
DR. BABASAHEB AMBEDKAR OPEN UNIVERSITY
AHMEDABAD

OBJECT ORIENTED CONCEPTS
AND PROGRAMMING – II

(ADVANCE JAVA)



Editorial Panel

Authors : Deepal Shah
Assistant Professor,
J. G. College of Computer Application,
Ahmedabad
                 &
Dr. Vinod Desai
Assistant Professor,
Department of Computer Science,
Gujarat Vidyapith, Ahmedabad

Editor : Dr. Himanshu N. Patel
Assistant Professor,
School of Computer Science,
Dr. Babasaheb Ambedkar Open University,
Ahmedabad

Language Editor : Dr Mrinalini P. Thaker,
Bhavan's Seth R.A. College of Arts &
Commerce,
Ahmedabad

ISBN 978-93-91071-09-7

Edition : 2021

Copyright © 2020  Knowledge Management & Research
Organisation.

All rights reserved. No part of this book may be reproduced,
transmitted or utilized in any form or by a means, electronic or
mechanical, including photocopying, recording or by any information
storage or retrieval system without written permission from us.

Acknowledgment

Every attempt has been made to trace the copyright holders of
material reproduced in this book. Should an infringement have
occurred, we apologize for the same and will be pleased to make
necessary correction/amendment in future edition of this book.

The content is developed by taking reference of online and print
publications that are mentioned in Bibliography. The content
developed represents the breadth of research excellence in this
multidisciplinary academic field. Some of the information,
illustrations and examples are taken "as is" and as available in the
references mentioned in Bibliography for academic purpose and
better understanding by learner.



ROLE OF SELF–INSTRUCTIONAL MATERIAL
IN DISTANCE LEARNING

The need to plan effective instruction is imperative for a
successful distance teaching repertoire. This is due to the fact that
the instructional designer, the tutor, the author (s) and the
student are often separated by distance and may never meet in
person. This is an increasingly common scenario in distance
education instruction. As much as possible, teaching by distance
should stimulate the student's intellectual involvement and contain
all the necessary learning instructional activities that are capable
of guiding the student through the course objectives. Therefore,
the course / self–instructional material are completely equipped
with everything that the syllabus prescribes.

To ensure effective instruction, a number of instructional
design ideas are used and these help students to acquire knowledge,
intellectual skills, motor skills and necessary attitudinal changes.
In this respect, students' assessment and course evaluation are
incorporated in the text.

The nature of instructional activities used in distance
education self–instructional materials depends on the domain of
learning that they reinforce in the text, that is, the cognitive,
psychomotor and affective. These are further interpreted in the
acquisition of knowledge, intellectual skills and motor skills.
Students may be encouraged to gain, apply and communicate
(orally or in writing) the knowledge acquired. Intellectual–skills
objectives may be met by designing instructions that make use of
students' prior knowledge and experiences in the discourse as the
foundation on which newly acquired knowledge is built.

The provision of exercises in the form of assignments,
projects and tutorial feedback is necessary. Instructional activities
that teach motor skills need to be graphically demonstrated and
the correct practices provided during tutorials. Instructional
activities for inculcating change in attitude and behavior should
create interest and demonstrate need and benefits gained by
adopting the required change. Information on the adoption and
procedures for practice of new attitudes may then be introduced.

Teaching and learning at a distance eliminates interactive
communication cues, such as pauses, intonation and gestures,
associated with the face–to–face method of teaching. This is



particularly so with the exclusive use of print media. Instructional
activities built into the instructional repertoire provide this missing
interaction between the student and the teacher. Therefore, the
use of instructional activities to affect better distance teaching is
not optional, but mandatory.

Our team of successful writers and authors has tried to
reduce this.

Divide and to bring this Self Instructional Material as the best
teaching and communication tool. Instructional activities are
varied in order to assess the different facets of the domains of
learning.

Distance education teaching repertoire involves extensive use
of self–instructional materials, be they print or otherwise. These
materials are designed to achieve certain pre–determined learning
outcomes, namely goals and objectives that are contained in an
instructional plan. Since the teaching process is affected over a
distance, there is need to ensure that students actively participate
in their learning by performing specific tasks that help them to
understand the relevant concepts. Therefore, a set of exercises is
built into the teaching repertoire in order to link what students
and tutors do in the framework of the course outline. These could
be in the form of students' assignments, a research project or a
science practical exercise. Examples of instructional activities in
distance education are too numerous to list. Instructional activities,
when used in this context, help to motivate students, guide and
measure students' performance (continuous assessment)



PREFACE

We have put in lots of hard work to make this book as user-

friendly as possible, but we have not sacrificed quality. Experts

were involved in preparing the materials. However, concepts are

explained in easy language for you. We have included many tables

and examples for easy understanding.

We sincerely hope this book will help you in every way you

expect.

All the best for your studies from our team!



OBJECT ORIENTED CONCEPTS AND
PROGRAMMING – II (ADVANCE JAVA)

Contents

BLOCK 1 : JAVA REVIEW & SWING COMPONENTS

Unit 1 INTRODUCTION, HISTORY AND JAVADOC

Introduction, Java Programs and Components, History

of Java Platform, Javadoc Comments

Unit 2 JAVA PLATFORM, SETTING AND CLASSPATH

Introduction, Java Platform Features, Java 2 Platform

Editions, Java Platform Environment, Setting Path and

Classpath

Unit 3 INTRODUCTION TO SWING

Introduction, Differences between Swing And Applets,

Writing a Swing Program, Swing Component and

Containment Hierarchy

Unit 4 LAYOUT MANAGEMENT

Introduction, Layout Management, Event Handling, The

Action Event API

BLOCK 2 : JAVA DATABASE CONNECTIVITY

Unit 5 NETWORKING

Introduction, Networking Terminology, Networking

Protocols, Differences between TCP and UDP, Networking

Classes in java.net Package, Client and Server Program

using Socket, Executing Client Server Programs,

Multicast Protocol

Unit 6 JAVA DATABASE CONNECTIVITY

Introduction, Types of JDBC Drivers, Steps to write a

JDBC Program, Establishing a Connection, Creating

JDBC Statements, Manipulating Result Sets, Using

Prepared Statements, Using Callable Statements,

ResultSetMetaData



Unit 7 XML

Introduction, Application of XML, Well formed and valid

XML documents, XML Namespace, XML Parser,

Document type definition (DTD), XML schema

BLOCK 3 : RMI & JAVABEANS

Unit 8 REMOTE METHOD INVOCATION

Introduction, RMI Architecture, How RMI works, Steps

to create an RMI Application, Steps for deploying RMI

Application (on same system), Troubleshooting, Advanced

RMI Concepts

Unit 9 JAVABEANS – 1

Introduction, Java Beans Concepts, The Beans

Development Kit, Writing a Simple Bean

Unit 10 JAVABEANS – 2

Introduction, Properties, Simple Properties, Bound

Properties, Indexed Properties, Constrained Properties

Unit 11 JAVA NAMING AND DIRECTORY INTERFACE API

Introduction, Naming and Directory Service, Enter JNDI,

JNDI Overview, Understanding the Concepts behind

JNDI Programming, Programming with JNDI, Exploring

Javax.naming package

BLOCK 4 : SERVLETS & JSP PROGRAMMING

Unit 12 SERVLETS

Introduction, Servlet Types & Life Cycle, Servlet API,

Threading Issues, Session Tracking, Writing and Running

Servlet application in Apache Tomcat 7, Request

Dispatcher



Unit 13 INTRODUCTION TO STRUTS

Introduction, Life Cycle of Struts Request and it's

Component Class, Struts Action Classes, Struts Model

Components, The Struts View Components, Configuring

the web.xml file for Struts, Writing and Executing

Struts Application

Unit 14 JSP (JAVA SERVER PAGES)

Introduction, JSP Life Cycle, JSP Architecture, JSP

Basic Building Blocks, JSP Implicit Objects, Standard

Actions, JSP Tag Libraries



OBJECT ORIENTED CONCEPTS AND
PROGRAMMING – II (ADVANCE JAVA)

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 1 : JAVA REVIEW & SWING COMPONENTS

UNIT 1 INTRODUCTION, HISTORY AND JAVADOC

UNIT 2 JAVA PLATFORM, SETTING AND CLASSPATH

UNIT 3 INTRODUCTION TO SWING

UNIT 4 LAYOUT MANAGEMENT

BCAR-304



Block Introduction :
Java is a programming language created by James Gosling from Sun

Microsystems in 1991. The first publicly available version of Java was released
in 1995 as Java 1.0. An applet is a small component written in Java that can be
included or "plugged" into an HTML page or other markup language page. Swing
is a framework for developing the graphical user interface (GUI) for Java
applications and applets.

In this block, we will detail about the basic of Java Platform Features and
Java Programs and Components. The block will focus on the study and concept
of Java 2 Platform Editions and Java Platform Environment. The students will
give an idea on Swing Component and Containment Hierarchy.

In this block, the student will made to learn and understand about the basic
of Layout Management techniques. The concept related to Event Handling and
Setting Path and Classpath will also be explained to the students. The student
will be demonstrated practically about Writing a Swing Program technique.

Block Objectives :
After learning this block, you will be able to understand:

• About Swing Component and Containment Hierarchy

• Basic of Java Platform Features

• Features of Java 2 Platform Editions

• Concept of Event Handling

• Detailed about History of Java Platform

• Basic of Writing a Swing Program

• Idea of Java Programs and Components

Block Structure :

Unit 1 : Introduction, History and Javadoc

Unit 2 : Java Platform, Setting and Classpath

Unit 3 : Introduction to Swing

Unit 4 : Layout Management

JAVA REVIEW &
SWING COMPONENTS



1

UNIT STRUCTURE

1.0 Learning Objectives

1.1 Introduction

1.2 Java Programs and Components

1.3 History of Java Platform

1.4 Javadoc Comments

1.5 Let Us Sum Up

1.6 Answer for Check Your Progress

1.7 Glossary

1.8 Assignment

1.9 Activities

1.10 Case Study

1.11 Further Readings

1.0  Learning Objectives :

After learning this unit, you will be able to understand :

• Java Programs and Components

• History of Java Platform

• Java 2 Platform Editions

1.1  Introduction :

Java is a programming language created by James Gosling from Sun
Microsystems in 1991. The first publicly available version of Java was released
in 1995 as Java 1.0. This is commonly used programming language that has
variety of uses and applications which makes them to used in desktop applications,
Mobile Applications, Enterprise applications etc.

Java is :

• Class Based and Object Oriented Programming Language

• Computing platform

• Fast, Secure and Reliable

• Free

• General Purpose

• Concurrent

1.2  Java Programs and Components :

Programming is writing of instructions sets which will guide the computer
how to do certain work. Doing work relates to reading list of names from
a file which could be alphabetical and writing it back again to the file. As
seen, it could be much more complex as it involves displaying of graphical

INTRODUCTION, HISTORY
AND JAVADOC

Unit

01



2

Object Oriented
Concepts

and Programming – II
(Advance Java)

user interface which could mainly meant for games and other game's logic.
Since it is analysed that Java is relatively a current object-oriented programming
language which has nowadays achieved more popularity and is easy to apply.
It is a general-purpose language that can be used for many types of programming
tasks.

The programs that were written and designed up till now carries a
sequential flow of control. It means that the statements initially were executed
line by line from top to bottom in a particular order. It is found that when
any statement happens to skip or executed more than once, then it needs a
control. In this unit we will see that such can be done using control structures.
The control structure carries three groups :

• Decision making statements

• Repetition statements

• Branching statements

Decision making is type of control statements that will decide whether
or not a given statement or group of statements be worked out or not. Repetition
statements are such where the statements are carried out more than ones.
Branching statements on the other hand transfers the control to another line
in a given code.

Java component :

The architectures of Java carry special features of Java language and
component-based model for software development. The basic components of
the architecture are:

Java applets :

Components built using the Java programming language that can be
dynamically downloaded across the network and executed directly from within
an HTML container. Java applet components are typically compiled to bytecode,
which is interpreted by a Java run-time environment.

JavaScript scripts :

Components built using the JavaScript scripting language that can be
dynamically downloaded across the network and interpreted from within an
HTML container.

 Check Your Progress – 1 :
1. Programming language involves :

a. computer b. codes c. software d. all

1.3  History of Java Platform :

Java was initially framed by Sun Microsystems in the beginning of 1990s.

The language was created with the idea to solve problem related to
connectivity of several household machines together.

As it was designed for special connectivity purpose only, so the particular
project was failed as no one wants to use it.

Initially the name of Java is OAK.

James Gosling worked initially on Java and was known as father of Java.

The name OAK was renamed as Java in the year 1994.



3

During the mid of year 1995 in month of May, Java was publicly released.

Java was targeted for Internet development.

The release of applets was initially supported by big companies such
as Netscape Communications.

Some of the Java Versions are shown in table 1.1.

Java Version Release Date Year

JDK1.0 January 21 1996

JDK1.1 February 19 1997

J2SE1.2 December 8 1998

J2SE1.3 May 8 2000

J2SE1.4 February 6 2002

J2SE5.0 September 30 2004

Java SE6 December 11 2006

Java SE7 July 28 2011

Table 1.1 Versions of Java

 Check Your Progress – 2 :
1. OAK was renamed as Java in year :

a. 1995 b. 1996 c. 1997 d. 1994

1.4  Javadoc Comments :

Javadoc is a tool that appears along with JDK and it is used for generating
Java code documentation in HTML format from Java source code that carries
required documentation in predefined format.

Javadoc comments are multi-line comments ("/** ... */") which are kept
before class, field or method declarations which begin with slash and two stars
and carries special tags to show characteristics involving method parameters
or return values. The HTML files generated by Javadoc will describe each field
and method of a class, using the Javadoc comments in the source code itself.
It is made up of description part which is followed by block tags such as tags
like @param, @return, and @see.

**

* Returns an Image object that can then be painted on the screen.

* The url argument must specify an absolute {@link URL). The name

* argument is a specifier that is relative to the uri argument.

*<p>

* This method always returns immediately, whether or not the

* image exists. When this applet attempts to draw the image on

* the screen, the data will be loaded. The graphics primitives

* that draw the image will incrementally paint on the screen.

Introduction, History
and Javadoc



4

Object Oriented
Concepts

and Programming – II
(Advance Java)

* @param url an absolute URL giving the base location of the image

* @param name the location of the image, relative to the url argument

* @return the image at the specified URL

* @see Image *

public Image getImage(URL url, Sting name) {

try {

return getImage(newURL(url. name));

} catch (MalformedURLException e} {

return null;

}

}

We see that normally, Javadoc comments be placed before any class,
field, or method declaration so as to describe its intent or characteristics.
Consider an example :

/**

* Represents a student enrolled in the school.

* A student can be enrolled in many courses.

*

public class Student {

**

* The first and last name of this student.

*/

private String name;

**

* Creates a new Student with the given name.

* The name should indude both first and

* last name.

*/

public Student(String name) {

this, name = name;

}

}

 Check Your Progress – 3 :
1. Javadoc comments are placed before:

a. any class b. any field

c. any method declaration d. all of above



5

1.5  Let Us Sum Up :

In this unit we have learnt that Java is a programming language created
by James Gosling from Sun Microsystems in 1991. The first publicly available
version of Java was released in 1995 as Java 1.0.

Java is an object-oriented language where data in application and methods
can be manipulated instead of procedures. It is seen that in an object-oriented
system, class is a collection of data and methods which operates on data.

It is noted that programming is writing of instructions sets which will
guide the computer how to do certain work which can be reading list of names
from a file which could be alphabetical and writing it back again to the file.

The Java Platform Micro Edition which is also known as Java ME, is
a platform which is designed for particular embedded systems.

It is seen that Java 2 Platform Enterprise Edition also called as J2EE
shows a component based mechanism so as to construct, develop, assemble
and deploy enterprise applications.

An application runs in a platform environment, defined by the fundamental
operating system, Java virtual machine, class libraries and different arrangement
data complete when the application is launched.

1.6  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (d)

 Check Your Progress 2 :

1. (d)

 Check Your Progress 3 :

1. (d)

1.7  Glossary :

1. Version : It is a sort of description or an account that differs from one
point of view to another.

2. Bytecode : It is a computer object code which runs through a program
known as virtual machine instead by actual computer machine.

1.8  Assignment :

Write a program which will print "PASS" if int variable "mark" is more
than or equal to 60 else it will print "FAIL".

1.9  Activities :

Discuss the output obtained from this program.

int a=new int[l0]:

int i,s=0;

for(i=0;i<10;i++)

{

a[i]=i;

s=s+a[i]+i;

Introduction, History
and Javadoc



6

Object Oriented
Concepts

and Programming – II
(Advance Java)

}

System.out.println (s);

1.10  Case Study :

Discuss about the Java program shown ?

public class CheckOddEven { //saved as "CheckOddEven.java

public static void main (String[] args) {

int number = 49;     //set the value of number here!

System.out.println("The number is "+number};

if( ){

System.out println(.........);

} else {

System.out println(.........);

}

}

}

1.11  Further Readings :

1. A Primordial Interface by Wm. Paul Rogers

2. Java Diamonds Forever by Tony Sintes

3. Java Routines by John D. Mitchell

4. Object-Oriented Design and Programming by Tony Sintes



7

UNIT STRUCTURE

2.0 Learning Objectives

2.1 Introduction

2.2 Java Platform Features

2.3 Java 2 Platform Editions

2.4 Java Platform Environment

2.5 Setting Path and Classpath

2.6 Let Us Sum Up

2.7 Answer for Check Your Progress

2.8 Glossary

2.9 Assignment

2.10 Activities

2.11 Case Study

2.12 Further Readings

2.0  Learning Objectives :

After learning this unit, you will be able to understand :

• Writing a Swing Program

• Swing Component and Containment Hierarchy

• Layout Management

2.1  Introduction :

Unlike many other programming languages including C and C++, when
Java is compiled, it is not compiled into platform specific machine, rather into
platform independent byte code. This byte code is distributed over the web
and interpreted by the Virtual Machine (JVM) on whichever platform it is being
run on

Java compiler generates an architecture-neutral object file format, which
makes the compiled code executable on many processors, with the presence
of Java runtime system.

Advance java is a part of Java programming language. It is an advanced
technology or advance version of Java specially designed to develop web-based,
network-centric or enterprise applications. It includes the concepts like Servlet,
JSP, JDBC, RMI, Socket programming, etc. It is a specialization in specific
domain.

Most of the applications developed using advance Java uses two-tier
architecture i.e. Client and Server. All the applications that runs on Server can
be considered as advance Java applications.

JAVA PLATFORM, SETTING
AND CLASSPATH

Unit

02



8

Object Oriented
Concepts

and Programming – II
(Advance Java)

2.2  Java Platform Features :

Java is an object-oriented language where data in application and methods
can be manipulated instead of procedures. It is seen that in an object-oriented
system, class is a collection of data and methods which operates on data. Taken
together, data and methods shows state and behavior of an object. Classes are
arranged in hierarchy, so that subclass can inherit behavior from its superclass.
Java comes with an extensive set of classes, arranged in packages that you
can use in your programs.

We see that platform is the base where software/hardware along with
program runs. It is found that Java has software called JVM that runs on
software platform which is an Operating system. As Java runs on any of
platform but it is required to have software JVM. So programs can be developed
in any platform and can run in any platform.

Figure 1 Java Platform

We see that the binary form of programs running on Java platform is
not a local machine code but serves as intermediate bytecode. The JVM will
carry out verification on such bytecode before running it to save program from
performing unsafe operations which includes branching to incorrect locations
having data rather than instructions.

It also allows JVM to implement runtime constraints such as array bounds
checking that serves as an important less likely to suffer from memory safety
flaws like buffer overflow with comparison to programs written in certain
languages that do not have such memory safety guarantees.

We see that the platform will not allow programs to do certain potentially
unsafe operations like pointer arithmetic or unchecked type casts. Further, also
it does not allow manual control over memory allocation and deallocation; users
are required to rely on the automatic garbage collection provided by the
platform. This also contributes to type safety and memory safety.

 Check Your Progress – 1 :
1. The name of Java software is :

a. C++ b. JVM c. Oracle d. none of above



9

2.3  Java 2 Platform Editions :

Java is formally called as Java 2 Platform which carries three editions :

• Java 2 Standard Edition (J2SE)

• Java 2 Enterprise Edition (J2EE)

• Java 2 Micro Edition (J2ME)

Figure 2 Java Editions

All these three editions will focus on different kinds of applications which
runs on different devices. It is found that :

• Desktop based applications were developed with the help of J2SE that
carries necessary user interface classes.

• Server based applications was formed with the help of J2EE that stress
more on component based programming as well as deployment.

• Handheld along with embedded devices are formed with the help of
J2ME.

In the year 1995, the JDK 1.0 exists which was upgraded to JDK 1.1
and to Java 2 in the year 1999.

Figure 3 JDK

Java Platform, Setting
and Classpath



10

Object Oriented
Concepts

and Programming – II
(Advance Java)

It is seen that there exists single Java platform with multiple profiles
such as :

Figure 4 Java Platforms

J2ME

The Java Platform Micro Edition which is also known as Java ME, is
a platform which is designed for particular embedded systems. In this, the target
devices such as industrial controls to mobile phones and set-top boxes are
present. It is seen that Java ME was earlier called as Java 2 Platform which
is Micro Edition as J2ME.

As studied, the edition of Java ME was initially invented by Sun
Microsystems which was made advanced by Oracle Corporation who named
it as Personal Java. Earlier, the different brands of Java ME have evolved in
different JSRs. During the month of December 2006, Java ME source code
was licensed under GNU which was released as phoneME.

J2SE

Since Java is a dynamic programming languages used by computer
programmers today, this language carries advance features with its current
edition on Java 2 Platform which is the standard edition called as J2SE. This
edition is mainly used for writing applets and other applications.The main
advantage of J2SE edition is that it is used in development of certain Java
applications that are utilised for single computers. The J2SE edition applets
and several other applications allow such functions to run smoothly. In the
absence of such applications, various transactions and several Internet interactions
will not takes place. With this, the edition is of a great enabler of carrying
web activity.

J2EE

In order to lower the costs and fast track application design and
development, Java 2 Platform Enterprise Edition called as J2EE shows a
component based mechanism so as to construct, develop, assemble and deploy
enterprise applications. Such platform uses multitier distributed application
model. It is studied that application logic is framed into parts as per the function
with certain application components which makes J2EE application to be kept
on various machines according to the tier present in the multitier J2EE
environment as per which the application belongs.



11

Figure 5 J2EE Multitier Applications

Figure 1.4 shows two multitier J2EE applications divided into the tiers
described above. The parts shown are presented in J2EE Components as :

• Client-tier components run on the client machine

• Web-tier components mil on the J2EE server

• Business-tier components run on the J2EE server

• Enterprise information system (EIS)-tier software rurrs orr the EIS server.

 Check Your Progress – 4 :
1. Which is a multitier distributed application model ?

a. J2ME b. J2SE c. J2EE d. all of above

2.4  Java Platform Environment :

An application runs in a platform environment, defined by the fundamental
operating system, Java virtual machine, class libraries and different arrangement
data complete when the application is launched.

Properties are configuration values managed as key/value pairs. In each
pair, the key and value are both String values. The key identifies, and is used
to retrieve, the value, much as a variable name is used to retrieve the variable's
value. For example, an application capable of downloading files might use a
property named "download.lastDirectory" to keep track of the directory used
for the last download.

To manage properties, create instances of java.util.Properties. This class
provides methods for the following :

• loading key value pairs into a Propetties object from a a stream.

• retrieving a value from its key,

• 1isting the keys and their values.

• enumerating over the keys,

saving the properties to a stream.

Java Platform, Setting
and Classpath



12

Object Oriented
Concepts

and Programming – II
(Advance Java)

Properties extend java.util.Hashtable. Some of the methods inherited from
Hashtable supports following actions :

• testing to see if a particular key or value is in the Properties object.

• getting the current number of key/value pairs,

• removing a key and its value,

• adding a key/value pair to the Properties list,

• enumerating over the values or the keys,

• retrieving a value by its key,

finding out if the Properties object is empty

Benefits of 64-bit JVM on 64-bit OS and Hardware :

Wider datapath. The pipe betwen RAM and CPU is dcubled: which
improves the performance of memory-bound applications.

64-bio memory addressing gives virtually unlimited (1 exabyte) heap
allocation. However large heaps affect garbage collection.

Applications hat run with more than 1.5 GB of RAM should utilize the
4-bit JVM.

 Check Your Progress – 5 :
1. For an application to take place in Java, you need :

a. JVM b. Operating system

c. Class libraries d. all of above

2.5  Setting Path and Classpath :

It is found that there are many classes available in the library in Java.
A wide range of extensive library of pre-written classes which can be applied
in certain programs are listed below which are grouped into Java 1.1 packages.

• java, applet java.awt

• java.awt.data transfer java.awt.event

• java.awt.image java.awt.peer

• java.beans java.io

• java.lang java.lang.reflect

• java.math java.net

• java.rmi java.rmi.dgc

• java.rmi.registry java.rmi.server

• java.security java.security.acl

• java.security.interfaces java.sql

• java.text java.util

• java.util.zip

In this we find that every package defines a number of classes, interfaces,
exceptions and errors. Also, the packages further gets splitted into sub-packages,
as in case of java.lang package, which has sub-package as java.lang.reflect.
It is seen that a class in sub package will not approach to a class located inside
parent package. It is seen that java.net package having interfaces, classes as
well as exceptions are shown below :



13

Interfaces in java.net

• ContentHandlerFactory

• FileXameMap

• SocketImplFactory

• URL Stream HandlerFactory

Classes in java.net

• ContentHandler Datagram Packet

• DatagramSocket DatagramSocketImpl

• HttpURLConnection InetAddress

• MulticastSocket ServerSocket

• Socket SocketImpl

• URL URLConnection

• URLEncoder URLStreamHandler

Exceptions in java.net

• BindException

• ConnectException

• MalfarmedURLException

• NoRouteToHostException

• ProtocolException

• SocketException

• UnknownHostException

• UnknownServiceException

 Check Your Progress – 6 :
1. In ________ package, gc() method is present.

a. java.lang b. java.util c. java.awt d. java.io

2.6  Let Us Sum Up :

In this unit we have learnt that the Java Platform Micro Edition which
is also known as Java ME, is a platform which is designed for particular
embedded systems.

It is seen that Java 2 Platform Enterprise Edition also called as J2EE
shows a component based mechanism so as to construct, develop, assemble
and deploy enterprise applications.

An application runs in a platform environment, defined by the fundamental
operating system, Java virtual machine, class libraries and different arrangement
data complete when the application is launched.

2.7  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (b)

 Check Your Progress 4 :

1. (c)

Java Platform, Setting
and Classpath



14

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Check Your Progress 5 :

1. (d)

 Check Your Progress 6 :

1. ( )

2.8  Glossary :

1. JVM : It is a program called as Java virtual machine that calculates
assembled Java binary codes.

2. Class Library : It is a collection of prewritten classes or codes in shape
of templates that can be specified and used by programmer during
development of an application program.

2.9  Assignment :

Find out what are the new versions of jsdk and their features.

2.10  Activities :

1. Download the latest version of java.

2. Install java.

3. Set the classpath for installed java

2.11  Case Study :

Discuss about object oriented programming languages and its architecture.

2.12  Further Readings :

1. A Primordial Interface by Wm. Paul Rogers

2. Java Diamonds Forever by Tony Sintes

3. Java Routines by John D. Mitchell

4. Object-Oriented Design and Programming by Tony Sintes



15

UNIT STRUCTURE

4.0 Learning Objectives

4.1 Introduction

4.2 Layout Management

4.3 Event Handling

4.4 The Action Event API

4.5 Let Us Sum Up

4.6 Answer for Check Your Progress

4.7 Glossary

4.8 Assignment

4.9 Activities

4.10 Case Study

4.11 Further Readings

3.0  Learning Objectives :

After learning this Unit, you will be able to :

• Writing a Swing Program

• Swing Component and Containment Hierarchy

3.1  Introduction :

We see that an original Java GUI subsystem was Abstract Window Toolkit
which translates visual components into platform specific where the look and
feel of a component was defined by platform

Swing was introduced in 1997 with an idea to fix problems with AWT
and offers two key features:

• Swii&; compcn?ncs an? 1 ighfwieigftt and don''; rely on peers

• Swing supp o ns piuggabl ? I oc k and f? ?i such as Metal i,d?faui
L ; r frittdows and lvloti f. Swing ts built on .AWT

3.2  Differences between Swing and Applets :

Swing is set of platform independent UI tools which guarantees about
user interface design that looks similar on several platforms. An applet is an
application which runs inside browser or other hosted environment which uses
Swing UI. Further an applet results as small part written in Java having plugged
into HTML page. There are certain difference that exists among Swing and
applets which are shown below :

INTRODUCTION TO SWING
Unit

03



16

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Check Your Progress – 1 :
1. Which among the following information is incorrect about Swing :

a. It carries heavy weight components

b. It carries lighter weight components

c. It requires faster creation time

d. it has modern design

3.3  Writing a Swing Program :

In Java, we see that there are two standard libraries for graphical user
interface, where first is java.awt package having classes for windows
(java.awt.Window), buttons (java.awt.Button), textfields (java.awt.TextField)
and so on. Such classes are simple wrappers to platform's GUI objects where
window will create along with awt in Java to look as Windows window in
Windows. Consider the first example showing basic window on screen:

impport javax.swing;_JFrume;

import javax.swing.SwingUtilities;

public class Example extends JFrame {

public Example() {

setTitle("Simple example");

setSize(300, 200);

setLocationRelativeTo(null);

setDefaultCloseOperation(EXIT_ON_CLOSE);

}

Swing

Swing is light weight Component.

