiler, which translates the program all at once, you can use an interpreter,
which translates it instruction-by-instruction, as necessary. An interpreter is a program
that acts much like a CPU, with a kind of fetch-and-execute cycle. In order to execute
a program, the interpreter runs in a loop in which it repeatedly reads one instruction
from the program, decides what is necessary to carry out that instruction, and then
performs the appropriate machine-language commands to do so.

(A compiler is like a human translator who translates an entire book from one
language to another, producing a new book in the second language. An interpreter is
more like a human interpreter who translates a speech at the United Nations from one
language to another at the same time that the speech is being given.)

10

One use of interpreters is to execute high-level language programs. For
example, the programming language Lisp is usually executed by an interpreter rather
than a compiler. However, interpreters have another purpose: They can let you use a
machine-language program meant for one type of computer on a completely different
type of computer. For example, one of the original home computers was the
Commodore 64 or “C64”. While you might not find an actual C64, you can find
programs that run on other computers or even in a web browser that “emulate” one.
Such an emulator can run C64 programs by acting as an interpreter for the C64
machine language.

k %k Xk

The designers of Java chose to use a combination of compiling and interpreting.
Programs written in Java are compiled into machine language, but it is a machine
language for a computer that doesn’t really exist. This so-called “virtual” computer is
known as the Java Virtual Machine, or JVM. The machine language for the Java Virtual
Machine is called Java bytecode.

There is no reason why Java bytecode couldn’'t be used as the machine
language of a real computer, rather than a virtual computer. But in fact the use of a
virtual machine makes possible one of the main selling points of Java: the fact that it
can actually be used on any computer.

All that the computer needs is an interpreter for Java bytecode. Such an
interpreter simulates the JVM in the same way that a C64 emulator simulates a
Commodore 64 computer. (The term JVM is also used for the Java bytecode
interpreter program that does the simulation, so we say that a computer needs a JVM
in order to run Java programs. Technically, it would be more correct to say that the
interpreter implements the JVM than to say that it is a JVM.)

Of course, a different Java bytecode interpreter is needed for each type of
computer, but once a computer has a Java bytecode interpreter, it can run any Java
bytecode program, and the same program can be run on any computer that has such
an interpreter. This is one of the essential features of Java: the same compiled
program can be run on many different types of computers.

"

Java Interpreter

for Mac OS
J Java
ava Compiler | me—- Bytecode g Java In.terpreter
Program Program for Windows

Java Interpreter
for Linux

Why, you might wonder, use the intermediate Java bytecode at all? Why not
just distribute the original Java program and let each person compile it into the
machine language of whatever computer they want to run it on? There are several
reasons. First of all, a compiler has to understand Java, a complex high-level
language. The compiler is itself a complex program.

A Java bytecode interpreter, on the other hand, is a relatively small, simple
program. This makes it easy to write a bytecode interpreter for a new type of computer;
once that is done, that computer can run any compiled Java program. It would be
much harder to write a Java compiler for the same computer.

Furthermore, some Java programs are meant to be downloaded over a
network. This leads to obvious security concerns: you don’t want to download and run
a program that will damage your computer or your files. The bytecode interpreter acts
as a buffer between you and the program you download. You are really running the
interpreter, which runs the downloaded program indirectly. The interpreter can protect
you from potentially dangerous actions on the part of that program.

When Java was still a new language, it was criticized for being slow: Since Java
bytecode was executed by an interpreter, it seemed that Java bytecode programs
could never run as quickly as programs compiled into native machine language (that
is, the actual machine language of the computer on which the program is running).
However, this problem has been largely overcome by the use of just-in-time compilers
for executing Java bytecode. A just-in-time compiler translates Java bytecode into
native machine language. It does this while it is executing the program. Just as for a
normal interpreter, the input to a just-in-time compiler is a Java bytecode program, and
its task is to execute that program. But as it is executing the program, it also translates
parts of it into machine language. The translated parts of the program can then be
executed much more quickly than they could be interpreted. Since a given part of a
program is often executed many times as the program runs, a just-in-time compiler
can significantly speed up the overall execution time.

12

| should note that there is no necessary connection between Java and Java
bytecode. A program written in Java could certainly be compiled into the machine
language of a real computer. And programs written in other languages can be
compiled into Java bytecode. However, the combination of Java and Java bytecode is
platform-independent, secure, and network-compatible while allowing you to program
in a modern high-level object-oriented language.

In the past few years, it has become fairly common to create new programming
languages, or versions of old languages, that compile into Java bytecode. The
compiled bytecode programs can then be executed by a standard JVM. New
languages that have been developed specifically for programming the JVM include
Scala, Groovy, Clojure, and Processing. Jython and JRuby are versions of older
languages, Python and Ruby, that target the JVM. These languages make it possible
to enjoy many of the advantages of the JVM while avoiding some of the technicalities
of the Java language. In fact, the use of other languages with the JVM has become
important enough that several new features have been added to the JVM specifically
to add better support for some of those languages. And this improvement to the JVM
has in turn made possible some new features in Java.

k ok 3k

I should also note that the really hard part of platform-independence is providing
a “Graphical User Interface”—with windows, buttons, etc.—that will work on all the
platforms that support Java.

1.6 Fundamental Building Blocks of Programs

There are two basic aspects of programming: data and instructions. To work
with data, you need to understand variables and types; to work with instructions, you
need to understand control structures and subroutines. You'll spend a large part of the
course becoming familiar with these concepts.

A variable is just a memory location (or several consecutive locations treated
as a unit) that has been given a name so that it can be easily referred to and used in
a program. The programmer only has to worry about the name; it is the compiler’'s
responsibility to keep track of the memory location. As a programmer, you just need
to keep in mind that the name refers to a kind of “box” in memory that can hold data,
even though you don’t have to know where in memory that box is located.

In Java and in many other programming languages, a variable has a type that
indicates what sort of data it can hold. One type of variable might hold integers whole
numbers such as 3, -7, and O0—while another hold floating point numbers with decimal
points such as 3.14, -2.7, or 17.0. (Yes, the computer does make a distinction between
the integer 17 and the floating-point number 17.0; they actually look quite different
inside the computer.) There could also be types for individual characters ('A’, ’;’, etc.),

13

strings (“Hello”, “A string can include many characters”, etc.), and less common types
such as dates, colors, sounds, or any other kind of data that a program might need to
store.

Programming languages always have commands for getting data into and out
of variables and for doing computations with data. For example, the following
“assignment statement,” which might appear in a Java program, tells the computer to
take the number stored in the variable named “principal”, multiply that number by 0.07,
and then store the result in the variable named “interest”:

interest = principal * 0.07;

There are also “input commands” for getting data from the user or from files on
the computer’s disks, and there are “output commands” for sending data in the other
direction.

These basic commands—for moving data from place to place and for
performing computations—are the building blocks for all programs. These building
blocks are combined into complex programs using control structures and subroutines.

k %k Xk

A program is a sequence of instructions. In the ordinary “flow of control,” the
computer executes the instructions in the sequence in which they occur in the
program, one after the other. However, this is obviously very limited: the computer
would soon run out of instructions to execute. Control structures are special
instructions that can change the flow of control.

There are two basic types of control structure: loops, which allow a sequence
of instructions to be repeated over and over, and branches, which allow the computer
to decide between two or more different courses of action by testing conditions that
occur as the program is running.

For example, it might be that if the value of the variable “principal” is greater
than 10000, then the “interest” should be computed by multiplying the principal by
0.05; if not, then the interest should be computed by multiplying the principal by 0.04.
A program needs some way of expressing this type of decision. In Java, it could be
expressed using the following “if statement”:

if (principal > 10000)

interest = principal * 0.05;

else

interest = principal * 0.04;

(Don’t worry about the details for now. Just remember that the computer can test a
condition and decide what to do next on the basis of that test.)

14

Loops are used when the same task has to be performed more than once. For
example, if you want to print out a mailing label for each name on a mailing list, you
might say, “Get the first name and address and print the label; get the second name
and address and print the label; get the third name and address and print the label...”
But this quickly becomes ridiculous—and might not work at all if you don’t know in
advance how many names there are.

What you would like to say is something like “While there are more names to
process, get the next name and address, and print the label.” A loop can be used in a
program to express such repetition.

k ok Xk

Large programs are so complex that it would be almost impossible to write them
if there were not some way to break them up into manageable “chunks.” Subroutines
provide one way to do this. A subroutine consists of the instructions for performing
some task, grouped together as a unit and given a name. That name can then be used
as a substitute for the whole set of instructions. For example, suppose that one of the
tasks that your program needs to perform is to draw a house on the screen. You can
take the necessary instructions, make them into a subroutine, and give that subroutine
some appropriate name—say, “drawHouse()”. Then anyplace in your program where
you need to draw a house, you can do so with the single command:

drawHouse();
This will have the same effect as repeating all the house-drawing instructions in each
place.

The advantage here is not just that you save typing. Organizing your program
into subroutines also helps you organize your thinking and your program design effort.
While writing the house-drawing subroutine, you can concentrate on the problem of
drawing a house without worrying for the moment about the rest of the program. And
once the subroutine is written, you can forget about the details of drawing houses—
that problem is solved, since you have a subroutine to do it for you. A subroutine
becomes just like a built-in part of the language which you can use without thinking
about the details of what goes on “inside” the subroutine.

k %k X

Variables, types, loops, branches, and subroutines are the basis of what might
be called “traditional programming.” However, as programs become larger, additional
structure is needed to help deal with their complexity. One of the most effective tools
that has been found is object-oriented programming, which is discussed in the next
section.

15

1.7 Objects and Object-oriented Programming

Programs must be designed. No one can just sit down at the computer and
compose a program of any complexity. The discipline called software engineering is
concerned with the construction of correct, working, well-written programs. The
software engineer tries to use accepted and proven methods for analysing the problem
to be solved and for designing a program to solve that problem.

During the 1970s and into the 80s, the primary software engineering
methodology was structured programming. The structured programming approach to
program design was based on the following advice: To solve a large problem, break
the problem into several pieces and work on each piece separately; to solve each
piece, treat it as a new problem which can itself be broken down into smaller problems;
eventually, you will work your way down to problems that can be solved directly,
without further decomposition. This approach is called top-down programming.

There is nothing wrong with top-down programming. It is a valuable and often-
used approach to problem-solving. However, it is incomplete. For one thing, it deals
almost entirely with producing the instructions necessary to solve a problem. But as
time went on, people realized that the design of the data structures for a program was
at least as important as the design of subroutines and control structures. Top-down
programming doesn’t give adequate consideration to the data that the program
manipulates.

Another problem with strict top-down programming is that it makes it difficult to
reuse work done for other projects. By starting with a particular problem and
subdividing it into convenient pieces, top-down programming tends to produce a
design that is unique to that problem. It is unlikely that you will be able to take a large
chunk of programming from another program and fit it into your project, at least not
without extensive modification. Producing high-quality programs is difficult and
expensive, so programmers and the people who employ them are always eager to
reuse past work.

k %k X

So, in practice, top-down design is often combined with bottom-up design. In
bottom-up design, the approach is to start “at the bottom,” with problems that you
already know how to solve (and for which you might already have a reusable software
component at hand). From there, you can work upwards towards a solution to the
overall problem.

The reusable components should be as “modular” as possible. A module is a
component of a larger system that interacts with the rest of the system in a simple,
well-defined, straightforward manner. The idea is that a module can be “plugged into”
a system. The details of what goes on inside the module are not important to the

16

system as a whole, as long as the module fulfils its assigned role correctly. This is
called information hiding, and it is one of the most important principles of software
engineering.

One common format for software modules is to contain some data, along with
some subroutines for manipulating that data. For example, a mailing-list module might
contain a list of names and addresses along with a subroutine for adding a new name,
a subroutine for printing mailing labels, and so forth. In such modules, the data itself
is often hidden inside the module; a program that uses the module can then manipulate
the data only indirectly, by calling the subroutines provided by the module. This
protects the data, since it can only be manipulated in known, well-defined ways. And
it makes it easier for programs to use the module, since they don’t have to worry about
the details of how the data is represented. Information about the representation of the
data is hidden.

Modules that could support this kind of information-hiding became common in
programming languages in the early 1980s. Since then, a more advanced form of the
same idea has more or less taken over software engineering. This latest approach is
called object-oriented programming, often abbreviated as OOP.

The central concept of object-oriented programming is the object , which is a
kind of module containing data and subroutines. The point-of-view in OOP is that an
object is a kind of self-sufficient entity that has an internal state (the data it contains)
and that can respond to messages (calls to its subroutines). A mailing list object, for
example, has a state consisting of a list of names and addresses. If you send it a
message telling it to add a name, it will respond by modifying its state to reflect the
change. If you send it a message telling it to print itself, it will respond by printing out
its list of names and addresses.

The OOP approach to software engineering is to start by identifying the objects
involved in a problem and the messages that those objects should respond to. The
program that results is a collection of objects, each with its own data and its own set
of responsibilities. The objects interact by sending messages to each other. There is
not much “top-down” in the large-scale design of such a program, and people used to
more traditional programs can have a hard time getting used to OOP. However, people
who use OOP would claim that object-oriented programs tend to be better models of
the way the world itself works, and that they are therefore easier to write, easier to
understand, and more likely to be correct.

k % X

You should think of objects as “knowing” how to respond to certain messages.
Different objects might respond to the same message in different ways. For example,
a “print” message would produce very different results, depending on the object it is
sent to. This property of objects that different objects can respond to the same
message in different ways is called polymorphism.

17

It is common for objects to bear a kind of “family resemblance” to one another.
Objects that contain the same type of data and that respond to the same messages in
the same way belong to the same class. (In actual programming, the class is primary;
that is, a class is created and then one or more objects are created using that class
as a template.) But objects can be similar without being in exactly the same class.

For example, consider a drawing program that lets the user draw lines,
rectangles, ovals, polygons, and curves on the screen. In the program, each visible
object on the screen could be represented by a software object in the program. There
would be five classes of objects in the program, one for each type of visible object that
can be drawn. All the lines would belong to one class, all the rectangles to another
class, and so on. These classes are obviously related; all of them represent “drawable
objects.” They would, for example, all presumably be able to respond to a “draw
yourself” message. Another level of grouping, based on the data needed to represent
each type of object, is less obvious, but would be very useful in a program: We can
group polygons and curves together as “multipoint objects,” while lines, rectangles,
and ovals are “two-point objects.” (A line is determined by its two endpoints, a
rectangle by two of its corners, and an oval by two corners of the rectangle that
contains it. The rectangles that | am talking about here have sides that are vertical and
horizontal, so that they can be specified by just two points; this is the common meaning

DrawableObject

MultipointObject TwoPointObject

Polygon Curve Line Rectangle Oval

of “rectangle” in drawing programs.) We could diagram these relationships as follows:

DrawableObject, MultipointObject, and TwoPointObject would be classes in the
program. MultipointObject and TwoPointObject would be subclasses of
DrawableObject. The class Line would be a subclass of TwoPointObject and
(indirectly) of DrawableObject. A subclass of a class is said to inherit the properties of
that class. The subclass can add to its inheritance and it can even “override” part of
that inheritance (by defining a different response to some message). Nevertheless,
lines, rectangles, and so on are drawable objects, and the class DrawableObject
expresses this relationship.

18

Inheritance is a powerful means for organizing a program. It is also related to
the problem of reusing software components. A class is the ultimate reusable
component. Not only can it be reused directly if it fits exactly into a program you are
trying to write, but if it just almost fits, you can still reuse it by defining a subclass and
making only the small changes necessary to adapt it exactly to your needs.

So, OOP is meant to be both a superior program-development tool and a
partial solution to the software reuse problem. Objects, classes, and object-oriented
programming will be important themes throughout the rest of this text. You will start
using objects that are built into the Java language in the next chapter, and in Chapter
5 you will begin creating your own classes and objects.

1.8 The Modern User Interface

When computers were first introduced, ordinary people—including most
programmers couldn’t get near them. They were locked up in rooms with white-coated
attendants who would take your programs and data, feed them to the computer, and
return the computer's response sometime later. When timesharing where the
computer switches its attention rapidly from one person to another—was invented in
the 1960s, it became possible for several people to interact directly with the computer
at the same time. On a timesharing system, users sit at “terminals” where they type
commands to the computer, and the computer types back its response. Early personal
computers also used typed commands and responses, except that there was only one
person involved at a time. This type of interaction between a user and a computer is
called a command-line interface.

Today, of course, most people interact with computers in a completely different
way. They use a Graphical User Interface, or GUI. The computer draws interface
components on the screen. The components include things like windows, scroll bars,
menus, buttons, and icons. Usually, a mouse is used to manipulate such components
or, on touchscreens,” your fingers. Assuming that you have not just been teleported in
from the 1970s, you are no doubt already familiar with the basics of graphical user
interfaces!

A lot of GUI interface components have become fairly standard. That is, they
have similar appearance and behavior on many different computer platforms including
Mac OS, Windows, and Linux. Java programs, which are supposed to run on many
different platforms without modification to the program, can use all the standard GUI
components. They might vary a little in appearance from platform to platform, but their
functionality should be identical on any computer on which the program runs.

Shown below is an image of a very simple Java program that demonstrates a
few standard GUI interface components. When the program is run, a window similar

19

to the picture shown here will open on the computer screen. There are four
components in the window with which the user can interact: a button, a checkbox, a
text field, and a pop-up menu. These components are labeled. There are a few other
components in the window. The labels themselves are components (even though you
can’t interact with them). The right half of the window is a text area component, which
can display multiple lines of text. A scrollbar component appears alongside the text
area when the number of lines of text becomes larger than will fit in the text area. And
in fact, in Java terminology, the whole window is itself considered to be a “component”.

GUIDemo

Push Button: | Click Me! sl Ll

Checkbox was toggled

Checkbox: v/ | Click me!
: Pressed return in TextField
Text Field: Hello World! with contents: Hello World!
Pop-up Menu: | Second Option ~ Selected Second Option from menu

(If you would like to run this program, the source code, GUIDemao.java, is available on
line. For more information on using this and other examples from this textbook, see
Section 2.6.)

Now, Java actually has three complete sets of GUI components. One of these,
the AWT or Abstract Windowing Toolkit, was available in the original version of Java.
The second, which is known as Swing, was introduced in Java version 1.2, and was
the standard GUI toolkit for many years. The third GUI toolkit, JavaFX, became a
standard part of Java in Version 8 (but has recently been removed, so that it requires
separate installation in some versions of Java). Although Swing, and even the AWT,
can still be used, JavaFX is meant as a more modern way to write GUI applications.
This textbook covers JavaFX exclusively. (If you need to learn Swing, you can take a
look at the previous version of this book.)

When a user interacts with GUI components, “events” are generated. For
example, clicking a push button generates an event, and pressing a key on the
keyboard generates an event. Each time an event is generated, a message is sent to
the program telling it that the event has occurred, and the program responds according
to its program. In fact, a typical GUI program consists largely of “event handlers” that
tell the program how to respond to various types of events. In the above example, the
program has been programmed to respond to each event by displaying a message in
the text area. In a more realistic example, the event handlers would have more to do.

The use of the term “message” here is deliberate. Messages, as you saw in the

previous section, are sent to objects. In fact, Java GUI components are implemented
as objects. Java includes many predefined classes that represent various types of GUI

20

components. Some of these classes are subclasses of others. Here is a diagram
showing just a few of the JavaFX GUI classes and their relationships:

I Label I I ButtonBase I I Slider | I TextInputControl I |C0mb0BOX|

| Button | | CheckBox | | TextField | | TextArea |

Don’t worry about the details for now, but try to get some feel about how object-
oriented programming and inheritance are used here. Note that all the GUI classes
shown here are subclasses, directly or indirectly, of a class called Control, which
represents general properties that are shared by many JavaFX components. In the
diagram, two of the direct subclasses of Control themselves have subclasses. The
classes TextField and TextArea, which have certain behaviors in common, are
grouped together as subclasses of TextlnputControl. Similarly, Button and CheckBox
are subclasses of ButtonBase, which represents properties common to both buttons
and checkboxes. (ComboBox, by the way, is the class that represents pop-up menus.)

Just from this brief discussion, perhaps you can see how GUI programming can
make effective use of object-oriented design. In fact, GUIs, with their “visible objects,”
are probably a major factor contributing to the popularity of OOP.

1.9 The Internet and Beyond

Computers can be connected together on networks. A computer on a network
can communicate with other computers on the same network by exchanging data and
files or by sending and receiving messages. Computers on a network can even work
together on a large computation.

Today, millions of computers throughout the world are connected to a single
huge network called the Internet. New computers are being connected to the Internet
every day, both by wireless communication and by physical connection using
technologies such as DSL, cable modems, and Ethernet.

21

There are elaborate protocols for communication over the Internet. A protocol
Is simply a detailed specification of how communication is to proceed. For two
computers to communicate at all, they must both be using the same protocols. The
most basic protocols on the Internet are the Internet Protocol (IP), which specifies how
data is to be physically transmitted from one computer to another, and the
Transmission Control Protocol (TCP), which ensures that data sent using IP is
received in its entirety and without error. These two protocols, which are referred to
collectively as TCP/IP, provide a foundation for communication. Other protocols use
TCP/IP to send specific types of information such as web pages, electronic mail, and
data files.

All communication over the Internet is in the form of packets. A packet consists
of some data being sent from one computer to another, along with addressing
information that indicates where on the Internet that data is supposed to go. Think of
a packet as an envelope with an address on the outside and a message on the inside.
(The message is the data.) The packet also includes a “return address,” that is, the
address of the sender. A packet can hold only a limited amount of data; longer
messages must be divided among several packets, which are then sent individually
over the Net and reassembled at their destination.

Every computer on the Internet has an IP address, a number that identifies it
uniquely among all the computers on the Net. (Actually, the claim about uniqueness
is not quite true, but the basic idea is valid, and the full truth is complicated.) The IP
address is used for addressing packets. A computer can only send data to another
computer on the Internet if it knows that computer’s IP address. Since people prefer
to use names rather than numbers, most computers are also identified by names,
called domain names. For example, the main computer of the Mathematics
Department at Hobart and Willam Smith Colleges has the domain name
math.hws.edu. (Domain names are just for convenience; your computer still needs to
know IP addresses before it can communicate. There are computers on the Internet
whose job it is to translate domain names to IP addresses. When you use a domain
name, your computer sends a message to a domain name server to find out the
corresponding IP address. Then, your computer uses the IP address, rather than the
domain name, to communicate with the other computer.)

The Internet provides a number of services to the computers connected to it
(and, of course, to the users of those computers). These services use TCP/IP to send
various types of data over the Net. Among the most popular services are instant
messaging, file sharing, electronic mail, and the World-Wide Web. Each service has
its own protocols, which are used to control transmission of data over the network.
Each service also has some sort of user interface, which allows the user to view, send,
and receive data through the service.

