
Object Oriented 
Technology 

Dr. Babasaheb Ambedkar Open University 



i 

Object Oriented Technology
Course Writer 

Mrs. Shital Patel 
Dr. Ajay Patel 
Dr. Mantavy Gajjar 

Content Reviewer and Editor 

Prof. (Dr.) Narayan Joshi 

Language Editing 

Prof. (Dr.) xxxxxx 

June 2019 
© Dr. Babasaheb Ambedkar Open University 

ISBN-xxx-xx-xxx-xxxx-x 

All rights reserved. No part of this work may be reproduced in any form by mimeograph or 
any other means, without written permission from the Dr. Babasaheb Ambedkar Open 
University. 

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad 



ii 

Forward (Vice-Chancellor Message)



Dr. Babasaheb 
Ambedkar Open 
University 

MCA-303 

Object Oriented Technology 
Block-1: Java Swings 

UNIT-1 
Fundamental of Swing 02 

UNIT-2 
Swing Components and Event handling 19 

UNIT-3 
Swing Menu Component 59 

UNIT-4 
Swing Tree and Table Component 70 

Block-2: JDBC(JavaDatabaseConnectivity) 

UNIT-1 
JDBC Introduction 81 

UNIT-2 
JDBC Queries 88 

UNIT-3 
Exception Handling in JDBC 94 

UNIT-4 
JDBC Driver 98 



 

iv  

 

Block-3: JavaNetworkProgramming 
 

UNIT-1 
Networking Basics & Socket Programming  118 
 
UNIT-2 
Introduction of  RMI       126 
 
UNIT-3 
RMI Implementation and Client-Server Programming132 
 
 
Block-4: Servlet and JSP 
 
UNIT-1 
Introduction of Servlet            140 
 
UNIT-2 
Servlet with JDBC             172 
 
UNIT-3 
Basics of Java Server Pages           202 
 
UNIT-4 
JDBC with JSP             244 
 



 

 
 1 

 
  

Block-1 

.NET Java Swings 
 



 

 
 2 

 

Unit 1:  Fundamental of Swing 
  

Unit Structure 
 
1.1. Learning Objectives 

 
1.2. Introduction 

 
1.3. Fundamental of Swing 

 
1.4. Key features of Swing 

 
1.5. Components & Containers 

 
1.6. Swing Packages & Applications 

 
1.7. Painting Fundamentals 

 
1.8. Let us sum up 

 
1.9. Check your Progress 

 
1.10. Check your Progress: Possible Answers 

 
1.11. Further Reading 

 
1.12. Assignments 

 
1.13. Activities 

 
  

1 



 

 
 3 

1.1 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

• Differentiate about AWT and Swing.  

• Introduce various GUI Components of swing. 

• Know features of Swing. 

• Different packages use in Swing. 

 

 
1.2 INTRODUCTION 
 
Now a day, most programmers use Swing for creating user interfaces. Java Swing is 

a part of Java Foundation Classes (JFC) which was designed for enabling large-

scale enterprise development of Java applications. Java Swing is a set of APIs that 

provides graphical user interface (GUI) for Java programs. Java Swing is also known 

as Java GUI widget toolkit. 

Java Swing or Swing was developed based on earlier APIs called Abstract Windows 

Toolkit (AWT).  Swing provides richer and more sophisticated GUI components than 

AWT.Swing is a set of Classes that provides more powerful and flexible GUI 

components than does the AWT. Swing provides the look and feel of the modern 

Java GUI. 

 

1.3 FUNDAMENTAL OF SWING 
 
Swing API is a set of extensible GUI Components to ease the developer's life to 

create JAVA based Front End/GUI Applications. It is build on top of AWT API and 

acts as a replacement of AWT API, since it has almost every control corresponding 

to AWT controls. Swing component follows a Model-View-Controller architecture to 

fulfill the following criteria. 

• A single API is to be sufficient to support multiple look and feel. 

• API is to be model driven so that the highest level API is not required to have 

data. 

• API is to use the Java Bean model so that Builder Tools and IDE can provide 

better services to the developers for use. 



 

 
 4 

Swing Architecture  
Swing is platform independent and enhanced MVC (Model –View – Controller) 

framework for Java application.  

• Model represents component's data. 

• View represents determines how the component is displayed on the screen. 

• Controller represents how the component reacts to the user. 

•  Swing component has Model as a separate element, while the View and 

Controller part are clubbed in the User Interface elements. Because of which, 

Swing has a pluggable look-and-feel architecture. 

 

Figure-1.1  Java Swing MVC – Model Delegate 

For example, when the user clicks a check box, the controller reacts 

bychanging themodel to reflect the user’s choice (checked or unchecked). 

This then results in the view being updated. 

 

Difference between AWT and Swing 
There are many differences between java awt and swing that are given below. 

No Java AWT Java Swing 

1. AWT components are platform-

dependent. 

Java swing components are platform-

independent. 

2. AWT components are heavyweight. Swing components are lightweight. 

3. AWT doesn't support pluggable 

look and feel. 

Swing supports pluggable look and feel. 

4. AWT provides less components 

than Swing. 

Swing provides more 

powerfulcomponents such as tables, 

lists, scrollpanes, colorchooser, 

tabbedpane etc. 



 

 
 5 

5. AWT doesn't follows MVC(Model 

View Controller). 

Swing follows MVC. 

Table-1 Difference between AWT and Swing 

 

1.4 KEY FEATURES OF SWING 
 

• Light Weight:Swing components are lightweight. This means that they are 

written totally in Java and do not map directly to platform-specific 

peers.Because lightweight components are rendered using graphics 

primitives, they can be transparent, which enablesnonrectangular shapes. 

Thus, lightweight components are more efficient and more flexible. So each 

component of swing will work in a consistent manner across all platforms. 

• Rich Controls:  Swing provides a rich set of advanced controls like Tree, 

TabbedPane, slider, colorpicker, and table controls. 

• Highly Customizable: Swing controls can be customized in a very easy way 

as visual appearance is independent of internal representation. 

• Pluggable look-and-feel: SWING based GUI Application look and feel can 

be changed at run-time, based on available values. 

 

1.5COMPONENTS& CONTAINERS 
 
In Java, a component is the basic user interface object and is found in all Java 

applications. Components include JLists, JButtons, JLabel, JMenu etc. 

To use components, you need to place them in a container. 

A container is a component that holds and manages other components. Containers 

display components using a layout manager. Simply say a container holds a group 

ofcomponents. 

Components 

Swing components are inherit from the javax.swing. JComponent class, which is the 

root of the Swing component hierarchy.JComponent, in turn, inherits from the 

Container class in the Abstract Windowing Toolkit (AWT). So Swing is based on 

classes inherited from AWT. 



 

 
 6 

All of Swing’s components are represented by classes defined within the 

packagejavax. swing. 

The following table-2  shows the class names for Swing components. 

JButton  JCheckBox JCheckBoxMenuItem JColorChooser 

JComboBox JDesktopPane  JEditorPane  JFileChooser 

JFormattedTextField JLabel JList JMenu 

JMenuBar JMenuItem JPasswordField JPopupMenu 

JProgressBar JRadioButton JRadioButtonMenuItem JScrollBar 

JSeparator JSlider JSpinner JSplitPane 

JTabbedPane JTable JTextArea JTextField 

JTextPane JTogglebutton JToolBar JToolTip 

JTree JViewport   

Table-2  Swing components List 

The hierarchy of java swing API is given below Figure-1.2. 

 

Figure-1.2 Hierarchy of  Java Swing API. 



 

 
 7 

Containers 

Swing defines two types of containers. In top-level containers: JFrame, 

JApplet,JWindow, and JDialog. These containers do not inherit JComponent. They 

all are inherit the AWT classes Component and Container. 

A top-level container must be place at the top of in hierarchy.A top-level container is 

not contained within any other container.The one most commonly used container for 

applications is JFrame and for applets is JApplet. 

The second type of containers maintained by Swing are lightweight containers. 

Lightweightcontainers do inherit JComponent. An example of a lightweight container 

is JPanel. Lightweight containers are regularly used to organize andmanage groups 

of related components because a lightweight container can be containedwithin 

another container. So, you can use lightweight containers such as JPanel. 

The following table-3 shows the names for Swing container. 

JApplet JDialog JDesktopPane JFrame 

JEditorPane JLayeredPane JWindow  

Table-3  Swing containers List 

Swing provides the following useful top-level containers, all of which inherit from 

JComponent: 

 

Figure-1.3 Top-level Containers of Swing 



 

 
 8 

 

All Swing components need to be contained  inside a JWindow or JFrame. 

 

The Top-Level Container Panes 

Each top-level container defines a set of panes. Following figure show top-level 

container panes. 

 

Figure-1.4 Top-level Containers of panes 
 

Root pane 

The root pane is an intermediate container that manages the layered pane, content 

pane, and glass pane. You use a root pane to paint over multiple components or to 

catch input events. 

Layered pane 

The layered pane contains the content pane and the optional menu bar.The layered 

pane provides six functional layers in which you place the components you add to it.  

Content pane 

The content pane holds all the visible components of the root pane, except the menu 

bar. It covers the visible section of the JFrame or JWindow and you use it to add 



 

 
 9 

components to the display area. Java automatically creates a content pane when 

you create a JFrame or JWindow but you can create your own content pane, which 

has to be opaque. 

Glass pane 

The glass pane is invisible by default but you can make it visible. When it is visible, it 

covers the components of the content pane and can paint over an existing area 

containing one or more components. 

 

1.6 SWING PACKAGES & APPLICATIONS 
 
Swing Packages 

Swing is a very large subsystem and makes use of many packages. These are the 

packages used by Swing. 

javax.swing javax.swing.border javax.swing.colorchooser 

javax.swing.event javax.swing.filechooser  javax.swing.plaf 

javax.swing.plaf.basic  javax.swing.plaf.metal javax.swing.plaf.multi 

javax.swing.plaf.synth  javax.swing.table javax.swing.text 

javax.swing.text.html  javax.swing.text.html.parser javax.swing.text.rtf 

javax.swing.tree  javax.swing.undo  

 

The main package is javax.swing. when user make any swing program then they 

must be imported javax.swing package. This package contains basic Swing 

components, such as buttons, labels, list, and check boxes. 

Swing Applications 

Swing programs differ from both the console-based programs and the AWT-based 

programs. Swing use a different set of components and adifferent container 

hierarchy than does the AWT.The best way to understand the structure of a Swing 

program is to work through a simple example. 



 

 
 10 

the following program showa simple Swing application. In this program,it 

demonstrates several key features of Swing. It uses two Swing components:JFrame 

and JLabel. JFrame is the top-level container that is commonly used for 

Swingapplications. JLabel is the Swing component that creates a label, which is use 

for  displays information. 
 

// A simple Swing application. 

import javax.swing.*; 

public class SwingDemo  

{ 

    SwingDemo() 

    { 

 // Create a new JFrame      

JFrame jf=new JFrame("A Simple Swing Program"); 

         // Give the frame an initial size. 

        jf.setSize(400,300); 

// Terminate the program when the user closes the application. 

        jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

// Create a text-based label. 

        JLabel lb=new JLabel("Hi ...."); 

// Add the label to the content pane. 

        jf.add(lb); 

// Display the frame. 

        jf.setVisible(true); 

      } 

    public static void main(String args[]) { 

       SwingDemo sd=new Swing_Demo(); 

    }    } 



 

 
 11 

Swing programs are compiled and run in the same way as other Java applications. 

So,to compile this program, you can use this command line: 

javac SwingDemo.java 

To run the program, use this command line: 

java SwingDemo 

Output of this program shown in Figure-1.5. 

 

Figure-1.5 Output of SwingDemo program 

In this program declares SwingDemo class and a constructor for that class. 

creating a JFrame,using this line of code: 

JFrame jf=new JFrame("A Simple Swing Program"); 

jf object show  a rectangular window complete with a titlebar; close, minimize, 

maximize, and restore buttons; 

the window is sized using this statement: 

        jf.setSize(400,300); 



 

 
 12 

The setSize() method which is setsthe dimensions of the window, which are 

specified in pixels. Its general form is shown here: 

void setSize(int width, int height) 

In this example, the width of the window is set to 400 and the height is set to 300. 

when a top-level window is closed, the window is removed from the screen. For that 

callsetDefaultCloseOperation( ), as the program does: 

jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

After calling this method, closing the window causes the entire application to 

terminate.  

Thegeneral form of setDefaultCloseOperation( ) is shown here: 

void setDefaultCloseOperation(int what) 

The value passed in what determines what happens when the window is closed. 

There are many other options in addition to JFrame.EXIT_ON_CLOSE.  

They are shown here: 

JFrame.DISPOSE_ON_CLOSE  : hides and disposes of the JFrame when the user 

closes it. Disposing a JFrame releases any resources used by it. 

JFrame.HIDE_ON_CLOSE : hides a JFrame when the user closes it. This is the 

default behavior. The JFrame is invisible but the program is still running. 

JFrame.DO_NOTHING_ON_CLOSE : exits the application. This option will exit the 

application. 

Next,  

jf.setVisible(true); 

The setVisible( ) methodis inherited from the AWT Component class.If its argument 

istrue, then window will be displayed. Otherwise, it will be hidden. By default, a 

JFrame isinvisible, so setVisible(true) must be called. 

 

 

 



 

 
 13 

1.7  PAINTING FUNDAMENTALS 
 
Components of swing are very powerful. Swing components are directly display into 

frame and panel. Swing will not allow to draw directly to the surface of component.  

Using AWT class component have a method like paint(), that is used to draw output 

directly on the surface of a component and the methods are like drawLine(), 

drawRect, etc. 

JComponent inherits Componentclass, all Swing’s lightweight components inheritthe 

paint( ) method. However, you will not override it to paint directly to the surface of 

acomponent. The reason is that Swing uses a bit more sophisticated approach to 

painting thatinvolves three distinct methods: paintComponent( ), paintBorder( ), and 

paintChildren( ).These methods paint the indicated part of a component and divide 

the painting process in its three distinct logical actions. 

To paint to the surface of a Swing component, you will create a subclass of the 

componentand then override its paintComponent( ) method. This is the method that 

paints the interiorof the component. You will not normally override the other two 

painting methods such as paintBorder( ) and paintChildren( ). 

The paintComponent( )method is shown here: 

protected void paintComponent(Graphics g) 

The parameter g is the graphics context to which output is written. 

In the following program, we make a subclass of JPanel and override one method, 

paintComponent(). 
 

import java.awt.*; 

import javax. swing.*; 

public class swingpaintdemo extends JPanel 

{ 

    public void paintComponent(Graphics g)  

    { 

        g.setColor(Color.orange); 



 

 
 14 

        g.drawLine(10,50,50,20); 

        g.setColor(Color.red); 

        g.fillOval(getWidth()/4, getHeight()/4, getWidth()/2, getHeight()/2); 

  } 

    public static void main(String args[]) 

    { 

// Create a new JFrame container. 

    JFrame jf =new JFrame("Use PaintComponent() Method "); 

 // Give the frame an initial size. 

jf.setSize(350,300); 

        jf.setVisible(true); 

// Add the panel to the content pane. Because the default// border layout is used, // 

the panel will automatically besized to fit the center region. 

        swingpaintdemo sw=new swingpaintdemo(); 

        jf.add(sw); 

      } 

} 

Output of this program shown in Figure-1.6. 

 

Figure-1.6 Output of paintComponent( ) program 



 

 
 15 

In this program swingpaintdemo  class extends JPanel. JPanel is oneof Swing’s 

lightweight containers, which means that it is a component that can be added tothe 

content pane of a JFrame. To handle painting, swingpaintdemo overrides the 

paintComponent( )method. This enables swingpaintdemo to write directly to the 

surface of the component whenpainting takes place. The size of the panel is not 

specified because the program uses thedefault border layout and the panel is added 

to the center. This results in the panel beingsized to fill the center. If you change the 

size of the window, the size of the panel will beadjusted accordingly. 

 

1.8LET US SUM UP 
 

• A swing is a set of classes that provides more powerful and flexible 

components that is possible with the AWT. It is defined within the package 

javax.swing. 

• As compared to AWT components, swing components are known as 

lightweight components. 

• The JApplet class is an extended version of java.applet. Applet that adds 

support for the JFC/Swing component architecture. 

• The javax.swing package provides classes for java swing API such as 

JButton, JTextField, JTextArea, JRadioButton, JCheckbox, JMenu, 

JColorChooser etc. 

• Swing provides graphical user interface components to develop Java 

applications. 

• The size of a frame is defined by its width and height in pixels and we can set 

them using setSize(int width, int height) method. 

• The content pane from JFrame holds the Swing components of a JFrame. 

• The pack() method of the JFrame examines all the components on the 

JFrame and decides their preferred size and sets the size of the JFrame just 

enough to display all the components. 

 

 

 

 



 

 
 16 

1.9CHECK YOUR PROGRESS 
 

1. Where are the following four methods commonly used? 
 

1) public void add(Component c) 

2) public void setSize(int width,int height) 

3) public void setLayout(LayoutManager m) 

4) public void setVisible(boolean) 

a. Graphics class 

 

b. Component 

class 
 

c. Both A & B 

 

d. None of the 

above 

 

2. Which is the container that doesn't contain title bar and MenuBars but it can 

have other components like button, textfield etc? 
 

a. Window 

 

b. Frame 

 

c. Panel 

 

d. Container 

 

These two ways are used to create a Frame 

By creating the object of Frame class (association) 

By extending Frame class (inheritance) 

a. True b. False 

 

  

3. Give the Full of AWT? 

 

4. The Java Foundation Classes (JFC) is a set of GUI components which simplify 

the development of desktop applications. 

a. True b. False   

 
 
 
 



 

 
 17 

5. The following specifies the advantages of  
It is lightweight. 

It support pluggable look and feel. 

It follow MVC (Model view controller) Architecture. 

a. Swing b. AWT c. Both a and b d.None of above 

 

6. The swing related classes are contained in 

a. javax.swing b. javax.awt c. javax.Swing d.None of above 

 
1.10CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
 

1. b.Component class 

2. c. Panel 

3. a. true 

4. Abstract Windowing Toolkit 

5. a. true 

6. a. Swing 

 
1.11 FURTHER READING 
 
Many courses require students to read some extra material in addition to theirunits. 

Sometimes a text requires 'readings' which must be obtained by alllearners. Such 

texts are usually referred to as 'essential texts'. Someinstitutions call them 'set texts'. 

On other occasions, students are expected toread widely from a variety of books, but 

the readings are entirely optional. 
 

These books are referred to as 'recommended texts' or background reading.The 

distinction is important, as books are usually difficult to obtain and theavailability and 

price of essential books must be checked before they arespecified as compulsory. A 

course that has no recommended textbooks isknown as a self-contained course. 
 

Following are some examples: 
 

Koul, B. N. and Ghaudhary, Sohanvir (1989). Self-instructional course units - IGNOU 

Handbook5. New Delhi: Indira Gandhi National Open University. 



 

 
 18 

 

Thompson, Bruce (2003). Introduction to open learning and instructional design for 

openlearning. Vancouver: Commonwealth of Learning (COL). 

 

1.12ASSIGNMENTS 
 

1. What is difference between AWT and Swing? 

2.  ______________method use to visible JFrame. 

3. Give name of constant which are used in setDefaultCloseOperation() method. 

4. What is a container class? 

5. What are the key feature of swing class? 

6. List out Swing class. 

7. Write a two ways to create a frame. 

 
1.13ACTIVITIES 
 

1. Create JFrame with 300 X 300 size, and display “Good Moring “message on 

JFrame.  

2. Create Application for drawing Line, Rectangle , Circle and also fill all shapes. 

 
 
  



 

 
 19 

Unit 2:  Swing Components and 
Event Handling  

 

 
Unit Structure 
 
2.1 Learning Objectives 

 
2.2 Introduction 

 
2.3 Working with JFrame 

 
2.4 JApplet and JPanel 

 
2.5 JTextField, JPasswordField, JButton 

 
2.6 JCheckBox, JRadioButton 

 
2.7 JList, JScrollPane, JComboBox 

 
2.8 Event handling 

 
2.9 Let us sum up 

 
2.10 Check your Progress 

 
2.11 Check your Progress: Possible Answers 

 
2.12   Further Reading 

 
2.13 Assignments 

 
2.14 Activities 

 
  

2 



 

 
 20 

2.1 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

• To understand the Java event-handling model.  

• To understand the relationship of a JFrame and theobjects it contains. 

• Working with containers control – JFrame, JApple and JPanel 

• Working with basic control- JButton, JLabel,JTextField, JPasswordField. 

• Working with selection control - JCheckBox, JRadioButton, , JList,and 

JComboBox. 

• Working with JScrollPane control. 

 
2.2 INTRODUCTION 
 
The previous chapter contains several of the core concepts relating to Swing. This 

Chapter presenting overview of several swing components.Swing components are 

derived from the JComponent class. The only exceptions are the four top-level 

containers: JFrame, JApplet, JWindow, and JDialog. JComponent inherits AWT 

classes Container and Component.JComponent inherits AWT classes Container and 

Component.All the Swing components are represented by classes in the javax.swing 

package.All the component classes start with J:JLabel, JButton, JScrollbar,etc. The 

Swing componentsprovide rich functionality and allow a high level of customization. 

 

2.3 WORKING WITH JFRAME 
 
The javax.swing.JFrame class is a type of container which inherits 

thejava.awt.Frame class. JFrame works like the main window where components 

like JLabels, JButtons, JTextfields are added to create a GUI. 

JFrame class has many constructors used to create a JFrame.Following is the 

description. 

• JFrame(): creates a frame which is invisible. 

• JFrame(GraphicsConfiguration gc): creates a frame with a blank title and 

graphics configuration of screen device. 

• JFrame(String title): creates a JFrame with a title. 



 

 
 21 

• JFrame(String title, GraphicsConfiguration gc): creates a JFrame with specific 

Graphics configuration and specified title. 

Here is a simplest example just to create a JFrame with set title. 

import javax.swing.*; 

public class JFrameDemo  

{ 

 public static void main(String args[])     

{ 

  JFrame jf=new JFrame("My Programe"); 

  jf.setSize(300,100); 

  jf.setVisible(true); 

  jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

} 

 } 

The output of program display in Figure 2.1 

 

Figure 2.1: Output of JFrame with Title. 

 

2.4 JApplet and JPanel 
 
2.4.1 The JApplet class 
Swing-based appletsare similar to AWT-based applets, but with an important 

difference: A Swing applet extendsJApplet rather than Applet. JApplet is derived 

from Applet.JApplet is atop-level container. 

Swing applets use the same four lifecycle methods which is in AWT: init( ),start( ), 

stop( ), and destroy( ). So, you need override only those methods that areneeded by 



 

 
 22 

your applet. Painting is accomplished differently in Swing than it is in the AWT,and a 

Swing applet will not normally override the paint( ) method. 

Following program is a simplet example  to create a JApplet with JLabel. 

 

import java.awt.FlowLayout; 

import javax.swing.*; 

//This HTML can be used to create Applet with 300 x 300 size. 

//<applet code="JappletDemo.class" width="300" height="300"></applet> 

public class JappletDemo extends JApplet 

 { 

    JLabel l; 

// Initialize the applet using init(). 

    public void init() 

    { 

// Set the applet to use flow layout. 

        setLayout(new FlowLayout()); 

// Create a text-based label. 

        l=new JLabel("Demo Program for JApplet"); 

// Add the label to the content pane. 

        add(l); 

    } 

    } 

 

The output of program display in Figure 2.2 



 

 
 23 

 

Figure 2.2: Output of JApplet with JLabel. 

 
2.4.2 The JPanel  Class 

The JPanel is a simplest container class. It provides space in which an application 

can attach any other component. It inherits the JComponents class. 

Constructors 

JPanel() : It is used to create a new JPanel with a double buffer and a flow layout. 

JPanel(boolean isDoubleBuffered) : It is used to create a new JPanel with 

FlowLayout and the specified buffering 

strategy. 

JPanel(LayoutManager layout) :  It is used to create a new JPanel with the specified 

layout manager. 

Following program is a simplet example to create a JPanel. 

import java.awt.*;   

import javax.swing.*;   

public class PanelExample  

{   

     PanelExample()   



 

 
 24 

        {   

        JFrame f= new JFrame("Panel Example");     

        JPanel panel=new JPanel();   

        panel.setBounds(40,80,200,200);     

        panel.setBackground(Color.gray);   

        JButton b1=new JButton("Button 1");      

        b1.setBounds(50,100,80,30);     

        b1.setBackground(Color.yellow);    

        JButton b2=new JButton("Button 2");    

        b2.setBounds(100,100,80,30);     

        b2.setBackground(Color.green);    

        panel.add(b1);  

panel.add(b2);   

        f.add(panel);   

        f.setSize(400,400);     

        f.setLayout(null);     

        f.setVisible(true);     

        }   

        public static void main(String args[])   

        {   

PanelExample p=new PanelExample();   

        }   

    }   

Output show in Figure:2.3 



 

 
 25 

 
Figure 2.3 : Output of JPanel class 

 

2.5JTextField, JPasswordField, JButton 
 
2.5.1 JTextField 
JTextfField is a lightweight component that allows the ending of a single line of text. 

The class has JTextComponent as its base class which in turn inherits JComponents 

class. 

Constructor of JTextField are shown below. 

JTextField() : Creates a new TextField. 

JTextField(String text) : Creates a new TextField initialized with the specified text. 

JTextField(String text, int columns) : Creates a new TextField initialized with the  

specified text and columns. 

JTextField(int columns) : Creates a new empty TextField with the specified number  

           of columns. 



 

 
 26 

The Methods of JTextField class are given in the below table 2.1. 

Method Name Description 

void setEdittable(Boolean b) Sets the specified Boolean to indicate whether or 

not this text field should be editable. 

Boolean  isEditable() Return the Boolean indicating whether this text 

field is editable or not. 

String getText() Return the text contained in this text field. 

void setText(String t) Sets the text of this text field to the specified text. 

Table 2.1: Methods of JTextField class. 

 

Program of  JTextField is shown below. 

import javax.swing.*;   

class TextFieldExample   

{   

public static void main(String args[])   

    {   

JFrame f= new JFrame("TextField Example");   

JTextField t1,t2;   

t1=new JTextField();   

t1.setBounds(50,100, 200,30);   

      t1.setText(“ Hello”); 

      t2=new JTextField("Welcome to Javatpoint.");   

t2.setBounds(50,150, 200,30);   

f.add(t1);  

f.add(t2);   

f.setSize(400,400);   

f.setLayout(null);   

f.setVisible(true);   

    }   

    }   

Output of program is shown in Figure-2.4. 



 

 
 27 

 
Figure 2.4 : Output of JTextField class 

 

2.5.2 JPasswordField 

JPasswordField class is a text component specialized for password entry. It allows 

the editing of a single line of text. It inherits JTextField class. 

Constructor of JPasswordField are shown below. 

JPasswordField(): Constructs a new JPasswordField, with a default document, null  

   starting text string, and 0 column width. 

JPasswordField(int columns) : Constructs a new empty JPasswordField with the  

    specified number of columns. 

JPasswordField(String text) : Constructs a new JPasswordField initialized with the  

    specified text. 

JPasswordField(String text, int columns) : Construct a new JPasswordField  

     initialized with the specified text and columns. 

 



 

 
 28 

The Methods of JPasswordField class are given in the below table 2.2. 

Method Name Description 

char getEchoChar() Returns the character to be used for echoing. 

void setEchoChar(char c) Sets the echo character for this JPasswordField. 

String getText() Return the text contained in this text field. 

void setText(String t) Sets the text of this text field to the specified text. 

String getPassword()   returns the text contained in JPasswordField. 

 
Table 2.2: Methods of JPasswwordField class. 

 

Program of  JPasswordField is shown below Figure-2.5. 

 
Figure 2.5 : Output of JTextField class 

 

2.5.3 JButton 
The JButton class provides the functionality of a push button. JButton allows an icon, 

a string, or both to beassociated with the push button. 

Constructors 

JButton() : It creates a button with no text and icon. 

JButton(String s) : It creates a button with the specified text. 

JButton(Icon i) : It creates a button with the specified icon object. 



 

 
 29 

JButton(String s, Icon icon) : It creates a button with the specified text and icon 

           object. 

The Methods of JButton class are given in the below table 2.3. 

Method Name Description 

void setText(String s)  It is used to set specified text on button 

String getText() It is used to return the text of the button. 

void setEnabled(boolean b) It is used to enable or disable the button. 

void setIcon(Icon b) It is used to set the specified Icon on the 

button. 

Icon getIcon() It is used to get the Icon of the button. 

void 

addActionListener(ActionListener a) 

It is used to add the action listener to this 

object. 

Table 2.3: Methods of JButton class. 

 

When the button is pressed, an ActionEvent is generated. The ActionEvent 

objectpassed to the actionPerformed( ) method which is registered by 

ActionListener, you can obtainthe action command string associated with the button. 

By default, this is the string displayedinside the button. However, you can set the 

action command by calling setActionCommand( )on the button. You can obtain the 

action command by calling getActionCommand( ) on theevent object.  

// Program to create three button and when button press according frame 

background color will change.  

import javax.swing.*; 

import java.awt.event.*; 

import java.awt.*; 

public class ButtonDemo extends JFrame implements ActionListener 

{ 

    JLabel l1; 

    JButton b1,b2,b3; 



 

 
 30 

    ButtonDemo() 

    { 

        setLayout(new FlowLayout()); 

        setSize(400,700); 

        setTitle("Java program Buttons Clicked"); 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

 

   l1=new JLabel("What is happening"); 

        add(l1); 

 

        b1=new JButton("Red"); 

        add(b1); 

        b2=new JButton("Green"); 

        add(b2); 

        b3=new JButton("Blue"); 

        add(b3); 

 

        b1.addActionListener(this); 

        b2.addActionListener(this); 

        b3.addActionListener(this); 

 

    } 

    public void actionPerformed(ActionEvent e) 

    { 

        if(e.getSource()== b1) 



 

 
 31 

        { 

           getContentPane().setBackground(Color.red); 

            l1.setText("Set Color Red"); 

        } 

        else if(e.getSource()== b2) 

        { 

            getContentPane().setBackground(Color.green); 

            l1.setText("Set Color Green"); 

        } 

        else if(e.getSource()== b3) 

        { 

        getContentPane().setBackground(Color.blue); 

            l1.setText("Set Color Blue"); 

        } 

   } 

    public static void main(String args[]) 

    { 

        ButtonDemo bd =new ButtonDemo(); 

    } 

}  

Output of the program is shown in Figure 2.6. 

 



 

 
 32 

 

Figure 2.6 : Output of JButton class 

 

 2.6. JCheckBox, JRadioButton 
 
2.6.1 JCheckBox  
 
The JCheckBox class is used to create a checkbox. It is used to turn an option on 

(true) or off (false). Clicking on a CheckBox changes its state from "on" to "off" or 

from "off" to "on ". 