Swing have look and feel according
to user view you can change look and
feel using UlManager.

Swing user for stand lone
Applications, Swing have main
method to execute the program.

Swing uses MVC Model view
Controller.

Swing have its own Layout like most
popular Box Layout.

Swing have some Thread rules.

To execute Swing no need any browser
By which we can create stand alone
application But Here we have to add
container and maintain all action
control with in frame container.

Applet

Applet is heavy weight Component.

Applet Does not provide this facility.

Applet need HTML code for Run the
Applet.

Applet not.

Applet uses AWT Layouts like
flowlayout.

Applet doesn't have any rule.

To execute Applet programe we
should need any one browser like
Appletviewer, web broswer. Because
Applet using brower container to run
and all action control with in browser
container.



17

public static void main(String[] args) {

Example ex = new Example();

ex.setVisible(true);

}

}

j

Being the code as very small, though application window can able to
resize, maximized and minimized windows.

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

Now we will import Swing classes in code example as :

public class Example extends JFrame {

Here the Example class will inherit from JFrame widget which is a
toplevel container applied for keeping other widgets.

setTitle("Simple example");

Now we will set title of window using setTitle() method.

setSize(100, 100);

This will resize the window as 100px wide and 100px tall.

setLocationRelativeTo(null);

This will center the window on screen.

setDefaultCloseOperation(EXIT_ON_CLOSE);

This method will close the window, if we click on the close button of
the titlebar.

By default nothing happens.

Example ex = new Example();

ex.setVisible(true);

Now we will develop an instance of code example and make it visible
on screen. Here the main method is static, hence on calling, there appears no
object Example. Again, main is like an external global method. Only when
we explicitly create an instance (with new Example()) that an object Example,
thus a JFrame appears.

Clicking on the button will terminate the application.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.swing.JButton;

import java.swing.JFrame;

import java.swing.JPanel;

import java.swing.SwingUtilities;

public class Example extends JFrame {

public Example() {

initUI();

Introduction to Swing



18

Object Oriented
Concepts

and Programming – II
(Advance Java)

}

public final void initUI() {

JPanel panel = new JPanel();

getContentPane().add(panel);

panel.setLayout(null);

JButton aquitButton = new JButton("Quit");

quitButton.setBounds(50, 60, 80, 30);

quitButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

System.exit(0);

}

});

panel.add(quitButton);

setTitle("Quit button");

setSize(300, 200);

setLocationRelativeTo(null);

setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public static void main(String[] args) {

public void run() {

Example ex = new Example();

ex.setVisible(true);

}

}

}

No we will place JButton on the window and add action listener to it.

public Example() {

initUI();

}

Normally it is good practice of placing code which creates GUI inside
a particular method.

JPanel panel = new JPanel();

getContentPane().add(panel);

On creating a JPanel component, we see that it is generic lightweight
container that is added to JPanel to JFrame.

panel.setLayout(null);

Normally, JPanel has FlowLayout manager that is applied to place widgets
on the containers. On calling setLayout(null), we will position components
absolutely by using setBounds() method.



19

JButton quiButton = new JButton("Quit");

quitButton.seBonnds(50, 60, 80, 30);

quitButton.addActiionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

System.exit(0);

}

});

Here we create a button by placing it by calling setBounds() method
and adding an action listener. The action listener will be called, when we
perform an action on the button. In our case, if we click on the button. The
click will terminate the application.

panel.add(quitButton);

In order to show quit button, it must be added to panel where Swing
describes small rectangular window on hovering over with mouse over an
object.

import java.swing.JButton;

import java.swing.JFrame;

import java.swing.JPanel;

import java.swing.SwingUtilities;

public class Example extends JFrame {

public Example() {

initUI();

}

public final void initUI() {

JPanel panel = new JPanel();

getContentPane().add(panel);

panel.setLayout(null);

panel.setToolTipText("A Panel container");

JButton aquitButton = new JButton("Quit");

button.setBounds(100, 60, 100, 30);

button.setToolTipText("A button component");

panel.add(button);

setTitle("Tooltip");

setSize(300, 200);

setLocationRelativeTo(null);

setDefaultCloseOperation(EXIT_ON_CLOSE);

}

Introduction to Swing



20

Object Oriented
Concepts

and Programming – II
(Advance Java)

public static void main(String[] args) {

public void run() {

Example ex = new Example();

ex.setVisible(true);

}

}

}

Here we see that we set tooltip for frame and button.

panel.setToolTipText("A Panel container");

 Check Your Progress – 2 :
1. AWT is :

a. Abstract windows toolkit b. Abstract Writing Toolkit

c. Abstract win table d. none of above

2. Which of the following tool used to execute java code.

a. javac b. rmic c. javadoc d. java

3.4  Swing Component and Containment Hierarchy :

In Java, we see that every Swing GUI applications and applets uses
containment hierarchy which is not related to Swing components position on
class hierarchy which can be :

Top-level Container(s)

On screen, all GUI component acts as part of containment hierarchy
where one containment hierarchy is there in all program which uses Swing
components. Each containment hierarchy has a top-level container at its root.

Intermediate Container(s)

It is noted that an intermediate container has content pane or panel having
all visible components where all top-level container has single intermediate
container if anything useful to be shown on the screen.

Atomic Component(s)

We see that button and label are atomic components that are self-sufficient
entities showing bits of information to user. Moreover, atomic components gets
input from user.

Top-level Containers

This containers exist mainly to show place for other Swing components
to paint themselves. Swing provides four top-level container classes :

• JApplet - Enable applets to use Swing components.

• JDialog - The main class for creating a dialog window.

• JFrame - A top-level window with a title and a border.

JWindow - As a rule, not very useful. Provides a window with no controls
or title



21

Top-level Containers in Applets

A Swing-based applet has at least one containment hierarchy, exactly one
of which is rooted by a JApplet object. In an applet which brings dialog has
two containment hierarchies, components in browser window and dialog rooted
by a JDialog object.

Top-level Containers in Applications

As a rule, a standalone application with a Swing-based GUI has at least
one containment hierarchy with a JFrame as its root. For example, if an
application has one main window and two dialogs, then the application has
three containment hierarchies, and thus three top-level containers. One
containment hierarchy has a JFrame as its root, and each of the other two
has a JDialog object as its root.

Intermediate Containers

A panel, or pane, such as JPanel, is an intermediate container. Its only
purpose is to simplify the positioning atomic components like buttons and labels.
Other intermediate Swing containers, such as scroll panes (JScrollPane) and
tabbed panes (JTabbedPane), typically play a more visible, interactive role in
a program's GUI.

 Check Your Progress – 3 :
1. Which container has title bar and MenuBars along with button, textfield

etc. ?

a. Panel b. Frame c. Window d. Container

3.5  Let Us Sum Up :

While studying this unit, we have learnt that applet is small component
written in Java which plugs into HTML page or markup language page.

Swing is a framework for developing the graphical user interface (GUI)
for Java applications and applets. It is a set of platform independent UI tools
(JButton, JScrollBar, etc.).

It is noted that Java offers standard libraries for graphical user interface
(GUI) as java.awt package having classes to create windows (java.awt.Window),
buttons (java.awt.Button), textfields (java.awt.TextField), and so on.

3.6  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (a)

 Check Your Progress 2 :

1. (a),  2. (d0

 Check Your Progress 3 :

1. (b)

3.7  Glossary :

1. GUI : It is a Graphical User Interface that works with icons or indicators
along with electronic devices

Introduction to Swing



22

Object Oriented
Concepts

and Programming – II
(Advance Java)

3.8  Assignment :

Write short note on Swings.

3.9  Activities :

Collect some information about swing components.

3.10  Case Study :

Discuss, how applets are differing from swing.

3.11  Further Readings :

1. The online Java tutorial @ http://docs.oracle.com/javase/tutorial/.

2. Paul Deitel and Harvey Deitel, "Java How to Program", 9th ed, 2011.

3. Y. Daniel Liang, "Introduction to Java Programming", 9th ed, 2012.

4. Bruce Eckel, "Thinking in Java", 4th ed, 2007



23

UNIT STRUCTURE

4.0 Learning Objectives

4.1 Introduction

4.2 Layout Management

4.3 Event Handling

4.4 The Action Event API

4.5 Let Us Sum Up

4.6 Answer for Check Your Progress

4.7 Glossary

4.8  Assignment

4.9 Activities

4.10 Case Study

4.11 Further Readings

4.0  Learning Objectives :

After learning this Unit, you will be able to :

• Layout Management

• Event Handling

• Action API

4.1  Introduction :

In Swing, the layout is managed by layout manager which directly places
every components in the container. Without this, the components also gets
placed by default layout manager. It is possible to layout the controls by hand
but it becomes very difficult because of the following two reasons.

• It is very boring to handle a large number of controls within the container.

• Moreover, width and height information of component is not given when
needs to arrange it.

4.2  Layout Management :

We see that Java provide with various layout manager that places the
controls. The properties like size,shape and arrangement varies from one layout
manager to other layout manager. When the size of the applet or the application
window changes the size, shape and arrangement of the components also
changes in response i.e. the layout managers adapt to the dimensions of
appletviewer or the application window. The layout manager is associated with
every Container object. Each layout manager is an object of the class that
implements the LayoutManager interface.

LAYOUT MANAGEMENT
Unit

04



24

Object Oriented
Concepts

and Programming – II
(Advance Java)

If we are not using the layout manager, then we have to place the
components using absolute values.

package zetcode;

import java.swing.JButton;

import java.swing.JFrame;

import java.swing.SwingUtilities;

public class AbsoluteExample extends JFrame {

public Example() {

initUI();

}

public final void initUI() {

setLayout(null);

JButton ok = new JButton("OK")

ok.setBounds(50, 50, 80, 25);

Jbutton close = new JButton("Close");

close.setBounds(150, 50, 80, 25);

add(ok);

add(close);

setTitle("Absolute positioning");

setSize(300, 250);

setDefaultCloseOperation(JFrame EXIT_ON_CLOSE);

setLocationRelativeTo(null);

}

public static void main(String[] args) {

SwingUtilities.invokeLater(new Runnable() {

public void run() {

AbsoluteExample ex = new AbsoluteExample();

ex.setVisible(true);

}

});

}

}

In this example we see that there are two buttons.

setLayout(null);

We use absolute positioning by providing null to the setLayout() method.

ok.setBound(50, 50, 80, 25);



25

The setBounds() method positions the ok button. The parameters are the
x, y location values and the width and height of the component.

 Check Your Progress – 4 :
1. The Swing Component classes used to Encapsulates mutually exclusive

set of buttons is :

a. AbstractButton b. ButtonGroup

c. JButton d. ImageIcon

4.3  Event Handling :

To design an interactive Graphical User Interfaces is a difficult task,
especially for those who has no experience. Creating user interfaces with the
help of toolkit is time consuming process as it does not integrate in scientific-
computing work-flow during explanation of algorithms and data-flow where
objects shown by GUI are likely to change.

Visual computing, where the programmer creates first a graphical interface
and then writes the callbacks of the graphical objects, gives rise to a slow
development cycle, as the work-flow is centered on the GUI, and not on the
code.

It is seen that if you want your program to calculate geometric objects,
then you have to guide computer about set of 3 numbers and to tell him how
to rotate that point along given axis. Also, if you want to use sphere, then
a bit more work requires your program to function which will create points,
spheres, etc. It knows how to rotate them, to mirror them, to scale them. So
in pure procedural programming you will have procedures to rotate, scale,
mirror, each one of your objects. If you want to rotate an object you will first
have to find its type, then apply the right procedure to rotate it.

In object oriented programming, new abstraction just like object carries
both data and procedures which is applied and altered data. In this, the data
entries are known as attributes of object and procedures methods. So with the
help of object oriented programming, an object is described to rotate. A point
object could be implemented in python with :

code snippet =0

from numpy import cos: sin

class; Point (object);

""" 3D Point objects """

x = 0.

y = 0.

z = 0.

defrotate_z(self, theta);

""" rotate the point around the Z axis """

xtemp = cos(theta) * self.x + sin(theta) * self.y

ytemp = -sin(theta) * self.x + cos(theta) * self.y

self.x = xtemp

self.y = ytemp

Layout Management



26

Object Oriented
Concepts

and Programming – II
(Advance Java)

The above program code will form a Point class. Point objects can be
created as instances of the Point class as :

>>> from numpy import pi

>>> p = Point()

>>> p.x = 1

>>> p.rotate_z(pi)

>>> p.x

-1.0

>>> p.y

1.2246467991473532e-16

To carry out objects, developer requires no knowledge about internal
details of their procedures. It is seen that as long as object has rotate method,
the developer knows how to rotate it.

 Check Your Progress – 5 :
1. A Graphics object is :

a. object showing part of Frame which can be drawn.

b. object that shows whole Frame.

c. object that shows full monitor.

d. object that shows graphics board.

4.4  The Action Event API :

An event is an object representing a change to a resource that was
observed by an event subscription. In general, requesting events on a resource
is faster and subject to higher rate limits than requesting the resource itself.
Additionally, change events bubble up - listening to events on a project would
include when stories are added to tasks in the project, even on subtasks.

Analytics API is composed of the People API and the Events API. These
APIs are used for tracking people and the events or actions they do. For instance,
tracking when someone is active on your website, when a purchase is made
or when someone watches a video. They are optimized for low latency and
high numbers of requests, so they do not adhere to the same REST principles
our other APIs use. The main Events API endpoint is /api/track, which is used
to track when someone takes an action or does something.

A semantic event which shows a component-defined action occurred
which is generated by component when component-specific action occurs. The
event is passed to every ActionListener object that registered to receive such
events using the component's addActionListener method.

The object that implements the ActionListener interface gets this
ActionEvent when the event occurs. The listener is therefore spared the details
of processing individual mouse movements and mouse clicks, and can instead
process a "meaningful" (semantic) event like "button pressed".



27

 Check Your Progress – 6 :
1. In order to apply ActionListener interface, it should be placed by class.

Which among the following describes the way of doing this?

a. Creating a new class

b. Appling graphical component to class

c. Anonymous inner class

d. All of above

4.5  Let Us Sum Up :

While studying this unit, we have learnt that the layout manager directly
places all components in the container. If we do not use layout manager then
also the components are positioned by the default layout manager.

An event is an object representing a change to a resource that was
observed by an event subscription

4.6  Answer for Check Your Progress :

 Check Your Progress 4 :

1. (b)

 Check Your Progress 5 :

1. (a)

 Check Your Progress 6 :

1. (d)

4.7  Glossary :

1. Interface : It is a coordination involved among computer, program and
humans.

4.8  Assignment :

1. Write a short note on Layout Management.

2. Write a short note on Event Handling in java.

4.9  Activities :

Collect some information on role of layout manager.

4.10  Case Study :

Generalised the basic necessity of Event API.

4.11  Further Readings :

1. The online Java tutorial @ http://docs.oracle.com/javase/tutorial/.

2. Paul Deitel and Harvey Deitel, "Java How to Program", 9th ed, 2011.

3. Y. Daniel Liang, "Introduction to Java Programming", 9th ed, 2012.

4. Bruce Eckel, "Thinking in Java", 4th ed, 2007

Layout Management



28

Object Oriented
Concepts

and Programming – II
(Advance Java)

BLOCK SUMMARY :

In this block, students have learnt and understand about the basic of

Swing Component and Containment Hierarchy and Action Event API. The block

gives an idea on the study and concept of differences which exists among Swing

and Applets. The students have be well explained on the concepts of Java

Programs and Components and Java Platform Features.

The block detailed about the basic of Javadoc Comments techniques. The

concept related to Java 2 Platform Editions and History of Java Platform will

also be explained to the students. The student will be demonstrated practically

about Java Platform Features technique.



29

BLOCK ASSIGNMENT :

 Short Questions :

1. What is Event Handling ?

2. Explain the Java 2 Platform Editions ?

3. Write note on Action Event API ?

4. Write short note on Java Platform Environment ?

 Long Questions :

1. Write short notes on Java Programs and Components ?

2. Write short note on Setting Path and Classpath ?

3. Write note on differences among Swing and Applets ?



30

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Enrolment No. : 

1. How many hours did you need for studying the units ?

Unit No. 1 2 3 4

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................



OBJECT ORIENTED CONCEPTS AND
PROGRAMMING – II (ADVANCE JAVA)

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 2 :  JAVA DATABASE CONNECTIVITY

UNIT 5 NETWORKING

UNIT 6 JAVA DATABASE CONNECTIVITY

UNIT 7 XML

BCAR-304



Block Introduction :
Java Networking is a concept of connecting two or more computing devices

together so that we can share resources. Java Database Connectivity, which is a
standard Java API for database-independent connectivity between the Java
programming language and a wide range of databases. In this block, we will detail
about the basic of Networking Protocols and features about TCP and UDP. The
block will focus on the study and concept of finding Networking Classes in JDK
along with concept of socket programming. The students will give an idea on
creating Client and Server program with the help of Sockets. In this block, the
student will made to learn and understand about the basic of Sockets and Port
numbers in that appears in Java Networking. The concept related to working and
implementing of Client Server Programs along with arrangement of port numbers
are also explained to students. The student will be demonstrated practically about
programmed input output technique.

Block Objectives :
After learning this block, you will be able to understand :

• Understand about Networking Protocols

• Features about TCP and UDP

• Identify Networking Classes In JDK

• Concept of Sockets and Port numbers in Networking

• Qualities of Creating Client and Server Program using Sockets

• Idea about Running Client Server Programs

• Explain the various steps of writing JDBC Program

• Highlight the various JDBC Statements

• Characteristics of Prepared Statements

• Calling a Stored Procedure from JDBC

Block Structure :

Unit 5 : Networking

Unit 6 : Java Database Connectivity

Unit 7 : XML

 JAVA DATABASE
CONNECTIVITY



31

UNIT STRUCTURE

5.0 Learning Objectives

5.1 Introduction

5.2 Networking Terminology

5.3 Networking Protocols

5.4 Differences between TCP and UDP

5.5 Networking Classes in java.net Package

5.6 Client and Server Program using Socket

5.7 Executing Client Server Programs

5.8 Multicast Protocol

5.9 Let Us Sum Up

5.10 Answer for Check Your Progress

5.11 Glossary

5.12 Assignment

5.13 Activities

5.14 Case Study

5.15 Further Readings

5.0  Learning Objectives :

After learning this Unit, you will be able to :

• Define various Networking Terminology and Protocols

• Differentiate among TCP and UDP

• Write TCP and UDP server and client program

5.1  Introduction :

The Internet is all about connecting machines together. One of the most
exciting aspects of Java is that it incorporates an easy-to-use, cross-platform
model for network communications. Through Java Networking we can connect
two or more computing devices together so that we can share resources. Java
program will communicates over the network at the application layer. Java.net
package contains all the useful Java networking related classes and interfaces.
Java language enables to communicate with remote file systems using a client/
server model. A server listens for connection requests from clients across the
network or even from the same machine. Clients know how to connect to the
server via an IP address and port number. After establishing connection, the
server reads the request sent by the client and responds appropriately. In this
way, applications can be broken down into specific tasks that are accomplished
in separate locations. The data that is sent back and forth over a socket can

NETWORKING
Unit

05



32

Object Oriented
Concepts

and Programming – II
(Advance Java)

be anything. Normally, the client sends a request for information or processing
to the server, which performs a task or sends data back.

5.2  Networking Terminology :

The widely used java networking terminologies are given below:

• IP Address : The IP address is a unique number assigned to a node
of a network e.g. 192.168.200.1. It consists of octets that range from
0 to 255. The IP address can be changed. For example,   each time
you access the network, your device will be assigned a new IP address
by the   server through DHCP (dynamic host configuration protocol).
This address will be used to route your data through the network from
the source device to the desired destination. It exists at the network layer.
IP address is divided in to classes from A to E. The IP address 127.0.0.1
is special, and is reserved to represent the loopback or localhost address.

• Protocol : Protocol defines the rules and conventions for communication
between network devices, including ways devices can identify and make
connections with each other. It is a set of rules followed for communication.
Examples of protocol are TCP, FTP, Telnet, SMTP, POP etc.

• Port Number : The port number uniquely identifies different applications.
It acts as a communication endpoint between applications. To communicate
between two applications, the port number is used along with an IP
Address. Port works at the transport layer. Port numbers 1 to 255 are
reserved by IP for well-known services. If you connect to port 80 of
a host, for instance, you may expect to find an HTTP server. On UNIX
machines, ports less than 1024 are privileged and can only be bound
by the root user. This is so an arbitrary user on a multi-user system can't
impersonate well-known services like TELNET (port 23), creating a
security problem. Windows has no such restrictions, but you should
program as if it did so that your applications will work cross-platform.

• MAC Address : The MAC address is the physical address of the device
(such as network interface card). It is fixed and each device in the world
has a unique MAC address. For example, an Ethernet card may have
a MAC address of 00:0c:83:b2:d0:8e. The MAC address allows computers
on the same network (the same subnet) to communicate. MAC addresses
works at the data-link layer.

• Connection-Oriented and Connection-Less Protocol :   In the connection-
oriented protocol, acknowledgment is sent by the receiver. So it is reliable
but slow. The example of a connection-oriented protocol is TCP. But,
in the connection-less protocol, acknowledgment is not sent by the
receiver. So it is not reliable but fast. The example of a connection-less
protocol is UDP.

• Socket : A socket in Java is one endpoint of a two-way communication
link between two programs running on the network. A socket is an
endpoint of a communication between two programs running on a network.
Socket classes are used to create a connection between a client program
and a server program. A socket is bound to a port number so that the
TCP layer can identify the application where the data is meant to be
sent to.



33

Java has a reasonably easy-to-use built in networking API which makes
it easy to communicate via TCP/IP sockets or UDP sockets over the internet.
After the connections are established, communication takes place using I/O
streams. Each socket has both an OutputStream and an InputStream. The client's
OutputStream is connected to the server's InputStream, and the client's InputStream
is connected to the server's OutputStream.

5.3  Networking Protocols :

Networking protocols are sets of established rules that describe how to
format, transmit and receive data from servers and routers to endpoints so
computer network devices can communicate regardless of the differences in
their underlying infrastructures, designs or standards.

To successfully send and receive information, devices on both sides of
a communication must accept and follow protocol rules. Support for network
protocols can be built into software, hardware or both. Standardized network
protocols provide a common language for network devices. Without them,
computers would not know how to communicate with each other.

Java has a rich easy-to-use built in networking API which makes it easy
to communicate via TCP/IP sockets or UDP sockets over the internet. In Java,
there is a java.net package provides the network support. All the classes for
making a network program are defined in the java.net package. Through TCP
we can communicate over the network. Typically a client opens a TCP/IP
connection to a server. The client then starts to communicate with the server.
When the client finishes its task, it closes the connection again.

Fig 1.1 Java Client server

Client may send more than one request through an open connection. In
fact, a client can send as much data as the server is ready to receive. The
server can also close the connection if it wants to. When a computer (client
or server) sends data to another computer over the internet it takes some time
from the time the data is sent, to the data is received at the other end. This
is the time it takes the data to travel over the internet. This time is called
latency.

The more roundtrips you have in your protocol, the slower the protocol
becomes, especially if latency is high. The HTTP protocol consists of only
a single request and a single response to perform its service. A single roundtrip
in other words. The SMTP protocol on the other hand, consists of several
roundtrips between the client and the server before an email is sent.

Networking



34

Object Oriented
Concepts

and Programming – II
(Advance Java)

The java.net package provides the functionality for two common protocols.

TCP (Transmission Control Protocol)

TCP is a connection based protocol that provides a reliable flow of data
between two devices. This protocol provides the reliable connections between
two applications so that they can communicate easily. It is a connection oriented
protocol.

UDP (User Datagram Protocol)

UDP protocol sends independent packets of data, called datagram from
one computer to another with no guarantee of arrival. It is connection less
protocol.

If you want to start a server that listens for incoming connections from
clients on some TCP port, you have to use a Java ServerSocket. When a client
connects via a client socket to a server's ServerSocket, a Socket is assigned
on the server to that connection. The client and server now communicate Socket-
to-Socket.

 Check Your Progress – 1 :
1. Which of the following is false with respect to TCP ?

a. Connection-oriented b. Process-to-process

c. Transport layer protocol d. Unreliable

5.4  Differences between TCP and UDP :

UDP (User Datagram Protocol) is a connectionless protocol sitting on
top of IP that provides unreliable packet delivery. It essentially provides user-
level access to the low-level IP hardware. TCP (Transmission Control Protocol)
is another protocol, a reliable but slower one, sitting on top of IP. TCP provides
reliable, stream-oriented connections; can treat the connection like a stream/
file rather than packets.

(1) TCP is a reliable stream oriented protocol as opposed to UDP which
is not reliable and based upon datagram. You cannot use the UDP for
sending important messages which you can't afford to lose. Though there
are some reliable protocols built over UDP e.g. TIBCO certified messaging
which implement additional checks whether the message is delivered or
not and then facilitate re-transmission.

(2) Speed: Since TCP is reliable and connection oriented it has lots of
overhead as compared to UDP, which means TCP is slower than UDP
and should not be used for transferring message where speed is critical
e.g. live telecast, video or audio streaming. This is the reason UDP is
popularly used in media transmission world.

(3) Data boundaries are preserved in case of UDP but not in the case of
TCP because data is sent as it is as one message in case of UDP but
TCP protocol can break and reassemble the data at sending and receiving
end.

(4) TCP is a connection-oriented protocol but UDP is a connectionless
protocol. What this mean is, before sending a message a connection is
established between sender and receiver in TCP but no connection exists
between the sender and receiver in UDP protocol.



35

(5) TCP provides you order guarantee but UDP doesn't provide any ordering
guarantee. For example, if Sender sends 3 messages than the receiver
will receive those three messages in the same order, Sender, has sent,
even if they are received at different order at receiver end TCP will ensure
they are delivered to a client in the order they are sent by the sender.
UDP doesn't provide this feature, which means it's possible for the last
message to be received first and vice-versa.

(6) TCP header size is larger than UDP header size due to excessive metadata
information sent by TCP protocol. Those are required to ensure the
guarantee provided by TCP protocol e.g. guaranteed ordered delivery.

(7) Multicast can only be used with UDP, it's not possible with TCP because
it's a connection oriented protocol.

(8) TCP is used by HTTP, HTTPs, FTP, SMTP, Telnet protocols while UDP
is used by DNS, DHCP, TFTP, SNMP, RIP, VOIP protocol.

 Check Your Progress – 2 :
1. UDP and TCP are both ……… layer protocols.

a. data link b. network c. transport d. interface

5.5  Networking Classes in java.net Package :

The java.net package contains the classes and interfaces required for
networking. Some important classes are MulticastSocket, ContentHandler,
URLServerSocket, Socket, InetAddress, URLConnection, DatagramSocket, and
DatagramPacket. Some important interfaces in the java.net package are
ContentHandlerFactory, SocketImplFactory, FileNameMap, URLStreamHandler
Factory, and SocketOptions.

InetAddress Class :

This class encapsulates the numerical IP address and the domain name
for the address. Factory methods of a class allow you to call the method without
referencing the object. The factory methods of this class are:

• getLocalHost() method: It returns the name of the local computer

• getByName() method: It returns the address by the Domain name

• getAllByName() method: It returns all the addresses by their domain name

The instance methods of a class are methods that can be called from
an object only. The instance methods for the class are:

• getAddress() method: It returns a four-element byte array that represents
the object's IP address in network byte order

• getHostAddress() method: It returns the host address

• getHostName() method: It returns the hostname that is associated with
the host address.

Socket Class :

Socket is a listener through which computer can receive requests and
responses. Every server or programs executes on the different systems that has
a socket and is bound to the specific port number. Socket provides an endpoint
of two way communication link using TCP protocol. Java socket can be
connection oriented or connection less. TCP provides two way communication
means data can be sent across both the sides at same time.

Networking



36

Object Oriented
Concepts

and Programming – II
(Advance Java)

The java.net.Socket class is used to create a socket so that both the client
and the server can communicate with each other easily. A socket is an endpoint
for communication between two computers. The Socket class inherits the Object
class and implements the Closeable interface.

Constructors :

Methods :

ServerSocket Class :

Socket class is used to create socket and send the request to the server.
Java ServerSocket class waits for request to come over the network.  It works
on the basis of request and then returns a result to the request. It implements
the Closeable interface.

Constructor

Socket()

public Socket(InetAddress address, int
port)

public Socket(InetAddress host, int
port, boolean stream)

public Socket(InetAddress address, int
port, InetAddress localAddr, int local
port)

public Socket(Proxy, proxy)

protected Socket(SocketImpl impl)

Description

It creates an unconnected socket, with
the system-default type of SocketImpl.

It creates a stream socket with
specified IP address to the specified
port number.

It uses the DatagramSocket.

It creates a connection with specified
remote address and remote port.

It creates a connectionless socket
specifying the type of proxy.

It creates a connectionless Socket with
a user-specified SocketImpl.