22

For example, the email service uses a protocol known as SMTP (Simple Mail
Transfer Protocol) to transfer email messages from one computer to another. Other
protocols, such as POP and IMAP, are used to fetch messages from an email account
so that the recipient can read them. A person who uses email, however, doesn’t need
to understand or even know about these protocols. Instead, they are used behind the
scenes by computer programs to send and receive email messages. These programs
provide the user with an easy-to-use user interface to the underlying network
protocols.

The World-Wide Web is perhaps the most exciting of network services. The
World Wide Web allows you to request pages of information that are stored on
computers all over the Internet. A Web page can contain links to other pages on the
same computer from which it was obtained or to other computers anywhere in the
world. A computer that stores such pages of information is called a web server. The
user interface to the Web is the type of program known as a web browser. Common
web browsers include Microsoft Edge, Internet Explorer, Firefox, Chrome, and Safari.
You use a Web browser to request a page of information.

The browser sends a request for that page to the computer on which the page
is stored, and when a response is received from that computer, the web browser
displays it to you in a neatly formatted form. A web browser is just a user interface to
the Web. Behind the scenes, the web browser uses a protocol called HTTP (HyperText
Transfer Protocol) to send each page request and to receive the response from the
web server.

k %k X

Now just what, you might be thinking, does all this have to do with Java? In fact,
Java is intimately associated with the Internet and the World-Wide Web. When Java
was first introduced, one of its big attractions was the ability to write applets. An applet
is a small program that is transmitted over the Internet and that runs on a web page.
Applets made it possible for a web page to perform complex tasks and have complex
interactions with the user.

Alas, applets have suffered from a variety of problems, and they have fallen out
of use. There are now other options for running programs on Web pages.

But applets were only one aspect of Java’s relationship with the Internet. Java
can be used to write complex, stand-alone applications that do not depend on a Web
browser. Many of these programs are network-related. For example, many of the
largest and most complex web sites use web server software that is written in Java.
Java includes excellent support for network protocols, and its platform independence
makes it possible to write network programs that work on many different types of
computers.

23

Its support for networking is not Java’s only advantage. But many good
programming languages have been invented only to be soon forgotten. Java has had
the good luck to ride on the coattails of the Internet's immense and increasing
popularity.

k %k Xk

As Java has matured, its applications have reached far beyond the Net. The
standard version of Java already comes with support for many technologies, such as
cryptography, data compression, sound processing, and three-dimensional graphics.
And programmers have written Java libraries to provide additional capabilities.
Complex, high-performance systems can be developed in Java. For example,
Hadoop, a system for large scale data processing, is written in Java. Hadoop is used
by Yahoo, Facebook, and other Web sites to process the huge amounts of data
generated by their users.

Furthermore, Java is not restricted to use on traditional computers. Java can
be used to write programs for many smartphones (though not for the iPhone). It is the
primary development language for Android-based devices. (Android uses Google’s
own version of Java and does not use the same graphical user interface components
as standard Java.) Java is also the programming language for the Amazon Kindle
eBook reader and for interactive features on Blu-Ray video disks.

At this time, Java certainly ranks as one of the most widely used programming
languages. It is a good choice for almost any programming project that is meant to run
on more than one type of computing device, and is a reasonable choice even for many
programs that will run on only one device. It is probably still the most widely taught
language at Colleges and Universities. It is similar enough to other popular languages,
such as C++, JavaScript, and Python, that knowing it will give you a good start on
learning those languages as well. Overall, learning Java is a great starting point on the
road to becoming an expert programmer. | hope you enjoy the journey!

1.10 Let Us Sum Up

In this unit we have discussed the basics of what computers are and how they
work, idea of what a computer program is and how one is created, Fundamental
Building Blocks of Programs, Java Virtual Machine, Java language in particular and
about the modern computing environment for which Java is designed.

1.11 Further Reading

1. “Java 2: The Complete Reference” by Herbert Schildt, McGraw Hill Publications.
2. “Effective Java” by Joshua Bloch, Pearson Education.

24

1.12 Assignments

e One of the components of a computer is its CPU. What is a CPU and what role
does it play in a computer?

e Explain what is meant by an “asynchronous event.” Give some examples.

¢ What is the difference between a “compiler” and an “interpreter’?

e Explain the difference between high-level languages and machine language.

e If you have the source code for a Java program, and you want to run that program,
you will need both a compiler and an interpreter. What does the Java compiler do,
and what does the Java interpreter do?

e What is a subroutine?

e Java is an object-oriented programming language. What is an object?

e What is a variable? (There are four different ideas associated with variables in
Java. Try to mention all four aspects in your answer. Hint: One of the aspects is
the variable’s name.)

e Java is a “platform-independent language.” What does this mean?

e What is the “Internet’? Give some examples of how it is used.

25

Unit 2: Programming in the 2
Small I: Names and Things

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 The Basic Java Application

2.4 Variables and the Primitive Types
2.5 Strings, Classes, Objects, and Subroutines
2.6 Text Input and Output

2.7 Details of Expressions

2.8 Programming Environments

2.9 LetUs Sum Up

2.10 Further Reading

2.11 Assignments

26

2.1 Learning Objectives

After studying this unit learner should be able to

e The Basic Java Application

e Variables and the Primitive Types

e Strings, Classes, Objects, and Subroutines
e Text Input and Output

e Details of Expressions

e Programming Environments

2.2 Introduction

On a basic level (the level of machine language), a computer can perform only
very simple operations. A computer performs complex tasks by stringing together large
numbers of such operations. Such tasks must be “scripted” in complete and perfect
detail by programs. Creating complex programs will never be really easy, but the
difficulty can be handled to some extent by giving the program a clear overall structure.
The design of the overall structure of a program is what | call “programming in the
large.”

Programming in the small, which is sometimes called coding, would then refer
to filling in the details of that design. The details are the explicit, step-by-step
instructions for performing fairly small-scale tasks. When you do coding, you are
working “close to the machine,” with some of the same concepts that you might use in
machine language: memory locations, arithmetic operations, loops and branches. In
a high-level language such as Java, you get to work with these concepts on a level
several steps above machine language. However, you still have to worry about getting
all the details exactly right.

This chapter and the next examine the facilities for programming in the small in
the Java programming language. Don’t be misled by the term “programming in the
small” into thinking that this material is easy or unimportant. This material is an
essential foundation for all types of programming. If you don’t understand it, you can’t
write programs, no matter how good you get at designing their large-scale structure.

The last section of this chapter discusses programming environments. That
section contains information about how to compile and run Java programs, and you
should take a look at it before trying to write and use your own programs or trying to
use the sample programs in this book.

27

2.3 The Basic Java Application

A program is a sequence of instructions that a computer can execute to perform
some task. A simple enough idea, but for the computer to make any use of the
instructions, they must be written in a form that the computer can use. This means that
programs have to be written in programming languages. Programming languages
differ from ordinary human languages in being completely unambiguous and very strict
about what is and is not allowed in a program. The rules that determine what is allowed
are called the syntax of the language. Syntax rules specify the basic vocabulary of the
language and how programs can be constructed using things like loops, branches,
and subroutines. A syntactically correct program is one that can be successfully
compiled or interpreted; programs that have syntax errors will be rejected (hopefully
with a useful error message that will help you fix the problem).

So, to be a successful programmer, you have to develop a detailed knowledge
of the syntax of the programming language that you are using. However, syntax is only
part of the story. It's not enough to write a program that will run—you want a program
that will run and produce the correct result! That is, the meaning of the program has
to be right. The meaning of a program is referred to as its semantics. More correctly,
the semantics of a programming language is the set of rules that determine the
meaning of a program written in that language. A semantically correct program is one
that does what you want it to.

Furthermore, a program can be syntactically and semantically correct but still
be a pretty bad program. Using the language correctly is not the same as using it well.
For example, a good program has “style.” It is written in a way that will make it easy
for people to read and to understand. It follows conventions that will be familiar to other
programmers. And it has an overall design that will make sense to human readers.
The computer is completely oblivious to such things, but to a human reader, they are
paramount. These aspects of programming are sometimes referred to as pragmatics.
(I will often use the more common term style.)

When | introduce a new language feature, | will explain the syntax, the
semantics, and some of the pragmatics of that feature. You should memorize the
syntax; that's the easy part. Then you should get a feeling for the semantics by
following the examples given, making sure that you understand how they work, and,
ideally, writing short programs of your own to test your understanding. And you should
try to appreciate and absorb the pragmatics his means learning how to use the
language feature well, with style that will earn you the admiration of other
programmers.

Of course, even when you’ve become familiar with all the individual features of
the language, that doesn’t make you a programmer. You still have to learn how to

28

construct complex programs to solve particular problems. For that, you’ll need both
experience and taste. You'll find hints about software development throughout this
textbook.

k % Xk

We begin our exploration of Java with the problem that has become traditional
for such beginnings: to write a program that displays the message “Hello World!”. This
might seem like a trivial problem, but getting a computer to do this is really a big first
step in learning a new programming language (especially if it’s your first programming
language). It means that you understand the basic process of:

1. getting the program text into the computer,

2. compiling the program, and

3. running the compiled program.

The first time through, each of these steps will probably take you a few tries to
get right. | won’t go into the details here of how you do each of these steps; it depends
on the particular computer and Java programming environment that you are using.
See Section 2.6 for information about creating and running Java programs in specific
programming environments. But in general, you will type the program using some sort
of text editor and save the program in a file. Then, you will use some command to try
to compile the file. You'll either get a message that the program contains syntax errors,
or you'll get a compiled version of the program. In the case of Java, the program is
compiled into Java bytecode, not into machine language. Finally, you can run the
compiled program by giving some appropriate command. For Java, you will actually
use an interpreter to execute the Java bytecode. Your programming environment
might automate some of the steps for you—for example, the compilation step is often
done automatically but you can be sure that the same three steps are being done in
the background.

Here is a Java program to display the message “Hello World!”. Don’t expect to
understand what’s going on here just yet; some of it you won'’t really understand until
a few chapters from now:

/** A program to display the message

* "Hello World!" on standard output.

*/

public class HelloWorld {
public static void main (String[] args) {

System.out.println("Hello World!");

}

} // end of class HelloWorld

The command that actually displays the message is:
System.out.println("Hello World!");

29

This command is an example of a subroutine call statement . It uses a “built-in
subroutine” named System.out.printin to do the actual work. Recall that a subroutine
consists of the instructions for performing some task, chunked together and given a
name. That name can be used to “call” the subroutine whenever that task needs to be
performed. A built-in subroutine is one that is already defined as part of the language
and therefore automatically available for use in any program.

When you run this program, the message “Hello World!” (Without the quotes)
will be displayed on standard output. Unfortunately, | can’t say exactly what that
means! Java is meant to run on many different platforms, and standard output will
mean different things on different platforms. However, you can expect the message to
show up in some convenient or inconvenient place. (If you use a command-line
interface, like that in Oracle’s Java Development Kit, you type in a command to tell the
computer to run the program. The computer will type the output from the program,
Hello World!, on the next line. In an integrated development environment such as
Eclipse, the output might appear somewhere in one of the environment’s windows.)

You must be curious about all the other stuff in the above program. Part of it
consists of comments. Comments in a program are entirely ignored by the computer;
they are there for human readers only. This doesn’t mean that they are unimportant.
Programs are meant to be read by people as well as by computers, and without
comments, a program can be very difficult to understand. Java has two types of
comments. The first type begins with // and extends to the end of a line. There is a
comment of this form on the last line of the above program. The computer ignores the
/[and everything that follows it on the same line. The second type of comment starts
with /* and ends with */, and it can extend over more than one line. The first three lines
of the program are an example of this second type of comment. (A comment that
actually begins with /**, like this one does, has special meaning; it is a “Javadoc”
comment that can be used to produce documentation for the program.)

Everything else in the program is required by the rules of Java syntax. All
programming in Java is done inside “classes.” The first line in the above program (not
counting the comment) says that this is a class named HelloWorld. “HelloWorld,” the
name of the class, also serves as the name of the program. Not every class is a
program. In order to define a program, a class must include a subroutine named main,
with a definition that takes the form:

public static void main (String[] args) ({

<statements>

}

When you tell the Java interpreter to run the program, the interpreter calls this
main() subroutine, and the statements that it contains are executed. These statements
make up the script that tells the computer exactly what to do when the program is
executed. The main() routine can call other subroutines that are defined in the same

30

class or even in other classes, but it is the main() routine that determines how and in
what order the other subroutines are used.

The word “public” in the first line of main() means that this routine can be called
from out-side the program. This is essential because the main() routine is called by
the Java interpreter, which is something external to the program itself. The remainder
of the first line of the routine is harder to explain at the moment; for now, just think of
it as part of the required syntax.

The definition of the subroutine that is, the instructions that say what it does—
consists of the sequence of “statements” enclosed between braces, {and}. Here, I've
used <statements> as a placeholder for the actual statements that make up the
program. Throughout this textbook, | will always use a similar format: anything that
you see in <this style of text> (italic in angle brackets) is a placeholder that describes
something you need to type when you write an actual program.

As noted above, a subroutine can’t exist by itself. It has to be part of a “class”.
A program is defined by a public class that takes the form:

<optional-package-declaration >
<optional-imports >
public class <program-name> {

<optional-variable-declarations-and-subroutines >
public static void main(String[] args) {

<statements >

}

<optional-variable-declarations-and-subroutines>

The first two lines have to do with using packages. A package is a group of
classes.

The <program-name> in the line that begins “public class” is the name of the
program, as well as the name of the class. (Remember, again, that <program-name>
is a placeholder for the actual name!) If the name of the class is HelloWorld, then the
class must be saved in a file called HelloWorld.java. When this file is compiled, another
file named HelloWorld.class will be produced. This class file, HelloWorld.class,
contains the translation of the program into Java bytecode, which can be executed by
a Java interpreter. HelloWorld.java is called the source code for the program. To
execute the program, you only need the compiled class file, not the source code.

The layout of the program on the page, such as the use of blank lines and
indentation, is not part of the syntax or semantics of the language. The computer
31

doesn’t care about layout you could run the entire program together on one line as far
as it is concerned. However, layout is important to human readers, and there are
certain style guidelines for layout that are followed by most programmers.

Also note that according to the above syntax specification, a program can
contain other subroutines besides main(), as well as things called “variable
declarations.”

2.4 Variables and the Primitive Types

Names are fundamental to programming. In programs, names are used to refer
to many different sorts of things. In order to use those things, a programmer must
understand the rules for giving names to them and the rules for using the names to
work with them. That is, the programmer must understand the syntax and the
semantics of names.

According to the syntax rules of Java, the most basic names are identifiers.
Identifiers can be used to name classes, variables, and subroutines. An identifier is a
sequence of one or more characters. It must begin with a letter or underscore and
must consist entirely of letters, digits, and underscores. (“Underscore” refers to the
character’’.) For example, here are some legal identifiers:

N n rate x15 quite_a long_name HelloWorld

No spaces are allowed in identifiers; HelloWorld is a legal identifier, but “Hello
World” is not. Upper case and lower case letters are considered to be different, so that
HelloWorld, helloworld, HELLOWORLD, and hElloWorLD are all distinct names.
Certain words are reserved for special uses in Java, and cannot be used as identifiers.
These reserved words include:

class, public, static, if, else, while, and several dozen other words. (Remember
that reserved words are not identifiers, since they can’t be used as names for things.)
Java is actually pretty liberal about what counts as a letter or a digit. Java uses
the Unicode character set, which includes thousands of characters from many different
languages and different alphabets, and many of these characters count as letters or
digits. However, | will be sticking to what can be typed on a regular English keyboard.

The pragmatics of naming includes style guidelines about how to choose
names for things. For example, it is customary for names of classes to begin with
upper case letters, while names of variables and of subroutines begin with lower case
letters; you can avoid a lot of confusion by following this standard convention in your
own programs. Most Java programmers do not use underscores in hames, although
some do use them at the beginning of the names of certain kinds of variables. When

32

a name is made up of several words, such as HelloWorld or interestRate, it is
customary to capitalize each word, except possibly the first; this is sometimes referred
to as camel case, since the upper case letters in the middle of a name are supposed
to look something like the humps on a camel’s back.

Finally, I'll note that in addition to simple identifiers, things in Java can have
compound names which consist of several simple names separated by periods.
(Compound names are also called qualified names.) You've already seen an example:
System.out.printin. The idea here is that things in Java can contain other things. A
compound name is a kind of path to an item through one or more levels of containment.
The name System.out.printin indicates that something called “System” contains
something called “out” which in turn contains something called “printin”.

Variables

Programs manipulate data that are stored in memory. In machine language,
data can only be referred to by giving the numerical address of the location in memory
where the data is stored. In a high-level language such as Java, names are used
instead of numbers to refer to data. It is the job of the computer to keep track of where
in memory the data is actually stored; the programmer only has to remember the
name. A name used in this way to refer to data stored in memory is called a variable.

Variables are actually rather subtle. Properly speaking, a variable is not a name
for the data itself but for a location in memory that can hold data. You should think of
a variable as a container or box where you can store data that you will need to use
later. The variable refers directly to the box and only indirectly to the data in the box.
Since the data in the box can change, a variable can refer to different data values at
different times during the execution of the program, but it always refers to the same
box. Confusion can arise, especially for beginning programmers, because when a
variable is used in a program in certain ways, it refers to the container, but when it is
used in other ways, it refers to the data in the container. You'll see examples of both
cases below.

In Java, the only way to get data into a variable—that is, into the box that the
variable names is with an assignment statement. An assignment statement takes the
form:

<variable > = <expression>;
where <expression> represents anything that refers to or computes a data value.
When the computer comes to an assignment statement in the course of executing a
program, it evaluates the expression and puts the resulting data value into the variable.
For example, consider the simple assignment statement

rate = 0.07,

The <variable> in this assignment statement is rate, and the <expression> is the
number 0.07. The computer executes this assignment statement by putting the
33

number 0.07 in the variable rate, replacing whatever was there before. Now, consider
the following more complicated assignment statement, which might come later in the
same program:
interest = rate * principal;

Here, the value of the expression “rate * principal” is being assigned to the variable
interest. In the expression, the * is a “multiplication operator” that tells the computer to
multiply rate times principal. The names rate and principal are themselves variables,
and it is really the values stored in those variables that are to be multiplied. We see
that when a variable is used in an expression, it is the value stored in the variable that
matters; in this case, the variable seems to refer to the data in the box, rather than to
the box itself. When the computer executes this assignment statement, it takes the
value of rate, multiplies it by the value of principal, and stores the answer in the box
referred to by interest. When a variable is used on the left-hand side of an assignment
statement, it refers to the box that is named by the variable.

(Note, by the way, that an assignment statement is a command that is executed
by the computer at a certain time. It is not a statement of fact. For example, suppose
a program includes the statement “rate = 0.07;”. If the statement “interest = rate *
principal;” is executed later in the program, can we say that the principal is multiplied
by 0.07? No! The value of rate might have been changed in the meantime by another
statement. The meaning of an assignment statement is completely different from the
meaning of an equation in mathematics, even though both use the symbol "=".)

Types

A variable in Java is designed to hold only one particular type of data; it can
legally hold that type of data and no other. The compiler will consider it to be a syntax
error if you try to violate this rule by assigning a value of the wrong type to a variable.
We say that Java is a strongly typed language because it enforces this rule.

There are eight so-called primitive types built into Java. The primitive types are
named byte, short, int, long, float, double, char, and boolean. The first four types
hold integers (whole numbers such as 17, -38477, and 0). The four integer types are
distinguished by the ranges of integers they can hold. The float and double types hold
real numbers (such as 3.6 and -145.99). Again, the two real types are distinguished
by their range and accuracy. A variable of type char holds a single character from the
Unicode character set. And a variable of type boolean holds one of the two logical
values true or false.

Any data value stored in the computer’'s memory must be represented as a
binary number, that is as a string of zeros and ones. A single zero or one is called a
bit. A string of eight bits is called a byte. Memory is usually measured in terms of bytes.
Not surprisingly, the byte data type refers to a single byte of memory. A variable of
type byte holds a string of eight bits, which can represent any of the integers between

34

-128 and 127, inclusive. (There are 256 integers in that range; eight bits can represent
256 two raised to the power eight different values.) As for the other integer types,
e short corresponds to two bytes (16 bits). Variables of type short have values in
the range -32768 to 32767.
e int corresponds to four bytes (32 bits). Variables of type int have values in the
range -2147483648 to 2147483647
¢ long corresponds to eight bytes (64 bits). Variables of type long have values in
the range -9223372036854775808 to 9223372036854775807.
You don’t have to remember these numbers, but they do give you some idea
of the size of integers that you can work with. Usually, for representing integer data
you should just stick to the int data type, which is good enough for most purposes.

The float data type is represented in four bytes of memory, using a standard
method for encoding real numbers. The maximum value for a float is about 10 raised
to the power 38. A float can have about 7 significant digits. (So that 32.3989231134
and 32.3989234399 would both have to be rounded off to about 32.398923 in order to
be stored in a variable of type float.) A double takes up 8 bytes, can range up to about
10 to the power 308, and has about 15 significant digits. Ordinarily, you should stick
to the double type for real values.

A variable of type char occupies two bytes in memory. The value of a char
variable is a single character such as A, *, X, or a space character. The value can also
be a special character such a tab or a carriage return or one of the many Unicode
characters that come from different languages. Values of type char are closely related
to integer values, since a character is actually stored as a 16-bit integer code number.
In fact, we will see that chars in Java can actually be used like integers in certain
situations.

It is important to remember that a primitive type value is represented using only
a certain, finite number of bits. So, an int can’t be an arbitrary integer; it can only be
an integer in a certain finite range of values. Similarly, float and double variables can
only take on certain values. They are not true real numbers in the mathematical sense.
For example, the mathematical constant = can only be approximated by a value of
type float or double, since it would require an infinite humber of decimal places to
represent it exactly. For that matter, many simple numbers such as 1/3 can only be
approximated by floats and doubles.

Literals
A data value is stored in the computer as a sequence of bits. In the computer’s

memory, it doesn’t look anything like a value written on this page. You need a way to
include constant values in the programs that you write. In a program, you represent

35

constant values as literals. A literal is something that you can type in a program to
represent a value. It is a kind of name for a constant value.

For example, to type a value of type char in a program, you must surround it
with a pair of single quote marks, such as ’A’, ', or ’x’. The character and the quote
marks make up a literal of type char. Without the quotes, A would be an identifier and
* would be a multiplication operator. The quotes are not part of the value and are not
stored in the variable; they are just a convention for naming a particular character
constant in a program. If you want to store the character A in a variable ch of type
char, you could do so with the assignment statement

ch ="A’;

Certain special characters have special literals that use a backslash, \, as an “escape
character.”

In particular, a tab is represented as ’\t', a carriage return as '\r’, a linefeed as
\n’, the single quote character as ’\”, and the backslash itself as '\\. Note that even
though you type two characters between the quotes in ’\t’, the value represented by
this literal is a single tab character.

