
BCAR-204
Object Oriented Concept & Programming-I (Core Java)

DR.BABASAHEB AMBEDKAR

OPEN UNIVERSITY

BCA
BACHELOR OF COMPUTER APPLICATION

DR. BABASAHEB AMBEDKAR OPEN UNIVERSITY
AHMEDABAD

OBJECT ORIENTED CONCEPTS &
PROGRAMMING–1 (CORE JAVA)

Editorial Panel

Authors : Dr. Ankit R. Bhavsar
Sr. Assistant Professor
Faculty of Computer Application &
Information Technology (FCAIT)
GLS University, GLS Campus, Opp. Law Garden,
Ellisbridge, Ahmedabad

Dr. Ashish Parejiya
Former Senior Assistant Professor,
Indus University, Ahmedabad.
Project Manager, Piramal Group, Ahmedabad.

Editor : Dr. Kruti Devang Jani
Sr. Assistant Professor
Shri Chimanbhai Patel Post Graduate
Institute of Computer Application (CPIMCA),
Ahmedabad.

Language Editor : Dr. Jagdish Vinayakrao Anerao
Associate Professor,
Smt A. P. Patel Arts And,
N. P. Patel Commerce College,
Ahmedabad.

ISBN 978-93-91071-00-4

Edition : 2020

Copyright © 2020 Knowledge Management & Research
Organisation.

All rights reserved. No part of this book may be reproduced,
transmitted or utilized in any form or by a means, electronic or
mechanical, including photocopying, recording or by any information
storage or retrieval system without written permission from us.

Acknowledgment

Every attempt has been made to trace the copyright holders of
material reproduced in this book. Should an infringement have
occurred, we apologize for the same and will be pleased to make
necessary correction/amendment in future edition of this book.

The content is developed by taking reference of online and print
publications that are mentioned in Bibliography. The content
developed represents the breadth of research excellence in this
multidisciplinary academic field. Some of the information,
illustrations and examples are taken "as is" and as available in the
references mentioned in Bibliography for academic purpose and
better understanding by learner.

ROLE OF SELF–INSTRUCTIONAL MATERIAL
IN DISTANCE LEARNING

The need to plan effective instruction is imperative for a
successful distance teaching repertoire. This is due to the fact that
the instructional designer, the tutor, the author (s) and the
student are often separated by distance and may never meet in
person. This is an increasingly common scenario in distance
education instruction. As much as possible, teaching by distance
should stimulate the student's intellectual involvement and contain
all the necessary learning instructional activities that are capable
of guiding the student through the course objectives. Therefore,
the course / self–instructional material are completely equipped
with everything that the syllabus prescribes.

To ensure effective instruction, a number of instructional
design ideas are used and these help students to acquire knowledge,
intellectual skills, motor skills and necessary attitudinal changes.
In this respect, students' assessment and course evaluation are
incorporated in the text.

The nature of instructional activities used in distance
education self–instructional materials depends on the domain of
learning that they reinforce in the text, that is, the cognitive,
psychomotor and affective. These are further interpreted in the
acquisition of knowledge, intellectual skills and motor skills.
Students may be encouraged to gain, apply and communicate
(orally or in writing) the knowledge acquired. Intellectual–skills
objectives may be met by designing instructions that make use of
students' prior knowledge and experiences in the discourse as the
foundation on which newly acquired knowledge is built.

The provision of exercises in the form of assignments,
projects and tutorial feedback is necessary. Instructional activities
that teach motor skills need to be graphically demonstrated and
the correct practices provided during tutorials. Instructional
activities for inculcating change in attitude and behavior should
create interest and demonstrate need and benefits gained by
adopting the required change. Information on the adoption and
procedures for practice of new attitudes may then be introduced.

Teaching and learning at a distance eliminates interactive
communication cues, such as pauses, intonation and gestures,
associated with the face–to–face method of teaching. This is

particularly so with the exclusive use of print media. Instructional
activities built into the instructional repertoire provide this missing
interaction between the student and the teacher. Therefore, the
use of instructional activities to affect better distance teaching is
not optional, but mandatory.

Our team of successful writers and authors has tried to
reduce this.

Divide and to bring this Self Instructional Material as the best
teaching and communication tool. Instructional activities are
varied in order to assess the different facets of the domains of
learning.

Distance education teaching repertoire involves extensive use
of self–instructional materials, be they print or otherwise. These
materials are designed to achieve certain pre–determined learning
outcomes, namely goals and objectives that are contained in an
instructional plan. Since the teaching process is affected over a
distance, there is need to ensure that students actively participate
in their learning by performing specific tasks that help them to
understand the relevant concepts. Therefore, a set of exercises is
built into the teaching repertoire in order to link what students
and tutors do in the framework of the course outline. These could
be in the form of students' assignments, a research project or a
science practical exercise. Examples of instructional activities in
distance education are too numerous to list. Instructional activities,
when used in this context, help to motivate students, guide and
measure students' performance (continuous assessment)

PREFACE

We have put in lots of hard work to make this book as user-

friendly as possible, but we have not sacrificed quality. Experts

were involved in preparing the materials. However, concepts are

explained in easy language for you. We have included many tables

and examples for easy understanding.

We sincerely hope this book will help you in every way you

expect.

All the best for your studies from our team!

OBJECT ORIENTED CONCEPTS &
PROGRAMMING–1 (CORE JAVA)

Contents

BLOCK 1 : BASIC PROGRAMMING CONCEPTS IN JAVA

Unit 1 INTRODUCTION TO JAVA

Introduction, The Creation of Java, The Java Technology,

Features of Java, Comparison of Java with C++, Garbage

Collection, Creating a Java Program

Unit 2 PROGRAMMING CONCEPTS OF BASIC JAVA

Introduction, Tokens, Data Types in Java, Declaring a

Variable, Java Coding Conventions, Typecasting,

Constants

Unit 3 OPERATORS AND PRECEDENCE

Introduction, Arithmetic Operator, Increment /

Decrement Operator, Assignment Operator, Bitwise

Operator, Relation Operator, Logical Operator, Ternary

Operator, Operator Precedence

Unit 4 LOOPS AND SELECTION STATEMENTS

Introduction, Loops, Nested Loops, Selection Statements,

Arrays

BLOCK 2 : OBJECT, CLASSES AND FEATURES

Unit 5 OBJECTS AND CLASSES

Introduction, The General Form of a Class, Argument

Passing, Constructors, The This Keyword, The Finalize

() Method

Unit 6 LANGUAGE FEATURES

Introduction, Static Keyword, Using Abstract Classes,

Interfaces, Packages, Access Protection

Unit 7 WRAPPER CLASSES

Introduction, Number Class, Byte Class, Short Class,

Integer Class, Long Class, Float Class, Double Class,

Boolean Class, Character Class, String Class, Converting

Number to and From String

Unit 8 JAVA COLLECTION FRAMEWORK

Introduction, Collection Interface, List Interface,

LinkedList Class, ArrayList Class, Stack Class, Queue

Interface, Set Interface, TreeSet Class, Hashset Class,

Map Interface, TreeMap Class, HashMap Class, Iterator

BLOCK 3 : INHERITANCE, EXCEPTION HANDLING AND

MULTITHREADING

Unit 9 INHERITANCE

Introduction, Concept of Inheritance, Polymorphism,

Final Keyword

Unit 10 EXCEPTION HANDLING

Introduction, Types of Exceptions, Uncaught Exception,

Using Try and Catch Block, Using Multiple Catch

Statements, Using Methods Defined by Exception and

Throwable, User Defined Exceptions, Using Throws/

Throw Keyword, Using Finally Keyword, Nested Try

Statements

Unit 11 UTILITIES & MULTITHREADING

Introduction, Comparing Arrays : Java Util, Creating a

Hash Table : Java Util, Multithreading, Thread Life

Cycle, The Thread Class and The Runnable Interface,

Thread Priorities, Synchronisation, Deadlock,

Suspending, Resuming and Stopping Threads

BLOCK 4 : ABSTRACT WINDOW TOOLKIT AND WORKING WITH

FILES

Unit 12 APPLET

Introduction, Difference between Applet and Application,

Applet Life Cycle, Creating an Applet, Applet Tag,

Reading Parameters into Applet, Implementation of

Background Colour, Implementation of Font in Applet

Unit 13 APPLET GRAPHICS

Introduction, Drawing Line, Drawing Oval, Drawing

Circle, Drawing Rectangle, Drawing Arcs, Drawing

Polygons, Drawing Polyline, Delegation Event Model

Unit 14 ABSTRACT WINDOW TOOLKIT

Introduction, Window Fundamentals, Working with

Graphics, Controls, Understanding Layout Managers,

Adapter Classes, Inner Classes, Anonymous Inner

Classes

Unit 15 WORKING WITH FILES

Introduction, I/O Streams, Streams, Reading Console

Input, Writing Console Output, Reading and Writing

Files, Serialisation

Object Oriented Concepts &
Programming–1 (Core Java)

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 1 : BASIC PROGRAMMING CONCEPTS IN JAVA

UNIT 1 INTRODUCTION TO JAVA

UNIT 2 PROGRAMMING CONCEPTS OF BASIC JAVA

UNIT 3 OPERATORS AND PRECEDENCE

UNIT 4 LOOPS AND SELECTION STATEMENTS

BCAR-204/
DCAR-204

Block Introduction :
With the advent of internet, Java was widely used. Initially, it was thought

to develop a platform–independent language for consumer electronics like
washing machines etc. Java became popular because the Web required platform–
independent portable programs. In this block we are going for the introduction
to Java technology in Unit No. 1 which will make you understand Features of
Java, Comparison of Java with C++ and the concept of Garbage Collection and
also essentially Creating a java Program with examples.

Unit No. 2 is meant to enhance further level of understanding about Tokens
with relevant examples. Data Types in Java, how to declare a variable accordingly
Java coding conventions with detail examples. This would bring good amount
of understanding amongst the student about Java coding.

Unit No. 3 is explaining the use of Operators. Mainly operators are used
to do some mathematical operations on numerical and binary data. It uses with
commonly one, two or three operand.

Unit No. 4 is mainly emphasizing and gives further level of understanding
about loops, nested loops, selection statements and finally Arrays with their
respective examples.

Block Objectives :
After learning this Block, you will be able to understand :

• Creation of Java

• Discuss Java Technology, Java Programming language and Java platform

• Define important terms of Java

• Compare Java with C++

• Garbage collection

• Java program and provide comments

• Tokens, data types in Java

• Declaring of a variable, Java coding conventions

Block Structure :

Unit 1 : Introduction to Java

Unit 2 : Programming Concepts of Basic Java

Unit 3 : Operators and Precedence

Unit 4 : Loops and Selection Statements

BASIC PROGRAMMING
CONCEPTS IN JAVA

1

UNIT STRUCTURE

1.0 Learning Objectives

1.1 Introduction

1.2 The Creation of Java

1.3 The Java Technology

1.4 Features of Java

1.5 Comparison of Java with C++

1.6 Garbage Collection

1.7 Creating a Java Program

1.8 Let Us Sum Up

1.9 Suggested Answer for Check Your Progress

1.10 Glossary

1.11 Assignment

1.12 Activities

1.13 Case Study

1.14 Further Readings

1.0 Learning Objectives :

After learning this unit, you will be able to understand :

• Creation of Java

• Discuss Java Technology, Java Programming language and Java platform

• Define important terms of Java

• Compare Java with C++

• Describe garbage collection

• Illustrate Java program and provide comments

1.1 Introduction :

The current programming problems are complex as beyond a certain size,
structured programming cannot manage complexity. Using the concept of object
oriented programming, complex programs can be organized using classes,
inheritance and polymorphism. C++ was one of the popular programming
languages for Object Oriented Programming.

As speedy growth of Internet uses, Industry required a language that truly
run on any operating system (Platform Independent). Java is the only language
at that time that provide platform independent concept. As Java provide the
feature of platform independent concept it widely used in electronic machine
like washing machine, microwave oven etc. Using Java language we can develop
the software that either run on standalone computer or on Web browser. In
this unit, we'll discuss about the basics of Java Language.

INTRODUCTION TO JAVA
Unit

01

2

Object Oriented
Concepts &

Programming–1
(Core Java)

1.2 The Creation of Java :

 History of Java :

James Gosling initiated the Java language project in June 1991 for use
in one of his many set–top box projects. The language, initially called Oak
after an oak tree that stood outside Gosling's office, also went by the name
Green and ended up later renamed as Java, from a list of random words.

Sun released the first public implementation as Java 1.0 in 1995. It
promised Write Once, Run Anywhere (WORA), providing no–cost run–times
on popular platforms.

On 13 November 2006, Sun released much of Java as free and open
source software under the terms of the GNU General Public License (GPL).

On 8 May 2007, Sun finished the process, making all of Java's core
code free and open–source, aside from a small portion of code to which Sun
did not hold the copyright.

Figure 1.1 Java Logo

 Check Your Progress – 1 :
1. Who initiated Java language ?

2. What do the terms WORA and GPL mean ?

...

...

...

...

...

1.3 The Java Technology :

Figure 1.2 The Java Technology

The Java technology is a programming language and a platform. Let us
discuss Java as a programming language and a platform both.

3

Introduction to Java Java Programming Language :

Java is simple, object–oriented, multi–threaded, robust, portable and
dynamic programming language. It is an object–oriented language similar to
C++ but simplified to eliminate language features which cause common
programming errors.

The Java source code files (files with .java extension) are compiled into
a format called byte code (files with a .class extension) which can then be
executed by a Java interpreter. The compiled Java code can run on most
computers because Java interpreters and runtime environments which are known
as Java Virtual Machines exist for most operating systems including UNIX,
Macintosh OS and Windows.

1. Write Program Your Computer

2. Compile program with Java Compiler

3. Compiler produces byte code

4. Byte code placed on web server for download

5. Web browsers download universal Web Server
bytecode which is interpreted locally
according to local conditions.

Client using web
server

Figure 1.3 Java Programming Environment

Java Source Code

Java
Compiler

(Mac)

Java
Compiler

(Windows)

Java
Compiler
(UNIX)

Java byte code

Java byte code

Java Interpreter
(Mac)

Java Interpreter
(Windows)

Java Interpreter
(UNIX)

4

Object Oriented
Concepts &

Programming–1
(Core Java)

Figure 1.4 Execution of Java Program

 The Java Platform :

A platform can be defined as the hardware or software environment in
which a program runs. Most of the platforms can be described as a combination
of the operating system and hardware. The Java platform differs from most
of the other platforms. It is a software only platform which runs on the top
of other hardware based platforms. The Java platform has two components :

The Java Virtual Machine (JVM)

The Java Application Programming Interface (Java API)

The JVM is the base for the Java platform and is ported onto various
hardware based platforms.

The Java API is a large collection of ready–made software components
which provide many useful capabilities, such as Graphical User Interface (GUI)
widgets. The Java API is grouped into libraries of related classes and interfaces;
these libraries are known as packages

 Check Your Progress – 2 :
1. What do you mean by platform ?

2. Name the two components of Java platform.

...

...

...

...

...

1.4 Features of Java :

Although the main features of Java are its portability and security. Apart
from this, certain other features are also there which are discussed below :

1. Simple – Java is primarily derivative of C++. It omits rarely used and
confusing features of C++ such as pre–processor, operator overloading,
multiple inheritance etc.

2. Object Oriented – Java is an object oriented programming language,
in which data is treated as objects to which methods are applied. Its
basic execution unit is the class.

myProgram.java Interpreter My
Program

Compiler
myProgram.class

5

Introduction to Java3. Robust – Java is strongly typed language. The type checking is carried
out at both compile and runtime with every data structure clearly defined
and typed. Java supports automatic garbage collection which manages
memory by preventing memory leaks.

4. Architecture Independent – The Java compiler compiles source code
and generates bytecode which is intermediate between source and machine
code. These machine codes are neutral and have nothing to do with
particular computer architecture. The Java Virtual Machine (JVM) coverts
the bytecode into native code for a particular processor.

5. Portable – The interpreter for the Java Virtual Machine can be ported
to any computer hardware/operating system, so that all the codes compiled
for it will run on that system. This forms the basis for Java's portability.

6. Multithreaded – Multithreading helps to overcome the performance
problems caused due to interpreted code as compared to the main code.
Since an executing program hardly ever uses CPU cycles 100 percent
of the time, Java uses the idle time to perform the necessary garbage
cleanup and general system maintenance that renders.

7. High Performance – With the use of Just–In–Time compilers Java
enables high performance.

8. Distributed – Java is designed for the distributed environment of the
internet.

9. Dynamic – Java is considered to be more dynamic than C or C++ since
it is designed to adapt to an evolving environment. Java programs can
carry extensive amount of run–time information that can be used to verify
and resolve accesses to objects on run–time.

10. Secure – With Java's secure feature it enables to develop virus–free,
tamper–free systems. Authentication techniques are based on public–key
encryption.

 Check Your Progress – 3 :
1. Explain the multi–threaded and dynamic feature of Java.

2. Write a note on portability and security feature of Java.

...

...

...

...

...

1.5 Comparison of Java with C++ :

Java is somewhat similar to C++. However, Java is not a superset or
subset of C++; it can be seen as a derivation with many modifications and
extensions. The given table displays the difference between them :

Table 1.1 : C++ Vs. Java

C++

Hybrid between procedural and
object–oriented language

JAVA

Purely object–oriented language

6

Object Oriented
Concepts &

Programming–1
(Core Java)

 Check Your Progress – 4 :
1. Compare Java with C++ with respect to garbage collection and inheritance.

2. Give the difference between Java and C++ with respect to strings and
operator overloading.

...

...

...

...

...

1.6 Garbage Collection :

Figure 1.5 Garbage Collection

In C++ language, the dynamically allocated objects are manually released
by the use of a delete operator. In Java, the deallocation process is automatically
done and the technique to do that is called garbage collection.

When no references to an object exist, that object is no longer needed
and the memory occupied by the object can be reclaimed. The explicit destruction
of objects is not done as in C++.

Garbage collection occurs at irregular intervals during the execution of
program. It will not occur simply because one or more objects exist which
are no longer needed.

No Automatic garbage collection

Programs are compiled

Architecture specific

Platform Dependant
(Programme can run on same
Operating Systems on which it built)

Supports multiple inheritance

Supports operator Overloading

Templates as parameterized type

Supports Pointers with dereferencing
(* or –>) and address (&) operators.

Strings are null–terminated character
arrays

Main function can return a value

Automatic garbage collection

Programs are compiled and interpreted

Architecture neutral

Platform Independent
(Programme can run on any Operating
System)

No multiple inheritance

Does not support operator overloading

No parameterized type

No explicit pointer manipulation and
no pointer arithmetic

Strings are objects

Main method cannot return a value

7

Introduction to JavaDifferent Java run–time implementations take varying approaches to
garbage collection, so it is recommended that one should not think about it
while writing programs.

 Check Your Progress – 5 :
1. Explain the deallocation process in Java and C++.

2. What is the occurrence of garbage collection ?

...

...

...

...

...