Method

public InputStream getInputStream()

public OutputStream getOutput
Stream()

public synchronized void close()

InetAddress getInetAddress()

int getPort()

int getLocalPort()

Description

It returns the InputStream attached
with this socket.

It returns the OutputStream attached
with this socket.

It closes this socket

It returns the InetAddress that is
associated with the socket object.

It returns the port number on which
the socket is connected

It returns the local port number on
which the socket is created



37

Constructors :

Methods :

DatagramPacket and DatagramSocket are the two main classes that are
used to implement a UDP client/server application. DatagramPacket is a data
container and DatagramSocket is a mechanism to send and receive
DatagramPackets.

 DatagramPacket

In UDP's terms, data transferred is encapsulated in a unit called datagram.
A datagram is an independent, self-contained message sent over the network
whose arrival, arrival time, and content are not guaranteed. The
java.net.DatagramPacket class represents a datagram packet. They are used to
implement a connectionless packet delivery service. We can create a
DatagramPacket object by using one of the following constructors :

Constructors :

Constructor

ServerSocket()

ServerSocket(int port)

ServerSocket(int port, int backlog)

ServerSocket(int port, int backlog,
inetAddress bindAddrs)

Description

It creates an unbound server socket.

It creates a server socket, bound to
the specified port.

It creates a server socket, bound to
the specified port, with specified local
port.

It creates a server socket, bound to
specified port, listen backlog, and IP
address.

Method

public Socket accept()

public synchronized void close()

int getLocalPort()

Description

It returns the socket and establishes
a connection between server and
client.

It closes the server socket.

It returns the port number on which
the server socket is listening.

Constructor

DatagramPacket(byte[ ] buf, int
length)

DatagramPacket(byte[ ] buf, int
length, InetAddress address, int port)

DatagramPacket(byte[ ] buf, int offset,
int length)

Description

It constructs a DatagramPacket for
receiving packets of length.

It constructs a datagram packet for
sending packets of length to the
specified port number on the specified
host.

It constructs a DatagramPacket for
receiving packets of length, specifying
an offset into the buffer.

Networking



38

Object Oriented
Concepts

and Programming – II
(Advance Java)

Methods :

DatagramPacket(byte[ ] buf, int offset,
int length, InetAddress address, int
port)

DatagramPacket(byte[ ] buf, int offset,
int length, SocketAddress address)

DatagramPacket(byte[ ] buf, int
length, SocketAddress address)

It constructs a datagram packet for
sending packets of length with offset
to the specified port number on the
specified host.

It constructs a datagram packet for
sending packets of length with offset
to the specified port number on the
specified host.

It constructs a datagram packet for
sending packets of length to the
specified port number on the specified
host.

Method

InetAddress getAddress()

byte[ ] getData()

int getLength()

int getOffset()

int getPort()

SocketAddress getSocketAddress()

void setAddress(InetAddress iaddr)

void setData(byte[] buf)

void setData(byte[ ] buf, int offset,
int length)

void setLength(int length)

void setPort(int iport)

Description

This method returns the IP address of
the machine to which this datagram
is being sent or from which the
datagram was received.

This method returns the data buffer.

This method returns the length of the
data to be sent or the length of the
data received.

This method returns the offset of the
data to be sent or the offset of the
data received.

This method returns the port number
on the remote host to which this
datagram is being sent or from which
the datagram was received.

This method gets the SocketAddress
(usually IP address + port number) of
the remote host that this packet is
being sent to or is coming from.

This method sets the IP address of the
machine to which this datagram is
being sent.

This method sets the data buffer for
this packet.

This method sets the data buffer for
this packet.

This method sets the length for this
packet.

This method sets the port number on
the remote host to which this datagram
is being sent.



39

DatagramSocket

We use DatagramSocket to send and receive DatagramPackets.
DatagramSocket represents a UDP connection between two computers in a
network. We use DatagramSocket for both client and server. There are no
separate classes for client and server like TCP sockets.

So we can create a DatagramSocket object to establish a UDP connection
for sending and receiving datagram, by using one of the following constructors :

Constructors :

These constructors can throw SocketException if the socket could not
be opened, or the socket could not bind to the specified port or address. So
we have catch or re-throw this checked exception.

Methods :

This method sets the SocketAddress
(usually IP address + port number) of
the remote host to which this datagram
is being sent.

void setSocketAddress(SocketAddress
address)

Constructor

DatagramSocket()

DatagramSocket(int port)

DatagramSocket(int port, InetAddress
laddr)

Description

It constructs a datagram socket and
binds it to any available port on the
local host machine.

It Constructs a datagram socket and
binds it to the specified port on the
local host machine.

It creates a datagram socket, bound
to the specified local address.

Method

Void close()

InetAddress getLocalAddress()

Int getLocalPort()

Int getReceiveBufferSize()

Int getSendBufferSize()

Int getSoTimeout()

Description

It closes this datagram socket.

It gets the local address to which the
socket is bound.

It returns the port number on the local
host to which this socket is bound.

It get value of the SO_RCVBUF
option for this socket, that is the buffer
size used by the platform for input
on the this Socket.

It get value of the SO_SNDBUF
option for this socket, that is the buffer
size used by the platform for output
on the this Socket.

It retrieve setting for SO_TIMEOUT.
0 returns implies that the option is
disabled (i.e.

Networking



40

Object Oriented
Concepts

and Programming – II
(Advance Java)

These methods may throw Exception  like IOException, PortUnreachable
Exception, SocketTimeoutException. So we have to catch or re-throw them.

URLConnection Class :

The URLConnection class is used for accessing the attribute of remote
resource.

URLConnection is the superclass of all the classes that represent a
communication link between application and a URL.

Methods :

It receives a datagram packet from
this socket.

It sends a datagram packet from this
socket.

It sets the SO_RCVBUF option to the
specified value for this Datagram
Socket.

It sets the SO_SNDBUF option to the
specified value for this Datagram
Socket.

It enable/disable SO_TIMEOUT with
the specified timeout, in milliseconds.

Void receive(DatagramPacket p)

Void send(DatagramPacket p)

Void setReceiveBufferSize(int size)

Void setSendBufferSize(int size)

Void setSoTimeout(int timeout)

Method

int getContentLength()

String getContentType()

long getDate()

long getExpiration()

long getLastModified()

InputStream getInputStream() throws
IOException()

String getRequestProperty(String key)

Description

It returns the size in byte of content
associated with resource.

It returns type of content found in the
resource. If the content is not
available, it returns null.

It returns the time and date of the
response.

It returns the expiry time and date of
the resource. If the expiry date is
unavailable, it return zero.

It returns the time and date of the last
modification of the resource.

It returns an InputStream that is linked
to the resource.

It returns the value of the named
general request property for the given
connection.



41

 Check Your Progress – 3 :
1. What happens if ServerSocket is not able to listen on the specified port ?

a. The system exits gracefully with appropriate message

b. The system will wait till port is free

c. IOException is thrown when opening the socket

d. PortOccupiedException is thrown

5.6  Client and Server Program using Socket :

Creating Server :

To create the server application, we need to create the instance of
ServerSocket class. Here, we are using 1234 port number for the communication
between the client and server. You may also choose any other port number.
The accept() method waits for the client. If clients connects with the given
port number, it returns an instance of Socket.

ServerSocket ss=new ServerSocket(1234);

Socket s=ss.accept(); //establishes connection and waits for the client

Creating Client:

To create the client application, we need to create the instance of Socket
class. Here, we need to pass the IP address or hostname of the Server and
a port number. Here, we are using "localhost" because our server is running
on same system.

Socket s=new Socket("localhost", 1234);

Let's see a simple of Java socket programming where client sends a text
and server receives and prints it.

Server Program :

import java.io.*;

import java.net.*;

public class MySockServer {

public static void main(String[] args){

try{

ServerSocket ss=new ServerSocket(1234);

Socket s=ss.accept();//establishes connection

DataInputStream dis=new DataInputStream(s.getInputStream());

String  str=(String)dis.readUTF();

System.out.println("Data Read is= "+str);

ss.close();

}catch(Exception e){System.out.println(e);}

}

}

Networking



42

Object Oriented
Concepts

and Programming – II
(Advance Java)

Client Program :

import java.io.*;

import java.net.*;

public class MySockClient {

public static void main(String[] args) {

try{

Socket s=new Socket("localhost",1234);

DataOutputStream dout=new DataOutputStream(s.getOutputStream());

dout.writeUTF("Welcome to BAOU");

dout.flush();

dout.close();

s.close();

}catch(Exception e){System.out.println(e);}

}

}

 Check Your Progress – 4 :
1. Which class is used to create servers that listen for either local client

or remote client programs ?

a. ServerSockets b. httpServer

c. httpResponse d. None of the above

5.7  Executing Client Server Programs :

First run the server program. It waits until client request comes. As soon
as client sends requests, server will listen and print the data received from
client.

Now, run the client program from another prompt as shown below :

As soon as the client sends the requests, server receives it and displays
the message as shown below.



43

 Check Your Progress – 5 :
1. Which classes are used for connection-less socket programming ?

a. DatagramSocket b. DatagramPacket

c. Both A & B d. None of the above

5.8  Multicast Protocol :

TCP and UDP are both unicast protocols; there is one sender and one
receiver. Multicast packets are a special type of UDP packets. But while UDP
packets have only one destination and only one receiver, multicast packets can
have an arbitrary number of receivers. Multicast is quite distinct from broadcast;
with broadcast packets, every host on the network receives the packet. With
multicast, only those hosts that have registered an interest in receiving the packet
get it.

This is similar to the way an AWTEvent and it's listeners behave in the
AWT. In the same way that an AWTEvent is sent only to registered listeners,
a multicast packet is sent only to members of the multicast group. AWTEvents,
however, are unicast, and must be sent individually to each listener--if there
are two listeners, two events are sent. With a MulticastSocket, only one is
sent and it is received by many.

MulticastSocket is a subclass of DatagramSocket which has the extended
ability to join and leave multicast groups. A multicast group consists of both
a multicast address and a port number. The only difference between UDP and
multicast in this respect is that multicast groups are represented by Class D
internet addresses. Just as there are well-known ports for network services,
there are reserved, well-known multicast groups for multicast network services.

When an application subscribes to a multicast group (host/port), it receives
datagrams sent by other hosts to that group, as do all other members of the
group. Multiple applications may subscribe to a multicast group and port
concurrently, and they will all receive group datagrams.

When an application sends a message to a multicast group, all subscribing
recipients to that host and port receive the message (within the time-to-live
range of the packet). The application needn't be a member of the multicast
group to send messages to it.

Constructors :

1. public MulticastSocket()

It creates a multicast socket. While using this constructor we have to
explicitly set all the fields such as group address, port number etc.

Syntax : public MulticastSocket()

2. public MulticastSocket(int port)

It creates a multicast socket bound on the port specified.

Syntax : public MulticastSocket(int port)

Parameters: port number to bind this socket to

3. public MulticastSocket(SocketAddress addr)

It creates a multicast socket and binds it to specified socket address.
It creates an unbound socket if address is null.

Networking



44

Object Oriented
Concepts

and Programming – II
(Advance Java)

Syntax : public MulticastSocket(SocketAddress addr)

Parameters: addr- Socket address to bind this socket to

5.9  Let Us Sum Up :

In this unit we have learnt that Java Networking appears as concept that
connects two or more computing devices together in order to share resources.

It is found that Java is easy-to-use built-in networking API that is easy
so as to communicate using TCP/IP sockets or UDP sockets over the internet.

User Datagram Protocol is connectionless protocol above IP that provides
unreliable packet delivery and provides user-level access to low-level IP hardware.

It is seen that JDK appears as class library which makes Java as powerful.
Being part of Java, is considered trustworthy. It is known that socket is one
end-point of two-way communication which links among two programs that
runs on network

5.10  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (d)

 Check Your Progress 2 :

1. (c)

 Check Your Progress 3 :

1. (c)

 Check Your Progress 4 :

1. (a)

 Check Your Progress 5 :

1. (c)

5.11  Glossary :

1. UDP is a stateless, connectionless and unreliable protocol. HTTP needs
connection to be established and thus, uses TCP. Telnet is a byte stream
protocol which again needs connection establishment, thus uses TCP.
DNS needs request and response; it needs a protocol in which a server
can answer the small queries of large number of users. As UDP is fast
and stateless it is the most suitable protocol and thus, it is used in DNS
querying. SMTP needs reliability and thus, uses TCP. DNS uses UDP.
HTTP, Telnet and SMTP uses TCP.

2. E-mail uses SMTP as application layer protocol. TCP and UDP are two
transport layer protocols. SMTP uses TCP as transport layer protocol as
TCP is reliable.

5.12  Assignment :

1. Explain about Networking Protocols.

2. Discuss ServerSocket and Socket class.

3. Discuss DatagramPacket and DatagramSocket class.



45

5.13  Activities :

Study about Creating Client and Server Program through Sockets.

5.14  Case Study :

Study about Running Client Server Programs.

5.15  Further Readings :

1. Java: The Complete Reference, Eleventh Edition by Herbert Schildt

2. https://www.javatpoint.com/java-networking

3. https://www.tutorialspoint.com/java/java_networking.htm

4. https://www.studytonight.com/java/networking-in-java.php

Networking



46

Object Oriented
Concepts

and Programming – II
(Advance Java)

UNIT STRUCTURE

6.0 Learning Objectives

6.1 Introduction

6.2 Types of JDBC Drivers

6.3 Steps to write a JDBC Program

6.4 Establishing a Connection

6.5 Creating JDBC Statements

6.6 Manipulating Result Sets

6.7 Using Prepared Statements

6.8 Using Callable Statements

6.9 ResultSetMetaData

6.10 Let Us Sum Up

6.11 Answer for Check Your Progress

6.12 Glossary

6.13 Assignment

6.14 Activities

6.15 Case Study

6.16 Further Readings

6.0  Learning Objectives :

After learning this Unit, you will be :

• Able to establish database connection

• Able to define different JDBC statements

• Able to create JDBC statements

• Able to retrieve data using Result Sets

6.1  Introduction :

JDBC is advancement for ODBC, ODBC being platform dependent had
a lot of drawbacks. ODBC API was written in C, C++, Python, Core Java
and as we know above languages (except Java and some part of Python) are
platform dependent. Therefore to remove dependence, JDBC was developed
by database vendor which consists of classes and interfaces written in Java.

Java Database Connectivity is a standard Java API for database-independent
connectivity between the Java programming language and a wide range of
databases. JDBC lets Java programmers connect to a database, query it or update
it using SQL. Java and JDBC have an essential advantage over other database
programming environments since the programs developed with this technology
are platform-independent and vendor-independent. Because of its universality
Java and JDBC could eventually replace proprietary database languages.

JAVA DATABASE
CONNECTIVITY

Unit

06



47

Fig 2.1 JDBC Connections

Fundamentally, JDBC is a specification that provides a complete set of
interfaces that allows for portable access to an underlying database. Java can
be used to write different types of applications such as,

• Desktop Applications

• Java Applets

• Java Servlets

• Java ServerPages (JSPs)

• Enterprise JavaBeans (EJBs)

It is seen that Application programming interface is a document that
contains description of all the features of a product or software. It represents
classes and interfaces that software programs can follow to communicate with
each other. An API can be created for applications, libraries, operating systems
etc.

6.2  Types of JDBC Drivers :

The JDBC API consists of a set of interfaces and classes written in the
Java programming language. Using these standard interfaces and classes,
programmers can write applications that connect to databases, send queries
written in structured query language (SQL), and process the results. JDBC is
oriented towards relational databases.

Because JDBC is a standard specification, a Java program that uses the
JDBC API can connect to any database management system (DBMS) for which
there is a JDBC driver.

There are 4 different types of JDBC drivers:

Type 1 : JDBC-ODBC bridge driver

A type 1 JDBC driver consists of a Java part that translates the JDBC
interface calls to ODBC calls. An ODBC bridge then calls the ODBC driver
of the given database i.e. the driver converts JDBC method calls into ODBC
function calls. Sun provides a JDBC-ODBC Bridge driver:
sun.jdbc.odbc.JdbcOdbcDriver. This driver is native code and not Java, and
is closed source.

Java Database
Connectivity



48

Object Oriented
Concepts

and Programming – II
(Advance Java)

Type 2 : Native-API Driver

A type 2 JDBC driver is like a type 1 driver, except the ODBC part
is replaced with a native code part instead. The native code part is targeted
at a specific database product i.e. uses the client-side libraries of the database
product. The driver converts JDBC method calls into native calls of the database
native API.

Type 3 : All Java + Middleware translation driver

A type 3 JDBC driver is an all Java driver that sends the JDBC interface
calls to an intermediate server. The intermediate server then connects to the
database on behalf of the JDBC driver. The middle-tier (application server)
converts JDBC calls directly or indirectly into the vendor-specific database
protocol.

Type 4 : Pure Java driver

The JDBC type 4 driver, also known as the Direct to Database Pure
Java Driver, is a database driver implementation that converts JDBC calls
directly into a vendor-specific database protocol. It is implemented for a specific
database product. Today, most JDBC drivers are type 4 drivers.

6.3  Steps to Write a JDBC Program :

The following steps are the basic steps involve in connecting a Java
application with Database using JDBC:

• Import JDBC packages.

• Load and register the JDBC driver.

• Open a connection to the database.

• Create a statement object to perform a query.

• Execute the statement object and return a query resultset

• Process the resultset

• Close the resultset and statement objects

• Close the connection

Import JDBC Packages

This is for making the JDBC API classes immediately available to the
application program. The following import statement should be included in the
program irrespective of the JDBC driver being used:

import java.sql.*;

Load and Register the JDBC Driver

This is for establishing a communication between the JDBC program
and the database. This is done by using the static registerDriver() method of
the DriverManager class of the JDBC API.

Connecting to a Database

After loading the driver, the next step is to create and establish the
connection. Once required, packages are imported and drivers are loaded and
registered, then we can go for establishing a Database connection. This is done
by using the getConnection() method of the DriverManager class. A call to
this method creates an object instance of the java.sql.Connection class. The



49

getConnection() requires three input parameters, namely, a connect string (url),
a username and a password.

- Connection con = DriverManager.getConnection(url,user,password)

Querying the Database

Querying the database involves two steps: first, creating a statement
object to perform a query, and second, executing the query and returning a
resultset.

Creating a Statement Object

This is to instantiate objects that run the query against the database
connected to. This is done by the createStatement() method of the Connection
object. A call to this method creates an object instance of the Statement class.
The following line of code illustrates this:

Statement stmt = con.createStatement();

createStatement method is defined in Connection class and used to
execute the sql queries.

Executing the Query and Returning a ResultSet

Once a Statement object has been constructed, the next step is to execute
the query. This is done by using the executeQuery() method of the Statement
object. A call to this method takes as parameter a SQL SELECT statement
and returns a JDBC ResultSet object. The following line of code illustrates
this using the stmt object created earlier:

ResultSet rs = stmt.executeQuery

("SELECT studno, studname, studadd, studres FROM student ORDER
BY studname");

Processing the results of a database query that returns multiple rows

Once the query has been executed, there are two steps to be carried out:

- Processing the output resultset to fetch the rows

- Retrieving the column values of the current row

The first step is done using the next() method of the ResultSet object.
A call to next() is executed in a loop to fetch the rows one row at a time,
with each call to next() advancing the control to the next available row. The
next() method returns the Boolean value true while rows are still available for
fetching and returns false when all the rows have been fetched.

The second step is done by using the getXXX() methods of the JDBC
rs object. Here getXXX() corresponds to the getInt(), getString() etc with XXX
being replaced by a Java datatype.

 Check Your Progress – 1 :
1. Which of the following is advantage of using PreparedStatement in Java ?

a. Slow performance b. Encourages SQL injection

c. Prevents SQL injection d. More memory usage

6.4  Establishing a Connection :

In order to connect any java application with database using JDBC, we
have to establish a connection using following steps :

Java Database
Connectivity



50

Object Oriented
Concepts

and Programming – II
(Advance Java)

1. Register the driver class

The forName() method of Class class is used to register the driver class.
This method is used to dynamically load the driver class.  The forName()
method is valid only for JDK Compliant Virtual Machines. The syntax of
forName() method is:

public static void forName(String className) throws
ClassNotFoundException

// Oracle database

- Class.forName("oracle.jdbc.driver.OracleDriver");

// For MySQL Database

- Class.forName("com.mysql.jdbc.Driver");

The driver's class file loads into the memory at runtime. It implicitly
loads the driver. While loading, the driver will register with JDBC automatically.
The following table lists the JDBC driver name for the different databases :

Database Name JDBC Driver Name

MySQL com.mysql.jdbc.Driver

Oracle oracle.jdbc.driver.OracleDriver

Microsoft SQL Server com.microsoft.sqlserver.jdbc.SQLServerDriver

MS Access net.ucanaccess.jdbc.UcanaccessDriver

PostgreSQL org.postgresql.Driver

IBM DB2 com.ibm.db2.jdbc.net.DB2Driver

Sybase com.sybase.jdbcSybDriver

2. Create the connection object

The getConnection() method of DriverManager class is used to establish
connection with the database. The syntax of getConnection() method is :

• public static Connection getConnection(String url)throws SQLException

• public static Connection getConnection(String url,String name,String
password) throws SQLException

// Oracle database

- Connection con=DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:EMP","system","password");

Where, jdbc is the API, oracle is the database, thin is the driver,
localhost is the server name on which oracle is running, you may
also use IP address, 1521 is the port number and EMP is the
database name. The default username for the oracle database is
system and the password is the password given by the user at the
time of installing the oracle database.

 // For MySQL Database

Connection con = DriverManager.getConnection("jdbc:mysql://localhost/
EMP",Username,Password);

The following table lists the JDBC connection strings for the different
databases :



51

Database Connection String / DB URL

MySQL jdbc:mysql://HOST_NAME:PORT/DATABASE_
NAME

Oracle j d b c : o r a c l e : t h i n : @ HO S T _ N AM E : P O RT:
SERVICE_NAME

Microsoft SQL Server jdbc:sqlserver://HOST_NAME:PORT;Database
Name=< DATABASE_NAME>

MS Access jdbc:ucanaccess://DATABASE_PATH

PostgreSQL j d b c : p o s t g r e s q l : / / H O S T _ N A M E : P O RT /
DATABASE_NAME

IBM DB2 jdbc:db2://HOSTNAME:PORT/DATABASE_
NAME

Sybase jdbc:Sybase:Tds:HOSTNAME:PORT/DATABASE_
NAME

3. Create the Statement object

The createStatement() method of Connection interface is used to create
statement. The object of statement is responsible to execute queries with the
database. The syntax of createStatement() method is :

public Statement createStatement() throws SQLException

4. Execute the query

The executeQuery() method of Statement interface is used to execute
queries to the database. This method returns the object of ResultSet that can
be used to get all the records of a table. The syntax of executeQuery() method
is :

public ResultSet executeQuery(String sql) throws SQLException

5. Close the connection object

By closing connection object statement and ResultSet will be closed
automatically. The close() method of Connection interface is used to close the
connection. The syntax of close() method is:

public void close()throws SQLException

 Check Your Progress – 2 :
1. Which of the following is method of JDBC batch process ?

a. setBatch() b. deleteBatch()

c. removeBatch() d. addBatch()

6.5  Creating JDBC Statements :

Once a connection is obtained we can interact with the database. The
JDBC Statement, CallableStatement and PreparedStatement interfaces define the
methods and properties that enable you to send SQL or PL/SQL commands
and receive data from your database. They also define methods that help bridge
data type differences between Java and SQL data types used in a database.

A java.sql.Connection object has several methods used to create a
java.sql.Statement object, which we can use to execute SQL queries against
a database.

Java Database
Connectivity



52

Object Oriented
Concepts

and Programming – II
(Advance Java)

Methods of Connection :

1. public Statement createStatement() :  It creates a statement object that
can be used to execute SQL queries.

2. public Statement createStatement(int resultSetType,int resultSet
Concurrency) :  It creates a Statement object that will generate ResultSet
objects with the given type and concurrency. In Jdbc ResultSet Interface
are classified into two type:

- Non-Scrollable ResultSet in JDBC

- Scrollable ResultSet

By default a ResultSet Interface is Non-Scrollable. In non-scrollable
ResultSet we can move only in forward direction (that means from first record
to last record), but not in Backward Direction. If we want to move in backward
direction use Scrollable Interface.

The type and mode are predefined in ResultSet Interface of Jdbc like
below which is static final.

Type :

i. public static final int TYPE_FORWARD_ONLY

ii. public static final int TYPE_SCROLL_INSENSITIVE

iii. public static final int TYPE_SCROLL_SENSITIVE

Mode :

i. public static final int CONCUR_READ_ONLY

ii. public static final int CONCUR_UPDATABLE

Example :

Statement stmt= con.CreateStatement(ResutlSet.TYPE_SCROLL_
INSENSITIVE, ResultSet.CONCUR_READ_ONLY);

3. public void setAutoCommit(boolean status) : It is used to set the commit
status.By default it is true.

4. public void commit() : It saves the changes made since the previous
commit/rollback permanent.

5. public void rollback() : It drops all changes made since the previous
commit/rollback.

6. public void close() : It closes the connection and Releases a JDBC
resources immediately.

When we have got a java.sql.Statement object, several methods on that
object can be used to execute a SQL statement against the database. We see
that there are various important methods from the java.sql.Statement interface
to use:

The Statement interface provides the following important methods :

Methods

public boolean execute
(String sql)

public intexecuteBatch( )

Description

It executes the given SQL query, which may
return multiple results.

It submits the batch of commands to the database
and returns an array of update counts.



53

 Check Your Progress – 3 :
1. The interface ResultSet has a method, getMetaData(), that returns a/an

a. Tuple b. Value c. Object d. Result

6.6  Manipulating Result Sets :

The type of a ResultSet object determines the level of its functionality
in two areas: the ways in which the cursor can be manipulated, and how
concurrent changes made to the underlying data source are reflected by the
ResultSet object.

JDBC returns results in a ResultSet object, so we need to declare an
instance of the class ResultSet to hold our results. In addition, the Statement
methods executeQuery and getResultSet both return a ResultSet object, as do
various DatabaseMetaData methods. The following code demonstrates declaring
the ResultSet object rs and assigning the results of query to it by using the
executeQuery method.

First we need to create a scrollable ResultSet object. The following line
of code illustrates to create a scrollable ResultSet object:

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_
SENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ResultSet rs = stmt.executeQuery("select * from student");

There are 4 categories of ResultSet methods. They are :

1. Navigational Methods :

This method is used to move the cursor around the dataset.

• Boolean absolute(int row): It is used to move the cursor to the specified
row which is mentioned in the parameter and return true if the operation
is successful else return false.

• Void afterLast(): It makes the ResultSet cursor to move after the last
row.

• Void beforeFirst(): It makes the ResultSet cursor to move before the
first row.

• Boolean first(): It makes the ResultSet cursor to move to the first row.
It returns True if the operation is successful else False.

• Boolean last(): It makes the ResultSet cursor to move to the last row.
It returns True if the operation is successful else False.

• Boolean next(): It makes the ResultSet cursor to move to the next row.
It returns True if there are more records and False if there are no more
records.

public ResultSetexecute
Query( )

publicintexecuteUpdate
(String sql)

public Connection
getConnection ( )

Executes the given SQL queries which return
the single ResultSet object.

It performs the execution of DDL (insert, update
or delete) statements.

It retrieves the connection object that produced
the statement object.

Java Database
Connectivity



54

Object Oriented
Concepts

and Programming – II
(Advance Java)

• Boolean previous(): It makes the ResultSet cursor to move to the
previous row. It returns True if the operation is successful else False.

• Boolean relative(): It moves the cursor to the given number of rows
either in the forward or backward direction.

• Int getRow(): It returns the current row number the ResultSet object
is pointing now.

• Void moveToCurrentRow(): It moves the cursor back to the current row
if it is currently in insert row.

• Void moveToInsertRow(): It moves the cursor to the specific row to
insert the row into the Database. It remembers the current cursor location.
So we can use the moveToCurrentRow() method to move the cursor to
the current row after the insertion.

2. Getter Methods

ResultSet has stored the data of the table from the Database. Getter
methods are used to get the values of the table in ResultSet. For that, we need
to pass either column Index value or Column Name.

The following are the getter methods in ResultSet :

• int getInt(int ColumnIndex): It is used to get the value of the specified
column Index as an int data type.

• float getFloat(int ColumnIndex): It is used to get the value of the
specified column Index as a float data type.

• java.sql.date getDate(int ColumnIndex): It is used to get the value of
the specified column Index as a date value.

• int getInt(String ColumnName): It is used to get the value of the
specified column as an int data type.

• float getFloat(String ColumnName): It is used to get the value of the
specified column as a float data type.

• Java.sql.date getDate(String ColumnName): It is used to get the value
of the specified column as a date value.

There are getter methods for all primitive data types (Boolean, long,
double) and String also in ResultSet interface.

3. Setter / Updater Methods

We can update the value in the Database using ResultSet Updater methods.
It is similar to Getter methods, but here we need to pass the values/ data for
the particular column to update in the Database.

The following are the updater methods in ResultSet :

• void updateInt(int ColumnIndex, int Value): It is used to update the
value of the specified column Index with an int value.

• void updateFloat(int ColumnIndex, float f): It is used to update the
value of the specified column Index with the float value.