Numeric literals are a little more complicated than you might expect. Of course,
there are the obvious literals such as 317 and 17.42. But there are other possibilities
for expressing numbers in a Java program. First of all, real numbers can be
represented in an exponential form such as 1.3e12 or 12.3737e-108. The “e12” and
“e-108” represent powers of 10, so that 1.3e12 means 1.3 times 1012 and 12.3737e-
108 means 12.3737 times 10-108. This format can be used to express very large and
very small numbers. Any numeric literal that contains a decimal point or exponential
is a literal of type double. To make a literal of type float, you have to append an “F” or
“f” to the end of the number. For example, “1.2F” stands for 1.2 considered as a value
of type float. (Occasionally, you need to know this because the rules of Java say that
you can’t assign a value of type double to a variable of type float, so you might be
confronted with a ridiculous-seeming error message if you try to do something like “x
= 1.2;” if x is a variable of type float. You have to say “x = 1.2F;". This is one reason
why | advise sticking to type double for real numbers.)

Even for integer literals, there are some complications. Ordinary integers such
as 177777 and -32 are literals of type byte, short, or int, depending on their size. You
can make a literal of type long by adding “L” as a suffix. For example: 17L or
728476874368L. As another complication, Java allows binary, octal (base-8), and
hexadecimal (base-16) literals. | don’t want to cover number bases in detail, but in
case you run into them in other people’s programs, it's worth knowing a few things:
Octal numbers use only the digits 0 through 7. In Java, a numeric literal that begins
with a O is interpreted as an octal number; for example, the octal literal 045 represents
the number 37, not the number 45. Octal numbers are rarely used, but you need to be
aware of what happens when you start a number with a zero. Hexadecimal numbers

36

use 16 digits, the usual digits O through 9 and the letters A, B, C, D, E, and F. Upper
case and lower case letters can be used interchangeably in this context. The letters
represent the numbers 10 through 15. In Java, a hexadecimal literal begins with Ox or
0X, as in 0x45 or OXFF7A. Finally, binary literals start with Ob or OB and contain only
the digits 0 and 1; for example: 0b10110.

As a final complication, numeric literals can include the underscore character
(“_"), which can be used to separate groups of digits. For example, the integer constant
for two billion could be written 2 000 000 000, which is a good deal easier to decipher
than 2000000000. There is no rule about how many digits have to be in each group.
Underscores can be especially useful in long binary numbers; for example, 0b1010
1100 1011.

| will note that hexadecimal numbers can also be used in character literals to
represent arbitrary Unicode characters. A Unicode literal consists of \u followed by four
hexadecimal digits. For example, the character literal \uOOE9’ represents the Unicode

[{Pgl)

character that is an “e” with an acute accent.

For the type boolean, there are precisely two literals: true and false. These
literals are typed just as I've written them here, without quotes, but they represent
values, not variables.

Boolean values occur most often as the values of conditional expressions. For
example,

rate > 0.05
is a boolean-valued expression that evaluates to true if the value of the variable rate
is greater than 0.05, and to false if the value of rate is less than or equal to 0.05.
boolean-valued expressions are used extensively in control structures. Of course,
boolean values can also be assigned to variables of type boolean. For example, if test
is a variable of type boolean, then both of the following assignment statements are
legal:
test = true;
test = rate > 0.05;

Strings and String Literals

Java has other types in addition to the primitive types, but all the other types represent
objects rather than “primitive” data values. For the most part, we are not concerned
with objects for the time being. However, there is one predefined object type that is
very important: the type String. (String is a type, but not a primitive type; it is in fact the
name of a class, and we will return to that aspect of strings in the next section.)

A value of type String is a sequence of characters. You've already seen a string literal:
"Hello World!". The double quotes are part of the literal; they have to be typed in the
program. However, they are not part of the actual String value, which consists of just

37

the characters between the quotes. A string can contain any number of characters,
even zero. A string with no characters is called the empty string and is represented by
the literal ™", a pair of double quote marks with nothing between them. Remember the
difference between single quotes and double quotes! Single quotes are used for char
literals and double quotes for String literals! There is a big difference between the
String "A" and the char 'A’.

Within a string literal, special characters can be represented using the backslash
notation. Within this context, the double quote is itself a special character. For
example, to represent the string value

I said, "Are you listening!"
with a linefeed at the end, you would have to type the string literal:

"I said, \"Are you listening! \"\n"
You can also use \t, \r, \\, and Unicode sequences such as \UOOE9 to represent other
special characters in string literals.

Variables in Programs

A variable can be used in a program only if it has first been declared. A variable
declaration statement is used to declare one or more variables and to give them
names. When the computer executes a variable declaration, it sets aside memory for
the variable and associates the variable’s name with that memory. A simple variable
declaration takes the form:

<type-name> <variable-name-or-names>;

The <variable-name-or-names> can be a single variable name or a list of variable
names separated by commas. (We’'ll see later that variable declaration statements can
actually be somewhat more complicated than this.) Good programming style is to
declare only one variable in a declaration statement, unless the variables are closely
related in some way. For example:

int numberOfStudents;

String name;

double x, y;

boolean isFinished;

char firstInitial, middleInitial, lastInitial;

It is also good style to include a comment with each variable declaration to explain its
purpose in the program, or to give other information that might be useful to a human
reader.

For example:

double principal; // Amount of money invested.

38

double interestRate; // Rate as a decimal, not %.

Here is a simple program using some variables and assignment statements:

/* This class implements a simple program that will compute the amount of
interest that is earned on $17,000 invested at an interest rate of 0.027 for
one year. The interest and the value of the investment after one year are
printed to standard output. */

public class Interest {
public static void main(String[] args) {
/* Declare the variables. */
double principal; // The value of the investment.
double rate; // The annual interest rate.
double interest; // Interest earned in one year.
/* Do the computations. */
principal = 17000;
rate = 0.027;
interest = principal * rate; // Compute the interest.
principal = principal + interest;
// Compute value of investment after one year, with interest.
// (Note: The new value replaces the old value of principal.)
/* Output the results. */
System.out.print ("The interest earned is $");
System.out.println (interest);
System.out.print ("The value of the investment after one year is $");
System.out.println (principal) ;
} // end of main()

} // end of class Interest

This program uses several subroutine call statements to display information to the
user of the program. Two different subroutines are used: System.out.print and
System.out.printin. The difference between these is that System.out.printin adds a
linefeed after the end of the information that it displays, while System.out.print does
not. Thus, the value of interest, which is displayed by the subroutine call
“System.out.printin(interest);”, follows on the same line as the string displayed by the
previous System.out.print statement. Note that the value to be displayed by
System.out.print or System.out.println is provided in parentheses after the subroutine
name. This value is called a parameter to the subroutine. A parameter provides a
subroutine with information it needs to perform its task. In a subroutine call statement,
any parameters are listed in parentheses after the subroutine name. Not all
subroutines have parameters. If there are no parameters in a subroutine call
statement, the subroutine name must be followed by an empty pair of parentheses.

2.5 Strings, Classes, Objects, and Subroutines

Built-in Subroutines and Functions

39

Recall that a subroutine is a set of program instructions that have been chunked
together and given a name. A subroutine is designed to perform some task. To get
that task performed in a program, you can “call” the subroutine using a subroutine call
statement. In Java, every subroutine is contained either in a class or in an object.
Some classes that are standard parts of the Java language contain predefined
subroutines that you can use. A value of type String, which is an object, contains
subroutines that can be used to manipulate that string. These subroutines are “built
into” the Java language. You can call all these subroutines without understanding how
they were written or how they work. Indeed, that’s the whole point of subroutines: A
subroutine is a “black box” which can be used without knowing what goes on inside.

Let’s first consider subroutines that are part of a class. One of the purposes of
a class is to group together some variables and subroutines, which are contained in
that class. These variables and subroutines are called static members of the class.
You’ve seen one example: In a class that defines a program, the main() routine is a
static member of the class. The parts of a class definition that define static members
are marked with the reserved word “static’, such as the word “static” in public
static void main...

When a class contains a static variable or subroutine, the name of the class is
part of the full name of the variable or subroutine. For example, the standard class
named System contains a subroutine named exit. To use that subroutine in your
program, you must refer to it as System.exit. This full name consists of the name of
the class that contains the subroutine, followed by a period, followed by the name of
the subroutine. This subroutine requires an integer as its parameter, so you would
actually use it with a subroutine call statement such as

System.exit (0) ;

Calling System.exit will terminate the program and shut down the Java Virtual
Machine. You could use it if you had some reason to terminate the program before the
end of the main routine. (The parameter tells the computer why the program was
terminated. A parameter value of O indicates that the program ended normally. Any
other value indicates that the program was terminated because an error was detected,
so you could call System.exit(1) to indicate that the program is ending because of an
error. The parameter is sent back to the operating system; in practice, the value is
usually ignored by the operating system.)

System is just one of many standard classes that come with Java. Another
useful class is called Math. This class gives us an example of a class that contains
static variables: It includes the variables Math.Pl and Math.E whose values are the
mathematical constants © and e. Math also contains a large number of mathematical
“functions.” Every subroutine performs some specific task. For some subroutines, that
task is to compute or retrieve some data value. Subroutines of this type are called
functions. We say that a function returns a value. Generally, the returned value is

meant to be used somehow in the program that calls the function.
40

You are familiar with the mathematical function that computes the square root of a
number. The corresponding function in Java is called Math.sqgrt. This function is a
static member subroutine of the class named Math. If x is any numerical value, then
Math.sqrt(x) computes and returns the square root of that value. Since Math.sqrt(x)
represents a value, it doesn’t make sense to put it on a line by itself in a subroutine

call statement such as
Math.sqgrt (x); // This doesn’t make sense!

What, after all, would the computer do with the value computed by the function in this
case? You have to tell the computer to do something with the value. You might tell the

computer to display it:
System.out.print (Math.sqgrt(x)); // Display the square root of x.

or you might use an assignment statement to tell the computer to store that value in a

variable:
lengthOfSide = Math.sqrt (x);

The function call Math.sqgrt(x) represents a value of type double, and it can be used
anyplace where a numeric literal of type double could be used. The x in this formula
represents the parameter to the subroutine; it could be a variable named “x”, or it could
be replaced by any expression that represents a numerical value. For example,
Math.sqrt(2) computes the square root of 2, and Math.sqrt(a*a+b*b) would be legal as
long as a and b are numeric variables.

Classes and Objects

Classes can be containers for static variables and subroutines. However
classes also have another purpose. They are used to describe objects. In this role, the
class is a type, in the same way that int and double are types. That is, the class name
can be used to declare variables. Such variables can only hold one type of value. The
values in this case are objects. An object is a collection of variables and subroutines.
Every object has an associated class that tells what “type” of object it is. The class of
an object specifies what subroutines and variables that object contains. All objects
defined by the same class are similar in that they contain similar collections of
variables and subroutines. For example, an object might represent a point in the plane,
and it might contain variables named x and y to represent the coordinates of that point.
Every point object would have an x and a y, but different points would have different
values for these variables. A class, named Point for example, could exist to define the
common structure of all point objects, and all such objects would then be values of
type Point.

As another example, let’s look again at System.out.printin. System is a class,
and out is a static variable within that class. However, the value of System.out is an
object, and System.out.println is actually the full name of a subroutine that is contained
in the object System.out. You don’t need to understand it at this point, but the object
referred to by System.out is an object of the class PrintStream. PrintStream is another
class that is a standard part of Java. Any object of type PrintStream is a destination to

41

which information can be printed; any object of type PrintStream has a printin
subroutine that can be used to send information to that destination. The object
System.out is just one possible destination, and System.out.println is a subroutine that
sends information to that particular destination. Other objects of type PrintStream
might send information to other destinations such as files or across a network to other
computers. This is object-oriented programming: Many different things which have
something in common they can all be used as destinations for output can all be used
in the same way through a println subroutine. The PrintStream class expresses the
commonalities among all these objects.

The dual role of classes can be confusing, and in practice most classes are
designed to perform primarily or exclusively in only one of the two possible roles.
Fortunately, you will not need to worry too much about it until we start working with
objects in a more serious way, in Chapter 5. By the way, since class names and
variable names are used in similar ways, it might be hard to tell which is which.
Remember that all the built-in, predefined names in Java follow the rule that class
names begin with an upper case letter while variable names begin with a lower case
letter. While this is not a formal syntax rule, | strongly recommend that you follow it in
your own programming. Subroutine names should also begin with lower case letters.
There is no possibility of confusing a variable with a subroutine, since a subroutine
name in a program is always followed by a left parenthesis.

As one final general note, you should be aware that subroutines in Java are
often referred to as methods. Generally, the term “method” means a subroutine that is
contained in a class or in an object. Since this is true of every subroutine in Java, every
subroutine in Java is a method. The same is not true for other programming languages,
and for the time being, | will prefer to use the more general term, “subroutine.”
However, | should note that some people prefer to use the term “method” from the
beginning.

2.6 Text Input and Output

Basic Output and Formatted Output

The most basic output function is System.out.print(x), where x can be a value
or expression of any type. If the parameter, X, is not already a string, it is converted to
a value of type String, and the string is then output to the destination called standard
output . (Generally, this means that the string is displayed to the user; however, in GUI
programs, it outputs to a place where a typical user is unlikely to see it. Furthermore,
standard output can be “redirected” to write to a different output destination.

42

Nevertheless, for the type of program that we are working with now, the purpose of
System.out is to display text to the user.)

System.out.printin(x) outputs the same text as System.out.print, but it follows
that text by a line feed, which means that any subsequent output will be on the next
line. It is possible to use this function with no parameter, System.out.printin(), which
outputs nothing but a line feed. Note that System.out.println(x) is equivalent to

System.out.print (x);
System.out.println();

You might have noticed that System.out.print outputs real numbers with as
many digits after the decimal point as necessary, so that for example is output as
3.141592653589793, and numbers that are supposed to represent money might be
output as 1050.0 or 43.575. You might prefer to have these numbers output as, for
example, 3.14159, 1050.00, and 43.58. Java has a “formatted output” capability that
makes it easy to control how real numbers and other values are printed. A lot of
formatting options are available. | will cover just a few of the simplest and most
commonly used possibilities here.

The function System.out.printf can be used to produce formatted output. (The
name “printf,” which stands for “print formatted,” is copied from the C and C++
programming languages, where this type of output originated.) System.out.printf takes
one or more parameters. The first parameter is a String that specifies the format of the
output. This parameter is called the format string. The remaining parameters specify
the values that are to be output. Here is a statement that will print a number in the
proper format for a dollar amount, where amount is a variable of type double:

System.out.printf("%$1.2f", amount);

The output format for a value is give by a format specifier in the format string. In this

example, the format specifier is %1.2f. The format string (in the simple cases that |
cover here) contains one format specifier for each of the values that is to be output.
Some typical format specifiers are %d, %12d, %10s, %1.2f, %15.8e and %1.89. Every
format specifier begins with a percent sign (%) and ends with a letter, possibly with
some extra formatting information in between. The letter specifies the type of output
that is to be produced. For example, in %d and %12d, the “d” specifies that an integer
is to be written. The “12” in %12d specifies the minimum number of spaces that should
be used for the output. If the integer that is being output takes up fewer than 12 spaces,
extra blank spaces are added in front of the integer to bring the total up to 12. We say
that the output is “right-justified in a field of length 12.” A very large value is not forced
into 12 spaces; if the value has more than 12 digits, all the digits will be printed, with
no extra spaces. The specifier %d means the same as %1d that is, an integer will be
printed using just as many spaces as necessary. (The “d,” by the way, stands for
“‘decimal” that is, base-10 numbers. You can replace the “d” with an “x” to output an
integer value in hexadecimal form.) The letter “s” at the end of a format specifier can

43

be used with any type of value. It means that the value should be output in its default
format, just as it would be in unformatted output. A number, such as the “20” in %20s,
can be added to specify the (minimum) number of characters. The “s” stands for
“string,” and it can be used for values of type String. It can also be used for values of
other types; in that case the value is converted into a String value in the usual way.
The format specifiers for values of type double are more complicated. An “f’, as in
%1.2f, is used to output a number in “floating-point” form, that is with digits after a
decimal point. In %1.2f, the “2” specifies the number of digits to use after the decimal
point. The “1” specifies the (minimum) number of characters to output; a “1” in this
position effectively means that just as many characters as are necessary should be
used. Similarly, %12.3f would specify a floating-point format with 3 digits after the
decimal point, right-justified in a field of length 12.

Very large and very small numbers should be written in exponential format,
such as 6.00221415e23, representing “6.00221415 times 10 raised to the power 23.”
A format specifier such as %15.8e specifies an output in exponential form, with the “8”
telling how many digits to use after the decimal point. If you use “g” instead of “e”, the
output will be in exponential form for very small values and very large values and in
floating-point form for other values. In %1.8g, the 8 gives the total number of digits in
the answer, including both the digits before the decimal point and the digits after the
decimal point.

For numeric output, the format specifier can include a comma (“,”), which will
cause the digits of the number to be separated into groups, to make it easier to read
big numbers. In the United States, groups of three digits are separated by commas.
For example, if x is one billion, then System.out.printf("%,d",x) will output
1,000,000,000. In other countries, the separator character and the number of digits
per group might be different. The comma should come at the beginning of the format
specifier, before the field width; for example: %,12.3f. If you want the output to be left-
justified instead of right justified, add a minus sign to the beginning of the format
specifier: for example, %-20s. In addition to format specifiers, the format string in a
printf statement can include other characters. These extra characters are just copied
to the output. This can be a convenient way to insert values into the middle of an output
string. For example, if x and y are variables of type int, you could say

System.out.printf ("The product of %d and %d is %d", x, y, x*y);

When this statement is executed, the value of x is substituted for the first %d in
the string, the value of y for the second %d, and the value of the expression x*y for
the third, so the output would be something like “The product of 17 and 42 is 714"
(quotation marks not included in output!).

To output a percent sign, use the format specifier %% in the format string. You
can use %n to output a line feed. You can also use a backslash, \, as usual in strings
to output special characters such as tabs and double quote characters.

44

A First Text Input Example

For some unfathomable reason, Java has traditionally made it difficult to read
data typed in by the user of a program. You've already seen that output can be
displayed to the user using the subroutine System.out.print. This subroutine is part of
a predefined object called System.out. The purpose of this object is precisely to display
output to the user. There is a corresponding object called System.in that exists to read
data input by the user, but it provides only very primitive input facilities, and it requires
some advanced Java programming skills to use it effectively.

Java 5.0 finally made input a little easier with a new Scanner class. Java 6
introduced the Console class for communicating with the user, but Console has its
own problems. (It is not always available, and it can only read strings, not numbers.)

Using Scanner for Input

First, since Scanner is defined in the package java.util, you should add the following
import directive to your program at the beginning of the source code file, before the
“‘public class. . . ”:

import Jjava.util.Scanner;

Then include the following statement at the beginning of your main() routine:
Scanner stdin = new Scanner(System.in);

This creates a variable named stdin of type Scanner. (You can use a different name
for the variable if you want; “stdin” stands for “standard input.”) You can then use stdin
in your program to access a variety of subroutines for reading user input. For example,
the function stdin.nextint() reads one value of type int from the user and returns it.
There are corresponding methods for reading other types of data, including
stdin.nextDouble(), stdin.nextLong(), and stdin.nextBoolean(). (stdin.nextBoolean()
will only accept “true” or “false” as input.) These subroutines can read more than one
value from a line. As a simple example, here is a Interest.java that uses Scanner for
user input

import java.util.Scanner;

public class Interest {
public static void main(String[] args) {
Scanner stdin = new Scanner(System.in); // Create the Scanner.
double principal; // The value of the investment.
double rate; // The annual interest rate.
double interest; // The interest earned during the year.
System.out.print ("Enter the initial investment: ");
principal = stdin.nextDouble () ;
System.out.print ("Enter the annual interest rate (as a decimal): ");

45

rate = stdin.nextDouble () ;
interest = principal * rate; // Compute this year’s interest.
principal = principal + interest; // Add it to principal.
System.out.printf ("The amount of interest is $%1.2f%n", interest);
System.out.printf ("The value after one year is $%1.2f%n", principal);
} // end of main ()

} // end of class Interest

2.7 Details of Expressions

This section takes a closer look at expressions. Recall that an expression is a piece
of program code that represents or computes a value. An expression can be a literal,
a variable, a function call, or several of these things combined with operators such as
+ and >. The value of an expression can be assigned to a variable, used as a
parameter in a subroutine call, or combined with other values into a more complicated
expression. (The value can even, in some cases, be ignored, if that's what you want
to do; this is more common than you might think.) Expressions are an essential part
of programming. So far, this book has dealt only informally with expressions. This
section tells you the more-or-less complete story (leaving out some of the less
commonly used operators).

The basic building blocks of expressions are literals (such as 674, 3.14, true,
and ’X’), variables, and function calls. Recall that a function is a subroutine that returns
a value. You've already seen some examples of functions, such as the input routines
from the TextlO class and the mathematical functions from the Math class.

The Math class also contains a couple of mathematical constants that are
useful in mathematical expressions: Math.Pl represents =n (the ratio of the
circumference of a circle to its diameter), and Math.E represents e (the base of the
natural logarithms). These “constants” are actually member variables in Math of type
double. They are only approximations for the mathematical constants, which would
require an infinite number of digits to specify exactly. The standard class Integer
contains a couple of constants related to the int data type: Integer. MAX VALUE is the
largest possible int, 2147483647, and Integer.MIN VALUE is the smallest int, -
2147483648. Similarly, the class Double contains some constants related to type
double. Double.MAX VALUE is the largest value of type double, and Double.MIN
VALUE is the smallest positive value. It also has constants to represent infinite values,
Double.POSITIVE INFINITY and Double.NEGATIVE INFINITY, and the special value
Double.NaN to represent an undefined value. For example, the value of Math.sqrt(-1)
is Double.NaN.

Literals, variables, and function calls are simple expressions. More complex
expressions can be built up by using operators to combine simpler expressions.
Operators include + for adding two numbers, > for comparing two values, and so on.

46

When several operators appear in an expression, there is a question of precedence,
which determines how the operators are grouped for evaluation. For example, in the
expression “A + B * C”, B*C is computed first and then the result is added to A. We
say that multiplication (*) has higher precedence than addition (+). If the default
precedence is not what you want, you can use parentheses to explicitly specify the
grouping you want. For example, you could use “(A + B) * C” if you want to add A to B
first and then multiply the result by C.

The rest of this section gives details of operators in Java. The number of
operators in Java is quite large. | will not cover them all here, but most of the important
ones are here.

Operators
They are the characters/symbols used to manipulate data. Operators can have one or
more operand on which they perform a function. The operators in java can be classified

in to following categories:

Arithmetic Operators

Operator Use

+ Addition of two values Ex: 20+10 gives 30

- Subtraction of two values Ex: 20-10 gives 10

* Multiplication of two values Ex: 20*10 gives 200

/ Division of two values Ex: 20/10 gives 2

% Reminder/Modulus gives reminder of division of
two numbers Ex: 21%?2 gives 1

++ Increment operator increase value by 1 **

-- Decrement operator decrease value by 1 **

** if we use ++/-- before operand, the increment/decrement is performed first
before using the operand and if we use ++/-- after operand, the increment/decrement
is performed first after using the operand.