1.7 Creating a Java Program :

The execution of Java Program is divided into several steps. These steps
are discussed below :

a. Writing the Code : The steps performed while writing the code are :

1. Use any text editor

2. Save the program as.java

3. Name the program the same as the class containing main method

Compiling the Code : The process of compiling the code involves the
given steps :

• Use the Command prompt

• Javac programname.java

• Creates porgramname.class file

b. Interpreting the ByteCodes : The ByteCodes are interpreted by following
the given steps :

• Use the command prompt

• .java programname

After studying about the steps of creating a Java Program, let us write
a small and simple program to display "I like Studying Java" on the screen.

// Program to display message on screen

class display

{

 public static void main (String [] args)

 {

 System.out.println("I like Studying Java");

 //Displays the string

 }

}

8

Object Oriented
Concepts &

Programming–1
(Core Java)

Figure 1.6 Output of Program

Now let us try to understand the above program. The first point of
execution of any Java program is its main method. This main method has to
be defined within a class.

In order to run an application with the Java interpreter, the name of the
class has to be specified which has to be executed. The interpreter invokes
the main method defined within that class.

The method signature for the main method contains three modifiers :

• Public indicates that the main method can be accessed outside the class
in which it is declared.

• Static indicates that the main method can be invoked without creating
an instance of the class.

• Void indicates that the main method doesn't return any value.

The main method accepts a single argument, that is, an array of elements
of class String and arg receives command line arguments. The next line is
System.out.println ("I like Studying Java"), this statement displays the string
"I like Studying Java".

The output gets displayed by println () method. The println () displays
the string which is passed to it. This method can also be used to display other
types of information also. It begins with System.out; here System is class and
out is the output stream which is connected to the console. Thus, System.out
is an object which encapsulates console output.

 Providing Comments :

Comments are used to provide brief documentation to the program. There
are two most commonly used methods of providing comments to Java program :

a. Single Line Comment – The single line comment is used to provide
comments of one line. It starts with // and ends with new line character.
For example,

// this is my first Java Program

b. Multiline Comment – When the comment to be included is of multiple
lines, then multiline comment is used. It starts with /* and ends with
*/. For example,

/* This is

My first

Java Program */

9

Introduction to Java Check Your Progress – 6 :
1. Explain the steps involved in the execution of Java program.

...

...

...

...

...

2. Which Company released the first public implementation as Java 1.0 in
1995.

(A) Sun (B) Microsoft (C) Oracle (D) Wipro

3. is an extension of java code file.

(A) .txt (B) .cpp (C) .java (D) .javac

4. JVM stand for .

(A) Java Virtual Machine (B) JDK Vision Mission

(C) Java Vision Machine (D) Java Virtual Mission

5. The is a large collection of ready–made software components.

(A) Java (B) Java API (C) JVM (D) JDK

6. The deallocation process is automatically done by .

(A) Garbage Collector (B) Pointer

(C) Memory (D) RAM

7. Java programme is compiled by using ______ command.

(A) java (B) jdk (C) cc (D) javac

8. is used as a single line comment.

(A) /* (B) // (C) */ (D) **

9. Java is simple, object–oriented, multi–threaded, robust, portable and
dynamic programming language.

(A) False (B) True

10. ".class" is an extension of byte code file

(A) False (B) True

11. Java is an Procedure oriented programming language

(A) False (B) True

1.8 Let Us Sum Up :

This Unit gives lot of basic learning right from History of Java that James
Gosling initiated the Java language project in June 1991 for use in one of
his many set–top box projects. The language, initially called Oak after an oak
tree that stood outside Gosling's office, also went by the name Green and ended
up later renamed as Java.

As the current programming problems are complex, as beyond a certain
size, structured programming cannot manage complexity. Using the concept of
object oriented programming, complex programs can be organized using classes,
inheritance and polymorphism. C++ was one of the popular programming
languages for Object Oriented Programming.

10

Object Oriented
Concepts &

Programming–1
(Core Java)

Java is simple, object–oriented, multi–threaded, robust, portable and
dynamic programming language. It is an object–oriented language similar to
C++ but simplified to eliminate language features which cause common
programming errors.

A platform can be defined as the hardware or software environment in
which a program runs. Most of the platforms can be described as a combination
of the operating system and hardware. The Java platform has two components :

• The Java Virtual Machine (JVM)

• The Java Application Programming Interface (Java API)

Although the main features of Java are its portability and security. Apart
from this, certain other features are also there which are discussed below :

1. Simple and

2. Object Oriented

About Garbage collection in C++ language, the dynamically allocated
objects are manually released by the use of a delete operator. In Java, the
deallocation process is automatically done and the technique to do that is called
garbage collection.

Creating and executing a Java Program is divided into several steps. These
steps are discussed below :

a. Writing the Code : The steps performed while writing the code are :

• Use any text editor

• Save the program as .java

• Name the program the same as the class containing main

b. Compiling the Code : The process of compiling the code involves the
given steps–

• Use the Command prompt

• .javac programname.java

• Creates programname.class file

c. Interpreting the ByteCodes : The ByteCodes are interpreted by following
the given steps :

• Use the command prompt

• .java programname

Comments are used to provide brief documentation to the program. There
are two most commonly used methods of providing comments to Java program

Single Line Comment : The single line comment is used to provide
comments of one line. It starts with // and ends with new line character.
Multiline Comment : When the comment to be included is of multiple lines,
then multiline comment is used. It starts with /* and ends with */.

1.9 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 1.2

 Check Your Progress 2 :

See Section 1.3

11

Introduction to Java Check Your Progress 3 :

See Section 1.4

 Check Your Progress 4 :

See Section 1.5

 Check Your Progress 5 :

See Section 1.6

 Check Your Progress 6 :

1 : See Section 1.7

2 : A 3 : C 4 : A 5 : D 6 : A

7 : D 8 : B 9 : D 10 : B 11 : A

1.10 Glossary :

1. Java Virtual Machines – The compiled Java code can run on most
computers because Java interpreters and runtime environments which are
known as Java Virtual Machines

2. Object Oriented – Data is treated as objects to which methods are
applied. Its basic execution unit is the class.

3. Portable – The interpreter for the Java Virtual Machine can be ported
to any computer hardware/operating system, so that all the codes compiled
for it will run on that system. This forms the basis for Java's portability.

4. Dynamic – Java is considered to be more dynamic than C or C++ since
it is designed to adapt to an evolving environment. Java programs can
carry extensive amount of run–time information that can be used to verify
and resolve accesses to objects on run–time.

5. Java Platform – The hardware or software environment in which a
program runs.

1.11 Assignment :

Discuss the function of modifiers in the method signature of main method.

1.12 Activities :

Find the new terminologies and write down the meaning and importance
of each.

1.13 Case Study :

1. Write a program to display a message on screen and explain the execution
of the program

2. Write a program to display "Well come to BAOU" on screen.

3. Write a program to display your name on screen.

1.14 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

12

Object Oriented
Concepts &

Programming–1
(Core Java)

3. Programming with Java, Ed. 2,E. Balagurusamy, Tata McGraw Hill, 1998,
reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

13

UNIT STRUCTURE

2.0 Learning Objectives

2.1 Introduction

2.2 Tokens

2.3 Data Types in Java

2.4 Declaring a Variable

2.5 Java Coding Conventions

2.6 Typecasting

2.7 Constants

2.8 Let Us Sum Up

2.9 Suggested Answer for Check Your Progress

2.10 Glossary

2.11 Assignment

2.12 Activities

2.13 Case Study

2.14 Further Readings

2.0 Learning Objectives :

After learning this unit, you will be able to understand :

• Describe Tokens, data types in Java

• Declare a variable, Java coding conventions

• Define typecasting

• Explain constants

2.1 Introduction :

Java is an object–oriented programming language as it works totally on
the concepts of class and object programming concepts. Object oriented
programming (called OOP for short) is the concept, which got its way after
the procedural programming languages which was developed in 1970's.

The programming language that existed before was more of process
oriented and this gave the concept of small entities called objects which could
be made and reused as and when the need arises.

OOP hails from the idea of objects. All the real life entities are basically
nothing but objects. In any program, every code will have an object having
few characteristics features called the properties of that particular object or
entity and then it will always have few actions to be performed over those
entities or objects termed as Methods or Functions. To work with OOP, you
should be able to identify three key characteristics of objects :

PROGRAMMING CONCEPTS
OF BASIC JAVA

Unit

02

14

Object Oriented
Concepts &

Programming–1
(Core Java)

• The behaviour of object : what can you do with this object, or what
methods can you apply to it ?

• The state of the object : how does the object react when you apply
those methods ?

• The identity of the object : how is the object distinguished from others
that may have the same behaviour and state ?

2.2 Tokens :

Figure 2.1 Tokens

The tokens of a language are the basic building blocks which can be
put together to construct programs. A token can be a reserved word (such as
int or while), an identifier (such as b or sum), a constant (such as 25 or "Alice
in Wonderland"), a delimiter (such as {or ;) or an operator (such as + or =).
These tokens are explained below :

Identifiers – Identifiers are those words, which help to identify an entity.
It can be used for class names, method names and variable names. It can be
represented using uppercase and lowercase characters, numbers, underscore and
dollar sign characters.

For Example,

a. Class_Name

b. B5

c. $name

d. This_is_program

Literals/Constants – Literals or constants are those quantities whose
value may not change during execution of program. Java support five types
of Literals / constants.

• Integer Literals

• Float Literals

• Character Literals

• String Literals

• Boolean Literals

1. Integer Literals :

It store whole numbers only. Integer Literals supports three subtypes of
Integer Literals.

• Decimal – it has value between 0 to 9

(i.e – 20, 45, 99, 102)

• Octal – it has value between 0 to 7

(i.e – 12, 45, 33)

15

Programming Concepts
of Basic Java

• Hexadecimal – it has value between 0 to 9 and A to F

(i.e – 0Xa2f, 0X3ba)

2. Float Literals :

It store fractional values. It store fractional values in either standard or
scientific forms.

Standard Form – i.e – 3.14, 22.879, 436.9845

Scientific Form – i.e – 8.46 * 1013, 69.44 * 1033

3. Character Literals :

Single Character is represent Character Literals. Some special character
(Backslash character) is also consider as a Character Literals. The Backslash
Character is explain in blow table.

Backslash Character Purpose

\" Double Quote

\' Single Quote

\t Tab

\\ Backslash

\n New Line

\b Backspace

\f Form Feed

\r Carriage Return

4. String Literals :

A collection of character within the double quotes is called String Literals.

5. Boolean Literals :

It has any one value out of two values like either True or False.

In Java, the keyword final is used to denote a constant. The value of
final variable cannot change after it has been initialised.

For example,

final int x=0;

The above statement declares a final variable and initialises it, all at
once.

While attempting to assign a value to variable x would result in compilation
error.

Keywords – Keywords are also called reserved words. These are those
words whose meaning is already explained to the compiler, so that when they
are used in the program the compiler never generates error. There are mainly
49 keywords used in Java language. These keywords are given in the following
table :

16

Object Oriented
Concepts &

Programming–1
(Core Java)

Table 2.1 : Keywords

abstract do import public transient

boolean double instance of return try

break else int short void

byte extends interface static volatile

case final long super while

catch finally native switch

char float new synchronized

class for package this

continue if private throw

default implements protected throws

In addition to the above keywords, true, false and null are also the
reserved words whose values are defined by Java.

 Check Your Progress – 1 :
1. Write a note on identifiers.

2. Explain constants

...

...

...

...

...

2.3 Data Types in Java :

Figure 2.2 Data Types in Java
• Java is a strongly typed language. Every variable, expression has a type

and these types are strictly checked. Unlike C, type checking is strictly
enforced at run time.

• Impossible to typecast incompatible types.

In Java, a floating point value can be assigned to an integer.

Based on the data type of a variable, the operating system allocates
memory and decides what can be stored in the memory. Therefore, by assigning

17

Programming Concepts
of Basic Java

different data types to variables, you can store Int, Float, Char, Boolean (any
of the eight primitive data types in these variables.

There are two data types available in Java :

1. Primitive Data Types

2. Reference/Object Data Types

 Primitive Data Types :

There are eight primitive data types supported by Java. Primitive data
types are predefined by the language and named by a key word. Let us now
look into detail about the eight primitive data types.

 Byte :

• Byte data type is an 8–bit signed.

• Minimum value is –128

• Maximum value is 127

• Default value is 0

• Byte data type is used to save space in large arrays, mainly in place
of integers, since a byte is four times smaller than an int.

• Example : byte a = 100 , byte b = –50

 Short :

• Short data type is a 16–bit signed.

• Minimum value is –32,768

• Maximum value is 32,767

• Short data type can also be used to save memory as byte data type.

• Default value is 0.

• Example : short s= 10000 , short r = –20000

 int :

• int data type is a 32–bit signed.

• Minimum value is 2,147,483,648.

• Maximum value is 2,147,483,647.

• int is generally used as the default data type for integral values unless
there is a concern about memory.

• The default value is 0.

• Example : int a = 200, int b = –400

 Long :

• Long data type is a 64–bit signed.

• Minimum value is –9,223,372,036,854,775,808.

• Maximum value is 9,223,372,036,854,775,807.

• This type is used when a wider range than int is needed.

• Default value is 0L.

• Example : int a = 200L, int b = –400L

18

Object Oriented
Concepts &

Programming–1
(Core Java)

 Float :

• Float data type is a 32 bit floating point numbers.

• Float is mainly used to save memory in large arrays of floating point
numbers.

• Default value is 0.0f.

• Float data type is never used for precise values such as currency.

• Example : float f1 = 134.5f

 Double :

• Double data type is a double–precision 64–bit floating point.

• This data type is generally used as the default data type for decimal
values.

• Default value is 0.0d.

• Example : double d1 = 113.4

 Boolean :

• boolean data type represents one bit of information.

• There are only two possible values : true and false.

• This data type is used for simple flags that track true/false conditions.

• Default value is false.

• Example : boolean b = false

 Char :

• Char data type is a single 16–bit Unicode character.

• Minimum value is '\u0000' (or 0).

• Maximum value is '\uffff' (or 65,535 inclusive).

• Char data type is used to store any character.

• Example : char letter ='C'

 Reference Data Types :

• Hold the reference of dynamically created objects which are in the
heap memory

• Can hold three types of values :

• Class type : Points to an object / instance of a class

• Interface type : Points to an object, which is implementing the
corresponding interface

• Array type : Points to an array object or "null"

• Difference between Primitive & Reference data types :

• Primitive data types hold values themselves

• Reference data types hold reference to objects, i.e. they are not objects,
but reference or pointers to objects

• Reference variables are created using defined constructors of the
classes. They are used to access objects. These variables are declared
to be of a specific type that cannot be changed. For example, employee,
puppy etc.

19

Programming Concepts
of Basic Java

• Class objects and various types of array variables come under reference
data type.

• Default value of any reference variable is null.

• A reference variable can be used to refer to any object of the declared
type or any compatible type.

• Example : Animal animal = new Animal("elephant").

 Check Your Progress – 2 :
1. Explain float data type.

2. Write a note on reference data type.

...

...

...

...

...

2.4 Declaring a Variable :

Figure 2.3 Declaring a Variable
In Java, variables are those quantities whose value may change during

execution of program. These variables should be initialised before they are used.
The syntax of variable declaration is given below :

 Syntax :

Type identifier [=value] [, identifier [=value]…];

Where,

Type is one of Java's atomic types, i.e., the name of class or interfaces.

A variable declared in java need to followed naming convention. The
rules for declaring the variable are as follow :

• The first character in a variable name should not be a digit.

• A variable name may consist of alphabets, digits, the underscore
character and the dollar character.

• A keyword should not be used.

• White spaces are not allowed.

• A variable name can be of any length.

For example, the given statements display the method of variable
declaration.

int a, b, c; //will declare three variables a, b and c of integer
types

int x=5, y=10, z=25; //will declare 3 variables x, y and z with 5, 10
and 25 values.

20

Object Oriented
Concepts &

Programming–1
(Core Java)

double pi=3.14; //will declare an approximate value of pi

char x= 'a'; //will declare variable x with character value 'a'

 Check Your Progress – 3 :
1. What is a variable ?

2. Write the syntax of declaring variables.

...

...

...

...

...

2.5 Java Coding Conventions :

Reducing the cost of software maintenance is the significant reason for
following coding conventions. In their introduction to code conventions for the
Java Programming Language, Sun Microsystems provides the rationale.

Code conventions are important to programmers for a various reasons :

• 80% of the lifetime cost of a piece of software goes to maintenance.

• Hardly any software is maintained for its whole life by the same
programmer.

• Code conventions improve the readability of the software, allowing
software engineers to understand new code more quickly and thoroughly.

• If you ship your source code as a product, you need to make sure it
is as well packaged and clean as any other product.

• Coding conventions allows simple scripts or programs whose job is to
process source code for some purpose other than compiling it into an
Executable. It is common practice to count the software size (Source
lines of code) to track current project progress or establish a baseline
for future project estimates.

• Consistent coding standards can, in turn, make the measurements more
consistent. Special tags within source code comments are often used to
process documentation.

 Check Your Progress – 4 :
1. Why code conventions are vital to programmers ?

2. Explain the use of special tags in source code comments.

...

...

...

...

...

21

Programming Concepts
of Basic Java

2.6 Typecasting :

Figure 2.4 Typecasting
The conversion of one data type to another data type is called typecasting

or type conversion.

There are mainly two types of conversions; these are implicit or automatic
and explicit conversions.

a. Automatic Conversion :

The type conversions are automatically performed when the type of the
expression on the right hand side of an assignment operation can be safely
promoted to the type of the variable on the left hand side of the assignment.

Thus, the values can be safely assigned as :

byte–>short–>int–>long–>float–>double

The extra storage associated with long integer as shown in the above
example will be padded with extra zeroes.

For Example,

byte b1 = 30;

int n = b1;

Here byte is lower precision type so it can be automatically convert in
to Integer.

b. Explicit Conversion :

If we want to assign the value of long to an integer then an integer
variable will require more storage and may result in loss of data. To force
such conversion, an explicit conversion is performed and the process is called
explicit typecasting.

For example,

If

int x;

long y;

Then,

x= (int) y;

The above statement tells the compiler that the type of variable y must
be temporarily changed to an int when the given assignment statement is
processed. Thus, the cast only lasts for the duration of the assignment.

So, the syntax of explicit typecasting can be given as :

(T) N

22

Object Oriented
Concepts &

Programming–1
(Core Java)

Here, T is the name of a numeric type and N is a data item of another
numeric type. The result is of type T

 Check Your Progress – 5 :
1. What do you mean by the term typecasting ?

2. Explain explicit conversion with suitable example.

...

...

...

...

...

2.7 Constants :

Java is a programming language used to create programs that can run
on a variety of Operating Systems. A Java constant is a variable with a pre–
defined value. Although Java does not have a constant type, you can effectively
obtain the same effect with a final variable. This enables you to have a control
of what is constant and what is not.

You can have a constant effect by declaring and initializing public, static
and final variables. The static modifier makes the variable obtainable without
loading an occurrence of the class where it is defined.

Once you have 34 initialized the constant variables, their value cannot
be changed anymore. After initializing, you can gain access to the constant
value with the variable's name and the name of its class with a period.