• void updateDate(int ColumnIndex, Date d): It is used to update the
value of the specified column Index with the date value.

• void updateInt(String ColumnName, int Value): It is used to update
the value of the specified column with the given int value.



55

• void updateFloat(String ColumnName, float f): It is used to update
the value of the specified column with the given float value.

• Java.sql.date getDate(String ColumnName): It is used to update the
value of the specified column with the given date value.

There are Updater methods for all primitive data types (Boolean, long,
double) and String also in ResultSet interface.

Updater methods just update the data in the ResultSet object. Values will
be updated in DB after calling the insertRow or updateRow method.

Updating a Row :

We can update the data in a row by calling updateX() methods, passing
the column name or index, and values to update. We can use any data type
in place of X in the updateX method. Till now, we have updated the data
in the ResultSet object. To update the data in DB, we have to call the
updateRow() method.

Inserting a Row :

We need to use moveToInsertRow() to move the cursor to insert a new
row. We have already covered this in the Navigation methods section. Next,
we need to call updateX() method to add the data to the row. We should provide
data for all the columns else it will use the default value of that particular
column.

After updating the data, we need to call the insertRow() method. Then
use the moveToCurrentRow() method, to take the cursor position back to the
row we were at before we started inserting a new row.

4. Miscellaneous Methods

• void close(): It is used to close the ResultSet instance and free up the
resources associated with ResultSet instance.

• ResultSetMetaData getMetaData(): It returns the ResultSetMetaData
Instance. It has the information about the type and property of columns
of the query output. We will learn more about ResultSetMetaData in the
next section.

Using the Method next :

The variable rs, an instance of ResultSet, contains the rows of student
table. In order to access the student records, we will go to each row and retrieve
the values according to their types. The method next moves what is called
a cursor to the next row and makes that row (called the current row) the one
upon which we can operate. Since the cursor is initially positioned just above
the first row of a ResultSet object, the first call to the method next moves
the cursor to the first row and makes it the current row. Successive invocations
of the method next move the cursor down one row at a time from top to bottom.
Note that with the JDBC 2.0 API, covered in the next section, you can move
the cursor backwards, to specific positions, and to positions relative to the
current row in addition to moving the curs or forward.

Using the getXXX Methods :

We can use the getXXX method of the appropriate type to retrieve the
value in each column. For example, the first column in each row of rs is studno,
which stores a value of SQL type int. The method for retrieving a value of
SQL type integer is getInt. The second column in each row stores a value

Java Database
Connectivity



56

Object Oriented
Concepts

and Programming – II
(Advance Java)

of student name of SQL type varchar, and the method for retrieving values
of that type is getString. The following code accesses the values stored in the
current row of rs and prints a line with the name followed by three spaces
and the price. Each time the method next is invoked, the next row becomes
the current row, and the loop continues until there are no more rows in rs.

String query = "SELECT * from student";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

int num= rs.getInt("studno");

String s=rs.getString("studname");

String add=rs.getString("studadd");

float n = rs.getFloat("studres");

System.out.println(num +" " +s + "" + add +" "+ n);

}

The output will look something like this :

1 mukesh sanand 70.5

2 ved gandhinagar  80.6

3 shrey vasai 80.8

Using the Method getString :

Although the method getString is recommended for retrieving the SQL
types CHAR and VARCHAR, it is possible to retrieve any of the basic SQL
types with it. (You cannot, however, retrieve the new SQL3 datatypes with
it.) Getting all values with getString can be very useful, but it also has its
limitations. For instance, if it is used to retrieve a numeric type, getString will
convert the numeric value to a Java String object, and the value will have
to be converted back to a numeric type before it can be operated on as a number.
In cases where the value will be treated as a string anyway, there is no drawback.

 Check Your Progress – 4 :
1. Which JDBC driver Type(s) can be used in either applet or servlet code?

a. Both Type 1 and Type 2 b. Both Type 1 and Type 3

c. Both Type 3 and Type 4 d. Type 4 only

6.7  Using Prepared Statements :

The PreparedStatement interface extends the Statement interface. It
represents precompiled SQL statements and stores it in a PreparedStatement
object. It increases the performance of the application because the query is
compiled only once. In the example of parameterized query, we see that:

String sql="insert into student values(?,?,?)";

In this, the parameter (?) is passed for values which will be set by calling
setter methods of Prepared Statement.



57

The important methods of PreparedStatement interface are listed below :

Example : Insert operation with PreparedStatement Interface

- Creating PreparedStatement Object

String sql = "Select * from student where studno= ?";

PreparedStatementps = con.prepareStatement(sql);

Note : All the parameter are represented by "?" symbol and each
parameter is referred to by its origin position.

import java.sql.*;

public class PreparedStatTest

{

public static void main(String args[])

{

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con =
DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:baou","username",
"password");

PreparedStatementps = con.prepareStatement("insert into student
values(?, ?, ?,?)");

ps.setInt(1, 5);

ps.setString(2, "Het");

ps.setString(3, "Mumbai");

ps.setFloat(4, 88.4);

ps.executeUpdate();

con.close();

}

Methods

public void setInt(int paramIndex, int
value)

public void setString(int paramIndex,
String value)

public void setFloat(int paramIndex,
float value)

public void setDouble(int paramIndex,
double value)

public int executeUpdate()

public ResultSet executeQuery()

Description

It sets the integer value to the given
parameter index.

It sets the String value to the given
parameter index.

It sets the float value to the given
parameter index.

It sets the double value to the given
parameter index.

It executes the query. It is used for
create, drop, insert, update, delete etc.

It executes the select query. It returns
an instance of ResultSet.

Java Database
Connectivity



58

Object Oriented
Concepts

and Programming – II
(Advance Java)

catch(Exception e)

{

System.out.println(e);

}

}

}

To updates the record :

PreparedStatement stmt=con.prepareStatement("update student set
studname=? where studno=?");

stmt.setString(1,"Kalp");//1 specifies the first parameter in the query i.e.
name

stmt.setInt(2,1);

int i=stmt.executeUpdate();

System.out.println(i+"records updated");

To delete the record :

PreparedStatement stmt=con.prepareStatement("delete from student where
studno=?");

stmt.setInt(1,3);

int i=stmt.executeUpdate();

System.out.println(i+" records deleted");

 Check Your Progress – 5 :
1. Which of the following contains both date and time ?

a. java.io.date b. java.sql.date

c. java.util.date d. java.util.dateTime

6.8  Using Callable Statement :

A Stored procedure can return result sets, we can use getResultSet method
in the CallableStatement class to retrieve return result sets. When a procedure
has return value for an OUT parameter, we must tell the JDBC driver what
SQL type the value will be, with the registerOutParameter method. To call
stored procedures, we invoke methods in the CallableStatement class.

The basic steps are :

• Creating a CallableStatement object by calling the Connection.prepareCall
method.

• Using the CallableStatement.setXXX methods to pass values to the input
(IN) parameters.

• Using the CallableStatement.registerOutParameter method to indicate which
parameters are output-only (OUT) parameters, or input and output (INOUT)
parameters.

• Invoke one of the following methods to call the stored procedure:

- CallableStatement.executeUpdate method, if the stored procedure
does not return result sets.



59

- CallableStatement.executeQuery method, if the stored procedure
returns one result set.

- CallableStatement.execute method, if the stored procedure returns
multiple result sets.

• Calling the CallableStatement.getResultSet method to obtain the result
set (which is in a ResultSet object), if the stored procedure returns one
result set. But if the stored procedure returns result sets, retrieve the
result sets by combining CallableStatement.getResultSet and
CallableStatement.getMoreResults methods.

• Using the CallableStatement.getXXX methods to retrieve values from the
OUT parameters or INOUT parameters.

• Calling the CallableStatement.close method to close the CallableStatement
object when we have finished using that object.

Example :

Creating CallableStatement Interface:

The instance of a CallableStatement is created by calling prepareCall()
method on a Connection object.

E.g.

CallableStatementcallableStatement = con.prepareCall("{call procedures
(?,?)}");

Creating stored procedure

create or replace procedure "insertStudents"

(rollno IN NUMBER,

name IN VARCHAR2,

address IN VARCHAR2,

result IN NUMBER)

is

begin

    insert into students values(rollno, name, address, result);

end;

/

// ProcedureTest.java

import java.sql.*;

public class ProcedureTest

{

public static void main(String args[])

{

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con =
DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:baou","scott","tiger");

Java Database
Connectivity



60

Object Oriented
Concepts

and Programming – II
(Advance Java)

CallableStatementstmt = con.prepareCall("{call insertStudents
(?, ?,?,?) }");

stmt.setInt(1, 6);

stmt.setString(2, "Vinod");

stmt.setString(3, "Ahmedabad");

stmt.setFloat(4, 74.36);

stmt.execute();

System.out.println("Record inserted successfully");

con.close();

stmt.close();

}

catch(Execption e)

      {

e.printStackTrace();

}

}

}

Note : The ProcedureTest.java file inserts the record in Students table
in Oracle database using the stored procedure.

6.9  ResultSetMetaData :

Metadata means data about data. Using this interface, we will get more
information about ResultSet. It is available in the java.sql package. Every
ResultSet object is associated with one ResultSetMetaData object. This object
will have the details of the properties of the columns like datatype of the
column, column name, number of columns, table name, schema name, etc.,
We can get the ResultSetMetaData object using the getMetaData() method of
ResultSet. Syntax of the ResultSetMetaData is:

PreparedStatement pst1 = conn.prepareStatement(insert_query);

ResultSet rs1 = pst1.executeQuery("Select * from STUDENT_MASTER");

ResultSetMetaData rsmd = rs.getMetaData();

Important methods of ResultSetMetaData interface are :

Method Name

String getColumnName(int column)

String getColumnTypeName(int
column)

String getTableName(int column)

String getSchemaName(int column)

int getColumnCount()

Description

It returns the column name of the
particular column

It returns the datatype of the particular
column which we have passed as a
parameter

It returns the table name of the column

It returns the schema name of the
column's table

It returns the number of columns of
the ResultSet



61

6.10  Let Us Sum Up :

While studying this unit, we have learnt that Java Database Connectivity,
is a standard Java API for database-independent connectivity that exists among
Java programming language and wide databases.

JDBC has two levels of interface where main interface carries an API
from JDBC manager which communicates with individual database product
drivers, JDBC-ODBC bridge and JDBC network driver when Java program is
running in network environment.

Querying the database involves creating a statement object to perform
a query and executing the query and returning a resultset.

It is noted that once connection is obtained interaction with database
appears where JDBC Statement, Callable Statement and Prepared Statement
define methods and properties which sends SQL or PL/SQL commands and
receive data from database.

A Stored procedure can return result sets, you can use getResultSet
method in the CallableStatement class to retrieve return result sets.

6.11  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (c)

 Check Your Progress 2 :

1. (d)

 Check Your Progress 3 :

1. (c)

 Check Your Progress 4 :

1. (c)

 Check Your Progress 5 :

1. (d)

6.12  Glossary :

1. Java Database Connectivity : Standard Java API for database that
involves Java programming language with databases.

2. Prepared Statement : Statement used to find parameterized query.

3. DriverManager : This class manages a list of database drivers. It
Matches connection requests from the java application with the proper
database driver using communication sub protocol. The first driver that
recognizes a certain subprotocol under JDBC will be used to establish
a database Connection.

4. Driver : This interface handles the communications with the database
server. You will interact directly with Driver objects very rarely. Instead,

boolean isAutoIncrement(int Column)

boolean isCaseSensitive(int Column)

It returns true if the given column is
Auto Increment, else false

It returns true if the given Column
is Case Sensitive, else false

Java Database
Connectivity



62

Object Oriented
Concepts

and Programming – II
(Advance Java)

you use DriverManager objects, which manages objects of this type. It
also abstracts the details associated with working with Driver objects.

5. Connection : This interface with all methods for contacting a database.
The connection object represents communication context, i.e., all
communication with database is through connection object only.

6. Statement : You use objects created from this interface to submit the
SQL statements to the database. Some derived interfaces accept parameters
in addition to executing stored procedures.

7. ResultSet : These objects hold data retrieved from a database after you
execute an SQL query using Statement objects. It acts as an iterator to
allow you to move through its data.

8. SQLException : This class handles any errors that occur in a database
application.

6.13  Assignment :

1. Write short note on establishing a connection with mysql database.

2. Explain the concept of Callable Statement using example.

6.14  Activities :

Collect important methods of PreparedStatements and ResultSetMetadata.

6.15  Case Study :

Generalise the basics of Java Database Connectivity.

6.16  Further Readings :

1. Java: The Complete Reference, Eleventh Edition by Herbert Schildt

2. https://docs.oracle.com/javase/tutorial/jdbc/overview/index.html

3. https://www.javatpoint.com/java-jdbc



63

UNIT STRUCTURE

7.0 Learning Objectives

7.1 Introduction

7.2 Application of XML

7.3 Well formed and valid XML documents

7.4 XML Namespace

7.5 XML Parser

7.6 Document type definition (DTD)

7.7 XML schema

7.8 Let us sum up

7.9 Answer for Check Your Progress

7.10 Glossary

7.11 Assignment

7.12 Activities

7.13 Further Readings

7.0  Learning Objectives :

After learning this Unit, you will be :

• Able to define XML

• Able to write XML file

• Able to create DTD and XML Schema

• Able to define parser and XML Namespace

7.1  Introduction :

XML stands for EXtensible Markup Language. It is a markup language
much like HTML. It was designed to describe data, not to display data. XML
tags are not predefined. You must define your own tags. It is designed to be
self-descriptive. It is a W3C Recommendation. It is not a replacement for
HTML. It is a complement to HTML. It is a software and hardware independent
tool for carrying information.

XML and HTML were designed with different goals :

• XML was designed to describe data, with focus on what data is

• HTML was designed to display data, with focus on how data looks

• HTML is about displaying information, while XML is about carrying
information.

The first line in an XML document is called the prolog.

<?xml version="1.0"?>

XML
Unit

07



64

Object Oriented
Concepts

and Programming – II
(Advance Java)

The prolog is optional. Normally it contains the XML version number.
It can also contain information about the encoding used in the document. This
prolog specifies UTF-8 encoding:

<?xml version="1.0" encoding="UTF-8"?>

The XML standard states that all XML software must understand both
UTF-8 and UTF-16. UTF-8 is the default for documents without encoding
information. In addition, most XML software systems understand encodings
like ISO-8859-1, Windows-1252, and ASCII.

An example of XML Document :

XML documents use a self-describing and simple syntax. XML file is
saved with xml extension. For example, the following is a complete XML file
presenting a communication.xml:

<?xml version="1.0" encoding="ISO-8859-1"?>

<communication>

<to>Saurav</to>

<from>vinod</from>

<heading>congratulation</heading>

<body>Becoming BCCI President!</body>

</communication>

To view an XML document in browser you can click on a link, type
the URL in the address bar, or double-click on the name of an XML file in
a files folder. Once opened, it will display the document with color coded root
and child elements. Depending on the browser a symbol (sign) to the left of
the elements can be clicked to expand or collapse the element structure. If
you want to view the raw XML source, you must select "View Source" from
the browser menu. If an erroneous XML file is opened, the browser will report
the error. Since XML tags are "invented" by the author of the XML document,
browsers do not know if a tag like <table> describes an HTML table or a
dining table. Without any information about how to display the data, most
browsers will just display the XML document as it is.

The output of the above example will look like below in chrome browser.

7.2  Application of XML :

XML is used in many aspects of web development, often to simplify
data storage and sharing.

• XML Separates Data from HTML

If you need to display dynamic data in your HTML document, it will
take a lot of work to edit the HTML each time the data changes. With XML,



65

data can be stored in separate XML files. This way you can concentrate on
using HTML/CSS for display and layout, and be sure that changes in the
underlying data will not require any changes to the HTML. With a few lines
of JavaScript code, you can read an external XML file and update the data
content of your web page.

• XML Simplifies Data Sharing

In the real world, computer systems and databases contain data in
incompatible formats. XML data is stored in plain text format. This provides
a software- and hardware-independent way of storing data. This makes it much
easier to create data that can be shared by different applications.

• XML Simplifies Data Transport

One of the most time-consuming challenges for developers is to exchange
data between incompatible systems over the Internet. Exchanging data as XML
greatly reduces this complexity, since the data can be read by different
incompatible applications.

• XML Simplifies Platform Changes

Upgrading to new systems (hardware or software platforms), is always
time consuming. Large amounts of data must be converted and incompatible
data is often lost. XML data is stored in text format. This makes it easier
to expand or upgrade to new operating systems, new applications, or new
browsers, without losing data.

• XML Makes Your Data More Available

Different applications can access your data, not only in HTML pages,
but also from XML data sources. With XML, your data can be available to
all kinds of "reading machines" (Handheld computers, voice machines, news
feeds, etc.), and make it more available for blind people, or people with other
disabilities.

• Internet Languages Written in XML

Many Internet languages are written in XML. Some examples are :

- XHTML

-  XML Schema

- SVG

- WSDL

7.3  Well Formed and Valid XML Documents :

XML documents that conform to the following syntax rules are said to
be "Well Formed" XML documents. It is also known as syntax rules of XML.

• All XML elements must have a closing tag

In HTML, some elements do not have to have a closing tag:

<p>Welcome to India. <br>

In XML, it is illegal to omit the closing tag. All elements must have
a closing tag:

<p> Welcome to India.</p> <br />

XML



66

Object Oriented
Concepts

and Programming – II
(Advance Java)

• XML tags are case sensitive

XML tags are case sensitive. The tag <Name> is different from the tag
<name>.

Opening and closing tags must be written with the same case:

<Name>This is incorrect</name>

<Name>This is correct</Name>

• XML elements must be properly nested

In HTML, you might see improperly nested elements:

<b><i>This text is bold and italic</b></i>

In XML, all elements must be properly nested within each other:

<b><i>This text is bold and italic</i></b>

In the above example, "Properly nested" simply means that since the <i>
element is opened inside the <b> element, it must be closed inside the <b>
element.

• XML documents must have a root element

XML documents must contain one element that is the parent of all other
elements. This element is called the root element.

<root> <child> <subchild>.....</subchild> </child> </root>

• XML attribute values must be quoted

XML elements can have attributes in name/value pairs just like in HTML.
In XML, the attribute values must always be quoted.

Incorrect :

<note date=07/02/2021>

<to>saurav</to>

<from>vinod</from> </note>

Correct:

<note date="12/11/2007">

<to>saurav</to>

 <from>vinod</from> </note>

The error in the first document is that the date attribute in the note
element is not quoted.

• Entity References

Some characters have a special meaning in XML. If you place a character
like "<" inside an XML element, it will generate an error because the parser
interprets it as the start of a new element.

This will generate an XML error:

<message>if salary < 5000 then</message>

To avoid this error, replace the "<" character with an entity reference:

<message>if salary &lt; 5000 then</message>



67

There are 5 pre-defined entity references in XML :

&gt; > greater than

&amp; & ampersand

&apos; ' apostrophe

&quot; " quotation mark

&lt; < less than

• Comments in XML

The syntax for writing comments in XML is similar to that of HTML.

<!-- This is a comment -->

• White-space is preserved in XML

XML does not truncate multiple white-spaces in a document (while
HTML truncates multiple white-spaces to one single white-space):

XML: Welcome      Saurav

HTML: Welcome Saurav

• XML Stores New Line as LF

Windows applications store a new line as: carriage return and line feed
(CR+LF). Unix and Mac OSX uses LF. Old Mac systems uses CR. XML stores
a new line as LF.

A "valid" XML document is not the same as a "well formed" XML
document. A valid XML document must be well formed. In addition it must
conform to a document type definition.

Rules that defines the legal elements and attributes for XML documents
are called Document Type Definitions (DTD) or XML Schemas. There are two
different document type definitions that can be used with XML:

• DTD : The original Document Type Definition

• XML Schema : An XML-based alternative to DTD

With a DTD, independent groups of people can agree to use a standard
DTD for interchanging data. Your application can use a standard DTD to verify
that the data you receive from the outside world is valid.

 Check Your Progress – 1 :
1. What does XML stand for ?

a. eXtra Modern Link b. eXtensible Markup Language

c. Example Markup Language d. X-Markup Language

7.4  XML Namespace :

XML Namespaces provide a method to avoid element name conflicts.
In XML, element names are defined by the developer. This often results in
a conflict when trying to mix XML documents from different XML applications.

Following XML carries HTML table information :

<table>

<tr>

<td>Bharat</td>

XML



68

Object Oriented
Concepts

and Programming – II
(Advance Java)

<td>Gujarat</td>

 </tr>

</table>

This XML carries information about a table (Gujarat data):

<table>

<name>Gujarat</name>

<capital>gandhinagar</capital>

 </table>

If these XML fragments were added together, there would be a name
conflict. Both contain a <table> element, but the elements have different content
and meaning. A user or an XML application will not know how to handle
these differences. Name conflicts in XML can easily be avoided using a name
prefix.

Following XML carries information about an HTML table, and Gujarat
data:

<h:table>

<h:tr>

<h:td>Bharat</h:td>

<h:td>Gujarat</h:td>

</h:tr>

</h:table>

<g:table>

<g:name>Gujarat</g:name>

<g:capital>gandhinagar</g:capital>

</g:table>

In the example above, there will be no conflict because the two <table>
elements have different names.

• XML Namespaces : The xmlns Attribute

When using prefixes in XML, a so-called namespace for the prefix must
be defined. The namespace is defined by the xmlns attribute in the start tag
of an element. The namespace declaration has the following syntax:

xmlns:prefix="URI".

<root>

<h:table xmlns:h="http://www.w3.org/TR/">

<h:tr>

<h:td>Bharat</h:td>

<h:td>Gujarat</h:td>

</h:tr>

</h:table>

Here, the Namespace prefix is h, and the Namespace identifier (URI)
as http://www.w3.org/TR/. This means, the element names and attribute names
with the h prefix all belong to the http://www.w3.org/TR/ namespace.



69

<g:table xmlns:g="http://www.w3.org/gujarat">

<g:name>Gujarat</g:name>

<g:capital>gandhinagar</g:capital>

</g:table>

</root>

Here, the Namespace prefix is g, and the Namespace identifier (URI)
as http://www.w3.org/gujarat. This means, the element names and attribute
names with the g prefix all belong to the http://www.w3.org/gujarat namespace.

When a namespace is defined for an element, all child elements with
the same prefix are associated with the same namespace. Namespaces can be
declared in the elements where they are used or in the XML root element:

<root xmlns:h="http://www.w3.org/TR/" xmlns:g="http://www.w3.org/
gujarat">

<root>

<h:table>

<h:tr>

<h:td>Bharat</h:td>

<h:td>Gujarat</h:td>

</h:tr>

</h:table>

<g:table>

<g:name>Gujarat</g:name>

<g:capital>gandhinagar</g:capital>

</g:table>

</root>

The namespace URI is not used by the parser to look up information.
The purpose is to give the namespace a unique name. However, often companies
use the namespace as a pointer to a web page containing namespace information.

Another Example :

Following XML contains a list of tutorials for client side tools of web
development :

<?xml version="1.0"?>

<tools>

<name>html</name>

<name>css</name>

<name>javascript</name>

     </tools>

XML



70

Object Oriented
Concepts

and Programming – II
(Advance Java)

This XML contains a list of tutorials for server side tools of web
development :

<?xml version="1.0"?>

<tools>

<name>php</name>

<name>asp</name>

<name>jsp</name>

</tools>

If these two XML instances are put together, since both of them carry
elements with tagname name, it will create a naming collision. An XML parser
will not be able to understand the meaning of using tutorial element is actually
for different purposes. Using namespace, this problem can be solved :

<?xml version="1.0"?>

<client:tools xmlns:client ="https://www.baounamespace.com/
server-side-tools">

<client:name>html</client:name>

<client:name>css</client:name>

<client:name>javascript</client:name>

</client:tools>

<server:tools xmlns:server ="https://www.baounamespace.com/
server-side-tools">

<server:name>php</server:name>

<server:name>asp</server:name>

<server:name>jsp</server:name>

</ server:tools>

• Default Namespaces

Defining a default namespace for an element saves us from using prefixes
in all the child elements. It has the following syntax:

xmlns="namespaceURI"

This XML carries HTML table information:

<table xmlns="http://www.w3.org/TR">

<tr>

<td>Bharat</td>

<td>Gujarat</td>

</tr>  </table>

 Check Your Progress – 2 :
1. The attribute used to define a new namespace is

a. XMLNS b. XmlNameSpace

c. Xmlns d. XmlNs



71

7.5  XML Parser :

XML parser is a software library or a package that provides interface
for client applications to work with XML documents. It checks for proper format
of the XML document and may also validate the XML documents.  First parser
load the XML file and other related files. After it, parser also checks the validity
of XML document and create a document tree structure. Modern day browsers
have built-in XML parsers. It is an another validation stage beyond parsing.

The parser reads a raw XML document, ensures that is well-formed, and
may validate the document against a DTD or schema. Parser are of two types,

a. Validating Parser

b. Non-Validating Parser

a. A non validating parser checks if a document follows the XML syntax
rules. It builds a tree structure from the tags used in XML document
and return an error only when there is a problem with the syntax of
the document. Non validating parsers process a document faster because
they do not have to check every element against a DTD. In other words,
these parsers check whether an XML document adheres to the rules of
well formed document. The Expat parser is an example of non validating
parser.

b. A Validating parser checks the syntax, builds the tree structure, and
compares the structure of the XML document with the structure specified
in the DTD associated with the document. In other words, in addition
to checking whether an XML document is well formed, validating parsers
also check whether the XML document adheres to the rules in the DTD
used by the XML document. Microsoft MSXML parser is an example
of a validating parser.

There are two standard APIs for parsing XML documents :

a. SAX (Simple API for XML)

b. DOM (Document Object Model)

a. SAX is an event-driven API. It defines a number of callback methods,
which will be called when events occur during parsing. The SAX parser
reads an XML document and generates events as it finds elements,
attributes, or data in the document. There are events for document start,
document end, attributes, text context, element start-tags, and element
end-tags, entities, processing instructions, comments and others.

Advantages of SAX :

1. It is simple and memory efficient.

2. It is very fast and works for huge documents.

Disadvantages of SAX :

1. It is event-based so its API is less intuitive.

2. Clients never know the full information because the data is broken into
pieces.

b. DOM is an object-oriented API. It explicitly builds an object model, in
the form of a tree structure, to represent an XML document. The
application can manipulate the nodes in the tree. DOM is a platform-
and language-independent interface for processing XML documents. The

XML



72

Object Oriented
Concepts

and Programming – II
(Advance Java)

DOM API defines the mechanism for querying, traversing and manipulating
the object model built.

Advantages of DOM :

1. It supports both read and write operations and the API is very simple
to use.

2. It is preferred when random access to widely separated parts of a
document is required.

Disadvantages of DOM :

1. It is memory inefficient. (Consumes more memory because the whole
XML document needs to loaded into memory).

2. It is comparatively slower than other parsers.

 Check Your Progress – 3 :
1. Kind of Parsers are

a. well-formed b. validating

c. non-validating d. Both b & c

7.6  Document Type Definition (DTD) :

Similar to HTML, XML with correct syntax is Well Formed XML. That
is a well formed XML document is a document that conforms to the XML
syntax rules that were described in the previous sections. More specifically,
to be well formed, an XML document must be validated against a Document
Type Definition (DTD). The purpose of a DTD is to define the legal building
blocks of an XML document. It defines the document structure with a list of
legal elements. A DTD can be specified internally or externally.

• Internal DTD

A DTD is referred to as an internal DTD if elements are declared within
the XML files. To refer it as internal DTD, standalone attribute in XML
declaration must be set to yes. This means, the declaration works independent
of external source.

The following is an example of internal DTD for the communication:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE communication [

<!ELEMENT communication (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

<communication>

<to>Saurav</to>

<from>vinod</from>

<heading>congratulation</heading>

<body>Becoming BCCI President!</body>

</communication>



73

The above DTD can be interpreted like this :

!DOCTYPE communication (in line 2) defines that this is a document
of the type communication. !ELEMENT communication (in line 3) defines the
communication element as having four elements: "to,from,heading,body".
!ELEMENT to (in line 4) defines the to element to be of the type "#PCDATA".
!ELEMENT from (in line 5) defines the from element to be of the type
"#PCDATA" and so on ...

• External DTD

In external DTD elements are declared outside the XML file. They are
accessed by specifying the system attributes which may be either the legal .dtd
file or a valid URL. To refer it as external DTD, standalone attribute in the
XML declaration must be set as no. This means, declaration includes information
from the external source.

If the DTD is external to your XML source file, it should be wrapped
in a DOCTYPE definition with the following syntax:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE communication SYSTEM "communication.dtd">

<communication>

<to>Saurav</to>

<from>vinod</from>

<heading>congratulation</heading>

<body>Becoming BCCI President!</body>

</communication>

And the following is a copy of the file "communication.dtd" containing
the DTD :

<!ELEMENT communication (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

W3C supports an alternative to DTD called XML Schema. The W3C
XML specification states that a program should not continue to process an
XML document if it finds a validation error. The reason is that XML software
should be easy to write, and that all XML documents should be compatible.

With HTML it was possible to create documents with lots of errors (like
when you forget an end tag). One of the main reasons that HTML browsers
are so big and incompatible, is that they have their own ways to figure out
what a document should look like when they encounter an HTML error. With
XML this should not be possible.