An ItemEvent is generated when user selects or deselect a check box. If multiple 

checkbox put in your program then wwhich checkbox is selected , to obtain a 

reference by calling getItem( ) method of ItemEvent class. The ItemEvent object 

passed to the itemStateChanged( ) method which is registered by ItemListener. 

 

Constructors 

JJCheckBox() : Creates an initially unselected check box button with no text, no  

       icon. 

JChechBox(String s) : Creates an initially unselected check box with text. 



 

 
 33 

JCheckBox(String text, boolean selected) : Creates a check box with text and  

   specifies whether or not it is initially selected. 

 

The Methods of JCheckBox class are given in the below table 2.4. 

Method Name Description 

protected String paramString() It returns a string representation of this JCheckBox. 

AccessibleContext 

getAccessibleContext() 

It is used to get the AccessibleContext associated 

with this JCheckBox. 
Table 2.4: Methods of JCheckBox class. 

 

// Program to create JCheckBox 

import javax.swing.*; 

import java.awt.event.*; 

import java.awt.*; 

public class CheckboxExample extends JFrame implements ItemListener  

{ 

    JCheckBox c1,c2; 

    JLabel l1; 

    JPanel p1; 

    CheckboxExample() 

    { 

         // Frame setting 

        setLayout(new FlowLayout()); 

        setSize(400,700); 

        setTitle("Java program for JCheckBox"); 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

 



 

 
 34 

        // create checkbox  

        c1=new JCheckBox("Apple"); 

        c2=new JCheckBox("Orange"); 

 

        // create JLabel 

        l1=new JLabel(); 

 

        // create JPanel 

        p1=new JPanel(); 

        p1.add(c1); 

        p1.add(c2); 

        p1.add(l1); 

        add(p1); 

        c1.addItemListener(this); 

        c2. addItemListener(this); 

        p1=new JPanel();        

 

    } 

   public void itemStateChanged(ItemEvent e)  

    { 

        if (e.getSource() == c1)  

        { 

            if (e.getStateChange() == 1)  

            {  

                l1.setForeground(Color.red); 

               l1.setText(c1.getText() + "is  selected"); 



 

 
 35 

            } 

            else 

            { 

 

                l1.setForeground(Color.red); 

               l1.setText(c1.getText()+ "is  not selected"); 

                } 

        } 

            else 

            { 

                if (e.getStateChange() == 1)  

                l1.setText(c2.getText()+ "is  selected");  

            else 

                l1.setText(c2.getText()+ "is not  selected");  

            } 

        } 

           public static void main(String args[]) 

 { 

  CheckboxExample cb=new CheckboxExample(); 

  } 

} 

Output of the program is shown in Figure 2.7. 

 

 



 

 
 36 

 

Figure 2.7 : Output of JCheckBox class 

 

2.6.2 JRadioButton 

The JRadioButton class is used to create a radio button. It is used to choose one 

option from multiple options. Radio buttons must beconfigured into a group. Only one 

of the buttons in the group can be selected at any time.For example, if a user 

presses a radio button that is in a group, any previously selectedbutton in that group 

is automatically deselected.  

Constructors 

JRadioButton() : Creates an unselected radio button with no text. 

JRadioButton(String s) : Creates an unselected radio button with specified text. 

JRadioButton(String s, boolean selected) :Creates a radio button with the specified  

     text and selected status

Method Name 

. 

The Methods of JRadioButton class are given in the below table 2.5. 

Description 

void setText(String s) It is used to set specified text on button. 

String getText() It is used to return the text of the button. 

void setEnabled(boolean b) It is used to enable or disable the button. 

void setIcon(Icon b) It is used to set the specified Icon on the 

button. 

Icon getIcon() It is used to get the Icon of the button. 



 

 
 37 

void 

addActionListener(ActionListener a) 

It is used to add the action listener to this 

object. 

Table 2.5: Methods of JRadioButton class. 

 

// Program to create JRadioButton 

import java.awt.*; 

import java.awt.event.*; 

import javax.swing.*; 

public class JRadioButtonDemo extends JFrame implements ActionListener 

{ 

    JRadioButton r1,r2,r3; 

    JLabel l1; 

 

    JRadioButtonDemo() 

    { 

        // Frame setting 

        setLayout(new FlowLayout()); 

        setSize(400,400); 

        setTitle("Java program for JRadioButton"); 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

// Create a RadioButton 

        r1=new JRadioButton("A"); 

        add(r1); 

        r2=new JRadioButton("B"); 

        add(r2); 



 

 
 38 

        r3=new JRadioButton("C"); 

        add(r3); 

        ButtonGroup bg =new ButtonGroup(); 

        bg.add(r1); 

        bg.add(r2); 

        bg.add(r3); 

 

        l1=new JLabel("select one"); 

        add(l1); 

 

        r1.addActionListener(this); 

        r2.addActionListener(this); 

        r3.addActionListener(this); 

 

    } 

   public void actionPerformed(ActionEvent e)  

    { 

        l1.setText("you select" +e.getActionCommand()); 

    } 

    public static void main(String args[]) 

    { 

        JRadioButtonDemo rd=new JRadioButtonDemo(); 

    } 

 

} 

 



 

 
 39 

Output of the program is shown in Figure 2.8. 

 

 

Figure 2.8 : Output of JRadioButton class 

 

2.7. JList, JScrollPane, JComboBox 
 
2.7.1 JList 

JList is use for select  one or more itemsfrom a list.JList class represents a list of text 

items. 

Constructor  

JList()   :Creates a JList with an empty, read-only, model. 

JList(ary[] listData) : Creates a JList that displays the elements in the specified  

   array. 

JList(ListModel<ary> dataModel) : Creates a JList that displays elements from the  

   specified, non-null, model. 



 

 
 40 

The Methods of JList class are given in the below table 2.6. 

Method Name Description 

Void 

addListSelectionListener(ListSelectionLis

tener listener) 

It is used to add a listener to the list, to 

be notified each time a change to the 

selection occurs. 

int getSelectedIndex() It is used to return the smallest selected 

cell index. 

ListModel getModel() It is used to return the data model that 

holds a list of items displayed by the JList 

component. 

void setListData(Object[] listData) It is used to create a read-only ListModel 

from an array of objects. 

Table 2.6: Methods of JList class. 

 

A JList generates a ListSelectionEvent when the user select item from list.This event 

is also generated when the user deselects an item. It is handled by 

implementingListSelectionListener.  

This listener specifies only one method, called valueChanged( ). 

// Program to create Jist. 

import javax.swing.*; 

import java.awt.event.*; 

import java.awt.*; 

import javax.swing.event.ListSelectionEvent; 

import javax.swing.event.ListSelectionListener; 

public class JListDemo extends JFrame implements ListSelectionListener 

{ 

    JList list; 

    JLabel l1; 



 

 
 41 

    String s[] = { "Apple", "Banana", "Orange", "Graps"}; 

    JListDemo() 

    { 

        // Frame setting 

        setLayout(new FlowLayout()); 

        setSize(400,400); 

        setTitle("Java program for JRadioButton"); 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

 

        //create List 

        list=new JList(s); 

        add(list); 

 

        l1=new JLabel("You select"); 

        add(l1); 

 

        // Set the list selection mode to single selection. 

        list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION); 

         list.addListSelectionListener(this); 

 

    } 

   public void valueChanged(ListSelectionEvent e)  

    { 

        int idx =list.getSelectedIndex(); 

        // Display selection, if item was selected. 



 

 
 42 

        if(idx != -1) 

            l1.setText("Current selection: " + s[idx]); 

        else  

            l1.setText("Choose a Item"); 

 

    } 

 

   public static void main(String args[]) 

   { 

       JListDemo jd= new JListDemo(); 

   } 

} 

 

The Output of the program is shown in Figure- 2.9. 
 

 

Figure 2.9 Output of JList Class 



 

 
 43 

2.7.2 JScrollPane 

A JscrollPane is used to make scrollable view of a component. When screen size is 

limited, we use a scroll pane to display a large component or a component whose 

size can change dynamically. If component size is larger than viewable area then 

automatically horizontal or Vertical scroll bar are set. 

        setSize(400,400); 

Constructors 

JScrollPane() : It creates a scroll pane. 

JScrollPane(Component) : It create a scroll pane on specified Component when  

   you want to present. 

JScrollPane(int, int) : sets the scroll pane's with  two int parameters, when present,  

   set the vertical and horizontal scroll bar respectively. 

JScrollPane(Component, int, int) : Set scroll pane vertical or horizontal scroll bar on  

    component . 

// Program of JScroll pane  

import javax.swing.*; 

import java.awt.*; 

public class JScrollPaneDemo extends JFrame 

{ 

     JList list; 

     JScrollPane js; 

    String s[] = { "Apple", "Banana", "Orange", "Grapes","Watermelon","Peach", 

                   "Pear","Cherr","Strawberry","Nectarine","Blueberry","Pomegranate" }; 

    JScrollPaneDemo() 

    { 

        // Frame setting 

        setLayout(new FlowLayout()); 



 

 
 44 

        setTitle("Java program for JScrollpane"); 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

 //create List 

        list=new JList(s); 

        add(list); 

        // Add the list to a scroll pane. 

        js=new JScrollPane(list); 

       add(js); 

    } 

    public static void main(String args[]) 

    { 

        JScrollPaneDemo js=new JScrollPaneDemo(); 

       } 

} 

// Output of JScrollPane is shown in Figure 2.10. 

.  

Figure 2.10 Output of JScroll Pane Class 



 

 
 45 

2.7.3 JComboBox 

JCombo box  is a combination of a text field and a drop-down list . A combo box 

displays one entry and also display adrop-down list that allows a user to select a 

different item. 

Constructors 

JComboBox( ) : Creates a JComboBox with a default data model. 

JComboBox(Object[] items) : Creates a JComboBox that contains the elements in  

    the specified array. 

JComboBox(Vector<?> items) : Creates a JComboBox that contains the elements in  

    the specified Vector

Method Name 

. 

 

The Methods of JComboBox class are given in the below table 2.7. 

Description 

void addItem(Object anObject) It is used to add an item to the item list. 

void removeItem(Object anObject) It is used to delete an item to the item list. 

void removeAllItems() It is used to remove all the items from the 

list. 

void setEditable(boolean b) It is used to determine whether the 

JComboBox is editable. 

void addActionListener(ActionListener a) It is used to add the ActionListener. 

void addItemListener(ItemListener i) It is used to add the ItemListener. 

Table 2.7: Methods of JComboBox class. 

 

// Program to demonstrate the Combo Box and its items like india, japan and 

Canada. When user select country accordingly flag will display on icon base Label. 

All Flag images are stored into folder on which your program will save. 

 

 



 

 
 46 

import javax.swing.*; 

import java.awt.*; 

import java.awt.event.*; 

public class JComoBoxDemo extends JFrame implements ActionListener 

{ 

    JLabel l1; 

    ImageIcon india,japan,canada; 

    JComboBox jcb; 

    String flags[] = { "india", "japan", "canada"}; 

    JComoBoxDemo() 

    { 

        // Frame setting 

        setLayout(new FlowLayout()); 

        setSize(400,400); 

        setTitle("Java program for JComboBox"); 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

 

        // Instantiate a combo box and add it to the content pane. 

        jcb = new JComboBox(flags); 

        add(jcb); 

        // Create a label and add it to the content pane. 

        l1= new JLabel(new ImageIcon("india.gif")); 

        add(l1); 

        jcb.addActionListener(this); 

} 



 

 
 47 

   public void actionPerformed(ActionEvent e)  

    { 

        String s = (String) jcb.getSelectedItem(); 

        l1.setIcon(new ImageIcon(s + ".gif"));     

    } 

    public static void main(String args[]) 

    { 

        JComoBoxDemo jb=new JComoBoxDemo(); 

    } 

 

}   

 Output of JComboBox is shown in Figure 2.11. 

 

Figure 2.11 Output of JComboBox Class 

 
 



 

 
 48 

2.8. EVENT HANDLING 
 
Java Swing, like any other UI library, is an event-driven framework. When a user 

interactswith a GUI program (such as by clicking a button or pressing a key,Entering 

a character in Textbox, Clicking or Dragging a mouse,) a Java Swing 

programreceives an event that can initiate an appropriate reaction. 

Event handling is at the core of successful swing programming. Events are 

supported by the java.awt.event package. 

The modern approach to handling events is based on the delegation event model. 

Components of Event Handling 

Event handling has three main components, 

 

Events : An event is a change in state of an object. 

Events Source : Event source is an object that generates an event. 

Listeners : A listener is an object that listens to the event. A listener gets notified 

when an event occurs. 

Class 

How Events are handled ? 

A source generates an Event and send it to one or more listeners registered with the 

source. Once event is received by the listener, they process the event and then 

return. 

In the delegation event model, listeners must register with a source in order to 

receive an event notification. 

public void addTypeListener(TypeListener el) 

// For Example  : addActionListener(this); 

This provides an important benefit: notifications are sent only to listeners that want to 

receive them. 

Main Event Class with Description:- 

Description 



 

 
 49 

ActionEvent Generated when a button is pressed, a list item is double 

clicked, or a menu item is selected. 

ItemEvent Generated when a check box or list item is clicked; also 

occurs when a choice selection is made or a checkable menu 

item is selected or deselected. 

AdjustmentEvent Generated when a scroll bar is manipulated. 

TextEvent Generated when the value of a text area or text field is 

changed. 

ComponentEvent Generated when a component is hidden, moved, resized, or 

becomes visible. 

InputEvent Abstract super class for all component input event classes 

KeyEvent Generated when input is received from the keyboard 

MouseEvent Generated when the mouse is dragged, moved, clicked, 

pressed, or released; also generated when the mouse-enters 

or exits a component. 

FocusEvent Generated when a component gains or loses keyboard focus. 

ContainerEvent Generated when a component is added to or removed from a 

container. 

WindowEvent Generated when a window is activated, closed, deactivated, 

deiconified, iconified, opened, or quit. 

Table 2.8 Event Class 

 

Event Listener Interfaces: - 

The delegation event model has two parts: sources and listeners. 

Listeners are created by implementing one or more of the interfaces defined by the 

java.awt.event package. 

When an event occurs, the event source invokes the appropriate method defined by 

the listener and provides an event object as its argument. 



 

 
 50 

Event Listener Interfaces are in below Table 2.9. 

Interface Description 

ActionListener Defines one method to receive action events. 

AdjustmentListener Defines one method to receive adjustment events. 

ComponentListener Defines four methods to recognize when a component is 

hidden, moved, resized, or shown. 

ContainerListener Defines two methods to recognize when a component is 

added to or removed from a container. 

FocusListener Defines two methods to recognize when a component gains 

or loses keyboard focus. 

ItemListener Defines one method to recognize when the state of an item 

changes. 

KeyListener Defines three methods to recognize when a key is pressed, 

released, or typed. 

MouseListener Defines five methods to recognize when the mouse is 

clicked, enters a component, exits a component, is pressed, 

or is released. 

MouseMotionListener Defines two methods to recognize when the mouse is 

dragged or moved. 

TextListener Defines one method to recognize when a text value changes. 

WindowListener Defines seven methods to recognize when a window is 

activated, closed, deactivated, deiconified, iconified, opened, 

or quit. 

Table 2.9 Event Listener Interface 

The ActionListener Interface: - 

This interface defines the actionPerformed( ) method that is invoked when an action 

event occurs. 

 



 

 
 51 

The general forms of these method is 

  void actionPerformed(ActionEvent ae) 

  

The AdjustmentListener Interface: - 

This interface defines the adjustmentValueChanged( ) method that is invoked when 

anadjustment event occurs. 

The general forms of these method is 

   void adjustmentValueChanged(AdjustmentEvent ae) 

  

The ComponentListener Interface: - 

This interface defines four methods that are invoked when a component is resized, 

moved, shown, or hidden. 

The general forms of these methods are 

 void componentResized(ComponentEvent ce) 

void componentMoved(ComponentEvent ce) 

void componentShown(ComponentEvent ce) 

void componentHidden(ComponentEvent ce) 

 

The ContainerListener Interface: - 

This interface contains two methods. 

When a component is added to a container, componentAdded( ) is invoked. 

When a component is removed from a container, componentRemoved( ) is invoked 

The general forms of these methods are 

  void componentAdded(ContainerEvent ce) 

  void componentRemoved(ContainerEvent ce)  

 



 

 
 52 

The FocusListener Interface: - 

This interface defines two methods 

When a component obtains keyboard focus, focusGained( ) is invoked. 

   void focusGained(FocusEvent fe) 

  

When a component loses keyboard focus, focusLost( ) is called. 

  void focusLost(FocusEvent fe) 

 

The ItemListener Interface: - 

This interface defines the itemStateChanged( ) method that is invoked when the 

state of an item changes. 

The general forms of these method is 

   void itemStateChanged(ItemEvent ie) 

The KeyListener Interface: - 

This interface defines three methods. 

The keyPressed( ) and keyReleased( ) methods are invoked when a key is pressed 

and released, respectively. The keyTyped( ) method is invoked when a character 

has been entered. 

For example, if a user presses and releases the A key, three events are generated in 

sequence: key pressed, typed, and released. 

The general forms of these methods are 

   void keyPressed(KeyEvent ke) 

  void keyReleased(KeyEvent ke) 

  void keyTyped(KeyEvent ke) 

  The MouseListener Interface: - 

This interface defines five methods. 

If the mouse is pressed and released at the same point, mouseClicked( ) is invoked. 



 

 
 53 

When the mouse enters a component, the mouseEntered( ) method is called. 

When it leaves, mouseExited( ) is called. 

The mousePressed( ) and mouseReleased( ) methods are invoked when the mouse 

is pressed and released, respectively. 

The general forms of these methods are:   

void mouseClicked(MouseEvent me) 

  void mouseEntered(MouseEvent me) 

  void mouseExited(MouseEvent me) 

  void mousePressed(MouseEvent me) 

  void mouseReleased(MouseEvent me) 

The MouseMotionListener Interface: - 

This interface defines two methods. 

The mouseDragged( ) method is called multiple times as the mouse is dragged. 

The mouseMoved( ) method is called multiple times as the mouse is moved. 

The general forms of these methods are 

void mouseDragged(MouseEvent me) 

void mouseMoved(MouseEvent me) 

  

The TextListener Interface: - 

This interface defines the textChanged( ) method that is invoked when a change 

occurs in a text area or text field. 

The general forms of these method is 

  void textChanged(TextEvent te) 

The WindowListener Interface: - 

This interface defines seven methods. 

The windowActivated( ) and windowDeactivated( ) methods are invoked when a 

window is activated or deactivated, respectively. 



 

 
 54 

If a window is iconified, the windowIconified( ) method is called. When a window is 

deiconified, the windowDeiconified( ) method is called. 

When a window is opened or closed, the windowOpened( ) or windowClosed() 

methods are called, respectively. 

The windowClosing( ) method is called when a window is being closed. 

The general forms of these methods are 

void windowActivated(WindowEvent we) 

void windowClosed(WindowEvent we) 

void windowClosing(WindowEvent we) 

void windowDeactivated(WindowEvent we) 

void windowDeiconified(WindowEvent we) 

void windowIconified(WindowEvent we) 

void windowOpened(WindowEvent we) 

 

2.9LET US SUM UP 
 

•  JApplet class is an extended version of java.applet. 

• If you add more than one radio button to a container, you must add them to a 

button group. To do that, you add JRadioButton objects to a ButtonGroup 

object. 

• The user can click on a JCheckBox to check or uncheck a box. Then, the 

code for the listener can change the processing that’s done based on the 

setting for the check box. 

• JCheckBox need to use a listener, you can use either the ActionListener or 

the ItemListener. 

• JTextField is a lightweight component that allows the editing of a single line of 

text. 

• AJPanel  objects are containers to  other GUI components can be attached. It 

is pain rectangular area. 



 

 
 55 

• JFrame class has a title, display in the title bar at the top of the window. 

JFrame contains one or more menu. 

• A JCheckBox is a graphical component that can be in either “on” (true) or “off” 

(false) state. When user clicking on a JCheckBox change its state from “on” to 

“off”, or from “off” to “on”. 

• A JList component present the user with a scrolling list of text items. The list 

can be set up so that the user can choose either one item or multiple items. 

• A JTextField object is a text component that allows for the editing of a single 

line of text. 

 

2.10CHECK YOUR PROGRESS 
 

1. Which object can be constructed to show any number of choices in the visible 

window? 

a. JCheckBox b. JList c. JLabel d. All of the abov 

 

 

 

2. Which of these events is generated when a button is pressed? 

a. WindowEvent b. KeyEvent 
 

c. ActionEvent 
 

d. ItemEvent 
 

 

3. Which of these packages contains all the classes and methods  required for 

event handling in java? 

 

a. java.applet 
 

b. java.awt c. java.event D.java.awt.event 

 

4. Which method executes only once ? 

a. start( ) 
 

b. init( ) c.  paint( ) D.stop( ) 

 

 



 

 
 56 

5. Which class is used for this Processing Method processActionEvent( )? 

 

a.Button, 

List,MenuItem 
b. Button, 

Checkbox,Choice 

C.Scrollbar, 

Component 

D.None of the 

above 

 
6. Which method can set or change the text in a Label?. 

 

a. setText( ) b.getText( ) c. Both a and b d.None of above 

 

7. The swing related classes are contained in 

 

a. javax.swing b. javax.awt c. javax.Swing d.None of above 

 

8. The ActionListener interface is not used for handling action events. 

a. True b. False   

 
 

9. The Following steps are required to perform 

 Implement the Listener interface and overrides its methods 

 Register the component with the Listener 

a. Exception 

Handling 

b.String 

Handling 

 

c. Event Handling d.None of the 

above 

 

10. Which is the container that doesn't contain title bar and MenuBars but it can 

have other components like button, textfield etc? 

a.Window b. JFrame 

 

c. JPanel d.Container 

 



 

 
 57 

11. Class JFrame directly extends class Container. 

a. True b. False   

12. JApplets can contain menus. 

a. True b. False   

13. A dedicated drawing area can be declared as a subclass of _________. 

14. JTextFields directly extend class ___________. 

 

 
2.11CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
As per self-assessment questions asked in Self-Assessment exercises. 
 

1. b.JList 

2. c. ActionEvent 

3. d. java.awt.event 

4. b. init( ) 

5. a. Button,List,MenuItem 

6. a. setText( ) 

7. a. javax.swing 

8. b. False 

9. c. Event Handling 

10. c. JPanel 

11.  B. False  Reason:JFrame inherits directly from Frame. 

12.  A.True 

13.  JPanel 

14. JTextComponent 

 
 
2.12 FURTHER READING 
 
Many courses require students to read some extra material in addition to theirunits. 

Sometimes a text requires 'readings' which must be obtained by alllearners. Such 

texts are usually referred to as 'essential texts'. Someinstitutions call them 'set texts'. 



 

 
 58 

On other occasions, students are expected toread widely from a variety of books, but 

the readings are entirely optional. 
 

These books are referred to as 'recommended texts' or background reading.The 

distinction is important, as books are usually difficult to obtain and theavailability and 

price of essential books must be checked before they arespecified as compulsory. A 

course that has no recommended textbooks isknown as a self-contained course. 
 

Following are some examples: 
 

Koul, B. N. and Ghaudhary, Sohanvir (1989). Self-instructional course units - IGNOU 

Handbook5. New Delhi: Indira Gandhi National Open University. 
 

Thompson, Bruce (2003). Introduction to open learning and instructional design for 

openlearning. Vancouver: Commonwealth of Learning (COL). 

 
2.13ASSIGNMENTS 

 
1. What is difference between JFrame and JApplet? 

2. Write a methods of JButton class ,JList class , JCheckBox class. 

3. What is the use of ButtonGroup class? 

4. Discuss delegation event model in details. 

5. Method setEditable is a JTextComponent method. (Ture/False) 

6. JPanel objects are containers to which other GUI components can be 

attached. (True/False) 

 
 

2.14ACTIVITIES 
 

1.  Create application to take two values from textbox and do operation like 

addition, subtraction, multiplication and division. (take three Textbox and 

four Button) 

2. Write a program to take two label for username and password and two 

textfield and submit that details and display welcome message on Label. 

3. Write a program to take two List. When user select item from one list it 

moves from second list and remove in the first list. 
  



 

 
 59 

 

Unit 3:  Swing Menu Component 
 
  

Unit Structure 
 
3.1 Learning Objectives 
 
3.2 Introduction 
 
3.3 JMenu, JMenuBar,  JMenuItem 
 
3.4 JPopupMenu 
 
3.5 Let us sum up 

 
3.6 Check your Progress 

 
3.7 Check your Progress: Possible Answers 
 
3.8 Further Reading 
 
3.9 Assignments 
 
3.10    Activities 

 
  

3 



 

 
 60 

3.1 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

• To understand how to put JMenu on the JFrame.  

• Working with JMenu, JMenuBar and JMenuItem. 

• How to use JPopupMenu and also work with JPopupMenu. 

 
3.2 INTRODUCTION 
 
The previous chapter containsseveral components of Swing such as JTextField, 

JPasswordField, JButton, JCheckBox, JRadioButton, JList, JScrollPane, 

JComboBox. This Chapter presenting overview of swing JMenu Component. A menu 

bar can be linked to a top-level window. A menu bar shows a list ofMenu selection 

on the first level. Each selection is associated with a drop-down menu. This concept 

is implemented in AWT by the following classes: MenuBar, Menu and MenuItem. 

3.3 JMenu, JMenuBar,  JMenuItem 
 
A Menu is a list of choices. A Menubar displays a list of top-level menu objects. In 

java, for implementing menu, a number of classes are use like JMenu, JMenuBar 

and JMenuItem. 

A JMenuBar contains a number of object of JMenu and each of JMenu contains a 

number of object of  JMenuItem. 

To create a menu bar, first create an object of JMenuBar. This class only defines 

thedefault constructor. Next, create object of JMenu that will define the 

selectionsdisplayedon the bar.  

Following are the constructors for JMenu: 

• JMenu() : Create a new menu with an empty label. 

• JMenu(String str) : Create a new menu with the specified label. 

• JMenu(String str, boolean off) : Create a menu with the specified label and 

menu can be torn off. 

After a JMenu object has been created then JMenuItem object can be added to 

JMenu.  



 

 
 61 

Following are the constructors for JMenuItem : 

• JMenuItem( ) : Create a new JMenuItem with empty label and  no shortcut  

  keyboard key. 

• JMenuItem(String str) : Create a new JMenuItem with specified label and  no  

  shortcut keyboard key. 

• JMenuItem(String str, MenuShortcut s) : Create a new JMenuItem with 

specified  label and  specified shortcut keyboard key. 

To put JMenu object on the JMenuBar, so first create JMenuBar object. JMenuBar 

can be created with its default constructor like: 

• JMenuBar( ) 

A JMenuBar is attached with the JFrame window using setMenuBar( ) method. 

 

The Methods of JMenu class are given in the below table 3.1. 

Method Name Description 
void setEnabled(Boolean b) Sets whether or not this menu item can be 

chosen, it can be enabled or disabled. 

boolean  isEditable() Check whether this menu item is enabled. 

String getLabel() Get the label for this menu item to specified 

label. 

void setLabel(String str) Sets the label for  this menu item to the specified 

label. 
Table 3.1: Methods of JMenu class. 

 

//Program to create JMenu  is show below. 

import javax.swing.*; 

import java.awt.*; 

import java.awt.event.*; 

public class JMenuDemo extends JFrame implements ActionListener 

{ 

    JLabel l1; 



 

 
 62 

    JMenuBar mb; 

    JMenu m; 

    JMenuItem m1,m2,m3,m4; 

    JMenuDemo() 

    { 

        setLayout(null); 

        setSize(400,400); 

        setTitle("Java program for Menu Bar"); 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

        //JMenubar created 

        mb=new JMenuBar(); 

        m=new JMenu("File"); 

        m1=new JMenuItem("New"); 

        m2=new JMenuItem("Open"); 

        m3=new JMenuItem("Save"); 

        m4=new JMenuItem("Quit"); 

 

        m.add(m1); 

        m.add(m2); 

        m.add(m3); 

 

        m.addSeparator(); 

 

        m.add(m4); 

        //JMenu add into JMenuBar 



 

 
 63 

        mb.add(m); 

     // JMenuBar attached  to JFrame window 

        setJMenuBar(mb); 

        m1.addActionListener(this); 

        m2.addActionListener(this); 

         m3.addActionListener(this); 

        m4.addActionListener(this); 

 

        l1=new JLabel("You select"); 

        add(l1); 

    } 

 

    public void actionPerformed(ActionEvent e)  

    { 

       if(e.getSource()==m1) 

           l1.setText("New menu selected"); 

       else if(e.getSource()==m2) 

           l1.setText("Open menu selected"); 

       else if(e.getSource()==m3) 

           l1.setText("Save menu selected");  

       else if(e.getSource()==m4) 

           l1.setText("Quit menu selected"); 

 

    } 

    public static void main(String args[]) 

    { 



 

 
 64 

        JMenuDemo md=new JMenuDemo(); 

    } 

 

} 

The Output of the program shown in Figure: 3.1 

 

Figure-3.1 Output of JMenu. 

 

3.4  JPopupMenu 
 
A JPopupMenu is a menu which can be dynamically popped up at a specified 

position within a component. It is implemented by using JPopupMenu. The 

JPopupMenu is different than other components because JPopupMenu is not 

components and they are not usually visible. The JPopupMenu is call up by user 

when user performing some platform-dependent action with the mouse. For 

Example, User clicking with right mouse button, or clicking the mouse while holding 

down the control key. 

The object of pop-up menu is belonging to the JPopupMenu class. A newly  created 

JPopupMenu is empty. Items can be added to the JPopupMenu with its add(String 

str) method. User want to add separator line by using addSeparator( )method. 

 



 

 
 65 

Following are the constructors for JMenuItem 

• JPopupMenu() : Constructs a JPopupMenu without an "invoker". 

• JPopupMenu(String label) : Constructs a JPopupMenu with the specified title. 

The JPopupMenu generate an ActionEvent when user selects items from the menu. 

Mouse event have to be listened from the component. A MouseEvent object has  a 

boolean value method, isPopupTrigger( ) can call when the user is trying to popup a 

menu. The JPopupMenu is popup either mousePressed or mouseReleased method. 