 Standard Naming Convention :

In declaring Java constant variables, you should declare the variable
names in ALL CAPS (notice each letter of the variable name above). The words
in Java constants are typically separated with underscores (as in the example
above). This format indicates that these values are constants. It will be easier
for an individual to read a code if this standard naming convention is followed.

 Check Your Progress – 6 :
1. How can a constant effect be achieved ?

2. Illustrate an example of Java constant.

...

...

...

...

...

3. is a basic buliding block of java programs.

(A) Token (B) Variable (C) Method (D) Class

4. is used to identify the entity..

(A) Java (B) Identifiers (C) Token (D) Kewords

5. literals has value between 0 to 7.

(A) Float (B) Octal Integer (C) Double (D) Boolean

23

Programming Concepts
of Basic Java

6. The maximum value of Byte data type is .

(A) 128 (B) 127 (C) –127 (D) 100

7. The default value of Int data type is .

(A) 0 (B) 1 (C) –0 (D) Garbage

8. The default value of boolean data type is .

(A) false (B) true (C) yes (D) no

9. Default value of any reference variable is .

(A) null (B) NaN (C) 0 (D) Garbage

10. Hexadecimal Integer literals has value between 0 to 9 and A to F

(A) True (B) False

11. Reference data types are predefined by the language and named by a
key word.

(A) True (B) False

12. Float data type is never used for precise values such as currency.

(A) True (B) False

2.8 Let Us Sum Up :

This unit deals with several important basic aspects of Java Programming.
One of them is the tokens of a language which are the basic building blocks
and can be put together to construct programs. A token can be a reserved word
(such as int or while), an identifier (such as b or sum), a constant (such as
25 or "Alice in Wonderland"), a delimiter (such as { or ;) or an operator (such
as + or =). These tokens are explained below :

Identifiers – Identifiers are those words, which help to identify an entity.
It can be used for class names, method names and variable names. It can be
represented using uppercase and lowercase characters, numbers, underscore and
dollar sign characters as a) Java is a strongly typed language. Every variable,
expression has a type and these types are strictly checked. Unlike C, type
checking is strictly enforced at run time. 2) Impossible to typecast incompatible
types. In Java, a floating point value can be assigned to an integer. Based on
the data type of a variable, the operating system allocates memory and decides
what can be stored in the memory. Therefore, by assigning different data types
to variables, you can store int, float, char, boolean (any of the eight primitive
data types in these variables. There are two data types available in Java : 1.
Primitive Data Types 2.Reference/Object Data Types In Java, variables are those
quantities whose value may change during execution of program. These variables
should be initialized before they are used. The syntax of variable declaration
is given below :

Syntax – Type identifier [=value] [, identifier [=value]…];

Reducing the cost of software maintenance is the significant reason for
following coding conventions. In their introduction to code conventions for the
Java Programming Language, Sun Microsystems provides the rationale. Code
conventions are important to programmers for a various reasons. Further it is
understood that the conversion of one data type to another data type is called
typecasting or type conversion. There are mainly two types of conversions;
these are implicit or automatic and explicit conversions.

24

Object Oriented
Concepts &

Programming–1
(Core Java)

Java is a programming language used to create programs that can run
on a variety of Operating Systems. A Java constant is a variable with a pre–
defined value. Although Java does not have a constant type, you can effectively
obtain the same effect with a final variable. This enables you to have a control
of what is constant and what is not.

You can have a constant effect by declaring and initializing public, static
and final variables. The static modifier makes the variable obtainable without
loading an occurrence of the class where it is defined. Once you have to
initialize the constant variables; their value cannot be changed anymore. After
initializing, you can gain access to the constant value with the variable's name
and the name of its class with a period. We learned that there is Standard
Naming Convention. In declaring Java constant variables, you should declare
the variable names in ALL CAPS (notice each letter of the variable name above).
The words in Java constants are typically separated with underscores (as in
the example above). This format indicates that these values are constants. It
will be easier for an individual to read a code if this standard naming convention
is followed.

2.9 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 2.2

 Check Your Progress 2 :

See Section 2.3

 Check Your Progress 3 :

See Section 2.4

 Check Your Progress 4 :

See Section 2.5

 Check Your Progress 5 :

See Section 2.6

 Check Your Progress 6 :

1 : See Section 2.7 2 : See Section 2.7

3 : C 4 : B 5 : B 6 : A 7 : A

8 : B 9 : A 10 : A 11 : A 12 : A

2.10 Glossary :

1. Tokens – The tokens of a language are the basic building blocks which
can be put together to construct programs.

2. Identifiers – Identifiers are those words, which help to identify an entity.
It can be used for class names, method names and variable names.

3. Literals/Constants – Literals or constants are those quantities whose
value may not change during execution of program.

4. Typecasting – conversion of one data type to another data type is called
typecasting or type conversion.

25

Programming Concepts
of Basic Java

2.11 Assignment :

1. Discuss the various data type available under Java.

2. Discuss the type conversion.

2.12 Activities :

1. Write the steps to save a file, compile and run program.

2. Explain class, object, methods and instant variables

3. Write a program that convert meter value in to kilometres.

4. Write a program that calculate the area of square.

5. Write a program that calculate the area of triangle.

2.13 Case Study :

1. Write a program that show the use of datatypes available in java.

2.14 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2,E. Balagurusamy, Tata McGraw Hill, 1998,
reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

26

UNIT STRUCTURE

3.0 Learning Objectives

3.1 Introduction

3.2 Arithmetic Operator

3.3 Increment / Decrement Operator

3.4 Assignment Operator

3.5 Bitwise Operator

3.6 Relation Operator

3.7 Logical Operator

3.8 Ternary Operator

3.9 Operator Precedence

3.10 Let Us Sum Up

3.11 Suggested Answer for Check Your Progress

3.12 Glossary

3.13 Assignment

3.14 Activities

3.15 Case Study

3.16 Further Readings

3.0 Learning Objectives :

After learning this unit, you will be able to understand :

• Arithmetic Operator

• Assignment Operator

• Bitwise Operator

• Relation Operator

• Logical Operator

• Ternary Operator

• Operator Precedence

3.1 Introduction :

An Operator is a symbol that allows a us to perform arithmetic or logical
operations on data. It operate on operands and cause changes in the operand
value. Java provides a rich set of operators for manipulating programs. Commonly
operator performs a function on one, two or three operands.

Unary operator perform operation based on one operand. The ++ or
– – are the Unary operators. Binary operator perform operation based on two
operands. The +, <, = are Binary operators. An operator that required three

OPERATORS AND
PRECEDENCE

Unit

03

27

Operators and
Precedence

operands are called Ternary operator. The "expression1 ? expression2 :
expression3" is an example of Ternary operator.

In Java, Operators are divided in to six categories. :

• Arithmetic Operators

• Assignment Operators

• Bitwise Operators

• Relational Operators

• Logical Operators

• Ternary Operator

3.2 Arithmetic Operator :

The arithmetic operators are used to perform arithmetical operations. For
example, addition, subtraction, multiplication, division and modulo.

These arithmetic operators can be unary or binary type. If the operator
is specified with two operands then it is called binary operator and if the
operators are used with single operand then they are called unary operators.
The given table gives a brief description of binary operators :

Here the values of Variables A = 10 and B = 20

Table 3.1 : Binary Operators (Arithmetic Operator)

 Check Your Progress – 1 :
1. Write a note on Arithmetic operators.

...

...

Following program shows the use of Arithmetic Operator

class ArithmaticDemo

{

public static void main(String args[])

{

int a = 40;

int b = 20;

Operator

+

–

*

/

%

Description

Addition – Adds values of either
side of the operator

Subtraction – Subtracts right hand
operand from left hand operand

Multiplication – Multiplies values
on either side of the operator

Division – Divides left hand
operand by right hand operand

Modulus – Divides left hand
operand by right hand operand
and returns remainder

Example

A + B will give 30

A – B will give –10

A * B will give 200

B / A will give 2

B % A will give 0

28

Object Oriented
Concepts &

Programming–1
(Core Java)

//Addition (+) operator

System.out.println("Addition of a and b = " + (a + b));

//Subtraction (-) operator

System.out.println("Subtraction of a and b = " + (a - b));

//Multiplication (*) operator

System.out.println("Multiplication of a and b = " + (a * b));

//Division (/) operator

System.out.println("Division of a and b = " + (a / b));

//Modulo (%) operator

System.out.println("Modulo of a and b = " + (a % b));

}

}

OUTPUT :

Addition of a and b = 60

Subtraction of a and b = 20

Multiplication of a and b = 800

Division of a and b = 2

Modulo of a and b = 0

3.3 Increment / Decrement Operator :

The binary forms of ++ and – – are unary operator. It is also know
as increment / decrement operator. Each of these operator has unary versions
that perform the following operations :

Table 3.2 : Increment / Decrement Operators

Operator Description Example

+ + Increment by one value + +a, b+ +

– – Decrement by one value – –a, b– –

The unary operator also known as increment and decrement operators.
The Increment and decrement operators can be used in two ways, either before
or after an operand. Depending on the placement of these operators, it can
be called as prefix or postfix operation. In the prefix notations, the value of
the operands is incremented or decremented before assigning it to another
variable, while in the postfix notation, the value of the operands is incremented
or decremented after assigning it to another variable.

There are two types of increment and decrement operators :

1. Pre–increment/Decrement

2. Post–increment/Decrement

29

Operators and
Precedence

1. Pre–Increment/Decrement – The pre–increment/decrement operator
increases/decreases the value of a variable first and then evaluates the
expression.

For example,

If a = 2, then b = ++a will first increase the value of a that is make
it 3 and then assign it to variable a.

So, the final value of b becomes 3.

Similarly, if a = 2 then b = – –a will first decrease the value of variable
a by 1 and then assign it to variable b.

2. Post–Increment/Decrement – The post–increment/decrement operator
first assigns the value to the variable and then increases/decreases it.

For example, If a = 2; And b = a++;

Then, first the value of a is assigned to b and then it is incremented/
decremented by 1.

As in the above example, first value of a is assigned to b and then it
gets increased. So, the value of b becomes 2 and a becomes 3.

Similarly, if a = 2 and b = a– –, then value of b becomes 2 and a becomes
1.

Following program shows the use of Unary Operator ++ :

class UnaryDemo

{

public static void main(String args[])

{

int i, j, k;

i = 10;

j = i++;

//prefix increment

System.out.println("i = " + i);

System.out.println("j = " + j);

i = 10;

j = 0;

j = ++j;

//postfix increment

System.out.println("i = " + i);

System.out.println("j = " + j);

}

}

30

Object Oriented
Concepts &

Programming–1
(Core Java)

OUTPUT

i = 11

j = 11

i = 11

j = 11

 Check Your Progress – 2 :
1. Write a note on increment and decrement operators.

...

...

3.4 Assignment Operator :

Assignment operators are used to assign a value to operand (variable).
Assignment Operator is a Binary operator. General form of operators is as
follow :

varname = expr;

Where, varname is variable name and expr is an expression.

Table 3.3 : Assignment Operators

Example

C = A + B will assigne
value of A + B into C

C += A is equivalent to
C = C + A

C –= A is equivalent to
C = C – A

C *= A is equivalent to
C = C * A

C /= A is equivalent to
C = C / A

C %= A is equivalent to
C = C % A

C <<= 2 is same as
C = C << 2

Operator

=

+=

– =

*=

/=

%=

<<=

Description

Simple assignment operator, Assigns
values from right side operands to left
side operand

Add AND assignment operator, It adds
right operand to the left operand and
assign the result to left operand

Subtract AND assignment operator, It
subtracts right operand from the left
operand and assign the result to left
operand

Multiply AND assignment operator, It
multiplies right operand with the left
operand and assign the result left
operand

Divide AND assignment operator, It
divides left operand with the right
operand and assign the result to left
operand

Modulus AND assignment operator, It
takes modulus using two operands and
assign the result to left operand

Left shift AND assignment operator

31

Operators and
Precedence

3.5 Bitwise Operator :

The bitwise operator is used when the manipulation is to be done bit
by bit, i.e., in terms of 0's and 1's. These are faster in execution than arithmetic
operators. The given table displays the bitwise operators along with their
meanings :

Table 3.4 : Bitwise Operators and their meanings

Operators Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ One's complement

<< Left Shift

>> Right Shift

>>> Right Shift with zero fill

 Bitwise Not (~)

The bitwise operators perform operations on integer value. In the above
table, the ~ operator is unary operator and the rest of the operators are binary
operators.

The ~ (one's complement) operator inverts the bits which make up the
integer value, that is, 0 bits becomes 1 and 1 bits becomes 0.

For example, if ~3 is written, then it will give the value of ~4. The
same can be calculated as follows :

The Numerical value 3 can be represented as binary integer value–

00000000 00000000 00000000 00000011

Inverting each bits would give

11111111 11111111 11111111 11111100

It is same as bit pattern for –4 as an int value.

The given table shows the operations performed at bit level :

>>=

&=

^=

|=

Right shift AND assignment operator

Bitwise AND assignment operator

Bitwise exclusive OR and assignment
operator

Bitwise inclusive OR and assignment
operator

C >>= 2 is same as
C = C >> 2

C &= 2 is same as
C = C & 2

C ^= 2 is same as
C = C ^ 2

C |= 2 is same as
C = C | 2

32

Object Oriented
Concepts &

Programming–1
(Core Java)

Table 3.5 : Operations Performed at Bit Level

Now, based on the above table and explanations, let us take an example
to understand the use of these bitwise operators. Consider the expressions, 63
& 252, 63 | 252 and 63 ^ 252

 Bitwise AND (&)

First of all we will calculate 63 & 252. To do the same, first represent
the 63 and 252 values in their bit patterns.

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

As you know that and returns a 1 bit if and only if the corresponding
bit from each operand is 1, we calculate 63 and 252 to be 60 as follows :

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

00000000 00000000 00000000 00111100 = 60

 Bitwise OR (|)

Now we will calculate 63 | 252. To do the same, first represent the 63
and 252 values in their bit patterns.

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

Operator

&

|

^

~

<<

>>

>>>

Description

Binary AND Operator copies a
bit to the result if it exists in both
operands.

Binary OR Operator copies a bit
if it exists in either operand.

Binary XOR operator copies the
bit if it is set in one operand but
not both.

Binary Ones Complement
Operator is unary and has the
effect of ‘flipping’ bits.

Binary Left Shift Operator. The
left operands value is moved left
by the number of bits specified
by the right operand.

Binary Right Shift Operator. The
left operands value is moved right
by the number of bits specified
by the right operand.

Shift right zero fill operator. The
left operands value is moved right
by the number of bits specified
by the right operand and shifted
values are filled up with zeros.

Example

(A & B) will give 12 which
is 0000 1100

(A | B) will give 61 which is
0011 1101

(A ^ B) will give 49 which
is 0011 0001

(~A) will give –60 which is
1100 0011

A << 2 will give 240 which
is 1111 0000

A >> 2 will give 15 which is
1111

A >>> 2 will give 15 which
is 0000 1111

33

Operators and
Precedence

As you know that for Bitwise OR, Operator returns a 0 bit if, and only
if, the corresponding bit form of each operand is 0. Else it returns 1. We
calculate 63 OR 252 to be 255 as follows :

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

00000000 00000000 00000000 11111111 = 255

Bitwise XOR (|)

Now we will calculate 63 ^ 252. To do the same, first represent the
63 and 252 values in their bit patterns.

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

As you know that for Bitwise XOR, Operator returns a 0 bit if, and
only if, the corresponding bit form of each operand match. Else it returns 1.
We calculate 63 XOR 252 to be 195 as follows :

00000000 00000000 00000000 00111111 = 63

00000000 00000000 00000000 11111100 = 252

00000000 00000000 00000000 11000011 = 195

 Shift Operators

The shift operators work on the bit level. When the left operand is an
int, only the last 5 bit of the right operand is used to perform the shift. This
is due to the fact that an int is a 32 bit value and can only be shifted 0 through
31 times. Similarly, when the left operand is a long value, only the last 6 bits
of the right operand are used to perform the shift, as long values are 64 bit
values, they can only be shifted 0 through 63 times.

The << operator (left shift) causes the bits of the left operand to be
shifted to the left based on the value of the right operand. The shifted right
bits will be filled with 0 values.

The >> (right shift) operator causes the bits to the left operand to be
shifted to the right, based on the value of the right operand. The bits that
fill in the shifted left bits have the value of the leftmost bit (before the shift
operation). This operator is also called signed shift as it preserves the sign
(positive or negative) of the operand.

The >>> operator is similar to >> (Right shift) operator, except that the
bits that fill in the shifted left bits have the value of 0. It is also called an
unsigned shift as it does not preserve the sign of the operand.

 Check Your Progress – 3 :
1. Write a note on Bitwise operators.

...

...

3.6 Relation Operator :

The relational operators are used to compare two quantities. It either
returns true or false value only.

34

Object Oriented
Concepts &

Programming–1
(Core Java)

For example,

num1>num2

Here, the value of num1 is checked with num2, if num1 is greater than
num2 then a true value is returned else false. The syntax for declaring the
relational operators is given below :

expr1 <relational operator> expr2

In the above syntax, expr1 and expr2 are the arithmetic expressions which
can be variables, constants or both. When the arithmetic expressions are used
on either side of a relational operator, the arithmetic expression gets evaluated
first.

The given table shows the list of relational operators with their meaning :

Table 3.6 : Relational Operators

3.7 Logical Operator :

Logical operators are used to combine more than one condition to perform
logical operation. There are 3 logical operators, the given table shows the list
of these operators

Operator

= =

|=

>

<

>=

<=

Description

Checks if the value of two
operands are equal or not, if yes
then condition becomes true.

Check if the value of the operands
are equal or not, if values are not
equal then condition becomes
true.

Checks if the value of left operand
is greater than the value of right
operand, if yes then condition
becomes true.

Checks if the value of left oeprand
is less than the value of right
operand, if yes then condition
becomes true.

Checks if the value of left operand
is greater than or equal to the
value of right operand, if yes then
condition becomes true.

Checks if the value of left operand
is less than or equal to the value
of right operand, if yes then
condition becomes true.

Example

(A = = B) is not true.

(A |= B) is true.

(A > B) is not ture.

(A < B) is true.

(A >= B) is not true.

(A <= B) is true.

35

Operators and
Precedence

Table 3.7 : Logical Operators

The && and | | are used to form compound conditions. For example,
num1>num2 && num1 >num3

In the above expression, first the value of num1 and num2 will be
compared (to the left side of && operator) then the values of num1 and num3
gets compared (to the right of &&) and finally AND operation is performed
on both the results.

Now let us see the functions of these logical operators, that is, AND,
OR and NOT.

1. AND operator (&&) – The AND operator returns true value when both
the operands are true. The truth table for AND operator is given below :

Table 3.8 : Logical AND Operators

operand1 operand2 operand1
&&

operand2

True True True

True False False

False True False

False False False

2. OR Operator (||) – The OR operator (||) produces true output when one
of the input is true or when both the inputs are true. The truth table
of OR (||) operator is given below :

Table 3.9 : Logical OR Operators

operand1 operand2 operand1
| |

operand2

True True True

True False True

False True True

False False False

Operator

&&

| |

!