• Element declarations in DTD

One element declaration for each element type:

<!ELEMENT element_name content_specification>

where content_specification can be,

XML



74

Object Oriented
Concepts

and Programming – II
(Advance Java)

- (#PCDATA) parsed character data

- (child) one child element

- (c1,…,cn) a sequence of child elements c1…cn

- (c1|…|cn) one of the elements c1…cn

For each component c, possible counts can be specified as:

- c exactly one such element

- c+ one or more

- c* zero or more

- c? zero or one

Plus arbitrary combinations using parenthesis can be written as following:

<!ELEMENT f ((a|b)*,c+,(d|e))*>

• Elements with mixed content can be written as:

<!ELEMENT text (#PCDATA | index | cite | glossary)*>

• Elements with empty content can be written as:

<!ELEMENT image EMPTY>

• Elements with arbitrary content can be written as:

<!ELEMENT data ANY>

• Attribute declarations in DTD

• Attributes are declared per element:

<!ATTLIST section number CDATA #REQUIRED

                       title   CDATA #REQUIRED>

The above code declares two required attributes for element section.

The Possible attribute defaults are :

• #REQUIRED is required in each element instance

• #IMPLIED is optional

• #FIXED default always has this default value

• default has this default value if the attribute is omitted from the element
instance

• Attribute types in DTDs are,

• CDATA represents string data

• (A1|…|An) represents enumeration of all possible values of the attribute
(each is XML name)

• ID represents unique XML name to identify the element

• IDREF refers to ID attribute of some other element (intra-document link)

• IDREFS represents list of IDREF, separated by white space

 Check Your Progress – 4 :
1. DTD includes the specifications about the markup that can be used within

the document, the specifications consists of all EXCEPT

a. the browser name b. the size of element name

c. entity declarations d. element declarations



75

7.7  XML Schema :

An XML Schema describes the structure of an XML document, just like
a DTD. An XML document with correct syntax is called "Well Formed". An
XML document validated against an XML Schema is both "Well Formed" and
"Valid". XML Schema is an XML-based alternative to DTD.

• XML Schema

<xs:element name="communication">

<xs:complexType>

<xs:sequence>

<xs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>

<xs:element name="heading" type="xs:string"/>

<xs:element name="body" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

The Schema above is interpreted like this :

• <xs:element name="communication"> defines the element called
"communication"

• <xs:complexType> the "communication" element is a complex type

• <xs:sequence> the complex type is a sequence of elements

• <xs:element name="to" type="xs:string"> the element "to" is of type
string (text)

•  <xs:element name="from" type="xs:string"> the element "from" is of
type string

• <xs:element name="heading" type="xs:string"> the element "heading" is
of type string

• <xs:element name="body" type="xs:string"> the element "body" is of
type string

XML Schemas are written in XML. They are extensible to additions.
They support data types and namespaces. With XML Schema, your XML files
can carry a description of its own format. With XML Schema, independent
groups of people can agree on a standard for interchanging data. With XML
Schema, you can verify data.

• XML schemas support Data Types

One of the greatest strength of XML Schemas is the support for data
types :

- It is easier to describe document content

- It is easier to define restrictions on data

- It is easier to validate the correctness of data

- It is easier to convert data between different data types

XML



76

Object Oriented
Concepts

and Programming – II
(Advance Java)

• XML schemas use XML syntax

Another great strength about XML Schemas is that they are written in
XML:

- You don't have to learn a new language

- You can use your XML editor to edit your Schema files

- You can use your XML parser to parse your Schema files

- You can manipulate your Schemas with the XML DOM

- You can transform your Schemas with XSLT

 Check Your Progress – 5 :
1. A schema describes

(i) grammer (ii) vocabulary

(iii) structure (iv) datatype of XML document

a. (i) & (ii) are correct b. (i), (iii), (iv) are correct

c. (i), (ii), (iv) are correct d. (i), (ii), (iii), (iv) are correct

7.8  Let Us Sum Up :

XML is now as important for the Web as HTML was to the foundation
of the Web. XML is everywhere. It is the most common tool for data transmissions
between all sorts of applications, and is becoming more and more popular in
the area of storing and describing information. XML is now a technology that
is part of every modern web browser which also include a stylesheet interpreter;
XML files can now be sent directly without having to be translated into HTML
beforehand.  XML is the encoding for upper level languages such as RDF
for defining information about documents and for OWL to define ontologies.

7.9  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (b)

 Check Your Progress 2 :

1. (c)

 Check Your Progress 3 :

1. (d)

 Check Your Progress 4 :

1. (a)

 Check Your Progress 5 :

1. (d)

7.10  Glossary :

1. XML declaration : The processing instruction that identifies a document
as an XML document and contains the version attribute and the optional
standalone and encoding attributes. An XML declaration is the first line
in an XML document.

2. Well-formed XML : An XML document is well-formed if there is one
root element, and all its child elements are nested within each other.



77

Start tags must have end tags, and each empty tag must be designated
as such with a trailing slash (<emptyTag/>). Also all attributes must be
quoted, and all entities must be declared.

3. Valid XML : XML that meets the constraints defined by its Document
Type Declaration.

4. Schema : A technology-neutral term for the definition of the structure
of an XML document.

5. XSLT : Extensible Stylesheet Language Transformations. An XML
application that defines how an XML document will be transformed from
one form of XML to another. XSLT is commonly used to transform XML
data to HTML for rendering on a client.

7.11  Assignment :

1. Define XML. Discuss various advantages and disadvantages of XML.

7.12  Further Readings :

1. https://www.w3schools.com/xml/

XML



78

Object Oriented
Concepts

and Programming – II
(Advance Java)

BLOCK SUMMARY :

In this block, students have learnt and understand about Java Networking

concept related to connection among two or more computing devices. The block

gives an idea on the study and concept of class library in JDK along with

querying of database. The students have been well explained on the concepts

of Java Database Connectivity and ResultSet object.

The block detailed about the basic of Prepared Statement sub-interface

using statement techniques. The concept related User Datagram Protocol along

with JDBC Statement, CallableStatement and PreparedStatement are well

explained to the students. The student will be demonstrated practically about

JDBC network driver. The last unit also explored the use of XML in modern

application for the proper and efficient manipulation of information and data.



79

BLOCK ASSIGNMENT :

 Short Questions :

1. Differentiate Stored procedure and function.

2. Explain the function of ResultSet object ?

3. Write note on JDBC DriverManager ?

4. Write short note on Socket and ServerSocket ?

5. What is XML? State its advantages.

 Long Questions :

1. Write short notes on User Datagram Protocol ?

2. Write short note on Querying the database ?

3. Write note on Java Networking ?

4. Discuss different steps to Connect with Database in JDBC.

5. Write a JDBC program to navigate records of salesman.

6. Write a XML file to demonstrate the use of DTD and Schema.



80

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Enrolment No. : 

1. How many hours did you need for studying the units ?

Unit No. 5 6 7

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................



OBJECT ORIENTED CONCEPTS AND
PROGRAMMING – II (ADVANCE JAVA)

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 3 : RMI & JAVABEANS

UNIT 8 REMOTE METHOD INVOCATION

UNIT 9 JAVABEANS – 1

UNIT 10 JAVABEANS – 2

UNIT 11 JAVA NAMING AND DIRECTORY INTERFACE API

BCAR-304



Block Introduction :
The RMI architecture is based on one important principle: the definition

of behaviour and the implementation of that behaviour are separate concepts. In
an RMI application, if we restart RMI registry, it will clean and re-compile all
Java classes which is normally not recompiled completely.

In this block, we will detail about the basic steps of creating RMI
Application along with steps of designing application on same system. The block
will focus on the study and concept of Beans Development Kit, Bound Properties
and Indexed Properties. The students will give an idea on working of RMI
application.

In this block, the student will made to learn and understand about the
concept related to JNDI Programming techniques. The concept related to Java
Beans Concepts and Programming of JNDI is explained to students. The student
will be demonstrated practically about exploring Javax.naming package technique.

Block Objectives :
After learning this block, you will be able to understand:

• Understanding about RMI Architecture

• Features of working of RMI

• Detailed steps involved in creating RMI Application

• Concept of Beans Development Kit

• Explain about writing a Simple Bean

• Characteristics about various Properties

• Concept of JNDI programming

Block Structure :

Unit 8 : Remote Method Invocation

Unit 9 : Javabeans – 1

Unit 10 : Javabeans – 2

Unit 11 : Java Naming and Directory Interface API

RMI & JAVABEANS



81

UNIT STRUCTURE

8.0 Learning Objectives

8.1 Introduction

8.2 RMI Architecture

8.3 How RMI works

8.4 Steps to create an RMI Application

8.5 Steps for deploying RMI Application (on same system)

8.6 Troubleshooting

8.7 Advanced RMI Concepts

8.8 Let Us Sum Up

8.9 Answer for Check Your Progress

8.10 Glossary

8.11 Assignment

8.12 Activities

8.13 Case Study

8.14 Further Readings

8.0  Learning Objectives :

After learning this Unit, you will be able to understand:

• RMI Architecture

• How RMI works

• Steps to create an RMI Application

8.1  Introduction :

The RMI which is called as Remote Method Invocation is an API which
gives a mechanism to create distributed application in java. It allows an object
to call upon methods on an object running in another JVM. This gives remote
communication that occurs among applications using two objects stub and
skeleton.

It is way by which a programmer with the help of Java programming
language and development environment will able to write object-oriented
programming where objects on different computers gets interacted in distributed
network. It is the Java version of remote procedure call, having an ability to
pass one or several objects along the request.

8.2  RMI Architecture :

The RMI architecture is based on one important principle: the definition
of behaviour and the implementation of that behaviour are separate concepts.
RMI allows the code that defines the behaviour and the code that implements
the behaviour to remain separate and to run on separate JVMs.

REMOTE METHOD
INVOCATION

Unit

08



82

Object Oriented
Concepts

and Programming – II
(Advance Java)

Specifically, in RMI, the definition of a remote service is coded using
a Java interface. The implementation of the remote service is coded in a class.
Therefore, the key to understanding RMI is to remember that interfaces define
behaviour and classes define implementation. Fig 1.2 shows separation :

Fig 1.2 Separation of program

It is noted that a Java interface will not have executable code. RMI
supports two classes that implement the same interface:

First class is implementation of behaviour that runs on server

Second class acts as proxy for remote service which runs on client



83

Fig 1.3 Proxy remote service

A client program makes method calls on the proxy object, RMI sends
the request to the remote JVM, and forwards it to the implementation. Any
return values provided by the implementation are sent back to the proxy and
then to the client's program.

In a high-level RMI architecture, there are three abstraction layers :

Fig 1.4 RMI layers

First layer is Stub and Skeleton layer that is located just below view
of developer which intercepts method calls created by client to interface
reference variable by redirecting calls to a remote RMI service.

Fig 1.5 Stub and Skeleton layer

Second layer is Remote Reference Layer which show how to interpret
and manage references made from clients to remote service objects. It is found
that such layer will connect clients to remote service objects which are running
and exported on server.

Remote Method
Invocation



84

Object Oriented
Concepts

and Programming – II
(Advance Java)

Third layer is transport layer which is based on TCP/IP connections that
exist among machines in a network showing connectivity and firewall penetration
strategies.

Fig 1.6 Transport layer

 Check Your Progress – 1 :
1. RMI includes .

a. Interface which defines behavior

b. Class which defines implementation

c. Both of these

d. None of these

8.3  How RMI Works :

In RMI we see that the code from machine A gets accessed for object
which is residing on machine B in remote relocation. In this, there appears
two intermediate objects which is known as "stub? and "skeleton? that really
handle the communication. We see that these two objects performs following
tasks :

Fig 1.7 Task performed by stub and skeleton

Task which are handled by stub object on machine A :

A. Building a information block which consists of

• An identifier of the remote object

• An operation number that describes the method to be called

• The method parameters called marshaled parameters that are to be
encoded into a suitable format for transporting over the network



85

Tasks which are handled by skeleton object on machine B :

B. Sending the information to the server.

• Unmarshalling the parameters

• Calling upon required method of the object which is lying on the server

• Capturing and returning the value if successful or an exception if
unsuccessful , after the call on the server

• Marshalling the returned value

• Packaging the value that is in the marshalled form and sending to the
stub on the client.

Subsequently the stub object unmarshals the return value or exception
from the server as the case may be. This is the returned value of the remote
method invocation. If an exception is thrown, the stub object will throw again
the exception to the caller.

 Check Your Progress – 2 :
1. If two machines A and B wants to continue the communication, then

which of the following intermediate object will act on Machine A

a. Stub b. Skeleton

c. Both of these d. None of these

8.4  Steps to Create an RMI Application :

An RMI application carries a Client program and Server program. We
see that a Server program will form many remote object which make their
references available for client to call upon method on it. It is seen that a Client
program will make request for remote objects on server and will call upon
method on them. It is found that Stub and Skeleton are two important object
which are applied for communication with remote object.

Following are the steps required to create an RMI application :

• Defining remote interface.

• Implementing remote interface.

• Creating and starting remote application

• Creating and starting client application

Define a remote interface

We see that remote interface will specify methods that can be called
upon remotely by a client. In such case clients program will communicate to
remote interfaces and not to classes to implement it. To be a remote interface,
a interface must extend the Remote interface of java.rmi package.

import java.rmi.*;

public interface AddServerInterface extends Remote

{

public int sum(int a,int b);

}

Remote Method
Invocation



86

Object Oriented
Concepts

and Programming – II
(Advance Java)

Implementation of remote interface

To implement remote interface, a class should either extend
UnicastRemoteObject or use exportObject() method of UnicastRemoteObject
class.

import java.rmi.*;

import java.rmi.server.*;

public clss Adder extends UnicastRemoteObject implements
AddServerInterface

{

Adder()throws RemoteException{

super();

}

public int sum(int a,int b)

{

return a+b;

}

}

Create AddServer and host rmi service

We see that initially, we need to create server application and host rmi
service Adder in it. It can be done using rebind() method of java.rmi.Naming
class. It is noted that rebind() method will carry two arguments where first
shows name of object reference while second argument is reference to instance
of Adder

import java.rmi.*;

import java.rmi.registry.*;

public class AddServer{

public static void main(String args[]){

try{

AddServerInterface addService=new Adder();

Naming.rebind("AddService", addService);

//addService object is hosted with name AddService.

}catch(Exception e) {System.out.println(e);}

}

}

Create client application

It is found that client application carry java program which calls upon
the lookup() method of the Naming class. It accepts one argument, rmi URL
and returns reference to object of type AddServerInterface. In this, every remote
method invocation is done on this object.

import java.rmi.*;

public class Client{

public static void main(String args[]){



87

try{

AddServerInterface

st=(AddServerInterface)Naming.lookup("rmi://}+args[0]+"/AddService");

System.out.println(st.sum(25,8));

}catch(Exception e){System.out.println(e);}

}

}

 Check Your Progress – 3 :
1. Which of the following steps are required to create RMI application ?

a. Defining and implementing remote interface.

b. Creating and starting remote application

c. Creating and starting client application

b. All of these

8.5  Steps for Deploying RMI Application (on same system) :

There are certain steps applied in deploying RMI application on similar
systems :

Step 1 : Create interface and compile it using javac ArithInt.java

Step 2 : Create an implementation and compile with javac ArithImpl.java

Step 3 : Create server program which registers implementation and
compile it using javac ArithServer.java

Step 4 : Create stub and skeleton using rmi compiler which is rmic
ArithImpl

Step 5 : Create and compile client application using javac
ArithClient.java

Step 6 : Set classpath in directory type by setting classpath=%
classpath%;.;

Step 7 : Start RMI registry by opening new command window and
typing rmiregistry

Step 8 : Run server application by opening new command window and
setting classpath type java ArithServer

Step 9 : Run client application by opening new command window and
further setting classpath type java ArithClient.

 Check Your Progress – 4 :
1. RMI stands for .

a. Resource Method Interaction b. Remote Method Invocation

c. Reverse Media Invocation d. None of these

8.6  Troubleshooting :

In an RMI application, if we restart RMI registry, it will clean and re-
compile all Java classes which is normally not recompiled completely. If you're
trying to start RMI server, and it complains about "Class not found" for class
which is already present, then the RMI registry gets corrupted and in such
scenario we need to restart.

Remote Method
Invocation



88

Object Oriented
Concepts

and Programming – II
(Advance Java)

For restarting, we have to make sure that RMI registry is being started
with empty classpath, and RMI servers gets started using valid
java.rmi.server.codebase. It is found that normally, it is possible to start RMI
registry having real classpath, which makes many problems to go away and
makes too complicated in long run as it covers many problems with codebase
property. It is noted that for codebase property to point to a file in URL if
you are not having client download copies of stub files. It seems that the
java.policy file gets effected when RMI registry starts that will take care of
all RMI classes attached to the registry.

 Check Your Progress – 5 :
1. What is RMI registry ?

a. It is an object that is provided on another computer to request the
object

b. It is an object of the server side that receive the request and respond
to the request of the client

c. It is the registry that keeps the look ups of all the objects in a list
by given name.

d. None of these

8.7  Advanced RMI Concepts :

Using RMI infrastructure and packages, RMI based Java clients remotely
calls upon certain methods on RMI based Java server objects. Such type of
RMI based server objects runs in separate JVM?s on same machine or on
another machine host.

The theoretical prototype of RMI is Remote Procedure Calls which is
inside object oriented evolution of technology. The RMI is abstractly comparable
to other distributed object architectures such as CORBA and DCOM. The RMI
and CORBA paradigms are integrating using support for IIOP - IIOP which
is Internet Inter-Orb Protocol.

It is seen that RMI clients will communicate transparently with RMI
server objects by calling upon methods on a client side proxy object which
serializes the method parameters as well as streams them to required server
object instance where return parameters gets unmarshalled in similar manner.
RMI allows for clients and servers to pass objects as method parameters and
return values. It is noted that the difference among RMI and CORBA is RMI?s
ability to pass objects by value.

 Check Your Progress – 6 :
1. CORBA stands for .

a. Common Object Request Broker Architecture

b. Computing Object resources Business Architecture

c. Common Object recourse Broker Architecture

d. None of these

8.8  Let Us Sum Up :

In this unit we have learnt that RMI is Remote Method Invocation which
is an API showing mechanism to create distributed application in java by
allowing object to call upon methods on an object running in another JVM.



89

It is seen that RMI architecture depends on important principle as
behaviour and the implementation of particular behaviour having different
concepts.

It is found that RMI application has Client program and Server program
where Server program form many remote object making references available
for client to call upon method on it.

With RMI infrastructure and packages, RMI based Java clients remotely
calls upon certain methods on RMI based Java server objects.

8.9  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (c)

 Check Your Progress 2 :

1. (a)

 Check Your Progress 3 :

1. (d)

 Check Your Progress 4 :

1. (b)

 Check Your Progress 5 :

1. (c)

 Check Your Progress 6 :

1. (a)

8.10  Glossary :

1. RMI : It is Remote Method Invocation an API which create distributed
application in java.

2. RMI Architecture : It is an arrangement that depends on behaviour and
implementation concepts.

3. RMI Application : It is a Client and Server program

8.11  Assignment :

Explain the working of RMI ?

8.12  Activities :

Study about Stub and Skeleton layers.

8.13  Case Study :

Study the steps involved in create an RMI Application.

8.14  Further Readings :

1. Operating System Concept by Abraham Silberschatz, Peter Baer Galvin,
Greg Gagne

Remote Method
Invocation



90

Object Oriented
Concepts

and Programming – II
(Advance Java)

UNIT STRUCTURE

9.0 Learning Objectives

9.1 Introduction

9.2 Java Beans Concepts

9.3 The Beans Development Kit

9.4 Writing a Simple Bean

9.5 Let Us Sum Up

9.6 Answer for Check Your Progress

9.7 Glossary

9.8 Assignment

9.9 Activities

9.10 Case Study

9.11 Further Readings

9.0  Learning Objectives :

After learning this Unit, you will be able to:

• The Beans Development Kit

• Writing a Simple Bean

9.1  Introduction :

With respect to Java white paper that can be reusable software component.
A bean sums up various objects into single object in order to access object
from various places. Moreover, it provides the easy maintenance. It is developed
by Sun Microsystems that shows how Java objects interact and conforms to
certain specification that is identical to ActiveX control. It is applied by several
application which understands JavaBeans format. It is noted that the main
difference among ActiveX controls and JavaBeans are that ActiveX controls
can be developed in any programming language but can be worked out only
on Windows platform, while JavaBeans can be developed only in Java and
can run on any platform.

9.2  Java Beans Concepts :

JavaBeans is an object-oriented programming interface from Sun
Microsystems that lets you build re-useable applications or program building
blocks called components that can be deployed in a network on any major
operating system platform. Like Java applets, JavaBeans components can be
used to give World Wide Web pages interactive capabilities such as computing
interest rates or varying page content based on user or browser characteristics.

From a user's point-of-view, a component can be a button that you interact
with or a small calculating program that gets initiated when you press the button.
From a developer's point-of-view, the button component and the calculator

JAVABEANS – 1
Unit

09



91

component are created separately and can then be used together or in different
combinations with other components in different applications or situations.

When the components or Beans are in use, the properties of a Bean are
visible to other Beans and Beans that haven't "met" before can learn each other's
properties dynamically and interact accordingly.

Beans are developed with a Beans Development Kit (BDK) from Sun
and can be run on any major operating system platform inside a number of
application environments including browsers, word processors, and other
applications.network.

Beans also have persistence, which is a mechanism for storing the state
of a component in a safe place. This would allow, for example, a component
to "remember" data that a particular user had already entered in an earlier user
session.

The JavaBeans API makes it possible to write component software in
the Java programming language. Components are self-contained, reusable software
units that can be visually composed into composite components, applets,
applications, and servlets using visual application builder tools. JavaBean
components are known as Beans.

Components expose their features to builder tools for visual manipulation.
A Bean's features are exposed because feature names adhere to specific design
patterns. A "JavaBeans-enabled" builder tool can then examines the Bean's
patterns, discern its features, and expose those features for visual manipulation.
A builder tool maintains Beans in a palette or toolbox. You can select a Bean
from the toolbox, drop it into a form, modify it's appearance and behaviour,
define its interaction with other Beans, and compose it and other Beans into
an applet, application, or new Bean. All this can be done without writing a
line of code.

Features :

• Support for introspection allowing a builder tool to analyze how a bean
works.

• Support for customization allowing a user to alter the appearance and
behaviour of a bean.

• Support for events allowing beans to fire events, and informing builder
tools about both the events they can fire and the events they can handle.

• Support for properties allowing beans to be manipulated programmatically,
as well as to support the customization mentioned above.

Support for persistence allowing beans that have been customized in an
application builder to have their state saved and restored. Typically persistence
is used with an application builder's save and load menu.

To build a component with JavaBeans, you write language statements
using Sun's Java programming language and include JavaBeans statements that
describe component properties such as user interface characteristics and events
that trigger a bean to communicate with other beans in the same container
or elsewhere in the commands to restore any work that has gone into constructing
an application.

JavaBeans – 1



92

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Check Your Progress – 1 :
1. What is Java Bean ?

a. It is a class

b. It is a Interface

c. It is a software component that has been designed to be reusable in
a variety of different environments

d. All of these

9.3  The Beans Development Kit :

The Beans Development Kit (BDK) is intended to support the early
development of JavaBeansTM components and to act as a standard reference
base for both bean developers and tool vendors. The BDK provides a reference
bean container, the "BeanBox" and a variety of reusable example source code
(in the demo and beanbox subdirectories) for use by both bean developers and
tools developers.

The BDK is not intended for use by application developers, nor is it
intended to be a full-fledged application development environment. Instead
application developers should check the various Java application development
environments supporting JavaBeans.

We see that the general description of Beans Development Kit files and
directories are shown below:

• README.html contains an entry point to the BDK documentation

• LICENSE.html contains the BDK license agreement

• GNUmakefile and Makefile are Unix and Windows makefiles (.gmk and
.mk suffixes) for building the demos and the BeanBox, and for running
the BeanBox

• beans/apis contains java directory having JavaBeans source files and sun
directory having property editor source files

• beans/beanbox contains makefiles for creating BeanBox with scripts for
running BeanBox. It carries classes directory having BeanBox class files
along with lib directory having BeanBox support jar file used by
MakeApplet's produced code. In this the sun and sunw directories has
BeanBox source (.java) files with tmp directory that will directly generate
event adapter source and class files, .ser files, and applet files directly
by MakeApplet

• beans/demos has makefiles for creating demo Beans. It has HTML
directory that carry applet wrapper that run in appletviewer, HotJava,
or JDK1.1-compliant browsers. It is further noticed that a sun directory
has wrapper directory having Bean applet wrapper along with demos
directory for demo source file.

• beans/doc has demos documentation along with javadoc directory having
JavaBeans and JavaBeans-related class along with interface and
miscellaneous documentations.

• beans/jars contains jar files for demo Beans



93

 Check Your Progress – 2 :
1. What is the use of README html in java beans ?

a. It contains the BDK license agreement

b. It contains an entry point to the BDK documentation

c. It contains jar files

d. All of these

9.4  Writing a Simple Bean :

Beans are designed by adding minimal amount of code to an existing
class definition so as to turn class into JavaBean. In this, you need to add
a pair of methods to existing class definition so as to make a Bean which
can be applied either by modifying source for existing class, or by extending
behaviour of existing class by sub classing it.

From the initial impression, we see that there appears no difference among
JavaBean and normal Java AWT component object. There results minor
differences, such as fact which Beans need not be visible components, Java
you need only follow a few simple rules to make Beans out of existing classes.
So writing simple bean involves following steps:

• Creating a simple bean

• Compiling the bean

• Generating a Java Archive (JAR) file

• Loading the bean into the GUI Builder of the NetBeans IDE

• Inspecting the bean's properties and events

Initially, the bean will be named as SimpleBean and we needs following
steps to create it. Writing SimpleBean code and keeping it in file SimpleBean.java,
in directory be framed using following code :

import java.awt.Color;

import java.beans.XMLDecoder;

import javax.swing.JLabel;

import java.io.Serializable;

public class SimpleBean extendsJLabel

implements Serializable {

public SimpleBean() {

setText( "Hello world!" );

setOpaque( true );

setBackground( Color.RED );

setForeground( Color.YELLOW );

setVerticalAlignment( CENTER );

setHorizontalAlignment( CENTER );

}

}

JavaBeans – 1



94

Object Oriented
Concepts

and Programming – II
(Advance Java)

We see that simple bean extends javax.swing.JLabel graphic component
and takes it properties that makes SimpleBean a visual component. It implements
java.io.Serializable interface which are used by bean to implement Serializable
or Externalizable interface.

<?xml version="1.0" encoding="ISO-8859-1"?>

<project default="build">

<dimame property="basedir" file="${ant.file}"/>

<property name="beanname" value="SimpleBean"/>

<property name="jarfile" value="${basedir}/$[beanname}.jar"/>

<target name="build" depend="compile">

<jar destfile=?${jarfile}" basedir="${basedir}" include="*.class">

<manifest>

<section name="${beanname}.class>

<attribute name="Java-Bean" value="true"/>

</section>

</manifest>

</jar>

</target>

<target name="compile">

<javac destdir="${basedir}">

<src location="${basedir}"/>

</java>

</target>

<target name="clean">

<delete file="${jarfile}">

<fileset dir="${basedir}" includes="*.class"/>

</delete>

</target>

</project>

Now you need to create a manifest, the JAR file, and class file
SimpleBean.class and apply the Apache Ant tool to form such files. Apache
Ant is Java-based build tool which allows to generate XML-based configurations
files :

It is recommended to save an XML script in the build.xml file, because
Ant recognizes this file name automatically.

Load the JAR file :

To load the JAR file, apply NetBeans IDE GUI Builder to load the jar
file as follows :

• Sart NetBeans



95

• From the File menu select "New Project" to create a new application
for your bean. You can use "Open Project" to add your bean to an existing
application.

• Create a new application using the New Project Wizard.

• Select a newly created project in the List of Project, expand the Source
Packages noe, and select the Default Package element.

• Click the right mouse button and select New|JFrameForm from the pop-
up menu.

• Select the newly created Form node in the Project Tree. A blank form
opens in the GUI Builder view of an Editor tab.

• Open the Palette Manager for Swing/AWT components by selecting
Palette Manager in the Tools menu.

• In the Palette Manager window select the beans components in the Palette
tree and press the "Add from JAR" button.

• Specify a location for your SimpleBean JAR file and follow the Add
from JAR Wizard instructions.

• Select the Palette and Properties options from the Windows menu.

 Check Your Progress – 3 :
1. Which of the following are java beans API ?

a. AppletInitializer b. BeanInfo

c. ExceptionListener d. All of these

9.5  Let Us Sum Up :

While studying this unit, we have learnt that Java Bean is java class
that which does not have arg constructor but are serializable and gives methods
to set and obtain values of properties that can be called as getter and setter
methods.

It is found that JavaBeans is object-oriented programming interface from
Sun Microsystems which allows to build re-useable applications or program
building blocks that can be deployed in network on any major operating system
platform.

Beans are developed with Beans Development Kit from Sun and can
be run on any major operating system platform inside a number of application
environments including browsers, word processors, and other applications.

It is noted that Beans Development Kit intends to support early development
of JavaBeans components which act as standard reference base for both bean
developers and tool vendors.