For example, the mousePressed method might look like below code. 

 public void  mousePressed(MouseEvent me) 

{ 

 If(me.isPopupTrigger()) 

 { 

    int x=me.getX(); 

   Int y=me.getY(); 

   pmenu.show(this,x,y); 

 } 

} 

 

/* Program of JPopupMenu is display on JFrame and JPopupMenu contains item like 

red, green and blue */ 

import java.awt.*; 

import java.awt.event.*; 

import javax.swing.*; 

public class JPopupMenuDemo extends JFrame implementsMouseListener 

{ 

    JPopupMenu pm; 

     JMenuItem m1,m2,m3; 

 

   JPopupMenuDemo() 

    { 

        setLayout(new FlowLayout()); 

        setSize(400,400); 

        setTitle("Java program for JPopupMenu"); 



 

 
 66 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

 

        //Create JPopup menu class 

        pm=new JPopupMenu(); 

        m1=new JMenuItem("Red"); 

        m2=new JMenuItem("Green"); 

        m3=new JMenuItem("Blue"); 

 

         pm.add(m1); 

         pm.add(m2); 

         pm.add(m3); 

 

         add(pm); 

addMouseListener(this); 

 

    } 

 

public static void main(String args[]) 

    { 

        JPopupMenuDemo jpm=new JPopupMenuDemo(); 

    } 

 

    public void mouseClicked(MouseEvent e)    {      } 

public void mouseEntered(MouseEvent e)   {    } 

 public void mouseExited(MouseEvent e)     { } 

 

    public void mousePressed(MouseEvent e)  

    { 

       if(e.isPopupTrigger())     

       { 

           int x=e.getX(); 

           int y=e.getY(); 



 

 
 67 

           pm.show(this, x, y); 

       } 

    } 

 

        public void mouseReleased(MouseEvent e)  

    { 

       if(e.isPopupTrigger())     

       { 

           int x=e.getX(); 

           int y=e.getY(); 

           pm.show(this, x, y); 

       } 

    } 

} 
 

The Output of the program shown in Figure: 3.2 

 

Figure-3.2 Output of JPopupMenu. 

3.5LET US SUM UP 
 

•  A JMenu is a list of choice. A JMenuBar display a list of top-level menu 

choice. 



 

 
 68 

• When user want to use JMenu it must be create a JFrame. 

• Each JMenuItem is an instance of JMenuItem class attached to the JMenu. 

• Shortcut keys to JMenu items can be added using the MenuShortcut class. 

The MenuShortcut class represents a keyboard accelerator for JMenuItem. 

JMenu shortcuts are created using virtual keycodes. 

• JPopupMenu is a menu which can be dynamically popped up at a specified 

position within a component. It is implemented in java by class JPopupMenu. 

 

3.6CHECK YOUR PROGRESS 
 

1. A JMenuItem that is a JMenu is called ____________. 
 

2. ____________Method attaches a JMenuBar to a JFrame. 
 

 
3. Menus require a JMenuBar object so they can be attached to a JFrame.  

a. True 
 

b. False 
 

  

 
4. Each JMenuItem is an instance of 

 
a. MenuShortcut 
class 
 

b. JPopupMenu 
class 

c. JMenuItem D.None of the 
above 

 
 

3.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
 

1. submenu 

2. setJMenuBar 

3. a. true 

4. c. JMenuItem 

3.8 FURTHER READING 
 
Many courses require students to read some extra material in addition to theirunits. 

Sometimes a text requires 'readings' which must be obtained by alllearners. Such 

texts are usually referred to as 'essential texts'. Someinstitutions call them 'set texts'. 



 

 
 69 

On other occasions, students are expected toread widely from a variety of books, but 

the readings are entirely optional. 
 

These books are referred to as 'recommended texts' or background reading.The 

distinction is important, as books are usually difficult to obtain and theavailability and 

price of essential books must be checked before they arespecified as compulsory. A 

course that has no recommended textbooks isknown as a self-contained course. 
 

Following are some examples: 
 

Koul, B. N. and Ghaudhary, Sohanvir (1989). Self-instructional course units - IGNOU 

Handbook5. New Delhi: Indira Gandhi National Open University. 
 

Thompson, Bruce (2003). Introduction to open learning and instructional design for 

openlearning. Vancouver: Commonwealth of Learning (COL). 

 
3.9ASSIGNMENTS 

 
1. JMenuBar is attached to the JFrame window using ____________ method. 

2. A separator line can be added with the _______________ method. 

3.  Write a short note on JMenu. 

4. Discuss about JPopupMenu class with example. 

 
 

3.10ACTIVITIES 
 

1. Create application to make two JMenu one for color and second for shape, 

color menu contains JMenuItem like red,green and blue. When user click on  

JMenuItem appropriate background color will change and Second JMenu is 

shape and its JMenuItem llike Rectangle , circle and oval,when user click on 

JMenuItem appropriate shape will draw on JFrame. 

2. Create a JPopupMenu class, select its item and appropriate background 

color is change . 

 



 

 
 70 

Unit 4: Swing Tree and Table 
Component 

 
 

 

Unit Structure 
 

4.1 Learning Objectives 
 

4.2 Introduction 
 

4.3 JTree 
 

4.4     JTable 
 

4.5 Let us sum up 
 

4.6 Check your Progress 
 

4.7 Check your Progress: Possible Answers 
 

4.8 Further Reading 
 

4.9 Assignments 
 

4.10    Activities 
 

  

4 



 

 
 71 

4.1 LEARNING OBJECTIVE 
 
After studying this unit student should be able to: 
 

• To understand how to make JTable .  

• To put data in row and column using JTable. 

• Working with JTree. 

 
4.2 INTRODUCTION 
 
This Chapter presenting overview of swing JTree and JTable Component. The JTree 

class is used to display the tree structured data or hierarchical data. JTree is a 

complex component.JTableUI component enables you to present data in a grid 

withrows and columns.JTable wasdesigned according to the Model-View-Controller 

(MVC) design pattern. 

 

4.3 JTree 
 
JTree is a Swing component with which we can display hierarchical data. JTree is 

quite a complex component. A JTree has a 'root node' which is the top-most parent 

for all nodes in the tree. A node is an item in a tree. A node can have many children 

nodes. These children nodes themselves can have further children nodes. If a node 

doesn't have any children node, it is called a leaf node.The leaf node is displayed 

with a different visual indicator.it simply provides a view of the data. 

A JTree object does not actually contain the data.it simply provides a view of the 

data. JTree displays its data vertically. Each row displayed by the tree contains 

exactly one item of data and that is called node. 

Following are the constructors for JTree: 

• JTree() : Creates a JTree with a sample model. 

• JTree(Object[] value) : Creates a JTree with every element of the specified  

array as the child of a new root node. 

• JTree(TreeNode root) : Creates a JTree with the specified TreeNode as its  

root, which displays the root node. 



 

 
 72 

JTree depend on two models: TreeExpansionEvent, TreeModel and 

TreeSelectionModel. A JTree generates avariety of events: TreeSelectionEvent, and 

TreeModelEvent. TreeExpansionEvent events occur when a nodeis expanded or 

collapsed. A TreeSelectionEvent is generated when the user selects ordeselects a 

node within the tree. A TreeModelEvent is fired when the data or structure of thetree 

changes. 

The listeners for these events are TreeExpansionListener, TreeSelectionListener, 

and TreeModelListener, respectively. 

The steps to follow to use a tree: 

1. Create an instance of JTree. 

2. Create a JScrollPane and specify the tree as the object to be scrolled. 

3. Add the tree to the scroll pane. 

4. Add the scroll pane to the content pane. 

A DefaultMutableTreeNode object  is  created for the topnode of the tree hierarchy. 

To add further tree nodes are then created by calling add( ) method to the tree. 

 

//Program to create JTree  is show below. 

import javax.swing.*; 

import java.awt.*; 

import javax.swing.event.TreeSelectionEvent; 

import javax.swing.event.TreeSelectionListener; 

import javax.swing.tree.DefaultMutableTreeNode; 

public class JTreeDemo extends JFrame implements TreeSelectionListener 

{ 

    JTree tree; 

    JLabel l1; 

 



 

 
 73 

    JTreeDemo()  

    { 

        // Frame setting 

       setLayout(new FlowLayout()); 

        setSize(400,400); 

        setTitle("Java program for JTree"); 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

 

        // Create top node of tree. 

        DefaultMutableTreeNode root=new DefaultMutableTreeNode("Tree Demo"); 

        // Create subtree of "A". 

        DefaultMutableTreeNode a1=new DefaultMutableTreeNode("A"); 

        root.add(a1); 

 

        DefaultMutableTreeNode a2=new DefaultMutableTreeNode("A1"); 

        a1.add(a2); 

 

        DefaultMutableTreeNode a3=new DefaultMutableTreeNode("A2"); 

        a1.add(a3); 

 

        // Create subtree of "B". 

        DefaultMutableTreeNode b1=new DefaultMutableTreeNode("B"); 

        root.add(b1); 

 

        DefaultMutableTreeNode b2=new DefaultMutableTreeNode("B1"); 



 

 
 74 

        b1.add(b2); 

 

        DefaultMutableTreeNode b3=new DefaultMutableTreeNode("B2"); 

        b1.add(b3); 

 

        // Create the tree. 

        tree =new JTree(root); 

// Add the tree to a scroll pane. 

        JScrollPane js=new JScrollPane(tree); 

        add(js); 

 

        l1=new JLabel("You select"); 

        add(l1); 

           tree.addTreeSelectionListener(this); 

       } 

    public void valueChanged(TreeSelectionEvent e)  

    { 

       l1.setText("You select :"+e.getPath()); 

 

    } 

    public static void main(String args[]) 

    { 

        JTreeDemo jt=new JTreeDemo(); 

    } 

} 

 



 

 
 75 

The Output of the program shown in Figure: 4.1 

` 

Figure-4.1 Output of JTree. 

 

4.4  JTable 
 
The Swing class JTable is a powerful UI component created for displaying tabular 

data like aspreadsheet. The data is represented as rows and columns. 

Following are the constructors for JTable: 

JTable() : Creates a JTable with empty cells. 

JTable(int rows, int cols) : Create a JTable with rows and cols of empty cells. 

JTable(Object[][] rows, Object[] columns) Creates a table with the 

specified data. 

JTable have a three models. The first is the table model, which is defined by 

theTableModel interface. This model defines those things related to displaying data 

in atwo-dimensional format. The second is the table column model, which is 

represented byTableColumnModel. JTable is defined in terms of columns, and it is 

TableColumnModel thatspecifies the characteristics of a column. The third model 

determines how items are selected, and it is specified by theListSelectionModel,  

A JTable can generate several different events such as ListSelectionEvent and 

TableModelEvent. A ListSelectionEvent is generatedwhen the user selects 



 

 
 76 

something in the table. By default, JTable allows you to select one ormore complete 

rows. A TableModelEvent is generated when that table’sdata changes in some way.  

The steps to follow to use a JTable: 

1. Create an instance of JTable. 

2. Create a JScrollPane object, specifying the table as the object to scroll. 

3. Add the table to the scroll pane. 

4. Add the scroll pane to the content pane. 

 

 

// Program to create table using JTable  

import javax.swing.*; 

import java.awt.*; 

import javax.swing.event.TableModelEvent; 

import javax.swing.event.TableModelListener; 

 

public class JTableDemo extends JFrame  

{ 

 

    JTableDemo() 

    { 

           // Frame setting 

        setLayout(new FlowLayout()); 

        setSize(700,400); 

        setTitle("Java program for JTable"); 

        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        setVisible(true); 

 

 

        // Initialize column headings. 

        String[] colhead={"NO","NAME"}; 

        // Initialize data. 

        Object[][] rowdata={ 

{"101","Priya"}, 



 

 
 77 

                            {"102","Riya" }, 

                            {"103","Maan"}, 

                            {"104","Yashvi"}, 

                            {"105","Aarvi"} 

}; 

        // Create the table. 

        JTable table = new JTable(rowdata, colhead); 

        // Add the table to a scroll pane. 

        JScrollPane jsp = new JScrollPane(table); 

        // Add the scroll pane to the content pane. 

        add(jsp); 

 

    } 

 public static void main(String args[]) 

 { 

     JTableDemo jtd=new JTableDemo(); 

 } 

 

} 
 

The Output of the program shown in Figure: 4.2 

 

Figure-4.2 Output of JTable. 



 

 
 78 

4.5LET US SUM UP 
 

• JTree is a Swing component that represent hierarchical data. 

• A JTree provides a view of the data. 

• User can expand individual subtree. 

• JTable represent  data in rows and columns. 

• JTable was designed according to the Model-View-Controller (MVC) design 

pattern, according to which components responsible for presentation (or the 

view) are separated from components that store data (or the model) for that 

presentation. 

 

4.6CHECK YOUR PROGRESS 
 

1. __________ component isrepresenting a hierarchical view of data. 
 

2. JTree is packaged_____________. 
 

3. ___________ method receives the TreeSelectionEvent. 
 
 

4. ____________component is displays rows and columns of data. 

4.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 
 

1. JTree 

2. Javax.swing 

3. valueChanged( ) 

4. JTable 

 
4.8 FURTHER READING 
 
Many courses require students to read some extra material in addition to theirunits. 

Sometimes a text requires 'readings' which must be obtained by alllearners. Such 

texts are usually referred to as 'essential texts'. Someinstitutions call them 'set texts'. 

On other occasions, students are expected toread widely from a variety of books, but 

the readings are entirely optional. 

 



 

 
 79 

These books are referred to as 'recommended texts' or background reading.The 

distinction is important, as books are usually difficult to obtain and theavailability and 

price of essential books must be checked before they arespecified as compulsory. A 

course that has no recommended textbooks isknown as a self-contained course. 

 

Following are some examples: 

 

Koul, B. N. and Ghaudhary, Sohanvir (1989). Self-instructional course units - IGNOU 

Handbook5. New Delhi: Indira Gandhi National Open University. 

 

Thompson, Bruce (2003). Introduction to open learning and instructional design for 

openlearning. Vancouver: Commonwealth of Learning (COL). 

 
4.9ASSIGNMENTS 

 
1. List out event of JTree class. 

2. Which model are used in JTree class. 

3. Write a step to create JTree. 

4. Which model are used in JTable class. 

5.  List out the events of JTable class. 

6.  Write a step to create JTable. 

 
 

4.10ACTIVITIES 
 

1.  Write a program to create JTree with two subtrees like vegetable and fruit 

and add more children in vegetable and fruit tree. 

  



 

 
 80 

 

  

   Block-2 

JDBC (Java Database 

Connectivity) 
 



 

 
 81 

 

Unit 1:  JDBC Introduction 

  
Unit Structure 

 

1.1. Learning Objectives 
 

1.2. Introduction 
 

1.3. JDBC Basics  
 

1.4. Configuring ODBC Data Source 
 

1.5. Let us sum up 
 

1.6. Check your Progress 
 

1.7. Check your Progress: Possible Answers 
 

1.8. Further Reading 
 

1.9. Assignments 
 

1.10. Activities 
 

  

1 



 

 
 82 

1.1 LEARNING OBJECTIVE 
 

After studying this unit student should be able to: 
 

• JDBC connectivity so student can perform CRUD operations in java. 

• JDBC Drivers, Statements and ResultSet for data movement. 

• The importance of JDBC to access database with Java application 

• Architecture of JDBC 

 

1.2 INTRODUCTION 
 

The role of JDBC is very important. It enables Java applications and applets to 

connect to and access database. Lets take a look into the idea behind this.Different 

applications have to talk different databases, some standard way is required for this 

communication. In JDBC, the Java classes are available to provide access to any 

ANSI SQL-2 compliant database. This block covers the introduction and basics of 

JDBC. The next sections cover the JDBC driver and practical approaches for 

Database access.  

 

1.3 JDBC BASICS 

 

The JDBC (Java Database Connectivity) API defines interfaces and classes for 

writing database applications in Java by making database connections. Using JDBC 

you can send SQL, PL/SQL statements to almost any relational database. JDBC is a 

Java API for executing SQL statements and supports basic SQL functionality. It 

provides RDBMS access by allowing you to embed SQL inside Java code. Because 

Java can run on a thin client, applets embedded in Web pages can contain 

downloadable JDBC code to enable remote database access. You will learn how to 

create a table, insert values into it, query the table, retrieve results, and update the 

table with the help of a JDBC Program example. 



 

 
 83 

Although JDBC was designed specifically to provide a Java interface to relational 

databases, you may find that you need to write Java code to access non-relational 

databases as well. 

JDBC Architecture 

 

Figure 1: JDBC Architecture 

The above diagram represents JDBC architecture. The Java application which is 

intended to perform database operation needs to call JDBC library. JDBC library 

comprises Java packages java.sql.* and javax.sql.* . Both these packages contain 

interfaces, classes, abstract classes and method to establish and maintain 

connection with database. Apart from these various methods to manage database 

transactions are available. JDBC loads a driver which talks to the database. Java 

application calls the JDBC library. JDBC loads a driver which talks to the database. 

We can change database engines without changing database code. 

 

1.4Configuring ODBC Data Source 

 

Click Start > Settings > Control Panel on the Windows menu. The Control Panel 
window appears.  
 

 
Double-click Administrative Tools on the Control Panel window. The 

Administrative Tools window appears.  



 

 
 84 

 
  

Double-click Data Sources (ODBC) on the Administrative Tools window. The ODBC 

Data Source Administrator window appears. 

 

 
 

The Create New Data Source window appears. 
 

Click the System DSN tab and click the Add button.  



 

 
 85 

 
 

Scroll down the list until you find the driver associated with the database for which 

you want to create a data source, and then click Finish. The ODBC Setup dialog 

box appears.  
 

 
 

Note that the information on this dialog box, including the dialog box title, varies 

based on the database driver you selected in the previous step. Here, we selected a 

Microsoft Access database driver, so the information displayed in the dialog box is 

specific to that database.  



 

 
 86 

Enter a name in the Data Source Name field (for this example give the name 

JdbcBasic). Click the Select button in the Database group box. The Select 
Database dialog box appears.  
 

 
 

Navigate until you find the database you want to use as the data source and click 

OK. You are returned to the ODBC Setup dialog box. Click OK on the ODBC Setup 

dialog box. 

 

1.5 LET US SUM UP 
 

This chapter focus on data base connectivity using JDBC introductory. Using this, 

student can learn the concept of JDBC and creating steps for ODBC object for DB 

connectivity. 

 

1.6 CHECK YOUR PROGRESS 
 

 

1. What are the steps involved in establishing a connection?  

2. How can you load the drivers?  

3. What Class.forName will do while loading drivers?  

4. How can you make the connection?   

 

 



 

 
 87 

1.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
1. This involves two steps (1)loading the driver and (2) making the connection. 

2. Loading the driver or drivers you want to use is very simple and involves just 

one line of code. If, for example, you want to use the JDBC-ODBC Bridge 

driver, the following code will load it: 

Eg. 

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

Your driver documentation will give you the class name to use. For instance, if 

the class name is jdbc.DriverXYZ , you would load the driver with the following 

line of code: 

Eg.:Class.forName("jdbc.DriverXYZ"); 

3.  It is used to create an instance of a driver and register it with the 

DriverManager. When you have loaded a driver, it is available for making a 

connection with a DBMS. 

4.  In establishing a connection is to have the appropriate driver connect to the 

DBMS. The following line of code illustrates the general idea: 

Eg. 

String url = "jdbc:odbc:Fred"; 

Connection con = DriverManager.getConnection(url, "Fernanda", "J8"); 

 

1.8 FURTHER READING 
 

For more focus on JDBC read the book: Database Programming with JDBC and 

Java by George Reese. 
 

1.9 ASSIGNMENTS 
 

1. What is the use of JDBC? 

2. Describe the JDBC Architecture in detail. 

 

1.10 ACTIVITIES 
 

• Try to create ODBC object for Microsoft Access Database which you have 

create for accessing data in java.  



 

 
 88 

Unit 2:  JDBC Queries 

  
Unit Structure 

 

2.1. Learning Objectives 
 

2.2. Introduction 
 

2.3. Prepared Statement  
 

2.4. Callable Statement 
 

2.5. Let us sum up 
 

2.6. Check your Progress 
 

2.7. Check your Progress: Possible Answers 
 

2.8. Further Reading 
 

2.9. Assignments 
 

2.10. Activities 
  

2 



 

 
 89 

2.1 LEARNING OBJECTIVE 
 

After studying this unit student should be able to: 
 

• JDBC Connection to DB 

• JDBC Statements 

 

2.2 INTRODUCTION 
 

The JDBC connectivity must require the JDBC connectivity. You should enlist the 

driver in your program before you use it. Enlisting the driver is the procedure by 

which the Oracle driver's class record is stacked into the memory, so it tends to be 

used as a usage of the JDBC interfaces.  

You have to do this enlistment just once in your program. You can enroll a driver in 

one of two different ways.  

1. Class.forName()  

 The most well-known way to deal with register a driver is to  utilize Java's 

 Class.forName() technique, to powerfully stack the driver's class document 

 into memory, which naturally enlists it. This strategy is ideal since it enables 

 you to make the driver enlistment configurable and convenient. 

 Example: 

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

  2.  DriverManager.registerDriver() 

 The second way to register a driver, is to use the static 

 DriverManager.registerDriver() method. 

 You should use the registerDriver() method if you are using a non-JDK 

 compliant JVM, such as the one provided by Microsoft. 

 Example: 

 Driver myDriver = new sun.jdbc.odbc.JdbcOdbcDriver(); 

DriverManager.registerDriver( myDriver ); 



 

 
 90 

Database URL Formulation: 

you can build up connection utilizing by the DriverManager.getConnection() 

technique. For simple reference, let me list the three over-burden 

DriverManager.getConnection() strategies −  

getConnection(String url)  

getConnection(String url, Properties prop)  

getConnection(String url, String client, String secret key)  

Here each structure requires a database URL. A database URL is a location that 

focuses to your database.  

Detailing a database URL is the place the majority of the issues related with setting 

up an association happens. 

Example 

 Connection cn=DriverManager.getConnection(String url); 

When connection is acquired we can cooperate with the database. The JDBC 

Statement, CallableStatement, and PreparedStatement interfaces characterize the 

techniques and properties that empower you to send SQL or PL/SQL directions and 

get information from your database.  

They additionally characterize techniques that assistance connect information type 

contrasts among Java and SQL information types utilized in a database. 

Statement object is used to execute a SQL statement and create statement by the 

Connection object's createStatement( ) method. 

Statement stmt= conn.createStatement( ); 

Methods  

boolean execute (String SQL): Returns a boolean value of true if a ResultSet 

object can be retrieved; otherwise, it returns false. Use this method to execute SQL 

DDL statements or when you need to use truly dynamic SQL. 

 

int executeUpdate (String SQL): Returns the number of rows affected by the 

execution of the SQL statement. Use this method to execute SQL statements for 



 

 
 91 

which you expect to get a number of rows affected - for example, an INSERT, 

UPDATE, or DELETE statement. 

ResultSet executeQuery (String SQL): Returns a ResultSet object. Use this 

method when you expect to get a result set, as you would with a SELECT statement. 

 

2.3 PREPARED STATEMENT 
 

The PreparedStatement interface extends the Statement interface, which gives you 

added functionality with a couple of advantages over a generic Statement object. 

This statement gives you the flexibility of supplying arguments dynamically. 

String SQL = "Update stud SET pwd = ? WHERE id = ?"; 

stmt = conn.prepareStatement(SQL); 

All parameters in JDBC are represented by the ? symbol, which is known as the 

parameter marker. You must supply values for every parameter before executing the 

SQL statement. The ? symbol represent values respectively. 

The setXXX() methods bind values to the parameters, where XXX represents the 

Java data type of the value you wish to bind to the input parameter. If you forget to 

supply the values, you will receive an SQLException. 

 

2.3 CALLABLE STATEMENT 
 

After the connection is established,creates the CallableStatement object, which 

would be used to execute a call to a database stored procedure. 

Syntax for Create Procedure in Database: 

CREATE OR REPLACE PROCEDURE getStudName  

   (STUD_ID IN NUMBER, STUD_FIRST OUT VARCHAR) AS 

BEGIN 

   SELECT first INTO STUD_FIRST 

   FROM Employees 



 

 
 92 

   WHERE ID = STUD_ID; 

END; 

The CallableStatement object can use the three types of parameters: IN, OUT, and 

INOUT. 

IN: A parameter whose value is unknown when the SQL statement is created. You 

bind values to IN parameters with the setXXX() methods. 

OUT: A parameter whose value is supplied by the SQL statement it returns. You 

retrieve values from theOUT parameters with the getXXX() methods. 

INOUT: A parameter that provides both input and output values. You bind variables 

with the setXXX() methods and retrieve values with the getXXX() methods. 

The Connection.prepareCall() method is used to instantiate a CallableStatement 

object based on the preceding stored procedure – 

Syntax: 

CallableStatement cstmt = null; 

try { 

   String SQL = "{call getStudName (?, ?)}"; 

   cstmt = conn.prepareCall (SQL); 

   . . . 

} 

2.5 LET US SUM UP 
 

This chapter focus on the different types of statements supported by java. The usage 

of different statement and utilisation of it is discussed in this chapter.  

 

2.6 CHECK YOUR PROGRESS 
 

1. What is the use of PreparedStatement?  

2. What is the use of CallableStatement?  

 



 

 
 93 

2.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 

1. Refer 2.3 

2. Refer 2.4 

 

2.8 FURTHER READING 
 

For more focus on JDBC read the book: Database Programming with JDBC and 

Java by George Reese 

 

2.9 ASSIGNMENTS 
 

• Demonstrate use of Statement, Prepared Statement and Callable 

Statement.  

 

2.10 ACTIVITIES 
 

• Try to create database and use different statement for data manipulation. Use 

the Procedure also.  

  



 

 
 94 

 

Unit 3:  Exception Handling in 
JDBC  

Unit Structure 

 

3.1. Learning Objectives 
 

3.2. Introduction 
 

3.3. SQLException Methods  
 

3.4. Try...Catch...Finally with Example 
 

3.5. Let us sum up 
 

3.6. Check your Progress 
 

3.7. Check your Progress: Possible Answers 
 

3.8. Further Reading 
 

3.9. Assignments 
 

3.10. Activities 
  

3 



 

 
 95 

3.1 LEARNING OBJECTIVE 
 

After studying this unit student should be able to: 

• JDBC SQLException methods 

• The usage of Try...Catch... Finally Block 

 

3.2 INTRODUCTION 
 

Exception handling allows you to handle exceptional conditions such as program-

defined errors in a controlled fashion. 

When an exception condition occurs, an exception is thrown. The term thrown 

means that current program execution stops, and the control is redirected to the 

nearest applicable catch clause. If no applicable catch clause exists, then the 

program's execution ends. 

JDBC Exception handling is very similar to the Java Exception handling but for 

JDBC, the most common exception you'll deal with is java.sql.SQLException. 

 

3.3SQLEXCEPTION METHODS 
 

An SQLException can occur both in the driver and the database. When such an 

exception occurs, an object of type SQLException will be passed to the catch clause. 

The passed SQLException object has the following methods available for retrieving 

additional information about the exception – 

 

Method Description 

getErrorCode( ) Gets the error number associated with the 
exception. 

getMessage( ) Gets the JDBC driver's error message for 
an error, handled by the driver or gets the 
Oracle error number and message for a 
database error. 



 

 
 96 

getSQLState( ) Gets the XOPEN SQLstate string. For a 
JDBC driver error, no useful information is 
returned from this method. For a database 
error, the five-digit XOPEN SQLstate code 
is returned. This method can return null. 

getNextException( ) Gets the next Exception object in the 
exception chain. 

printStackTrace( ) Prints the current exception, or throwable, 
and it's backtrace to a standard error 
stream. 

printStackTrace(PrintStream s) Prints this throwable and its backtrace to 
the print stream you specify. 

printStackTrace(PrintWriter w) Prints this throwable and it's backtrace to 
the print writer you specify. 

 

3.4Try...Catch...Finally WITH EXAMPLE 
 

By utilizing the information available from the Exception object, you can catch an 

exception and continue your program appropriately. Here is the general form of a try 

block – 

try { 

   // Your risky code goes between these curly braces!!! 

} 

catch(Exception ex) { 

   // Your exception handling code goes between these  

   // curly braces, similar to the exception clause  

   // in a PL/SQL block. 

} 

 



 

 
 97 

finally { 

   // Your must-always-be-executed code goes between these  

   // curly braces. Like closing database connection. 

} 

 

3.5 LET US SUM UP 
 

This chapter focus on the exception handling in JDBC. It focus on exception handling 

block.  

 
3.6 CHECK YOUR PROGRESS 
 

1. Write a short note on Exception Handling. 

2. What is the use of Try...Catch...Finally block?  
 

 

3.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 

1. Refer 3.3 

2. Refer 3.4 
 

3.8 FURTHER READING 
 

For more focus on JDBC read the book: Database Programming with JDBC and 

Java by George Reese 

 

3.9 ASSIGNMENTS 
 

• Demonstrate use of try catch block in JDBC program.  

 

3.10 ACTIVITIES 
 

• Try to create database with also use the Exception handling.  

  



 

 
 98 

Unit 4:  JDBC Driver 

  
Unit Structure 

 

4.1. Learning Objectives 
 

4.2. Introduction 
 

4.3. JDBC Driver Types 
 

4.4. ResultSet 
 

4.5. JDBC Example 
 

4.6. Let us sum up 
 

4.7. Check your Progress 
 

4.8. Check your Progress: Possible Answers 
 

4.9. Further Reading 
 

4.10. Assignments 
 

  

4 



 

 
 99 

4.1 LEARNING OBJECTIVE 
 

After studying this unit student should be able to: 
 

• JDBC Drivers and which one is best 

• Actual implementation of JDBC application 

 

4.2 INTRODUCTION 
 

JDBC is an API adds the database programming capabilities to Java.java.sql is 

referred to as JDBC API. JDBC drivers are used by Java applications applets to 

communicate with database servers.import java.sql.*; The star ( * ) indicates that all 

of the classes in the package java.sql are to be imported. 

JDBC drivers are used by Java applications applets to communicate with database 

servers.It accepts the Java call and converts them into database’s native language 

specific calls and vice versa. 

 

 

 

  

 

 

Figure 2: JDBC Driver 

Database driver plays a vital role it accepts Java language specific calls from the 

Java application converts them into database’s native language specific call which 

database engine can understand and converts database’s native language specific 

responses into Java language specific  response and delivers to Java application. 

 

 

Java Application/ Applet 
Database 

Driver 

Database Server 

(Oracle/ MySQL/ 

Microsoft SQL 

Server etc) 



 

 
 100 

4.3JDBC Driver Types 

 

JDBC drivers are classified into four categories. 

• Type 1: JDBC-ODBC bridge driver:  This is developed by Javasoft. It uses the 

functionalities of Microsoft’s ODBC driver to communicate with database 

server. It is only as a temporary solution. 

• Type 2: Native-API partly Java driver: These drivers use a server’s native 

protocol that talks to database servers.  

• Type 3: JDBC-Net pure Java Driver: These are pure Java drivers use 

standard protocol to communicate with database access server.  

• Type 4: Native protocol pure Java driver:  These are the pure Java driver uses 

vender specific protocol to communicate with database servers. 

The type four drivers are using as a current industrial standard. 

Type 1 JDBC-ODBC Bridge driver 

JDBC-ODBC Bridge driver The Type 1 driver translates all JDBC calls into ODBC 

calls and sends them to the ODBC driver. ODBC is a generic API. The JDBC-ODBC 

Bridge driver is recommended only for experimental use or when no other alternative 

is available. 

 

 

 

 

 

 

 

 

 

Figure 3: JDBC Type 1 Driver 



 

 
 101 

• Advantage 
o The JDBC-ODBC Bridge allows access to almost any database, 

since the database's ODBC drivers are already available.  