Description

Called Logical AND operator. If both the
operands are non zero then then condition
becomes true.

Called Logical OR operator. If any of the
two operands are non zero then then
condition becomes true.

Called Logical NOT operator. Use to
reverses the logical state of its operand.
If a condition is true then Logical NOT
operator will make false.

Example

(A && B) is false.

(A || B) is true.

!(A && B) is true.

36

Object Oriented
Concepts &

Programming–1
(Core Java)

3. NOT Operator (!) – The NOT (!) operator is used to negate the
condition, that is, if the true value is specified as an input then it produces
false output and if false value is given as an input then true output is
produced.

The truth table for NOT (!) operator is given below :

Table 3.10 : Logical XOR Operators

operand1 !operand

True False

False True

4. Assignment Operators – The assignment operator is used to assign a
value to a variable. The syntax of assignment operator is given below :

varname= expr;

Where, varname is variable name and expr is an expression.

 Check Your Progress – 4 :
1. Write a note on Bitwise operators.

...

...

2. Unary operator perform operation based on operand.

(A) One (B) two (C) three (D) four

3. The operators are used to perform arithmetical operations. .

(A) Bitwise (B) Arithmetic (C) Relational (D) Logical

4. also known as increment / decrement operator..

(A) ++ & – – (B) + & – (C) += & –= (D) =+ & =–

5. The operator is used when the manipulation is to be done
bit by bit.

(A) Bitwise (B) Arithmetic (C) Relational (D) Logical

6. The operator is also known as ternary operator..

(A) Bitwise (B) conditional (C) Relational (D) Logical

7. The have states and behaviours.

(A) Class (B) Objects (C) Variable (D) Method

8. Assignment operators are used to assign a value to operand.

(A) True (B) False

9. Bitwise Not operator is denote by ~ sign.

(A) True (B) False

10. The << operator (left shift) causes the bits of the left operand to be
shifted to the left based on the value of the right operand.

(A) True (B) False

11. Logical operators are used to combine more than one condition to perform
logical operation.

(A) True (B) False

37

Operators and
Precedence

3.8 Ternary Operator :

The conditional operator is also known as ternary operator. It is denoted
by ? and :. The syntax of same can be given as :

expr1 ? expr2 :expr3

In the above syntax, expr1, expr2 and expr3 are expressions and expr1
must be of boolean type.

For example,

If a = 10

b = 2

z = (a > b) ? a : b

In the above example, the value of a > b gets evaluated first, if the
condition is true then value of a gets assigned to z otherwise the value of b.

class TarnaryDemo

{

public static void main(String args[])

{

int a = 12;

int b = 8;

int c;

c = (a > b) ? a : b;

System.out.println(c);

}

}

OUTPUT

12

3.9 Operator Precedence :

The precedence of operators is useful when there are several operators
in an expression. Java has specific rules for determining the order of evaluation
of an expression. The given table displays the list of operators in the order
of precedence. The hierarchy of Java operators with highest precedence is
shown first.

a. All those expressions which are inside parenthesis are first evaluated,
the nested parenthesis are evaluated from the innermost parenthesis to
the outer.

b. All the operators which are in the same row have equal precedence.

c. The given table shows the list of operators with their order of evaluation–

38

Object Oriented
Concepts &

Programming–1
(Core Java)

Table 3.11 : Operators and their Evaluation

Operator Type Order of Evaluation

() Parenthesis
[] Array Subscript Left to right
. Member Access

++, – – Prefix increment, decrement Right to left

++, – – Postfix Increment, decrement Right to left
– Unary minus

*,/,% Multiplicative Left to right

+, – Additive Left to right

<, >, <=, >= Relational Left to right

==,!= Equality Left to right

&& AND Left to right

| | OR Left to right

? : Conditional Right to left

=, +=, –+, Assignment Right to left
*=,/+,%=

 Java Programs :

When we consider a Java program it can be defined as a collection of
objects that communicate via invoking each other's methods. Let us now briefly
look into what do class, object, methods and instant variables mean.
• Object – Objects have states and behaviors. For example : A dog has

states–color, name, and breed as well as behaviors –wagging, barking
and eating. An object is an instance of a class.

• Class – A class can be defined as a template/ blue print that describe
the behaviors/states that object of its type support.

• Methods – A method is basically a behavior. A class can contain many
methods. It is in methods where the logics are written, data is manipulated
and all the actions are executed.

• Instant Variables – Each object has its unique set of instant variables.
An object's state is created by the values assigned to these instant
variables.

• Writing and Compiling Programs – Let us look at a simple code that
would print the word Welcome.
public class Welcome

{
/*This program will print Welcome */
public static void main (String args [])
{

System.out.println ("Welcome"); //Print Welcome
}

}

39

Operators and
Precedence

Let us look at how to save the file, compile and run the program. Please
follow the steps given below :

1. Open notepad and add the code as above.

2. Save the file as : Welcome.java.

3. Open a command prompt window and go to the directory where you
saved the class. Assume its C:\.

4. Type ' javac Welcome.java ' and press enter to compile your code. If
there are no syntax errors in your code the command prompt will take
you to the next line (Assumption : The path variable is set).

5. Now type ' java Welcome ' to run your program.

6. You will be able to see Welcome' printed on the window. C:> javac
Welcome.java

C:>java Welcome Welcome

• Basic Syntax – About Java programs, it is very important to keep in
mind the following points.

• Case Sensitivity – Java is case sensitive which means identifier Hi and
hi would have different meaning in Java.

• Class Names – For all class names the first letter should be in Upper
Case.

If several words are used to form a name of the class, each inner word's
first letter should be in upper case.

Example : class Welcome

• Method Names – All method names should start with a Lower Case
letter. If several words are used to form the name of the method, then
each inner word's first letter should be in Upper Case.

Example : public void myMethodName()

• Program File Name – Name of the program file should exactly match
the class name.

When saving the file you should save it using the class name (Remember
java is case sensitive) and append '.java' to the end of the name. (If the file
name and the class name do not match your program will not compile).

Example : Assume 'Welcome' is the class name. Then the file should
be saved as 'Welcome.java'

• Public static void main(String args[]) – Processing of java program
starts from the main() method which is a mandatory part of every java
program.

Java provides a number of access modifiers to set access levels for
classes, variables, methods and constructors. The four access levels are :

1. Visible to the package, its default modifier.

2. Visible to the class only (private)

3. Visible to the world (public)

4. Visible to the package and all subclasses (protected).

40

Object Oriented
Concepts &

Programming–1
(Core Java)

Default Access Modifier – No keyword – Default access modifier means
we do not explicitly declare an access modifier for a class, field, method etc.

A variable or method declared without any access control modifier is
available to any class in the same package. The default modifier cannot be
used for methods, fields in an interface.

Example :

Variables and methods can be declared without any modifiers, as in the
following example :

String x= "123";

boolean processorder ()

{

return true;

}

Private Access Modifier – private – Methods, Variables and Constructors
that are declared private can only be accessed within the declared class itself.

Private access modifier is the most restrictive access level. Class and
interfaces cannot be private.

Variables that are declared private can be accessed outside the class if
public getter methods are present in the class.

Using the private access modifier is the main way that an object
encapsulates itself and hides data from the outside world.

So to make the variable available to the outside world, we defined two
public methods : get Format(), which returns the value of format and set
Format(String), which sets its value.

Public Access Modifier – public – A class, method, constructor, interface
etc declared public can be accessed from any other class. Therefore fields,
methods, blocks declared inside a public class can be accessed from any class
belonging to the Java Universe.

However, if the public class we are trying to access is in a different
package then the public class still need to be imported.

Because of class inheritance, all public methods and variables of a class
are inherited by its subclasses.

Example :

The following function uses public access control :

Public static void main (String args [])

{

//………..

}

The main () method of an application has to be public. Otherwise, it
could not be called by a Java interpreter (such as java) to run the class.

Protected Access Modifier – protected – Variables, methods and
constructors which are declared protected in a superclass can be accessed only
by the subclasses in other package or any class within the package of the
protected members' class.

41

Operators and
Precedence

The protected access modifier cannot be applied to class and interfaces.
Methods, fields can be declared protected; however, methods and fields in an
interface cannot be declared protected.

Protected access gives the subclass a chance to use the helper method
or variable, while preventing a nonrelated class from trying to use it.

3.10 Let Us Sum Up :

An operator is used to perform specific operation on two or more
operands. The operators are classified as given are Arithmetic Operators,
Relational Operators, Logical Operators, Assignment Operators, Increment and
Decrement Operators, Conditional Operators, Bitwise Operators, Special Operators

The precedence of operators is useful when there are several operators
in an expression. Java has specific rules for determining the order of evaluation
of an expression. The given table displays the list of operators in the order
of precedence. The hierarchy of Java operators with highest precedence is
shown first as all those expressions which are inside parenthesis are first
evaluated, the nested parenthesis are evaluated from the innermost parenthesis
to the outer. Secondly all the operators which are in the same row have equal
precedence.

Let us talk about our understanding related to Java program it can be
defined as a collection of objects that communicate via invoking each other's
methods. Let us now briefly look into what do class, object, methods and instant
variables mean.

• Object – Objects have states and behaviors. For example : A dog has
states–color, name, breed as well as behaviors –wagging, barking and
eating. An object is an instance of a class.

• Class – A class can be defined as a template/ blue print that describe
the behaviors/states that object of its type support.

• Methods – A method is basically a behavior. A class can contain many
methods. It is in methods where the logics are written, data is manipulated
and all the actions are executed.

• Instant Variables – Each object has its unique set of instant variables.
An object's state is created by the values assigned to these instant
variables

3.11 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 3.2

 Check Your Progress 2 :

See Section 3.3

 Check Your Progress 3 :

See Section 3.5

 Check Your Progress 4 :

1 : See Section 3.7 2 : A 3 : B 4 : A

5 : A 6 : B 7 : B 8 : A 9 : A

10 : A 11 : A

42

Object Oriented
Concepts &

Programming–1
(Core Java)

3.12 Glossary :

1. Operators – java provides six kind of operators. Arithmetic's operatos
uses for the mathematic operation. It required two operands to perform
operation. Increment and Decrement are the unary operators. It will either
increase or decrease operand value by one. Assignment operator is
responsible to assign value of right hand operand to left hand side
operand. Bitwise operators work on bit. It basically use for binary
operation. Relation operator is uses for the compression between two
operands. Logical operator's uses to take decision based on operands
values. Ternary operators required three operands and uses for the decision
making.

2. Object – Objects have states and behaviors. For example : A dog has
states–color, name, breed as well as behaviors –wagging, barking and
eating. An object is an instance of a class.

3. Class – A class can be defined as a template/ blue print that describe
the behaviors/states that object of its type support.

4. Methods – A method is basically a behavior. A class can contain many
methods. It is in methods where the logics are written, data is manipulated
and all the actions are executed.

3.13 Assignment :

Write a program to explain the use of operators.

3.14 Activities :

1. Explain the concept of Pre-Increment/Decrement and Post Increment/
Decrement.

2. Explain class, object, methods and instant variables

3.15 Case Study :

For our case study, we will be creating two classes. They are Student
and Student Details.

First open notepad and add the following code. Remember this is the
Student class and the class is a public class. Now, save this source file with
the name Student.java.

The Student class has four instance variables name, age, course and
semester.

The class has one parameterised constructor, which takes parameters.

The class should also comprise with one public method display(), which
displays the details of the student.

Processing starts from the main method. Therefore in–order for us to
run this Student class there should be main method and objects should be
created. We will be creating a separate class for these tasks.

Student Details class, which creates two instances of the class Student
and invokes the methods for each object to assign values for each variable.

43

Operators and
Precedence

3.16 Further Readings :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

44

UNIT STRUCTURE

4.0 Learning Objectives

4.1 Introduction

4.2 Loops

4.3 Nested Loops

4.4 Selection Statements

4.5 Arrays

4.6 Let Us Sum Up

4.7 Suggested Answer for Check Your Progress

4.8 Glossary

4.9 Assignment

4.10 Activities

4.11 Case Study

4.12 Further Readings

4.0 Learning Objectives :

After learning this unit, you will be able to understand :

• Explain loops – for, while and do–while loop

• Describe nested loops

• Discuss Selection statement – if, if else, nested if, switch statement and
recursion

• Define Arrays – one dimensional and multidimensional

• Illustrate switch statement

4.1 Introduction :

A programming loop is a control structure that allows a programmer to
execute the same instruction or group of instructions over and over until some
condition is met. All loops have a basic structure to them, though there are
many types.

We can use Java JDBC Select statement in a java program to retrieve
the data and display it for the respective Tables. JDBC returns results in a
Result Set object, so we need to declare an instance of the class Result Set
to hold our results. Select is the SQL keyword that performs a query

4.2 Loops :

The process of executing a block of statements a number of times is
known as looping or iterating. There are mainly three types of loops in Java
which are used in programs when the same set of statements are executed a
number of times.

LOOPS AND
SELECTION STATEMENTS

Unit

04

45

Loops and
Selection Statements

 For Loop :
The for loop is used to execute the same set of statements a number

of times. With for loop, the initial value of variable is specified with the
condition which gets checked so that the given set of statements be executed
till the value of variable is less than/greater than or equals to it, the increment/
decrement value of the variable is also specified which keeps on increasing/
decreasing the value of variable on each iteration.

The syntax of for loop is given below :
for (initial value; condition; increment/decrement value);
{ // start of for loop
//statements to be executed
}//end of for loop
The flow chart for execution of for loop is given below :

Figure 4.1 Flow chart of For loop

False

True

For example,

for (int i=1; i<=5; i++)

{

System.out.println (i);

}

The above code fragment will display numbers from 1 to 5.

Start

Initialization

Condition

Loop

Loop Expression

End

46

Object Oriented
Concepts &

Programming–1
(Core Java)

Here is the flow of control of For Loop –

1. The initialization step is executed first and only once. This step allows
you to declare and initialize any loop control variables. You are not
required to put a statement here, as long as a semicolon appears.

2. Next, the Boolean expression is evaluated. If it is true, the body of the
loop is executed. If it is false, the body of the loop does not execute
and flow of control jumps to the next statement past the for loop.

3. After the body of the for loop executes, the flow of control jumps back
up to the update statement. This statement allows you to update any loop
control variables. This statement can be left blank, as long as a semicolon
appears after the Boolean expression.

4. The Boolean expression is now evaluated again. If it is true, the loop
executes and the process repeats itself (body of loop, then update step,
then Boolean expression). After the Boolean expression is false, the for
loop terminates.

 While Loop

The while loop is used to execute the same set of statements a number
of times. In while loop, first the condition is specified with while and the
statements specified under it gets executed a number of times. The syntax of
same is given below :

while (condition)

{

//loop statements

//increment/decrement value

}//end of while loop

The execution of statements in while loop is illustrated using the given
flowchart :

Figure 4.2 Flowchart for while loop

47

Loops and
Selection Statements

The statements within the while loop gets executed till the condition being
tested remains true. As soon as it becomes false, the control of the program
passes to the first statement that follows the body of the loop.

If the statements within the parenthesis of while loop is single then the
use of parenthesis is optional.

 Do – While Loop

Just like while loop, the do–while loop is also used to execute the same
set of statements a number of times. The syntax of do–while is given below :

Initialisation

do

{

//increment / Decrement Value ;

}while(condition)

value; } while (condition);

The process of execution of statements of do–while loop is illustrated
below :

Figure 4.3 Flow chart for Do while loop

The while loop is also called entry controlled loop whereas the do–while
loop is called as exit–controlled loop. There is a small difference between both
these loops. The while loop first tests the condition and then executes the
statements and do–while loop first executes the statements and then checks
the condition. The differences between them are shown below in the given
table :

Increment/Decrement
statement

Start

Initialization

Loop Statements

Condition

Stop

48

Object Oriented
Concepts &

Programming–1
(Core Java)

Table 4.1 : Do–while loop Vs While loop

 Check Your Progress – 1 :
1. Give the difference between do while and while loop.

2. Explain for loop with the help of flowchart.

...

...

...

...

...

4.3 Nested Loops :

A loop within a loop is called nested loop. When two loops are nested,
the outer loop takes control of the number of complete repetitions of the inner
loop. While all types of loops may be nested, the most commonly used nested
loop is for loop.

Following Example show the example of Nested Loops :

Example : /* Program print the following output

1

1 2

1 2 3

1 2 3 4

*/

class Demoof_nestedloop

{

 public static void main(String args[])

{

 for (int row = 1 ; row <= 4 ; row++)

{

 for(int col = 1 ; col <= row ; col++)

 {

 System.out.print(col + “\t”);

 }

 System.out.println(“ “);

Do-while loop

Also called exit–controlled loop

In do–while loop, first the statements
get executed and then the condition
is checked

The statements get executed even if
the condition is wrong

While loop

Also called entry controlled loop

First the condition gets checked and
then the statements are executed

The statements do not get executed
if the condition is wrong

49

Loops and
Selection Statements

 }

}

}

Output

1

1 2

1 2 3

1 2 3 4

When working with nested loop, the outer loop is only changed once
the inner loop is completely finished.

 Check Your Progress – 2 :
1. Explain nested loops.

2. Which is the commonly used nested loop ?

...

...

...

...

...

4.4 Selection Statements :

The selection statements are used for decision making purpose. These
statements are discussed below :

 If Statement

The 'if' statement is used to check a condition; if that condition is true
then the statement specified after if statement gets executed. The syntax of
if statement is given below :

if (condition)

{

//statement 1

//statemen

……..

……..

//statement n

}

If there is a single statement then we need not to specify the braces
but if there is more than one statement then it has to be enclosed in pair of
braces. The process flow of if statement is explained in the given flowchart :

50

Object Oriented
Concepts &

Programming–1
(Core Java)

Figure 4.4 out of it statement

 The If – Else Statement

The if–else statement is also used to check a condition just like if
statement but if the given statement is not true then the statements specified
in the else part gets executed.

The syntax of if–else statement is given below :

if (condition)

{

//statements

//statements

}

else

{

//statements

//statements

}

}

 Nested If

An if inside another if is called as nested if statement. The syntax of
nested if statement is given below :

if (condition)

{

 if (condition)

 {

 //statements

 }

 //statements

51

Loops and
Selection Statements

}

else

{

 if (condition)

 {

 //statements

 }

 //statements

}

 Switch Statement

The switch statement tests the value of a variable and based on that
executes the corresponding case statement. The last statement of switch–case
statement contains a default statement, which gets executed when all the case
statements specified does not match with the value of the variable specified.

The syntax of switch–case statement is given below :

switch (expression)

{

case cond1:

 code_block_1;

case cond2:

 code_block_2;

...

...

case condn:

 code_block_n;

default:

 code_block_default;

}

Here, Here, In above syntax switch(expression), where expression is a
variable either of integer, character, short etc. type of data type. In each case
statement within the switch statement, a comparison is made with the value
entered by the user and the value specified with case. If the comparison
evaluates to true, the code specified within that block is executed, otherwise
it goes to next case statement. The last default statement gets executed if none
of the conditions match.

The following rules apply to a switch statement :

• The variable used in a switch statement can only be a byte, short, int,
or char.