Beans are designed by adding minimal amount of code to an existing
class definition so as to turn class into JavaBean.

9.6  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (c)

 Check Your Progress 2 :

1. (b)

JavaBeans – 1



96

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Check Your Progress 3 :

1. (d)

9.7  Glossary :

1. Java Bean : An object-oriented programming interface started by Sun
Microsystems which build re-useable applications or program building
blocks.

9.8  Assignment :

Write short note on Java Bean.

9.9  Activities :

Collect some information on Beans Development Kit.

9.10  Case Study :

Generalised the basic java.beans package and discuss.

9.11  Further Readings :

1. Operating System Concept by Abraham Silberschatz, Peter Baer Galvin,
Greg Gagne



97

UNIT STRUCTURE

10.0 Learning Objectives

10.1 Introduction

10.2 Properties

10.2.1 Simple Properties

10.2.2 Bound Properties

10.2.3 Indexed Properties

10.2.4 Constrained Properties

10.3 Let Us Sum Up

10.4 Answer for Check Your Progress

10.5 Glossary

10.6 Assignment

10.7 Activities

10.8 Case Study

10.9 Further Readings

10.0  Learning Objectives :

After learning this Unit, you will be able to:

Properties of Java Beans like Simple properties, bound properties, indexed
properties and constrained properties.

10.1  Introduction :

A Java Bean is a java class that which does not have arg constructor
but are serializable and gives methods to set and obtain values of properties
that can be called as getter and setter methods

10.2  Properties :

To define a property in a bean class, supply public getter and setter
methods.

For example, the following methods define an int property called
mouthWidth :

public class FaceBean {

private int mMouthWidth=90;

public int getMouthWidth() {

return mMouthWidth;

}

public void set.MouthWidth(int mw) {

JAVABEANS – 2
Unit

10



98

Object Oriented
Concepts

and Programming – II
(Advance Java)

mMouthWidth=mw;

}

}

It is noted that builder tool NetBeans identifies method names and shows
mouthWidth property in list. It identifies the type, int, and provides correct
editor so property can be manipulated at design time.

10.2.1 Simple Properties :
The SimpleBean properties will appear in the Properties window. For

example, you can change a background property by selecting another color.
To preview your form, use the Preview Design button of the GUI Builder
toolbar. To inspect events associated with the SimpleBean object, switch to
the Events tab of the Properties window.

10.2.2 Bound Properties :
A bound property inform listeners when its value changes. In java.beans

package, in a class, PropertyChangeSupport,takes care of work of bound properties
which further will keep track of property listeners including convenience method
which fires property change events to all registered listeners.

In an example, we see that how a mouthWidth property can be prepared
with bound property using PropertyChangeSupport. The necessary additions for
the bound property are shown in bold.

import java.beans.*;

public class FaceBean {

private int mMouthWidth=90;

private PropertyChangeSupport mPcs=

new PropertyChangeSupport(this);

public int getMouthWidth() {

return mMouthWidth;

}

public void setMouthWidth(int mw) {

int oldMouthWidth = mMouthWidth

mMouthWidth=mw;

mPcs.firPropertyChange("mouthWidth, oldMouthWidth, mw);

}

public void

addPropertyChangeListener(PropertyChangeListener listene) {

mPcs.addPropertyChangeListener(listener);

}



99

public void

removePropertyChangeListener(PropertyChangeListener listene) {

mPcs.rmovePropertyChangeListener(listener);

}

}

Bound properties will work directly with other bean properties using
builder tool

10.2.3 Indexed Properties :
An indexed property is an arrangement of arrays rather than single value

where bean class shows method for getting and setting all array. Here is an
example for an int[] property called testGrades

public int[] getTestGrades() {

return mTestGrades;

}

public void setTestGrades(int[] tg) {

mTestGrades = tg;

}

For indexed properties, the bean class also provides methods for getting
and setting a specific element of the array.

public getTestGrades(int index) {

return mTestGrades[index];

}

public void setTestGrades(int index, int grade) {

mTestGrades[index] = grade;

}

10.2.4 Constrained Properties :
A constrained property is special bound property where the bean keeps

track of set of veto listeners. In case of change of constrained property, listeners
are consulted about change. Any one of listeners has chance to veto change,
where property remains unchanged.

The veto listeners are separate from the property change listeners.
Fortunately, the java.beans package includes a VetoableChangeSupport class that
greatly simplifies constrained properties.

Changes to the mouthWidth example are shown in bold :

import java.beans.*;

public class FaceBean {

private int mMouthWidth = 90;

private PropertyChangeSupport mPcs=

new PropertyChangeSupport(this);

JavaBeans – 2



100

Object Oriented
Concepts

and Programming – II
(Advance Java)

private VetoableChangeSupport mVcs=

new VetoableChangeSupport(this);

public int getMouthWidth() {

return mMouthWidth;

}

public void

setMouthWidth(int mw) throws PropertyVetoException {

int oldMouthWidth = mMouthWidth;

mVcs.fireVetoableChange("mouthWidth", oldMouthWidth, mw);

mMouthWidth = mw,

mPcs.firePropertyChange("mouthWidth", oldMouthWidth, mw);

}

publc void

addPropertyChangeListener(PropertyChangeListener listener) {

mPcs.addPropertyChangeListener(listener);

}

public void

removePropertyChangeListener(PropertyChangeListener listener) {

mPcs.removePropertyChangeListener(listener);

}

public void

addVetoableChangeListener(VetoableChangeListener listener) {

mVcs.addVetoableChangeListener(listener);

}

public void

removeVetoableChangeListener(VetoableChangeListener listener) {

mVcs.removeVetoableChangeListener(listener);

 Check Your Progress – 4 :
1. What is Bound Properties of Beans ?

a. It is an arrangement of arrays rather than single value

b. It keeps track of set of veto listeners

c. It inform listeners when its value changes

d. None of these

10.3  Let Us Sum Up :

While studying this unit, we have learnt A bound property inform listeners
when its value changes. In java.beans package, in a class,
PropertyChangeSupport,takes care of work of bound properties which further
will keep track of property listeners including convenience method which fires
property change events to all registered listeners.



101

10.4  Answer for Check Your Progress :

 Check Your Progress 4 :

1. (c)

10.5  Glossary :

1. Beans Development Kit : It is intended to support early development
of JavaBeans components which acts as standard reference base.

10.6  Assignment :

Write different properties of Java Beans and explain them each.

10.7  Activities :

Collect different properties of Java Beans.

10.8  Case Study :

Generalised the basic java.beans properties and discuss.

10.9  Further Readings :

1. Operating System Concept by Abraham Silberschatz, Peter Baer Galvin,
Greg Gagne

JavaBeans – 2



102

Object Oriented
Concepts

and Programming – II
(Advance Java)

UNIT STRUCTURE

11.0 Learning Objectives

11.1 Introduction

11.2 Naming and Directory Service

11.3 Enter JNDI

11.4 JNDI Overview

11.5 Understanding the Concepts behind JNDI Programming

11.6 Programming with JNDI

11.7 Exploring Javax.naming package

11.8 Let Us Sum Up

11.9 Answer for Check Your Progress

11.10 Glossary

11.11 Assignment

11.12 Activities

11.13 Case Study

11.14 Further Readings

11.0  Learning Objectives :

After learning this Unit, you will be able tounderstand:

• JNDI Overview

• Understanding the Concepts behind JNDI Programming

11.1  Introduction :

The Java Naming and Directory Interface (JNDI) provides naming and
directory functionality to applications written in the Java programming language.
It is designed to be independent of any specific naming or directory service
implementation. Thus a variety of services--new, emerging, and already deployed
ones--can be accessed in a common way.

The Java Naming and Directory Interface (JNDI) is an application
programming interface (API) for accessing different kinds of naming and
directory services. JNDI is not specific to a particular naming or directory
service, it can be used to access many different kinds of systems including
file systems; distributed objects systems like CORBA, Java RMI, and EJB;
and directory services like LDAP, Novell NetWare, and NIS+.

JNDI is similar to JDBC in that they are both Object-Oriented Java APIs
that provide a common abstraction for accessing services from different vendors.
While JDBC can be used to access a variety of relational databases, JNDI
can be used to access a variety of of naming and directory services. Using
one API to access many different brands of a service is possible because both

JAVA NAMING AND
DIRECTORY INTERFACE API

Unit

11



103

JDBC and JNDI subscribe to the same architectural tenet: Define a common
abstraction that most vendors can implement. The common abstraction is the
API. It provides an objectified view of a service while hiding the details specific
to any brand of service. The implementation is provided by the vendor, it plugs
into the API and implements code specific to accessing that vendor's product.

11.2  Naming and Directory Service :

A fundamental facility in any computing system is the naming service-
-the means by which names are associated with objects and objects are found
based on their names. When using almost any computer program or system,
you are always naming one object or another. For example, when you use an
electronic mail system, you must provide the name of the recipient. To access
a file in the computer, you must supply its name. A naming service allows
you to look up an object given its name.

Fig 3.1 Naming Service

To look up an object in a naming system, you supply it the name of
the object. The naming system determines the syntax that the name must follow.
This syntax is sometimes called the naming systems naming convention. A name
is made up components. A name's representation consist of a component
separator marking the components of the name.

Directory :

Many naming services are extended with a directory service. A directory
service associates names with objects and also associates such objects with
attributes.

directory service = naming service + objects containing attributes

You not only can look up an object by its name but also get the object's
attributes or search for the object based on its attributes.

Fig 3.2 Directory service

Java Naming and
Directory Interface API



104

Object Oriented
Concepts

and Programming – II
(Advance Java)

A directory object represents an object in a computing environment. A
directory object can be used, for example, to represent a printer, a person, a
computer, or a network. A directory object contains attributes that describe the
object that it represents. A directory object can have attributes. For example,
a printer might be represented by a directory object that has as attributes its
speed, resolution, and color. A user might be represented by a directory object
that has as attributes the user's e-mail address, various telephone numbers, postal
mail address, and computer account information.

A directory is a connected set of directory objects. A directory service
is a service that provides operations for creating, adding, removing, and modifying
the attributes associated with objects in a directory. The service is accessed
through its own interface.

 Check Your Progress – 1 :
1. What is the purpose of directory object ?

a. It represents an object in a computing environment.

b. It is just a simple folder to hold files

c. Both of these

d. None of these

11.3  Enter JNDI :

The Java Naming and Directory InterfaceTM (JNDI) provides naming
and directory functionality to applications written in the JavaTM programming
language. It is designed to be independent of any specific naming or directory
service implementation. Thus a variety of services--new, emerging, and already
deployed ones--can be accessed in a common way.

The JNDI architecture consists of an API (Application Programming
Interface) and an SPI (Service Provider Interface). Java applications use this
API to access a variety of naming and directory services. The SPI enables a
variety of naming and directory services to be plugged in transparently, allowing
the Java application using the API of the JNDI technology to access their
services.

Specifying a Resource Reference

• The instructions that follow mention the AccountEJB example, which
is described in the section, A Bean-Managed Persistence Example. The
AccountEJB code is in the examples/src/ejb/account directory.

• In the deploytool, select the component from the tree.

• Select the Resource Ref's tab.

• Click Add.

• In the Coded Name field, enter jdbc/AccountDB.

• The AccountEJB refers to database private String dbName = "java:comp/
env/jdbc/AccountDB";

• The java:comp/env prefix is the JNDI subcontext for the component.
Becuase this subcontext is implicit in the Coded Name field, you don't
need to include it there.



105

• In the Type combo box, select javax.sql.DataSource. A DataSource object
is a factory for database connections.

• In the Authentication combo box, select Container.

Mapping a Resource Reference to a JNDI Name

• Select the J2EE application from the tree.

• Select the JNDI Names tab.

• In the References table, select the row containing the resource reference.
For the AccountEJB example, the resource reference is jdbc/AccountDB,
the name you entered in the Coded Name field of the Resource Ref's
tab.

• In the row you just selected, enter the JNDI name. For the AccountEJB
example, you would enter jdbc/Cloudscape in the JNDI Name field.

 Check Your Progress – 2 :
1. What is JNDI ?

a. It provides naming and directory functionality to applications written
in the java

b. It is independent of any specific naming or directory service
implementation.

c. It helps in accessing variety of services like new, emerging technology.

d. All of these

11.4  JNDI Overview :

The Java Naming and Directory Interface (JNDI) is part of the Java
platform, providing applications based on Java technology with a unified
interface to multiple naming and directory services. You can build powerful
and portable directory-enabled applications using this industry standard.

JNDI is an API specified in Java technology that provides naming and
directory functionality to applications written in the Java programming language.
It is designed especially for the Java platform using Java's object model. Using
JNDI, applications based on Java technology can store and retrieve named Java
objects of any type. In addition, JNDI provides methods for performing standard
directory operations, such as associating attributes with objects and searching
for objects using their attributes.

JNDI is also defined independent of any specific naming or directory
service implementation. It enables applications to access different, possibly
multiple, naming and directory services using a common API. Different naming
and directory service providers can be plugged in seamlessly behind this
common API. This enables Java technology-based applications to take advantage
of information in a variety of existing naming and directory services, such as
LDAP, NDS, DNS, and NIS(YP), as well as enabling the applications to coexist
with legacy software and systems.

Java Naming and
Directory Interface API



106

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Check Your Progress – 3 :
1. What is LDAP ?

a. Lightweight Directory Access Protocol

b. Light Directory Access Program

c. Lightweight Directory Access Program

d. None of these

11.5  Understanding the Concepts behind JNDI Programming :

Java Naming and Directory Interface allows distributed applications to
look up services in an abstract, resource-independent way. The most common
use case is to set up a database connection pool on a Java EE application
server. Any application that's deployed on that server can gain access to the
connections they need using the JNDI name java:comp/env/FooBarPool without
having to know the details about the connection. This has several advantages:

• If you have a deployment sequence where apps move from devl->int-
>test->prod environments, you can use the same JNDI name in each
environment and hide the actual database being used. Applications don't
have to change as they migrate between environments.

• You can minimize the number of folks who need to know the credentials
for accessing a production database. Only the Java EE app server needs
to know if you use JNDI.

The Java Naming and Directory Interface is an application programming
interface (API) having naming and directory functions to applications written
using the Java programming language. It is defined to be independent of any
specific directory service implementation. Thus a variety of directories--new,
emerging, and already deployed--can be accessed in a common way.

 Check Your Progress – 4 :
1. Java Naming and Directory Interface is :

a. an API

b. uses Java programming language

c. independent of any specific directory

d. all of above

11.6  Programming with JNDI :

NDI provides an interface that supports all this common functionality.
JNDI naming revolves around a small set of classes and a handful of operations.
JNDI performs all naming operations relative to a context. To assist in finding
a place to start, the JNDI specification defines an InitialContext class. This
class is instantiated with properties that define the type of naming service in
use and, for naming services that provide security, the ID and password to
use when connecting.

The JNDI architecture consists of an API and a service provider interface
(SPI). All Java applications that utilize naming and directory services use the
JNDI API to access a variety of naming and directory services. The SPI on
the other hand enables a variety of naming and directory services to be plugged
in transparently, thereby allowing the Java application using the JNDI API to
access their services. The JNDI API includes:



107

• Java 2 SDK

• v1.3

There are steps which configure and run JNDI Connection pool for an
application :

(1) Configure data-source in Server and create JNDI name.

(2) Configure web.xml

(3) Configure Spring bean with JNDI Datasource

(4) Include JDBC driver library on Server lib

JNDI style lookup is used consistently throughout EJB applications.
Client programs have symbolic names for the server objects that they wish
to use - these are looked up at run-time to obtain initial references for those
objects. Session and Entity beans that use databases again have symbolic names
for these databases; the actual database details being defined at deployment
time when the appropriate data are inserted into the tables of a JNDI service
associated with the EJB system.

The JNDI subsystem is used in an Application Server as a directory for
such objects as resource managers and Enterprise JavaBeans (EJBs). Objects
managed by the WebLogic container have default environments for getting the
JNDI InitialContext loaded when they use the default InitialContext() constructor.
For a Collaboration using a WebLogic EJB Object Type Definition (OTD) to
find the home interface of an EJB, the JNDI properties must be configured
and associated with the OTD. However, for other external clients, accessing
the WebLogic naming service requires a Java client program that sets up the
appropriate JNDI environment when creating the JNDI Initial Context. The
example shows initial context to WebLogic JNDI from a stand-alone client :

HashMap env = newHashMap();

env.put (Context.PROVIDER_URL, "t3://localhost:7001/");

env.put (Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

Context initContext = new InitialContext (env);

Once an initial context is created, sub-contexts can be created, objects
can be bound, and objects can be retrieved using the initial context. For example
the following segment of code retrieves :

Topic topic

=(Topic)initContex.lookpu("sbyn.inTopicToSunMicrosystemsTopic");

...

Here's an example of how to bind a Java Message Queue object:

Queue queue = null;

try {

queue = newSTCQueue("inQueueToSunMicrosystemsQueue");

initContext.bind ("sbyn.ToSunMicrosystemQueue", queue);

}

Java Naming and
Directory Interface API



108

Object Oriented
Concepts

and Programming – II
(Advance Java)

catch (NameAlreadyBoundException ex) {

try {

if(queue != null)

initContext.rebind ("sbyn.ToSunMicrosystemsQueue", queue);

}

catch (Exception ex) {

throw ex;

}

}

 Check Your Progress – 5 :
1. JNDI programming uses :

a. data logic b. web logic

c. both a and b d. neither a nor b

11.7  Exploring Javax.naming Package :

In Java we see that package is a mixture of classes and interfaces where
every package carries its own name which are arranged from top-level classes
along with interfaces in different namespace or name collection. Although same-
named classes and interfaces cannot appear in similar package but can present
in different packages as separate namespace is assigned to every package.

Java.naming package is naming operations of Java Naming and Directory
Interface that shows naming and directory functions to applications that are
written in Java programming language. Such packages are designed to be
independent of any particular naming or directory services working. Hence a
variety of services which are new, emerging and previously deployed can access
in common way.

Such package shows notion of context given by Context interface having
set of name-to-object bindings. Context is the core interface for looking up,
binding, unbinding, and renaming objects, and for creating and destroying
subcontexts.

In such package, lookup() is commonly used operation that name the
object of you choice and in turn returns object with that name. For example,
the following code fragment looks up a printer and sends a document to the
printer object to be printed :

Printer printer = (Printer)ctx.lookup("treekiller");

printer.print(report);

Provides the classes and interfaces for accessing naming services.



109

Interface Summary

Interface Description

Context This interface represents a naming context,
which consists of a set of name-to-object
bindings.

Name The Name interface represents a generic name
-- an ordered sequence of components.

NameParser This interface is used for parsing names from
a hierarchical namespace.

NamingEnumeration<T> This interface is for enumerating lists returned
by methods in the javax.naming and
javax.naming.directory packages.

Referenceable This interface is implemented by an object that
can provide a Reference to itself.

Class Summary

Class Description

BinaryRefAddr This class represents the binary form of the
address of a communications end-point.

Binding This class represents a name-to-object binding
found in a context.

CompositeName This class represents a composite name -- a
sequence of component names spanning multiple
name spaces.

CompoundName This class represents a compound name -- a
name from a hierarchical name space.

InitialContext This class is the starting context for performing
naming operations.

LinkRef This class represents a Reference whose contents
is a name, called the link name, that is bound
to an atomic name in a context.

NameClassPair This class represents the object name and class
name pair of a binding found in a context.

RefAddr This class represents the address-of a
communications end-point.

Reference This class represents a reference to an object
that is found outside of the naming/directory
system.

StringRefAddr This class represents the string form of the
address of a communications end-point.

Java Naming and
Directory Interface API



110

Object Oriented
Concepts

and Programming – II
(Advance Java)

Exception Summary

Exception Description

AuthenticationException This exception is thrown when an
authentication error occurs while
accessing the naming or directory
service.

AuthenticationNonSupportedException This exception is thrown when
the particular flavor of
authentication requested is not
supported.

CannotProceedException This exception is thrown to
indicate that the operation reached
a point in the name where the
operation cannot proceed any
further.

CommunicationException This exception is thrown when
the client is unable to communicate
with the directory or naming
service.

ConfigurationException This exception is thrown when
there is a configuration problem.

ContextNotEmptyException This exception is thrown when
attempting to destroy a context
that is not empty.

InsufficientResourcesException This exception is thrown when
resources are not available to
complete the requested operation.

InterruptedNamingException This exception is thrown when
the naming operation being
invoked has been interrupted.

InvalidNameException This exception indicates that the
name being specified does not
conform to the naming syntax of
a naming system.

LimitExceededException This exception is thrown when a
method terminates abnormally due
to a user or system specified limit.

LinkException This exception is used to describe
problems encounter while
resolving links.

LinkLoopException This exception is thrown when a
loop was detected will attempting
to resolve a link, or an
implementation specific limit on
link counts has been reached.



111

MalformedLinkException This exception is thrown when a
malformed link was encountered
while resolving or constructing a
link.

NameAlreadyBoundException This exception is thrown by
methods to indicate that a binding
cannot be added because the name
is already bound to another object.

NameNotFoundException This exception is thrown when a
component of the name cannot be
resolved because it is not bound.

NamingException This is the superclass of all
exceptions thrown by operations
in the Context and Dircontext
interfaces.

NamingSecurityException This is the superclass of security-
related exceptions thrown by
operations in the Context and
Dircontext interfaces.

NoInitialContextException This exception is thrown when no
initial context implementation can
be created.

NoPermissionException This exception is thrown when
attempting to perform an operation
for which the client has no
permission.

NotContextException This exception is thrown when a
naming operation proceeds to a
point where a context is required
to continue the operation, but the
resolved object is not a context.

OperationNotSupportedException This exception is thrown when a
context implementation does not
support the operation being
invoked.

PartialResultException This exception is thrown to
indicate that the result being
returned or returned so far is
partial, and that the operation
cannot be completed.

ReferralException This abstract class is used to
represent a referral exception,
which is generated in response to
a referral such as that returned by
LDAP v3 servers.

Java Naming and
Directory Interface API



112

Object Oriented
Concepts

and Programming – II
(Advance Java)

ServiceUnavailableException This exception is thrown when
attempting to communicate with a
directory or naming service and
that service is not available.

SizeLimitExceededException This exception is thrown when a
method produces a result that
exceeds a size-related limit.

TimeLimitExceededException This exception is thrown when a
method does not terminate within
the specified time limit.

 Check Your Progress – 6 :
1. Java.naming package is independent of :

a. naming services b. directory services

c. both a and b d. neither a nor b

11.8  Let Us Sum Up :

In this unit we have learnt that Java Naming and Directory Interface
will show naming and directory functions to applications written in Java
programming language.

JNDI is similar to JDBC in that they are both Object-Oriented Java APIs
that provide a common abstraction for accessing services from different vendors.

It is noted that fundamental facility in any computing system is naming
service--the means by which names are associated with objects and objects
are found based on their names.

The Java Naming and Directory InterfaceTM (JNDI) provides naming
and directory functionality to applications written in the JavaTM programming
language.

JNDI is also defined independent of any specific naming or directory
service implementation. It enables applications to access different, possibly
multiple, naming and directory services using a common API.

11.9  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (a)

 Check Your Progress 2 :

1. (d)

 Check Your Progress 3 :

1. (a)

 Check Your Progress 4 :

1. (d)

 Check Your Progress 5 :

1. (b)

 Check Your Progress 6 :

1. (c)



113

11.10  Glossary :

1. JNDI : It is Java Naming and Directory Interface which gives name and
directory functions to applications in Java programming language.

2. Directory Object : It is an object in computing environment used to
represent printer, person, computer or network.

11.11  Assignment :

Explain the directory services ?

11.12  Activities :

Study about features of JNDI.

11.13  Case Study :

Steps involved in Programming with JNDI

11.14  Further Readings :

1. Operating System Concept by Abraham Silberschatz, Peter Baer Galvin,
Greg Gagne

Java Naming and
Directory Interface API



114

Object Oriented
Concepts

and Programming – II
(Advance Java)

BLOCK SUMMARY :

In this block, students have learnt and understand about the basic steps

involved in deploying RMI Application on same system. The block gives an

idea on the study and concept of Beans Development Kit and its development

and working criterias. The students have be well explained on the programming

concept of JNDI along with Naming and Directory Service.

The block detailed about the basic of RMI Architecture techniques. The

concept related to exploring of Javax.naming package along with its features

are well explained to the students. The student will be demonstrated practically

about writing technique of Simple Bean application.



115

BLOCK ASSIGNMENT :

 Short Questions :

1. What is Beans Development Kit ?

2. Explain the function of JNDI ?

3. Write note on Naming and Directory Service in API ?

4. Write short note on Advanced RMI Concepts ?

 Long Questions :

1. Write short notes on RMI Architecture ?

2. Write short note on Properties ?

3. Write note on working of RMI ?



116

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Enrolment No. : 

1. How many hours did you need for studying the units ?

Unit No. 8 9 10 11

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................



OBJECT ORIENTED CONCEPTS AND
PROGRAMMING – II (ADVANCE JAVA)

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 4 : SERVLETS & JSP PROGRAMMING

UNIT 12  SERVLETS

UNIT 13  INTRODUCTION TO STRUTS

UNIT 14  JSP (JAVA SERVER PAGES)

BCAR-304



Block Introduction :
Struts is an application development framework that is designed for and

used with the popular J2EE (Java 2, Enterprise Edition) platform. JSP is a server
side technology which helps to create a webpage dynamically using java as the
programming language. In this block, we will detail about the basic concept of
Architecture of the Servlet Package. The block will focus on the study and
concept of various issues that appears at the time of threading. The students will
give an idea on Struts Controller Components and its characteristics features. In
this block, the student will made to learn and understand about the basic of about
configuring web.xml file for Struts. The concept related to Struts Action Classes
and Model Components will also be explained to the students. The student will
be demonstrated practically about running Servlets in Apache Tomcat 4.0.

Block Objectives :
After learning this block, you will be able to understand :

• Concept of Architecture of the Servlet Package

• Idea about Threading Issues

• Features about compiling and running Servlets in Apache Tomcat 4.0

• Idea about Struts Controller Components

• Basic of Struts Action Classes and Model Components

• Idea about configuring web.xml file for Struts

• Basic of JSP Syntax and Implicit Objects

Block Structure :

Unit 12 : Servlets

Unit 13 : Introduction to Struts

Unit 14 : JSP (Java Server Pages)

SERVLETS &
JSP PROGRAMMING



117

UNIT STRUCTURE

12.0 Learning Objectives

12.1 Introduction

12.2 Servlet Types & Life Cycle

12.3 Servlet API

12.4 Threading Issues

12.5 Session Tracking

12.6 Writing and Running Servlet application in Apache Tomcat 7

12.7 Request Dispatcher

12.8 Let Us Sum Up

12.9 Answer for Check Your Progress

12.10 Glossary

12.11 Assignment

12.12 Activities

12.13 Case Study

12.14 Further Readings

12.0  Learning Objectives :

After learning this Unit, you will be:

• Able to define servlet and its life cycle

• Able to discuss different types of servlet

• Able to write servlet to serve client request

• Able to execute servlet through tomcat server

12.1  Introduction :

Java Servlet is a platform-independent, container-based Web component
used to generate dynamic content in a Web page. It is one of the established
technologies to share server-side resources in client-server programming. As
Servlet runs in a multi-threaded environment provided by the container, the
life cycle events are completely dependent upon its efficient implementation.

The container, also referred to as a servlet engine, is provided by a Web
or an application server within which servlets run. Similar to simple Java
programming, servlets are Java classes compiled to bytecode. These bytecodes
are loaded dynamically into a Java technology-enabled Web server. The servlet
classes generally interact with the server via an HTTP request/response mechanism
implemented by the servlet engine. The primary function of the container is
to contain servlet classes and manage their life cycle.

Java Servlets is web programming technology in Java. A Servlet is used
to enhance client-server programming model and develop web applications. Java

SERVLETS
Unit

12



118

Object Oriented
Concepts

and Programming – II
(Advance Java)

Servlet is a part of Java Enterprise Edition (Java EE). The javax.servlet and
javax.servlet.http package provides the interfaces and classes for writing Servlet
program.

12.2  Servlet Types & Life Cycle :

There are mainly two types of servlets :

1. Generic Servlet : Generic servlets extend javax.servlet.GenericServlet.
Generic servlet is protocol independent servlet. It implements the Servlet
and ServletConfig interface. It may be directly extended by the servlet.
Writing a servlet in in GenericServlet is very easy. It has only init() and
destroy() method of ServletConfig interface in its life cycle. It also
implements the log method of ServletContext interface.

2. Http Servlet : HTTP servlets extend javax.servlet.HttpServlet. HttpServlet
is HTTP (Hyper Text Transfer Protocol) specific servlet. It provides an
abstract class HttpServlet for the developers to extend and create their
own HTTP specific servlets. The sub class of HttpServlet must overwrite
at least one method out of given below methods :

• doGet()

• doPost()

• doPost()

• doTrace()

• doDelete()

• init()

• destroy()

• getServiceInfo()

There is no need to overrride service() method. All the servlet either
Generic Servlet or Http Servlet passes there config parameter to the Servlet
interface.

Life Cycle of Servlet

A servlet follows a certain life cycle. The servlet life cycle is managed
by the servlet container. The life cycle is shown in figure 1.