• Disadvantages 
o Since the Bridge driver is not written fully in Java, Type 1 drivers 

are not portable.  

o A performance issue is seen as a JDBC call goes through the 

bridge to the ODBC driver, then to the database, and this 

applies even in the reverse process.  

o They are the slowest of all driver types. 

o The client system requires the ODBC Installation to use the 

driver.  

o Not good for the Web. 

Type 2Native-API/partly Java driver 

The distinctive characteristic of type 2 jdbc drivers are that Type 2 drivers convert 

JDBC calls into database-specific calls i.e. this driver is specific to a particular 

database. Some distinctive characteristic of type 2 jdbc drivers are shown below. 

Example: Oracle will have oracle native api. 

  

 

 

 

 

 

 

 

 

 

Figure 4: JDBC Type 2 Driver 



 

 
 102 

• Advantage 
o The distinctive characteristic of type 2 jdbc drivers are that they 

are typically offer better performance than the JDBC-ODBC 

Bridge as the layers of communication (tiers) are less than that 

of Type 1 and also it uses Native api which is Database specific. 

• Disadvantages 
o Native API must be installed in the Client System and hence 

type 2 drivers cannot be used for the Internet.  

o Like Type 1 drivers, it’s not written in Java Language which 

forms a portability issue.  

o If we change the Database we have to change the native api as 

it is specific to a database 4.  

o Mostly obsolete now 

o Usually not thread safe. 

Type 3All Java/Net-protocol driver 

Type 3 database requests are passed through the network to the middle-tier server. 

The middle-tier then translates the request to the database. If the middle-tier server 

can in turn use Type1, Type 2 or Type 4 drivers. 

 

 

 

 

 

 

 

 

 

 

Figure 5: JDBC Type 3 Driver 



 

 
 103 

• Advantage 
o This driver is server-based, so there is no need for any vendor 

database library to be present on client machines.  

o This driver is fully written in Java and hence Portable. It is 

suitable for the web.  

o There are many opportunities to optimize portability, 

performance, and scalability.  

o The net protocol can be designed to make the client JDBC 

driver very small and fast to load.  

o The type 3 driver typically provides support for features such as 

caching (connections, query results, and so on), load balancing, 

and advanced system administration such as logging and 

auditing.  

o This driver is very flexible allows access to multiple databases 

using one driver.  

o  They are the most efficient amongst all driver types. 

• Disadvantages 
o It requires another server application to install and maintain. 

Traversing the recordset may take longer, since the data comes 

through the backend server.  

Type 4Native-protocol/all-Java driver 

The Type 4 uses java networking libraries to communicate directly with the database 

server. 

 

 

 

 

 

 

Figure 6: JDBC Type 4 Driver 



 

 
 104 

• Advantage 
o The major benefit of using a type 4 jdbc drivers are that they are 

completely written in Java to achieve platform independence 

and eliminate deployment administration issues. It is most 

suitable for the web.  

o Number of translation layers is very less i.e. type 4 JDBC drivers 

don't have to translate database requests to ODBC or a native 

connectivity interface or to pass the request on to another 

server, performance is typically quite good.  

o You don’t need to install special software on the client or server. 

Further, these drivers can be downloaded dynamically.. 

• Disadvantages 
o With type 4 drivers, the user needs a different driver for each 

database. 

Loading a database driver 

The jdbc connection process, we load the driver class by calling Class.forName() 

with the Driver class name as an argument. Once loaded, the Driver class creates an 

instance of itself. A client can connect to Database Server through JDBC Driver. 

Since most of the Database servers support ODBC driver therefore JDBC-ODBC 

Bridge driver is commonly used. 

The return type of the Class.forName (String ClassName) method is “Class”. Class is 

a class in 

java.lang package. 

try { 

 Class.forName(”sun.jdbc.odbc.JdbcOdbcDriver”); //Or any other driver 

} 

catch(Exception x){ 

 System.out.println( “Unable to load the driver class!” ); 

} 

 



 

 
 105 

Creating a oracle jdbc Connection 

The JDBC DriverManager class defines objects which can connect Java applications 

to a JDBC driver. DriverManager is considered the backbone of JDBC architecture. 

DriverManager class manages the JDBC drivers that are installed on the system. Its 

getConnection() method is used to establish a connection to a database. It uses a 

username, password, and a jdbc url to establish a connection to the database and 

returns a connection object. A jdbc Connection represents a session/connection with 

a specific database. Within the context of a Connection, SQL, PL/SQL statements 

are executed and results are returned. An application can have one or more 

connections with a single database, or it can have many connections with different 

databases. A Connection object provides metadata i.e. information about the 

database, tables, and fields. It also contains methods to deal with transactions. 

JDBC URL Syntax::    jdbc: <subprotocol>: <subname> 

JDBC URL Example:: jdbc: <subprotocol>: <subname>•Each driver has its own 

subprotocol 

•Each subprotocol has its own syntax for the source. We’re using the jdbc odbc 

subprotocol, so the DriverManager knows to use the sun.jdbc.odbc.JdbcOdbcDriver. 

try{ 

 Connection 

dbConnection=DriverManager.getConnection(url,”loginName”,”Password”) 

} 

catch( SQLException x ){ 

 System.out.println( “Couldn’t get connection!” ); 

} 

 

4.4JDBC RESULTSETS & STATEMENTS 
 

Once a connection is obtained we can interact with the database. Connection 

interface defines methods for interacting with the database via the established 



 

 
 106 

connection. To execute SQL statements, you need to instantiate a Statement object 

from your connection object by using the createStatement() method. 

Statement statement = dbConnection.createStatement(); 

A statement object is used to send and execute SQL statements to a database. 

Three kinds of Statements 

• Statement: Execute simple sql queries without parameters. 

Statement createStatement() 

Creates an SQL Statement object. 

• Prepared Statement: Execute precompiled sql queries with or without 

parameters. 

PreparedStatement prepareStatement(String sql) 

returns a new PreparedStatement object. PreparedStatement objects are 

precompiledSQL statements. 

• Callable Statement: Execute a call to a database stored procedure. 

CallableStatement prepareCall(String sql) 

returns a new CallableStatement object. CallableStatement objects are SQL 

stored procedure call statements. 

ResultSet 

Statement interface defines methods that are used to interact with database via the 

execution of SQL statements. The Statement class has three methods for executing 

statements: 

executeQuery(), executeUpdate(), and execute(). For a SELECT statement, the 

method to use is executeQuery . For statements that create or modify tables, the 

method to use is executeUpdate. Note: Statements that create a table, alter a table, 

or drop a table are all examples of DDL 

statements and are executed with the method executeUpdate. execute() executes 

an SQLstatement that is written as String object. 

 

 



 

 
 107 

Creating a ResultSet 

You create a ResultSet by executing a Statement or PreparedStatement, like this: 

Statement statement = connection.createStatement(); ResultSet result = 

statement.executeQuery("select * from people"); Or like this: String sql = "select * 

from people"; PreparedStatement statement = connection.prepareStatement(sql); 

ResultSet provides access to a table of data generated by executing a Statement. 

The table rows are retrieved in sequence. A ResultSet maintains a cursor pointing to 

its current row of data. The next() method is used to successively step through the 

rows of the tabular results. 

ResultSetMetaData Interface holds information on the types and properties of the 

columns in a ResultSet. It is constructed from the Connection object. 

 

ResultSet Types 

A ResultSet can be of a certain type. The type determines some characteristics and 

abilities of the ResultSet. Not all types are supported by all databases and JDBC 

drivers. You will have to check your database and JDBC driver to see if it supports 

the type you want to use. The DatabaseMetaData.supportsResultSetType(int type) 

method returns true or false depending on whether the given type is supported or 

not. The DatabaseMetaData class is covered in a later text. At the time of writing 

there are three ResultSet types: 

1. ResultSet.TYPE_FORWARD_ONLY 

2. ResultSet.TYPE_SCROLL_INSENSITIVE 

3. ResultSet.TYPE_SCROLL_SENSITIVE 

The default type is TYPE_FORWARD_ONLY TYPE_FORWARD_ONLY means that 

the ResultSet can only be navigated forward. That is, you can only move from row 1, 

to row 2, to row 3 etc. You cannot move backwards in the ResultSet. 

TYPE_SCROLL_INSENSITIVE means that the ResultSet can be navigated 

(scrolled) both forward and backwards. You can also jump to a position relative to 

the current position, or jump to an absolute position. The ResultSet is insensitive to 

changes in theunderlying data source while the ResultSet is open. That is, if a record 

in the ResultSet is changed in the database by another thread or process, it will not 



 

 
 108 

be reflected in already opened ResulsSet's of this type. TYPE_SCROLL_SENSITIVE 

means that the ResultSet can be navigated (scrolled) both forward and backwards. 

You can also jump to a position relative to the current position, or jump to an 

absolute position. The ResultSet is sensitive to changes in the underlying data 

source while the ResultSet is open. That is, if a record in the ResultSet is changed in 

the database by another thread or process, it will be reflected in already opened 

ResulsSet's of this type. 

 

4.5JDBC APPLICATION 
 

Create Microsoft Access Database and table. Then create odbc object for 

connectivity purpose. The code always resides between try..catch block. 

Example 1: Display database metadata 

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

   Connection connection=DriverManager.getConnection("jdbc:odbc:JdbcBasic"); 

   DatabaseMetaData meta=connection.getMetaData(); 

   System.out.print("Database: "+meta.getDatabaseProductName()); 

   System.out.println(" version "+meta.getDatabaseProductVersion()); 

   System.out.println("User name: "+meta.getUserName()); 

   System.out.println("Driver name:"+ meta.getDriverName()); 

   System.out.println("URL:"+meta.getURL()); 

 

Example 2: Display database data 

   Statement st=connection.createStatement(); 

   ResultSet rs=st.executeQuery("select * from temp"); 

   ResultSetMetaData rsm=rs.getMetaData(); 

    int j=1; 

   int i=1; 



 

 
 109 

   int cocount=rsm.getColumnCount(); 

   while(j<=cocount) 

   { 

      System.out.println(rsm.getColumnName(j)); 

      j++; 

   } 

   while(rs.next()) 

   { 

           System.out.println(rsm.getColumnName(2)+":"+rs.getString(2)); 

           //i++; 

     } 

 

Example 3: CRUD Operations into mysql database 

Insert Data: 

Class.forName("com.mysql.jdbc.Driver"); 

            cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou", "root", 

"root"); 

             String sql= "insert into msc2 values(25,'Pray','Mehsana')"; 

             Statement st=cn.createStatement(); 

             st.executeUpdate(sql); 

             cn.close(); 

   connection.close(); 

Delete Data: 

Connection 

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","root"); 

         Statement st=cn.createStatement(); 



 

 
 110 

         st.executeUpdate("delete from msc2"); 

 

Display Data: 

Connection 

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root", "root"); 

       Statement st=cn.createStatement(); 

ResultSet rs=st.executeQuery("select * from msc2"); 

    while (rs.next()) 

    {  

        System.out.println(rs.getString(2)); 

        int a= Integer.parseInt(rs.getString(1)); 

        System.out.println(a); 

    } 

        cn.close(); 

 

Update Data: 

Connection 

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","root"); 

         Statement st=cn.createStatement(); 

         st.executeUpdate("update msc2 set name=abc where id=25"); 

 

4.6 LET US SUM UP 
 

This chapter focus on data base connectivity using JDBC. 

 

 

 
 



 

 
 111 

4.7 CHECK YOUR PROGRESS 
 

1. How can you create JDBC statements?  

2. How can you retrieve data from the ResultSet? 

3. What are the different types of Statements? 

4. How can you use PreparedStatement?  

5. What setAutoCommit does?   

6. How to call a Strored Procedure from JDBC?   

7. How to Retrieve Warnings?   

8. How can you Move the Cursor in Scrollable Result Sets?   

9. What’s the difference between TYPE_SCROLL_INSENSITIVE, and 

TYPE_SCROLL_SENSITIVE?  

10. How to Make Updates to Updatable Result Sets? 

 

4.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 

1. Create JDBC statements: 

A Statement object is what sends your SQL statement to the DBMS. You 

simply create a Statement object and then execute it, supplying the 

appropriate execute method with the SQL statement you want to send. For a 

SELECT statement, the method to use is executeQuery. For statements that 

create or modify tables, the method to use is executeUpdate. 

Eg. 

It takes an instance of an active connection to create a Statement object. In 

the following example, we use our Connection object con to create the 

Statement object stmt : 

Statement stmt = con.createStatement(); 

 

2. Retrieve data from the ResultSet: 

Step 1. 

JDBC returns results in a ResultSet object, so we need to declare an instance 

of the class ResultSet to hold our results. The following code demonstrates 

declaring the ResultSet object rs. 



 

 
 112 

Eg. 

ResultSet rs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM 

COFFEES"); 

Step2. 

String s = rs.getString("COF_NAME"); 

The method getString is invoked on the ResultSet object rs , so getString will 

retrieve (get) the value stored in the column COF_NAME in the current row of 

rs. 

 

3. Types of Statements: 

1.Statement (use createStatement method)  

2. Prepared Statement (Use prepareStatement method) and  

3. Callable Statement (Use prepareCall) 
 

4. Use PreparedStatement: 

This special type of statement is derived from the more general class, 

Statement.If you want to execute a Statement object many times, it will 

normally reduce execution time to use a PreparedStatement object 

instead.The advantage to this is that in most cases, this SQL statement will be 

sent to the DBMS right away, where it will be compiled. As a result, the 

PreparedStatement object contains not just an SQL statement, but an SQL 

statement that has been precompiled. This means that when the 

PreparedStatement is executed, the DBMS can just run the 

PreparedStatement 's SQL statement without having to compile it first. 

Eg. 

PreparedStatement updateSales = con.prepareStatement("UPDATE 

COFFEES SET SALES = ? WHERE COF_NAME LIKE ?"); 
 

5. When a connection is created, it is in auto-commit mode. This means that 

each individual SQL statement is treated as a transaction and will be 

automatically committed right after it is executed. The way to allow two or 

more statements to be grouped into a transaction is to disable auto-commit 

mode 



 

 
 113 

Eg. 

con.setAutoCommit(false); 

Once auto-commit mode is disabled, no SQL statements will be committed 

until you call the method commit explicitly. 

Eg. 

con.setAutoCommit(false); 

PreparedStatement updateSales = con.prepareStatement( 

"UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE ?"); 

updateSales.setInt(1, 50); 

updateSales.setString(2, "Colombian"); 

updateSales.executeUpdate(); 

PreparedStatement updateTotal = con.prepareStatement("UPDATE 

COFFEES SET TOTAL = TOTAL + ? WHERE COF_NAME LIKE ?"); 

updateTotal.setInt(1, 50); 

updateTotal.setString(2, "Colombian"); 

updateTotal.executeUpdate(); 

con.commit(); 

con.setAutoCommit(true); 

 

6. Call a Strored Procedure from JDBC: 

The first step is to create a CallableStatement object. As with Statement an 

and PreparedStatement objects, this is done with an open Connection object. 

A CallableStatement object contains a call to a stored procedure; 

Eg. 

CallableStatement cs = con.prepareCall("{call SHOW_SUPPLIERS}"); 

ResultSet rs = cs.executeQuery(); 
 

7. Retrieve Warnings: 

SQLWarning objects are a subclass of SQLException that deal with database 

access warnings. Warnings do not stop the execution of an application, as 

exceptions do; they simply alert the user that something did not happen as 



 

 
 114 

planned.A warning can be reported on a Connection object, a Statement 

object (including PreparedStatement and CallableStatement objects), or a 

ResultSet object. Each of these classes has a getWarnings method, which 

you must invoke in order to see the first warning reported on the calling object 

Eg. 

SQLWarning warning = stmt.getWarnings(); 

if (warning != null) { 

System.out.println("\n---Warning---\n"); 

while (warning != null) { 

System.out.println("Message: " + warning.getMessage()); 

System.out.println("SQLState: " + warning.getSQLState()); 

System.out.print("Vendor error code: "); 

System.out.println(warning.getErrorCode()); 

System.out.println(""); 

warning = warning.getNextWarning(); 

} 

} 
 

8. Move the Cursor in Scrollable Result Sets? : 

One of the new features in the JDBC 2.0 API is the ability to move a result 

set's cursor backward as well as forward. There are also methods that let you 

move the cursor to a particular row and check the position of the cursor. 

Eg. 

Statement stmt = 

con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, 

ResultSet.CONCUR_READ_ONLY); 

ResultSet srs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM 

COFFEES"); 

The first argument is one of three constants added to the ResultSet API to 

indicate the type of a ResultSet object: TYPE_FORWARD_ONLY, 

TYPE_SCROLL_INSENSITIVE , and TYPE_SCROLL_SENSITIVE . 

The second argument is one of two ResultSet constants for specifying 

whether a result set is read-only or updatable: CONCUR_READ_ONLY and 

CONCUR_UPDATABLE . The point to remember here is that if you specify a 



 

 
 115 

type, you must also specify whether it is read-only or updatable. Also, you 

must specify the type first, and because both parameters are of type int , the 

compiler will not complain if you switch the order. 

Specifying the constant TYPE_FORWARD_ONLY creates a nonscrollable 

result set, that is, one in which the cursor moves only forward. If you do not 

specify any constants for the type and updatability of a ResultSet object, you 

will automatically get one that is TYPE_FORWARD_ONLY and 

CONCUR_READ_ONLY 

 

9. TYPE_SCROLL_INSENSITIVE v/sTYPE_SCROLL_SENSITIVE. 

You will get a scrollable ResultSet object if you specify one of these ResultSet 

constants.The difference between the two has to do with whether a result set 

reflects changes that are made to it while it is open and whether certain 

methods can be called to detect these changes. Generally speaking, a result 

set that is TYPE_SCROLL_INSENSITIVE does not reflect changes made 

while it is still open and one that is TYPE_SCROLL_SENSITIVE does. All 

three types of result sets will make changes visible if they are closed and then 

reopened. 

Eg. 

Statement stmt = 

con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE, 

ResultSet.CONCUR_READ_ONLY); 

ResultSet srs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM 

COFFEES"); 

srs.afterLast(); 

while (srs.previous()) { 

String name = srs.getString("COF_NAME"); 

float price = srs.getFloat("PRICE"); 

System.out.println(name + " " + price); 

} 

 

 

 



 

 
 116 

10. Make Updates to Updatable Result Sets: 

Another new feature in the JDBC 2.0 API is the ability to update rows in a 

result set using methods in the Java programming language rather than 

having to send an SQL command. But before you can take advantage of this 

capability, you need to create a ResultSet object that is updatable. In order to 

do this, you supply the ResultSet constant CONCUR_UPDATABLE to the 

createStatement method. 

Eg. 

Connection con = 

DriverManager.getConnection("jdbc:mySubprotocol:mySubName"); 

Statement stmt = 

con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, 

ResultSet.CONCUR_UPDATABLE); 

ResultSet uprs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM 

COFFEES"); 

 

4.9 FURTHER READING 
 

• Refer Tutorial Point 
 

4.10 ASSIGNMENTS 
 

• Create an android application for CRUD operations in JAVA 

  



 

 
 117 

  

   Block-3 

Java Network Programming 
 



 

 
 118 

Unit 1:  Networking Basics & 
Socket Programming 

 
 

Unit Structure 

 

1.1. Learning Objectives 
 

1.2. Introduction 
 

1.3. Socket Programming  
 

1.4. Client Server Communication using Socket 
 

1.5. Let us sum up 
 

1.6. Check your Progress 
 

1.7. Check Your Progress:Possible Answers 
 

1.8. Further Reading 
 

1.9. Assignments 
 

1.10. Activities 
 

  

1 



 

 
 119 

1.1 LEARNING OBJECTIVE 
 

After studying this unit student should be able to: 

 

• Learn Java networking concepts 

• Java client server communication 

• Socket Programming 

 

1.2 INTRODUCTION 
 

The term network programming refers to writing programs that execute across 
multiple devices (computers), in which the devices are all connected to each other 
using a network. 

The java.net package of the J2SE APIs contains a collection of classes and 
interfaces that provide the low-level communication details, allowing you to write 
programs that focus on solving the problem at hand. 

The java.net package provides support for the two common network protocols − 

• TCP − TCP stands for Transmission Control Protocol, which allows for 
reliable communication between two applications. TCP is typically used over 
the Internet Protocol, which is referred to as TCP/IP. 

• UDP − UDP stands for User Datagram Protocol, a connection-less protocol 
that allows for packets of data to be transmitted between applications. 

 

1.3 SOCKET PROGRAMMING  
 

Java Socket programming is used for communication between the applications 

running on different JRE. Java Socket programming can be connection-oriented or 

connection-less. 

Socket and ServerSocket classes are used for connection-oriented socket 

programming and DatagramSocket and DatagramPacket classes are used for 

connection-less socket programming. 

 



 

 
 120 

The client in socket programming must know two information: 

1. IP Address of Server, and 

2. Port number. 

Socket class 

A socket is simply an endpoint for communications between the machines. The 

Socket class can be used to create a socket. The following are the constructors. 

public Socket(String host, int port) throws UnknownHostException, IOException 

public Socket(InetAddress host, int port) throws IOException 

public Socket(String host, int port, InetAddress localAddress, int localPort) throws 

IOException 

public Socket(InetAddress host, int port, InetAddress localAddress, int localPort) 

throws IOException 

public Socket() 

Important methods 

Sr.No. Method & Description 

1 

public void connect(SocketAddress host, int timeout) throws 
IOException 

This method connects the socket to the specified host. This method is 

needed only when you instantiate the Socket using the no-argument 

constructor. 

2 

public InetAddress getInetAddress() 

This method returns the address of the other computer that this socket is 

connected to. 



 

 
 121 

3 
public int getPort() 

Returns the port the socket is bound to on the remote machine. 

4 
public int getLocalPort() 

Returns the port the socket is bound to on the local machine. 

5 
public SocketAddress getRemoteSocketAddress() 

Returns the address of the remote socket. 

6 

public InputStream getInputStream() throws IOException 

Returns the input stream of the socket. The input stream is connected to 

the output stream of the remote socket. 

7 

public OutputStream getOutputStream() throws IOException 

Returns the output stream of the socket. The output stream is connected 

to the input stream of the remote socket. 

8 

public void close() throws IOException 

Closes the socket, which makes this Socket object no longer capable of 

connecting again to any server. 

 

ServerSocket class 

The ServerSocket class can be used to create a server socket. This object is used to 

establish communication with the clients. The following are the constructors. 

public ServerSocket(int port) throws IOException 

public ServerSocket(int port, int backlog) throws IOException 

public ServerSocket(int port, int backlog, InetAddress address) throws IOException 



 

 
 122 

public ServerSocket() throws IOException 

Important methods 

Sr.No. Method & Description 

1 

public int getLocalPort() 

Returns the port that the server socket is listening on. This method 

is useful if you passed in 0 as the port number in a constructor and 

let the server find a port for you. 

2 

public Socket accept() throws IOException 

Waits for an incoming client. This method blocks until either a 

client connects to the server on the specified port or the socket 

times out, assuming that the time-out value has been set using the 

setSoTimeout() method. Otherwise, this method blocks indefinitely. 

3 

public void setSoTimeout(int timeout) 

Sets the time-out value for how long the server socket waits for a 

client during the accept(). 

4 

public void bind(SocketAddress host, int backlog) 

Binds the socket to the specified server and port in the 

SocketAddress object. Use this method if you have instantiated the 

ServerSocket using the no-argument constructor. 

 

 

1.4CLIENT SERVER COMMUNICATION USING SOCKET 
 

Example: Java socket programming in which client sends a text and server receives 

it. 

 



 

 
 123 

MyServer.java 

import java.io.*;   

import java.net.*;   

public class MyServer {   

public static void main(String[] args){   

try{   

ServerSocket ss=new ServerSocket(6666);   

Socket s=ss.accept();//establishes connection    

DataInputStream dis=new DataInputStream(s.getInputStream());   

String  str=(String)dis.readUTF();   

System.out.println("message= "+str);   

ss.close();   

}catch(Exception e){System.out.println(e);}   

}   

} 

 

MyClient.java 

import java.io.*;   

import java.net.*;   

public class MyClient {   

public static void main(String[] args) {   

try{       

Socket s=new Socket("localhost",6666);   

DataOutputStream dout=new DataOutputStream(s.getOutputStream());   

dout.writeUTF("Hello Server");   



 

 
 124 

dout.flush();   

dout.close();   

s.close();   

}catch(Exception e){System.out.println(e);}   

}   

} 

 

Run the program: 

 

 

 

 

 

 

1.5 LET US SUM UP 
 

This chapter focus on java networking and socket programming. 

 

1.6CHECK YOUR PROGRESS 
 

1. Explain Java Networking in brief. 

 2. Explain Socket Class in brief. 

 3. Explain ServerSocket class in brief. 

 

1.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 

1. Refer 1.2 

2. Refer 1.3 

3. Refer 1.3 

 



 

 
 125 

 

1.8 FURTHER READING 
 

• For more detail refer Socket Programming in java book. 
 

1.9 ASSIGNMENTS 
 

1. Explain Java Networking in brief. 

 2. Explain Socket Class in brief. 

 3. Explain ServerSocket class in brief. 

 

1.10 ACTIVITIES 
 

• Create Client Server communication using in java.  

  



 

 
 126 

Unit 2:  Introduction of RMI  
  

Unit Structure 

 

2.1. Learning Objectives 
 

2.2. Introduction 
 

2.3. RMI Architecture 
 

2.4. RMI Registry & Method 
 

2.5. Let us sum up 
 

2.6. Check your Progress 
 

2.7. Check your Progress: Possible Answers 
 

2.8. Further Reading 
 

2.9. Assignments 
 

  

2 



 

 
 127 

2.1 LEARNING OBJECTIVE 
 

After studying this unit student should be able to: 

 

• RMI introduction 

• RMI Architecture 

 

2.2 INTRODUCTION 
 

The RMI (Remote Method Invocation) is an API that provides a mechanism to create 

distributed application in java. The RMI allows an object to invoke methods on an 

object running in another JVM. 

The RMI provides remote communication between the applications using two objects 

stub and skeleton. 

To write an RMI Java application, you would have to follow the steps given below − 

• Define the remote interface 
• Develop the implementation class (remote object) 
• Develop the server program 
• Develop the client program 
• Compile the application 
• Execute the application 

 

2.3 RMI ARCHITECTURE 
 

RMI Feature Gives Java Programmers Ability To Distribute Computing Across The 

Network. In the RMI model, the server defines objects that the client can use 

remotely RMI Defines Remote Interface That can Be Used To Create Remote 

Object. Client can Invoke Method of Remote Object the Same Syntax That is Use to 

Invoke Method on Local Object. RMI API Provides Classes And Methods That 

Handles All Communication and Parameter Referencing Requirement. RMI Also 

Handles Serialization of Object. 

 



 

 
 128 

 

 

 

 

 

 

 

 

 

 
Figure 1: RMI Architecture 

 

Stub:  

• Stub basically act as a remote object proxies that are local to client. 

• Stub is binding a call to server and find it. 

• It also formatting data  

• Ex: Marshalling And DMarshalling. 

• Marshalling means converted message in proper format. 

• The rmic tool will took specified class and generate a stub file for class which 

exposed all the methods to be used by clients. Stub name and class name is 

same. 

 

Marshalling:  
Example of Marshalling 

 host 1:------1,1.2,1.3,1.4,.1.5----------- 

   Marshalling this data in binary format 

       010101010101010------ 

   UnMarshalling this data into original format 

 

Host 2:------1,1.2,1.3,1.4,1.5--------. 

 

 
 



 

 
 129 

Skeleton: 
• The stub resides on the client machine and the skeleton resides on the server 

machine.  

• When a client invokes a server method, the JVM looks at the stub to do type 

checking. The request is then routed to the skeleton on the server, which in 

turn calls the appropriate method on the server object.  

• In other words, the stub acts as a proxy to the skeleton and the skeleton is a 

proxy to the actual remote method. 

• A skeleton is a helper class that is generated for RMI to use. The skeleton 

understands how to communicate with the stub across the RMI link.  

• The skeleton carries on a conversation with the stub; it reads the parameters 

for the method call from the link, makes the call to the remote service 

implementation object, accepts the return value, and then writes the return 

value back to the stub.  
 

Remote Reference Layer: 

• The Remote Reference Layers defines and supports the invocation semantics 

of the RMI connection. This layer provides a RemoteRef object that 

represents the link to the remote service implementation object.  

• The stub objects use the the RemoteRef object understands the invocation 

semantics for remote services. 

• RMI provides only one way for clients to connect to remote service 

implementations: a multi cast, point-to-point connection. Before a client can 

use a remote service, the remote service must be instantiated on the server 

and exported to the RMI system. (If it is the primary service, it must also be 

named and registered in the RMI Registry).   
 

Transport Layer: 

• The Transport Layer makes the connection between JVMs. All connections 

are stream-based network connections that use TCP/IP.  

• Even if two JVMs are running on the same physical computer, they connect 

through their host computer's TCP/IP network protocol stack. 

•  RMI uses a wire level protocol called Java Remote Method Protocol (JRMP). 

JRMP is a proprietary, stream-based protocol. 

http://java.sun.com/developer/onlineTraining/rmi/RMI.html�


 

 
 130 

• Sun and IBM have jointly worked on the next version of RMI, called RMI-IIOP, 

which will be available with Java 2 SDK Version 1.3. The interesting thing 

about RMI-IIOP is that instead of using JRMP, it will use the Object Management 

Group (OMG) Internet Inter-ORB Protocol, IIOP, to communicate between 

clients and servers.  

 

2.4RMI REGISTRY & METHOD 
 

The server object makes methods available for remote invocation by binding it to a 

name in the RMI Registry. The client object, can thus check for the availability of a 

certain server object by looking up its name in the registry. The RMI Registry thus 

acts as a central management point for Java-RMI. The RMI Registry is thus a simple 

name repository. It does not address the problem of actually invoking remote 

methods. 
 

Package 

Import rmi. *; 

Import rmi. server.*; 

Exception 

RemoteException 

• Define Interface for the remote classes. 

Method 

Rebind() 

Bind() 

Number of Steps: 

• Create and Compile Implementation Classes for The Remote Classes. 

• Create Stub and Skeleton Classes using rmic Command. 

• Create and Compile Server Application. 

• Start The RMI Registry and Server Application 

• Create And Compile a Client Program to Access Remote Object 

• Test Client 

 

http://java.sun.com/developer/onlineTraining/rmi/RMI.html�
http://www.omg.org/�
http://www.omg.org/�
http://www.omg.org/�


 

 
 131 

2.5 LET US SUM UP 
 

This chapter focus on the RMI architecture.  
 

2.6 CHECK YOUR PROGRESS 
 

1. What is the use of RMI?  

2. Explain the RMI Architecture in brief. 

 

2.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 

1. Refer 2.3 

2. Refer 2.4 

 

2.8 FURTHER READING 
 

For more focus on RMI read RMI Programming in java. 