• You can have any number of case statements within a switch. Each case
is followed by the value to be compared and followed by a colon symbol.

• The value for a case must be the same data type as the variable in the
switch and it must be a constant or a literal.

52

Object Oriented
Concepts &

Programming–1
(Core Java)

• When any switch case is true then, the statements following that case
will execute until a break statement is reached.

• When a break statement is reached, the switch terminates and the flow
of control jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow
of control will fall through to subsequent cases until a break is reached.

• A switch statement can have an optional default case, which must appear
at the end of the switch. The default case can be used for performing
a task when none of the cases is true. No break is needed in the default
case.

 The Break Statement

The break statement sends the control of program out of the loop. This
statement is useful when in certain instances we want to exit out of the loop
instantly. As soon as this keyword is encountered inside any loop, the control
of the program automatically passes to the next statement after the loop.

public class Test

{

 public static void main(String args[])

 {

 int[] numbers = {10,20,30,40,50};

 for(int x : numbers)

 {

 if(x == 30)

 {

 break;

 }

 System.out.print(x);

 System.out.print("\n");

 }

 }

}

//OUTPUT

10

20

53

Loops and
Selection Statements

Figure 4.5 Output of Program

 The Continue Statement

The continue statement sends the control of program to the beginning
of the loop. As soon as this statement occurs in the program, the rest of the
statements written after continue statement is bypassed and the control of the
program is sent to the beginning of the loop.

For example,

//Code to print numbers from 1 to 5 except 4

int i=1

while (i<=5)

{

if (i==4)

continue;

System.out.println (i);

i++;

}

 Recursion

Recursion is kind of process that Java function call itself. The function
body contain the statement that call itself. The function body must have
conditional statement that will stop calling of function when conditional statement
become true. This might be true is some cases but in practice, we can check
to see if a certain condition is true and in that case exit (return from) our
method. The case in which we end our recursion is called a base case.
Additionally, just as in a loop, we must change some value and incremently
advance closer to our base case.

Consider this method :
Void myMethod (int counter)
{

if(counter == 0)
return;

else{
System.out.println("hello" + counter);
myMethod(––counter);
System.out.println(""+counter);
return;
}

}

54

Object Oriented
Concepts &

Programming–1
(Core Java)

If the method is called with the value 4, what will the output be ? Explain.
The above recursion is essentially a loop like a for loop or a while loop. When
do we prefer recursion to an iterative loop ? We use recursion when we can
see that our problem can be reduced to a simpler problem that can be solved
after further reduction.

Every recursion should have the following characteristics :

1. A simple base case which we have a solution for and a return value.

2. A way of getting our problem closer to the base case, i.e., a way to
chop out part of the problem to get a somewhat simpler problem.

3. A recursive call which passes the simpler problem back into the method.

The key to thinking recursively to see the solution to the problem as
a smaller version of the same problem. The key to solving recursive programming
requirements is to imagine that your method does what its name says it does
even before you have actually finish writing it. You must pretend the method
does its job and then use it to solve the more complex cases. The same is
explained below :

Identify the base case(s) and what the base case(s) do. A base case is
the simplest possible problem (or case) your method could be passed. Return
the correct value for the base case. Your recursive method will then be
comprised of an if–else statement where the base case returns one value and
the non–base case(s) recursively call(s) the same method with a smaller parameter
or set of data. Thus, you decompose your problem into two parts : (1) The
simplest possible case which you can answer (and return for) and (2) all other
more complex cases which you will solve by returning the result of a second
calling of your method.

This second calling of your method (recursion) will pass on the complex
problem but reduced by one increment. This decomposition of the problem
will actually be a complete, accurate solution for the problem for all cases
other than the base case. Thus, the code of the method actually has the solution
on the first recursion.

 Check Your Progress – 3 :
1. Explain the characteristics of recursion.

2. Write the rules for switch statement.

...

...

...

...

...

4.5 Arrays :

An array is a collection of similar types of variables which are referenced
under a single name. It can also be defined as a collection of homogeneous
cells inside computer's memory.

To understand the concept, let us take an example. Consider that you
want to store the marks of 50 students and display them. Now, the simple
way which you have studied till now is to take 50 separate variables, store

55

Loops and
Selection Statements

50 numbers in them and then display their values. But this will make your
program very lengthy and complicated, so, in order to reduce the number of
statements in a program, the concept of arrays is used.

Figure 4.6 Array index

Each item of an array is called an element and each element is accessed
by its index number. As shown in the above figure, the numbering begins with
0 and the total length of the array is 10. So, the 1st element is stored at 0th
index, 2nd at 1st index and so on. The last element that is 10th element is
stored at 9th index.

These arrays are classified as :

a. One–dimensional array

b. Multi–dimensional array

a. One–Dimensional Arrays – A one–dimensional array contains single row
or column. The syntax of declaring single–dimensional array is :

data type varname[size];

Here, type declares the data type of the array, varname is the name of
the array and size is the total size of the array.

An array can also be declared as :

int student[]= new int [5];

int [] student = new int [5];

Processing Arrays – When processing array elements, we often use either
for loop or foreach loop because all of the elements in an array are of the
same type and the size of the array is known.

Example :

Here, is a complete example of showing how to create, initialise and
process arrays :

public class testarray

{

public static void main (String args[])

{

double mylist [] = { 4, 6,2,9,7 };

//Print all the array elements

for (int i=0;i< myList.length;i++)

{

System.out.println (myList[i] + " ");

}

//Summing all elements

double total=0;

56

Object Oriented
Concepts &

Programming–1
(Core Java)

for(int i=0; i<myList.length;i++)

{

total+= myList[i];

}

System.out.println ("Total is" + total);

//Finding the largest element

double max=myList[0];

for (int i=1; i<myList.length;i++)

{

if (myList[i] > max)

max = myList[i];

}

System.out.println ("Max is" + max);

}

}

This would produce following result :

4

6

2

9

7

Total is 28

Max is 9

Passing Arrays to Methods – Just as you can pass primitive type values
to methods, you can also pass arrays to methods. For example, the following
method displays the elements in an int array :

public static void printArray (int [] array)

{

for (int i=0; i<array.length;i++)

{

System.out.println (array[i] + " ");

}

}

You can invoke it by passing an array. For example, the following
statement invokes the printArray method to display 3, 1, 2, 6, 4 and 2 :

printArray (new int [] { 3, 2, 5, 6,9});

The Arrays Class – The java. util. Arrays class contains various static
methods for sorting and searching arrays, comparing arrays and filling array
elements. These methods are overloaded for all primitive types.

57

Loops and
Selection Statements

SN Methods with Description

1. public static int binarySearch(Object[] a, Object key)

Searches the specified array of Object (Byte, Int , double etc) for
the specified value using the binary search algorithm. The array must
be sorted prior to making this call. This returns index of the search
key, if it is contained in the list; otherwise, (–(insertion point + 1).

2. public static boolean equals(long[] a, long[] a2)

Returns true if the two specified arrays of longs are equal to one
another. Two arrays are considered equal if both arrays contain the
same number of elements and all corresponding pairs of elements
in the two arrays are equal. This returns true if the two arrays are
equal. Same method could be used by all other primitive data types
(Byte, short, Int etc.)

3. public static void fill(int[] a, int val)

Assigns the specified int value to each element of the specified array
of ints. Same method could be used by all other primitive data types
(Byte, short, Int etc.)

4. public static void sort(Object[] a)

Sorts the specified array of objects into ascending order, according
to the natural ordering of its elements. Same method could be used
by all other primitive data types (Byte, short, Int etc.)

b. Multi–dimensional Arrays – If an array contains multiple rows and
multiple columns then it is called as multi–dimensional array or two–
dimensional array.

The syntax of declaring two–dimensional array is :

data type array name[][] = new int [size of row][size of column];

The total number of elements which can be stored in 2–D array can
be obtained by the given formula :

Size of the array=number of rows X number of columns

For example,

int student[][] = new int [3][4]

The above statement creates a two–dimensional array of student name
of integer data type with 3 rows and 4 columns, that is, the total number of
elements which can be stored in this array is 12.

 Check Your Progress – 4 :
1. Explain the process of passing arrays to methods.

2. Discuss the process of using methods in arrays.

...

...

...

...

...

58

Object Oriented
Concepts &

Programming–1
(Core Java)

3. The process of executing a block of statements a number of times is
known as .
(A) Method (B) Class
(C) Loop (D) Decision Making

4. loop is called as exit control loop.
(A) for (B) if (C) while (D) do while

5. Loop within loop is called loop.
(A) Nested (B) within (C) for (D) simple

6. The selection statements are used for purpose.
(A) Looping (B) Coding
(C) Decision making (D) processing

7. if the given statement is not true then the statements specified in the
 part gets executed.

(A) for (B) while (C) if (D) else
8. The statement sends the control of program out of the loop

(A) Continue (B) break (C) if (D) else
9. If the statements within the parenthesis of while loop is single then the

use of parenthesis is optional.
(A) True (B) False

10. While loop is entry control loop.
(A) True (B) False

11. When working with nested loop, the outer loop is only changed once
the inner loop is completely finished.
(A) True (B) False

12. Each 'if' statement must have 'else' statement.
(A) True (B) False

4.6 Let Us Sum Up :

This gave us lot of insight in to the Java programming aspects with clarity
such as loop, the process of executing a block of statements a number of times
is known as looping or iterating. There are mainly three types of loops in Java
which are used in programs when the same set of statements are executed a
number of times.

1. FOR LOOP – The for loop is used to execute the same set of statements
a number of times. With for loop, the initial value of variable is specified
with the condition which gets checked so that the given set of statements
be executed till the value of variable is less than/greater than or equals
to it, the increment/decrement value of the variable is also specified which
keeps on increasing/decreasing the value of variable on each iteration.
We need to understand and apply control of FOR LOOP.

2. WHILE LOOP – The while loop is used to execute the same set of
statements a number of times. In while loop, first the condition is
specified with while and the statements specified under it gets executed
a number of times.

3. DO–WHILE LOOP – Just like while loop, the do–while loop is also
used to execute the same set of statements a number of times. The syntax
of do–while is given below :

59

Loops and
Selection Statements

4. NESTED LOOP – A loop within a loop is called nested loop. When
two loops are nested, the outer loop takes control of the number of
complete repetitions of the inner loop. While all types of loops may be
nested, the most commonly used nested loop is for loop. When working
with nested loop, the outer loop is only changed once the inner loop
is completely finished.

5. THE IF–ELSE STATEMENT – The if–else statement is also used to
check a condition just like if statement but if the given statement is not
true then the statements specified in the else part gets executed.

6. NESTED IF – If inside another if is called as nested if statement.
7. SWITCH STATEMENT – The switch statement tests the value of a

variable and based on that executes the corresponding case statement.
The last statement of switch–case statement contains a default statement,
which gets executed when all the case statements specified does not match
with the value of the variable specified. At this point of time we need
to understand and follow rules to apply to a switch statement :

8. THE BREAK STATEMENT – The break statement sends the control
of program out of the loop. This statement is useful when in certain
instances we want to exit out of the loop instantly. As soon as this
keyword is encountered inside any loop, the control of the program
automatically passes to the next statement after the loop.

9. THE CONTINUE STATEMENT – The continue statement sends the
control of program to the beginning of the loop. As soon as this statement
occurs in the program, the rest of the statements written after continue
statement is bypassed and the control of the program is sent to the
beginning of the loop.

10. RECURSION – Recursion is when a function calls itself. That is, in
the course of the function definition there is a call to that very same
function. At first this may seem like a never ending loop, or like a dog
chasing its tail. It can never catch it. So too it seems our method will
never finish. This might be true is some cases but in practice, we can
check to see if a certain condition. is true and in that case exit (return
from) our method. The case in which we end our recursion is called
a base case. Additionally, just as in a loop, we must change some value
and incrementally advance closer to our base case.

11. ARRAY – An array is a collection of similar types of variables which
are referenced under a single name. It can also be defined as a collection
of homogeneous cells inside computer's memory. a. One–dimensional
array and b. Multi–dimensional array

12. PROCESSING ARRAYS – When processing array elements, we often
use either for loop or for each loop because all of the elements in an
array are of the same type and the size of the array is known.

13. PASSING ARRAYS TO METHODS – Just as you can pass primitive
type values to methods, you can also pass arrays to methods. For example,
the following method displays the elements in an int array :

14. THE ARRAYS CLASS – The java. util. Arrays class contains various
static methods for sorting and searching arrays, comparing arrays and
filling array elements. These methods are overloaded for all primitive
types.

60

Object Oriented
Concepts &

Programming–1
(Core Java)

15. MULTI–DIMENSIONAL ARRAYS – If an array contains multiple rows
and multiple columns then it is called as multi–dimensional array or two–
dimensional array.

4.7 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 4.2

 Check Your Progress 2 :

See Section 4.3

 Check Your Progress 3 :

See Section 4.4

 Check Your Progress 4 :

See Section 4.5

 Check Your Progress 5 :

1 : See Section 4.6 2 : A 3 : D 4 : A

5 : C 6 : D 7 : B 8 : A 9 : A

10 : A 11 : B

4.8 Glossary :

1. For Loop – The For loop is used to execute the same set of statements
a number of times.

2. While Loop – The while loop is used to execute the same set of
statements a number of times.

3. Do–while loop – Just like while loop, the do–while loop is also used
to execute the same set of statements a number of times.

4. Nested loop – A loop within a loop is called nested loop. When two
loops are nested, the outer loop takes control of the number of complete
repetitions of the inner loop.

5. The if–else Statement – The if–else statement is also used to check
a condition just like if statement but if the given statement is not true
then the statements specified in the else part gets executed.

6. Nested if – if inside another if is called as nested if statement.

7. Switch Statement – The switch statement tests the value of a variable
and based on that executes the corresponding case statement

8. The Break Statement – The break statement sends the control of program
out of the loop.

9. The Continue Statement – The continue statement sends the control
of program to the beginning of the loop.

10. Recursion – Recursion is when a function calls itself. That is, in the
course of the function definition there is a call to that very same function.

11. Array – An array is a collection of similar types of variables which
are referenced under a single name. It can also be defined as a collection
of homogeneous cells inside computer's memory. a. One–dimensional
array and b. Multi–dimensional array

61

Loops and
Selection Statements

12. Processing Arrays – When processing array elements, we often use either
for loop or for each loop because all of the elements in an array are
of the same type and the size of the array is known.

13. Passing Arrays to Methods – Just as you can pass primitive type values
to methods, you can also pass arrays to methods. For example, the
following method displays the elements in an int array :

14. The Arrays Class – The java.util.Arrays class contains various static
methods for sorting and searching arrays, comparing arrays and filling
array elements. These methods are overloaded for all primitive types.

15. Multi–dimensional Arrays – If an array contains multiple rows and
multiple columns then it is called as multi–dimensional array or two–
dimensional array.

4.9 Assignment :

1. Explain the flow of control of for loop.
2. Explain the flow of control of while loop.
3. Explain the flow of control of do while loop
4. Explain the flow of if condition

4.10 Activities :

1. Using switch case statement, write a program for calculator.

2. Write a java program that will print "BAOU" ten time on screen.

3. Write a java program that will store the age of ten person on array. Read
the age one by one and if the age is less than 18 years then print message
"you are child" otherwise print "you are young person".

4. Write a java program that will store 10 english characters in array. Read
it one by one if the character is any vowel then print message "The
character is vowel" otherwise print the character only.

5. Write a java program that will store 5 float values in array. Display the
average of the value.

4.11 Case Study :

What are selection statements explain with the help of an example.

4.12 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2,E. Balagurusamy, Tata McGraw Hill, 1998,
reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

62

Object Oriented
Concepts &

Programming–1
(Core Java)

BLOCK SUMMARY :

This Unit No. 1 gives lot of basic learning right from History of Java
that James Gosling initiated the Java language project in June 1991 for use
in one of his many set–top box projects. The language, initially called Oak
after an oak tree that stood outside Gosling's office, also went by the name
Green and ended up later renamed as Java. As the current programming
problems are complex, as beyond a certain size, structured programming cannot
manage complexity. Using the concept of object oriented programming, complex
programs can be organized using classes, inheritance and polymorphism. C++
was one of the popular

About Garbage collection in C++ language, the dynamically allocated
objects are manually released by the use of a delete operator. In Java, the
deallocation process is automatically done and the technique to do that is called
garbage collection.

Creating a Java Program is the execution of Java Program is divided
into several steps.

The Unit No. 2 deals with several important basic aspects of Java
Programming. One of them is the tokens of a language which are the basic
building blocks and can be put together to construct programs. These tokens
are explained below :

Identifiers – Identifiers are those words, which help to identify an entity.
It can be used for class names, method names and variable names. It can be
represented using uppercase and lowercase characters, numbers, underscore and
dollar sign characters :

Java is a programming language used to create programs that can run
on a variety of Operating Systems. A Java constant is a variable with a pre–
defined value. Although Java does not have a constant type, you can effectively
obtain the same effect with a final variable. This enables you to have a control
of what is constant and what is not. We learned that there is Standard Naming
Convention. In declaring Java constant variables, you should declare the variable
names in ALL CAPS (notice each letter of the variable name above). The words
in Java constants are typically separated with underscores (as in the example
above). This format indicates that these values are constants. It will be easier
for an individual to read a code if this standard naming convention is followed.

An operator is used to perform specific operation on two or more
operands. The operators are classified as given are Arithmetic Operators,
Relational Operators, Logical Operators, Assignment Operators, Increment and
Decrement Operators, Conditional Operators, Bitwise Operators, Special Operators

The precedence of operators is useful when there are several operators
in an expression.

Java Programs – When we consider a Java program it can be defined
as a collection of objects that communicate via invoking each other's methods.
Let us now briefly look into what do class, object, methods and instant variables
mean. Apart from this we have understood

Tokens, Identifiers, Literals/Constants, Typecasting, Typecasting,
Object, Class, Methods

Unit no. 3, this gave us lot of insight in to the Java programming aspects
with clarity such as loop, the process of executing a block of statements a
number of times is known as looping or iterating. There are mainly three types
of loops in Java which are used in programs when the same set of statements
are executed a number of times.

For loop – The For loop is used to execute the same set of statements
a number of times.

Here is the flow of control of For loop : 1) The initialisation step is
executed first and only once. This step allows you to declare and initialize
any loop control variables. You are not required to put a statement here, as
long as a semicolon appears. 2) Next, the Boolean expression is evaluated.
If it is true, the body of the loop is executed. If it is false, the body of the
loop does not execute and flow of control jumps to the next statement past
the for loop.3) after the body of the for loop executes, the flow of control
jumps back up to the update statement. This statement allows you to update
any loop control variables. This statement can be left blank, as long as a
semicolon appears after the Boolean expression.

The Boolean expression is now evaluated again. If it is true, the loop
executes and the process repeats itself (body of loop, then update step, then
Boolean expression). After the Boolean expression is false, the for loop terminates.

While loop – The while loop is used to execute the same set of statements
a number of times. Then we understood Do–while loop – Just like while loop,
the do–while loop is also used to execute the same set of statements a number
of times. Next loop is Nested loop – A loop within a loop is called nested
loop. When two loops are nested, the outer loop takes control of the number
of complete repetitions of the inner loop. Then comes The if–else statement
– The if–else statement is also used to check a condition just like if statement
but if the given statement is not true then the statements specified in the else
part gets executed.