For Example,
a=4,
b=++a; //give 5inband5in a;
a=4,
b=a--; /lgives4inband3ina

47

Assignment Operators

These operators are used to assign value to the operand. = is assignment operator.
It assigns value to its operand for Ex: a=5; +=, -=, *=, /= and %= are the shorthand
operators. They perform operation as shown below:

Operator | Use Meaning

= a=5; value 5 is assigned to a
+= a+=b; it performs a=a+5.

-= a-=b5; it performs a=a-5.

= a=b; it performs a=a*5.

/= a/=5; it performs a=a/5.

%= a%=>5; it performs a=a%?5.

Relational Operators

They are also called comparison operators. They are used to compare two

operands and returns Boolean value.

Operator Meaning Use
== equality a==Db
I= not equal al=b
> greater than a>b
< less than a= greater than or equal to a>=b
<= less than or equal to a<=b

They are used with if...else statement to build a condition. For example (a>b)

returns true if a is greater than b else it returns false.

Logical Operators

&&, || and ! are the logical operators. They are used to check for two conditions

simultaneously.

Operator Meaning Usage

&& logical and | (a>b && a>c) check both condition

| logical or (a>b || a>c) check either of one condition
! logical not I(a>b) check not of condition

Bitwise Operators
&, |, », << and >> are bitwise operators. They are used to perform bitwise

operations.

48

Operator Meaning Usage
& AND a&b

| OR alb

A EXOR a™b
<< left shift a<> right shift a>>b

The AND, OR and EXOR operations are shown below in truth table.

A b a&b alb a™b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The shift operator shift the value of operand specific number of time in left(<<) or
right(>>). The left operand specifies the value to be shifted and right operand specifies
number of shift.

Miscellaneous Operators

instance of operator: it is used to check whether an object is of a specific class
type or not. For example,

String s="hello”;

if(s instance of String)

{
System.out.printin(“s is of String type”);

}

Ternary operator: ?: is used as a ternary operator. It has three operands. It is
shorter replacement of if...else statement.

Syntax: var=(expression) ? valuel:value2;
Example: c=(a>b)? a: b; It means c is largest of a or b.

Precedence Rules

If you use several operators in one expression, and if you don’t use parentheses to
explicitly indicate the order of evaluation, then you have to worry about the precedence
rules that determine the order of evaluation. (Advice: don’t confuse yourself or the
reader of your program; use parentheses liberally.) Here is a listing of the operators
discussed in this section, listed in order from highest precedence (evaluated first) to
lowest precedence (evaluated last):

49

Unary operators: ++, --, |, unary -, unary +, type-cast

Multiplication and division: * [, %

Addition and subtraction: +, -

Relational operators: <, >, <=, >=
Equality and inequality: ==, I=

Boolean and: &&

Boolean or: I

Conditional operator: 2.

Assignment operators: =, +=, -=, *= [=, %=

Operators on the same line have the same precedence. When operators of the same
precedence are strung together in the absence of parentheses, unary operators and
assignment operators are evaluated right-to-left, while the remaining operators are
evaluated left-to-right. For example, A*B/C means (A*B)/C, while A=B=C means
A=(B=C). (Can you see how the expression A=B=C might be useful, given that the
value of B=C as an expression is the same as the value that is assigned to B?)

2.8 Programming Environments

Although the Java language is highly standardized, the procedures for creating,
compiling, and editing Java programs vary widely from one programming environment
to another.

There are two basic approaches: a command line environment, where the user
types commands and the computer respond, and an integrated development
environment (IDE), where the user uses the keyboard and mouse to interact with a
graphical user interface. While there is essentially just one command line environment
for Java programming, there are several common IDEs, including Eclipse, NetBeans,
IntelliJ IDEA, and BlueJd. | cannot give complete or definitive information on Java
programming environments in this section, but | will try to give enough information to
let you compile and run the examples from this textbook using the command line.
(Readers are strongly encouraged to read, compile, and run the examples. This
textbook can be used with Java 8 and later.

Getting JDK

The basic development system for Java programming is usually referred to as
a JDK (Java Development Kit). For this textbook, you need a JDK for Java 8 or later.
Note that Java comes in two versions: a Development Kit version (the JDK) and a
Runtime Environment version. A Runtime Environment can be used to run Java
programs, but it does not allow you to compile your own Java programs. A
Development Kit includes the Runtime Environment but also lets you compile

50

programs. A JDK will include the command line environment that you need to work
with Java on the command line. If you decide to use an IDE, you might still need to
download a JDK first; note, however, that both the Eclipse IDE and BlueJ now include
a JDK, so you do not need to download a separate JDK to use them.

Java was developed by Sun Microsystems, Inc., which was acquired by the
Oracle corporation. It is possible to download a JDK directly from Oracle’s web site,
but starting with Java 11, the Oracle JDK is meant mostly for commercial use. For
personal and educational use, it is probably preferable to use OpenJDK, which has
the same functionality as the version available from Oracle and is distributed under a
fully free, open-source license. Although OpenJDK can be downloaded from
https://jdk.java.net/, which is also owned by Oracle, | recommend downloading from
AdoptOpenJDK at this address: https://adoptopenjdk.net/

This site has OpenJDKs for a wider range of platforms, and it provides installers
for Mac OS and Windows that make it easier to set up Java on those platforms. (The
installer for Mac OS is a .pkg file, and the installer for Windows is a .msi file.) The
sample programs and exercises in this textbook will work with JDK versions as old as
Java 8. If you download a JDK installer for Windows or Mac OS from AdoptOpenJDK,
you can just double-click the installer file to start the installation, if it does not start
automatically. If you use the default installation, the installer will set up your computer
so that you can use the javac and java commands on the command line.

Command Line Environment

Many modern computer users find the command line environment to be pretty
alien and unintuitive. It is certainly very different from the graphical user interfaces that
most people are used to. However, it takes only a little practice to learn the basics of
the command line environment and to become productive using it. It is useful to know
how to use the command line, and it is particularly important for computer science
students.

To use a command line programming environment, you will have to open a
window where you can type in commands. In Windows, you can open such a
command window by running a program named cmd. In Mac OS, you want to run the
Terminal program, which can be found in the Utilities folder inside the Applications
folder. In Linux, there are several possibilities, including a very old program called
xterm; but try looking for “Terminal” in your Applications menu.

No matter what type of computer you are using, when you open a command
window, it will display a prompt of some sort. Type in a command at the prompt and
press return. The computer will carry out the command, displaying any output in the
command window, and will then redisplay the prompt so that you can type another
command. One of the central concepts in the command line environment is the current

51

https://jdk.java.net/
https://adoptopenjdk.net/

directory or working directory, which contains files that can be used by the commands
that you type. (The words “directory” and “folder” mean the same thing.) Often, the
name of the current directory is part of the command prompt. You can get a list of the
files in the current directory by typing in the command dir (on Windows) or Is (on Linux
and Mac OS). When the window first opens, the current directory is your home
directory, where your personal files are stored. You can change the current directory
using the cd command with the name of the directory that you want to use. For
example, if the current directory is your home directory, then you can change into your
Desktop directory by typing the command cd Desktop (and then pressing return).

You might want to create a directory (that is, a folder) to hold your Java work.
For example, you might create a directory named javawork in your home directory.
You can do this using your computer’s GUI; another way is to use the command line:
Open a command window. If you want to put your work directory in a different folder
from your home directory, cd into the directory where you want to put it. Then enter
the command mkdir javawork to make the directory. When you want to work on
programming, open a command window and use the cd command to change into your
Java work directory. Of course, you can have more than one working directory for your
Java work; you can organize your files any way you like.

The most basic commands for using Java on the command line are javac and
java. The javac command is used to compile Java source code, and java is used to
run Java programs. These commands, and other commands for working with Java,
can be found in a directory named bin inside the JDK directory. If you set things up
correctly on your computer, it should recognize these commands when you type them
on the command line. Try typing the commands java -version and javac -version. The
output from these commands should tell you which version of Java is being used. If
you get a message such as “Command not found,” then Java is not correctly
configured.

Java should already be configured correctly on Linux, if you have installed Java
from the Linux software repositories. The same is true on Mac OS and Windows, if
you have used an installer from AdoptOpenJDK.

To test the javac command, create a file HelloWorld.java into your working directory.
Type the command:

javac HelloWorld.java

This will compile Helloworld.java and will create a bytecode file named
HelloWorld.class in the same directory. Note that if the command succeeds, you will
not get any response from the computer; it will just redisplay the command prompt to
tell you it’s ready for another command. You will then be able to run the program using
the java command:

52

java HelloWorld

The computer should respond by outputting the message “Hello World!”. Note that
although the program is stored in a file named HelloWorld.class, the java command
uses the name of the class, HelloWorld, not the name of the file.

Editor

To create your own programs, you will need a text editor. A text editor is a computer
program that allows you to create and save documents that contain plain text. It is
important that the documents be saved as plain text, that is without any special
encoding or formatting information. Word processor documents are not appropriate,
unless you can get your word processor to save as plain text. A good text editor can
make programming a lot more pleasant.

Linux comes with several text editors. On Windows, you can use notepad in a
pinch, but you will probably want something better. For Mac OS, you might download
the BBEdit application, which can be used for free. One possibility that will work on
any platform is to use jedit , a programmer’s text editor that is itself written in Java and
that can be downloaded for free from www.jedit.org. Another popular cross-platform
programming editor is Atom, available from atom.io. To work on your programs, you
can open a command line window and cd into the working directory where you will
store your source code files. Start up your text editor program, such as by double-
clicking its icon or selecting it from a Start menu. Type your code into the editor
window, or open an existing source code file that you want to modify. Save the file into
your working directory. Remember that the name of a Java source code file must end
in “.java”, and the rest of the file name must match the name of the class that is defined
in the file. Once the file is saved in your working directory, go to the command window
and use the javac command to compile it, as discussed above. If there are syntax
errors in the code, they will be listed in the command window. Each error message
contains the line number in the file where the computer found the error. Go back to the
editor and try to fix one or more errors, save your changes, and then try the javac
command again. (It's usually a good idea to just work on the first few errors; sometimes
fixing those will make other errors go away.) Remember that when the javac command
finally succeeds, you will get no message at all, or possibly just some “warnings”;
warnings do not stop a program from running. Then you can use the java command
to run your program, as described above. Once you’ve compiled the program, you can
run it as many times as you like without recompiling it. That’s really all there is to it:
Keep both editor and command-line window open. Edit, save, and compile until you
have eliminated all the syntax errors. (Always remember to save the file before
compiling it—the compiler only sees the saved file, not the version in the editor
window.) When you run the program, you might find that it has semantic errors that

53

cause it to run incorrectly. In that case, you have to go back to the edit/save/compile
loop to try to find and fix the problem.

Integrated Development Environment
Eclipse IDE

In an Integrated Development Environment, everything you need to create, compile,
and run programs is integrated into a single package, with a graphical user interface
that will be familiar to most computer users. There are a number of different IDEs for
Java program development, ranging from fairly simple wrappers around the JDK to
highly complex applications with a multitude of features. For a beginning programmer,
there is a danger in using an IDE, since the difficulty of learning to use the IDE, on top
of the difficulty of learning to program, can be daunting. IDEs have features that are
very useful even for a beginning programmer, although a beginner will want to ignore
many of their advanced features.

This subsection tells you how to use it for programs that use only standard Java
classes. You can download an Eclipse IDE from eclipse.org. When | install Eclipse, |
get the “Eclipse IDE for Java Developers” package (not the “installer”) from this web
page: https://www.eclipse.org/downloads/packages/

For Windows and Linux, the download is a compressed archive file. You can
simply extract the contents of the archive and place the resulting directory wherever
you want it on your computer. You will find the Eclipse application in that directory,
and you can start Eclipse by double-clicking the application icon. For Mac OS, the
download is a .dmg file that contains the Eclipse application. You can open the .dmg
file and drag the application to any location that you prefer (probably the Applications
folder). Eclipse is a free program. It is itself written in Java. Recent versions of Eclipse
include a copy of an OpenJDK (although Eclipse calls it a JRE), so you can use it
without downloading a separate JDK. The first time you start Eclipse, you will be asked
to specify a workspace, which is the directory where your work will be stored. You can
accept the default name, or provide one of your own. You can use multiple workspaces
and select the one that you want to use at startup. When a new workspace is first
opened, the Eclipse window will be filled by a large “Welcome” screen that includes
links to extensive documentation and tutorials. You should close this screen, by
clicking the “X” next to the word “Welcome”; you can get back to it later by choosing
“Welcome” from the “Help” menu.

The Eclipse GUI consists of one large window that is divided into several
sections. Each section contains one or more views. For example, a view can be a text
editor, it can be a place where a program can do I/O, or it can contain a list of your
projects. If there are several views in one section of the window, then there will be tabs
at the top of the section to select the view that is displayed in that section. This will
happen, for example, if you have several editor views open at the same time.

54

https://www.eclipse.org/downloads/packages/

Each view displays a different type of information. The whole set of views in the
window is called a perspective. Eclipse uses different perspectives, that is, different
sets of views of different types of information, for different tasks. For compiling and
running programs, the only perspective that you will need is the “Java Perspective,”
which is the default. As you become more experienced, you might want to use the
“‘Debug Perspective,” which has features designed to help you find semantic errors in
programs. There are small buttons in the Eclipse toolbar that can be used to switch
between perspectives.

The Java Perspective includes a large area in the center of the window that
contains text editor views. This is where you will create and edit your programs. To the
left of this is the Package Explorer view, which will contain a list of your Java projects
and source code files. To the right are one or more other views that you might or might
not find useful; | usually close them by clicking the small “X” next to the name of each
one. Several other views that will certainly be useful appear under different tabs in a
section of the window below the editing area. If you accidently close one of the
important views, such as the Package Explorer, you can get it back by selecting it from
the “Show View” submenu of the “Window” menu. You can also reset the whole
window to its default contents by selecting “Reset Perspective” from the “Window”
menu.

To do any work in Eclipse, you need a project . To start a Java project, go to
the “New” submenu in the “File” menu, and select the “Java Project” command. In the
window that pops up, you will need to fill in a “Project Name,” which can be anything
you like.

After entering a project name, and changing the options, if necessary, click the
“Finish” button. Remember to say “Don’t Create” if Eclipse asks you whether you want
to create “module-info.java”. The project should appear in the “Package Explorer” view
on the left side of the Eclipse window. Click on the small triangle or plus sign next to
the project name to see the contents of the project. Assuming that you use the default
settings, there should be a directory named “src,” which is where your Java source
code files will go. The project also contains the “JRE System Library”. This is the
collection of standard built-in classes that come with Java;

To run any of the sample Java programs from this textbook, you need to copy
the source code file into your Eclipse Java project. You can copy-and-paste it into the
Eclipse window. (Right-click the file icon (or control-click on Mac OS); select “Copy”
from the pop-up menu; then right-click the project’s src folder in the Eclipse window,
and select “Paste”. Be sure to paste it into the src folder, not into the project itself; files
outside the src folder are not treated as Java source code files.) Alternatively, you can
try dragging the file icon from a file browser window onto the src folder in the Eclipse
window.

Once a Java program is in the project, you can open it in an editor by double-
clicking the file name in the “Package Explorer” view. To run the program, right-click
55

in the editor window, or on the file name in the Package Explorer view (or control-click
in Mac OS). In the menu that pops up, go to the “Run As” submenu, and select “Java
Application”. The program will be executed. If the program writes to standard output,
the output will appear in the “Console” view, in the area of the Eclipse window below
the editing area. If the program uses Scanner for input, you will have to type the
required input into the “Console” view—click the “Console” view before you start typing
so that the characters that you type will be sent to the correct part of the window. (For
an easier way to run a program, find and click the small “Run” button in Eclipse’s tool
bar. This will run either the program in the editor window, the program selected in the
Package Explorer view, or the program that was run most recently, depending on
context.) Note that when you run a program in Eclipse, it is compiled automatically.
There is no separate compilation step. You can have more than one program in the
same Eclipse project, or you can create additional projects to organize your work
better.

To create a new Java program in Eclipse, you must create a new Java class.
To do that, right-click the Java project name in the “Project Explorer” view. Go to the
“‘New” submenu of the popup menu, and select “Class”. (Alternatively, there is a small
icon in the toolbar at the top of the Eclipse window that you can click to create a new
Java class.) In the window that opens, type in the name of the class that you want to
create. The class name must be a legal Java identifier. Note that you want the name
of the class, not the name of the source code file, so don’t add “.java” at the end of the
name. The window also includes an input box labeled “Package” where you can
specify the name of a package to contain the class. Most examples in this book use
the “default package,” but you can create your own programs in any package. To use
the default package, the “Package” input box should be empty. Finally, click the
“Finish” button to create the class. The class should appear inside the “src” folder, in
a folder corresponding to its package. The new file should automatically open in the
editing area so that you can start typing your program.

Eclipse has several features that aid you as you type your code. It will underline
any syntax error with a jagged red line, and in some cases will place an error marker
in the left border of the edit window. If you hover the mouse cursor over the error
marker or over the error itself, a description of the error will appear. Note that you do
not have to get rid of every error immediately as you type; many errors will go away
as you type in more of the program!

If an error marker displays a small “light bulb,” Eclipse is offering to try to fix the
error for you. Click the light bulb or simply hover your mouse over the actual error to
get a list of possible fixes, then click the fix that you want to apply. For example, if you
use an undeclared variable in your program, Eclipse will offer to declare it for you. You
can actually use this error-correcting feature to get Eclipse to write certain types of
code for you! Unfortunately, you'll find that you won’t understand a lot of the proposed

56

fixes until you learn more about the Java language, and it is not a good idea to apply
a fix that you don’t understand often that will just make things worse in the end.

Eclipse will also look for spelling errors in comments and will underline them
with jagged red lines. Hover your mouse over the error to get a list of possible correct
spellings.

Another essential Eclipse feature is content assist. Content assist can be
invoked by typing Control-Space. It will offer possible completions of whatever you are
typing at the moment. For example, if you type part of an identifier and hit Control-
Space, you will get a list of identifiers that start with the characters that you have typed;
use the up and down arrow keys to select one of the items in the list, and press Return
or Enter. (You can also click an item with the mouse to select it, or hit Escape to
dismiss the list.) If there is only one possible completion when you hit Control-Space,
it will be inserted automatically. By default, Content Assist will also pop up
automatically, after a short delay, when you type a period or certain other characters.
For example, if you type “class-name” and pause for just a fraction of a second, you
will get a list of all the subroutines in the class. You can disable it in the Eclipse
Preferences. (Look under Java / Editor / Content Assist, and turn off the “Enable auto
activation” option.) You can still call up Code Assist manually with Control-Space.

Once you have an error-free program, you can run it as described above. If you
find a problem when you run i, it's very easy to go back to the editor, make changes,
and run it again.

BlueJ

BlueJ is a small IDE that is designed specifically for people who are learning to
program. It is much less complex than Eclipse, but it does have some features that
make it useful for education. BlueJ can be downloaded from bluej.org. There are
installers available for Windows, MacOS, and Windows. As of August 2021, the
installers include OpenJDK 11 as well as JavaFX 11, so you will not need to do any
additional downloading or configuration. There is also a generic installer that requires
you to download a JDK and JavaFX separately. When you run the generic installer,
BlueJ will ask you to input the locations of the JDK and JavaFX. (The current version
of the generic installer in July 2021 did not work for me with OpenJDK 16 but did work
with OpenJDK 15. It will certainly work with OpenJDK 11.)

In Blued, you can begin a project with the “New Project” command in the
“Project” menu. A BlueJ project is simply a folder. When you create a project, you will
have to select a folder name that does not already exist. The folder will be created and
a window will be opened to show the contents of the folder. Files are shown as icons
in the BlueJ window. You can drag .java files from the file system onto that window to
add files to the project; they will be copied into the project folder as well as shown in

57

the window. You can also copy files directly into the project folder, but Blued won’t see
them until the next time you open the project. When you restart BlueJ, it should show
the project that you were working on most recently, but you can open any project with
a command from the “Project” menu.

There is a button in the project window for creating a new class. An icon for the
class is added to the window, and a .java source code file is created in the project
folder. The file is not automatically opened for editing. To edit a file, double-click its
icon in the project window. An editor will be opened in a separate window. (A newly
created class will contain some default code that you probably don’t want; you can
erase it and add a main() routine instead.) The BlueJ editor does not show errors as
you type. Errors will be reported when you compile the program. Also, it does not offer
automatic fixes for errors. It has a less capable version of Eclipse’s Content Assist,
which seems only to work for getting a list of available subroutines in a class or object;
call up the list by hitting Control-Space after typing the period following the name of a
class or object.

An editor window contains a button for compiling the program in the window.
There is also a compile button in the project window, which compiles all the classes in
the project.

To run a program, it must already be compiled. Right-click the icon of a
compiled program. In the menu that pops up, you will see “void main(String[] args)”.
Select that option from the menu to run the program. Just click “OK” in the dialog box
that pops up. A separate window will open for input/output.

One of the neatest features of BlueJ is that you can actually use it to run any
subroutine, not just main. If a class contains other subroutines, you will see them in
the list that you get by right-clicking its icon. A pop-up dialog allows you to enter any
parameters required by the routine, and if the routine is a function, you will get another
dialog box after the routine has been executed to tell you its return value. This allows
easy testing of individual subroutines. Furthermore, you can also use BlueJ to create
new objects from a class. An icon for the object will be added at the bottom of the
project window, and you can right-click that icon to get a list of subroutines in the
object.

2.9 LetUs Sum Up

In this unit learner you have learned about the Basic Java Application, Variables
and the Primitive Types, Strings, Classes, Objects, and Subroutines. We have also
learned how to use text Input and Output and details of Expressions. We have
discussed three programming environments i.e. command line, eclipse and BlueJ

58

2.10 Further Reading

N =

“‘Java 2: The Complete Reference” by Herbert Schildt, McGraw Hill Publications.
“Effective Java” by Joshua Bloch, Pearson Education.

2.11 Assignments

7.
8.
9.

Briefly explain what is meant by the syntax and the semantics of a programming
language. Give an example to illustrate the difference between a syntax error and
a semantics error.

What does the computer do when it executes a variable declaration statement.
Give an example.

What is a type, as this term relates to programming?

What is the boolean type? Where are boolean values used? What are its possible
values?

Give the meaning of each of the following Java operators: ++, &&, !=

Explain what is meant by an assignment statement, and give an example. What
are assignment statements used for?

What is meant by precedence of operators?

What is a literal?

In Java, classes have two fundamentally different purposes. What are they?

10. Explain why the value of the expression 2 + 3 + "test" is the string "5Stest" while the

value of the expression "test” + 2 + 3 is the string "test23". What is the value of
"test"+2*37?