 

2.9 ASSIGNMENTS 
 

• Demonstrate use of RMI Architecture.  

 
  

  



 

 
 132 

 

Unit 3:  RMI Implementationand 
Client-Server Programming 

 
 

Unit Structure 

 

3.1. Learning Objectives 
 

3.2. Introduction 
 

3.3. Developing the Implementation Class 
 
3.4. Developing Server – Client Program 

 
3.5. Client-Server Programming using RMI 

 
3.6. Let us sum up 

 
3.7. Check your Progress 

 
3.8. Check your Progress: Possible Answers 

 
3.9. Further Reading 

 
3.10. Activities 
  

3 



 

 
 133 

 

3.1 LEARNING OBJECTIVE 
 

After studying this unit student should be able to: 

 

• RMI Implementation 

• Create RMI client server programming 
 

 

3.2 INTRODUCTION 
 

A remote interface provides the description of all the methods of a particular remote 

object. The client communicates with this remote interface. 

To create a remote interface − 

• Create an interface that extends the predefined interface Remote which 

belongs to the package. 

• Declare all the business methods that can be invoked by the client in this 

interface. 

• Since there is a chance of network issues during remote calls, an exception 

named RemoteException may occur; throw it. 

 

3.3DEVELOPING THE IMPLEMENTATION CLASS 
 

We need to implement the remote interface created in the earlier step. (We can 

write an implementation class separately or we can directly make the server 

program implement this interface.) 

To develop an implementation class − 

• Implement the interface created in the previous step. 

• Provide implementation to all the abstract methods of the remote interface. 

 

 



 

 
 134 

3.4DEVELOPING SERVER - CLIENT PROGRAM 
 

An RMI server program should implement the remote interface or extend the 

implementation class. Here, we should create a remote object and bind it to 

the RMIregistry. 

To develop a server program − 

• Create a client class from where you want invoke the remote object. 

• Create a remote object by instantiating the implementation class as shown 

below. 

• Export the remote object using the method exportObject() of the class 

named UnicastRemoteObject which belongs to the 

package java.rmi.server. 

• Get the RMI registry using the getRegistry() method of 

the LocateRegistry class which belongs to the package java.rmi.registry. 

• Bind the remote object created to the registry using the bind()method of the 

class named Registry. To this method, pass a string representing the bind 

name and the object exported, as parameters. 

Write a client program in it, fetch the remote object and invoke the required method 

using this object. 

To develop a client program − 

• Create a client class from where your intended to invoke the remote object. 

• Get the RMI registry using the getRegistry() method of 

the LocateRegistry class which belongs to the package java.rmi.registry. 

• Fetch the object from the registry using the method lookup() of the 

class Registry which belongs to the package java.rmi.registry. 

To this method, you need to pass a string value representing the bind name 

as a parameter. This will return you the remote object. 

• The lookup() returns an object of type remote, down cast it to the type Hello. 

• Finally invoke the required method using the obtained remote object. 



 

 
 135 

3.5 CLIENT-SERVER PROGRAMMING USING RMI 
 

Create Interface: 
import java.rmi.*; 

public interface RMIInter extends Remote{ 

 public int sum(int a,int b) throws RemoteException; 

} 

 

Implement Interface: 
import java.rmi.*; 

import java.rmi.server.*; 

public class RMIInterImpl extends UnicastRemoteObject implements RMIInter 

{ 

 public RMIInterImpl() throws RemoteException{ 

 } 

 public int sum(int a,int b) throws RemoteException{ 

  return(a+b); 

 } 

} 

 

Create Server: 
import java.rmi.*; 

//import java.rmi.regisrty. 

public class RMIInterServer{ 

  

 public static void main(String args[]){ 

  RMIInterImpl rii; 

  try{ 

   rii= new RMIInterImpl(); 

   Naming.rebind("RMIInterServer",rii); 

  } 

  catch(Exception e){ 

  } 



 

 
 136 

 } 

} 

 

Create Client: 
import java.rmi.*; 

//import java.rmi.regisrty. 

public class RMIInterClient { 

 public static void main(String args[]){ 

  try{ 

   String url="RMIInterServer"; 

   RMIInter rmi=(RMIInter)Naming.lookup(url); 

   System.out.println(rmi.sum(10,20)); 

  } 

  catch(Exception e){ 

   e.printStackTrace(); 

  } 

 } 

} 

 

How to RUN? 
Within same folder you can see four files 
 

   1. Remote Interface : HI.java 

   2. Remote Interface Definition: HD.java 

   2. Server : HS.java 

   3. Client : HC.java 
 

Set all required paths to run java program. 
 

Now carefully these following commands in given order 

1. javac HD.java , javac HI.java 

2. javac HS.java 

3. rmic HS 

4. javacHC.java 

5. close window. 



 

 
 137 

 

Open another command window and type. 

   1. rmiregistry 

   2. minimize this window (remember dont close this window) 
 

open another command window and type  

   1. policytool 

    and you can see java policy setting tool 

      1.1 click on add policy entry 

      1.2 another form will be displayed within that form click on add permission 

      1.3 again another form will be diplayed within that click on permission list box 

and select "AllPermission" then click ok. 

      1.4 then click "done" 

1.5 then select file->save menu and give name any name for ex: mypolicy then 

close this form (Remember svae this file to the same location at where your 

RMI files saved) 

      1.6 close this window  
 

open command window apply the following command 

   1 java -Djava.security.policy=mypolicy HS 
 

Open another command apply the following command 

   1 java -Djava.security.policy=mypolicy HC 

 

3.6 LET US SUM UP 
 

This chapter focus on the RMI implementation and RMI programming example. 
 

3.7 CHECK YOUR PROGRESS 
 

1. Write a short note on RMI Client – Server Programming. 

 

3.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS 
 

1. Refer 3.3 &Refer 3.4 
 



 

 
 138 

3.9 FURTHER READING 
 

• For more detail refer RMI implementation. 

• Refer Tutorial Point RMI Practical. 
 

3.10 ACTIVITIES 
 

• Create an RMI application for client server communication using java RMI. 

 
 
  



 

 
 139 

 
  

   Block-4 

Servlet and JSP 
 



 

 
 140 

Unit 1:  Introduction of Servlet 
  

Unit Structure 
 
1.1. Learning Objectives 

 
1.2. Introduction to Servlet 

 
1.3. Create your first Servlet 

 
1.4. Servlet Lifecycle 

 
1.5. Servlet Life Cycle Methods 

 
1.6. Types of Servlets 

 
1.7. Servlet Request and Response 

 
1.8. Cookie in Servlet 

 
1.9. Session Management 

 
1.10. Let us sum up 

 
 

  

1 



 

 
 141 

1.1 LEARNING OBJECTIVE 
 

After going through this unit, you should be able to know: 

• how to install the Servlet Engine / Web Server; 

• basics of Servlet and how it is better than other server extensions; 

• how the Servlet engine maintains the Servlet Life Cycle; 

• where do we use HttpServletRequest Interface and some of its basic 

methods; 

• where do we use HttpServletResponse Interface and some of its basic 

methods; 

• what is session tracking; 

• different ways to achieve Session Tracking like HttpSession & persistent 

cookies, and 

• different ways to achieve inter-servlet communication. 
 

 
1.2 INTRODUCTION TO SERVLET 
 
Servlet technology is used to create a dynamic web application, resides at server 

side and generates a dynamic web page. The technology is robust and scalable as it 

is based on the Java language. Servlet can be described in many ways, depending 

on the context, the servlet is a technology used to create a web application, it is 

mainly used to write a business logic part in an enterprise web application. 

Before Servlet, CGI (Common Gateway Interface) scripting language was common 

as a server-side programming language. However, there were many disadvantages 

to this technology. 

 

 



 

 
 142 

There are many problems in CGI technology If the number of clients increases, it 

takes more time to prepare and response the users. For each user request, web 

server has to starts a new process, and a web server have limited memory space to 

start a new processes. It uses platform dependent language such as C++, Perl. 

Over the CGI, the Servlet has many advantages, the web container creates threads 

for handling the multiple requests to the Servlet. Threads have many benefits over 

the processes such as they share a common memory area, lightweight, cost of 

communication between the threads are low.  

 

The advantages of Servlet are as follows: 

● Better performance: because it creates a thread for each request, not 

process. 

● Portability: because it uses Java language. 

● Robust: JVM manages Servlets, so we don't need to worry about the memory 

leak and  garbage collection. 

● Secure: because it uses Java language. 

There are many interfaces and classes in the Servlet API such as Servlet, 

GenericServlet, HttpServlet, ServletRequest, ServletResponse, etc. GenericServlet 

is not specific to any protocol while HttpServlet is specific to the HTTP protocol and 

use to create a Servlet that handles the HTTP requests. 

 

1.3 CREATE YOUR FIRST SERVLET 
 
The javax.servlet and javax.servlet.http packages represent interfaces and classes 

for servlet API. The javax.servlet package contains many interfaces and classes that 

are used by the servlet or web container. These are not specific to any protocol. The 



 

 
 143 

javax.servlet.http package contains interfaces and classes that are responsible for 

requests only. 

HelloWorld.java 

Write the first servlet program, save it as HelloWorld.java 

 
import java.io.IOException; 
import java.io.PrintWriter; 
import javax.servlet.ServletException; 
import javax.servlet.annotation.WebServlet; 
import javax.servlet.http.HttpServlet; 
import javax.servlet.http.HttpServletRequest; 
import javax.servlet.http.HttpServletResponse; 
 
publicclassHelloWorldextendsHttpServlet { 
 
publicHelloWorld() { 
super(); 
    } 
 
protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  
throws ServletException, IOException { 
 
        response.setContentType("text/html"); 
 
        PrintWriter out = response.getWriter(); 
        out.println("<h1>Hello World!</h1>"); 
    } 
 
protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  
throws ServletException, IOException { 
        doGet(request, response); 
    } 
} 
 
Like other java programs, you can compile the servlet program as well through the 

command line using java compiler. 

 

Desktop mantavyagajjar$ javac HelloWorld.java 
 
You may get an error, as java servlet is not a normal java program it runs on the web 

server we need to add the support for java web API, a servlet-api.jar library should 

be added in the CLASSPATH 



 

 
 144 

The servlet-api.jar can be found as a part of the web server or web container or can 

be downloaded from external source too. 

To test the output of Servlet, you have to deploy servlet into a web server or web 

containers such as JBoss or Tomcat. The most popular and lightweight web server 

and the container is Apache Tomcat. 

Download Apache Tomcat 

Download the Apache Tomcat server from https://tomcat.apache.org/download-

90.cgi, the current version is 9.0. If you are using windows platform choose 

http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/bin/apache-tomcat-

9.0.17-windows-x64.zip. If you are working on Linux or MacOS, the best option is to 

download the source codehttp://mirrors.estointernet.in/apache/tomcat/tomcat-

9/v9.0.17/src/apache-tomcat-9.0.17-src.tar.gz. 

 

 
Apache Tomcat Website Home Page - http://tomcat.apache.org/ 

Install the Tomcat server or extract the source depending on the platform you use. 

You will get the list of directories after the installation of Tomcat Server. 

https://tomcat.apache.org/download-90.cgi�
https://tomcat.apache.org/download-90.cgi�
http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/bin/apache-tomcat-9.0.17-windows-x64.zip�
http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/bin/apache-tomcat-9.0.17-windows-x64.zip�
http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/src/apache-tomcat-9.0.17-src.tar.gz�
http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/src/apache-tomcat-9.0.17-src.tar.gz�


 

 
 145 

 
The directory structure after extract of Apache Tomcat 

The bin directory contains the list of the commands used to start, stop the server or 

check the version of Tomcat Server. The lib directory contains the list of libraries 

required for the web API including servlet-api.jar, the webapps directory contains 

the web applications, we have to add our application into webapps directory. 

Add the servlet-api.jar to the CLASSPATH. The servlet-api.jar is available under the 

Tomcat lib directory. 

export CLASSPATH="/Users/mantavyagajjar/apache-tomcat-9.0.17/lib/servlet-api.jar" 

 

Now, you should be able to compile your Servlet java program using the javac 

command. 

Desktop mantavyagajjar$ javac HelloWorld.java 

Create a web application 

Servlet program is not like, writing Java code and execute through command prompt.  

We need to follow the following steps in order to develop any servlets program. Even 

for a simple "Hello World" program also one must follow this standard directory 

structure which is prescribed. 

 



 

 
 146 

1. Create a root directory with your web app name, create a subdirectory with 

name ‘src’ and move servlet program in that directory 

2. Create sub-directory called WEB-INF in the root directory, this WEB-INF 

contains the web.xml file. 

3. Create a directory called classes under the WEB-INF directory. 

4. Compile the servletHelloWorld.java we moved to src directory, you will get the 

.class file, copy that  .class file into classes directory under the WEB-INF 

directory. 

 

Now, are ready to launch the tomcat server, to start the Tomcat server goto bin 

directory and run thestartup.sh (If you use windows operating system, you should 

runthestartup.bat file to start the tomcat server) 

Desktop mantavyagajjar$ ./startup.sh 

 

Open http://localhost:8080/hello/HelloWorld into the browser, you should get the 

“Hello World!” string as a result. 



 

 
 147 

 

Web Descriptor, web.xml is called a deploymentdescriptor file, for every web app it 

has to be created under WEB-INF directory, it contains the configuration for the 

application. Servlet and servlet mapping are one of the parameters used to define on 

with URL the servlet is accessible. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee 
                       http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd" 
    version="4.0" metadata-complete="true"> 
 
<description>Hello World</description> 
<display-name>Hello World</display-name> 
<servlet> 
<servlet-name>HelloWorld</servlet-name> 
<servlet-class>HelloWorld</servlet-class> 
</servlet> 
 
<servlet-mapping> 
<servlet-name>HelloWorld</servlet-name> 
<url-pattern>/HelloWorld</url-pattern> 
</servlet-mapping> 
</web-app> 

 
Here, in this example, the servlet will be called when user access /HelloWorldURL 

from the web-browser. 

WebServlet Annotation 

WebServlet annotation is an alternative way to define the servlet configuration, all 

the servlet has to be defined under the web.xml file with their name and URL-



 

 
 148 

mapping, using WebServlet you can do the same while writing the java file. So, you 

can ignore the configuration of servlet under the web.xml. Let’s see where is the 

difference when you define the servlet mapping using the WebServlet annotation. 

 

HelloWorld.java 

 
import java.io.IOException; 
import java.io.PrintWriter; 
import javax.servlet.ServletException; 
import javax.servlet.annotation.WebServlet; 
import javax.servlet.http.HttpServlet; 
import javax.servlet.http.HttpServletRequest; 
import javax.servlet.http.HttpServletResponse; 
 
@WebServlet(name = "HelloWorld", urlPatterns = {"/HelloWorld"}) 
publicclassHelloWorldextendsHttpServlet { 
 
publicHelloWorld() { 
super(); 
    } 
 
protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  
throws ServletException, IOException { 
 
        response.setContentType("text/html"); 
 
        PrintWriter out = response.getWriter(); 
        out.println("Hello World!"); 
    } 
 
protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  
throws ServletException, IOException { 
        doGet(request, response); 
    } 
} 
 
Web.xml 
 
<?xml version="1.0" encoding="UTF-8"?> 
 
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee 
                      http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd" 



 

 
 149 

    version="4.0" metadata-complete="false"> 
 
</web-app> 
 
Instead of defining the servlet and servlet-mapping into the XML file, it is defined into 

java file just above the class using an annotation, also one parameter in web.xml has 

changed from true to false,metadata-complete="false". Define the servlet 

configuration using an annotation is super clean and easy to understand. 

 

1.4 SERVLET LIFECYCLE 
 
The entire life cycle of a Servlet is managed by the Servlet container which uses 

the javax.servlet.Servlet interface to understand the Servlet object and manage it. 

So, before creating a Servlet object let’s first understand the life cycle of the Servlet 

object which is actually understanding how the Servlet container manages the 

Servlet object. 

Stages of the Servlet Life Cycle: The Servlet life cycle mainly goes through four 

stages, 

● Loading a Servlet. 

● Initializing the Servlet. 

● Request handling. 

● Destroying the Servlet. 

Let’s look at each of these stages in details: 

Loading a Servlet 

The first stage of the Servlet life cycle involves loading and initializing the Servlet by 

the Servlet container. The Web container or Servlet Container can load the Servlet at 

either of the following two stages : 

● Initializing the context, on configuring the Servlet with a zero or positive 

integer value. 



 

 
 150 

● If the Servlet is not preceding stage, it may delay the loading process until the 

Web container determines that the Servlet is needed to service a request. 

 

The Servlet container performs two operations in this stage : 

● Loading: Loads the Servlet class. 

● Instantiation: Creates an instance of the Servlet. To create a new instance of 

the Servlet, the container uses the no-argument constructor. 

 

Initializing a Servlet 

After the Servlet is instantiated successfully, the Servlet container initializes the 

instantiated Servlet object. The container initializes the Servlet object by invoking the 

Servlet.init(ServletConfig) method which accepts ServletConfig object reference as 

parameter. 

The Servlet container invokes the Servlet.init(ServletConfig) method only once, 

immediately after the Servlet.init(ServletConfig) object is instantiated successfully. 

This method is used to initialize the resources, such as JDBC data source. 

Now, if the Servlet fails to initialize, then it informs the Servlet container by throwing 

the ServletException or UnavailableException. 



 

 
 151 

Handling request 

After initialization, the Servlet instance is ready to serve the client requests. The 

Servlet container performs the following operations when the Servlet instance is 

located to service a request : 

● It creates the ServletRequest and ServletResponse objects. In this case, if 

this is HTTP request then the Web container creates HttpServletRequest and 

HttpServletResponse objects which are subtypes of the ServletRequest and 

ServletResponse objects respectively. 

● After creating the request and response objects it invokes the 

Servlet.service(ServletRequest, ServletResponse) method by passing the 

request and response objects. 

The service() method while processing the request may throw the ServletException 

or UnavailableException or IOException. 

Destroying a Servlet 

When a Servlet container decides to destroy the Servlet, it performs the following 

operations, 

● It allows all the threads currently running in the service method of the Servlet 

instance to complete their jobs and get released. 

● After currently running threads have completed their jobs, the Servlet 

container calls the destroy() method on the Servlet instance. 

After the destroy() method is executed, the Servlet container releases all the 

references of this Servlet instance so that it becomes eligible for garbage collection. 

 

1.5SERVLET LIFE CYCLE METHODS 
 
There are three life cycle methods of a Servlet : 

● init() 

● service() 

● destroy() 



 

 
 152 

 

 

Let’s look at each of these methods in detail: 

init() method 

The Servlet.init() method is called by the Servlet container to indicate that this 

Servlet instance is instantiated successfully and is about to put into service. 

publicclassMyServletimplementsServlet { 
publicvoidinit(ServletConfig config) throws ServletException { 

//initialization code 

   } 

//rest of code 

} 

service() method 

The service() method of the Servlet is invoked to inform the Servlet about the client 

requests. 

● This method uses the ServletRequest object to collect the data requested by 

the client. 

● This method uses a ServletResponse object to generate the output content. 

 

 



 

 
 153 

// service() method 
 
publicclass HelloWorld implements Servlet { 
publicvoid service(ServletRequest res, ServletResponse res) 
throws ServletException, IOException { 
        // request handling code 
    } 
    // rest of code 
} 

destroy() method 

The destroy() method runs only once during the lifetime of a Servlet and signals the 

end of the Servlet instance. 

 

//destroy() method 

 

publicvoiddestroy() { 

} 

 

As soon as the destroy() method is activated, the Servlet container releases the 

Servlet instance. 

 

1.6 TYPES OF SERVLETS 
 
There are two main servlet types, Generic and HTTP: 

Generic servlet, extend javax.servlet.GenericServlet.They are protocol 

independent. They contain no inherent HTTP support or any other transport protocol. 

 

HTTP servlet, extend javax.servlet.HttpServlet.Have built-in HTTP protocol support 

and are more useful in a Sun Java System Web Server environment. 



 

 
 154 

For both servlet types, you implement the constructor method init() and the 

destructor method destroy() to initialize or deallocate resources. 

All servlets must implement a service() method, which is responsible for handling 

servlet requests. For generic servlets, simply override the service method to provide 

routines for handling requests. HTTP servlets provide a service method that 

automatically routes the request to another method in the servlet based on which 

HTTP transfer method is used. So, for HTTP servlets, override doPost() to process 

POST requests, doGet() to process GET requests, and so on. 

The previous example HelloWorld.java we inherit HttpServlet and implement doGet 

and doPost methods to print “Hello world!”, let's write a program to have the same 

result using GenericServletand try to understand how GenericServet and HttpServlet 

are different from each other. 

 

import java.io.IOException; 

import java.io.PrintWriter; 

import javax.servlet.ServletException; 

import javax.servlet.GenericServlet; 

import javax.servlet.ServletRequest; 

import javax.servlet.ServletResponse; 

 

publicclassHelloWorldextendsGenericServlet { 
privatestaticfinallong serialVersionUID = 1L; 

 

publicHelloWorld() { 

super(); 
    } 

@Override 

publicvoidservice(ServletRequest request, ServletResponse response)  

throws IOException, ServletException{ 

 

        response.setContentType("text/html"); 

        PrintWriter out = response.getWriter(); 



 

 
 155 

        out.print("Hello World!"); 

    } 

} 

 

The HttpServlethasdoGet and doPost methods are used to receive the data which 

are transferred by the HTTP POST and GET methods while GenericServlethas the 

service method, which is independent of any protocol. There are a couple of 

differences listed below. 

 

GenericServlet HttpServlet 

Can be used with any protocol (means, 

you can create a servlet that can 

handleFTPrequest, to upload or delete 

the file). Protocol independent. 

Should be used with HTTP protocol only 

(can handle HTTP specific requests). 

Protocol dependent. 

All methods are concrete except 

service() method. service() method is an 

abstract method. 

All methods are concrete (non-abstract). 

service() is non-abstract method. 

service() should be override in the class 

which implement the GenericServlet. 
service() method need not be overridden. 

It is must to use service() method as it is 

a callback method. 

Being service() is non-abstract, it is 

replaced by doGet() or doPost() methods. 

Extends Object and implements 

interface Servlet, ServletConfig, and 

Serializable. 

Extends GenericServlet and implements 

interface Serializable 

Direct subclass of Servlet interface. Direct subclass of GenericServlet. 



 

 
 156 

Defined javax.servlet package. Defined javax.servlet.http package. 

All the classes and interfaces belonging 

to javax.servlet package are protocol 

independent. 

All the classes and interfaces present in 

javax.servlet.http package are protocol 

dependent (specific to HTTP). 

Used to handle the protocols other then 

HTTP. 

Used always when handling HTTP 

request. 

Check Your Progress 1 

1. State True or False: 

a. Servlet is not a Java Class. T/F 

b. Tomcat 4.0 is an open source and free Servlet Container and JSP 

Engine. T/F 

c. init() and destroy() methods will be called only once during the lifetime 

of the Servlet. T/F 

2. What are the advantages of servlets over other common server extension 

mechanisms? 

3. Write a Servlet program to display “Welcome to Fifth semester of MCA” 

4. Explain different between doGet() and doPost() methods of HttpServlet. 

5. Draw a Servlet Life Cycle, to represent the different phases of Servlet Life 

Cycle. 

 

1.7  SERVLET REQUEST AND RESPONSE 
 
The main job of Servlet is to handle the client’s request,  process data on the server, 

and respond to the client back. Servlet API provides two important interfaces 

javax.servlet.ServletRequest and javax.servlet.ServletResponse. The 

implementation of those interfaces are provided 



 

 
 157 

injavax.servlet.http.HttpServletRequest and javax.servlet.http.HttpServletResponseto 

encapsulate client request. 

Capture user Input 

There are two types of information encapsulated in the requests, system generated 

and user input data. Let’s see an example of how user data can be accessed in the 

servlet which was entered by the user on HTML web page and create a custom hello 

message based on the user input. 

Index.html 

Create anHTML file with the input box, where user can enter the name, on 

submission of form data entered in the input box passed to the servlet inform of key 

and value pair. 

 

<!DOCTYPE html> 

<html> 

<head> 

<title>User Input Form</title> 

</head> 

<body> 

<form action="/hello/HelloForm" method="get"> 

<p>Enter your name: <input type="text" name="name"></p> 

<input type="submit" value="login"> 

</form> 

</body> 

</html> 

 

HelloForm.java 

Based on the method either GET or POST through which servlet called, is based on 

the method defined on the form. The form data is prepared in form of a key, value 

pair and passed to the servlet, a piece of individual key information can be accessed 

through getParameter(name) method, you can iterate on all the keys using 

getParameterValues() method. 



 

 
 158 

import java.io.* 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

 

@WebServlet(name = "HelloForm", urlPatterns = {"/HelloForm"}) 

publicclassHelloFormextendsHttpServlet { 
 

publicHelloForm() { 

super(); 
    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        response.setContentType("text/html"); 

 

        PrintWriter out = response.getWriter(); 

        out.println("<h1>Hello " + request.getParameter("name") + " !</h1>"); 

    } 

 

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

        doGet(request, response); 

    } 

} 

 

Web.xml 

<welcome-file> parameter is used to search for the default file when user access 

application, you can define multiple default files too. 

<?xml version="1.0" encoding="UTF-8"?> 



 

 
 159 

 

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" 

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

    xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee 

                      http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd" 

    version="4.0" metadata-complete="false"> 

 

<welcome-file-list> 

<welcome-file>index.html</welcome-file> 

</welcome-file-list> 

 

</web-app> 

 

Access your application /hello and you will see input-box, enter the name and click 

on submit button. 

 

The name will be passed to a servlet, it creates a new page with a custom message 

generated by the servlet. 

 

Capture the system parameters 



 

 
 160 

When a user clicks a hyperlink or a submit button, we know that the data entered by 

a user in the form fields are sent to the server. Along with user input a lot of extra 

information goes to the server as a request header attached to the request object. 

Servlet request object can getthose information using getHeaderNames() and 

getHeader() methods of HttpServletRequest interface. 

 

 
 

Apart from user data, other data received in the request header such as client IP 

address, local port used by browser to initiate a request, browser name and version, 

user’s current language, and many other information attached to the request header. 

Let’s modify our program to get all this information and print it on the web page along 

with the output. 

HelloForm.java 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.util.Enumeration; 

import javax.servlet.ServletException; 

import javax.servlet.annotation.WebServlet; 

import javax.servlet.http.HttpServlet; 

import javax.servlet.http.HttpServletRequest; 

import javax.servlet.http.HttpServletResponse; 

 



 

 
 161 

@WebServlet(name = "HelloForm", urlPatterns = {"/HelloForm"}) 

publicclassHelloFormextendsHttpServlet { 
 

publicHelloForm() { 

super(); 
    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        response.setContentType("text/html"); 

 

        PrintWriter out = response.getWriter(); 

        out.println("<h1>Hello " + request.getParameter("name") + " !</h1><br/>"); 

 

        Enumeration e = request.getHeaderNames(); 

 

while (e.hasMoreElements()) { 

            String name = (String)e.nextElement(); 

            String value = request.getHeader(name); 

            out.println("<b>" + name + "</b> = " + value + " <br/>"); 

        } 

    } 

 

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

        doGet(request, response); 

    }} 

Request Dispatcher 

The RequestDispatcher interface provides the facility of dispatching the request to 

another resource it may be HTML, servlet or JSP. This interface can also be used to 

include the content of another resource also. 



 

 
 162 

There are two methods defined in the RequestDispatcher interface. Forward transfer 

a request to another resource (Servlet, JSP file, or HTML file) on the server. 

RequestDispatcher rd=request.getRequestDispatcher("/Login");   

rd.forward(request, response); 

 

Include the content of a resource (Servlet, JSP page, or HTML file) in the response. 

RequestDispatcher rd=request.getRequestDispatcher("/Login");   

rd.include(request, response);   

 

The main difference between include() and forward() is that include method is used 

to load the contents of the specified resource, could be a Servlet, JSP, or static 

resource e.g. HTML files directly into the Servlet's response. On the other hand, 

forward method is used for server side redirection, where an HTTP request for one 

servlet is routed to another resource for processing. 

 

1.8COOKIE IN SERVLET 
 
A cookie is a small piece of information that is persisted between the multiple client 

requests. A cookie has a name, a single value, and optional attributes such as a 

comment, path and domain qualifiers, a maximum age, and a version number.  

By default, each request is considered a new request. In cookies technique, we add 

a cookie with the response from the servlet. So cookie is stored in the cache of the 

browser. After that, if the request is sent by the user, a cookie is added with a 

request by default. Thus, we recognize the user as the old user. 

There are 2 types of cookies, Non-persistent cookie and Persistent cookie. Non-

persistence is valid for a single session only. It is removed each time when the user 

closes the browser while Persistent is valid for multiple session. It is not removed 

each time when a user close the browser. It is removed only when the user logs out 

or sign out. 



 

 
 163 

It is a simple technique of maintaining the state at the client browser. But, it will not 

work if the cookie is disabled on the browser. Only textual information can be set in 

Cookie. 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*;  

 

@WebServlet(name = "HelloForm", urlPatterns = {"/HelloForm"}) 

publicclassHelloFormextendsHttpServlet { 
 

publicHelloForm() { 

super(); 
    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        response.setContentType("text/html"); 

        String name = request.getParameter("name"); 

 

//set the cookie in client's browser 

        response.addCookie(new Cookie("name",name)); 

 

        PrintWriter out = response.getWriter(); 

        out.println("<h1>Hello " + name + " !</h1><br/>"); 

    } 

 

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 



 

 
 164 

        doGet(request, response); 

    } 

} 

 

The cookie can be accessed through JavaScript or Servlet, have a look at a client 

browser in below screen. 

 

 
 
 

1.9SESSION MANAGEMENT 
 

The HttpSession object is used for session management. A session contains 

information specific to a particular user across the whole application. When a user 

enters into a website or an online application for the first time HttpSession isobtained 

via request.getSession(), the user request is given a unique ID to identify his 

session. This unique ID can be stored into a cookie in a request parameter. 

The HttpSession stays alive until it has not been used for more than the timeout 

value specified in web.xml deployment descriptor file. The default timeout value is 

30 minutes, this is used if you don’t specify the value in web.xml. This means that 

when the user doesn’t visit web application until 30 minutes, the session is destroyed 

by the servlet container. The subsequent request will not be served from this session 

anymore and the servlet container will create a new session. 



 

 
 165 

Let’s create an example that demonstrates how a session can be created and store 

information in the session. 

 

ProcessRequest.java 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

 

@WebServlet(name = "ProcessRequest", urlPatterns = {"/ProcessRequest"}) 

publicclassProcessRequestextendsHttpServlet { 
 

publicProcessRequest() { 
super(); 
    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        HttpSession session = request.getSession(false); 

if (session == null) { 
            response.sendRedirect("/hello/Login.html"); 

        } 

 

        response.setContentType("text/html"); 

        String name = request.getParameter("name"); 

 

        PrintWriter out = response.getWriter(); 

        out.println("<h1>Hello " + name + " !</h1><br/>"); 

    } 



 

 
 166 

 

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        doGet(request, response); 

    } 

} 

 

The method getSession(false) return a session, if it was created and alive. If session 

is not found means that the user is not logged inso, redirect to the login page.If user 

login successfully a message will be printed (Hello Ajay!) on the screen. Let’s write a 

code for a Login.html page and Login.java servlet. 