Fig. 1. Servlet Lifecycle



119

Load Servlet Class

Before a servlet can be invoked the servlet container must first load its
class definition. This is done just like any other class is loaded.

Create Instance of Servlet

When the servlet class is loaded, the servlet container creates an instance
of the servlet. Typically, only a single instance of the servlet is created, and
concurrent requests to the servlet are executed on the same servlet instance.
This is really up to the servlet container to decide, though. But typically, there
is just one instance.

Call the Servlets init() Method

When a servlet instance is created, its init() method is invoked. The init()
method allows a servlet to initialize itself before the first request is processed.
We can specify init parameters to the servlet in the web.xml file.

Call the Servlets service() Method

For every request received to the servlet, the servlets service() method
is called. For HttpServlet subclasses, one of the doGet(), doPost() etc. methods
are typically called. As long as the servlet is active in the servlet container,
the service() method can be called. Thus, this step in the life cycle can be
executed multiple times.

Call the Servlets destroy() Method

When a servlet is unloaded by the servlet container, its destroy() method
is called. This step is only executed once, since a servlet is only unloaded
once. A servlet is unloaded by the container if the container shuts down, or
if the container reloads the whole web application at runtime.

12.3  Servlet API :

The Servlet API contains two important packages that provide all important
classes and interface.

These are as follows :

1. javax.servlet

2. javax.servlet.http

Classes and Interfaces of javax.servlet package :

           Interfaces            Classes

Servlet GenericServlet

ServletConfig HttpConstraintElement

ServletContext HttpMethodConstraintElement

ServletContextListner MultipartConfigElement

ServletRegistration ServletContextEvent

ServletRequest ServletInputStream

ServletRequestListner ServletOutputStream

ServletResponse ServletRequestAttributeEvent

ServletCookieConfig ServletRequestEvent

Servlets



120

Object Oriented
Concepts

and Programming – II
(Advance Java)

SingleThreadModel ServletRequestEvent

Filter ServletRequestWrapper

FilterConfig ServletResponseWrapper

FilterChain ServletSecurityElement

Classes and Interfaces of javax.servlet.http package :

           Interfaces            Classes

HttpServletRequest Cookie

HttpServletResponse HttpServlet

HttpSession HttpServletRequestWrapper

HttpSessionActivationListner HttpServletResponseWrapper

HttpSessionContext HttpSessionBindingEvent

HttpSessionAttributeListner HttpSessionEvent

HttpSessionIdListner HttpUtils

Servlet Interface

Servlet interface defines some methods that all the servlet classes must
implement. This method provides the following five methods. Out of these five
methods, three methods are Servlet life cycle methods.

Servlet Interface Methods

Following are the methods of Servlet Interface :

Methods

public void init(ServletConfig, config)

public void service (ServletRequest
req, ServletResponse res)

public ServletConfig getServletConfig
( )

public String getServletInfo( )

public void destroy( )

Description

It is one of the Servlet life cycle
methods. It is invoked by Servlet
container after being initialized by
Servlet.

The service( ) method is called after
successful completion of init( ). It is
invoked by Servlet container to
respond to the requests coming from
the client.

Returns a ServletConfig object, which
contains initialization and startup
parameters for this Servlet.

Returns the information about the
Servlet, such as author, version, and
copyright. This method returns a string
value.

Called by servlet container and it
marks the end of the life cycle of a
servlet. It indicates that servlet has
been destroyed.



121

HttpServlet Class

The HttpServlet class extends the GenericServlet and implements
Serializable interface. It is an abstract class. The HttpServlet class reads the
HTTP request from http, get, post, put, delete etc. It calls one of the corresponding
methods.

HttpServlet Class Methods

• protected void doGet(HttpServletRequest req, HttpServletResponse resp)

• protected void doDelete(HttpServletRequest req, HttpServletResponse resp)

• protected void doHead(HttpServletRequest req, HttpServletResponse resp)

• protected void doPost(HttpServletRequest req, HttpServletResponse resp)

• protected void doPut(HttpServletRequest req, HttpServletResponse resp)

• protected void doTrace(HttpServletRequest req, HttpServletResponse resp)

• protected void service(HttpServletRequest req, HttpServletResponse resp)

GenericServlet Class

It is an abstract class that implements Servlet, ServletConfig and serializable
interface. It provides the implementation of all methods of these interfaces
except the service method.

GenericServlet may be directly extended by Servlet. It provides simple
versions of the life cycle methods init( ) and destroy( ) methods.

GenericServlet Class Methods

Following are the important methods of GenericServlet Class :

Methods

public void destroy( )

public String
getInitParameter(String name)

public String getServletInfo( )

public String getServletName( )

public void init( )

public void log(String msg)

public abstract void
service(ServletRequest req,
ServletResponse res)

Description

Invoked by servlet container. It shows
that the servlet is being taken out of
service.

Returns a String containing the value
of named parameter.

Returns information related to Servlet
like author, version etc.

Returns the name of Servlet object.

It is a convenience method that can
easily be overridden so that we do not
need to call super.init(config).

Writes the given message to a Servlet
log file.

It is an abstract method, called by the
servlet container to allow the servlet
to respond to a request.

Servlets



122

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Check Your Progress – 1 :
1. What is the lifecycle of a servlet ?

a. Servlet class is loaded

b. Servlet instance is created

c. init,Service,destroy method is invoked

d. All mentioned above

 2. Which packages represent interfaces and classes for servlet API ?

a. javax.servlet b. javax.servlet.http

c. Both a & b d. None of the above

12.4  Threading Issues :

A thread is many times called an execution context or a lightweight
process which is single sequential flow of control within a program. When
you run one of these sorting applets, it creates a thread that performs the sort
operation. Each thread is a sequential flow of control within the same program.
Each sort operation runs independently from the others, but at the same time.

When we say that a program is multithreaded, we are not implying that
the program runs two separate instances simultaneously. Rather, we are saying
that the same instance spawns multiple threads that process this single instance
of code. This means that more than one sequential flow of control runs through
the same memory block.

When multiple threads execute a single instance of a program and
therefore share memory, multiple threads could possibly be attempting to read
and write to the same place in memory. In fig 1.2 we see a multithreaded
program where multiple threads processing are done at same time.

Fig 1.2 multiple threads processing

In this we see that when thread A analyse variable instanceVar, then it
is noted that thread-B just increases instanceVar. We see that the problem here
appears as thread A written to instanceVar which does not expect value to
change till thread A clearly performs. Fortunately thread-B also analyse same
thing itself; the only problem is they share the same variable. So such issue
is not exclusive to servlets, but serves as common programme problem in case
of multithreading application.



123

So we see that Servlet instances are essentially not thread safe for the
reason of multi threading nature of Java programming language. The Java
Virtual Machine supports working similar code by multiple threads. This is
a great performance benefit on machines which have multiple processors. This
also allows the same code to be executed by multiple concurrent users without
blocking each other.

 Check Your Progress – 2 :
1. Servlets handle multiple simultaneous requests by using threads.

a. True b. False

12.5  Session Tracking :

HTTP protocol and Web Servers are stateless, what it means is that for
web server every request is a new request to process and they can't identify
if it's coming from client that has been sending request previously.

But sometimes in web applications, we should know who the client is
and process the request accordingly. For example, a shopping cart application
should know who is sending the request to add an item and in which cart
the item has to be added or who is sending checkout request so that it can
charge the amount to correct client.

Session is a conversional state between client and server and it can
consists of multiple request and response between client and server. Since HTTP
and Web Server both are stateless, the only way to maintain a session is when
some unique information about the session (session id) is passed between server
and client in every request and response.

There are several ways through which we can provide unique identifier
in request and response.

1. User Authentication : This is the very common way where we user
can provide authentication credentials from the login page and then we
can pass the authentication information between server and client to
maintain the session. This is not very effective method because it won't
work if the same user is logged in from different browsers.

2. HTML Hidden Field : We can create a unique hidden field in the HTML
and when user starts navigating, we can set its value unique to the user
and keep track of the session. This method can't be used with links
because it needs the form to be submitted every time request is made
from client to server with the hidden field. Also it's not secure because
we can get the hidden field value from the HTML source and use it
to hack the session.

3. URL Rewriting : We can append a session identifier parameter with
every request and response to keep track of the session. This is very
tedious because we need to keep track of this parameter in every response
and make sure it's not clashing with other parameters.

4. Cookies : Cookies are small piece of information that is sent by web
server in response header and gets stored in the browser cookies. When
client make further request, it adds the cookie to the request header and
we can utilize it to keep track of the session. A cookie has a name,
a single value, expiration date and optional attributes. A cookie's value
can uniquely identify a client. Since a client can disable cookies, this

Servlets



124

Object Oriented
Concepts

and Programming – II
(Advance Java)

is not the most secure and fool-proof way to manage the session. We
can maintain a session with cookies but if the client disables the cookies,
then it won't work. If Cookies are disabled then we can fallback to URL
rewriting to encode Session id e.g. JSESSIOINID into the URL itself.

5. Session Management API : Session Management API is built on top
of above methods for session tracking. HttpSession object is used to store
entire session with a specific client. We can store, retrieve and remove
attribute from HttpSession object. Any servlet can have access to
HttpSession object throughout the getSession() method of the
HttpServletRequestobject.

Some of the major disadvantages of all the above methods are :

• Most of the time we don't want to only track the session, we have to
store some data into the session that we can use in future requests. This
will require a lot of effort if we try to implement this.

• All the above methods are not complete in themselves, all of them won't
work in a particular scenario. So we need a solution that can utilize these
methods of session tracking to provide session management in all cases.

 Check Your Progress – 3 :
1. Which method in session tracking is used in a bit of information that

is sent by a web server to a browser and which can later be read back
from that browser ?

a. HttpSession b. URL rewriting

c. Cookies d. Hidden form fields

12.6  Writing and Running Servlets in Apache Tomcat 7 :

To create a Servlet application we need to follow the below mentioned
steps. These steps are common for all the Web server. Apache Tomcat is an
open source web server for testing servlets and JSP technology.

• Create directory structure for the application

• Create a Servlet

• Compile the Servlet

• Create the deployment descriptor of the application

• Start the server and deploy the application

Creating the Directory Structure

There is a unique directory structure that must be followed to create
Servlet application. This structure tells where to put the different types of files.



125

Fig 1.3 Directory Structure of Servlet Application

Create a Servlet

//ServletTest.java

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class ServletTest extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{

res.setContentType("text/html");

PrintWriter pw = res.getWriter();

pw.println("<html><body>");

pw.println("Welcome to BAOU, Ahmedabad");

pw.println("</body></html>");

pw.close();

}

}

Compile the Servlet program

Assuming the classpath and environment is setup properly.

Servlets



126

Object Oriented
Concepts

and Programming – II
(Advance Java)

Create a deployment descriptor

The deployment descriptor is an xml file. It is used to map URL to servlet
class, defining error page.

Web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_9" version="2.4" xmlns="http://java.sun.com/xml/
ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/
xml/ns/j2ee/web-app_2_4.xsd">

<display-name>Servlet Test</display-name>

<servlet>

<servlet-name>World</servlet-name>

<servlet-class>ServletTest</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>World</servlet-name>

<url-pattern>/hello</url-pattern>

</servlet-mapping>

</web-app>

Save the web.xml file in <Tomcat-installation directoryt>/webapps/ROOT/
WEB-INF/

• Now start the Tomcat server

• Open browser and type

http://localhost:8080/BAOU/hello

• It will execute our servlet and display following output.

 Check Your Progress – 4 :
1. Which method is used to specify before any lines that uses the PintWriter ?

a. setPageType() b. setContextType()

c. setContentType() d. setResponseType()

2. What type of servlets use these methods doGet(), doPost(),doHead,
doDelete() and  doTrace() ?

a. Genereic Servlets b. HttpServlets

c. All of the above d. None of the above

12.7  Request Dispatcher :

The RequestDispatcher interface defines an object that receives the
request from client and dispatches it to the resource(such as servlet, JSP, HTML
file).



127

This interface has following two methods :

• public void forward(ServletRequest request, ServletResponse response):
It forwards the request from one servlet to another resource (such as
servlet, JSP, HTML file).

• public void include(ServletRequest request, ServletResponse response):
It includes the content of the resource(such as servlet, JSP, HTML file)
in the response.

Difference between forward() vs include() :

To understand the difference between these two methods, lets take an
example :

Suppose we have two pages X and Y. In page X we have an include
tag, this means that the control will be in the page X till it encounters include
tag, after that the control will be transferred to page Y. At the end of the
processing of page Y, the control will return back to the page X starting just
after the include tag and remain in X till the end.

In this case the final response to the client will be send by page X.

Now, we are taking the same example with forward. We have same pages
X and Y. In page X, we have forward tag. In this case the control will be
in page X till it encounters forward, after this the control will be transferred
to page Y. The main difference here is that the control will not return back
to X, it will be in page Y till the end of it. In this case the final response
to the client will be send by page Y.

Getting RequestDispatcher

RequestDispatcher can be obtained from a request object or from a servlet
context.

• RequestDispatcher dispatcher = request.getRequestDispatcher("ved.jsp");

dispatcher.forward(request, response);

We can get the RequestDispatcher from the request object with the
getRequestDispatcher() method.

• RequestDispatcher dispatcher = getServletContext().getRequestDispatcher
("/ved.jsp");

dispatcher.forward(request, response);

Here we get the RequestDispatcher from the servlet context. In this case,
the path must begin with a slash character.

Example :

In this example, we are using both the methods include and forward.
Using include method, we will be changing the content of current page and
when we are ready to transfer the control to the next page, we will use forward
method.

index.html:

<html>

<form action="loginPage" method="post">

User Name:<input type="text" name="uname"/><br/>

Password:<input type="password" name="upass"/><br/>

Servlets



128

Object Oriented
Concepts

and Programming – II
(Advance Java)

<input type="submit" value="SUBMIT"/>

</form>

</html>

Validation.java:

import java.io.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Validation extends HttpServlet

{

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

String name=request.getParameter("uname");

String pass=request.getParameter("upass");

if(name.equals("ved") &&  pass.equals("desai"))

{

RequestDispatcher dis=request.getRequestDispatcher
("welcome");

dis.forward(request, response);

}

else

{

pw.print("User name or password is incorrect!");

RequestDispatcher dis=request.getRequestDispatcher
("index.html");

dis.include(request, response);

}

}

}

WelcomeTest.java:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;



129

public class WelcomeTest extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter pw = response.getWriter();

String name=request.getParameter("uname");

pw.print("Hello"+name+"!");

pw.print(" Welcome to BAOU");

}

}

web.xml :

<web-app>

<display-name>BAOU-Ahmedabad</display-name>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

<servlet>

<servlet-name>Login</servlet-name>

<servlet-class>Validation</servlet-class>

</servlet>

<servlet>

<servlet-name>Welcome</servlet-name>

<servlet-class>WelcomeTest</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Login</servlet-name>

<url-pattern>/loginPage</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>Welcome</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

Servlets



130

Object Oriented
Concepts

and Programming – II
(Advance Java)

</welcome-file-list>

</web-app>

Output :

Entering wrong credentials :

Error screen :

Welcome screen on entering correct user name and password:

 Check Your Progress – 5 :
1. Which method is used to send the same request and response objects

to another servlet in RequestDispacher ?

a. forward() b. sendRedirect()

c. Both A & B d. None of the above

12.8  Let Us Sum Up :

In this unit we have learnt that Servlets are modules of Java code that
run in a server application to answer client requests.

In order to initialize a Servlet, a server application loads the Servlet class
and creates an instance by calling the no-args constructor.

An HTTP Servlet handles client requests through its service method. The
service method supports standard HTTP client requests by dispatching each
request to a method designed to handle that request.

A thread is many times called an execution context or a lightweight
process which is single sequential flow of control within a program. When
you run one of these sorting applets, it creates a thread that performs the sort
operation.

Cookies serve as a facility for servers to send information to a client.
This information is then housed on the client, from which the server can later
retrieve the information.



131

RequestDispatcher is an interface, implementation of which defines an
object which can dispatch request to any resources on the server.

12.9  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (d),  2. (c)

 Check Your Progress 2 :

1. (a)

 Check Your Progress 3 :

1. (c)

 Check Your Progress 4 :

1. (c),  2. (b)

 Check Your Progress 5 :

1. (a)

12.10  Glossary :

1. HTTP : It is the data communication protocol used to establish
communication between client and server.

2. Container : It is used in java for dynamically generating the web pages
on the server side.

3. Content-Type : It is HTTP header that provides the description about
what are you sending to the browser.

12.11  Assignment :

1. Write short note on different Http Methods.

2. Discuss serveltConfig and servletContext.

3. Differentiate between Get and Post method.

12.12  Activities :

Collect some information on Http Protocol.

12.13  Case Study :

Anatomy of an HTTP GET and POST request.

12.14  Further Readings :

1. https://docs.oracle.com/javaee/5/tutorial/doc/bnafe.html

2. https://www.studytonight.com/servlet/

3. https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html

Servlets



132

Object Oriented
Concepts

and Programming – II
(Advance Java)

UNIT STRUCTURE

13.0 Learning Objectives

13.1 Introduction

13.2 Life Cycle of Struts Request and it's Component Class

13.3 Struts Action Classes

13.4 Struts Model Components

13.5 The Struts View Components

13.6 Configuring the web.xml file for Struts

13.7 Writing and Executing Struts Application

13.8 Let Us Sum Up

13.9 Answer for Check Your Progress

13.10 Glossary

13.11 Assignment

13.12 Activities

13.13 Case Study

13.14 Further Readings

13.0  Learning Objectives :

After learning this Unit, you will be:

• Able to define Struts Action Classes

• Able to explain Struts Model Components

• Able to explain The Struts View Components

13.1  Introduction :

Today's world is "digital world" where people are highly dependent on
the internet and web applications. Millions of web applications and thousands
of technologies are available in the market for enterprise application development.
All of these web technologies are categorized as Model1, Model2, MVC and
much more. Strut is MVC Model2 architecture based framework. Throughout
this chapter we have discussed all concepts with respect to struts 2.

MVC means Model-View-Controller where model is responsible for
business logic, view handles the user interaction with application and controller
decides the flow of application.

Struts is an application development framework that is designed for and
used with the popular J2EE (Java 2, Enterprise Edition) platform. It cuts time
out of the development process and makes developers more productive by
providing them a series of tools and components to build applications with.
It is non-proprietary and works with virtually any J2EE-compliant application
server. Struts falls under the Jakarta subproject of the Apache Software Foundation

INTRODUCTION TO STRUTS
Unit

13



133

and comes with an Open Source license (meaning it has no cost and its users
have free access to all its internal source code).

ActionServlet is the class that plays role of controller in Struts. Whenever
the user sends a request to server it passes via ActionServlet class. It then
decides the necessary model and sends this request to the respective model.
Two more files support the execution of application: web.xml and struts-
config.xml files. Web.xml file is deployment descriptor which keeps all the
application related settings while struts-config.xml file maps a request to Action
classes and ActionForms (a simple POJO which contains properties related to
UI). Model is handled by various Java technologies like EJB, JDBC, Hibernate,
Spring etc. It mainly concentrates on the business logic and semantics of the
application. While view can be developed using JSP, Velocity Templates, JSTL,
OGNL, XSLT and other HTML technologies. View is responsible for getting
the input from the user and rendering the result of that input sent back to
user.

13.2  Life Cycle of Struts Request and it's Controller Components :

Life Cycle of Struts 2 consists of :

1. When a request comes web container maps the request in the web.xml
and calls the controller (FilterDispatcher).

2. FilterDispatcher calls the ActionMapper to find an Action to be invoked.

3. FilterDispatcher calls the ActionProxy.

4. ActionProxy reads the information of action and interceptor stack from
configuration file using configuration manager (struts.xml) and invoke
the ActionInvocation.

5. ActionInvocation calls the all interceptors one by one and then invoke
the action to generate the result.

6. action is executed ActionInvocation again calls the all interceptors in
reverse order.

7. Control is returned to the FilterDispatcher.

8. Result is sent to the client.

The controller is responsible for intercepting and translating user input
into actions to be performed by the model. The controller is responsible for
selecting the next view based on user input and the outcome of model operations.
The Controller receives the request from the browser, invoke a business
operation and coordinating the view to return to the client. The controller is
implemented by a java servlet, this servlet is centralized point of control for
the web application. In struts framework the controller responsibilities are
implemented by several different components like :

1. The ActionServlet Class

2. The RequestProcessor Class

3. The Action Class

Controller components coordinate activities in the application. This may
mean taking data from the user and updating a database through a Model
component, or it may mean detecting an error condition with a back-end system
and directing the user through special error processing. Controller components

Introduction to Struts



134

Object Oriented
Concepts

and Programming – II
(Advance Java)

accept data from the users, decide which Model components need to be updated,
and then decide which View component needs to be called to display the results.

Fig 2.1 Controller component

One of the major contributions of Controller components is that they
allow the developer to remove much of the error handling logic from the JSP
pages in their application. This can significantly simplify the logic in the pages
and make them easier to maintain.

Controller maps the user request to specific action. In Struts 2;
StrutsPrepareAndExecuteFilter acts as Controller. Controller receives the user
request and decides which action to be invoked. It creates an instance of this
action; invoke interceptors (if any). Then it calls invoke() method of
ActionInvocations that executes the action. ActionInvocation then calls the
intercept() method. The intercept() method of ActionInvocation class in turn
calls the invoke() method of the ActionInvocation till all the interceptors are
invoked. Interceptor are invoked before and after the action is executed.
Interceptors are executed in the order they are defined in the stack. Finally
action itself is invoked and the result is generated. All the interceptors are
then invoked again but this time in the reverse order.

In the above figure we see that when user sends a query with a browser,
then the controller (servlet) gets and processes such query and decides which
action will be called or which view component this query should be forward.
Once the controller calls an action, action can read data from database and
shows data to the model component, java beans. The action returns next step
to controller which further will check what kind is the next step. (JSP View,
next action, …) and forwards to it.

View displays the result. View can be either JSP page, Velocity templates,
XSLT pages, Freemaker or some other presentation-layer technology. Object-
Graph Navigation Language (OGNL) is used to reference and manipulate data
on the ValueStack.

 Check Your Progress – 1 :
1. Struts supports which of these model components ?

a. JavaBeans b. EJB c. CORBA

d. JDO e. All of these



135

2. ActionServlet, RequestProcessor and Action classes are the components
of

a. View b. Model c. Controller d. Deployment

13.3  Struts Action Classes :

It is seen that actions are the main part of Struts2 framework since they
are for any Model View Controller structure. Every URL is mapped to particular
action that shows processing logic required to service request from user. In
this, action also serves in two capacities:

In any struts 2 application, there is an action class associated with
different type of client action. There are four ways through which we can create
Struts 2 Action classes.

1. Simple Action Class:

We can use any normal java class as Struts 2 action class, the only
requirement is that it should have execute() method returning String.

2. Using Struts 2 Annotations:

Struts 2 supports annotation based configuration and we can use it to
create action classes.

3. Extending ActionSupport Class:

ActionSupport class is the default implementation of Action interface and
it also implements interfaces related to Validation and i18n support. ActionSupport
class implements Action, Validateable, ValidationAware, TextProvider and
LocaleProvider interfaces.

4. Implementing Action interface:

We can implement com.opensymphony.xwork2.Action interface also to
create action classes. Action interface has a single method execute() that we
need to implement. The only benefit of using Action interface is that it contains
some constants that we can use for result pages, these constants are SUCCESS,
ERROR, NONE, INPUT and LOGIN. We can rewrite above HomeAction class
by implementing Action interface as shown below.

public interface Action

{

public static final String SUCCESS = "success";

public static final String NONE = "none";

public static final String ERROR = "error";

public static final String INPUT = "input";

public static final String LOGIN = "login";

public String execute() throws Exception;

}

Action interface contains only one method execute that should be
implemented overridden by the action class even if we are not forced. In the
action method shown below with HelloTestAction, we can see that :

Introduction to Struts



136

Object Oriented
Concepts

and Programming – II
(Advance Java)

public class HelloTestAction

{

private String userName;

public String execute() throws Exception {

return "success";

}

public String getuserName () {

return userName;

}

public void setuserName (String name) {

userName = name;

}

}

To explain point used by action method to controls the view, the following
changes are made to carry out method and extend the class ActionSupport as
follows :

import com.opensymphony.xwork2.ActionSupport;

public class HelloTestAction extends ActionSupport

{

private String userName;

public String execute() throws Exception {

if ("BAOU".equals(userName)) {

return SUCCESS;

} else {

return ERROR;

}

}

public String getuserName() {

return userName;

}

public void setuserName(String name) {

userName = name;

}

}

Here we see that there appears some logic in execute method which is
the name attribute that equals to string BAOU what we return SUCCESS as
output, and if not, then it will return ERROR.



137

 Check Your Progress – 2 :
1. What does validate() method of ActionForm returns ?

a. ActionErrors b. ActionForward

c. ActionMapping d. ActionError

2. Which of the following methods is overridden by Action class ?

a. run() b. destroy( ) c. execute() d. service()

13.4  Struts Model Components :

The model shows business data for an application that closely resembles
real-world entities and business processes for organization. The model components
of an application possibly are the most expensive software artefacts' to an
organization. The model take account of business entities in addition to the
rules that preside over access to furthermore modification of the data. It's vital
that this be kept in a single location in order to maintain valid data integrity,
reduce redundancy, and increase reusability.

The Struts Framework has no built-in support for the Model layer. The
model should remain independent of the type of client that's being used to
access the business objects and their associated rules.

In struts, model describes an application's data having logic for accessing
and manipulating data. In this, any data which is part of persistent state of
the application be kept inside the model objects. The business objects update
the application state. Action Form bean represents the Model state at a session
or request level, and not at a persistent level. It is noted that model services
are accessed by controller for querying or effecting changes in model state.
The model notifies view when a state change occurs in the model. The JSP
file reads information from the ActionForm bean using JSP tags.

The Struts structure doen't offer much in way of creating model components.
It is the Enterprise JavaBeans (EJB), Java Data Objects(JDO) and JavaBeans
which uses as model. Struts structure doesn't restrict to single particular model
implementation.

Struts framework helps for developing the web based applications. Struts
java framework is one of the most popular framework for web based applications.
Java servlet, JavaBeans, ResourceBundles and XML etc are the Jakarta commons
packages used for accomplishing this purpose. This is an open source
implementation of MVC pattern for the development of web based application.
The features of this type of framework are, more robust or reliable architecture
Helps for development of application of any size Easy to design Scalable
Reliable web application with java.

Fig 2.2 Framework

Introduction to Struts



138

Object Oriented
Concepts

and Programming – II
(Advance Java)

It is noted that MVC implementation by action, result and Filter Dispatcher.
Here the controller's work is to map user request to required action which is
done by Filter Dispatcher. It includes data and business logic and model is
worked out using action component. The presentation component of the MVC
pattern is view and view is implemented using JSP, Velocity Template, Freemaker
or some other presentation-layer technology.

 Check Your Progress – 3 :
1. What is return type of  execute() method ?

a. String b. int c. ActionForward

d. ActionMapping e. ActionForm

13.5  The Struts View Components :

We see that view is responsible for rendering state of model. In this,
the presentation semantics are summarize inside the view, as a result of which
the model data can be adapted for various different kinds of clients. The view
modifies itself when change in model is communicated to view. A view forwards
user input to the controller. The view is simply as JSP or HTML file. There
is no flow logic, no business logic, and no model information -- just tags.
Tags are one of the things that make Struts unique compared to other frameworks
like Velocity. The view components typically employed in a Struts application
are:

• HTML

• Data transfer objects

• Struts ActionForms

• JavaServer Pages

• Custom tags

• Java resource bundles

Struts ActionForm

Struts ActionForm objects are applied in structure so as to pass client
input data back and forth among user and business layer. The structure directly
will collect the input from request and pass it to Action with the help of form
bean, further which pass on to business layer. To keep the presentation layer
decoupled from the business layer, we should not pass the ActionForm itself
to the business layer; rather, create the appropriate DTO using the data from
the ActionForm.

• Java class org.apache.struts.action.ActionForm, which we subclass to
create a form bean that is used in two ways at run time:

- When a JSP page prepares the related HTML form for display,
the JSP page accesses the bean, which holds values to be placed
into the form. Those values are provided from business logic or
from previous user input.

- When user input is returned from a web browser, the bean validates
and holds that input either for use by business logic or (if validation
failed) for subsequent redisplay.

• Numerous custom JSP tags that are simple to use but are powerful in
the sense that they hide information. Page Designer does not need to



139

know much about form beans, for example, beyond the bean names and
the names of each field in a given bean.

• It maintains the session state for web application.

• The ActionForm object is populates automatically on the server side when
data is entered on a client side.

There are three main components that involve in handling form in Struts
application: Struts form, JavaBean and Action class. The relationship between
these components is that fields in the form will be mapped to properties of
a JavaBean which is an attribute of the action class that handles the form
submission. In Struts, we don't need to read values of the form's fields through
a HTTP request object like in traditional JSP/Servlet. Instead, Struts will
automatically fetch values of form's fields into the mapped JavaBean object.
Then in the action class, we can access the form's fields just like accessing
JavaBean properties.