11.What is the purpose of an import directive, such as import java.util.Scanner?
12.Write a complete program that asks the user to enter the number of “widgets” they

want to buy and the cost per widget. The program should then output the total cost
for all the widgets. Use System.out.printf to print the cost, with two digits after the
decimal point. You do not need to include any comments in the program.

59

Unit 3: Programming in the 3
Small II: Control

Unit Structure

3.1 Learning Objectives
3.2 Introduction

3.3 Block

3.4 The if statements

3.5 The switch statements
3.6 The for statement

3.7 While and do-while
3.8 Introduction to Exceptions and try..catch
3.9 Introduction to Arrays
3.10 LetUs Sum Up

3.11 Further Reading

3.12 Assignments

60

3.1 Learning Objectives

After studying this unit, learner should be able to understand

e How to build complex programs with more interesting behaviour.
e How to use two types of control structures, loops and branches
e How to use one of the most common data structures: arrays.

3.2 Introduction

The basic building blocks of programs—uvariables, expressions, assignment
statements, and subroutine call statements—were covered in the previous chapter.
Starting with this chapter, we look at how these building blocks can be put together to
build complex programs with more interesting behavior.

Since we are still working on the level of “programming in the small” in this
chapter, we are interested in the kind of complexity that can occur within a single
subroutine. On this level, complexity is provided by control structures. The two types
of control structures, loops and branches, can be used to repeat a sequence of
statements over and over or to choose among two or more possible courses of action.
Java includes several control structures of each type, and we will look at each of them
in some detail.

Program complexity can be seen not just in control structures but also in data
structures. A data structure is an organized collection of data, chunked together so
that it can be treated as a unit. This chapter includes an introduction to one of the most
common data structures: arrays.

The ability of a computer to perform complex tasks is built on just a few ways
of combining simple commands into control structures. In Java, there are just six such
structures that are used to determine the normal flow of control in a program and, in
fact, just three of them would be enough to write programs to perform any task. The
six control structures are: the block, the while loop, the do..while loop, the for loop, the
if statement , and the switch statement . Each of these structures is considered to be
a single “statement,” but a structured statement that can contain one or more other
statements inside itself.

3.3 Blocks

The block is the simplest type of structured statement. Its purpose is simply to
group a sequence of statements into a single statement. The format of a block is:

61

<statements>

}

That is, it consists of a sequence of statements enclosed between a pair of braces, “{’
and “}". In fact, it is possible for a block to contain no statements at all; such a block is
called an empty block, and can actually be useful at times. An empty block consists of
nothing but an empty pair of braces. Block statements usually occur inside other
statements, where their purpose is to group together several statements into a unit.
However, a block can be legally used wherever a statement can occur. There is one
place where a block is required: As you might have already noticed in the case of the
main subroutine of a program, the definition of a subroutine is a block, since it is a
sequence of statements enclosed inside a pair of braces.

| should probably note again at this point that Java is what is called a free-
format language. There are no syntax rules about how the language has to be
arranged on a page. So, for example, you could write an entire block on one line if you
want. But as a matter of good programming style, you should lay out your program on
the page in a way that will make its structure as clear as possible. In general, this
means putting one statement per line and using indentation to indicate statements that
are contained inside control structures. This is the format that | will use in my
examples.

Here are two examples of blocks:

System.out.print ("The answer is ");
System.out.println (ans);

}

// This block exchanges the values of x and y
{
int temp; // A temporary variable for use in this block.
temp = x; // Save a copy of the value of x in temp.
x = y; // Copy the value of y into x.
y = temp; // Copy the value of temp into vy.

In the second example, a variable, temp, is declared inside the block. This is perfectly
legal, and it is good style to declare a variable inside a block if that variable is used
nowhere else but inside the block. A variable declared inside a block is completely
inaccessible and invisible from outside that block. When the computer executes the
variable declaration statement, it allocates memory to hold the value of the variable
(at least conceptually). When the block ends, that memory is discarded (that is, made
available for reuse). The variable is said to be local to the block. There is a general
concept called the “scope” of an identifier. The scope of an identifier is the part of the
program in which that identifier is valid. The scope of a variable defined inside a block

62

iIs limited to that block, and more specifically to the part of the block that comes after
the declaration of the variable.

3.4 The if statements

Conditional statements are used to run block of java code based on a condition. The
java has various ways to execute conditional statements. They are using if, if...else, if
else ladder, nested if...else, and switch...case.

if...else and its variations

The syntax of if...else is,

if (condition)

{

Code block
}
else
{

Code block

}
We can omit the braces ({...}), if the code block has only one program statement.

if...else statements of java are identical to C/C++. We can use if without else. For
example, to check whether a is even we can use following statements.

if (a%2==0)
System.out.println (at+” is even”);

We can also use if...else together. For example, to check whether a is even or
odd we can use following code.

if (a%2==0)

System.out.println (a+” is even”);
else

System.out.println (a+” is odd”);

If we use if...else inside if or else block, it will be nested if... else. For example
to find out largest of three numbers a, b and c the following code can be used.

if (a>b)
{
if (a>c)
System.out.println(“Ya is greatest”);
else
System.out.println(“c is greatest”);
}

else

63

If (b>c)

System.out.println(“Ya is greatest”);
else

System.out.println(“c is greatest”);

}

We can also use if...else in ladder pattern. For example from current time if you
want a java program to wish “good morning”, “good afternoon”, “good evening” or
“good night”, we can use following if...else ladder.

if (current time>5 && current time<12)
System.out.println (“good morning”) ;
else if (current time>12 && current time<5)
System.out.println (“good afternoon”);
else if (current time>5 && current time<8)
System.out.println (“good evening”);
else
System.out.println (“good night”) ;

3.5 The switch statements

switch...case can be used to execute different code block for different value of input.
For example if based on input value of arithmetic operator we want to perform the
operation, we may use following code in java. In switch...case, each case should end
with break statement. And default case is match if input is not match with any case.

switch (opr)

{

case ‘+': System.out.println (atb) ;
break;

case ‘-': System.out.println (a-b);
break;

case Y*': System.out.println (a*b);
break;

case ‘/': System.out.println(a/b);
break;

case ‘%': System.out.println (a%b) ;
break;

default: System.out.println (“Invalid operation”);

Examples: A program to which reads two integers and perform the arithmetic operation

on them based on user’s choice.
import java.util.Scanner;

public class Ex if

{

public static void main(String args([])

64

int ch=0;

Scanner sc=new Scanner (System.in);
System.out.println ("Enter a:");
int a=sc.nextInt();
System.out.println ("Enter b:");
int b=sc.nextInt();

System.out.println("1. add");
System.out.println ("2. subtract");
System.out.println("3. multiply");
System.out.println("4. divide");
System.out.println ("Enter your choice:");
ch=sc.nextInt ();
if (ch!=5)
{

switch (ch)

{

case 1l: System.out.println(a+b); break;
case 2: System.out.println(a-b); break;
case 3: System.out.println(a*b); break;
case 4: System.out.println(a/b); break;
default: System.out.println("Invalid choice");

}

3.6 The for statement

In a program when we want to execute a code block more than once, we need to put
it in a loop. In java loop can be a for loop, while loop and do...while loop. The syntax
of these loop are same as C/C++. The Java 5 introduce foreach loop. It is used to
access the array or collection elements.

The for loop executes a statement or block of statements repeatedly until a condition
is matched. For loops are normally used to execute the code block for more than one
number of times. The syntax of for loop is given below.

for (initialization; test; increment)

{

statements;

We can omit the braces if for loop has only one statement. As you can see in
the syntax for loop has three parts in bracket.

e initialization is used to initialize the counter used in loop to keep track on
number of iterations. for example, int i=0 or i=0.

65

e test must be the condition which must be true to enter in the loop. If the
condition is false the loop terminates. Test is used to control the iteration count.
For example, i<10 terminates the loop when i is greater or equal to 10.

e increment is used to change value of variable used in initialization

For example, the below for loop prints “Hello” 10 times with value of i each time. The
output will print HelloO, Hellol ... Hello9.

for (int i=0;i<10;i++)
System.out.println (“Hello”+1i);

3.7 While and do-while

while and do...while loops are also used to repeatedly execute a block of Java code
until a condition is true. The syntax of these loops is same as C/C++.

The only difference between while and do...while loop is the timing of checking
the condition. The while loop checks the condition before entering the loop. If condition
is true it enters. The do...while loop first enter into the loop and check condition at the
end.

They syntax of these loops are

while (test)
{

Statements;

}
do

{

Statements;

}
while (test) ;

The example in above section can be implemented using while and do...while as
below.

int i=0;

while (1<10)

{
System.out.println (“Hello”+i);

i++;
}
OR
int i=0;
do

System.out.println (“Hello”+i) ;

66

i++;
}
while (i<10) ;

Use of continue and break in loops

In any loop, we can use break to terminate the loop and continue to skip existing
iteration and start new iteration of the loop.

We can further understand the break and continue using example.

for(int 1 = 0; i < 5; i++)
{
if (1 < 3)
System.out.println(“Hello” + i);
else
break;

In above loop the Hello will be printed for i = 0, 1 and 2. The loop terminates as soon
as (i >= 3) because we used break in else part. Here loop will be executed three times
only.

The use of continue explained in following code block.

for(int 1 = 0; 1 < 5; 1i++)
{
if (1 ==3)
continue;
else
System.out.println(“Hello” + 1);

In above example, the loop will be executed 5 times. However hello will be print only
four times. Because when i==3 we use continue that means all the statements in a
loop after continue will not be executed and next iteration is stared after increasing i.

Labeled loops

Loop can also have a loop inside it. This is called nesting of loop. When we are using
nest loop the inside loop is called inner loop and outside loop is called outer loop.
When we use break in inner loop the inner loop will be terminated. But if we want to
terminate outer loop by using break statement in inner loop, we have to used the
concept of labeled loop and continue/break with label.

For example

i=0;

while(1 < 3)

{
J = 0;
while(j < 3)
{

67

if (§==2)
break;
J++;

i++;

In above example, the inner while loop will be break when jis 2. Inner loop will
execute twice. Now if we want to break outer loop when in inner loop j is 2, we should
use following code

i=0;
outer:
while(i < 3)
{
j=0;
while(j < 3)
{
if (3==2)
break outer;
J++i
}
i++;
}
Here we have labeled outer loop with label outer: and with break w have to used label

of outer loop.
Similarly continue can also be used with labeled loop.

Example:

public class Exa?2
{
public static void main(String argsl[])
{
first: for (int 1 = 0; i < 3; 1++)
{
for (int j = 0; j< 3; Jj++)
{
if(1i == 1)
continue first;
System.out.print(" [i ="+ 1 + ", J ="+ + "] ");

}
System.out.println();
second: for (int i = 0; i < 3; i++)
{
for (int j = 0; j< 3; j++)
{
if(i == 1)
break second;
System.out.print(" [i ="+ 1 + ", J ="+ 3 + "] ");

68

3.8 Introduction to Exceptions and try..catch

In addition to the control structures that determine the normal flow of control in a
program, Java has a way to deal with “exceptional” cases that throw the flow of control
off its normal track. When an error occurs during the execution of a program, the
default behavior is to terminate the program and to print an error message. However,
Java makes it possible to “catch” such errors and program a response different from
simply letting the program crash. This is done with the try..catch statement. In this
section, we will take a preliminary and incomplete look the try..catch statement, leaving
out a lot of the rather complex syntax of this statement.

Exceptions

The term exception is used to refer to the type of event that one might want to handle
with a try..catch. An exception is an exception to the normal flow of control in the
program. The term is used in preference to “error” because in some cases, an
exception might not be considered to be an error at all. You can sometimes think of
an exception as just another way to organize a program.

Exceptions in Java are represented as objects of type Exception. Actual
exceptions are usually defined by subclasses of Exception. Different subclasses
represent different types of exceptions. We will look at only two types of exception in
this section: NumberFormatException and lllegalArgumentException.

A NumberFormatException can occur when an attempt is made to convert a
string into a number. Such conversions are done by the functions Integer.parselnt and
Double.parseDouble. Consider the function call Integer.parselnt(str) where str is a
variable of type String. If the value of str is the string "42", then the function call will
correctly convert the string into the int 42. However, if the value of str is, say, "fred",
the function call will fail because "fred" is not a legal string representation of an int
value. In this case, an exception of type NumberFormatException occurs. If nothing is
done to handle the exception, the program will crash.

An lllegalArgumentException can occur when an illegal value is passed as a
parameter to a subroutine. For example, if a subroutine requires that a parameter be
greater than or equal to zero, an lllegalArgumentException might occur when a
negative value is passed to the subroutine. How to respond to the illegal value is up
to the person who wrote the subroutine, so we can’t simply say that every illegal
parameter value will result in an lllegalArgumentException. However, it is a common
response.

try..catch

69

When an exception occurs, we say that the exception is “thrown.” For example,
we say that Integer.parselnt(str) throws an exception of type NumberFormatException
when the value of str is illegal. When an exception is thrown, it is possible to “catch”
the exception and prevent it from crashing the program. This is done with a try..catch
statement. In simplified form, the syntax for a try..catch statement can be:

try {
<statements-1>

}
catch (<exception-class-name> <variable-name>) {
<statements-2>

The <exception-class-name> could be NumberFormatException,
lllegalArgumentException, or some other exception class. When the computer
executes this try..catch statement, it executes <statements-1>, the statements inside
the try part. If no exception occurs during the execution of <statements-1>, then the
computer just skips over the catch part and proceeds with the rest of the program.
However, if an exception of type <exception-class-name> occurs

during the execution of <statements-1>, the computer immediately jumps from
the point where the exception occurs to the catch part and executes <statements-2>,
skipping any remaining statements in <statements-1>. Note that only one type of
exception is caught; if some other type of exception occurs during the execution of
<statements-1>, it will crash the program as usual.

During the execution of <statements-2>, the <variable-name> represents the
exception object, so that you can, for example, print it out. The exception object
contains information about the cause of the exception. This includes an error
message, which will be displayed if you print out the exception object.

After the end of the catch part, the computer proceeds with the rest of the
program; the exception has been caught and handled and does not crash the program.

By the way, note that the braces, { and }, are part of the syntax of the try..catch
statement. They are required even if there is only one statement between the braces.
This is different from the other statements we have seen, where the braces around a
single statement

are optional.

As an example, suppose that str is a variable of type String whose value might
or might not represent a legal real number. Then we could say:

double x;

try {
x = Double.parseDouble (str);
System.out.println("The number is " + x);

}

catch (NumberFormatException e) {
System.out.println("Not a legal number.");

70

x = Double.NaN;
}

If an error is thrown by the call to Double.parseDouble(str), then the output
statement in the try part is skipped, and the statement in the catch part is executed.
(In this example, | set x to be the value Double.NaN when an exception occurs.
Double.NaN is the special “not-a-number” value for type double.)

It's not always a good idea to catch exceptions and continue with the program.
Often that can just lead to an even bigger mess later on, and it might be better just to
let the exception crash the program at the point where it occurs. However, sometimes
it's possible to recover from an error.

3.9 Introduction to Arrays

In previous sections of this chapter, we have already covered all of Java’s
control structures. But before moving on to the next chapter, we will take preliminary
looks at two additional topics that are at least somewhat related to control structures.

This section is an introduction to arrays. Arrays are a basic and very commonly
used data structure, and array processing is often an exercise in using control
structures. The next section will introduce computer graphics and will allow you to
apply what you know about control structures in another context.

Creating and Using Arrays

A data structure consists of a number of data items chunked together so that
they can be treated as a unit. An array is a data structure in which the items are
arranged as a numbered sequence, so that each individual item can be referred to by
its position number. In Java but not in some other programming languages—all the
items must be of the same type, and the numbering always starts at zero. You will
need to learn several new terms to talk about arrays: The number of items in an array
is called the length of the array. The type of the individual items in an array is called
the base type of the array. And the position number of an item in an array is called the
index of that item.

Suppose that you want to write a program that will process the names of, say,
one thousand people. You will need a way to deal with all that data. Before you knew
about arrays, you might have thought that the program would need a thousand
variables to hold the thousand names, and if you wanted to print out all the names,
you would need a thousand print statements. Clearly, that would be ridiculous! In
reality, you can put all the names into an array. The array is represented by a single
variable, but it holds the entire list of names. The length of the array would be 1000,
since there are 1000 individual names. The base type of the array would be String

71

since the items in the array are strings. The first name would be at index O in the array,
the second name at index 1, and so on, up to the thousandth name at index 999.

The base type of an array can be any Java type, but for now, we will stick to
arrays whose base type is String or one of the eight primitive types. If the base type of
an array is int, it is referred to as an “array of ints.” An array with base type String is
referred to as an “array of Strings.” However, an array is not, properly speaking, a list
of integers or strings or other values. It is better thought of as a list of variables of type
int, or a list of variables of type String, or of some other type. As always, there is some
potential for confusion between the two uses of a variable: as a name for a memory
location and as a name for the value stored in that memory location. Each position in
an array acts as a variable. Each position can hold a value of a specified type (the
base type of the array), just as a variable can hold a value. The value can be changed
at any time, just as the value of a variable can be changed. The items in an array
really, the individual variables that make up the array—are more often referred to as
the elements of the array.

As | mentioned above, when you use an array in a program, you can use a
variable to refer to the array as a whole. But you often need to refer to the individual
elements of the array. The name for an element of an array is based on the name for
the array and the index number of the element. The syntax for referring to an element
looks, for example, like this: namelist[7]. Here, namelist is the variable that names the
array as a whole, and namelist[7] refers to the element at index 7 in that array. That
is, to refer to an element of an array, you use the array name, followed by element
index enclosed in square brackets. An element name of this form can be used like any
other variable: You can assign a value to it, print it out, use it in an expression, and so
on.

An array also contains a kind of variable representing its length. For example,
you can refer to the length of the array namelist as namelist.length. However, you
cannot assign a value to namelist.length, since the length of an array cannot be
changed.

Before you can use a variable to refer to an array, that variable must be
declared, and it must have a type. For an array of Strings, for example, the type for
the array variable would be String[], and for an array of ints, it would be int[]. In
general, an array type consists of the base type of the array followed by a pair of empty
square brackets. Array types can be used to declare variables; for example,

String[] namelist;

int[] A;
double[] prices;

and variables declared in this way can refer to arrays. However, declaring a variable
does not make the actual array. Like all variables, an array variable has to be assigned
a value before it can be used. In this case, the value is an array. Arrays have to be
created using a special syntax. (The syntax is related to the fact that arrays in Java

72

are actually objects, but that doesn’t need to concern us here.) Arrays are created with
an operator named new. Here are some examples:
namelist = new String[1000];

A = new int[5];
prices = new double[100];

The general syntax is

<array-variable> = new <base-type>[<array-length>];

The length of the array can be given as either an integer or an integer-valued
expression. For example, after the assignment statement “A = new int[5];”, A is an
array containing the five integer elements A[0], A[1], A[2], A[3], and A[4]. Also, A.length
would have the value 5. It's useful to have a picture in mind:

The statement A The array contains five
A = new int[5]; . elements, which are
creates an array Alength:| (5) referred to as
that holds five A0} 0 A[0], A[1], A[2], A[3], A[4].
elements of type A[1]: 0 Each element is a variable
int. A is a name Al2] 0 of type int. The array also
for the whole array. Al3]: 0 contains A.length, whose
Al4}: 0 value cannot be changed.

When you create an array of int, each element of the array is automatically initialized
to zero. Any array of numbers is filled with zeros when it is created. An array of boolean
is filled with the value false. And an array of char is filled with the character that has
Unicode code number zero. (For an array of String, the initial value is null, a special
value used for objects.)

Arrays and For Loops

A lot of the real power of arrays comes from the fact that the index of an element can
be given by an integer variable or even an integer-valued expression. For example, if
list is an array and i is a variable of type int, then you can use list[i] and even list[2*i+1]
as variable names. The meaning of list[i] depends on the value of i. This becomes
especially useful when we want to process all the elements of an array, since that can
be done with a for loop.

For example, to print out all the items in an array, list, we can just write

int i; // the array index
for (1 = 0; i < list.length; i++) {
System.out.println(list[i])

The first time through the loop, i is 0, and list[i] refers to list[0]. So, it is the value stored
in the variable list[0] that is printed. The second time through the loop, i is 1, and the
73

value stored in list[1] is printed. If the length of the list is 5, then the loop ends after
printing the value of list[4], when i becomes equal to 5 and the continuation condition
“i < list.length” is no longer true. This is a typical example of using a loop to process
an array.

Let’s look at a few more examples. Suppose that A is an array of double, and we want
to find the average of all the elements of the array. We can use a for loop to add up
the numbers, and then divide by the length of the array to get the average:

double total; // The sum of the numbers in the array.
double average; // The average of the numbers.
int i; // The array index.
total = 0;
for (i =0; i < A.length; i++) {
total = total + A[i]; // Add element number i to the total.

}
average = total / A.length; // A.length is the number of items

Another typical problem is to find the largest number in the array A. The strategy is to
go through the array, keeping track of the largest number found so far. We'll store the
largest number found so far in a variable called max. As we look through the array,
whenever we find a number larger than the current value of max, we change the value
of max to that larger value.

After the whole array has been processed, max is the largest item in the array overall.
The only question is, what should the original value of max be? One possibility is to
start with max equal to A[0], and then to look through the rest of the array, starting
from A[1], for larger items:

double max; // The largest number seen so far.
max = A[0]; // At first, the largest number seen is A[0].
int i;
for (1 =1; i < A.length; i++) {

if (A[i] > max) {

max = A[i];

}
}
// at this point, max is the largest item in A
Sometimes, you only want to process some elements of the array. In that case, you
can use an if statement inside the for loop to decide whether or not to process a given
element. Let’s look at the problem of averaging the elements of an array, but this time,
suppose that we only want to average the non-zero elements. In this case, the number
of items that we add up can be less than the length of the array, so we will need to

keep a count of the number of items added to the sum:

double total; // The sum of the non-zero numbers in the array.
int count; // The number of non-zero numbers.

double average; // The average of the non-zero numbers.

int i;
total
count

0;
0;

74

for (i = 0; i < A.length; i++) {

if (A[i] !'= 0) {
total = total + A[i]; // Add element to the total
count = count + 1; // and count it.

}
}
if (count == 0) {
System.out.println ("There were no non-zero elements.");

}
else {
average = total / count; // Divide by number of items
System.out.printf ("Average of %d elements is %1.5g%n", count, average);

}

Two-dimensional Arrays

The arrays that we have considered so far are “one-dimensional.” This means that the
array consists of a sequence of elements that can be thought of as being laid out along
a line. It is also possible to have two-dimensional arrays, where the elements can be
laid out in a rectangular grid. In a two-dimensional, or “2D,” array, the elements can
be arranged in rows and columns. Here, for example, is a 2D array of int that has five
rows and seven columns:

0 1 2 3 - 5 6
131 7 133154] -51]-11]092
-3 0 8 142 118] 0 | 67
44 178 1 90 | 79 | -5 | 72] 22

43 1 -6 | 17 J100| 1 J-12] 12
2 0O | 58 | 58] 36 | 21 | 87

= W N = O

This 5-by-7 grid contains a total of 35 elements. The rows in a 2D array are numbered
0,1, 2,...,uptothe number of rows minus one. Similarly, the columns are numbered
from zero up to the number of columns minus one. Each individual element in the array
can be picked out by specifying its row number and its column number. (The illustration
shown here is not what the array actually looks like in the computer’'s memory, but it
does show the logical structure of the array.)