 

Login.html 
 

<!DOCTYPE html> 

<html> 

<head> 

<title>Login Page</title> 

</head> 

<body> 

<form action="/hello/Login" method="POST"> 

<p>Username:<br/> 

<input type="text" name="name"/> 

</p> 

 

<p>Password: <br/> 

<input type="password" name="name"/> 

</p> 

 

<input type="submit" value="Login"/> 



 

 
 167 

</form> 

</body> 

</html> 

 

The userentersusername and password, and submit the form to /hello/LoginServlet, 

Login servlet verify the user, create a new session if the user is valid. Look at the 

below code of Login.java servlet. 

 

Login.java 
 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

 

@WebServlet(name = "Login", urlPatterns = {"/Login"}) 

publicclassLoginextendsHttpServlet { 
 

publicLogin() { 

super(); 
    } 

 

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        String name = request.getParameter("user"); 

        String password = request.getParameter("password"); 

 

        HttpSession session = request.getSession(); 

        User user = new User(name, password); 



 

 
 168 

 

if (user.validUser()) { 

            session.setAttribute("userObject", user); 

            response.sendRedirect("/hello/ProcessRequest"); 

        } 

    } 

} 

 

On successful login, a message (Hello Ajay!) will be printed on the client browser, 

you can also track the session key stored in the cookie. 

 

 

Check Your Progress 2 

1. What are the main functions of the HTTPServletRequest Interface? Explain 

the methods which are used to obtain cookies and query string from the 

request object. 

2. What are the main functions of the HTTPServletResponse Interface? Explain 

the methods which are used to add cookies to response and send an error 

response. 

3. Explain various purposes for which we use Session tracking. Also, Explain in 

brief the two ways to handle Session Tracking in Servlets. 

4. What are the two ways used for Servlet collaboration Servlet Programming 



 

 
 169 

5. How do I call a servlet with parameters in the URL? 

6. How do I deserialize an HTTP session? 

7. How do I restrict access to servlets and JSPs? 

8. What is the difference between JSP and servlets? 

9. Difference between GET and POST . 

10. Can we use the constructor, instead of init(), to initialize servlet? 

11. What are two different types of servlets? Explain the differences between 

these two. 

12. What is the difference between ServletContext and ServletConfig? 

13. What are the differences between a session and a cookie? 

14. How will you delete a cookie? 

15. What is the difference between Context init parameter and Servlet init 

parameter? 

16. What are the different types of Servlet Engines? 

 

 

 
 
1.10LET US SUM UP 
 

Java servlets are small, platform-independent Java programs that run in a web 

server or application server and provide server-side processing such as enterprise 

commercial applications. Servlets are widely used for web programming. Servlets 

dynamically extend the functionality of a web server. A servlet engine can only 

execute servlet which is contained in the web-servers like, Tomcat or JBoss. 

Servlets are basically developed for the server side applications and designed to 

handle HTTP requests. They are better than other common server extensions like 

CGI as they are faster, have all the advantages of Java language and supported by 

many of the browsers. 



 

 
 170 

A Java Servlet has a lifecycle that defines how the servlet is loaded and initialized, 

how it receives and responds to requests, and how it is taken out of service. Servlets 

run within a Servlet Container, creation and destruction of servlets is the duty of 

Servlet Container. There are three principal stages in the life of a Java Servlet, 

namely: Servlet Initialisation, Servlet Execution, and Servlet Destruction. In first 

stage, the servlet's constructor is called along with the servlet init() method - this is 

called automatically once during the servlet execution life cycle.  

Once your servlet is initialized, a request received by the Servlet Container, will be 

forwarded to Servlet’s service() method. HttpServlet class breaks service() method 

into more useful doGet(), doPost(), doDelete(), doOptions(), doPut() and doTrace() 

methods depending on the type of HTTP request it received. When the application is 

stopped or Servlet Container shuts down, your Servlet’s destroy() method will be 

called to clean up any resources allocated during initialization and to shutdown 

gracefully. 

There are two important interfaces included in the servlet API. They are 

HttpServletRequest and HttpServletResponse. HttpServletRequest encapsulates the 

functionality for a request object that is passed to an HTTP Servlet. It provides 

access to an input stream and so allows the servlet to read data from the client and it 

has methods like getCookies(), getQueryString()& getSession, etc. 

HttpServletResponse encapsulates the functionality for a response object that is 

returned to the client from an HTTP Servlet. It provides access to an output stream 

and so allows the servlet to send data to the client and it has methods like 

addCookie(), sendError() and getWriter(), etc. 

Session tracking is another important feature of the servlet. Every user of a site is 

associated with a javax.servlet.http.HttpSession object that servlets can use to store 

or retrieve information about that user.  

A servlet uses its request object’s getSession() method to retrieve the current 

HttpSession object and can add data to an HttpSession object with the putValue() 

method. Another technique to perform session tracking involves persistent cookies. 

A cookie is a bit of information sent by a web server to a browser and stores it on a 

client machine that can later be read back from that browser. For each request, a 



 

 
 171 

cookie can automatically provide a client’s session ID or perhaps a list of the client’s 

preferences. 

Servlets, which are running together on the same server, have several ways to 

communicate with each other. There are three reasons to use inter-servlet 

communication. First is Direct Servlet manipulation handling in which servlet can 

gain access to the other currently loaded servlets and perform some task on each. 

Second is Servlet Reuse that allows one servlet to reuse the abilities (the public 

methods) of another servlet. Third is Servlet collaboration that allows servlets to 

cooperate, usually by sharing some information. 

  



 

 
 172 

Unit 2:  Servlet with JDBC 
  

Unit Structure 
 
2.1. Learning Objectives 

 
2.2. Introduction  

 
2.3. Connection to Database 

 
2.4. Insert Record Into The Database 

 
2.5. Reading from Database 

 
2.6. Update or Delete Records 

 
2.7. Database Connection Pooling 

 
2.8. Restrict user-access to servlet 

 
 
 

  

2 



 

 
 173 

2.1 LEARNING OBJECTIVE 
 

After going through this unit, you should be able to: 

• Understand the different approach to establish the connection and fetch data 

into Servlet. 

• Understand how to insert the record into the database through a Servlet. 

• Understand the different approaches to update or delete the records in the 

database. 

• Understand how to configure and use the connection pool in servlet to 

manage the database connection efficiently. 

• Learn how Servlet filter works, let's verify the user and redirect to correct page 

using servlet filter. 
 

 
2.2 INTRODUCTION  
 
Accessing data from the database or in any other data sources is a significant 

operation in web programming. Data access in JSPs and Servlets is done through 

Java Database Connectivity (JDBC). There are two packages in JDBC 3.0-java.sql 

and javax.sql. The java.sql package is often referred to as the JDBC core application 

programming interface (API) and is sufficient to do basic data manipulations. The 

javax.sql package is the JDBC Optional Package API which provides additional 

features, including connection pooling, which will be discussed at the end of the 

chapter. Let’s see the different days, you can do the database connection, reading 

data from and writing to the database. 

 

2.3 CONNECTION TO DATABASE 
 
You have already gone through the database connection and reading data from the 

database in java program, there is no change in reading data from the database 

when you are writing a Java Servlet program. 

Let’s take an example of a contact book application, we will connect to the database, 

read the contacts and display those contacts on the screen. Let’s write a program 

that connects to the contact book database. 



 

 
 174 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

import java.sql.* ; 

 

@WebServlet(name = "Contact", urlPatterns = {"/Contact"}) 

publicclassContactextendsHttpServlet { 
 

private Connection conn = null; 
private Statement stmt = null; 
private ResultSet rset = null; 
 

private String databaseUrl = "jdbc:postgresql://localhost:5432/contactbook"; 

private String username = "mantavyagajjar"; 

private String password = "********"; 

 

publicContact() { 
 

    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        response.setContentType("text/html"); 

        PrintWriter out = response.getWriter(); 

 

try { 

            Class.forName("org.postgresql.Driver"); 

this.conn = DriverManager.getConnection(databaseUrl, username, password); 

        } catch (Exception e) { 



 

 
 175 

            out.println("<h4>Connection to database unsuccessful</h4>"); 

return; 

        } 

 

        out.println("<h4>Connection to database successfully</h4>"); 

    } 

} 

 

Above example print the string in browser “Connection to database successfully” 

when your connection to the database is successful, else you will see the message 

“Connection to database unsuccessful”. 

When you open a connection on each user request make sure that it has to be 

closed properly at the end of the request. The connection has to be closed in the 

finally block to release all the resource acquired by the servlet to serve the request. 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

import java.sql.* ; 

 

@WebServlet(name = "Contact", urlPatterns = {"/Contact"}) 

publicclassContactextendsHttpServlet { 
 

private Connection conn = null; 
private Statement stmt = null; 
private ResultSet rset = null; 
 

private String databaseUrl = "jdbc:postgresql://localhost:5432/contactbook"; 



 

 
 176 

private String username = "mantavyagajjar"; 

private String password = "********"; 

 

publicContact() { 
 

    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        response.setContentType("text/html"); 

        PrintWriter out = response.getWriter(); 

 

try { 

            Class.forName("org.postgresql.Driver"); 

this.conn = DriverManager.getConnection(databaseUrl, username, password); 

        } catch (Exception e) { 

            out.println("<h4>Connection to database unsuccessful</h4>"); 

        } 

 

if (this.conn == null) { 
return; 

        } 

 

        out.println("<h4>Connection to database successfully</h4>"); 

 

try { 

            stmt = this.conn.createStatement(); 

            rset = stmt.executeQuery("SELECT * FROM dummy"); 

        } catch (SQLException e) { 

 

        } finally { 



 

 
 177 

try { 

                out.close(); 

                stmt.close(); 

                conn.close(); 

            } catch (SQLException e) { 

 

            } 

        } 

 

    } 

} 

Connection Parameters 

In the above example, we have seen how the database connection is being opened 

and closed in the servlet program, it is not advisable to write the database 

connection parameters (databaseURL, username, and password) in a servlet 

program, as an enterprise application may have many servlets, and changing 

connection parameters leads to modify all those servlet programs who access the 

database. 

It is advisable to write the database connection parameters (databaseURL, 

username, and password) into deployment descriptor file web.xml so that the servlet 

read those parameters during the initialized phase. i.e. init(ServletConfig config) 

method. 

web.xml 

<?xml version="1.0" encoding="UTF-8"?> 

 

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" 

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

    xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee 

                      http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd" 

    version="4.0" metadata-complete="false"> 



 

 
 178 

 

<context-param> 

<param-name>databaseURL</param-name> 

<param-value>jdbc:postgresql://localhost:5432/contactbook</param-value> 

</context-param> 

<context-param> 

<param-name>username</param-name> 

<param-value>mantavyagajjar</param-value> 

</context-param> 

<context-param> 

<param-name>password</param-name> 

<param-value>********</param-value> 

</context-param> 

 

<welcome-file-list> 

<welcome-file>login.html</welcome-file> 

<welcome-file>index.html</welcome-file> 

</welcome-file-list> 

 

</web-app> 

 

The servlet gets the parameters in init(ServletConfig config) method through 

ServletConfig when servlet get initialized by the servlet container. 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

import java.sql.* ; 

 



 

 
 179 

@WebServlet(name = "Contact", urlPatterns = {"/Contact"}) 

publicclassContactextendsHttpServlet { 
 

private Connection conn = null; 
private Statement stmt = null; 
private ResultSet rset = null; 
 

private String databaseUrl = null; 
private String username = null; 
private String password = null; 
 

@Override 

publicvoidinit(ServletConfig config) throws ServletException { 

super.init(config); 

 

        ServletContext context = config.getServletContext(); 

        databaseURL = context.getInitParameter("databaseURL"); 

        username = context.getInitParameter("username"); 

        password = context.getInitParameter("password"); 

    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException {  

 

    } 

} 

 

Now, the database connection parameters can be changed easily in deployment 

descriptor web.xml file. 



 

 
 180 

Database Connection Approaches 

Writing a single user program that  connect to the database and read data from 

database is not a challenging compared to writing a multi-user enterprise application, 

you need to choose the right approach to connect to and reading data form the 

database. Let’s understand the different approach available to wiring an enterprise 

application. 

First Approach 

Create JDBC connectionobject in init() method, use JDBC connection object to 

create statement JDBC object and write JDBC persistence logic in service(request, 

response), doGet(request, response) or doPost(request, response) method. Close 

JDBC connection object in destroy() method. 

In this approach, the JDBC connection object must be taken as an instance variable 

of the servlet program. So connection object is shared between multiple user 

requests and therefore it is not threaded safe. 

 

Advantage is, all requests coming to the servlet program will use a single 

connection to interact with database. This improves the performance of web 

applications. 

 

Disadvantage is, multiple threads may use a single connection object 

simultaneously or concurrently, which means programmer should take care of 

multithreading issues by using synchronization concept. 
 

Second Approach 

Create JDBC connection object in service(request, response), doGet(request, 

response) or doPost(request, response) method.  Use JDBC connection object to 

create statement object and develop JDBC Persistence logic in service(request, 

response), doGet(request, response) or doPost(request, response) methods. Close 

JDBC connection object at the end of theservice(request, response), doGet(request, 

response) or doPost(request, response) method. 
 



 

 
 181 

Advantage is, a JDBC connection object is a local variable of service(request, 

response), doGet(request, response) or doPost(request, response) methods so no 

need to take care for the multithreading synchronization. 
 

Disadvantage is, for every request one separate JDBC connection object will be 

created. So this approach degrades the performance. 

Third Approach 

Get JDBC connection object from JDBC connection pool inservice(request, 

response), doGet(request, response) or doPost(request, response) method, use 

JDBC connection object to create statement object and develop JDBC persistence 

logic in service(request, response), doGet(request, response) or doPost(request, 

response) method. We do not have to close the connection object explicitly, as the 

connection will be return back to connection pool automatically at the end of 

service(request, response), doGet(request, response) or doPost(request, response) 

methods. 

 

Advantages are: 

● JDBC connection object should be taken as a local variable of 

service(request, response), doGet(request, response) or doPost(request, 

response) method. So there is no need to worry about multithreading issues. 

● While working with JDBC connection pool, servlet programs are not 

responsible to create, manage and destroy JDBC connection object. 

● We can use a minimum number of JDBC connection objects to handle more 

clients and requests interact with database. 

● Connection Pooling approach perform better than Approach 2. 

● Connection pool can be defined specific to a single web application or 

connection pool can be defined as shared between multiple web applications. 

 

We will see how to use the connection pooling system in java web application at the 

end of this chapter in detail. 



 

 
 182 

 

2.4 INSERT RECORD INTO THE DATABASE 
 
The SQL Insert query should be executed in order to insert records in the database, 

open the connection, create a statement and execute an Insert SQL query through a 

statement. 

The user inputs the values on the HTML form, those values are transferred to the 

servlet through GET or POST method, the servlet process the data and inserts into 

the database.  Let's take an example of contact book, user input name, email and 

phone number fieldson the html form (Contact.html) and passed to the servlet to 

store those fields into the database.  
 

Create a table into the database. 
 

CREATETABLE contact( 

 nameVARCHAR (50), 

 email VARCHAR (50) UNIQUE, 

 phone VARCHAR (50) 

); 

 

The connection information is set up in the application descriptor file web.xml, let’s 

create a servlet that takes an input from the user (HTML form) and create a record 

into the database. 

Contact.html 

Takes input from the user and transferred to the servlet through GET method. 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 



 

 
 183 

<title>Create Contact</title> 

</head> 

<body> 

<form method="get" action="/contactbook/SaveContact"> 

<p> 

        Name: <input type="text" name="name"><br> 

        Email: <input type="text" name="email"><br> 

        Phone: <input type="text" name="phone"><br> 

</p> 

<input type="submit" value="Create Contact"> 

</form> 

</body> 

</html> 

Contact.java 

Read the values of fields (name, email and phone) from request object, use 

getParameter(name) method to read an values captured and transferred by the html 

form (Contact.html). 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

import java.sql.* ; 

 

@WebServlet(name = "Contact", urlPatterns = {"/SaveContact"}) 

publicclassContactextendsHttpServlet { 
 

private Connection conn = null; 
private PreparedStatement preparedStmt = null; 
 



 

 
 184 

private String databaseURL = null; 
private String username = null; 
private String password = null; 
 

@Override 

publicvoidinit(ServletConfig config) throws ServletException { 

super.init(config); 

 

        ServletContext context = config.getServletContext(); 

        databaseURL = context.getInitParameter("databaseURL"); 

        username = context.getInitParameter("username"); 

        password = context.getInitParameter("password"); 

    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        response.setContentType("text/html"); 

        PrintWriter out = response.getWriter(); 

 

try { 

            Class.forName("org.postgresql.Driver"); 

this.conn = DriverManager.getConnection(databaseURL, username, password); 

        } catch (Exception e) { 

 

        } 

 

if (this.conn == null) { 
return; 

        } 

 

        String insertSQL = "INSERT INTO contact (name, phone, email) VALUES (?, ?, 



 

 
 185 

?)"; 

 

try { 

            preparedStmt = conn.prepareStatement(insertSQL); 

            preparedStmt.setString(1, request.getParameter("name")); 

            preparedStmt.setString(2, request.getParameter("phone")); 

            preparedStmt.setString(3, request.getParameter("email")); 

            preparedStmt.execute(); 

 

            out.println("Record created successfully"); 

            preparedStmt.close(); 

            conn.close(); 

        } catch (SQLException e) { 

            out.println("Error Occurred : " + e); 

        } 

        out.close(); 

    } 

} 

 

The java.sql.PreparedStatement is an ideal way to execute the insert or update 

query as it verify the data according to the type before inserting into the database 

table, on the successful execution of the above servlet you can see the record is 

inserted into the contact table. 

 

 

 

contactbook=# select * from contact; 
name         |        email                     |   phone     

-------------+----------------------+-----------------+-------------- 

 Ajay Kumar  | ajay@gmail.com          | 9898098981 



 

 
 186 

 Nikunj Jani   | nikunjjani@gmail.com  | 9898798985 

(2 rows) 

 

You may get an error on screen if duplicate record found, we have created contact 

table where email field is defined as unique. 

 

Error Occurred : org.postgresql.util.PSQLException: ERROR: duplicate key value 

violates unique constraint "contact_email_key" Detail: Key (email)=(ajay@gmail.com) 

already exists. 

 

2.5 READING FROM DATABASE 
 
Java web application has Servlet as a base technology, the servlet is a tool to write 

the controllers in MVC application model. Servlet can also help to secure the 

business process in web based enterprise applications, we can write the business 

logic part in servlet such as: 

● Validate the use input as per the business need 

● Populate the result by applying the business logic 

● Insert or update the record into the table 

Let’s write a program to fetch the records form contact table and and display all 

thecontact records on web page. 

ReadContact.java 
 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

import java.sql.* ; 



 

 
 187 

 

@WebServlet(name = "Contact", urlPatterns = {"/ReadContact"}) 

publicclassReadContactextendsHttpServlet { 
 

private Connection conn = null; 
private PreparedStatement preparedStmt = null; 
 

private String databaseURL = null; 
private String username = null; 
private String password = null; 
 

@Override 

publicvoidinit(ServletConfig config) throws ServletException { 

super.init(config); 

        ServletContext context = config.getServletContext(); 

        databaseURL = context.getInitParameter("databaseURL"); 

        username = context.getInitParameter("username"); 

        password = context.getInitParameter("password"); 

    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        response.setContentType("text/html"); 

        PrintWriter out = response.getWriter(); 

 

try { 

            Class.forName("org.postgresql.Driver"); 

this.conn = DriverManager.getConnection(databaseURL, username, password); 

        } catch (Exception e) { 

return; 

        } 



 

 
 188 

 

        String insertSQL = "SELECT * FROM contact WHERE 1=1"; 

 

try { 

            preparedStmt = conn.prepareStatement(insertSQL); 

            ResultSet rs = preparedStmt.executeQuery(); 

 

            out.print("<table border=\"1\"><tr>"); 

            out.print("<th>Name</th><th>Email</th>"); 

            out.print("<th>Phone</th></tr>"); 

while(rs.next()) { 

                out.print("<tr><td>"+rs.getString("name")+"</td>"); 

                out.print("<td>"+rs.getString("email")+" </td>"); 

                out.print("<td>"+rs.getString("phone")+"</td></tr>");   

            } 

            out.println("</table>"); 

 

            preparedStmt.close(); 

            conn.close(); 

        } catch (SQLException e) { 

            out.println("Error Occured" + e); 

        } 

        out.close(); 

    } 

} 

 

Access the URLhttp://localhost:8080/contactbook/ReadContact you will see all the 

contacts you have created in the database. 

 



 

 
 189 

 
 

Contacts available in the database 

 

contactbook=# select * from contact; 

name             |        email                     |   phone     

----------------+----------------------+------------ 

 Ajay Kumar         | ajay@gmail.com          | 9898098981 

 Nikunj Jani          | nikunjjani@gmail.com  | 9898798985 

 Harshad Modi     | harshad@gmail.com    | 9897187928 

 Anjana Raval      | anjana@gmail.com      | 9897187922 

 Deepak Raval     | deepak@gmail.com     | 9897187924 

 Pramukh Suthar  | pramukh@gmail.com   | 9897287923 

(6 rows) 

 

Reading all the data from the database table may slow down the application 

performance when you have millions of records stored into the database table. The 

performance can be improved when we fetch and display only the required data. 

Let’s modify our program (ReadContact.java) to display only requested data by the 

user, take an input from the user and search and display the contacts based on the 

user's input. 

 

mailto:nikunjjani@gmail.com�


 

 
 190 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

    response.setContentType("text/html"); 

    PrintWriter out = response.getWriter(); 

 

try { 

        Class.forName("org.postgresql.Driver"); 

this.conn = DriverManager.getConnection(databaseURL, username, password); 

    } catch (Exception e) { 

return; 

    } 

 

    String insertSQL = "SELECT * FROM contact WHERE name ilike ? ESCAPE '!'"; 

 

    out.print("<h2>Contact List</h2>"); 

    out.print("<form action='/contactbook/ReadContact' method='get'>"); 

    out.print("Search Contact: <input type='text' name='q'>"); 

    out.print("<input type='submit' value='Search Contact'></form>"); 

 

try { 

        preparedStmt = conn.prepareStatement(insertSQL); 

        String query = "%" + request.getParameter("q") + "%"; 

 

if(query != null) { 
            preparedStmt.setString(1, query); 

            ResultSet rs = preparedStmt.executeQuery(); 

 

            out.print("<table border='1' style='width:100%'><tr>"); 

            out.print("<th>Name</th><th>Email</th>"); 

            out.print("<th>Phone</th></tr>"); 

 



 

 
 191 

while(rs.next()) { 

                out.print("<tr><td>"+rs.getString("name")+"</td>"); 

                out.print("<td>"+rs.getString("email")+" </td>"); 

                out.print("<td>"+rs.getString("phone")+"</td></tr>"); 

            } 

            out.print("</table>"); 

 

            preparedStmt.close(); 

            conn.close(); 

        } 

    } catch (SQLException e) { 

        out.println("Error Occured" + e); 

    } 

    out.close(); 

} 

 

Just change the doGet method to allow a user to filter on the name field. 

 
 

 

 

 

 

2.6 UPDATE OR DELETE RECORDS 
 
The delete or update operation needs an identification to the record on which the 

operation is being executed, usually developer choose the primary key as an auto 



 

 
 192 

increment number field which is use to identify unique record. The id of record can 

be guessed easily and the user can perform the update or delete operation just by 

accessing an URL as below. 

 

http://localhost:8080/contactbook/DeleteContact?id=29 

 

You should secure those sensitive servlets, so only valid user can access such 

servlets. There are three ways to make it secure, it is advisable to implement the 

best suitable approach in your java web application. 

First Approach 

The first approach to secure sensitive urls, check for the user’s validity on access of 

such restricted urls. This approach is commonly implemented by all the web 

developers, we should check for the current session, if valid user found in session 

allow access to such urls else redirect user to login page. So, each time we can 

check the session for a valid user before executing the critical operation. 

 

HttpSession session = request.getSession(false); 

if(session.getAttribute("userObj") == null) { 

    RequestDispatcher rd = request.getRequestDispatcher("/Login.html");   

    rd.forward(request, response); 

} 

Second Approach 

The second approach is to create a urlsafe key for each record based on a unique 

key field. Add new column in the table and then change the code to generate the 

values for urlsafe column. 

ALTER TABLE contact ADD COLUMN urlsafe VARCHAR(100); 

 



 

 
 193 

Let’s modify our SaveContact.java servlet to create the urlsafe key based on the 

unique field email. 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

    response.setContentType("text/html"); 

    PrintWriter out = response.getWriter(); 

 

try { 

        Class.forName("org.postgresql.Driver"); 

this.conn = DriverManager.getConnection(databaseURL, username, password); 

    } catch (Exception e) { 

return; 

    } 

 

    String insertSQL = "INSERT INTO contact (name, phone, email, urlsafe) VALUES 

(?, ?, ?, md5(?))"; 

try { 

        preparedStmt = conn.prepareStatement(insertSQL); 

        preparedStmt.setString(1, request.getParameter("name")); 

        preparedStmt.setString(2, request.getParameter("phone")); 

        preparedStmt.setString(3, request.getParameter("email")); 

        preparedStmt.setString(4, request.getParameter("email")); 

 

        preparedStmt.execute(); 

 

        out.println("Record created successfully"); 

        preparedStmt.close(); 

        conn.close(); 

    } catch (SQLException e) { 

        out.println("Error Occured" + e); 



 

 
 194 

    } 

    out.close(); 

} 

 

We have added a new field named urlsafe which can be generated by PostgreSQL 

based on the unique value, so now we can identify each record uniquely in the 

database. Your data will be looking as below. 

 

contactbook=# select * from contact; 
name       |          email           |   phone    |             urlsafe               

-----------------+--------------------------+------------+---------------------------------- 

 Ajay Kumar      | ajay@gmail.com           | 9898098981 | 3ba1708d4d427814c9fa1b5a56675bee 

 Nikunj Jani     | nikunjjani@gmail.com     | 9898798985 | b6a6c1a62a09c42a1325ffda1f8c91bc 

 Harshad Modi    | harshad@gmail.com        | 9897187928 | f5e2b761c60508a8d9ff30eadf272879 

 Anjana Raval    | anjana@gmail.com         | 9897187922 | 377935861f33a7c1d296ddf15713c0f2 

 Deepak Raval    | deepak@gmail.com         | 9897187924 | 5ae4927580af7bac3c6adf451158e0e5 

 Pramukh Suthar  | pramukh@gmail.com        | 9897287923 | dfdc36f348b15558a1bc912deeca26cb 

 Mantavya Gajjar | mantavyagajjar@gmail.com | 9898798982 | 11a2db4be94e348f34ecdb906cee25d2 

(7 rows) 

 

Now, it will be difficult for the userto make a guess for any record to delete when you 

use the urlsafe key as a record key in the URL parameter. 

http://localhost:8080/contactbook/DeleteContact?id=5ae4927580af7bac3c6adf451158

e0e5 

Third Approach 

The third approach does not delete any record in the database, instead of adding a 

new field named active, by default when a record is being created in the system set 

active to true if you want to delete any record set active to false. So by default when 

you perform read or search operation add the default condition such as WHERE 

active=’t’. 

http://localhost:8080/contactbook/DeleteContact?id=5ae4927580af7bac3c6adf451158e0e5�
http://localhost:8080/contactbook/DeleteContact?id=5ae4927580af7bac3c6adf451158e0e5�


 

 
 195 

 

stable=# select name, email, urlsafe, active from contact; 

name       |          email           |             urlsafe              | active  

-----------------+--------------------------+----------------------------------+-------- 
Ajay Kumar      | ajay@gmail.com           | 3ba1708d4d427814c9fa1b5a56675bee | t 

 Nikunj Jani     | nikunjjani@gmail.com     | b6a6c1a62a09c42a1325ffda1f8c91bc | t 

 Harshad Modi    | harshad@gmail.com        | f5e2b761c60508a8d9ff30eadf272879 | t 

 Deepak Raval    | deepak@gmail.com         | 5ae4927580af7bac3c6adf451158e0e5 | t 

 Mantavya Gajjar | mantavyagajjar@gmail.com | 11a2db4be94e348f34ecdb906cee25d2 | t 

 Pramukh Suthar  | pramukh@gmail.com        | dfdc36f348b15558a1bc912deeca26cb | f 

 Anjana Raval    | anjana@gmail.com         | 377935861f33a7c1d296ddf15713c0f2 | f 

(7 rows) 

 

2.7  DATABASE CONNECTION POOLING 
 

Database Connection Pooling is a great technique used by a lot of application 

servers to optimize performance. Database Connection creation is a costly task thus 

it impacts the performance of the application. Hence a application server creates a 

database connection pool which are pre-initiated database connections that can be 

leveraged to increase performance. 

Connection pool is a set of opened connection to the same database, those are 

created when application server start, so we can save the time to load the JDBC 

database driver into memory and established the connection to the database, when 

user need a connection it can be assigned from the pool and when database 

operation completed the connection can be taken back and add to the pool, this is 

the biggest advantages of using connection pool in an enterprise web application. 

Apache Tomcat also provides a way of creating database Connection Pool. Let us 

see an example to implement database Connection Pooling in the Apache Tomcat 

server. We will improve our contact book web application to use the connection pool 

to get the database connection from database connection pool and fetch the data 

using a query. 



 

 
 196 

Apache Tomcat allowsan application to define the resource used by the web 

application in context.xml (from Tomcat 5.x version onwards). We have to create a 

file context.xml under META-INF directory. 

Additional Libraries 

You may need to add some additional libraries to the CLASSPATH to compile the 

servlet. In my example I have added below listed libraries to the CLASSPATH, they 

are available in the Tomcat lib directory. 

 

apache-tomcat-9.0.17/lib/tomcat-jni.jar 
apache-tomcat-9.0.17/lib/tomcat-jdbc.jar 

META-INF/context.xml 

<?xml version="1.0" encoding="UTF-8"?> 

<Context> 

 

<!-- Specify a JDBC datasource --> 

<Resource name="jdbc/contactbook" auth="Container" 

    type="javax.sql.DataSource" username="mantavyagajjar" password="******" 

    driverClassName="org.postgresql.Driver" 

    url="jdbc:postgresql://localhost:5432/contactbook" maxIdle="4" maxTotal="8"/> 

 

</Context> 

 

In the above code snippet, we have specified a database connection pool. The name 

of the resource is jdbc/contactbook. We will use this name in our application to get 

the data connection. 