Nested if – if inside another if is called as nested if statement. Switch
Statement – The switch statement tests the value of a variable and based on
that executes the corresponding case statement. Next loop is The Break Statement
– The break statement sends the control of program out of the loop. The
Continue Statement – The continue statement sends the control of program to

63

64

Object Oriented
Concepts &

Programming–1
(Core Java)

the beginning of the loop. Recursion – Recursion is when a function calls itself.
Array – An array is a collection of similar types of variables which are
referenced under a single name. It can also be defined as a collection of
homogeneous cells inside computer's memory. a. One–dimensional array and
b. Multi–dimensional array. Then comes Processing Arrays – When processing
array elements, we often use either for loop or for each loop because all of
the elements in an array are of the same type and the size of the array is
known. Then there is a loop called Passing Arrays to Methods – Just as you
can pass primitive type values to methods, you can also pass arrays to methods.
For example, the following method displays the elements in an int array : lastly
we understood The Arrays Class – The java.util.Arrays class contains various
static methods for sorting and searching arrays, comparing arrays and filling
array elements. These methods are overloaded for all primitive types. Finally
we have learned Multi–dimensional Arrays – If an array contains multiple rows
and multiple columns then it is called as multi–dimensional array or two–
dimensional array.

BLOCK ASSIGNMENT :

 Short Questions :

1. Write History of Java

2. Write the Importance of Java programming

3. What is meant by Garbage collection

4. Write the procedure for Java program

5. What do you mean by token

6. What do you mean by Identifier

 Long Questions :

1. Write a note on various operators

2. Write notes on Tokens, Identifiers, Literals/Constants, Typecasting,
Typecasting, Object, Class, Methods

3. Write a note on various types of loops with its relevant examples.

4. What do you mean by class, object, methods and instant variables

5. What do you mean by loop statement

BIBLIOGRAPHY

http://www.tutorialspoint.com/java/java_overview.htm

http://en.wikipedia.org/wiki/Java_(programming_language)

http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html

http://www.sunrays.co.in/Home/applied–core–java/tutorial/java–platform

http://cs.fit.edu/~ryan/java/language/basics.html

http://en.wikipedia.org/wiki/Coding_conventions

http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/
Implementation/Code_Convention

http://www.symatech.net/java–constant

http://stackoverflow.com/questions/215497/in–java–whats–the–difference–
between–public–default–protected–and–private

http://www.jdbc–tutorial.coms/jdbc–tutorials/jdbc–select–statement–
example

http://danzig.jct.ac.il/java_class/recursion.html

65

66

Object Oriented
Concepts &

Programming–1
(Core Java)

 Enrolment No. :

1. How many hours did you need for studying the units ?

Unit No. 1 2 3 4

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

...

...

...

...

...

...

...

...

Object Oriented Concepts &
Programming–1 (Core Java)

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 2 : OBJECT, CLASSES AND FEATURES

UNIT 5 OBJECTS AND CLASSES

UNIT 6 LANGUAGE FEATURES

UNIT 7 WRAPPER CLASSES

UNIT 8 JAVA COLLECTION FRAMEWORK

BCAR-204/
DCAR-204

Block Introduction :

In this Block, we will be able to understand the use and constructs of

objects, classes, passing arguments to methods, constructors, use of constructors,

overloading constructors, why finalize method, keywords and how and why to

use 'this' keyword. We also study the use of various methods available under the

Wrapper Classes. The Collection Framework will give us an idea about how to

implement the Data Structure using Java.

Block Objectives :
After learning this Block, you will be able to understand :

• Discuss the general form of class.

• Discuss the Wrapper Classes

• Discuss the Collection Framework Classes

• Describe argument passing.

• Define constructors.

• Explain the keyword and finalize () method.

Block Structure :

Unit 5 : Objects and Classes

Unit 6 : Language Features

Unit 7 : Wrapper Classes

Unit 8 : Java Collection Framework

OBJECT, CLASSES AND
FEATURES

67

UNIT STRUCTURE

5.0 Learning Objectives

5.1 Introduction

5.2 The General Form of a Class

5.3 Argument Passing

5.4 Constructors

5.5 The This Keyword

5.6 The Finalize () Method

5.7 Let Us Sum Up

5.8 Suggested Answer for Check Your Progress

5.9 Glossary

5.10 Assignment

5.11 Activities

5.12 Case Study

5.13 Further Readings

5.0 Learning Objectives :

After learning this unit, you will be able to :

• Discuss the general form of class.

• Describe argument passing.

• Define constructors.

• Explain the 'this' keyword and finalise () method.

5.1 Introduction :

"A class is nothing but a blueprint or a template for creating different
objects which defines its properties and behaviors. Java class objects exhibit
the properties and behaviors defined by its class. A class can contain fields
and methods to describe the behavior of an object."

"Methods are nothing but members of a class that provide a service for
an object or perform some business logic. Java fields and member functions
names are case sensitive. Current states of a class's corresponding object are
stored in the object's instance variables. Methods define the operations that
can be performed in java programming."

5.2 The General Form of a Class :

 Object Oriented Concepts :

An object is an identifiable entity with some characteristic features and
behavior. Anything which has some properties and performs some behavior is
called an object.

OBJECTS AND CLASSES
Unit

05

68

Object Oriented
Concepts &

Programming–1
(Core Java)

Figure 5.1 Object Oriented Concepts

For Example :

Pen is an object, as its characteristic features are its shape, colour etc.
that is, it's cylindrical in shape and blue in colour and the characteristic behavior
is the purpose of using it, that is, it is used for writing.

Consider another Example : Chair, Table, Eraser, Note Book all are
objects, as all of them have some characteristic feature and perform some
behavior.

 Classes :

Collection of similar types of objects is called Class. A Class is also
called as an Object Factory as once the class is created we can create as many
objects as we wish using that class.

The concept of Class will become clearer with the help of this Example
: Consider that in a school, in drawing class, the teacher has a sample copy
of a card (can be used for birthdays, anniversary etc.) which has to be made
by each and every student. Now, as the teacher is having the sample copy
with her which will be showed to the students for reference so that students
can also make the same type of card with the same length and breadth.

Using that sample copy a number of cards with the same measurement,
which can be used for different purposes, will be created by the students. Putting
it differently, once the sample copy is created i.e. Class, it can be used as
a reference in creating number of copies i.e. Object.

The sample copy cannot be used, as it is the copy, which will only show
the exact measurement for reference of creating another card.

A collection of statements compiled together in order to execute an
operation is defined as a Java method. For Example : the system executes a
collection of statements to display a message while performing the System.
Out print In method.

Given below is the technique of creating your own method with or
without values, how to invoke a method with or without parameters, how to
apply method abstraction in the program design and how to overload methods
using same names.

 Creating a Method :

In general, a method has the following syntax :

Modifier return value type method name (list of parameters)

{

//Method Body;

}

69

Objects and ClassesA method definition consists of a method header and a method body.
All the parts comprising a method are listed below :

1. Modifiers – It tells the compiler how the method is to be called and
defines the access type of the method. The modifier is optional.

2. Return Type – The method may or may not return a value. In case
it does, the return Value Type is the data type of the value which the
method returns. Some methods perform the desired operations without
returning a value. In this case, the return Value Type is the keyword
void.

3. Method Name – This refers to the actual name of the method, which
along with the parameter list comprises the method signature.

4. Parameters – A parameter is like a placeholder. When a method is
invoked, you pass a value to the parameter. This value is referred to
as actual parameter or argument. The parameter list refers to the type,
order and number of the parameters of a method. Parameters are optional;
i.e., a method may contain no parameters."

5. Method Body – This is a collection of statements that define what the
method does.

class display

{

 private int x;

 voidgetdata(int a)

 {

 x=a;

 }

 intreturndata()

 {

 return x;

 }

}

In the above program, display is the name of the class with one data
member, x and member functions, get data () and return data ().

 Creating Objects :

Once the above code is written, a class with display name gets created
along with the specified data members and member functions. However, no
more objects are created at this point of time. In order to create objects, the
new operator is used. For Example :

class_name object_name=new classname()

70

Object Oriented
Concepts &

Programming–1
(Core Java)

It can also be alternatively written as :

class_name object_name ;

Objectname=new classname ();

The new operator dynamically allocates memory for an object and returns
a reference to it. The default value of object data type is null.

For Example :

display d;

//creates a reference

d=new display ();

Now let us write a program to show the method of class creation and
the way objects are created. For Example :

class display

{

 int x;

 int y;

 void getdata1(int a)

 {

 x=a;

 }

 int returndata1()

 {

 return x;

 }

 void getdata2(int b)

 {

 y=b;

 }

 int returndata2()

 {

 return y;

 }

}

71

Objects and Classesclass check

{

 public static void main (String[] args)

 {

 display c= new display();

 c.getdata1 (10);

 c.getdata2 (20);

 System.out.println ("Value of x" + c.returndata1 ());

 System.out.println ("Value of y" + c.returndata2 ());

 }

}

Figure 5.2 Output of Program

 Check Your Progress – 1 :
1. Define a class.

2. Write the syntax of a method.

...

...

...

...

...

5.3 Argument Passing :

Generally, there are two different methods of passing an argument to
a function. These methods are :

a. Call by value

b. Call by reference

a. Call by value – In call by value method, the value of an argument is
copied to the formal parameter. That is, the changes made in the actual
argument are not reflected into the formal parameter.

72

Object Oriented
Concepts &

Programming–1
(Core Java)

Let us consider an Example : to illustrate the same :

//Call by Value Method

class check

{

inta,b;

void add(int x, int y)

{

a=x+10;

b=y+20;

}

}

class display

{

public static void main(String args [])

{

check c= new check ();

int a=15, b=30;

System.out.println ("a and b before call" + a + " " + b);

c.add(a,b);

System.out.println ("a and b after call" + a + " " + b);

}

}

The output of above program will be :

a and b before call 15 30

a and b after call 15 30

b. Call by Reference – In the Call by Reference method, the changes made
to the actual argument are also reflected in the formal argument. Let
us take an Example : to see the illustration of the same :

//Call by Reference

class check

{

int a, b;

check (inti, int j)

{

a=i;

73

Objects and Classesb=j;

}

//pass an object

void add (check c)

{

c.a+=5;

c.b*=4;

}

}

class display

{

public static void main (String args [])

{

check c= new check (4, 8);

System.out.println ("c.a and c.b before call : "+ c.a + " "+ c.b); c.add(c);

System.out.println ("c.a and c.b after call : "+ c.a + " " + c.b);

}

}

The output of the above program will be :

c.a and c.b before call : 4,8

c.a and c.b after call : 9,32

Notice the output of the above program, the values of a and b before
and after the function call are different as the reference of these variables are
passed to formal parameters. Hence, the changes made in actual parameters
are directly reflected in formal parameters.

 Check Your Progress – 2 :
1. Explain the call by value method.

2. Write a note on the call by reference method.

...

...

...

...

...

74

Object Oriented
Concepts &

Programming–1
(Core Java)

5.4 Constructors :

Till now whatever we have studied, we have seen that if you want to
initialize a variable it has to be done at the time of object creation. But it
can be a tedious job to initialize all the variables in a class each time an object
is created.

In the above program (at 5.3.a), the add() function is used to initialize
the variables a and b, but, what if, the programmer forgets to call this
add() function in the main() function. Then, it may happen that variables
a and b can take garbage values.

So, in spite of giving the job of initialization to the programmer the
entire responsibility of initialization is given to the compiler, which in turn
is achieved by using constructors.

The constructors are not called in the main () function. They are
automatically executed at the time of object creation. For Example :, In the
above program (at 5.3.a) using default constructors can be written as :

 Default Constructor :

The default constructors are those constructors which do not accept any
parameters/arguments. These constructors are automatically executed at the time
of object creation.

Let us take an Example : to illustrate the same :

Class rectangle

{

double length;

double breadth;

//Constructor for rectangle

rectangle ()

{

System.out.println ("Constructing Rectangle");

length= 5.0;

breadth= 8.0;

}

double area()

{

return length * breadth;

}

}

Class demo

{

public static void main (String args[])

{

//creating objects

75

Objects and Classesrectangle r1 = new rectangle ();

double result;

//get area of rectangle

result= r1.area();

System.out.println ("Area is" + result);

//get area of second box

}

}

The output of above program is given below :

Constructing Rectangle

Area is 40

Area is 40

Notice the execution of the above program. At the time of object creation,
the default constructors get executed, which can be visualized by the statement
"Constructing Rectangle" which gets displayed when the object is created.

 Parameterised Constructors :

The parameterised constructors are those constructors which accept
parameters/arguments. At the time of object creation the values of these arguments/
parameters are passed from main () function.

Consider the given Example :

class rectangle

{

double length;

double breadth;

//Constructor for rectangle

rectangle (double x, double y)

{

length =x;

breadth =y;

}

//compute and return area

double area ()

{

return length * breadth;

}

}

class demo

{

public static void main (String args[])

76

Object Oriented
Concepts &

Programming–1
(Core Java)

{

//declare, allocate and initialize rectangle objects

rectangle r1= new rectangle(3,5);

rectangle r2=new rectangle (10,20);

double result;

//get area of first box

result=r1.area ();

System.out.println ("Area is" + result);

//get area of second box

result=r2.area ();

System.out.println ("Area is" + result);

}

}The output of above program will be :

Area is 15.0

Area is 200.0

In the above program, the values to the parameterised constructors are
passed at the time of object creation in main function.

 Check Your Progress – 3 :
1. Write a note on default constructor.

2. Write an Example : for parameterised constructor.

...

...

...

...

...

5.5 The 'This' Keyword :

The 'this' keyword is used when a function will need to refer to the object
which invoked it. The 'this' keyword can be used inside any method to refer
to the current object. That is, it is always a reference to the object on which
the method was invoked. Let us consider an Example : to illustrate the same :

Rectangle (double length, double breadth)

{

this.length=length;

this.breadth=breadth;

}

The use of this keyword is redundant but perfectly correct. Inside
rectangle (), this will always refer to the invoking object. When a local variable
has the same name as an instance variable, the local variable hides the instance
variable. That is why length and width were not used as the name of the
parameters to the rectangle () constructor inside the rectangle class. If we

77

Objects and Classeswould have used in that way, then breadth would have referred to the formal
parameter hiding the instance variable breadth

 Check Your Progress – 4 :
1. Explain the use of this keyword.

2. Where can this keyword be used ?

...

...

...

...

...

5.6 The Finalize () Method :

Till now, we have studied about the process of object creation. When
objects are created using new keyword, the matching constructor is called
automatically, where we initialize members of the class. This process is called
initialization.

Sometimes an object needs to perform some operation when it is destroyed.
For Example :, if an object is holding some non–Java resource such as a file
handle or window character font, then you might want to make sure these
resources are freed before an object is destroyed. To handle such situations,
Java provides a mechanism called finalization.

Using the finalization keyword, you can define specific actions which
will occur when an object is just to be reclaimed by the garbage collector.
To add a finalizer to a class, simply define the finalise () method, the Java
run time calls that method whenever it is about to recycle an object of that
class.

protected void finalize ()

{

//finalization code here

}

As you know that Java's garbage collector runs in its own thread, it will
run transparently alongside the execution of the program. If the programmer
explicitly wants to request a garbage collection at some point of time, then
it can be done by invoking System.gc() or Runtime.gc(), which will fire off
garbage collection at that time

 Check Your Progress – 5 :
1. Explain initialisation.

2. Write how to add a Final class.

...

...

...

...

...

78

Object Oriented
Concepts &

Programming–1
(Core Java)

3. A Class is also called as a Factory..

(A) Object (B) Method (C) Variable (D) Java

4. tells the compiler how the method is to be called and defines
the access type of the method.

(A) Java (B) Class (C) Object (D) Modifiers

5. In method, the value of an argument is copied to the formal
parameter.

(A) Static (B) call by value

(C) call by reference (D) General

6. The constructors are those constructors which do not accept
any parameters/arguments.

(A) Private (B) default (C) parameterised (D) Local

7. The keyword is used when a function will need to refer to
the object which invoked it..

(A) my (B) this (C) these (D) those

8. is automatically executed at the time of object creation.

(A) Method (B) Constructor (C) Class (D) Variable

9. The 'this' keyword can be used inside any method to refer to the current
object.

(A) True (B) False

10. A class is nothing but a blueprint or a template for creating different
objects.

(A) True (B) False

11. In the Call by Reference method, the changes made to the actual argument
are also reflected in the formal argument.

(A) True (B) False

12. When objects are created using new keyword, the matching constructor
is called automatically.

(A) True (B) False

5.7 Let Us Sum Up :

In this Unit we have learned Object Oriented Concepts we can say that
a object is an identifiable entity with some characteristic features and behavior.
Anything which has some properties and performs some behavior is called an
object. Keeping mind the programming for user's application is said as object
oriented programming. In mean time we understood Classes which is nothing
but a Collection of similar types of objects is called Class. A Class is also
called as an Object Factory as once the class is created we can create as many
objects as we wish using that class.

There is something called Java Method .A Java method is a collection
of statements that are grouped together to perform an operation. Creating a
Method

79

Objects and ClassesIn general, a method has the following syntax :

Modifier, returnvaluetype, methodname (list of parameters)

{

//Method Body;

}

A method definition consists of a method header and a method body
like Modifiers, Return Type, and Method Name, Parameters, Method
Body.Creating Objects,

Further we have learned that in general there are two different methods
of passing an argument to a function. These methods are i) Call by value,
ii. Call by reference. Call by value : In call by value method, the value of
an argument is copied to the formal parameter. That is, the changes made in
the actual argument are not reflected into the formal parameter, and Call by
Reference, in Call by Reference method, the changes made to the actual
argument are also reflected in the formal argument.

It is also understood that the constructors are not called in the main
() function. They are automatically executed at the time of object creation.
For Example : the above program using default constructors can be written
as DEFAULT CONSTRUCTOR. The default constructors are those constructors
which do not accept any parameters/arguments. These constructors are
automatically executed at the time of object creation. Another thing is related
to Parameterised Constructors. The parameterised constructors are those
constructors which accept parameters/arguments. At the time of object creation
the values of these arguments/parameters are passed from main () function.

There is learning about the 'this' keyword is used when a function will
need to refer to the object which invoked it. The 'this' keyword can be used
inside any method to refer to the current object. At the end of this Unit we
came to know that the use of this keyword is redundant but perfectly correct.
Inside rectangle (), this will always refer to the invoking object. When a local
variable has the same name as an instance variable, the local variable hides
the instance variable. That is why length and width were not used as the name
of the parameters to the rectangle () constructor inside the rectangle class.
If we would have used in that way, then breadth would have referred to the
formal parameter hiding the instance variable breadth

5.8 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 5.2

 Check Your Progress 2 :

See Section 5.3

 Check Your Progress 3 :

See Section 5.4

 Check Your Progress 4 :

See Section 5.5

80

Object Oriented
Concepts &

Programming–1
(Core Java)

 Check Your Progress 5 :

1 : See Section 5.6 2 : See Section 5.6

3 : A 4 : D 5 : B 6 : B 7 : B

8 : B 9 : A 10 : A 11 : A 12 : A

5.9 Glossary :

1. Modifiers – is one which communicates to the compiler how to call
the method. This defines the access type of the method.