In Java, the syntax for two-dimensional arrays is similar to the syntax for one-
dimensional arrays, except that an extra index is involved, since picking out an
element requires both a row number and a column number. For example, if A is a 2D
array of int, then A[3][2] would be the element in row 3, column 2. That would pick out
the number 17 in the array shown above.

The type for A would be given as int[][], with two pairs of empty brackets. To declare
the array variable and create the array, you could say,

int[][] A;

A = new int[5][7];

75

The second line creates a 2D array with 5 rows and 7 columns. Two-dimensional
arrays are often processed using nested for loops. For example, the following code
segment will print out the elements of A in neat columns:
int row, col; // loop-control-variables for accessing rows and columns in A
for (row = 0; row < 5; row++) {

for (col = 0; col < 7; col++) {

System.out.printf ("%74d", Alrow] [col]);

}
System.out.println();

The base type of a 2D array can be anything, so you can have arrays of type double[
I[1, String[][], and so on.

There are some natural uses for 2D arrays. For example, a 2D array can be used to
store the contents of the board in a game such as chess or checkers. But sometimes
two-dimensional arrays are used in problems in which the grid is not so visually
obvious. Consider a company that owns 25 stores. Suppose that the company has
data about the profit earned at each store for each month in the year 2018. If the stores
are numbered from O to 24, and if the twelve months from January 2018 through
December 2018 are numbered from 0 to 11, then the profit data could be stored in an
array, profit, created as follows:

double[][] profit;
profit = new double[25][12];

profit[3][2] would be the amount of profit earned at store number 3 in March, and more
generally, profitfstoreNum][monthNum] would be the amount of profit earned in store
number storeNum in month number monthNum (where the numbering, remember,
starts from zero).

Let’'s assume that the profit array has already been filled with data. This data
can be processed in a lot of interesting ways. For example, the total profit for the
company for the whole year from all its stores—can be calculated by adding up all the
entries in the array:
double totalProfit; // Company’s total profit in 2018.
int store, month; // variables for looping through the stores and the months
totalProfit = 0;
for (store = 0; store < 25; store++) {

for (month = 0; month < 12; month++)
totalProfit += profit[store] [month];

Sometimes it is necessary to process a single row or a single column of an array, not
the entire array. For example, to compute the total profit earned by the company in
December, that is, in month number 11, you could use the loop:

76

double decemberProfit;
int storeNum;

0.0;
0; storeNum < 25; storeNum++) {
decemberProfit += profit[storeNum] [11];

decemberProfit

for (storeNum
}

Two-dimensional arrays are sometimes useful, but they are much less common than
one-dimensional arrays. Java actually allows arrays of even higher dimension, but
they are only rarely encountered in practice.

3.10 Let Us Sum Up

In this unit we have learned about how the basic building blocks of programs can be
put together to build complex programs with more interesting behavior. We have
discussed the two types of control structures, loops and branches, that can be used
to repeat a sequence of statements over and over or to choose among two or more
possible courses of action. We have looked at each of them in some detail. We have
also get an introduction to one of the most common data structures: arrays.

3.11 Further Reading

1. “Java 2: The Complete Reference” by Herbert Schildt, McGraw Hill Publications.
2. “Effective Java” by Joshua Bloch, Pearson Education.

3.12 Assignments

1. What is a block statement? How are block statements used in Java programs?

2. What is the main difference between a while loop and a do..while loop?

3. Write a for loop that will print out all the multiples of 3 from 3 to 36, thatis: 36 9 12
1518 21 24 27 30 33 36.

4. Write a Java program to ask the user to enter an integer, read the user’s response,
and tell the user whether the number entered is even or odd.

5. Suppose that s1 and s2 are variables of type String, whose values are expected to
be string representations of values of type int. Write a code segment that will
compute and print the integer sum of those values, or will print an error message
if the values cannot successfully be converted into integers. (Use a try..catch
statement.)

6. Show the exact output that would be produced by the following main() routine:
public static void main(String[] args) {

int N;

N =1;

while (N <= 32) {
N =2 * N;

System.out.println (N);

77

7. Show the exact output produced by the following main() routine:

public static void main(String[] args) {

int x,vy;

x = 5;

y = 1;

while (x > 0) {
x =x - 1;
y =y *x

System.out.println(y);

}
8. What output is produced by the following program segment? Why?

String name;

int i;

boolean startWord;

name = "Himanshu N. Patel";

startWord = true;

for (i = 0; i < name.length(); i++) {

if (startWord)
System.out.println (name.charAt(i));
if (name.charAt (i) == " ')
startWord = true;
else
startWord = false;

}
9. Suppose that numbers is an array of type int[]. Write a code segment that will

count and output the number of times that the number 42 occurs in the array.

10.Define the range of an array of numbers to be the maximum value in the array
minus the minimum value. Suppose that raceTimes is an array of type double][].
Write a code segment that will find and print the range of raceTimes.

78

Unit 4. Programming in the 4
Large I: Subroutines

Unit Structure

4.1 Learning Objectives
4.2 Introduction

4.3 Black Boxes

4.4 Static Subroutines and Static Variables
45 Parameters

4.6 Return Values

4.7 Lambda Expressions
4.8 APIs and Packages
49 LetUs Sum Up

4.10 Further Reading

4.11 Assignments

79

4.1 Learning Objectives

After studying this unit, learner should be able to understand

e How to break up a complex program into manageable pieces called
subroutines.

e static subroutines.

e Parameters and

e Return values

4.2 Introduction

One way to break up a complex program into manageable pieces is to use
subroutines. A subroutine consists of the instructions for carrying out a certain task,
grouped together and given a name. Elsewhere in the program, that name can be
used as a stand-in for the whole set of instructions. As a computer executes a program,
whenever it encounters a subroutine name, it executes all the instructions necessary
to carry out the task associated with that subroutine.

Subroutines can be used over and over, at different places in the program. A
subroutine can even be used inside another subroutine. This allows you to write simple
subroutines and then use them to help write more complex subroutines, which can
then be used in turn in other subroutines. In this way, very complex programs can be
built up step-by-step, where each step in the construction is reasonably simple.

Subroutines in Java can be either static or non-static. This chapter covers static
subroutines. Non-static subroutines, which are used in true object-oriented
programming, will be covered in the next chapter.

4.3 Black Boxes

A subroutine consists of instructions for performing some task, chunked
together and given a name. “Chunking” allows you to deal with a potentially very
complicated task as a single concept. Instead of worrying about the many, many steps
that the computer might have to go though to perform that task, you just need to
remember the name of the subroutine. Whenever you want your program to perform
the task, you just call the subroutine. Subroutines are a major tool for dealing with
complexity.

A subroutine is sometimes said to be a “black box” because you can’t see
what’s “inside” it (or, to be more precise, you usually don’t want to see inside i,
because then you would have to deal with all the complexity that the subroutine is
meant to hide). Of course, a black box that has no way of interacting with the rest of
the world would be pretty useless. A black box needs some kind of interface with the
rest of the world, which allows some interaction between what'’s inside the box and

80

what’s outside. A physical black box might have buttons on the outside that you can
push, dials that you can set, and slots that can be used for passing information back
and forth. Since we are trying to hide complexity, not create it, we have the first rule of
black boxes:

The interface of a black box should be fairly straight-forward,
well-defined, and easy to understand.

Are there any examples of black boxes in the real world? Yes; in fact, you are
surrounded by them. Your television, your car, your mobile phone, your refrigerator....
You can turn your television on and off, change channels, and set the volume by using
elements of the television’s interface on/off switch, remote control, don’t forget to plug
in the power without understanding anything about how the thing actually works. The
same goes for a mobile phone, although the interface in that case is a lot more
complicated.

Now, a black box does have an inside—the code in a subroutine that actually
performs the task, or all the electronics inside your television set. The inside of a
black box is called its implementation. The second rule of black boxes is that:

To use a black box, you shouldn’t need to know anything about its
implementation; all you need to know is its interface.

In fact, it should be possible to change the implementation, as long as the
behavior of the box, as seen from the outside, remains unchanged. For example, when
the insides of TV sets went from using vacuum tubes to using transistors, the users of
the sets didn’t need to know about it or even know what it means. Similarly, it should
be possible to rewrite the inside of a subroutine, to use more efficient code for
example, without affecting the programs that use that subroutine.

Of course, to have a black box, someone must have designed and built the
implementation in the first place. The black box idea works to the advantage of the
implementor as well as the user of the black box. After all, the black box might be used
in an unlimited number of different situations. The implementor of the black box doesn’t
need to know about any of that. The implementor just needs to make sure that the box
performs its assigned task and interfaces correctly with the rest of the world. This is
the third rule of black boxes:

The implementor of a black box should not need to know anything about
the larger systems in which the box will be used.

In a way, a black box divides the world into two parts: the inside (implementation) and
the outside. The interface is at the boundary, connecting those two parts.

You should keep in mind that subroutines are not the only example of black boxes in

programming. For example, a class is also a black box. We'll see that a class can have
a “public” part, representing its interface, and a “private” part that is entirely inside its
hidden implementation. All the principles of black boxes apply to classes as well as to
subroutines.

4.4 Static Subroutines and Static Variables

81

Every subroutine in Java must be defined inside some class. This makes Java
rather unusual among programming languages, since most languages allow free-
floating, independent subroutines. One purpose of a class is to group together related
subroutines and variables. Perhaps the designers of Java felt that everything must be
related to something. As a less philosophical motivation, Java’s designers wanted to
place firm controls on the ways things are named, since a Java program potentially
has access to a huge number of subroutines created by many different programmers.
The fact that those subroutines are grouped into named classes (and classes are
grouped into named “packages,” as we will see later) helps control the confusion that
might result from so many different names.

There is a basic distinction in Java between static and non-static subroutines.
A class definition can contain the source code for both types of subroutine, but what’s
done with them when the program runs is very different. Static subroutines are easier
to understand: In a running program, a static subroutine is a member of the class itself.
Non-static subroutine definitions, on the other hand, are only there to be used when
objects are created, and the subroutines themselves become members of the objects.
Non-static subroutines only become relevant when you are working with objects. The
distinction between static and non-static also applies to variables and to other things
that can occur in class definitions. This chapter will deal with static subroutines and
static variables almost exclusively. We’'ll turn to non-static
stuff and to object-oriented programming in the next chapter.

A subroutine that is in a class or object is often called a method, and “method”
is the term that most people prefer for subroutines in Java. | will start using the term
“‘method” occasionally, but | will continue to prefer the more general term “subroutine”
in this chapter, at least for static subroutines. However, you should start thinking of the
terms “method” and “subroutine” as being essentially synonymous as far as Java is
concerned. Other terms that you might see used to refer to subroutines are
“procedures” and “functions.” (I generally use the term “function” only for subroutines
that compute and return a value, but in some programming languages, it is used to
refer to subroutines in general.)

Subroutine Definitions

A subroutine must be defined somewhere. The definition has to include the
name of the subroutine, enough information to make it possible to call the subroutine,
and the code that will be executed each time the subroutine is called. A subroutine
definition in Java takes the form:

<modifiers> <return-type> <subroutine-name> (<parameter-list>) {
<statements>

}

The <statements> between the braces, { and }, in a subroutine definition make
up the body of the subroutine. These statements are the inside, or implementation
part, of the “black box,” as discussed in the previous section. They are the instructions
that the computer executes when the method is called.

82

The <modifiers> that can occur at the beginning of a subroutine definition are
words that set certain characteristics of the subroutine, such as whether it is static or
not. The modifiers that you've seen so far are “static’ and “public”. There are only
about a half-dozen possible modifiers altogether.

If the subroutine is a function, whose job is to compute some value, then the
<return-type> is used to specify the type of value that is returned by the function. It
can be a type name such as String or int or even an array type such as double][]. If
the subroutine is not a function, then the <return-type> is replaced by the special value
void, which indicates that no value is returned. The term “void” is meant to indicate
that the return value is empty or non-existent.

Finally, we come to the <parameter-list> of the method. Parameters are part of
the interface of a subroutine. They represent information that is passed into the
subroutine from outside, to be used by the subroutine’s internal computations. For a
concrete example, imagine a class named Television that includes a method named
changeChannel(). The immediate question is: What channel should it change to? A
parameter can be used to answer this question. If a channel number is an integer, the
type of the parameter would be int, and the declaration of the changeChannel()
method might look like

public void changeChannel (int channelNum) { ... }

This declaration specifies that changeChannel() has a parameter named
channelNum of type int. However, channelNum does not yet have any particular value.
A value for channelNum is provided when the subroutine is called; for example:
changeChannel(17); The parameter list in a subroutine can be empty, or it can consist
of one or more parameter declarations of the form <type> <parameter-name>. If there
are several declarations, they are separated by commas. Note that each declaration
can name only one parameter. For example, if you want two parameters of type
double, you have to say “double x, double y”, rather than “double x, y”’. Parameters
are covered in more detail in the next section.

Here are a few examples of subroutine definitions, leaving out the statements
that define what the subroutines do:

public static void playGame () {
// "public" and "static" are modifiers; "void" is the
// return-type; "playGame" is the subroutine-name;
// the parameter-list is empty.
. // Statements that define what playGame does go here.
}

int getNextN (int N) {
// There are no modifiers; "int" is the return-type;
// "getNextN" is the subroutine-name; the parameter-list
// includes one parameter whose name is "N" and whose
// type is "int".
. // Statements that define what getNextN does go here.
}

83

static boolean lessThan (double x, double y) {
// "static" is a modifier; "boolean" is the
// return-type; "lessThan" is the subroutine-name;
// the parameter-list includes two parameters whose names are
// "x" and "y", and the type of each of these parameters
// 1s "double".
. . // Statements that define what lessThan does go here.
}
In the second example given here, getNextN is a non-static method, since its
definition does not include the modifier “static’ and so it's not an example that we
should be looking at in this chapter! The other modifier shown in the examples is
“public”. This modifier indicates that the method can be called from anywhere in a
program, even from outside the class where the method is defined. There is another
modifier, “private”, which indicates that the method can be called only from inside the
same class. The modifiers public and private are called access specifiers. If no access
specifier is given for a method, then by default, that method can be called from
anywhere in the package that contains the class, but not from outside that package.
There is one other access modifier, protected.

Note, by the way, that the main() routine of a program follows the usual syntax
rules for a subroutine. In

public static void main(String[] args) { ... }

the modifiers are public and static, the return type is void, the subroutine name
is main, and the parameter list is “String[] args”. In this case, the type for the parameter
is the array type String|[].

You've already had some experience with filling in the implementation of a
subroutine. In this chapter, you’ll learn all about writing your own complete subroutine
definitions, including the interface part.

Calling Subroutines

When you define a subroutine, all you are doing is telling the computer that the
subroutine exists and what it does. The subroutine doesn’t actually get executed until
it is called. (This is true even for the main() routine in a class—even though you don’t
call it, it is called by the system when the system runs your program.) For example,
the playGame() method given as an example above could be called using the following
subroutine call statement:

playGame () ;

This statement could occur anywhere in the same class that includes the definition of
playGame(), whether in a main() method or in some other subroutine. Since
playGame() is a public method, it can also be called from other classes, but in that
case, you have to tell the computer which class it comes from. Since playGame() is a
static method, its full name includes the name of the class in which it is defined. Let’s
say, for example, that playGame() is defined in a class named Poker. Then to call
playGame() from outside the Poker class, you would have to say Poker.playGame();

84

The use of the class name here tells the computer which class to look in to find the
method. It also lets you distinguish between Poker.playGame() and other potential
playGame() methods defined in other classes, such as Roulette.playGame() or
Blackjack.playGame().

More generally, a subroutine call statement for a static subroutine takes the

form
<subroutine-name> (<parameters>);

if the subroutine that is being called is in the same class, or

<class-name>.<subroutine-name> (<parameters>) ;

if the subroutine is defined elsewhere, in a different class. (Non-static methods belong
to objects rather than classes, and they are called using objects instead of class
names. More on that later.) Note that the parameter list can be empty, as in the
playGame() example, but the parentheses must be there even if there is nothing
between them. The number of parameters that you provide when you call a subroutine
must match the number specified in the parameter list in the subroutine definition, and
the types of the parameters in the call statement must match the types in the
subroutine definition.

Member Variables

A class can include other things besides subroutines. In particular, it can also include
variable declarations. Of course, you can declare variables inside subroutines. Those
are called local variables. However, you can also have variables that are not part of
any subroutine. To distinguish such variables from local variables, we call them
member variables, since they are members of a class. Another term for them is global
variable.

Just as with subroutines, member variables can be either static or non-static.
In this chapter, we’ll stick to static variables. A static member variable belongs to the
class as a whole, and it exists as long as the class exists. Memory is allocated for the
variable when the class is first loaded by the Java interpreter. Any assignment
statement that assigns a value to the variable changes the content of that memory, no
matter where that assignment statement is located in the program. Any time the
variable is used in an expression, the value is fetched from that same memory, no
matter where the expression is located in the program. This means that the value of a
static member variable can be set in one subroutine and used in another subroutine.
Static member variables are “shared” by all the static subroutines in the class. A local
variable in a subroutine, on the other hand, exists only while that subroutine is being
executed, and is completely inaccessible from outside that one subroutine.

The declaration of a member variable looks just like the declaration of a local
variable except for two things: The member variable is declared outside any subroutine
(although it still has to be inside a class), and the declaration can be marked with
modifiers such as static, public, and private. Since we are only working with static
member variables for now, every declaration of a member variable in this chapter will

85

include the modifier static. They might also be marked as public or private. For
example:

static String usersName;
public static int numberOfPlayers;
private static double velocity, time;

A static member variable that is not declared to be private can be accessed from
outside the class where it is defined, as well as inside. When it is used in some other
class, it must be referred to with a compound identifier of the form hclass-
namei.hvariable-namei. For example, the System class contains the public static
member variable named out, and you use this variable in your own classes by referring
to System.out. Similarly, Math.Pl is a public static member variable in the Math class.
If numberOfPlayers is a public static member variable in a class named Poker, then
code in the Poker class would refer to it simply as numberOfPlayers, while code in
another class would refer to it as Poker.numberOfPlayers.

As an example, let’'s add a couple of static member variables to the GuessingGame
class that we wrote earlier in this section. We add a variable named gamesPlayed to
keep track of how many games the user has played and another variable named
gamesWon to keep track of the number of games that the user has won. The variables
are declared as static member variables:

static int gamesPlayed;
static int gamesWon;

In the playGame() routine, we always add 1 to gamesPlayed, and we add 1 to
gamesWon if the user wins the game. At the end of the main() routine, we print out the
values of both variables. It would be impossible to do the same thing with local
variables, since both subroutines need to access the variables, and local variables
exist in only one subroutine. Furthermore, global variables keep their values between
one subroutine call and the next. Local variables do not; a local variable gets a new
value each time that the subroutine that contains it is called.

When you declare a local variable in a subroutine, you have to assign a value
to that variable before you can do anything with it. Member variables, on the other
hand are automatically initialized with a default value. The default values are the same
as those that are used when initializing the elements of an array: For numeric
variables, the default value is zero; for Boolean variables, the default is false; for char
variables, it's the character that has Unicode code
number zero; and for objects, such as Strings, the default initial value is the special
value null.

Since they are of type int, the static member variables gamesPlayed and
gamesWon automatically get zero as their initial value. This happens to be the correct
initial value for a variable that is being used as a counter. You can, of course, assign
a value to a variable at the beginning of the main() routine if you are not satisfied with
the default initial value, or if you want to make the initial value more explicit.

86

4.5 Parameters

If a subroutine is a black box, then a parameter is something that provides a
mechanism for passing information from the outside world into the box. Parameters
are part of the interface of a subroutine. They allow you to customize the behavior of
a subroutine to adapt it to a particular situation.

As an analogy, consider a thermostat a black box whose task it is to keep your
house at a certain temperature. The thermostat has a parameter, namely the dial that
is used to set the desired temperature. The thermostat always performs the same task:
maintaining a constant temperature. However, the exact task that it performs that is,
which temperature it maintains is customized by the setting on its dial.

Formal and Actual Parameters

Parameters in a subroutine definition are called formal parameters or dummy
parameters. The parameters that are passed to a subroutine when it is called are
called actual parameters or arguments. When a subroutine is called, the actual
parameters in the subroutine call statement are evaluated and the values are assigned
to the formal parameters in the subroutine’s definition. Then the body of the
subroutine is executed.

A formal parameter must be a name, that is, a simple identifier. A formal parameter is
very much like a variable, and like a variable it has a specified type such as int,
boolean, String, or double[]. An actual parameter is a value, and so it can be specified
by any expression, provided that the expression computes a value of the correct type.
The type of the actual parameter must be one that could legally be assigned to the
formal parameter with an assignment statement. For example, if the formal parameter
is of type double, then it would be legal to pass an int as the actual parameter since
ints can legally be assigned to doubles. When you call a subroutine,

you must provide one actual parameter for each formal parameter in the subroutine’s
definition.

Consider, for example, a subroutine

static void doTask (int N, double x, boolean test) {
// statements to perform the task go here

}

This subroutine might be called with the statement

doTask (17, Math.sqgrt(z+1l), z >= 10);

When the computer executes this statement, it has essentially the same effect as the
block of statements:

int N; // Allocate memory locations for the formal parameters.
double x;
boolean test;

87

N
X

17; // Assign 17 to the first formal parameter, N.

Math.sqrt (z+1); // Compute Math.sqgrt(z+1l), and assign it to
// the second formal parameter, x.

test = (z >= 10); // Evaluate "z >= 10" and assign the resulting
// true/false value to the third formal

// parameter, test.

// statements to perform the task go here

}

(There are a few technical differences between this and
“‘doTask(17,Math.sqgrt(z+1),z>=10);” besides the amount of typing because of
guestions about scope of variables and what happens when several variables or
parameters have the same name.)

Beginning programming students often find parameters to be surprisingly confusing.
Calling a subroutine that already exists is not a problem—the idea of providing
information to the subroutine in a parameter is clear enough. Writing the subroutine
definition is another matter. A common beginner’s mistake is to assign values to the
formal parameters at the beginning of the subroutine, or to ask the user to input their
values. This represents a fundamental misunderstanding. By the time the computer
starts executing the statements in the subroutine, the formal parameters have already
been assigned initial values! The computer automatically assigns values to the formal
parameters before it starts executing the code inside the subroutine. The values come
from the actual parameters in the subroutine call statement.

Remember that a subroutine is not independent. It is called by some other routine,
and it is the subroutine call statement’s responsibility to provide appropriate values for
the parameters.