 

 
 197 

Modify the Servlet Program 

Let’s modify the servlet to use the connection from the connection pool instead of 

open and close connection on each user request. Now connection related activities 

will be managed by the connection pool. 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

import java.sql.* ; 

import javax.sql.*; 

import javax.naming.*; 

 

@WebServlet(name = "Contact", urlPatterns = {"/ReadContact"}) 

publicclassReadContactextendsHttpServlet { 
 

private DataSource dataSource; 

private Connection connection; 

private PreparedStatement statement; 

 

@Override 

publicvoidinit(ServletConfig config) throws ServletException { 

super.init(config); 

try{ 

            Context initContext = new InitialContext(); 

            Context envContext = (Context) initContext.lookup("java:/comp/env"); 

            dataSource = (DataSource) envContext.lookup("jdbc/contactbook"); 

        } catch (NamingException e) { 

 

        } 

    } 



 

 
 198 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        response.setContentType("text/html"); 

        PrintWriter out = response.getWriter(); 

 

        String insertSQL = "SELECT * FROM contact WHERE name ilike ? ESCAPE '!'"; 

 

        out.print("<h2>Contact List</h2>"); 

        out.print("<form action='/contactbook/ReadContact' method='get'>"); 

        out.print("Search Contact: <input type='text' name='q'>"); 

        out.print("<input type='submit' value='Search Contact'></form>"); 

 

try { 

            connection = dataSource.getConnection(); 

            statement = connection.prepareStatement(insertSQL); 

 

            String query = "%" + request.getParameter("q") + "%"; 

 

if(query != null) { 
                statement.setString(1, query); 

                ResultSet rs = statement.executeQuery(); 

 

                out.print("<table border='1' style='width:100%'><tr>"); 

                out.print("<th>Name</th><th>Email</th>"); 

                out.print("<th>Phone</th></tr>"); 

 

while(rs.next()) { 

                    out.print("<tr><td>"+rs.getString("name")+"</td>"); 

                    out.print("<td>"+rs.getString("email")+" </td>"); 

                    out.print("<td>"+rs.getString("phone")+"</td></tr>"); 



 

 
 199 

                } 

                out.print("</table>"); 

            } 

        } catch (SQLException e) { 

            out.println("Error Occured" + e); 

        } 

    } 

} 

 

The output remains the same, there is no change in the execution of the queries, if 

you compare the code,reduced a lot as connection is managed by the application 

server. 

 

2.8 RESTRICT USER-ACCESS TO SERVLET 
 
Normally, when a user requests a servlet or web page, a request is sent to the 

application server, the application server allows access to that requested servlet or 

web page if exist on the server, we have to change that mechanism so it will have to 

pass through the filter before reaching the servlet or web page required, like the 

illustration below: 

 

 

 



 

 
 200 

However, there are situations where the user's request does not pass all Filters, as a 

user does not have enough access to such resource and due to that filter redirects 

users to another page. 

Let’s implement the filter that verifies the current user, if the user is not valid then 

redirect to a login page or allow access on the page requested for valid users. 

 

import java.io.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

 

@WebFilter("/ReadContact") 

publicclassReadContactFilterimplementsFilter { 
 

publicvoiddoFilter(ServletRequest request, ServletResponse response, FilterChain 

chain)  

throws IOException, ServletException { 

 

        HttpSession session = null; 
        HttpServletRequest httpRrequest = (HttpServletRequest) request; 

 

        session = httpRrequest.getSession(false); 

 

if(session.getAttribute("user") == null) { 
            session.setAttribute("returnURL", httpRrequest.getServletPath()); 

            RequestDispatcher rd = request.getRequestDispatcher("/login.jsp");   

            rd.forward(request, response); 

        } else { 

            chain.doFilter(request, response); 

        } 

    } 

} 



 

 
 201 

 

We have implemented the Filter which will be called when user request for 

/ReadContact url from the browser, a doFilter method will be called with 

ServletRequest, ServletResponse, FilterChain objects. The filter will check the 

session for a valid user object, if valid user object found then allow the user to 

access the /ReadContact servlet else redirect to the Login page. 

 

 
 

Enter the user and password, and click on the Login button we will be redirected to 

Login Servlet to verify the user, the session will be created if user is valid. Filter will 

check for the session again and grant access on the requested resource. 
 

 
 

Until a valid user found in session, the user will be able to access /ReadContact 

servlet. 



 

 
 202 

Unit 3:  Basics of Java Server 
Pages 

  
Unit Structure 
 
3.1. Learning Objectives 

 
3.2. Introduction to JSP 

 
3.3. JSP Scripting Elements 

 
3.4. JSP Directives 

 
3.5. JSP Implicit Objects 

 
3.6. JSP Expression Language 

 
3.7. JSP Action Tags 

 
3.8. JSP Cookies and Session 

 
3.9. MVC Architecture in JSP 

 
 
 

  

3 



 

 
 203 

3.1 LEARNING OBJECTIVE 
 

After going through this unit, you should be able to: 

• understand the need for JSP; 

• understand the functioning of JSP; 

• understand the relation of applets and servlets with JSP; 

• know about various elements of JSP; 

• explain various scripting elements of JSP; 

• explain various implicit objects of JSP, and 

• understand the concept of custom tags and the process of creating custom 

tag libraries in JSP. 
 

 
3.2 INTRODUCTION TO JSP 
 
Java Server Pages is a technology used to create web application just like Servlet 

technology. It can be thought of as an extension to Servlet because it provides more 

functionality than servlet such as expression language, JSTL. A JSP page consists 

of HTML tags and JSP tags. The JSP pages are easier to maintain than Servlet 

because we can separate designing and development. 

JSP is a technology based on the Servlet, Servlet Container or Application Server 

convert all the JSP pages to Servlet, the Servlet will be executed by the servlet 

container finally. Java Server Pages are mostly used to prepare an application user 

interface than Servlet that generates the user interface. We can use all the objects 

such as HttpServletRequest or HttpServletResponse which are available to Servlet. 

Java Server Pages executes much faster compared to other dynamic languages. It 

is much better than the Common Gateway Interface (CGI). Java server pages are 

built over Java Servlets API. Hence, JSP Page has access to all Java Servlet APIs, 

even it has access to JNDI (Java Naming Directory Interface), JDBC and other java 

libraries. JSP is used in MVC architecture as a view layer. The MVC application 

architecture can be achieved using JSP and Servlet technologies, Java Beans are 

use to create a model, Servlet used to create a controllers and JSP pages are used 

to create a view layer. 



 

 
 204 

There are various advantages of using Java Server Pages, some of them are listed 

below: 

● As it is built on Java technology, hence it is platform independent and not 

dependent on any specific operating system. 

● JSP page converted to Java Servlet, hence you can access all the Java 

objects in JSP page which can be used in Servlet. 

● JSP Scripting elements enables you to mix the Java and HTML code together 

in JSP file. 

● Using JSP Custom Tag Library feature code can be simplified and readable 

format, The JSP Taglib Directive executed by the Servlet Container or Web 

server and converted into the equivalent HTML code. 

 

3.3 JSP SCRIPTING ELEMENTS 
 
All the JSP files converted to Servlet before it executed by the Servlet Container or 

Web Server, The code written inside the JSP scripting elements will be added to the 

Servlet. Using scripting elements we will be able to write the Java and HTML code in 

a single file.  

There are three forms of writing the elements in JSP file: 

● JSP Declaration 

● JSP Scriptlet 

● JSP Expression 

Let’s see the usage of those elements. 

JSP Declaration 

A declaration tag is a piece of Java code for declaring variables, methods, and 

classes. If we declare a variable or method inside declaration tag it means that the 

declaration is made inside the servlet class but outside the service method. 

We can declare any variables inside the declaration block such as static member, an 

instance variable, an integer or a string variable, we can also declared any other 

Java object inside the declaration tag. 



 

 
 205 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

     pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

    "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Declaration Tag Example</title> 

</head> 

<body> 

<%! int count =10; %> 

<% out.println("The Number is " + count); %> 

</body> 

</html> 

The variable which is declared in the declaration tag is initialized and printed as 

output. 

JSP Scriptlet 

Scriptlet tag allows writing Java code into a JSP file. The JSP file converted into 

Servlet by Servlet Container, all the statements written within Screplet tags are 

encapsulated in _jspservice() method of Servlet, finally Servlet will be compiled and 

executed by the Servlet Container. For each request of the client, service method of 

the JSP gets invoked hence the code inside the Scriptlet executes for every request. 

A Scriptlet contains java code that is executed every time JSP is invoked. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 



 

 
 206 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Scriplet Example</title> 

</head> 

<body> 

<% int number_ond=10; 

  int number_two=40; 

  int numbers = number_ond + number_two; 

  out.println("Scriplet Number is " +numbers); 

  %> 

</body> 

</html> 

 

In the Scriptlet tags, we have declared two variables number_one and number_two. 

Third variable numberswill be declared andinitialized with the summation of 

number_one and number_two. 

JSP Expression 

Expression tag evaluates the expression placed inside the block. It can access the 

data stored in any variables. It allows for creating expressions like arithmetic and 

logical, the final result will be encapsulated into the println statement, hens the final 

result will be displayed on the webpage. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

  pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Expression Example</title> 



 

 
 207 

</head> 

<body> 

<% int number_one=10; int number_two=10; int number_three=20; %> 

<% out.println("The expression number is "); %> 

<%= number_one * number_two * number_three %> 

</body> 

</html> 

 

We have used anexpression tag, where we have written an arithmetic expression to 

multiply three numbers i.e. number_one and number_two and number_three. 

JSP Comments 

The JSP comments are the statement or block of statements, converted to the Java 

comments by the JSP container during the conversion form JSP file to Java Servlet. 

The HTML comments are encapsulated into the println function and pushed to the 

browser as HTML file. 

 

Comment in JSP Comment in HTML 

<% -- JSP Comments %> <!-- HTML Comment --> 

 

Comments are used to write a documentation within the code or we can ignore a 

part of the code by adding comment. 

 

3.4 JSP DIRECTIVES 
 
JSP directives are the messages to JSP container. They provide global information 

about an entire JSP page. JSP directives are used to give special instruction to a 

container for translation of JSP to Servlet code. During the translation phase of JSP 

Lifecycle, a JSP file is converted into the Java Servlet,   will complied to Java Class 

file. JSP Directives give instructions to the Servlet Container on how to transfer the 



 

 
 208 

code into the Servlet during the translation phase. Directives can have many 

attributes separated by a space inform of key-value pairs. JSP Directive can be 

described written as<%@ attribute=”” %>.  

There are three types of directives: 

● Page directive 

● Include directive 

● Taglib directive 

Let’s see each one of them in detail with an example: 

JSP Page directive 

It provides attributes that are applied to the entire JSP page. It defines page-

dependent attributes, such as scripting language, error page, and buffering 

requirements. It is used to provide instructions to a Servlet Container that creates the 

Servlet related to the current JSP page. 

Following are the list of attributes associated with page directive: 

1. Language 

2. Extends 

3. Import 

4. contentType 

5. info 

6. session 

7. isThreadSafe 

8. autoflush 

9. buffer 

10. IsErrorPage 

11. pageEncoding 

12. errorPage 

13. isELIgonored 



 

 
 209 

Language 

At the beginning of JSP file, a page directives should be declared as below. 
 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"   

pageEncoding="ISO-8859-1"%> 

 

Import 

To perform a specific operation if you need support from external libraries, those 

libraries can can be import in JSP page using an import attribute. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    import="java.util.Date" pageEncoding="ISO-8859-1"%> 

 

Extends 

As every JSP page is converted to Servlet java class before execution, you can 

inherit another java class using extends attribute. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    pageEncoding="ISO-8859-1"%> 

<%@ page extends="hello.LoginPage" %> 

 

In the above example, JSP page extends an existing servlet LoginPage which is 

declared in hello package. 

 

Info 

It defines a string which can be accessed by getServletInfo() method. This attribute 

is used to set the servlet’s description. 

<%@ page info="HelloWorld Example" pageEncoding="ISO-8859-1"%> 

 



 

 
 210 

Session 

JSP page creates a session automatically for all pages by default. Sometimes we 

don't need a session to be created automatically in JSP page, we can set Session 

attribute to false. The default value of the session attribute is true, so the session is 

created automatically. When it is set to false, then we can indicate the compiler to 

not create the session by default. 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    session="false"%> 

 

isThreadSafe 

When isThreadSafe is set to true, Servlet Container creates multiple objects for the 

same JSP file when requested by multiple clients. Each client is served with a 

separate _jspService() method. When isThreadSafe is set to false, indicates the 

container to create one Servlet object for each client requesting the same JSP. 

Multiple clients will have multiple Servlet objects created by the container to honor all 

the clients. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    isThreadSafe="true"%> 

 

AutoFlush 

This attribute specifies that the buffered output should be flush automatically or not, 

the default value of that attribute is true. If the value is set to false the buffer will not 

be flush automatically, when the buffer gets full we may get an exception. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    autoFlush="false"%> 

 

 



 

 
 211 

Buffer 

Using this attribute the output response object may be buffered. We can define the 

size of the buffer to be done using this attribute, the default buffer size is 8KB. The 

bufferindicatesa size of the buffer used by the servlet to write the output to the buffer 

before writing to the response object. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    buffer="16KB"%> 

 

ErrorPage 

This attribute is used to set an error page for the JSP page. When anexception 

occurs during the executing of JSP page, Servlet Container automatically redirects a 

request to the error page. 
 

<%@ page language="java" contentType="text/html;" pageEncoding="ISO-8859-1" 

    errorPage="errorHandler.jsp"%> 

 

isErrorPage 

It indicates that JSP Page have the capability to receive an exception from other JSP 

pages. The default value is false. 
 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    isErrorPage="true"%> 

 

isELIgnored 

The default value is set to true, means you can evaluate an expression such as ${2 * 

4 + 3 * 4} in JSP page. You can deactivate by setting values to false for any specific 

JSP file. 

<%@ page language="java" contentType="text/html;" pageEncoding="ISO-8859-1" 

    isELIgnored="true"%> 



 

 
 212 

JSP Include directive 

JSP include directive is used to include one file into another file. This included file 

can be HTML, JSP, text files. It is very good features that used to break the user 

interface into a header, footer and content part. The filer will be included during the 

translation phase. Let’s divide the whole page into header, footer and use them into 

index page using the JSP include. 

 

header.jsp  

Define the menu bar. 

 

<nav class="navbar navbar-expand-lg navbar-light bg-light"> 

<div class="container"> 

<a class="navbar-brand" href="#">Navbar</a> 

<div class="collapse navbar-collapse" id="navbarNavAltMarkup"> 

<div class="navbar-nav"> 

<a class="nav-item nav-link active" href="#"> 

          Home<span class="sr-only">(current)</span> 

</a> 

<a class="nav-item nav-link" href="#">Features</a> 

<a class="nav-item nav-link" href="#">Pricing</a> 

</div> 

</div> 

</div> 

</nav> 

 

Footer.jsp 

Define the sticky footer which stays bottom of the page 

 

<style> 

.footer { 

background-color: #f5f5f5; 



 

 
 213 

} 

</style> 

 

<footer class="footer mt-auto py-3"> 

<div class="container"> 

<span class="text-muted">Place sticky footer content here.</span> 

</div> 

</footer> 

 

Index.jsp 

Create an index page with the content and reuse the header and footer by including 

them into the page. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Header with Menu</title> 

<link rel="stylesheet" 

      href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" 

      crossorigin="anonymous"/> 

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js" 

      crossorigin="anonymous"/> 

</head> 

<body class="d-flex flex-column h-100"> 

 

<%@ include file="header.jsp" %> 

 

<main role="main" class="flex-shrink-0"> 



 

 
 214 

<div class="container"> 

<h1 class="mt-5">JSP Include Example</h1> 

<p class="lead"> 

          header.jsp and footer.jsp gives the predefined header and footer content. 

</p> 

</div> 

</main> 

 

<%@ include file="footer.jsp" %> 

</body> 

</html> 

 

Now, open the index.jsp file in the browser you will see a beautiful page with menu 

bar and footer. 

 

 

JSP Taglib Directive 

JSP taglib directive is used to import the tag library with "taglib" as a prefix. The tag 

library is a set of custom tags which executed by the Servlet Container to generate 

the HTML output. It uses a set of custom tags, identifies the location of the library 

and provides means of identifying custom tags in JSP page. 
 

Let’s take an example to understand how custom tag library can help a developer to 

simplify the JSP code. 

● Create a new web app calledhellounderwebapps directory 



 

 
 215 

● Create a required directory structure, i.e. WEB-INF and WEB-INF/lib directory  

● Copy taglibs-standard-impl-1.2.5.jar and taglibs-standard-spec-1.2.5.jar 

libraries into webapps/hello/WEB-INF/lib form webapps/examples/WEB-

INF/lib directory. 

● Create an index.jsp in webapps/hello/index.jsp and use the below code to test 

the custom tag-library. 
 

<html> 

<head> 

<title>Tag Plugin Examples: forEach</title> 

</head> 

<body> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %> 

<%@ page import="java.util.Vector" %> 

 

<h3>Iterating over a range</h3> 

<c:forEach var="item" begin="1" end="10"> 

      ${item} 

</c:forEach> 

 

<% Vector v = new Vector(); 

      v.add("One"); v.add("Two"); v.add("Three"); v.add("Four"); 

      pageContext.setAttribute("vector", v); 

    %> 

 

<h3>Iterating over a Vector</h3> 

<c:forEach items="${vector}" var="item"> 

      ${item} 

</c:forEach> 

</body> 

</html> 

 



 

 
 216 

The taglib is a tool used to define custom tags that are processed by the Servlet 

Container and translated into the HTML code as per the definition of custom tag and 

its method. Look at the output of the above code, the HTML page is generated. 

 

 
 

3.5 JSP IMPLICIT OBJECTS 
 
JSP implicit objects are created during the translation phase automatically added to 

the Servlet. When writing a JSP page we do not have to create those objects 

explicitly as they are created by the Servlet Container. There are 9 implicit objects 

can be accessed directly without explicit declaration in any JSP file: 

1. out 

2. request 

3. response 

4. config 

5. application 

6. session 

7. pageContext 

8. page 

9. exception 

 



 

 
 217 

Let’s see the usage of each object in detail 

out 

Out is one of the implicit objects used to write data to buffer and send output to the 

client in response. Out object allows us to access the servlet output stream, out is an 

instance of javax.servlet.jsp.jspWriter class. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<title>Implicit Objects - out Example</title> 

</head> 

<body> 

<% int number_one=10; int number_two=20; 

      out.println("number_one is " +number_one); 

      out.println("number_two is "+number_two); 

    %> 

</body> 

</html> 

Request 

The request object is an instance of java.servlet.http.HttpServlet class. The request 

is one of the arguments of service method, for every user request Servlet Container 

create an instance of java.servlet.http.HttpServlet class and passed to 

_jspservice(request, response) method. It will be used to get information like  user 

inputs and request header values. We can get the list of parameters using 

getParameter() method to access the user inputs pass to the server. 



 

 
 218 

Index.html - the HTML form takes username and password from user and passes to 

hello.jsp file. The hello.jsp that get the reads the username and password from 

request object and display a value on the hello.jsp page. 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<title>User Input Form</title> 

</head> 

<body> 

<form action="/hello/ProcessRequest" method="post"> 

<p>Enter your name: <input type="text" name="username"></p> 

<input type="submit" value="login"> 

</form> 

</body> 

</html> 

 

Hello.jsp 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

  pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Request Object - Example</title> 

</head> 

<body> 

<% 

      String username = request.getParameters('username'); 



 

 
 219 

      out.println("Welcome " + username); 

    %> 

</body> 

</html> 

Response 

The response is an instance of type HttpServletResponse interface. The 

containercreates a request object and pass it to _jspservice(request, response) 

method as a parameter. It represents the response that is given to the client. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

  pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Response Object - Example</title> 

</head> 

<body> 

<% 

      String username = request.getParameters('username'); 

      response.addCookie(new Cookie("username",username)); 

    %> 

</body> 

</html> 

Config 

The config is of the type java.servlet.servletConfig interface, It is created by the 

Servlet Container for each JSP page, It reads the initialization parameter from 

web.xml and passes to Servlet or JSP page. 



 

 
 220 

Application 

The application object is an instance of javax.servlet.ServletContext interface, the 

instance is created by the Servlet Container, loads the attributes defined in the 

web.xml deployment descriptor file. The javax.servlet.ServletContext object contains 

a set of methods which are used to get and set the attributes which are loaded in 

Servlet Container. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

  pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Application Object - Example</title> 

</head> 

<body> 

<% out.println(application.getContextPath()); %> 

</body> 

</html> 

 

This code will print the application root path, i.e. /hello 

Session 

The session object is holding "httpsession" object. The session object is used to get, 

set and remove attributes to session scope and also used to get session information. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

  pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 



 

 
 221 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Session Object - Example</title> 

</head> 

<body> 

<% session.setAttribute("user","ajay@gmail.com"); %> 

<a href="/help/current-session.jsp">Click to see current login user</a> 

</body> 

</html> 

 

The above program will set the attribute “user” to the session, the below program will 

read the same “user” attribute form the session. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

  pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Session Object - Example</title> 

</head> 

<body> 

<% 

      String name = (String)session.getAttribute("user"); 

      out.println("User Name is " + name); 

    %> 

</body> 

</html> 



 

 
 222 

pageContext 

In JSP, pageContext is an implicit object of type javax.servlet.jsp.PageContext class. 

The pageContext object can be used to set, get or remove the attribute from one of 

the following scopes: 

● page 

● request 

● session 

● application 

In JSP, the page is the default scope, if you do not pass the scope. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

  pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Session Object - Example</title> 

</head> 

<body> 

<%  

      pageContext.setAttribute("student", "Vijay Patel", pageContext.PAGE_SCOPE); 

      String name = (String) pageContext.getAttribute("student"); 

      out.println("student name is " +name); 

    %> 

</body> 

</html> 

 

Student attribute will not be accessible to another page in this example. 



 

 
 223 

Page 

The page is an implicit object holds the currently executed servlet object for the 

corresponding JSP. Acts as this object for current JSP page. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

  pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Session Object - Example</title> 

</head> 

<body> 

<%  

      String pageName = page.toString(); 

      out.println("Page Name is " +pageName); 

    %> 

</body> 

</html> 

 

Print the string representation of the current jsp page. 

Exception 

The exception object represents all errors and exceptions. The exception implicit 

object is of type java.langThrowable. You can access the exception object on a page 

that you declare to be an error page using the isErrorPage attribute of the page 

directive. 
 

The exception object is created only if the JSP uses the page directive to set 

isErrorPage set to true. When a JSP generates an error and forwards that error to 



 

 
 224 

the error page, the container sets the JSP exception object of the error page to the 

generated error. 

 

3.6 JSP EXPRESSION LANGUAGE 
 
Expression Language (EL) is a mechanism that simplifies the accessibility of data 

stored in the Java bean component or any other objects like request, session, and 

application. There are several implicit objects, operators and reserved words in 

Expression Language. The JSP Expression Language supports operators and 

control-flow statements,  There are many operators supported in JSP such as 

arithmetic and logical operators to perform an expression. The Expression Language 

was introduced in JSP 2.0. 

JSP Syntax of Expression Language (EL) 

The expression written within the curly braceswill be evaluated at runtime and sent to 

the output stream.The expression should be a valid expression and it can be mixed 

with a html text and can be combined with other expressions to form larger 

expression. To get a better idea, on how expression works in JSP, let’s go through 

below example. 

In this example, we will write an arithmetic expression using plus (+) operator to add 

two numbers i.e. (1+2) and get the output. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>JSP Expression Language - Example</title> 

</head> 

<body> 



 

 
 225 

<a>Expression is:</a> 

    ${1+2}; 

</body> 

</html> 

 

You will see “Expression is 3” line in your browser as an output. 

JSP Flow Control Statements 

JSP is based on the Java Language, hens we can use all the flow and control 

statements which are used in Java such as if - else, switch, for or while. We can use 

all the APIs and building blocks of Java programming language in JSP programming 

including control flow statements. There are two types of flow control statements 

described below; 

Decision-Making Statements: Decision-making statement in JSP is based on 

whether the resultfor a condition is true or false. The statement will behave according 

to the result of a condition. There are two types of decision-making statements 

described below: 

● If – else 

● Switch 

JSP If-else 

"If-else" statement is basic of control flow statement, and it tells the program to 

execute the certain section of code only if the particular conditions evaluates to true. 

The if-else statement can evaluate multiple conditions, based on the result the next 

set of statements will be executed, If the first condition is true then "if block" is 

executed and if the conditions is false then "else block" is executed. 

 

if (test condition) { 

    //Block of statements     

}  



 

 
 226 

else { 

    //Block of statements 

} 

 

In JSP page if-else can be written as below. 

 

<body> 

<%! int month=5; %> 

<% if(month==2){ %> 

<p>Its February</p> 

<% }else{ %> 

<p>Any month other than February</p> 

<%} %> 

</body> 

JSP Switch 

The body of the switch statement is called a "switch block". The switch case is used 

to check the number of possible execution paths. A switch can be used with byte, 

short, char, and int primitive data types. The switch statement contain more than one 

cases, we can also include a default case as it is optional. Consider the below JSP 

program, it declares an int named weekday whose value represents a day of 

week(1-7). The code displays the name of the day, based on the value of day, using 

the switch statement. 

 

<body> 

<%! int weekday=2; String weekday="Saturday" %> 

<% 

  switch(weekday) { 

    case 0: 

      weekday="Sunday"; 

      break; 



 

 
 227 

    case 1: 

      weekday="Monday"; 

      break; 

    case 2: 

      weekday="Tuesday"; 

      break; 

    case 3: 

      weekday="wednesday"; 

      break; 

    case 4: 

      weekday="Thursday"; 

      break; 

    case 5: 

      weekday="Friday"; 

      break; 

  } 

  out.println(weekday); 

%> 

</body> 

JSP For loop 

It is used for iterating over the list of elements for a certain condition, and it has three 

parameters. 

● Variable counter is initialized 

● Condition till the loop has to be executed 

● Counter has to be incremented 

Go through the below program, i is the counter variable, the loop will be executes 5 

times based on the conditions, and counter will be increased by 1 on each iteration. 

 

<body> 



 

 
 228 

<%! int num=5; %> 

<% 

  out.println("Numbers are:");  

  for(int i=0;i<num;i++){ 

    out.println(i); 

  } 

%> 

</body> 

 

We have for loop which iterates till counter (i.e. int i is counter)is less than 5, the 

output will be “Numbers are: 0 1 2 3 4”. 

JSP While loop 

It is used to executes the code block based on the conditions, while loop has only 

one parameter (i.e. condition), the loop will be executed until the condition is true. 

 

<body> 

<%! int day=2; int i=1; %> 

<% 

  while(day>=i){ 

    if(day==i){ 

        out.println("Its Monday"); 

        break; 

    } 

    i++; 

  } 

%> 

</body> 



 

 
 229 

JSP Operators 

JSP Operators supports most of arithmetic and logical operators which are 

supported by java within expression language (Expression Language) tags. 

 

Frequently used operators are mentioned below: 

. Access a bean property or Map entry 

[] Access an array or List element 

( ) Group, a subexpression to change the evaluation order 

+ Addition 

- Subtraction or negation of a value 

* Multiplication 

/ or div Division 

% or mod Modulo (remainder) 

== or eq Test for equality 

!= or ne Test for inequality 

< or lt Test for less than 

> or gt Test for greater than 

<= or le Test for less than or equal 

>= or ge Test for greater than or equal 



 

 
 230 

&& or and Test for logical AND 

|| or or Test for logical OR 

! or not Unary Boolean complement 

Empty Test for empty variable values 

 

JSP Expression Language (EL) makes it easy to access the application for the data 

stored in the JavaBeans components. It also allows creating expressions which are 

both arithmetic and logical. Within EL tags we can use integers, floating point 

numbers, strings, and Boolean values. In JSP we can also use loops and decision-

making statements using Expression Language tags 

 

3.7  JSP ACTION TAGS 
 

Actions are used to controlling behavior of Servlet Engine. JSP actions are written in 

XMLlanguage. JSP provides a bunch of standard Action Tags that we can use for 

specific tasks such as working with java bean objects, including other resources, 

forward the request to another resource. 

There are 11 types of action names as following: 

1. jsp:useBean 

2. jsp:setProperty 

3. jsp:getProperty 

4. jsp:include 

5. jsp:forward 

6. jsp:plugin 

7. jsp:attribute 

8. jsp:body 

9. jsp:text 

10. jsp:param 

11. jsp:attribute 

12. jsp:output 

Jsp:useBean 

jsp:useBean action name is used when we want to set or get the multiple values of 

object in the JSP page. With this tag, we can easily invoke a bean, get and set the 

attributes of that bean.  



 

 
 231 

 

Let’s take an example to understand how user input values from HTML form will be 

set in Java Bean using jsp:useBean, jsp:setProperty and jsp:getProperty. We will 

create below a list of files in our example. 

● Contact.java - Java Bean, declare a Contact class 

● Index.html - HTML form which takes input from a user and passes to 

createContact.jsp when a user submits the form. 

● createContact.jsp - A JSP file create an instance of Contact Bean, set to the 

values received form Index.html. 

The name of the object variables declared in Java bean (i.e. name, email, and 

phone) and name of the fields declared in HTML form are same. Servlet Container 

automatically maps the received parameters with the properties of Java Beans using 

set methods (i.e. setName, setEmail, setPhone) in Java Beans. 

 

Contact.java 

package com.company; 

 

publicclassContact { 
 

private String name; 

private String email; 

private String phone; 

 

public String getName() { 

return name; 

    } 

 

publicvoidsetName(String name) { 

this.name = name; 

    } 

 



 

 
 232 

public String getEmail() { 
return email; 

    } 

 

publicvoidsetEmail(String email) { 

this.email = email; 

    } 

 

public String getPhone() { 

return phone; 

    } 

 

publicvoidsetPhone(String phone) { 

this.phone = phone; 

    } 

} 

 

Index.html 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Java Beans Example - Create Contact</title> 

</head> 

<body> 

<form method="get" action="/bean-example/createContact.jsp"> 

      Name: <input type="text" name="name"><br> 

      Email: <input type="text" name="email"><br> 

      Phone: <input type="text" name="phone"><br> 

<input type="submit"> 

</form> 



 

 
 233 

</body> 

</html> 

 

createContact.jsp 
 

<%@ page language="java" contentType="text/html; charset=UTF-8" 

pageEncoding="UTF-8" %> 

<%@ page import="com.company.Contact" %> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

 "http://www.w3.org/TR/html4/loose.dtd"> 

 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> 

<title>Java Bean Example</title> 

</head> 

 

<body> 

<jsp:useBean id="employee" class="com.company.Contact" scope="session"> 

<jsp:setProperty name="employee" property="*"/> 

 

<p>Employee Name: <jsp:getProperty name="employee" property="name"/></p> 

<p>Email: <jsp:getProperty name="employee" property = "email"/></p> 

<p>Email: <jsp:getProperty name="employee" property = "phone"/></p> 

</jsp:useBean> 

</body> 

</html> 

 

 

 

Web.xml 



 

 
 234 

 

<?xml version="1.0" encoding="UTF-8"?> 

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" 

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

    xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee 

                      http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd" 

    version="4.0" metadata-complete="false"> 

 

<welcome-file-list> 

<welcome-file>index.html</welcome-file> 

</welcome-file-list> 

 

</web-app> 

 

Now, open URLhttp://localhost:8080/contactbook you will see a form to create a 

contact. 