2. Return Type – A method may return a value. The return Value Type
is the keyword void.

3. Method Name – This is the actual name of the method. The method
name and the parameter list together constitute the method signature.

4. Parameters – A parameter is like a placeholder. When a method is
invoked, you pass a value to the parameter

5.10 Assignment :

1. Write the steps to create objects.

2. Explain the process of creating a method.

5.11 Activities :

Define a class student with data members studied, name, address, age
and marks of 3 subjects. Provide the necessary constructors and methods along
with getmarks() method and display the total and percentage marks with
complete information about student.

5.12 Case Study :

Define a class Rectangle with its length and breadth. Provide appropriate
constructor(s), which gives facility of constructing Rectangle object with default
values of length and breadth as 0 or passing value of length and breadth
externally to constructor. Provide methods to calculate area and method display
to display all information of Rectangle. Design different class Test Rectangle
class in separate source file, which will contain the main function. From this
main function, create an object which is a Rectangle and call the methods area
and display.

5.13 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2,E. Balagurusamy, Tata McGraw Hill, 1998,
reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

81

UNIT STRUCTURE

6.0 Learning Objectives
6.1 Introduction
6.2 Static Keyword
6.3 Using Abstract Classes
6.4 Interfaces
6.5 Packages
6.6 Access Protection
6.7 Let Us Sum Up
6.8 Suggested Answer for Check Your Progress
6.9 Glossary
6.10 Assignment
6.11 Activities
6.12 Case Study
6.13 Further Readings

6.0 Learning Objectives :

After learning this unit, you will be able to :
• Static Keyword
• Abstract Classes
• Interfaces
• Packages
• Access Protection

6.1 Introduction :

Figure 6.1 Feature of C language

The development of Java has been a compilation of the best points of
various programming languages such as C and C++. Java therefore utilizes
algorithms and methodologies that are already proven. The Java environment

LANGUAGE FEATURES
Unit

06

Fast and Efficient

Portable

Easy to extend

Modularity

Function rich
Libraries

Variety of data types
and powerful Operators

C Language

82

Object Oriented
Concepts &

Programming–1
(Core Java)

automatically tackles tasks which are prone to errors such as pointers and
memory management rather than the programmer taking the initiative.

Since Java is primarily a derivative of C++ that most programmers are
conversant with, it implies that Java has a familiar feel rendering it easy to
use. The Java language supports many high–performance features such as
multithreading, just–in–time compiling and native code usage.

6.2 Static Keyword :

When an object is created or, primitive type variable or method is called,
the memory for that object, variable or method is set aside.

The different objects, variables and methods occupy different areas of
memory when created/called. In some cases, we would like to have multiple
objects, variables or methods which occupy the same area of memory (in effect
just having the one instance of that variable or method). The above can be
achieved by using the static keyword; it is possible to have static methods
and variables.

In Java, global variables are not allowed. In order to do the same, the
instance variable in the class can be declared static. The effect of doing this
is that when we create multiple objects of that class, every object shares the
same instance variable that was declared to be static.

To make an instance variable static, we simply precede the declaration
with the static keyword :

public static int Instance_variable = 0

In effect, what we are really doing is saying that this instance variable,
no matter how many objects are created should always reside in the same
memory location regardless of the object. This then stimulates a 'global variable'
of sorts.

We usually make a variable declared to be final, static as well since
it makes sense to only have the one instance of a constant. The static instance
variables are also called as class variables.

Outside of the class in which they are defined, static methods and
variables can be used independently of any object. In order to do so, you only
need to specify the name of the class followed by the dot operator.

 Check Your Progress – 1 :
1. Explain how to make an instance variable static.

2. What are static instance variables also called as ?

...

...

...

...

...

83

Language Features6.3 Using Abstract Classes :

There are often situations where you want to determine a superclass,
which without providing a complete implementation of every method declares
the structure of an abstraction. That is, many a times you'll want to create
a superclass that only defines a generalized form that will be shared by all
of its subclasses, leaving it to each subclass to fill in the details.

The abstract keyword can be used with :

1. A class

2. A method

 Abstract Method :

In a method declaration, abstract indicates that the implementation will
be in subclass. Since these methods do not have an implementation specified
in the superclass they are sometimes cited as subclasser responsibility. Hence,
a subclass cannot use the version defined in the superclass, it must override
them. To declare an abstract method, use this general form :

abstract type Method_Name (parameter–list);

No method body is present as specified above.

 Abstract Class :

A class that is declared abstract is defined as an abstract class. The class
need not necessarily include abstract methods and can be subclassed. Abstract
classes cannot be instantiated.

In order to declare a class as abstract, you have to use the abstract
keyword before the class keyword at the beginning of the class declaration.
There can be no objects of the abstract class, that is, an abstract class cannot
be directly instantiated with the new operator.

Any derived class that does not implement all abstract methods of its
superclass must be declared abstract. Let us take an Example : to understand
this concept in more detail.

In the given program, the class Figure is declared as abstract because
we don't want objects of this class to be created. Instead, this class should
be subclassed. Notice that the method area () is also abstract because we cannot
define it in the Figure class. It is defined in the subclass –Rect

84

Object Oriented
Concepts &

Programming–1
(Core Java)

abstract class Figure

{

 protected double dim1, dim2;

 Figure(double dim1, double dim2)

 {

 this.dim1 =dim1;

 this.dim2 =dim2;

 }

 abstract double area(); //abstract method

}

class Rect extends Figure

{

 Rect(double l, double d)

 {

 super(l,d);

 }

 double area()

 {

 return (dim1 * dim2);

 }

}

public class AbstractDemo

{

 public static void main (String args [])

 {

 Rect r = new Rect(15.2, 25.5);

 System.out.println("The area=" + r.area ());

 }

}

85

Language Features

Figure 6.3 Output of Program

 Check Your Progress – 2 :
1. Where is the abstract keyword used ?

2. Write the general form of abstract method.

...

...

...

...

...

6.4 Interfaces :

Figure 6.4 Interface

"A collection of abstract methods is an interface. Thus, be inheriting the
abstract methods of an interface a class implements an interface."

"An interface is not a class. They are two different concepts but writing
an interface is similar to a class. A class describes the attributes and behaviors
of an object. An interface contains behaviors that a class implements."

"Every method of the interface is defined in the class unless the class
implementing the interface is abstract."

An interface is similar to a class in the following ways :

• The interface contains various methods.

• The name of the interface matches the name of the file and it is written
with a .java extension.

• The bytecode of an interface appears in a .class file.

• An interface appears in packages and the bytecode file it corresponds
to must appear in a directory structure matching its name.

However, an interface is different from a class in several ways, including :

• You cannot instantiate an interface.

• Constructors do not constitute an interface.

• All of the methods in an interface are abstract.

Interface Class
implements

extends

Class

86

Object Oriented
Concepts &

Programming–1
(Core Java)

• An interface can only contain fields that are declared both static and
final and it cannot contain instance fields.

• An interface is not extended by a class; it is implemented by a class.

• An interface can extend multiple interfaces.

 Declaring Interfaces :

The interface keyword is used to declare an interface.

Encapsulation is defined as a barrier protecting and preventing the code
and data from being randomly accessed by other code outside the class. The
access is tightly controlled by an interface.

The main benefit of encapsulation is the ability to modify our implemented
code without breaking the code of others who use our code. With this feature
Encapsulation gives maintainability, flexibility and extensibility to our code.

Example :

Let us look at an Example : that depicts encapsulation :

/* File name : NameOfInterface.java */

import java.lang.*

//Any number of import statements

public interface NameOfInterface

{

//Any number of final, static fields

//Any number of abstract method declarations\

}

Interfaces have the following properties :

• While declaring an interface you do not need to use the abstract keyword
since the interface is implicitly abstract.

• The abstract keyword is not needed as each method in an interface is
implicitly abstract.

• Methods in an interface are implicitly public.

 Implementing Interfaces :

The process of a class implementing an interface can be seen as the
class signing a contract, complying to carry out certain behaviors of the
interface. In case a class fails to carry out these behaviors, the class must declare
itself abstract.

In a class the implements keyword is used to implement the interface.
The implements keyword appears in the class declaration following the extends
portion of the declaration.

"When you define overriding methods in interfaces, the following rules
are to be followed :

• Checked exceptions should not be declared on implementation methods
other than the ones declared by the interface method or subclasses of
those declared by the interface method.

• When overriding methods, you must maintain the signature of the interface
method and also the same return type or subtype.

87

Language Features• Interface methods do not have to be implanted if in case an implementation
class itself is abstract.

• While implementing interfaces, there are several rules :

o A class can implement more than one interface at a time.

o A class can extend only one class but implement many interfaces.

o An interface itself can extend another interface. An interface cannot
extend another interface."

 Extending Interfaces :

Just as a class can extend another class, an interface can extend another
interface as well. The extends keyword is used to extend an interface and the
child interface inherits the methods of the parent interface.

"The following Sports interface is extended by Hockey and Football
interfaces.

//Filename : Sports.java

public interface Sports

{

public void setHomeTeam(String name)

public void setVisitingTeam(String name)

}

//Filename : Football.java

public interface Football extends Sports

{

public void homeTeamScored(int points)

public void visitingTeamScored(int points)

public void endOfQuarter(int quarter)

}

//Filename : Hockey.java

public interface Hockey extends Sports

{

public void homeGoalScored()

public void visitingGoalScored()

public void endOfPeriod(int period)

public void overtimePeriod(intot)

}

The Hockey interface has four methods but it inherits two from Sports;
thus, a class that implements Hockey needs to implement all six methods.
Similarly, a class that implements Football needs to define the three methods
from Football and the two methods from Sports."

88

Object Oriented
Concepts &

Programming–1
(Core Java)

 Check Your Progress – 3 :
1. Explain in what ways is an interface similar to a class.

2. Write the rules for implementing interfaces.

...

...

...

...

...

 Check Your Progress – 4 :
1. Write a note on abstract class number.

...

...

...

...

...

6.5 Packages :

Java uses packages to avoid naming conflicts, to ease the searching and
usage of interfaces, classes, annotations and enumerations and to control access.

Packages are a collection or group of related types of (classes, interfaces,
enumerations and annotations) providing access protection and name space
management.

Some of the existing packages in Java are :

• java.lang – bundles the fundamental classes

• java.io – classes for input , output functions are bundled in this package

Programmers can bundle up a group of classes/interfaces in order to
define their own packages. It is a good practice to group related classes
implemented by you so that a programmer can easily determine that the classes,
interfaces, enumerations, annotations are related.

There are to be no conflicts with names in various other packages since
a package creates a new namespace. With the help of packages, providing access
control and locating related classes can be done with ease.

 Creating a Package :

You have to select a name for the package and put a package statement
with that very name at the top of every source file that contains the classes,
interfaces, enumerations and annotation types that you want to include in the
package when you are creating it.

The first line in the source file must be the package statement. Each
source file can have only one package statement which shall apply to all types
in the file.

The class, interfaces, enumerations and annotation types are put into an
unnamed package if a package statement is not used.

89

Language FeaturesExample :

Let us look at an Example : that creates a package called animals. It
is a common practice to use lowercased names of packages to avoid any
conflicts with the names of classes, interfaces.

Put an interface in the package animals :

/* File name : Animal.java */

package animals

interface Animal {

public void eat()

public void travel()

}

Now put an implementation in the same package animals :

package animals;

/* File name : MammalInt.java */

public class MammalInt implements Animal{

public void eat(){

System.out.println("Mammal eats")

}

public void travel(){

System.out.println("Mammal travels")

}

public intnoOfLegs(){

return 0

}

public static void main(String args[]){

MammalInt m = new MammalInt();

m.eat();

m.travel();

}

}

 The import Keyword :

If a class wants to use another class in the same package, the package
name does not need to be used. Classes in the same package find each other
without any special syntax.

Example :

Here a class named Boss is added to the payroll package that already
contains Employee. The Boss can then refer to the Employee class without
using the payroll prefix, as demonstrated by the following Boss class.

90

Object Oriented
Concepts &

Programming–1
(Core Java)

package payroll;

public class Boss

{

public void payEmployee(Employee e)

{

e.mailCheck();

}

}

• The package can be imported using the import keyword and the wild
card (*) character. For Example :,

import payroll.*

• The class itself can be imported using the import keyword. For Example :

import payroll.Employee;

Note : A class file can contain any number of import statements. The
import statements must appear after the package statement and before the class
declaration.

 The Directory Structure of Packages :

When a class is placed in a package, the following results are concluded :

• As stated in the previous section, the name of the package becomes a
part of that of the classes' name.

• The name of the package must match the directory structure where the
corresponding bytecode resides.

 Check Your Progress – 5 :
1. Name the existing packages in Java.

2. What are the results when a class is placed in a package ?.

...

...

...

...

...

6.6 Access Protection :

Packages add another dimension to access control, they act as containers
for classes, other subordinate packages, data and code. The class is Java's
smallest unit of abstraction, due to the interplay between classes and packages,
Java addresses four categories of visibility for class members, which are
mentioned below :

• Subclasses in the same package.

• Non–subclasses in the same package.

• Subclasses in different packages.

• Classes that are neither in the same package nor subclasses.

91

Language FeaturesTable 6.1 : Class Member Access

The three access specifies, private, public and protected, provide a variety
of ways to produce the many levels of access required by these categories.

Anything declared public can be accessed from anywhere, whereas anything
declared private cannot be seen outside of its class. When a member does not
have an explicit access specification, it is visible to subclasses as well as to
other classes in the same package, which is the default access.

An element is declared protected if you want to allow an element to
be seen outside your current package but only to classes that subclass your
class directly.

Table 6.1 is applicable only to members of classes. A class has only
two possible access levels : default and public.

Let us consider an Example : to illustrate the above concepts :

packagepackageA;

public class Base

{

 public String publicStr = "publicString";

 protected String protectedStr = "protectedString";

 String defaultStr = "defaultString";

 private String privateStr = "privateString";

 public void print()

 {

 System.out.println("packageA.Base has access to");

 System.out.println(" " + publicStr);

 System.out.println(" " + protectedStr);

 System.out.println(" " + defaultStr);

 System.out.println(" " + privateStr);

Access rights for the different elements

class \ have access to private
elements

default
elements

(no modifier)

protected
elements

public
elements

yes yes yes yes

no yes yes yes

no yes yes yes

no no yes/no + yes

no no yes yes

own class (Base)

subclass - same package (SubA)

class - same package (AnotherA)

subclass - another package (SubB)

class - another package (AnotherB)

92

Object Oriented
Concepts &

Programming–1
(Core Java)

 Base b = new Base(); // -- other Base instance

 System.out.println(" b." + b.publicStr);

 System.out.println(" b." + b.protectedStr);

 System.out.println(" b." + b.defaultStr);

 System.out.println(" b." + b.privateStr);

 }

}

--

packagepackageB;

importpackageA.Base;

public class SubB extends Base

{

 public void print()

 {

 System.out.println("packageB.SubB has access to");

 System.out.println(" " + publicStr + " (inherited from Base)");

 //-- protectedStr is inherited element -> accessible System.out.println("
" + protectedStr + " (inherited from Base)");

 //-- not accessible

 //--System.out.println(defaultStr);

 //--System.out.println(privateStr);

 Base b = new Base(); // -- other Base instance System.out.println("
b." + b.publicStr)

 //-- protected element, which belongs to other object -> not accessible

 //--System.out.println(b.protectedStr);

 //-- not accessible

 //--System.out.println(b.defaultStr);

 //--System.out.println(b.privateStr);

 }

}

--

import packageA.*;

import packageB.*;

// -- testing class

93

Language Features

public class TestProtection

{

 public static void main(String[] args)

 {

 //-- all classes are public, so class TestProtection

 //-- has access to all of them

 new Base().print();

 newSubA().print();

 newAnotherA().print();

 newSubB().print();

 newAnotherB().print();

 }

}

 Types of Variables :

There are three kinds of variables in Java :

1. Local variables

2. Instance variables

3. Class/static variables

 Local variables :

• Local variables are declared in methods, constructors, or blocks.

• Local variables are created when the method, constructor or block is
entered and the variable will be destroyed once it exits the method,
constructor or block.

• Access modifiers cannot be used for local variables.

• Local variables are visible only within the declared method, constructor
or block.

• Local variables are implemented at stack level internally.

• There is no default value for local variables so local variables should
be declared and an initial value should be assigned before the first use.

 Instance variables :

• Instance variables are declared in a class but outside a method, constructor
or any block.

• When a space is allocated for an object in the heap, a slot for each
instance variable value is created.

• Instance variables are created when an object is created with the use
of the keyword 'new' and destroyed when the object is destroyed.

• Instance variables hold values that must be referenced by more than one
method, constructor or block, or essential parts of an object's state that
must be present throughout the class.

• Instance variables can be declared in class level before or after use.

• Access modifiers can be given for instance variables.

94

Object Oriented
Concepts &

Programming–1
(Core Java)

• The instance variables are visible for all methods, constructors and block
in the class. Normally it is recommended to make these variables private
(access level). However, visibility for subclasses can be given for these
variables with the use of access modifiers.

• Instance variables have default values. For numbers the default value is
0, for Booleans it is false and for object references it is null. Values
can be assigned during the declaration or within the constructor.

• Instance variables can be accessed directly by calling the variable name
inside the class. However, within static methods and different class (when
instance variables are given accessibility) they should be called using
the fully qualified name. Object Reference. Variable Name.

 Class/static variables :

• Class variables also known as static variables are declared with the static
keyword in a class but outside a method, constructor or a block.

• There would only be one copy of each class variable per class, regardless
of how many objects are created from it.

• Static variables are rarely used other than being declared as constants.
Constants are variables that are declared as public/private, final and static.
Constant variables never change from their initial value.

• Static variables are stored in static memory. It is rare to use static
variables other than declared final and used as either public or private
constants.

• Static variables are created when the program starts and destroyed when
the program stops.

• Visibility is similar to instance variables. However, most static variables
are declared public since they must be available for users of the class.

• Default values are same as instance variables. For numbers the default
value is 0, for Booleans it is false and for object references it is null.
Values can be assigned during the declaration or within the constructor.
Additionally values can be assigned in special static initialiser blocks.

• Static variables can be accessed by calling with the class name. Class
Name. Variable Name.

• When declaring class variables as public static final, then variables names
(constants) are all in upper case. If the static variables are not public
and final the naming syntax is the same as instance and local variables.

Note : If the variables are accessed from an outside class, the constant
should be accessed as Employee. Department

 Check Your Progress – 6 :
1. List the four categories of visibility for class members.

2. Write a note on instance variables ?

...

...

...

...

...

95

Language Features3. Java compiler convert source code in to code.

(A) Binary (B) Machine (C) English (D) Byte

4. JVM Stand for .

(A) Java Virtual Machine (B) Java Version Machine

(C) Java Virtual Mode (D) Java Version Mode

5. No method body is present as method.

(A) Final (B) Public (C) Private (D) Abstract

6. "A collection of abstract methods is called .