 Check Your Progress – 4 :
1. In interceptor which is used to display the intermediate result ?

a. Params Interceptor b. Custom Interceptor

c. ExecAndWait Interceptor d. Prepare Interceptor

13.6  Configuring the web.xml file for Struts :

The web.xml configuration file is a J2EE configuration file that determines
how elements of the HTTP request are processed by the servlet container. It
is not strictly a Struts2 configuration file, but it is a file that needs to be
configured for Struts2 to work.

The web.xml web application descriptor file represents the core of the
Java web application, so it is appropriate that it is also part of the core of
the Struts framework. In the web.xml file, Struts defines its FilterDispatcher,
the Servlet Filter class that initializes the Struts framework and handles all
requests. This filter can contain initialization parameters that affect what, if
any, additional configuration files are loaded and how the framework should
behave.

<?xml version = "1.0" Encoding = "UTF-8"?>

<web-app xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xmlns = "http://java.sun.com/xml/ns/javaee"

xmlns:web = "http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

id = "WebApp_ID" version = "3.0">

<display-name>Learning Struts 2</display-name>

<welcome-file-list>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

Introduction to Struts



140

Object Oriented
Concepts

and Programming – II
(Advance Java)

<filter>

<filter-name>struts2</filter-name>

<filter-class>

org.apache.struts2.dispatcher.FilterDispatcher

</filter-class>

</filter>

<filter-mapping>

      <filter-name>struts2</filter-name>

      <url-pattern>/*</url-pattern>

</filter-mapping>

</web-app>

This sets up a filter that sends every URL to the Struts framework. This
is how Struts "sits between" the server and our code. Now when the server
receives a request, it will send that request to Struts, and Struts will then send
it to our action classes.

The struts.xml file contains the configuration information that we will
be modifying as actions are developed. This file can be used to override default
settings for an application, for example struts.devMode = false and other settings
which are defined in property file. This file can be created under the folder
WEB- INF/classes.

 Check Your Progress – 5 :
1. Struts combines which of these in to a unified Framework ?

a. Java Servlets

b. Java Server pages

c. Custom tags and Message Resources

d. All of the above

13.7  Writing and Executing Struts Application :

Struts application is a normal web application that carries Struts libraries
and configuration files. Such application can be created in similar manner as
we creates any other web application.

Example :

First, Create a Java package called "example" under C:\tomcat8\webapps\
Login\WEB-INF\ classes directory.

Then, Copy the following important jar files from struts-2.x.x\lib directory
to project's Login\WEB-INF\lib directory:

o commons-fileupload-1.2.2.jar

o commons-io-2.0.1.jar

o commons-lang3-3.1.jar

o commons-logging-1.1.1.jar

o commons-logging-api-1.1.jar

o freemarker-2.3.19.jar



141

o javassist-3.11.0.GA.jar

o ognl-3.0.6.jar

o struts2-core-2.3.8.jar

o xwork-core-2.3.8.jar

These are core Struts libraries which are necessary for running our
application.

Now, Create index.jsp file under project's Login directory with the
following code:

<%@ page language="java" contentType="text/html; charset=US-ASCII"

pageEncoding="US-ASCII"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//
EN" "http://www.w3.org/TR/html4/loose.dtd">

<%-- Using Struts2 Tags in JSP --%>

<%@ taglib uri="/struts-tags" prefix="s"%>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">

<title>Login Page</title>

</head>

<body>

<h3>Welcome User, please login below</h3>

<s:form action="login">

<s:textfield name="name" label="User Name"></s:textfield>

<s:password name="pwd" label="Password"></s:password>

<s:submit value="Login"></s:submit>

</s:form>

</body>

</html>

The Struts tags are imported by the following taglib directive:

<%@ taglib uri="/struts-tags" prefix="s"%>

On submitting this form, the action login will be invoked. We will create
the action class right now, and configure it in struts.xml file later.

Under package example, create a class called Login.java with the following
code:

package example;

import com.opensymphony.xwork2.Action;

public class Login implements Action

{

@Override

public String execute() throws Exception

Introduction to Struts



142

Object Oriented
Concepts

and Programming – II
(Advance Java)

{

if("vinod".equals(getName()) && "admin".equals(getPwd()))

return "SUCCESS";

else

return "ERROR";

}

//Java Bean to hold the form parameters

private String name;

private String pwd;

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public String getPwd() {

return pwd;

}

public void setPwd(String pwd) {

this.pwd = pwd;

}

}

In this action class, we declare three private variables name, pwd and
its corresponding getters and setters. The framework we will use the setters
to fetch values from the input page, and use the getters to print values in result
page.

The method execute() is the action method which will be invoked by
the framework when the action is called. The method to be invoked will be
configured in struts.xml file. This method simply checks login details and
returns a String which is logical name of a view. The framework will look
for a matching view file and send it to the client. The method returns a String
constant named SUCCESS which equals to the logical name "success" and
ERROR means "fail".

The mapping of logical view names to physical view files for action
classes are configured in struts.xml file.

Now, create welcome.jsp file under project's Login directory with the
following code :

<%@ page language="java" contentType="text/html; charset=US-ASCII"

pageEncoding="US-ASCII"%>

<%@ taglib uri="/struts-tags" prefix="s"%>



143

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//
EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">

<title>Welcome Page</title>

</head>

<body>

<h3>Welcome <s:property value="name"></s:property></h3>

</body>

</html>

welcome.jsp page will display the welcome message describing User
Name using Struts' <s:property> tag.

Now, create error.jsp file under project's Login directory with the following
code :

<%@ page language="java" contentType="text/html; charset=US-ASCII"

pageEncoding="US-ASCII"%>

<%@ taglib uri="/struts-tags" prefix="s"%>

 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional/
/EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">

<title>Error Page</title>

</head>

<body>

<h4>User Name or Password is wrong</h4>

<s:include value="index.jsp"></s:include>

</body>

</html>

error.jsp page will display the "User Name or Password is wrong"
message and redirects user to index.jsp for re-login using struts <s:include>
tag.

Up to this, we have created the input page, response page, the action
class and the result page, but they haven't been connected. So we are going
to connect these components together in struts.xml configuration file.

Create struts.xml file under Login\WEB-INF\classes directory with the
following content:

Introduction to Struts



144

Object Oriented
Concepts

and Programming – II
(Advance Java)

The <package> element defines a logical group of a Struts application.
It extends the struts-default package which is built into Struts core to provide
some defaults from which other packages can inherit.

The <action>element connects an action class with its views. We specify
some attributes:

• name: name of the action. This name must match value of the action's
attribute of <form> tag.

• class: fully-qualified name of the action class.

• method: name of a method in the action class (action method). The
specified method will be executed by the framework when the action
is called.

The <result> elements specify mapping between logical view names
(returned from the action method) to physical view files. The framework picks
up a view based on the String returned from the action method, which should
match with the name attribute of a <result>element. Here we defined two
mappings:

• "success" maps to "/welcome.jsp" file: The action method execute()
returns "SUCCESS", so the welcome.jsp file will be picked up and sent
to the client.

• "error" maps to "/error.jsp" file: The action method execute() returns
"ERROR", so the error.jsp file will be picked up and user will be
redirected to re-login with proper message.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE struts PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"

"http://struts.apache.org/dtds/struts-2.3.dtd">

<struts>

<package name="default" extends="struts-default">

<action name="login" class="example.Login">

<result name="SUCCESS">welcome.jsp</result>

<result name="ERROR">error.jsp</result>

</action>

</package>

</struts>

Now, configure dispatcher filter for Struts in web.xml as follows:

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_9" version="2.4" xmlns="http://java.sun.com/xml/
ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/
j2ee/web-app_2_4.xsd">



145

<display-name> BAOU Login Page</display-name>

<filter>

<filter-name>struts2</filter-name>

<filter-class>org.apache.struts2.dispatcher.FilterDispatcher</filter-
class>

</filter>

<filter-mapping>

<filter-name>struts2</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

</web-app>

In the <filter-mapping> element, we specify that all URLs (pattern: /
*) will be handled by the Struts dispatcher filter.

Now, Start the tomcat server and open a web browser. Type the following
URL into its address bar:

http://localhost:8080/html

It will display following screen with list of applications :

Now, Click on Login Application on the left pane. It will display index.jsp
page as shown below.

Introduction to Struts



146

Object Oriented
Concepts

and Programming – II
(Advance Java)

Now, First Provide invalid username, password and click on login button
as shown below :

With wrong credentials it will redirect to index.jsp with proper message
as shown below :

Now, Provide correct credentials and check the login page as shown
below. It displays welcome message with user name.



147

Notice that the URL changes to the action in the address bar. So, this
way we can build, deploy and test other Struts application.

 Check Your Progress – 6 :
1. Which of the following delegates the request handling to the

RequestProcessor instance ?

a. ActionServlet b. Action class

c. Deployment descriptor d. None of the above

13.8  Let Us Sum Up :

While studying this unit, we have learnt that Struts is an application
development framework that is designed for and used with the popular J2EE
(Java 2, Enterprise Edition) platform.

The controller is responsible for intercepting and translating user input
into actions to be performed by the model.

Controller components coordinate activities in the application. This may
mean taking data from the user and updating a database through a Model
component, or it may mean detecting an error condition with a back-end system
and directing the user through special error processing.

Struts application is a normal web application that carries Struts libraries
and configuration files. Such application can be created in similar manner as
you create any other web application in IDE with the help of New Web
Application wizard where extra step shows Struts libraries along with
configuration files which can be added in an application.

13.9  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (e),  2. (c)

 Check Your Progress 2 :

1. (b),  2. (c)

 Check Your Progress 3 :

1. (c)

 Check Your Progress 4 :

1. (c)

 Check Your Progress 5 :

1. (a)

 Check Your Progress 6 :

1. (d)

13.10  Glossary :

1. Code : A number that uniquely identifies a catalog entry in the WebSphere
Commerce system.

2. Data bean :  A type of bean that is placed in a JSP file.

Introduction to Struts



148

Object Oriented
Concepts

and Programming – II
(Advance Java)

3. POJO : In struts 2, action class is POJO (Plain Old Java Object). POJO
means we are not forced to implement any interface or extend any class.

4. OGNL :  It stands for Object Graph Navigation Language.

13.11  Assignment :

1. Discuss various features of Struts.

2. Write short note on Struts Action Classes.

3. Write advantages and disadvantages of Struts 2.

13.12  Activities :

Collect some information on cconfiguring web.xml file for Struts.

13.13  Case Study :

Generalised the basic of Struts View Components.

13.14  Further Readings :

1. https://struts.apache.org/

2. https://www.javatpoint.com/struts-2-tutorial

3. https://www.tutorialspoint.com/struts_2/index.htm



149

UNIT STRUCTURE

14.0 Learning Objectives

14.1 Introduction

14.2 JSP Life Cycle

14.3 JSP Architecture

14.4 JSP Basic Building Blocks

14.5 JSP Implicit Objects

14.6 Standard Actions

14.7 JSP Tag Libraries

14.8 Let Us Sum Up

14.9 Answer for Check Your Progress

14.10 Glossary

14.11 Assignment

14.12 Activities

14.13 Case Study

14.14 Further Readings

14.0  Learning Objectives :

After learning this Unit, you will be:

• Define JSP Architecture

• Write JSP Syntax

• Define JSP Architecture

• Use JSP Implicit Objects

• Use JSTL functions

14.1  Introduction :

JSP is a server side technology which helps to create a webpage dynamically
using java as the programming language. JSP is a specification from Sun
Microsystems. It is an extension to Servlet API. It controls content or appearance
of Web pages through application of servlets, which are small programs that
are specified in Web page and run on Web server to alter Web page before
it sent to user who requested it.

JSP enables developers to write HTML pages containing tags, inside
which we can include powerful Java programs. Using JSP, we can easily
separate Presentation and Business logic. Both the layers can easily interact
over HTTP requests.

JSP (JAVA SERVER PAGES)
Unit

14



150

Object Oriented
Concepts

and Programming – II
(Advance Java)

14.2  JSP Life Cycle :

JSP files are saved with .jsp extension which lets the server identify that
this is a JSP page and needs to go through JSP life cycle stages. When the
client makes a request to Server, it first goes to container. Then container checks
whether the servlet class is older than jsp page (To check whether the JSP
file is modified). If it is then container does the translation again (converts
JSP to Servlet) otherwise it skips the translation phase (i.e. it doesn't do the
translation to improve the performance as this phase takes time and to repeat
this step every time is not time feasible).

Life Cycle of JSP page consists of :

1. When container receives request from client, it does translation only when
servlet class is older than JSP page otherwise it skips this phase.

2. Then the container compiles the corresponding servlet program and loads
the  corresponding servlet class. After it instantiates the servlet class and
Calls the jspInit() method to initialize the servlet instance (Jsp container
will do this job only when the instance of servlet file is not running
or if it is older than the jsp file.)

3. A new thread is then gets created, which invokes the_jspService() method,
with a request (HttpServletRequest) and response (HttpServletRespnse)
objects as parameters.

4. Invokes the jspDestroy() method to destroy the instance of the servlet
class.

 Check Your Progress – 1 :
1. Which one is the correct order of phases in JSP life cycle ?

a. Initialization, Cleanup, Compilation, Execution

b. Initialization, Compilation, Cleanup, Execution

c. Compilation, Initialization, Execution, Cleanup

d. Cleanup, Compilation, Initialization, Execution

2. Which of the following step is taken by JSP container during Compilation
phase ?

a. Parsing the JSP. b. Turning the JSP into a servlet.

c. Compiling the servlet. d. All of the above.

14.3  JSP Architecture :

Depending on the location of request processing, Servlet OR JSP carries
two architectures which are:

Model 1 Architecture:

In this Model, JSP plays a key role and it is responsible for of processing
the request made by client. Client (Web browser) makes a request, JSP then
creates a bean object which then fulfills the request and pass the response to
JSP. JSP then sends the response back to client. Unlike Model2 architecture
in this Model, most of the processing is done by JSP itself.



151

Fig 3.1 Architecture Model 1

Advantage :

o This model is Easy and Quick to develop web application.

Disadvantage :

o Decentralized navigation control: As every page contains the logic to
determine the next page. If JSP page name is changed that is referred
by other pages, we need to change it in all the pages that leads to the
maintenance problem.

o Time consuming: We need to spend more time to develop custom tags
in JSP. So that we don't need to use scriptlet tag.

o Hard to extend: It is better for small applications but not for large
applications.

Model 2 Architecture :

The JSP Model 2 architecture is based on the popular MVC architecture.
In this Model Servlet plays a major role and it is responsible for processing
the client's(web browser) request. Presentation part (GUI part) will be handled
by JSP and it performs this with the help of bean as shown in below figure.
The servlet acts as controller and in charge of request processing. It creates
the bean objects if required by the jsp page and calls the respective jsp page.
The jsp handles the presentation part by using the bean object. In this Model,
JSP doesn't do any processing, Servlet creates the bean Object and calls the
JSP program as per the request made by client.

Fig 3.2 Architecture Model 2

JSP
(Java Server Pages)



152

Object Oriented
Concepts

and Programming – II
(Advance Java)

Advantage :

o Here, the navigation control is centralized, only controller contains the
logic to determine the next page.

o It is easy to maintain

o It is easy to extend

o It is easy to test

Disadvantage :

o We need to write the controller code self. Suppose, if we change the
controller code, we need to recompile the class and redeploy the application.

 Check Your Progress – 2 :
1. For what JSP is used ?

a. Server-side dynamic content generation

b. Client Side language for validation

c. None of the above

14.4  JSP Basic Building Block :

Any JSP page generally consists of following components:

1. Declaration

A declaration tag is a piece of Java code for declaring variables, methods
and classes. If we declare a variable or method inside declaration tag it means
that the declaration is made inside the servlet class but outside the service
method.

We can declare a static member, an instance variable (can declare a
number or string) and methods inside the declaration tag.

Syntax of declaration tag:

<%!  Declaration %>

E.g.

<%! String name="Dimple" %>

<%! int age=30; %>

In above code we have declared two variables inside declaration tag.

In below code we have declared a method named sum.

<%!

 int sum(int num1, int num2, int num3)

{

 return num1+num2+num3;

}

%>

2. Scriptlet

Scriptlets are nothing but java code enclosed within <% and %> tags.
JSP container moves statements in _jspservice() method while generating servlet
from jsp. For each request from the client, service method of the JSP gets
invoked hence the code inside the Scriptlet executes for every request. A
Scriptlet contains java code that is executed every time JSP is invoked.



153

Syntax of Scriptlet tag:

<% java code %>

In below code, we are taking Scriptlet tags which enclose java code.

<%    int num1=20;

   int num2=30;

   int sum = num1+num2;

   out.println("Scriplet Number is " +sum);

%>

3. Expression

Expression tag evaluates the expression placed in it, converts the result
into String and send the result back to the client through response object.
Generally it writes the result to the client i.e. browser.

Syntax of expression tag:

<%= expression %>

E.g.

<%

int a=30;

int b=40;

int c=50;

%>

<%= a+b+c %>

4. Comment

Comments are the one when JSP container wants to ignore certain texts
and statements. When we want to hide certain content, then we can add that
to the comments section.

Syntax:

<% -- JSP Comments %>

 Check Your Progress – 3 :
1. Which of the scripting of JSP not putting content into service method

of the converted servlet ?

a. Declarations  b. Scriptlets

c. Expressions d. None of the above

14.5  JSP Implicit Objects :

JSP provide access to some implicit object which represent some commonly
used objects for servlets that JSP page developers might need to use. For
example we can retrieve HTML form parameter data by using request variable,
which represent the HttpServletRequest object. There are total 9 implicit objects
available in JSP. Following table shows the JSP implicit object:

JSP
(Java Server Pages)



154

Object Oriented
Concepts

and Programming – II
(Advance Java)

Implicit Object Description

request The HttpServletRequest object associated with the
request. It belongs to javax.servlet.http.HttpServlet
Request.

Example:

<strong>Request User-Agent</strong>:

 <%=request.getHeader("User-Agent") %>

response The HttpServletRequest object associated with the
response that is sent back to the browser. It belongs
to javax.servlet.http.HttpServletResponse.

Example:

<% response.setContentType("text/html"); %>

<% response.addCookie(new Cookie("Name",
"BAOU")); %>

Out The JspWriter object associated with the output stream
of the response. Belongs to package javax.servlet.jsp.
jspwriter.

Example:

<% int num1=30; int num2=50;

out.println("num1 is: " +num1);

out.println("num2 is: "+num2);

%>

session The HttpSession object associated with the session
for the given user of request. It belongs to
javax.servlet.http.HttpSession.

Example:

<% session.setAttribute("user", "BAOU"); %>

application This is used for getting application-wide initialization
parameters and to maintain useful data across whole
JSP application. The ServletContext object for the
web application. Belongs to package Javax.servlet.
ServletContext.

Example:

<% application.getContextPath(); %>

<strong>User context param value </strong>
:<%=application.getInitParameter("UserName") %>

Config The ServletConfig object associated with the servlet
for current JSP page. This is a Servlet configuration
object and mainly used for accessing getting
configuration information such as servlet context,
servlet name, configuration parameters etc. Belongs
to package Javax.servlet.ServletConfig.



155

Example:

<% String servletName = config.getServletName();

out.println("Servlet Name is: " + servletName); %>

pageContext The PageContext object that encapsulates the
enviroment of a single request for this current JSP
page. It is used for accessing page, request, application
and session attributes. Belongs to package
java.servlet.jsp.PageContext.

Example:

<% pageContext.setAttribute("userName", "BAOU",
pageContext.PAGE_SCOPE);

String name = (String) pageContext.getAttribute
("userName");

out.println("User name is: " + name);

%>

Page The page variable is equivalent to this variable of
Java programming language.

Example:

<% String pageName = page.toString();

out.println("Page Name is: " + pageName);%>

exception The exception object represents the Throwable object
that was thrown by some other JSP page.

Example:

<% int[] baou={1,2,3,4};

out.println(baou[5]); %>

<%= exception %>

It has an array of numbers, i.e., baou with four elements. We are trying
to print the fifth element of the array from baou, which is not declared in
the array list. So it is used to get exception object of the jsp. Here, We will
get ArrayIndexOfBoundsException in the array.

 Check Your Progress – 4 :
1. How many jsp implicit objects are there and these objects are created

by the web container that are available to all the jsp pages?

a. 8 b. 9 c. 10 d. 7

14.6  Standard Actions :

JSP actions use the construct in XML syntax to control the behavior
of the servlet engine. We can dynamically insert a file, reuse the beans
components, forward user to another page, etc. through JSP Actions like include
and forward. Unlike directives, actions are re-evaluated each time the page is
accessed. These tags are used to remove or eliminate scriptlet code from our
JSP page because scriplet code are technically not recommended nowadays.
It's considered to be bad practice to put java code directly inside your JSP
page.

JSP
(Java Server Pages)



156

Object Oriented
Concepts

and Programming – II
(Advance Java)

Standard tags begin with the jsp: prefix. There are many JSP Standard
Action tags which are used to perform some specific task.

Syntax :

<jsp:action_name attribute="value" />

The following are some JSP Standard Action Tags available :

Action Tag Description

jsp:forward It forwards the request to another page.

Syntax of <jsp:forward> :

<jsp:forward page="URL of the another static, JSP
OR Servlet page" />

jsp:useBean It instantiates a JavaBean. This action is useful when
we want to use Beans in a JSP page, through this
tag we can easily invoke a bean.

Syntax of <jsp:useBean>:

<jsp: useBean id="unique_name_of_bean"
class="package_name.class_name" />

Once Bean class is instantiated using above statement,
we have to use jsp:setProperty and jsp:getProperty
actions to use the bean's parameters.

jsp:getProperty It is used to retrieve or fetch the value of Bean's
property.

syntax of <jsp:getProperty>:

<jsp: useBean id="unique_name_of_bean"
class="package_name.class_name" />

....

<jsp:getProperty name="unique_name_of_bean"
property="property_name" />

jsp:setProperty It store data in property of any JavaBeans instance.
This action tag is used to set the property of a Bean,
while using this action tag, we may need to specify
the Bean's unique name (it is nothing but the id value
of useBean action tag).

syntax of <jsp:setProperty>:

<jsp: useBean id="unique_name_of_bean"
class="package_name.class_name" />

....

<jsp:setProperty name="unique_name_of_bean"
property="property_name" />

jsp:include It includes the runtime response of a JSP page into
the current page. In <jsp:include> the file is being
included during request processing.

Syntax of <jsp:include> :

<jsp:include page="page URL"  flush="Boolean
Value" />



157

jsp:plugin It generates client browser-specific construct that
makes an OBJECT or EMBED tag for the Java
Applets. It is used to introduce Java components into
jsp, i.e., the java components can be either an applet
or bean.

It detects the browser and adds <object> or <embed>
tags into the file

Syntax:

<jsp:plugin type="applet/bean" code="objectcode"
codebase="objectcodebase">

jsp:fallback It supplies alternate text if java plugin is unavailable
on the client. You can print a message using this,
if the included jsp plugin is not loaded.

jsp:element Defines XML elements dynamically

jsp:attribute It defines dynamically defined XML element's
attribute. This tag is used to define the XML
dynamically i.e. the elements can be generated during
request time than compilation time

It actually defines the attribute of XML which will
be generated dynamically.

Syntax:

<jsp:attribute></jsp:attribute>

jsp:body Used within standard or custom tags to supply the
tag body. This tag is used to define the XML
dynamically i.e., the elements can generate during
request time than compilation time.

It actually defines the XML, which is generated
dynamically element body.

Syntax:

<jsp:body></jsp:body>

jsp:param Adds parameters to the request object.

Syntax of <jsp:param>:

<jsp: param name="param_name" value="value_
of_parameter" />

jsp:text It is used to template text in JSP pages. Its body does
not contain any other elements, and it contains only
text and EL expressions.

Syntax:

<jsp:text>Welcome Message</jsp:text>

JSP
(Java Server Pages)



158

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Check Your Progress – 5 :
1. Which tag should be used to pass information from JSP to included JSP ?

a. Using <%jsp:page> tag b. Using <%jsp:param> tag

c. Using <%jsp:import> tag d. Using <%jsp:useBean> tag

2. Which is mandatory in <jsp:useBean /> tag ?

a. id, class b. id, type

c. type, property d. type,id

14.7  JSP Tag Libraries :

JSTL stands for Java server pages standard tag library, and it is a
collection of custom JSP tag libraries that provide common web development
functionality.

The JSTL contains several tags that can remove scriptlet code from a
JSP page by providing some ready to use, already implemented common
functionalities.

JSTL is divided into 5 groups :

1. JSTL Core : JSTL Core provides several core tags such as if, forEach,
import, out etc to support some basic scripting task. Url to include JSTL
Core Tag inside JSP page is :

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

2. JSTL Formatting : JSTL Formatting library provides tags to format text,
date, number for Internationalised web sites. Url to include JSTL Formatting
Tags inside JSP page is:

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

3. JSTL sql : JSTL SQL library provides support for Relational Database
Connection and tags to perform operations like insert, delete, update,
select etc on SQL databases. Url to include JSTL SQL Tag inside JSP
page is:

<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>

4. JSTL XML : JSTL XML library provides support for XML processing.
It provides flow control, transformation features etc. Url to include JSTL
XML Tag inside JSP page is:

<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

5. JSTL functions : JSTL functions library provides support for string
manipulation. Url to include JSTL Function Tag inside JSP page is:

<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

JSTL Core

The core tags are most frequently used tags in JSP. They provide support
for

- Iteration

- Conditional logic

- Catch exception

- url forward

- Redirect, etc.



159

To use core tags we need to define tag library first and below is the
syntax to include a tag library.

Syntax :

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

Example :

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<html>

<head>

<title>Tag Example</title>

</head>

<body>

<c:if test="${param.name == 'baou'}">

<p>Welcome to ${param.name} </p>

</c:if>

<c:out value="${param.name}" default="baou" />

<c:forEach var="message" items="${errorMsgs}" >

<li>${message}</li>

</c:forEach>

</body>

</html>

 Check Your Progress – 6 :
1. What JSTL stands for ?

a. JavaServer Pages Standard Tag Library

b. JSP Tag Library

c. Java Standard Tag Library

d. None of the above.

2. Which of the following is an advantage of the statement, Separation of
business logic from JSP ?

a. Custom Tags in JSP b. JSP Standard Tag Library

c. All the above d. None of the above

14.8  Let Us Sum Up :

In this unit we have learnt that JSP is a server side technology which
helps to create a webpage dynamically using java as the programming language.

JSP is Java Server Pages while ASP is Active Server Pages which are
two commonly used server side scripting languages used today in web
development.

To explain the syntax of JSP, we have to first start with the Scriptlet.
A scriptlet contain any number of JAVA language statements, variable or method
declarations, or expressions which is valid in page scripting language.

JSP
(Java Server Pages)



160

Object Oriented
Concepts

and Programming – II
(Advance Java)

JSP provides Standard Action tags which are applied inside JSP pages.
Such tags are used to remove or eliminate scriptlet code from JSP page as
scriplet code are technically not suggested these days.

14.9  Answer for Check Your Progress :

 Check Your Progress 1 :

1. (c),  2. (c)

 Check Your Progress 2 :

1. (a)

 Check Your Progress 3 :

1. (c)

 Check Your Progress 4 :

1. (b)

 Check Your Progress 5 :

1. (b),  2. (a)

 Check Your Progress 6 :

1. (a),  2. (a)

14.10  Glossary :

1. JSP : A server technology used to create webpage in java.

2. Presentation : A Graphical View presented to the user

14.11  Assignment :

1. Explain the JSP Architecture ?

2. List the benefits of JSP.

3. Explain JSP page execution in detail.

4. Explain different JSP Directives.

14.12  Activities :

Study and implement JSP Implicit Objects.

14.13  Case Study :

Study and implement the types of JSP Tag Libraries.

14.14  Further Readings :

1. https://www.tutorialspoint.com/jsp/jsp_overview.htm

2. https://www.guru99.com/jsp-tutorial.html

3. https://beginnersbook.com/2013/05/jsp-tutorial-introduction/



161

BLOCK SUMMARY :

In this block, students have learnt and understand about the basic of Basic

of JSP Syntax and Implicit Objects. The block gives an idea on the study and

concept of basic Struts Action Classes and Model Components. The students

have be well explained on the concepts of compiling and running Servlets in

Apache Tomcat 4.0.

The block detailed about the basic idea of Threading Issues techniques.

The concept related to Struts Action Classes and Model Components will also

be explained to the students. The student will be demonstrated practically about

Architecture of the Servlet Package.



162

Object Oriented
Concepts

and Programming – II
(Advance Java)

BLOCK ASSIGNMENT :

 Short Questions :

1. What is Struts Action Classes ?

2. Explain the Threading Issues?

3. Write note on Struts Controller Components ?

4. Write short note on JSP Syntax and Implicit Objects ?



163

 Long Questions :

1. Write short notes on Architecture of the Servlet Package ?

2. Write short note on compiling and running Servlets in Apache Tomcat
4.0 ?

3. Explain various JSTL formatting function with example.

4. Write note on configuring web.xml file for Struts ?



164

Object Oriented
Concepts

and Programming – II
(Advance Java)

 Enrolment No. : 

1. How many hours did you need for studying the units ?

Unit No. 12 13 14

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................


	Title
	Block-1
	Unit-1
	Block-2
	Unit-2
	Block-3
	Unit-3
	Block-4
	Unit-4