 

Click on Submit button, name, email, and phone will be passed to a JSP page, 

Contact Bean will be invoked and all the attributes set using setProperty methods. 

 

http://localhost:8080/contactbook�


 

 
 235 

Jsp:include 

It is used to insert output of oneJSP file into another JSP file, just like include 

directive. It is added during the request processing phase. 

 

Index.jsp 
 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Index Page</title> 

</head> 

<body> 

<jsp:include page="index.html" flush="true" /> 

</body> 

</html> 

 

It will display the HTML form to create a contact form as below. 
 

 

Jsp:forward 

It is used to forward the implicit request object to another JSP or any static page. 

Here the request can be forwarded with parameters or without parameters. 



 

 
 236 

index.jsp  
 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    pageEncoding="ISO-8859-1"%> 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Index Page</title> 

</head> 

<body> 

<jsp:forward page="index.html" /> 

</body> 

</html> 

 

When we access the index.jsp, it will be redirected to index.html. 

Jsp:plugin 

It is used to add Java components into JSP, Java components can be either an 

applet or bean. It detects the browser and adds <object> or <embed> tags to the 

response. 

 

<jsp:plugin type="applet/bean" code="objectcode" codebase="objectcodebase"> 

 

The type attribute specifies either an object or a bean value, code attribute specifies 

class name of applet or bean, the codebase contains the package name for the Java 

Bean or URL that contains Applet. 

Jsp:param 

This is a child object of the jsp:plugin object described above, jsp:paramis used to 

pass additional values to the Java Bean or Applet. 



 

 
 237 

<jsp:plugin type="bean" code="Student.class" codebase="com.book"> 

<jsp:params> 

<jsp:param name="name" value="Ajay Kumar" /> 

<jsp:param name="email" value="ajay@gmail.com" /> 

<jsp:param name="email" value="9898098981" /> 

</jsp:params> 

</jsp:plugin> 

Jsp:text 

It is used to template text in JSP pages. Its body does not contain any other 

elements, and it contains only text and EL expressions. 

 

<jsp:text>Template text</jsp:text> 

 

Template text refers to only text which can be any generic text which needs to be 

printed on JSP or an EL expression. 

Jsp:output 

The jsp:output element specifies the XML declaration or the document type 

declaration in the request output of the JSP document. 
 

The XML declaration and document type declaration that are declared by the 

jsp:output element are not interpreted by the JSP container. Instead, the container 

simply directs them to the request output. 

To illustrate this, let's take below example: 

 

<jsp:output doctype-root-element="books" doctype-system="books.dtd" /> 

 

The resulting output is: 

<!DOCTYPE books SYSTEM "books.dtd"> 



 

 
 238 

3.8 COOKIES IN JSP 
 
Cookies are text data stored on the client computer and are used to store 

information. A JSP can access to the cookies through the request method 

request.getCookies() which returns an array of Cookie objects and set the cookie 

through response.addCookie(cookie) method. 

Adding Cookie to Response 

If the browser is configured to store cookies, it will keep those cookies until the expiry 

date, Itcan be set-up using the following steps: 

● Creating the cookie object 

● Setting the maximum age 

● Sending the cookies in HTTP response headers 

 

Please refer the below code, it is used to add name and email fields in the cookie. 

 

<% 

   Cookie name = new Cookie("name", request.getParameter("name")); 

   Cookie email = new Cookie("email", request.getParameter("email")); 

 

   name.setMaxAge(60*60*10);  

   email.setMaxAge(60*60*10);  

 

   response.addCookie(name); 

   response.addCookie(email); 

%> 

 

3.9 MVC ARCHITECTURE IN JSP 
 

MVC is an application architecture that separates business logic, presentation and 

data. In MVC,M stands for Model, V stands for View, C stands for the controller. 



 

 
 239 

MVC is a systematic way to use the application where the flow starts from the view 

layer, where the request is raised and processed in controller layer and sent to 

model layer to insert data and get back the success or failure message. 

Model Layer: 

This is the data layer which consists of the business logic of the system. It contains 

all the data of an application, It also represents the state of an application. It consists 

of classes which fetches the data from the database on users request. The controller 

connects with model and fetches the data and sends to the view layer. The model 

connects with the database as well and stores the data into a database. 

View Layer: 

This is a presentation layer. It consists of HTML, JSP, etc. into it. It normally presents 

the UI of the application. It is used to display the data which is fetched from the 

controller which in turn fetching data from model layer classes. This view layer 

shows the data on the user interface of the application. 

Controller Layer: 

It acts as an interface between View and Model. It intercepts all the requests which 

are coming from the view layer. It receives the requests from the view layer and 

processes the requests and does the necessary validation for the request. This 

request is further sent to the model layer for data processing, and once the request 

is processed, it sends back to the controller with the required information and 

displayed accordingly by the view. 

Example 

Let’s take an example to understand how mode, view, and the controller can be 

developed using HTML, servlet and JSP page. Develop a login form which takes 

user and password as input and to a servlet, servlet verifies the user and password 

and depending on the result choose which JSP page (welcome or error) to display 

on the user's browser. 

User.java - a model class which defines the data and method to process the data 



 

 
 240 

package com.book; 

 

publicclassUser { 
 

private String username; 

private String password; 

 

publicUser(String username, String password) { 

this.username = username; 

this.password = password; 

    } 

 

public String getUsername() { 

return username; 

    } 

 

publicvoidsetUsername(String username) { 

this.username = username; 

    } 

 

public String getPassword() { 

return password; 

    } 

 

publicvoidsetPassword(String password) { 

this.password = password; 

    } 

 

public Boolean login() { 

//check in the database 

//verify the validity of the user and password 

 



 

 
 241 

returntrue; 

    } 

} 

 

Login.java - servlet act as a controller, which actually takes the input from the user 

(login.html), initiate the model and verify the login if login valid redirect to index.jsp 

else error.jsp. 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

import com.book.*; 

 

@WebServlet(name = "Login", urlPatterns = {"/Index"}) 

publicclassLoginextendsHttpServlet { 
 

publicLogin() { 

super(); 
    } 

 

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        String name = request.getParameter("username"); 

        String password = request.getParameter("password"); 

 

        User user = new User(name, password); 

 

        HttpSession session = null; 



 

 
 242 

        RequestDispatcher rd = null;   
 

if (user.login()) { 

            session = request.getSession(); 

            session.setAttribute("user", user); 

 

            rd = request.getRequestDispatcher("/index.jsp");   

            rd.forward(request, response); 

        } else { 

            rd = request.getRequestDispatcher("/error.jsp"); 

            rd.forward(request, response); 

        } 

    } 

} 

 

Index.jsp - A view which is called from the controller and displayed home page after 

the login. 

 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

    pageEncoding="ISO-8859-1"%> 

<%@ page import="com.book.*"%> 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

  "http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 

<title>Index Page</title> 

</head> 

<body> 

<% 



 

 
 243 

      User user = (User) session.getAttribute("user"); 

      out.println("<h2>Hello " + user.getUsername() +"</h2>"); 

    %> 

<jsp:include page="index.html" /> 

</body> 

</html> 

 

Output 

 

 

Enter a username and password and click on the Login button, the value will be 

transferred to the Login servlet and redirect to Index.jsp if the user is valid. 

 

 



 

 
 244 

Unit 4:  JDBC with JSP 
  

Unit Structure 
 
4.1. Learning Objectives 

 
4.2. Introduction  

 
4.3. Connecting to Database 

 
4.4. Java Standard Tag Libraries 

 
4.5. Example : Contact Book  

 
 
 
 

  

4 



 

 
 245 

4.1 LEARNING OBJECTIVE 
 

After going through this unit, you should be able to know: 

● Understand how to establish connection to database in JSP 

● Understand how to fetch the data from database and display it on the JSP 

page 

● Understand how you can get powered the java standard tag libraries 

 

 
4.2 INTRODUCTION TO JSP 
 
We have gone through  Chapter 3: Introduction JSP and JSP Basics , we learn  the 

basics of JSP Elements and JSP Directives, usage of JSP Implicit Objects and  JSP 

Expression Language, JSP Action Tags,  JSP Cookies. JSP technology is used 

based  on the servlet, as every JSP page is converted to servlet by the servlet 

container. Servlet is used to define the controllers in the MVC application whereas 

JSP pages take care for the presentation part. 

The JSP is the presentation layer in the MVC model, it is most important how 

securely we can fetch the data from database and display it on the web page. The 

current trend in web applications is to fetch the data through javascript RPC call, the 

browser renders the data in the view. JSP is rendered at server side as first is 

converted into Servlet and served by the servlet container . So, what we get on the 

browser is HTML page including the data. 

In this chapter, we will go through  the database connection, fetch the data from 

database and display it on the JSP page. We will use the different built-in JSTL 

libraries to perform some basics utility  functions such as iteration on the dataset or 

fetch the data set form the database 

 

4.3 CONNECTING TO DATABASE 
 
We will follow the best approach to do the database connection, the connection pool 

is the right approach when you are working in the java web application. Opening and 



 

 
 246 

closing the connection will be taken care of by the connection pool which is managed 

by the web server. 

Let’s go through the database connection example and fetch the data into the JSP 

page. Create a new project contact book. 

Import Libraries 

Import libraries used to make the database connection and java standard tag 

libraries to manage the core template activities and database utility to fetch the data. 

 

/WEB-INF/lib/postgresql-42.2.5.jar 
/WEB-INF/lib/taglibs-standard-impl-1.2.5.jar 
/WebContent/WEB-INF/lib/taglibs-standard-spec-1.2.5.jar 

Database Connection 

As explained above we will follow the best approach to make the connection with the 

database using the connection pool, let’s create a context.xml file under the directory 

/META-INF/context.xml file. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<Context> 

 

<Resource name="jdbc/contactbook" auth="Container" 

    type="javax.sql.DataSource" username="mantavyagajjar" password="shreeji" 

    driverClassName="org.postgresql.Driver" 

    url="jdbc:postgresql://localhost:5432/stable" maxIdle="4" maxTotal="8"/> 

 

</Context> 

 

Index.jsp, to fetch the data we have used the sql taglib and to iterate and fetch the 

values we use the core JSTL library, which provides the. 

 



 

 
 247 

<%@ page import="java.sql.*, javax.sql.*, javax.naming.*"%> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%> 

<%@ page language="java" contentType="text/html; charset=UTF-8" 

pageEncoding="UTF-8"%> 

 

<!DOCTYPE html> 

<html> 

<head> 

<meta charset="UTF-8"> 

<title>Insert title here</title> 

</head> 

<body> 

<h2>Contact List</h2> 

 

<sql:query var="result" dataSource="jdbc/contactbook"> 

      SELECT * FROM contact 

</sql:query> 

 

<table border="1" style="width: 100%"> 

<tr> 

<th>Name</th> 

<th>Email</th> 

<th>Phone</th> 

</tr> 

<c:forEach var="row" items="${result.rows}"> 

<tr> 

<td><c:out value="${row.name}"/></td> 

<td><c:out value="${row.phone}"/></td> 

<td><c:out value="${row.email}"/></td> 

</tr> 

</c:forEach> 



 

 
 248 

</table> 

</body> 

</html> 

 

This code will produce the below output. If you look at the output closely, we get the 

same output which was generated by the servlet in Block-4 Chapter 2: Servlet with 

JDBC,  under the Database Connection Pooling topic. The huge amount of code is 

reduced only because we place the piece of code in the right place. Servlet is not 

used to generate the user interface, the presentation layer has to be produced by the 

JSP page. 

 

 
 

4.4 JAVA STANDARD TAG LIBRARIES 
 
We have to see the basics of Java Standard Tag Libraries in chapter Chapter 3: 

Basics of Java Server Pages under the topic JSP Taglib Directive. During the 

previous example we have used two java standard tag libraries 

http://java.sun.com/jsp/jstl/core and http://java.sun.com/jsp/jstl/sql, which provides a 

great set of features to build the user interface.  

Core Tags 

All the JSP Expression Language statements can be replaced with the tags available 

in http://java.sun.com/jsp/jstl/core standard tag library. 

http://java.sun.com/jsp/jstl/core�
http://java.sun.com/jsp/jstl/sql�
http://java.sun.com/jsp/jstl/core�


 

 
 249 

<%@ taglib prefix = "c" uri = "http://java.sun.com/jsp/jstl/core" %> 

 

Following table lists out the Formatting JSTL Tags 

 

S.No. Tag & Description 

1 
<c:out> 

Like <%= ... >, but for expressions. 

2 
<c:set > 

Sets the result of expression evaluation in a 'scope' 

3 
<c:remove > 

Removes a scoped variable (from a particular scope, if specified). 

4 
<c:catch> 

Catches any Throwable that occurs in its body and optionally exposes it. 

5 

<c:if> 

Simple conditional tag which evaluates its body if the supplied condition 

is true. 

6 

<c:choose> 

Simple conditional tag that establishes a context for mutually exclusive 

conditional operations, marked by <when> and <otherwise>. 

7 

<c:when> 

Subtag of <choose> that includes its body if its condition evaluates to 

'true'. 



 

 
 250 

8 

<c:otherwise > 

Subtag of <choose> that follows the <when> tags and runs only if all of 

the prior conditions evaluated to 'false'. 

9 

<c:import> 

Retrieves an absolute or relative URL and exposes its contents to either 

the page, a String in 'var', or a Reader in 'varReader'. 

10 

<c:forEach > 

The basic iteration tag, accepting many different collection types and 

supporting subsetting and other functionality. 

11 
<c:forTokens> 

Iterates over tokens, separated by the supplied delimiters. 

12 
<c:param> 

Adds a parameter to a containing 'import' tag's URL. 

13 
<c:redirect > 

Redirects to a new URL. 

14 
<c:url> 

Creates a URL with optional query parameters 

SQL Tags 

The JSTL SQL tag library provides tags for interacting with relational databases 

(RDBMSs) such as PostgreSQL, Oracle, MySQL, or Microsoft SQL Server. 

 

<%@ taglib prefix = "sql" uri = "http://java.sun.com/jsp/jstl/sql" %> 

 

https://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_import_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_import_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_import_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm�


 

 
 251 

Following is the syntax to include JSTL SQL library in your JSP 

 

S.No. Tag & Description 

1 
<sql:setDataSource> 

Creates a simple DataSource suitable only for prototyping 

2 
<sql:query> 

Executes the SQL query defined in its body or through the SQL attribute. 

3 

<sql:update> 

Executes the SQL update defined in its body or through the SQL 

attribute. 

4 
<sql:param> 

Sets a parameter in an SQL statement to the specified value. 

5 

<sql:dateParam> 

Sets a parameter in an SQL statement to the specified java.util.Date 

value. 

6 

<sql:transaction > 

Provides nested database action elements with a shared Connection, set 

up to execute all statements as one transaction. 

JSTL Functions 

JSTL includes a number of standard functions, most of which are common string 

manipulation functions. Following is the syntax to include JSTL Functions library in 

your JSP − 

<%@ taglib prefix = "fn" uri = "http://java.sun.com/jsp/jstl/functions" %> 



 

 
 252 

Following table lists out the various JSTL Functions 

 

S.No. Function & Description 

1 
fn:contains() 

Tests if an input string contains the specified substring. 

2 

fn:containsIgnoreCase() 

Tests if an input string contains the specified substring in a case 

insensitive way. 

3 
fn:endsWith() 

Tests if an input string ends with the specified suffix. 

4 
fn:escapeXml() 

Escapes characters that can be interpreted as XML markup. 

5 

fn:indexOf() 

Returns the index within a string of the first occurrence of a specified 

substring. 

6 
fn:join() 

Joins all elements of an array into a string. 

7 

fn:length() 

Returns the number of items in a collection, or the number of characters 

in a string. 

8 
fn:replace() 

Returns a string resulting from replacing in an input string all occurrences 



 

 
 253 

with a given string. 

9 
fn:split() 

Splits a string into an array of substrings. 

10 
fn:startsWith() 

Tests if an input string starts with the specified prefix. 

11 
fn:substring() 

Returns a subset of a string. 

12 
fn:substringAfter() 

Returns a subset of a string following a specific substring. 

13 
fn:substringBefore() 

Returns a subset of a string before a specific substring. 

14 
fn:toLowerCase() 

Converts all of the characters of a string to lower case. 

15 
fn:toUpperCase() 

Converts all of the characters of a string to upper case. 

16 
fn:trim() 

Removes white spaces from both ends of a string. 

 

4.5 EXAMPLE: CONTACT BOOK  
 
We have gone through Servlet, Database and JSP topics in Unit 4, we have studied 

the different approaches of writing the Servlet, Servlet filters, Database Connection, 

Reading data from database and display those data onto the JSP page. 



 

 
 254 

 

Let’s see the full example with of address book, where we will create a new contact, 

read or search the contacts, edit the contact and delete the contacts using JSP, 

Servlet best practices. 

Create Database 

Let’s first create the PostgreSQL database and create a contact table. Execute the 

below command to create the database and table. 

 

$ createdb contactbook --encoding=UNICODE 

$ psql contactbook 

 

Connect to the database and create a contact table. 

 

# CREATE TABLE contact ( 

name VARCHAR (50), 

    email VARCHAR (50) UNIQUE, 

    phone VARCHAR (50), 

    urlsafe VARCHAR(100) 

); 

Create a Project 

This example we are going to create with Eclipse Studio, let’s create the Dynamic 

Web Project in Eclipse and name it contactbook. The blank project will be created 

with the default web configuration. 

 



 

 
 255 

 

Setup the connection 

First things first, set up the connection details and connection pool in the context.xml 

under the META-INF folder. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<Context> 

 

<Resource name="jdbc/contactbook" auth="Container" 

    type="javax.sql.DataSource" username="mantavyagajjar" password="********" 

    driverClassName="org.postgresql.Driver" 

    url="jdbc:postgresql://localhost:5432/contactbook" maxIdle="4" maxTotal="8"/> 

 

</Context> 

Show Contact List 

The default page will display the list of contacts, when user access the /contactbook 

application, the contacts will be fetched from database and display on the index 



 

 
 256 

page. We will create an index.jsp that show the list of contacts in the database and 

allow the user to perform the edit or delete operations on it. 

Header.jsp 

A common header that creates a menubar, so every page has the same menu bar 

which includes the header.jsp page. We have also included the bootstrap CSS and 

font awesome icons, so other JSP pages do not have to import any CSS libraries. 

 

<%@ page language="java" contentType="text/html; charset=UTF-8" 

  pageEncoding="UTF-8"%> 

<!DOCTYPE html> 

<html> 

<head> 

<meta charset="UTF-8"> 

<title>Insert title here</title> 

<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" 

rel="stylesheet"/> 

<link href="https://use.fontawesome.com/releases/v5.8.1/css/all.css" 

rel="stylesheet"/> 

</head> 

 

<body> 

<nav class="navbar navbar-expand-lg navbar-light bg-light mb-4"> 

<div class="container"> 

<a class="navbar-brand" href="/contactbook">Contacts</a> 

<div class="collapse navbar-collapse" id="navbarNavAltMarkup"> 

<div class="navbar-nav"> 

<a class="nav-item nav-link" href="/contactbook/create.jsp">Create</a> 

</div> 

</div> 

</div> 

</nav> 

</body> 



 

 
 257 

</html> 

 

So, if you access the header.jsp you can see the only menu bar on the page as 

below. 

 

 

Index.jsp 

The index.jsp page can be called with query string or without the query string, based 

on the parameters received it shows the data. 

 

Show all contacts http://localhost:8080/contactbook/ 

Apply the filter for name field http://localhost:8080/contactbook/index.jsp?q=ajay 

 

<%@ page import="java.sql.*, javax.sql.*, javax.naming.*"%> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%> 

<%@ page language="java" contentType="text/html; charset=UTF-8" 

pageEncoding="UTF-8"%> 

 

<!DOCTYPE html> 

<html> 

 

<head> 

http://localhost:8080/contactbook/�
http://localhost:8080/contactbook/index.jsp?q=ajay�


 

 
 258 

<meta charset="UTF-8"> 

<title>Contact Book</title> 

</head> 

 

<body> 

<%@ include file="header.jsp" %> 

<div class="container"> 

<div class="row"> 

<div class="col-4"> 

 

<c:set var="searchName" value='<%=request.getParameter("q")%>'/> 

 

<sql:query var="result" dataSource="jdbc/contactbook"> 

          SELECT * FROM contact WHERE name ilike ? 

<sql:param value="%${searchName}%" /> 

</sql:query> 

 

<form action="/contactbook/index.jsp" method="get"> 

<div class="input-group mb-4"> 

<input type="text" name="q" id="q" class="form-control" placeholder="Search"/> 

<div class="input-group-append"> 

<input type="submit" value="Search" class="btn btn-primary"/> 

</div> 

</div> 

</form> 

 

</div> 

</div> 

 

<div class="row"> 

<div class="col"> 

<table class="table table-striped"> 



 

 
 259 

<tr> 

<th width="10">Operation</th> 

<th>Name</th> 

<th>Email</th> 

<th>Phone</th> 

</tr> 

<c:forEach var="row" items="${result.rows}"> 

<tr> 

<td> 

<a href="/contactbook/Delete?record=${row.urlsafe}"> 

<i class="fas fa-trash-alt"></i> 

</a>&nbsp;&nbsp; 

<a href="/contactbook/create.jsp?record=${row.urlsafe}"> 

<i class="fas fa-edit"></i> 

</a> 

</td> 

<td><c:out value="${row.name}" /></td> 

<td><c:out value="${row.phone}" /></td> 

<td><c:out value="${row.email}" /></td> 

</tr> 

</c:forEach> 

</table> 

</div> 

</div> 

</div> 

</body> 

</html> 

The index page shows all the data on the first load as the query string is not passed, 

when user search for the contact, the same page receives the query which applies to 

the SQL to filter on the data. 

 



 

 
 260 

 

Create or Update Contact 

The database operation such as create, exit or update records has to be done 

through the Servlet, we will write a servlet that will either create or update the record 

based on the request received from the user. Let’s create the create form when a 

user enters the contact data and submit to the Create.java servlet. The same 

create.jsp page is used to edit the contact when the user clicks on the Edit icon 

beside the name on the contact list. 

Create.jsp 

Create page may receive a recordID parameter if received then the form will be edit 

mode or the default will be in create mode. 

 

Create 

Model 

http://localhost:8080/contactbook/create.jsp 

Edit 

Mode 

http://localhost:8080/contactbook/create.jsp?record=3ba1708d4d427814c

9fa1b5a56675bee 

 

<%@ page import="java.sql.*, javax.sql.*, javax.naming.*"%> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%> 

<%@ page language="java" contentType="text/html; charset=UTF-8" 

pageEncoding="UTF-8"%> 

http://localhost:8080/contactbook/create.jsp�
http://localhost:8080/contactbook/create.jsp?record=3ba1708d4d427814c9fa1b5a56675bee�
http://localhost:8080/contactbook/create.jsp?record=3ba1708d4d427814c9fa1b5a56675bee�


 

 
 261 

 

<!DOCTYPE html> 

<html> 

<head> 

<meta charset="UTF-8"> 

<title>Create Contact</title> 

</head> 

 

<body> 

<%@ include file="header.jsp" %> 

 

<div class="container"> 

<div class="row"> 

<div class="col-6"> 

<h2>Contact Form</h2> 

 

<c:set var="recordID" value='<%=request.getParameter("record")%>'/> 

 

<sql:query var="result" dataSource="jdbc/contactbook"> 

          SELECT * FROM contact where urlsafe=? 

<sql:param value="${recordID}" /> 

</sql:query> 

 

<c:set var="row" value="${result.rows[0]}"/> 

 

<form action="/contactbook/Create" method="post"> 

<div class="form-group"> 

<input hidden type="text" name="recordID" id="recordID" 

              class="form-control" value="${row.urlsafe}"/> 

</div> 

<div class="form-group"> 

<label for="name">Name</label> 



 

 
 262 

<input type="text" name="name" id="name" 

              class="form-control" value="${row.name}"/> 

</div> 

<div class="form-group"> 

<label for="name">Email</label> 

<input type="text" name="email" id="email" 

              class="form-control" value="${row.email}"/> 

</div> 

<div class="form-group"> 

<label for="name">Phone</label> 

<input type="text" name="phone" id="phone" 

              class="form-control" value="${row.phone}"/> 

</div> 

<input type="submit" value="Save Contact" class="btn btn-primary"/> 

</form> 

</div> 

<div class="col-6"> 

</div> 

</div> 

</div> 

</body> 

</html> 

 

The create.jsp page fetch the record from the database when it received the 

recordID, the page will retrieve the data using the urlsafe key and set in the 

respective fields, a hidden field on the form will be filled with the value of recordID 

when received. When user submit the form all the data submitted to the Create.java 

servlet 

Create.java 

Create Servlet received data from create.jsp page, if the form is in edit mode servlet 

receive the recordID in addition to the other fields. 



 

 
 263 

import java.sql.*; 

import javax.sql.*; 

 

import java.io.*; 

import javax.naming.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

 

@WebServlet("/Create") 

publicclassCreateextendsHttpServlet { 
privatestaticfinallong serialVersionUID = 1L; 

 

private DataSource dataSource; 

private Connection connection; 

private PreparedStatement statement; 

 

publicCreate() { 

super(); 
    } 

 

@Override 

publicvoidinit(ServletConfig config)  

throws ServletException { 

 

super.init(config); 

try{ 

            Context initContext = new InitialContext(); 

            Context envContext = (Context) initContext.lookup("java:/comp/env"); 

            dataSource = (DataSource) envContext.lookup("jdbc/contactbook"); 

        } catch (NamingException e) { 

 



 

 
 264 

        } 

    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

  

        String SQL = "INSERT INTO contact (name, phone, email, urlsafe) VALUES (?, 

?, ?, md5(?))"; 

        String recordID = request.getParameter("recordID"); 

if(recordID.length() >0) { 

 SQL = "UPDATE contact SET name=?, phone=?, email=?, urlsafe=md5(?) 

WHERE urlsafe=?"; 

        } 

try { 

            connection = dataSource.getConnection(); 

            statement = connection.prepareStatement(SQL); 

            statement.setString(1, request.getParameter("name")); 

            statement.setString(2, request.getParameter("phone")); 

            statement.setString(3, request.getParameter("email")); 

            statement.setString(4, request.getParameter("email")); 

 

if(recordID.length() >0) { 

 statement.setString(5, recordID); 

            } 

            statement.execute(); 

        } catch (SQLException e) { 

 

        } 

        response.sendRedirect("/contactbook/index.jsp"); 

    } 

 

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  



 

 
 265 

throws ServletException, IOException { 

 

        doGet(request, response); 

    } 

 

} 

 

Servlet takes care of creating a new record or updating the existing record in the 

database and redirect to the index.jsp page. 

Delete Contact 

The Delete Servlet takes urlsafe key from the index.jsp page and delete the record. If 

receive record parameter then executes the delete query else returns back to the 

index.jsp page. 

 

import java.sql.*; 

import javax.sql.*; 

import java.io.*; 

import javax.naming.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import javax.servlet.annotation.*; 

 

@WebServlet("/Delete") 

publicclassDeleteextendsHttpServlet { 
privatestaticfinallong serialVersionUID = 1L; 

 

private DataSource dataSource; 

private Connection connection; 

private PreparedStatement statement; 

 



 

 
 266 

publicDelete() { 

super(); 
    } 

 

@Override 

publicvoidinit(ServletConfig config)  

throws ServletException { 

 

super.init(config); 

try{ 

            Context initContext = new InitialContext(); 

            Context envContext = (Context) initContext.lookup("java:/comp/env"); 

            dataSource = (DataSource) envContext.lookup("jdbc/contactbook"); 

        } catch (NamingException e) { 

 

        } 

    } 

 

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

if(request.getParameter("record").length() <= 0) { 

            response.sendRedirect("/contactbook/index.jsp"); 

        } 

 

        String SQL = "DELETE FROM contact WHERE urlsafe=?"; 

try { 

            connection = dataSource.getConnection(); 

            statement = connection.prepareStatement(SQL); 

            statement.setString(1, request.getParameter("record")); 

 

            statement.execute(); 



 

 
 267 

        } catch (SQLException e) { 

 

        } 

        response.sendRedirect("/contactbook/index.jsp"); 

    } 

 

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)  

throws ServletException, IOException { 

 

        doGet(request, response); 

    } 

} 

Download Example 

Download a copy of the full example, it is an Eclipse Dynamic Web Project 

https://drive.google.com/file/d/1VgASNRsQ-iFH8s8LEr-

3w6vpLoKG3JcJ/view?usp=sharing 

 

 

 

https://drive.google.com/file/d/1VgASNRsQ-iFH8s8LEr-3w6vpLoKG3JcJ/view?usp=sharing�
https://drive.google.com/file/d/1VgASNRsQ-iFH8s8LEr-3w6vpLoKG3JcJ/view?usp=sharing�

	Important methods
	HelloWorld.java
	Download Apache Tomcat
	/
	Create a web application
	WebServlet Annotation
	Loading a Servlet
	Initializing a Servlet
	Handling request
	Destroying a Servlet
	init() method
	service() method
	destroy() method
	Check Your Progress 1
	Check Your Progress 2
	Connection Parameters
	Database Connection Approaches
	First Approach
	Second Approach
	Third Approach

	Contact.html
	Contact.java
	First Approach
	Second Approach
	Third Approach
	Additional Libraries
	META-INF/context.xml
	Modify the Servlet Program
	JSP Declaration
	JSP Scriptlet
	JSP Expression
	JSP Comments
	JSP Page directive
	JSP Include directive
	JSP Taglib Directive
	out
	Request
	Response
	Config
	Application
	Session
	pageContext
	Page
	Exception
	JSP Syntax of Expression Language (EL)
	JSP Flow Control Statements
	JSP If-else
	JSP Switch
	JSP For loop
	JSP While loop

	JSP Operators
	Jsp:useBean
	Jsp:include
	Jsp:plugin
	Jsp:param
	Jsp:text
	Jsp:output
	Adding Cookie to Response
	Model Layer:
	View Layer:
	Controller Layer:
	Example
	Import Libraries
	Database Connection
	Core Tags
	SQL Tags
	JSTL Functions
	Create Database
	Create a Project
	Setup the connection
	Show Contact List
	Header.jsp
	Index.jsp

	Create or Update Contact
	Create.jsp
	Create.java

	Delete Contact
	Download Example

	MSCIT - 303.pdf
	Page 5

	MSCIT SEM - 3 BACK SIDE.pdf
	Page 8