Overloading

In order to call a subroutine legally, you need to know its name, you need to know how
many formal parameters it has, and you need to know the type of each parameter.
This information is called the subroutine’s signature. The signature of the subroutine
doTask, used as an example above, can be expressed as:
doTask(int,double,boolean). Note that the signature does not include the names of the
parameters; in fact, if you just want to use the subroutine, you don’t even need to know
what the formal parameter names are, so the names are not part of the interface.

Java is somewhat unusual in that it allows two different subroutines in the same class
to have the same name, provided that their signatures are different. When this
happens, we say that the name of the subroutine is overloaded because it has several
different meanings. The computer doesn’t get the subroutines mixed up. It can tell
which one you want to call by the number and types of the actual parameters that you
provide in the subroutine call statement.

You have already seen overloading used with System.out. This object includes many
different methods named printin, for example. These methods all have different
signatures, such as:

println(int) println(double)
println(char) println(boolean)

88

println ()

The computer knows which of these subroutines you want to use based on the type
of the actual parameter that you provide. System.out.printin(17) calls the subroutine
with signature printin(int), while System.out.printin(’A’) calls the subroutine with
signature printin(char). Of course all these different subroutines are semantically
related, which is why it is acceptable programming style to use the same name for
them all. But as far as the computer is concerned, printing out an int is very different
from printing out a char, which is different from printing out a boolean, and so forth—
so that each of these operations requires a different subroutine.

Note, by the way, that the signature does not include the subroutine’s return type. It is
illegal to have two subroutines in the same class that have the same signature but that
have different return types. For example, it would be a syntax error for a class to
contain two subroutines defined as:

int getln() { ... }
double getln() { ... }

This is why in the TextlO class, the subroutines for reading different types are not all
named getin(). In a given class, there can only be one routine that has the name getin
with no parameters. So, the input routines in TextlO are distinguished by having
different names, such as getlnint() and getinDouble().

Subroutine Examples

Let’'s do a few examples of writing small subroutines to perform assigned tasks. Of
course, this is only one side of programming with subroutines. The task performed by
a subroutine is always a subtask in a larger program. The art of designing those
programs of deciding how to break them up into subtasks—is the other side of
programming with subroutines.

As a first example, let’s write a subroutine to compute and print out all the divisors of
a given positive integer. The integer will be a parameter to the subroutine. Remember
that the syntax of any subroutine is:

<modifiers> <return-type> <subroutine-name> (<parameter-list>) {
<statements>

}

Writing a subroutine always means filling out this format. In this case, the statement
of the problem tells us that there is one parameter, of type int, and it tells us what the
statements in the body of the subroutine should do. Since we are only working with
static subroutines for now, we’ll need to use static as a modifier. We could add an
access modifier (public or private), but in the absence of any instructions, I'll leave it
out. Since we are not told to return a value, the return type is void. Since no names
are specified, we’ll have to make up names for the formal parameter and for the
subroutine itself. I'll use N for the parameter and printDivisors for the subroutine name.
The subroutine will look like

static void printDivisors(int N) {
89

<statements>

and all we have left to do is to write the statements that make up the body of the
routine. This is not difficult. Just remember that you have to write the body assuming
that N already has a value! The algorithm is: “For each possible divisor D in the range
from 1 to N, if D evenly divides N, then print D.” Written in Java, this becomes:

/* Print all the divisors of N. We assume that N is a positive integer. */

static void printDivisors(int N) {
int D; // One of the possible divisors of N.

System.out.println("The divisors of " + N + " are:");
for (D =1; D <= N; D++) {
if (N % D ==) // Does D evenly divide N?

System.out.println (D) ;
}
}

I've added a comment before the subroutine definition indicating the contract of the
Subroutine that is, what it does and what assumptions it makes. The contract includes
the assumption that N is a positive integer. It is up to the caller of the subroutine to
make sure that this assumption is satisfied.

As a second short example, consider the problem: Write a private subroutine named
printRow. It should have a parameter ch of type char and a parameter N of type int.
The subroutine should print out a line of text containing N copies of the character ch.
Here, we are told the name of the subroutine and the names of the two parameters,
and we are told that the subroutine is private, so we don’t have much choice about the
first line of the subroutine definition. The task in this case is pretty simple, so the body
of the subroutine is easy to write. The complete subroutine is given by

/* Write one line of output containing N copies of the character ch.
If N <= 0, an empty line is output. */

private static void printRow(char ch, int N) {
int i; // Loop-control variable for counting off the copies.
for (i =1; i <= N; i++) {
System.out.print(ch);

}
System.out.println();

}
Note that in this case, the contract makes no assumption about N, but it makes it clear
what will happen in all cases, including the unexpected case that N <= 0.

Finally, let's do an example that shows how one subroutine can build on
another. Let’s write a subroutine that takes a String as a parameter. For each character
in the string, it should print a line of output containing 25 copies of that character. It
should use the printRow() subroutine to produce the output.

Again, we get to choose a name for the subroutine and a name for the
parameter. I'll call the subroutine printRowsFromString and the parameter str. The

90

algorithm is pretty clear: For each position 1 in the string str, call
printRow(str.charAt(i),25) to print one line of the output. So, we get:

/* For each character in str, write a line of output containing 25 copies of
that character. */

private static void printRowsFromString(String str) {
int i; // Loop-control variable for counting off the chars.
for (i =0; i < str.length(); i++) {
printRow (str.charAt (i), 25);

We could then use printRowsFromString in a main() routine such as

public static void main(String[] args) {
String inputLine; // Line of text input by user.
System.out.print ("Enter a line of text: ");
inputLine = TextIO.getln();
System.out.println () ;
printRowsFromString(inputLine);

Of course, the three routines, main(), printRowsFromsString(), and printRow(), would
have to be collected together inside the same class. The program is rather useless,
but it does demonstrate the use of subroutines. You'll find the program in the file
RowsOfChars.java, if you want to take a look.

Array Parameters

It's possible for the type of a parameter to be an array type. This means that an entire
array of values can be passed to the subroutine as a single parameter. For example,
we might want a subroutine to print all the values in an integer array in a neat format,
separated by commas and enclosed in a pair of square brackets. To tell it which array
to print, the subroutine would have a parameter of type int[]:

static void printValuesInList(int[] list)
{
System.out.print (' [");
int i;
for (i = 0; i < list.length; i++) {
if (1 > 0)
System.out.print(’,’); // No comma in front of 1list[0]
System.out.print (list[i]);
}
System.out.println(’1");

To use this subroutine, you need an actual array. Here is a legal, though not very
realistic, code segment that creates an array just to pass it as an argument to the
subroutine:

91

int[] numbers;

numbers = new int[3];
numbers[0] = 42;

numbers [1] 17;

numbers[2] = 256;
printValuesInList (numbers);

The output produced by the last statement would be [42,17,256].
Command-line Arguments

The main routine of a program has a parameter of type String[]. When the main routine
is called, some actual array of String must be passed to main() as the value of the
parameter. The system provides the actual parameter when it calls main(), so the
values come from outside the program. Where do the strings in the array come from,
and what do they mean? The strings in the array are command-line arguments from
the command that was used to run the program. When using a command-line
interface, the user types a command to tell the system to execute a program. The user
can include extra input in this command, beyond the name of the program. This extra
input becomes the command-line arguments. The system takes the command-Iline
arguments, puts them into an array of strings, and passes that array to main().

For example, if the name of the program is myProg, then the user can type “java
myProg” to execute the program. In this case, there are no command-line arguments.
But if the user types the command

java myProg one two three

LEEN 11

then the command-line arguments are the strings “one”, “two”, and “three”. The system
puts these strings into an array of Strings and passes that array as a parameter to the
main() routine.

Here, for example, is a short program that simply prints out any command line
arguments entered by the user:

public class CLDemo {
public static void main(String[] args) {
System.out.println("You entered " + args.length
+ " command-line arguments");
if (args.length > 0) {
System.out.println ("They were:");
int i;
for (i = 0; i < args.length; i++)
System.out.println(" " + args[i]):;
}
} // end main()
} // end class CLDemo

Note that the parameter, args, can be an array of length zero. This just means that the
user did not include any command-line arguments when running the program. In
practice, command-line arguments are often used to pass the names of files to a
program.

Global and Local Variables

92

We now have three different sorts of variables that can be used inside a subroutine:
local variables declared in the subroutine, formal parameter names, and static member
variables that are declared outside the subroutine.

Local variables have no connection to the outside world; they are purely part of
the internal working of the subroutine.

Parameters are used to “drop” values into the subroutine when it is called, but
once the subroutine starts executing, parameters act much like local variables.
Changes made inside a subroutine to a formal parameter have no effect on the rest of
the program (at least if the type of the parameter is one of the primitive types—things
are more complicated in the case of arrays and objects, as we’ll see later).

Things are different when a subroutine uses a variable that is defined outside
the subroutine. That variable exists independently of the subroutine, and it is
accessible to other parts of the program as well. Such a variable is said to be global
to the subroutine, as opposed to the local variables defined inside the subroutine. A
global variable can be used in the entire class in which it is defined and, if it is not
private, in other classes as well. Changes made to a global variable can have effects
that extend outside the subroutine where the changes are made. You've seen how
this works in the last example in the previous section, where the values of the global
variables, gamesPlayed and gamesWon, are computed inside a subroutine and are
used in the main() routine.

It's not always bad to use global variables in subroutines, but you should realize
that the global variable then has to be considered part of the subroutine’s interface.
The subroutine uses the global variable to communicate with the rest of the program.
This is a kind of sneaky, back-door communication that is less visible than
communication done through parameters, and it risks violating the rule that the
interface of a black box should be straightforward and easy to understand. So before
you use a global variable in a subroutine, you should consider whether it's really
necessary.

| don’t advise you to take an absolute stand against using global variables
inside subroutines. There is at least one good reason to do it: If you think of the class
as a whole as being a kind of black box, it can be very reasonable to let the subroutines
inside that box be a little sneaky about communicating with each other, if that will make
the class as a whole look simpler from the outside.

4.6 Return Values

A subroutine that returns a value is called a function. A given function can only return
a value of a specified type, called the return type of the function. A function call
generally occurs in a position where the computer is expecting to find a value, such
as the right side of an assignment statement, as an actual parameter in a subroutine
call, or in the middle of some larger expression. A boolean-valued function can even
be used as the test condition in an if, while, for or do..while statement.

The return statements

93

A function takes the same form as a regular subroutine, except that you have to specify
the value that is to be returned by the subroutine. This is done with a return statement,
which has the following syntax:

return <expression>;

Such a return statement can only occur inside the definition of a function, and the type
of the <expression> must match the return type that was specified for the function.
(More exactly, it must be an expression that could legally be assigned to a variable
whose type is specified by the return type of the function.) When the computer
executes this return statement, it evaluates the expression, terminates execution of
the function, and uses the value of the expression as the returned value of the function.

For example, consider the function definition

static double pythagoras (double x, double y) {
// Computes the length of the hypotenuse of a right
// triangle, where the sides of the triangle are x and vy.
return Math.sqgrt(x*x + y*y);

}

Suppose the computer executes the statement “totalLength = 17 + pythagoras(12,5);”.
When it gets to the term pythagoras(12,5), it assigns the actual parameters 12 and 5
to the formal parameters x and y in the function. In the body of the function, it evaluates
Math.sqrt(12.0*12.0 + 5.0*5.0), which works out to 13.0. This value is “returned” by
the function, so the 13.0 essentially replaces the function call in the assignment
statement, which then has the same effect as the statement “totalLength = 17+13.0 .
The return value is added to 17, and the result, 30.0, is stored in the variable,
totalLength.

Note that a return statement does not have to be the last statement in the
function definition. At any point in the function where you know the value that you want
to return, you can return it. Returning a value will end the function immediately,
skipping any subsequent statements in the function. However, it must be the case that
the function definitely does return some value, no matter what path the execution of
the function takes through the code.

You can use a return statement inside an ordinary subroutine, one with
declared return type “void”. Since a void subroutine does not return a value, the return
statement does not include an expression; it simply takes the form “return;”. The effect
of this statement is to terminate execution of the subroutine and return control back to
the point in the program from which the subroutine was called. This can be convenient
if you want to terminate execution somewhere in the middle of the subroutine, but
return statements are optional in non-function subroutines. In a function, on the other
hand, a return statement, with expression, is always required.

Note that a return inside a loop will end the loop as well as the subroutine that
contains it. Similarly, a return in a switch statement breaks out of the switch statement
as well as the subroutine. So, you will sometimes use return in contexts where you are
used to seeing a break.

94

4.7 Lambda Expressions

A lambda expression represents an anonymous subroutine, that is, one without a
name. But it does have a formal parameter list and a definition. The full syntax is:

(<parameter-list>) -> {<statements>}

As with a regular subroutine, the <parameter-list> can be empty, or it can be a list of
parameter declarations, separated by commas, where each declaration consists of a
type followed by a parameter name. However, the syntax can often be simplified. First
of all, the parameter typescan be omitted, as long as they can be deduced from the
context. For example, if the lambda expression is known to be of type FunctionR2R,
then the parameter type must be double, so it is unnecessary to specify the parameter
type in the lambda expression. Next, if there is exactly one parameter and if its type is
not specified, then the parentheses around the parameter list can be omitted. On the
right-hand side of the ->, if the only thing between the braces, { and }, is a single
subroutine call statement, then the braces can be omitted. And if the right-hand side
has the form { return <expression>; }, then you can omit everything except the
<expression>.

For example, suppose that we want a lambda expression to represent a function that
computes the square of a double value. The type of such a function can be the
FunctionR2R interface given above. If sgr is a variable of type FunctionR2R, then the
value of the function can be a lambda expression, which can be written in any of the
following forms:

sgr = (double x) -> { return x*x; };
sgr = (x) -> { return x*x; };

sgr = x —-> { return x*x; };

sgr = xX —-> X*X;

sgr = (double fred) -> fred*fred;
sgr = (z) -> z*z;

The last two statements are there to emphasize that the parameter names in a lambda
expression are dummy parameters; their names are irrelevant. The six lambda
expressions in these statements all define exactly the same function. Note that the
parameter type double can be omitted because the compiler knows that sqr is of type
FunctionR2R, and a FunctionR2R requires a parameter of type double. A lambda
expression can only be used in a context where the compiler can deduce its type, and
the parameter type has to be included only in a case where leaving it out would make
the type of the lambda expression ambiguous.

Now, in Java, the variable sqr as defined here is not quite a function. It is a
value of type FunctionR2R, which means that it contains a function named valueAt, as
specified in the definition of interface FunctionR2R. The full name of that function is
sgr.valueAt, and we must use that name to call the function. For example:
sqr.valueAt(42) or sqgr.valueAt(x) + sqgr.valueAt(y).

When a lambda expression has two parameters, the parentheses are not
optional. Here is an example of using the ArrayProcessor interface, which also
demonstrates a lambda expression with a multiline definition:

95

ArrayProcessor concat;

concat = (A,n) -> { // parentheses around (A,n) are required!
String str;

str = nn;

for (int i = 0; 1 < n; i++)

str += A[i];

System.out.println(str);

}; // The semicolon marks the end of the assignment statement;
// 1t is not part of the lambda expression.

String[] nums;

nums = new Stringl[4];

nums [0] = "One";

nums [1] = "Two";

nums [2] = "Three";

nums [3] = "Four";

for (int 1 = 1; i1 < nums.length; i++) {

concat.process(nums, i);

This will print out

One

OneTwo
OneTwoThree
OneTwoThreeFour

Things get more interesting when a lambda expression is used as an actual
parameter, which is the most common use in practice. For example, suppose that the
following function is defined:

/* For a function f, compute f (start) + f(start+l) + ... + f(end).
* The value of end should be >= the value of start.
*/

static double sum(FunctionR2R f, int start, int end) {
double total = 0;
for (int n = start; n <= end; n++) {
total = total + f.valueAt(n);
}

return total;
}
Note that since f is a value of type FunctionR2R, the value of f at n is actually written
as f.valueAt(n). When the function sum is called, the first parameter can be given as
a lambda expression. For example:

System.out.print ("The sum of n squared for n from 1 to 100 is ");
System.out.println(sum(x -> x*x, 1, 100));

System.out.print ("Sum of 2 raised to the power n, for n from 1 to 10 is ");
System.out.println(sum(num -> Math.pow(2,num), 1, 10));

As another example, suppose that we have a subroutine that performs a given task
several times. The task can be specified as a value of type Runnable:

static void doSeveralTimes (Runnable task, int repCount) {
for (int i = 0; i < repCount; i++) {
task.run(); // Perform the task!
}

96

We could then say “Hello World” ten times by calling

doSeveralTimes (() -> System.out.println("Hello World"), 10);

Note that for a lambda expression of type Runnable, the parameter list is given as an
empty pair of parentheses. Here is an example in which the syntax is getting rather
complicated:

doSeveralTimes (() —-> {
// count from 1 up to some random number between 5 and 25
int count = 5 + (int) (21*Math.random()) ;
for (int i = 1; 1 <= count; i++) {

System.out.print(i + " ");

}
System.out.println();

b, 100);

This is a single subroutine call statement in which the first parameter is a lambda
expression that extends over multiple lines. The second parameter is 100, and the
semicolon on the last line ends the subroutine call statement.

We have seen examples of assigning a lambda expression to a variable and of
using one as an actual parameter. Here is an example in which a lambda expression
is the return value of a function:

static FunctionR2R makePowerFunction(int n) {
return x -> Math.pow(x,n);

}

Then makePowerFunction(2) returns a FunctionR2R that computes the square of its
parameter, while makePowerFunction(10) returns a FunctionR2R that computes the
10" power of its parameter. This example also illustrates the fact that a lambda
expression can use other variables in addition to its parameter, such as n in this case
(although there are some restrictions on when that can be done).

4.8 APIs, Packages, Modules, and Javadoc

As computers and their user interfaces have become easier to use, they have also
become more complex for programmers to deal with. You can write programs for a
simple console-style user interface using just a few subroutines that write output to the
console and read the user’s typed replies. A modern graphical user interface, with
windows, buttons, scroll bars, menus, text-input boxes, and so on, might make things
easier for the user, but it forces the programmer to cope with a hugely expanded array
of possibilities. The programmer sees this increased complexity in the form of great
numbers of subroutines that are provided for managing the user interface, as well as
for other purposes.

The Java programming language is supplemented by a large, standard API.
You’ve seen part of this API already, in the form of mathematical subroutines such as
Math.sqrt(), the String data type and its associated routines, and the System.out.print()
routines. The standard Java API includes routines for working with graphical user

97

interfaces, for network communication, for reading and writing files, and more. It's
tempting to think of these routines as being part of the Java language, but they are
technically subroutines that have been written and made available for use in Java
programs.

Java is platform-independent. That is, the same program can run on platforms
as diverse as Mac OS, Windows, Linux, and others. The same Java APl must work
on all these platforms. But notice that it is the interface that is platform-independent;
the implementation of some parts of the API varies from one platform to another. A
Java system on a particular computer includes implementations of all the standard API
routines. A Java program includes only calls to those routines. When the Java
interpreter executes a program and encounters a call to one of the standard routines,
it will pull up and execute the implementation of that routine which is appropriate for
the particular platform on which it is running. This is a very powerful idea. It means
that you only need to learn one API to program for a wide variety of platforms.

Java’s Standard Packages

Like all subroutines in Java, the routines in the standard API are grouped into classes.
To provide larger-scale organization, classes in Java can be grouped into packages.
You can have even higher levels of grouping, since packages can also contain other
packages. In fact, the entire standard Java API is implemented in several packages.
One of these, which is named “java”, contains several non-GUI packages as well as
the original AWT graphical user interface classes. Another package, “javax”, contains
the classes used by the Swing graphical user interface as well as many other classes.
And “javafx” contains the JavaFX API that is used for GUI programming in this
textbook.

A package can contain both classes and other packages. A package that is
contained in another package is sometimes called a “sub-package.” Both the java
package and the javafx package contain sub-packages. One of the sub-packages of
java, for example, is named “util”. Since util is contained within java, its full name is
actually java.util. This package contains a variety of utility classes, including the
Scanner class that was discussed earlier. The java package includes several other
sub-packages, such as java.io, which provides facilities for input/output, and java.net,
which deals with network communication. The most basic package is called java.lang.
This package contains fundamental classes such as String, Math, Integer, and Double.

It might be helpful to look at a graphical representation of the levels of nesting
in the java package, its sub-packages, the classes in those sub-packages, and the
subroutines in those classes. This is not a complete picture, since it shows only a very
few of the many items in each element:

98

java

lang util 10

Mauth Scanncer Fike

Str { L

Subroutines nested in classes nested in two layers of packages
The full name of sqrt() is java.lang.Math.sqrt().

Similarly, the package javafx contains a package javafx.scene, which in turn contains
javafx.scene.control. This package contains classes that represent GUI components
such as buttons and input boxes. Another subpackage, javafx.scene.paint, contains
class Color and other classes that define ways to fill and stroke a shape.

The standard Java API includes thousands of classes in hundreds of packages. Many
of the classes are rather obscure or very specialized, but you might want to browse
through the documentation to see what is available. As | write this, the documentation
for the complete basic API for Java 8 can be found at

https://docs.oracle.com/javase/8/docs/api/

and for JavaFX at

https://docs.oracle.com/javase/8/javafx/api/toc.htm

Using Classes from Packages

Let’s say that you want to use the class javafx.scene.paint.Color in a program that you
are writing. This is the full name of class Color in package javafx.scene.paint. Like any
class, javafx.scene.paint.Color is a type, which means that you can use it to declare
variables and parameters and to specify the return type of a function. One way to do
this is to use the full name of the class as the name of the type. For example, suppose
that you want to declare a variable named rectColor of type Color. You could say:

javafx.scene.paint.Color rectColor;

This is just an ordinary variable declaration of the form “htype-namei hvariable-
namei;”. Of course, using the full name of every class can get tiresome, and you will
hardly ever see full names like this used in a program. Java makes it possible to avoid
using the full name of a class by importing the class. If you put

import javafx.scene.paint.Color;

at the beginning of a Java source code file, then, in the rest of the file, you can
abbreviate the full name javafx.scene.paint.Color to just the simple name of the class,

99

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/javafx/api/toc.htm

which is Color. Note that the import line comes at the start of a file (after the package
statement, if there is one) and is not inside any class. Although it is sometimes referred
to as a statement, it is more properly called an import directive since it is not a
statement in the usual sense. The import directive “import javafx.scene.paint.Color”
would allow you to say

Color rectColor;

to declare the variable. Note that the only effect of the import directive is to allow you
to use simple class names instead of full “package.class” names. You aren’t really
importing anything substantial; if you leave out the import directive, you can still access
the class you just have to use its full name. There is a shortcut for importing all the
classes from a given package. For example, you can import all the classes from
java.util by saying

import java.util.*;

The “*” is a wildcard that matches every class in the package. (However, it does not
match sub-packages; for example, you cannot import the entire contents of all the sub-
packages of the javafx package by saying import javafx.*.)

Some programmers think that using a wildcard in an import statement is bad
style, since it can make a large number of class names available that you are not going
to use and might not even know about. They think it is better to explicitly import each
individual class that you want to use. In my own programming, | often use wildcards
to import all the classes from the most relevant packages, and use individual imports
when | am using just one or two classes from a given package.

A program that works with networking might include the line “import java.net.*;”,
while one that reads or writes files might use “import java.io.*;”. But when you start
importing lots of packages in this way, you have to be careful about one thing: It's
possible for two classes that are in different packages to have the same name. For
example, both the java.awt package and the java.util package contain a class named
List. If you import both java.awt.* and java.util.*, the simple name List will be
ambiguous. If you try to declare a variable of type List, you will get a compiler error
message about an ambiguous class name. You can still use both classes in your
program: Use the full name of the class, either java.awt.List or java.util.List. Another
solution, of course, is to use import to import the individual classes you need, instead
of importing entire packages.

Because the package java.lang is so fundamental, all the classes in java.lang
are automatically imported into every program. It’s as if every program began with the
statement “import java.lang.*;”. This is why we have been able to use the class name
String instead of java.lang.String, and Math.sqrt() instead of java.lang.Math.sqrt(). It
would still, however, be perfectly legal to use the longer forms of the names.

Programmers can create new packages. Suppose that you want some classes
that you are writing to be in a package named utilities. Then the source code files that
defines those classes must begin with the line

package utilities;
100

This would come even before any import directive in that file. Furthermore, the source
code file would be placed in a folder with the same name as the package, “utilities” in
this example. And a class that is in a sub-package must be in a subfolder. For example,
a class in a package named utilities.net would be in folder named “net” inside a folder
named “utilities”. A class that is in a package automatically has access to other classes
in the same package; that is, a class doesn’t have to import classes from the package
in which it is defined.

4.9 LetUs Sum Up

In this unit we have learned about subroutine which consists of the instructions for
carrying out a certain task, grouped together and given a name. We discussed
subroutine as a Black Boxes and also discussed about Static Subroutines and Static
Variables, different types of parameters, return Value of subroutine and Lambda
Expressions. We have also discussed about APIs and Packages.

4.10 Further Reading

1. “Java 2: The Complete Reference” by Herbert Schildt, McGraw Hill Publications.
2. “Effective Java” by Joshua Bloch, Pearson Education.

4.11 Assignments

1. A “black box” has an interface and an implementation. Explain what is meant by
the terms interface and implementation.

2. A subroutine is said to have a contract. What is meant by the contract of a
subroutine? When you want to use a subroutine, why is it important to understand
its contract? The contract has both “syntactic” and “semantic” aspects. What is the
syntactic aspect? What is the semantic aspect?

3. Briefly explain how subroutines can be useful in the top-down design of programs.

4. Discuss the concept of parameters. What are parameters for? What is the
difference between formal parameters and actual parameters?

5. Give two different reasons for using named constants (declared with the final
modifier).

6. What is an API? Give an example.

7. What might the following expression mean in a program? (a,b) -> a*a + b*b + 1

8. Suppose that SupplyInt is a functional interface that defines the method public int
get(). Write a lambda expression of type Supplyint that gets a random integer in
the range 1 to 6 inclusive. Write another lambda expression of type Supplyint that
gets an int by asking the user to enter an integer and then returning the user’s
response.

9. Write a subroutine named “stars” that will output a line of stars to standard output.
(A star is the character “*”.) The number of stars should be given as a parameter
to the subroutine. Use a for loop. For example, the command “stars(20)” would

0 utp u t kkkkkkkkkkkkkkkkkkkk

101

10.Write a main() routine that uses the subroutine that you wrote for Question 7 to
output 10 lines of stars with 1 star in the first line, 2 stars in the second line, and so
on, as shown below.

*

**

*kk

*kkk
*kkkk
*kkkkk
*kkkkkk
*kkkkkkk
*kkkkkkkk

*kkkkkkkkk

102

Block-2: Programming in the Large

103

Unit 1. Programming in the 1
Large Il: Objects and Classes

Unit Structure

1.1 Learning Objectives

1.2 Class, object & method
1.3 Defining class

1.4 Adding variables

1.5 Adding methods

1.6 Creating objects

1.7 Constructor

1.8 this keyword

1.9 Garbage collection

1.10 finalize() method

1.11 Accessing class members
1.12 Methods overloading

1.13 Nesting of methods

1.14 Wrapper classes

1.15 Letussumup

1.16 Check your Progress

1.17 Check your Progress: Possible Answers
1.18 Further Reading

1.19 Assignments

104

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e Understand and use the class and object
e Function of Garbage collector
e Use method overloading, nested function and static members of class

e Explain the usage of wrapper classes.

1.2 CLASS, OBJECT & METHOD

An object is an entity which has several attributes and behavior. A number of
objects sharing same attributes and behavior form a Class. For example: parrot,
peacock, hen, dove are objects of class birds. They have attributes like colour, eating
habit, shape of beak etc and behavior like fly, build nest, lay eggs etc. in java we can
create a class using class keyword and declare various variables in it for its attributes
and create a function for its behavior. In java for creating a class, the class keyword is
used. The attributes of the class can be defined as member variable of the class and

behaviour of class can be methods of class in java.

1.3 DEFINING CLASS

In java, class can be defined using class keyword follow by class name as
shown in example. The definition of class is written within braces. The class name
should start with capital letter. If class name has multiple words first letter of each word

should be capital. For example: Student, Bird, StringBuffer etc.

class Student

{
}

1.4 ADDING VARIABLES

We can add variables in class by declaring them within class. for each attribute

of class we can create variable in it. For example class Student can have attributes

105

like rolINumber, name, course etc. The variable name in class should be in lower case.
If variable name has more than one word each word should start with capital letter
except first word. For example rolINumber. The student class can be created as

follows

class Student

{
int rolINumber;
String name;
String course;

}

1.5 ADDING METHODS

We can define methods in class. The syntax is return type then name of method
followed by arguments in bracket (). The function definition is written within braces.
For example in Student class we can create two functions getData for assigning values

to its variable and printData to print is variables.

class Student
{
int rolINumber;
String name;
1String course;
void getData(int r, Srting n, String c)

rollNumber =r;
name = n;
course = C;

}
Void printData()

System.out.printin(rolINumber +” “+ name +” “ + course);

}
}

1.6 CREATING OBJECTS

After defining class, we can use it by creating its object. This is also called

instantiation of class. the new keyword is used for creating object of class.
For example,

ClassName x = new ClassName ();

106

In this example ClassName is the name of class created in your program.
Example

class Student

{

int rolINember;

String name;

String course;

void getData(int r, String n, String c)

{
rolINumber =r;
name = n;
course = c;

void printData()
System.out.println (rolINumber);
System.out.printin (name);
System.out.println (course);

}

}

class Exa_Cls

{

Public static void main(String argsl])

{
Student s1 = new Student(); //object sl is created
Sl.getData(1, "manan”, "civil”);
sl.printData();

}

}

1.7 CONSTRUCTOR

In java, we can define Constrictors in a class. Constructor is a function which
has same name as class name. This function will be called when we create object
using new keyword. The constructors are mainly used to initialize the
attributes/variables of the class. Constructor can be default constructor or
parameterized constructor. In default constructor, nothing is passed as an argument.
However in parameterized constructor the parameter values must be passed as

arguments of constructor function.
For example:

class Student

{

int rolINember;
107

String name;
String course;
Student() //default constructor

{

rolINumber = 0O;
name =",

”,

course =

}

Student(int r, String n, String c) l/[parameterized constructor
{
rolINumber =r;
name = n;
course = C;
}
void printData()
{
System.out.printin(rolINumber);
System.out.printin(name);
System.out.printin(course);

}
}
class Exa_Cls
{
Public static void main(String args[])
{
Student s1 = new Student(1,”’manan”,”civil’);
sl.printData();
}
}

1.8 THIS KEYWORD

this is reference variable of java which points to the current object. It can also

be used to point instance of the current class as shown in following example.

class abc

{
int a,b,c;
abc(){a=0;b=0;c=0;}
abc(int a,int b, int ¢)

{
this.a = a;
this.b = b;
this.c =c;
}
}
class MyExa
{

108

public static void main(String args[])

{
}

In above example, in class abc, this.a, this.b and this.c are referring the variable

abc x = new abc(1,2,3);

of class abc and a,b and c are the parameters of constructor.

1.9 GARBAGE COLLECTION

In C, when we allocate memory at runtime using malloc() function, at the end
of program we have to free them using free() function. Similarly in C++, when we

create memory for any object/variable using new, we should free them using delete.

In java when we are creating memory for reference variable/object, programmer
don’t care about destroying them. There is a special component in JVM called garbage
collector which will take care of deletion of all memory occupied by java programs. It
frees the heap memory occupied by reference variables which are not in use. Java

has an automatic garbage collection.

1.10 FINALIZE() METHOD

The finalize() is a method of java.lan.Object class which is called by garbage
collector for the which is identified to be destroyed. It is because there are no reference
to that object in program. In a class we can override (redefine) the finalize method to

perform the cleanup of system resources.

1.11 ACCESSING CLASS MEMBERS

To access the member variables and methods of the class, we should create
the object of the class using new keyword. And using the object name and
variable/method name separated by . we can access the member variable the

example is shown in section 2.7 and 2.6.

109

1.12 METHODS OVERLOADING

Method overloading is the feature of object oriented programming. It is used to
implement polymorphism. In java in a same class we can define more than one method
with same but different signature, this concept is called method overloading. In
method overloading same method can be used in different manners. For example in

class Add, we can define 3 addition methods shown below,

class Add

{
int addition(int a, int b){ return (a+b); }
float addition(float a, float b) { return (a+ b); }
String addition(String a, String b) { return a + b; }

}
public class Sum
{
public static void main(String args[])
{
Sum s1 = new Sum();
System.out.printin(s1.addition(10, 20));
System.out.printin(s1.addition(10.56 ,20.78));
System.out.printin(s1l.addition(“abc”, "def”));
}
}

1.13 NESTING OF METHODS

When a method of class calling the other method of the same class is called nesting

of methods. The following example uses nesting of method.

import java.util. Scanner;

class Circle

{
int radius;
void getRadius()
{

Scanner sc=new Scanner(System.in);
Radius = sc.nextint();

}

double area()

{
getRadius();

return(3.14*radius*radius);

}

110

public class Exa

{
public static void main(String argsl])
{
Circle c1 = new Circle();
System.out.printin (cl.area());
}

}

1.14 WRAPPER CLASSES

Wrapper classes are the classes whose objects wrap the primitive data types.
To treak primitive data type as a Class and Object, java provide a wrapper class for

each primitive data types. The following is the list of wrapper classes and their

corresponding primitive data types.

Primitive Data type | Wrapper Class
boolean Boolean

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

Table-7 list of wrapper classes and their corresponding primitive data types

Advantages of wrapper class:

1). They convert a primitive data type into object when we need to pass them as

reference argument to the function. By default the primitive data types are

passed as value into the function.

2). The Vector can store objects only. If we want to store primitive data values in

Vector, we need to convert them into objects.

Autoboxing is an important concept related to wrapper classes. Autoboxing is
an automatic conversion of primitive data types into object of its wrapper class. The
reverse process of autoboxing is called unboxing. Unboxing is automatical conversion

of object of wrapper class into its corresponding primitive data type.
111

For example

1) inta =5;
Integer aa = a; //autoboxing
2) Vector v1 = new Vector();
vl.add(24); /lautoboxing 24 into Integer object
vl.add(89);
int n=v1.firstElemen(); //unboxing
Example
class Exa3
{

public static void main(String argsl])

{
//Autoboxing
byte a = 10;

Byte aobj = new Byte(a);

int b = 289;
Integer bobj = new Integer(b);

float ¢ = 508.5f;
Float cobj = new Float(c);

double d =90.3;
Double dobj = new Double(d);

char e='x’;
Character eobj=e;

System.out.printin("Autoboxing");
System.out.printin(aobj);
System.out.printin(bobj);
System.out.printin(cobj);
System.out.printin(dobj);
System.out.printin(eobj);

//Unboxing

byte v = aobj;
int w = bobj;
float x = cobj;
double y = dobj;
char z = eobj;

System.out.printin("Unboxing");
System.out.printin(v);
System.out.printin(w);
System.out.printin(x);
System.out.printin(y);

112

System.out.printin(z);

}
}

> Methods of wrapper classes
The following are some of the methods of wrapper class.

e valueOf(String s)
All wrapper class except Character class have this function. It is a static
function hence called using class name. This function coverts a String
representation of any primitive value into its corresponding wrapper class

object.

Example:
Integer a=Integer.valueOf(“100”);
Byte b=Byte.valueOf(“8”);
Double c=Double.valueOf(“10.80”);

e valueOf(String s, int radix):
This is a static function of Byte, Short, Inetger and Long wrapper class.
This function converts a string into corresponding wrapper class object.
However the String stores the value represented in radix form. Radix 2 is for
binary, 8 is for octal, 16 is for hexadecimal and so on.
For example

Integer a=Integer.valueOf(“101”,2);//store 7 in a because 101 is binary of 7.

e valueOf(primitive_data_type x):
All wrapper classes have this static function which converts a primitive

data value into its corresponding wrapper class object.

For example
Integer a = Integer.valueOf(100);
Double b = Double.valueOf(34.6);

13

Example

public class ExWrapl

{

>

public static void main(String argsl])

{

/I example of valueOf

System.out.printin(" valueOf converts String into Wrapper class object");
Integer a=Integer.valueOf("100");

Byte b=Byte.valueOf("8");

Double c=Double.valueOf(*10.80");

System.out.printin("Integer: " + a);

System.out.printin("Byte: " + b);

System.out.printin("Double: " + c¢);

System.out.printin(" valueOf converts String with differnt base into Wrapper class
object");

Integer al=Integer.valueOf("1110",2);

System.out.printin("Integer: " + al);

System.out.printin(" valueOf converts primitive data type into Wrapper class
object");

Integer a2 = Integer.valueOf(100);

Double b2 = Double.valueOf(34.6);

System.out.printin("Integer: " + a2);

System.out.printin("Integer: " + b2);

}

Primitive data type conversion functions

public byte byteValue(), public short shortValue(), public int intValue(), public

long longValue(), public float floatValue(), public float doubleValue() are the non

static functions. They need object of Wrapper class to call. The numeric wrapper

classes like Byte, Short, Integer, Long, Float, and Double has these all methods

defined in them. These methods are used to return corresponding primitive data type

value.

For example,

Integer x = new Integer(189);
int y = x.intValue();
byte z = x.byteValue();

float a = x.floatValue();

114

Example:

public class ExWrap2
{

public static void main(String argsl])

{

System.out.printIn(" xxxValue functions converts one numeric datatype into other
II);

Integer x = new Integer(122);

int y = x.intValue();

byte z = x.byteValue();

float a = x.floatValue();
System.out.printin(" int :" +y);
System.out.printin(" byte :" + z);
System.out.printin(" float :" + a);

}

> String to primitive data type conversion functions

public static int parselnt(String s), public static byte parseByte(String s), public
static short parseShort(String s), public static long parseLong(String s), public static
float parseFloat(String s), public static double parseDoublet(String s), public static
boolean parseBoolean(String s)

All the wrapper class except Character class has parse function. This function
is used to convert a String argument into corresponding primitive data type value.

For example:

int x = Integer.parselnt(“123”);
double y = Double.parseDouble(“123.56”);

boolean z = Boolean.parseBoolean(“false”);

The parse function has one more version which is,

public static int parselnt(String s, int radix) for Integer class.

Similarly the wrapper classes Byte, Short and Long have this function. It

converts a String s, which represents a number with base radix into primitive data

types.

For example,

15

int x=Integer.parselnt(“1111”,2); //this converts a binary 1111 into integer.

This function can be used to convert string representation of binary (radix 2),

octal(radix 8) or hexadecimal (radix 16) number into decimal value.

Example:

public class ExWrap3
{

public static void main(String argsl])

{

System.out.printin(" parse XXX functions converts String to primitive data type");

int x = Integer.parselnt("123");
double y = Double.parseDouble("123.56");
boolean z = Boolean.parseBoolean("false");

System.out.printin(" int :" + X);
System.out.printin(" double :" +y);
System.out.printin(" boolean :" + z);

System.out.printin(" parseXXX functions converts a String representation of a
number with base radix into primitive data types.");

int x1=Integer.parselnt("1111",2);

System.out.printin(" decimal of 1111 is int :" + x1);

}
}

> public String toString()

every wrapper class has this function. It is used to convert a wrapper class
object into String.
For example,
Double d=new Double(123.88);
String s=d.toString(); //stores “123.88” into s

> public static String toString(primitive p)

every wrapper class has this function. It is used to convert a primitive data
type value into String.
For example,

String s=Double.toString(123.89);

116

Example:

public class ExWrap4
{

public static void main(String args[])

{

System.out.printin("non static toString functions converts wrapper object to String ");

Double d = new Double(123.88);
String s = d.toString();

System.out.printin(" String : " + s);

System.out.printin(" static toString functions converts primitive data type into String
ll);

String x1 = Double.toString(123.89);

System.out.printin(" String :" + x1);

}
}

1.15 LET US SUM UP

class: a non primitive data type which encapsulates variables and function in it.
object: an instance of class or variable of type class. The new keyword is used to
create object.

member variable: list of variables defined in class

member function: methods/functions defined within class

constructor: Itis a function of a class having same name as class name. It is called
to initialized object when it is created.

Garbage collection: it automatically frees the unnecessary memory area of the
program.

finalize(): this method will be called by garbage collector before destroying the object.
method overloading: In a class we can write more than one method with same name
and different signature.

wrapper classes: For each primitive data type there is a class in java which is called
wrapper class. The wrapper class wraps the primitive data value as an object and can

have various data conversion functions.

17

1.16 CHECK YOUR PROGRESS

> True-False with reason:

. Class and object are same.
. Static member function can be called without object.
We can enhance capacity of Vector at rum time.

. Constructor function can have any name.

1
2
3
4
5. We can write only one constructor function for a class.
6. We can not call static function inside non static function.
7. Instance variables are shared by all objects of the class
8. A[1] refer to the first element of the array

9. Array can be initialized.

10.We can implement matrix using single dimensional array.
» Answer the followings:

List all wrapper class.

How can we create an object of wrapper class?
How can we create an array of 10 integers?

How can we create an object of a class?

Give example of method overloading.

How can we convert a string “102” into a number?
How can we find size of a vector object?

Compare class variable and instance variable

© ©® N o a0 k0w DdPRE

Compare Vector and array.

10.Compare class and obiject.
» ldentify the class and its attributes and methods from following problem statement.

1. In school software, they are storing information of each students and staff.
2. In library software, they are allowing issue and return of the book by library
members.

3. We want to design software for restaurant bill generation.

118

1.17 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

> True-False with reason:

o

8.
9.

g~ 0D PR

False. Objects are the instance of class.

True.

True.

False. Constructor function must have name as class name.

False. We can write multiple constructor for a class with different argument
in each.

False. We can call static function inside non static function.

False. Class variables/static variables are shared by all objects of the
class

False. A[O] refer to the first element of the array

True.

10.False. We can implement matrix using two dimensional array

» Answer the followings:

1.

Wrapper Classes:
Boolean, Byte, Short, Integer, Long, Float, Double, Character
To create an object of wrapper class:
Boolean a=true;
Boolean x=a;
To create an array of 10 integers :
int[] a=new int[10];
To create an object of a class:
Class_Name obj= new Class_Name();
Example of method overloading:
class Ex_Add
{
static int add(int a,int b){return a+b;}
static int add(int a,int b,int c){return a+b+c;}

}

class ExOverloading

{

119

public static void main(String[] args)

{

System.out.printin(Adder.add(11,11));
System.out.printin(Adder.add(11,11,11));

}

6. To convert a string “102” into a number:

int a= Integer.parselnt(“102”);

7. The size() method of Vector class in Java is used to get the size of the

Vector.

8. Class variable v/s Instance variable

Class variable

Instance variable

They are static member

variables of class

They are non static member

variables of class

They are shared among all

object of class

They are separately created

for each object

To access class variable

class name is used.

To access instance variable

object name is used.

9. Vector v/s array.

Vector

Array

Vector is resizable array

The length of an Array is

fixed.

Vector is synchronized

Array is not synchronized.

Vector can store any type of

objects

Array can store same type

of objects

Vector is slow to access.

Array supports efficient
random access to the

members

120

10.Class v/s object.

Class

Object

It is a blueprint/structure of

object.

It is an instance of class

Class is a group of similar

entities

Object is a real world entity

Class is declared once

Object is created many

times as per requirement.

Class doesn't allocated

memory when it is created.

Object allocates memory

when it is created.

» ldentify the class and its attributes and methods from following problem statement.

1. In school software, they are storing information of each students and staff.

Class name : Student

Attributes : enrollment number, name, course, address, phone number,

semester

Methods: enroll_course(int enr_no, String crs), print_data(), get_data()

Class name : Staff

Attributes : Employ ID, name, designation, address, phone number,

gualification

Methods: enroll_course(int enr_no, String crs), print_data(), get_data()

2. Inlibrary software, they are allowing issue and return of the book by library

members.

a. Class name: Member

b. Attributes : Library ID, name, address, phone number

121

c. Methods: add_member(), searchMember(), printAllMembers(),
deleteMember()
d. Class name: Book

®

Attributes : bookID, title, author, publisher, price, qty
Methods: addBook(), searchBook(), printAllBooks(), deleteBook()
Class name: Book_transaction

> a =~

Attributes: booklID, Library ID, date_issue, date_return, fine.
Methods : booklssue(), bookReturn()

3. We want to design software for restaurant bill generation.

a. Customer : custld, custName, custAddr, custPhone
b. Methods : addCust(), searchCust(), deleteCust()

c. Item: itemID, itemName, itemCategory, itemPrice
d. Methods : additem(), searchltem(), deleteltem()

e. Bill : billlD, custID, itemID, qty, billDate, billAmount
f. Methods : billGeneration(), billPayment(), printBill()

2.21 FURTHER READING

1. “Java 2: The Complete Reference” by Herbert Schildt, McGraw Hill
Publications.

2. “Effective Java” by Joshua Bloch, Pearson Education.

2.22 ASSIGNMENTS

» Write java program for following:

1) Create a class name meter which represents a distance in meter and
centimeter. Also create class name kilometer which represents distance in km
and meter. In both class write a function which converts one class to other.

2) Create a class name Doctor with properties and methods. The properties can
be name, phone number, qualification, specialization etc. The methods include
getting information of doctor and printing them.

3) Sort numbers in descending order.

122

4)
5)

6)

7
8)

Create a menu driven program for matrix operations like add, subtract, and
multiply.

Find maximum and minimum from the n numbers.

Create a class student with necessary properties, methods and c