(A) Package (B) Interface (C) Class (D) Abstract class

7. The keyword is used to extend an interface

(A) Extends (B) inherit (C) final (D) depends

8. are a collection or group of related types of classes, interfaces,
enumerations and annotations.

(A) Packages (B) class (C) Interface (D) Namespace

9. Abstract keyword can be used with class only.

(A) True (B) False

10. The Abstract class need not necessarily include abstract methods.

(A) True (B) False

11. Interface is not a class.

(A) True (B) False

12. All of the methods in an interface are abstract.

(A) True (B) False

6.7 Let Us Sum Up :

When an object is created or, primitive type variable or method is called,
the memory for that object, variable or method is set aside.

The different objects, variables and methods occupy different areas of
memory when created/called. In some cases, we would like to have multiple
objects, variables or methods which occupy the same area of memory (in effect
just having the one instance of that variable or method). The above can be
achieved by using the static keyword; it is possible to have static methods
and variables.

In Java, global variables are not allowed. In order to do the same, the
instance variable in the class can be declared static. The effect of doing this
is that when we create multiple objects of that class, every object shares the
same instance variable that was declared to be static.

Sometimes there are situations in which you will want to define a
superclass, which declares the structure of a given abstraction without providing
a complete implementation of every method. That is, many a times you'll want
to create a superclass that only defines a generalized form that will be shared
by all of its subclasses, leaving it to each subclass to fill in the details. The
abstract keyword can be used with : a) A class, b) A method

An interface is a collection of abstract methods. A class implements an
interface, thereby inheriting the abstract methods of the interface. An interface

96

Object Oriented
Concepts &

Programming–1
(Core Java)

is not a class. Writing an interface is similar to writing a class but they are
two different concepts. A class describes the attributes and behaviors of an
object. An interface contains behaviors that a class implements. Unless the class
that implements the interface is abstract, all the methods of the interface need
to be defined in the class.

There is also learning about an interface is similar to a class in the several
ways : However, an interface is different from a class in several ways. Further
we learned about Declaring Interfaces, in this the interface keyword is used
to declare an interface. Here is a simple Example : to declare an interface.
Next thing which we understood is encapsulation can be described as a
protective barrier that prevents the code and data being randomly accessed by
other code defined outside the class. Access to the data and code is tightly
controlled by an interface.

There is also learning related to Packages are used in Java in–order to
prevent naming conflicts, to control access, to make searching/locating and
usage of classes, interfaces, enumerations and annotations easier. Packages add
another dimension to access control, they act as containers for classes and other
subordinate packages. Classes act as containers for data and code. The class
is Java's smallest unit of abstraction, due to the interplay between classes and
packages, Java addresses four categories of visibility for class members, which
are 1) Subclasses in the same package. 2) Non–subclasses in the same package.
3) Subclasses in different packages. 4) Classes that are neither in the same
package nor subclasses.

6.8 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 6.2

 Check Your Progress 2 :

See Section 6.3

 Check Your Progress 3 :

See Section 6.4

 Check Your Progress 4 :

See Section 6.5

 Check Your Progress 5 :

See Section 6.5

 Check Your Progress 6 :

1 : See Section 6.7 2 : See Section 6.7

3 : D 4 : A 5 : D 6 : B 7 : A

8 : A 9 : A 10 : A 11 : A 12 : A

6.9 Glossary :

1. Interface – An interface is a collection of abstract methods.

2. Instance variables – are declared variables in a class but outside a method,
constructor or any block.

3. Local variables – Local variables are declared in methods, constructors,
or blocks.

97

Language Features6.10 Assignment :

Write a note on Java technology.

6.11 Activities :

Write any two programs to show the use of Interfaces

6.12 Case Study :

Explain Java programming environment with the help of diagram

6.13 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000.

2. Java 2, the Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999.

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000.

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998.

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000.

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

98

UNIT STRUCTURE

7.0 Learning Objectives

7.1 Introduction

7.2 Number Class

7.3 Byte Class

7.4 Short Class

7.5 Integer Class

7.6 Long Class

7.7 Float Class

7.8 Double Class

7.9 Boolean Class

7.10 Character Class

7.11 String Class

7.12 Converting Number to and From String

7.13 Let Us Sum Up

7.14 Suggested Answer for Check Your Progress

7.15 Glossary

7.16 Assignment

7.17 Activities

7.18 Case Study

7.19 Further Readings

7.0 Learning Objectives :

After learning this unit, you will be able to understand the use of :

• Byte Class

• Short Class

• Integer Class

• Long Class

• Float Class

• Double Class

• Boolean Class

• Character Class

• String Class

7.1 Introduction :

Java framework provides the Java.lang package. The java.lang contains
several classes and interfaces. Java also provide the basic data types like bytes,

WRAPPER CLASSES
Unit

07

99

Wrapper Classesshort, int, long, float, double, char and Boolean. These all data types are used
using variables. Sometimes programmer need to use the same data type as an
objects. So Java provides object wrappers mechanism, this mechanism transformed
the basic type in to object and become immutable. The object of the concern
type can help to pass them by reference to methods instead of passing by value.
The wrapper mechanism is as follow :

Integer int_obj = new Integer (35);

Here int_obj object encapsulates (wrapper) the integer value 35. So here
the Integer class is known as a wrapper type.

7.2 Number Class :

Java provide abstract class "Number" under the java.lang package. The
Number class contain six concrete subclasses to wrap the basic types. All the
six classes provides several methods which can be used for I/O operation and
conversion from one form the other form.

The six subclasses are as follow. :

• Byte

• Short

• Integer

• Long

• Double

• Float

We will discuss the methods of each class latter in this unit. Here bellow
table 7.1 show the common methods that are available in all six classes.

Table 7.1 : Common Methods in all subclasses of Number Class

 Method Description

byte byteValue() Return the byte value of the invoking object

short shortValue() Return the short value of the invoking object

int intValue() Return the integer value of the invoking object

long longValue() Return the long value of the invoking object

float floatValue() Return the float value of the invoking object

double doubleValue() Return the double value of the invoking object

String toString() Return the string value of the invoking object

int hashCode() Return the hashcode value of the invoking object

7.3 Byte Class :

The Byte class is a wrapper class for the byte data type. The constructors
for Byte class are as follow :

 Constructors :

Byte (byte num);

Byte(string str);

Here num is byte type and str is string representation of a byte.

100

Object Oriented
Concepts &

Programming–1
(Core Java)

The bellow table 7.2 gives a brief description of methods available under
Byte Class :

Table 7.2 : Methods defined in Byte Class

Method

byte byteValue()

int compareTo(Byte byte)

int compareTo(Object obj)

double doubleValue()

boolean equals(Object Obj)

float floatValue()

int intValue()

long longValue()

static byte parseByte(String s)
throws NumberFormat
Exception

short shortValue()

static String toString(byte
number)

static Byte valueOf(String s)
throws NumberFormat
Exception

static Byte valueOf(String s, int
radix) throws NumberFormat
Exception

Description

This method return the value of the invoking
object as a byte.

This method compare the numerical value of
the invoking object with that of byte.
It will return 0 if the values are equal. It will
return a negative value if the invoking object
has a lower value. It will return a positive
value if the invoking object has a greater
value.

To operate same as compareto(Byte)method,
if obj is of class Byte Otherwise, this method
will throw a ClassCastException.

This method return the value of the invoking
object as a double.

This method return true if the invoking Byte
object is equivalent to Obj. Otherwise, it
return false.

This method return the value of the invoking
object as a float.

This method return the value of the invoking
object as an int.

This method return the value of the invoking
object as a long.

This method return the byte equivalent of the
number contained in the string specified by
s. This method will used radix 10.

This method return the value of the invoking
object as a short.

This method return a string that contains the
decimal equivalent of number.

This method return a Byte object that contains
the value specified by the string in s.

This method return a Byte object that contains
the value specified by the string in s using
the specified radix.

101

Wrapper ClassesThe following program show the use of some methods defined in Byte
class :

class ByteDemo

{

 public static void main(String args[])

 {

 Byte b1 = new Byte((byte)23);

 Byte b2 = new Byte ("80");

 System.out.println("\n value of b1 object = " + b1);

 System.out.println("\n 3 * b1 = " + 3 * b1.byteValue());

 System.out.println("\n is b1 = b2 ? : " + b1.equals(b2));

 Byte b3 = Byte.parseByte("44");

 System.out.println("\n byte value of b3 = " + b3);

 }

}

Figure 7.1 Output of Program

 Check Your Progress – 1 :
1. Explain Byte wrapper Class.

...

...

7.4 Short Class :

The Short class is a wrapper class for the short data type. The constructors
for short class are as follow :

 Constructors :

Short(short num);

Short(string str);

Here num is short type and str is string representation of a short.

The bellow table 7.3 gives a brief description of methods available under
Short Class :

102

Object Oriented
Concepts &

Programming–1
(Core Java)

Table 7.3 : Methods defined in Short Class

Method

byte byteValue()

int compareTo(Short obj)

int compareTo(Object obj)

double doubleValue()

boolean equals(Object Obj)

float floatValue()

int intValue()

long longValue()

static byte parseByte(String str)
throws NumberFormat
Exception

short shortValue()

static toString(short number)

static String toString(short
number)

static Short valueOf(String s)
throws NumberFormat
Exception

static Short valueOf(String s,
int radix) throws
NumberFormatException

Description

This method return the value of the invoking
object as a byte.

This method compare the numerical value of
the invoking object with that of byte.
It will return 0 if the values are equal. It will
return a negative value if the invoking object
has a lower value.

This method operate same as compareTo
(Byte)method, if obj is of class Short
Otherwise, this method will throw a ClassCast
Exception.

This method return the value of the invoking
object as a double.

This method return true if the invoking Integer
object is equivalent to Obj. Otherwise, it
return false.

This method return the value of the invoking
object as a float.

This method return the value of the invoking
object as an int.

This method return the value of the invoking
object as a long.

This method return the short equivalent of
the number contained in the string specified
by str using radix 10.

This method return the value of the invoking
object as a short.

This method return a string that contains the
decimal equivalent of the invoking obj.

This method return a string that contains the
decimal equivalent of number.

This method return a Short object that contains
the value specified by the string in s. This
method will use radix 10.

This method return a Short object that contains
the value specified by the string in s. This
method will use the radix specified by the
user.

103

Wrapper ClassesThe following program show the use of some methods defined in Short
class :

class ShortDemo

{

 public static void main(String args[])

 {

 Short s1 = new Short((short)23);

 Short s2 = new Short("80");

 System.out.println("\n value of s1 object = " + s1);

 System.out.println("\n 3 * s1 = " + 3 * s1.shortValue());

 System.out.println("\n is s1 = s2 ? : " + s1.equals(s2));

 short s3 = Short.valueOf("2bf",16);

 System.out.println("\n Decimal equivalent of hex number 2bf= " + s3);

 }

}

Figure 7.2 Output of Program

 Check Your Progress – 2 :
1. Explain Short wrapper Class.

...

...

7.5 Integer Class :

The Integer class is a wrapper class for the int data type. The constructors
for Integer class are as follow :

 Constructors :

Integer(int num);

Integer(string str);

Here num is int type and str is string representation of a int.

104

Object Oriented
Concepts &

Programming–1
(Core Java)

The bellow table 7.4 gives a brief description of methods available under
Integer Class :

Table 7.4 : Methods defined in Interger Class

The following program show the use of some methods defined in Integer
class :

class IntegerDemo

{

 public static void main(String args[])

 {

 Integer a1 = new Integer((23345));

Method

byte byteValue()

int compareTo(Integer number)

double doubleValue()

boolean equals(Object Obj)

float floatValue()

int intValue()

long longValue()

static int parseByte(String s)
throws NumberFormat
Exception

short shortValue()

static toString(short number)

static String toString(short
number)

static Short valueOf(String s)
throws NumberFormat
Exception

Description

This Method return the value of the invoking
object as a byte.

Compare the numerical value of the invoking
object with that of number.
It will return 0 if the values are equal. It will
return a negative value if the invoking object
has a lower value. It will return a positive
value if the invoking object has a greater
value.

This Method return the value of the invoking
object as a double.

This Method return true if the invoking Integer
object is equivalent to Obj. Otherwise, it
return false.

To return the value of the invoking object
as a float.

This Method return the value of the invoking
object as an int.

This Method return the value of the invoking
object as a long.

This Method return the byte equivalent of the
number contained in the string specified by
s. This method will used radix 10.

This Method return the value of the invoking
object as a short.

This Method return a string that contains the
decimal equivalent of the invoking object.

This Method return a string that contains the
decimal equivalent of number.

This Method return a Short object that
contains the value specified by the string in
s.

105

Wrapper Classes Integer a2 = new Integer("23345");

 System.out.println("\n value of a1 object = " + a1);

 System.out.println("\n 3 * a1 = " + 3 * a1.shortValue());

 System.out.println("\n is a1 = a2 ? : " + a1.compareTo(a2));

 Integer a3 = Integer.valueOf("2bf",16);

 System.out.println("\n Decimal equivalent of hex number 2bf= " + a3);

 int a4 = Integer.parseInt("349078");

 System.out.println("\n Integer value of a4 =" + a4);

 }

}

Figure 7.3 Output of Program

 Check Your Progress – 3 :
1. Explain Integer wrapper Class.

...

...

7.6 Long Class :

The Long class is a wrapper class for the long data type. The constructors
for Long class are as follow :

 Constructors :

Long (long num);

Long(string str);

Here num is long type and str is string representation of a long.

106

Object Oriented
Concepts &

Programming–1
(Core Java)

Method

byte byteValue()

int compareTo(Long number)

double doubleValue()

boolean equals(Object Obj)

float floatValue()

int intValue()

long longValue()

static long parseByte(String s)
throws NumberFormat
Exception

short shortValue()

static toString(long number)

static String toString(long
number)

static Long valueOf(String s)
throws NumberFormat
Exception

Description

This method return the value of the invoking
object as a byte.

Compare the numerical value of the invoking
object with that of number.
It will return 0 if the values are equal. It will
return a negative value if the invoking object
has a lower value. It will return a positive
value if the invoking object has a greater
value.

This method return the value of the invoking
object as a double.

This method return true if the invoking long
object is equivalent to Obj. Otherwise, it
return false.

This method return the value of the invoking
object as a float.

This method return the value of the invoking
object as an int.

This method return the value of the invoking
object as a long.

This method return the byte equivalent of the
number contained in the string specified by
s. This method will used radix 10.

This method return the value of the invoking
object as a short.

This method return a string that contains the
decimal equivalent of the invoking object.

This method return a string that contains the
decimal equivalent of number.

This method return a Short object that contains
the value specified by the string in s.

The bellow table 7.5 gives a brief description of methods available under
Long Class :

Table 7.5 : Methods defined in Long Class

7.7 Float Class :

The Float class is a wrapper class for the float data type. The constructors
for Float class are as follow :

 Constructors :

Float (float num);

Float(double num);

Float(String str);

107

Wrapper ClassesHere num is float and double type respectively and str is string
representation of a float.

The bellow table 7.6 gives a brief description of methods available under
Float Class :

Table 7.6 : Methods defined in Float Class

Method

byte byteValue()

int compareTo(Float number)

double doubleValue()

boolean equals(Object Obj)

float floatValue()

int intValue()

boolean isInfinite ()

static Boolean isInfinite(float
number)

Boolean isNan ()

static Boolean isNaN(float
number)

long longValue()

static long parseByte(String s)
throws NumberFormat
Exception

short shortValue()

static toString()

Description

This Method return the value of the invoking
object as a byte.

Compare the numerical value of the invoking
object with that of number.
It will return 0 if the values are equal. It will
return a negative value if the invoking object
has a lower value. It will return a positive
value if the invoking object has a greater
value.

This Method return the value of the invoking
object as a double.

This Method return true if the invoking float
object is equivalent to Obj. Otherwise, it
return false.

This Method return the value of the invoking
object as a float.

This Method return the value of the invoking
object as an int.

This Method return true if the invoking object
has an infinite value.

This Method return true if the number
specifies an infinite value. Otherwise, it will
return false.

This Method return true if the invoking object
contains a value that is not a number.
Otherwise, it will return false.

This Method return true if number specifies
an infinite value. otherwise, it returns false.

This Method return the value of the invoking
object as a long.

This Method return the float equivalent of
the number contained in the string specified
by s. This method will used radix 10.

This Method return the value of the invoking
object as a short.

This Method return a string that contains the
decimal equivalent of the invoking object.

108

Object Oriented
Concepts &

Programming–1
(Core Java)

The following program show the use of some methods defined in Float
class :

class FloatDemo

{

 public static void main(String args[])

 {

 Float a1 = new Float(23.345);

 Float a2 = new Float(745.22f);

 Float a3 = new Float("789.35");

 System.out.println("\n value of a1 object = " + a1);

 System.out.println("\n value of a1 object = " + a2);

 System.out.println("\n byte value of Float object a1 = " +
a1.byteValue());

 System.out.println("\n Float value of Float object a3 = " +
a3.floatValue());

 System.out.println("\n is a1 = a2 ? : " + a1.compareTo(a2));

 float a4 = Float.parseFloat("688.564");

 System.out.println("\n Float value of a4 =" + a4);

 }

}

Figure 7.4 Output of Program

 Check Your Progress – 4 :
1. Explain Float wrapper Class.

...

...

static String toString(float
number)

static Long valueOf(String s)
throws NumberFormat
Exception

This Method return a string that contains the
decimal equivalent of number.

This Method return a Short object that contains
the value specified by the string in s.

109

Wrapper Classes7.8 Double Class :

The Double class is a wrapper class for the double data type. The
constructors for Double class are as follow :

 Constructors :

Double(double num);

Double(String str);

Here num is double type and str is string representation of a double.

The bellow table 7.7 gives a brief description of methods available under
Double Class :

Table 7.7 : Methods defined in Double Class

Method

byte byteValue()

int compareTo(Double number)

double doubleValue()

boolean equals(Object Obj)

float floatValue()

int intValue()

boolean isInfinite ()

static Boolean isInfinite(double
number)

Boolean isNan ()

static Boolean isNaN(double
number)

long longValue()

static long parseByte(String s)
throws NumberFormat
Exception

Description

To return the value of the invoking object
as a byte.

To compare the numerical value of the
invoking object with that of number.
It will return 0 if the values are equal. It will
return a negative value if the invoking object
has a lower value. It will return a positive
value if the invoking object has a greater
value.

To return the value of the invoking object
as a double.

To return true if the invoking double object
is equivalent to Obj. Otherwise, it return
false.

To return the value of the invoking object
as a float.

To return the value of the invoking object
as an int.

To return true if the invoking object has an
infinite value.

To return true if the number specifies an
infinite value. Otherwise, it will return false.

To return true if the invoking object contains
a value that is not a number. Otherwise, it
will return false.

To return true if number specifies an infinite
value. otherwise, it returns false.

To return the value of the invoking object
as a long.

To return the float equivalent of the number
contained in the string specified by s. This
method will used radix 10.

110

Object Oriented
Concepts &

Programming–1
(Core Java)

short shortValue()

static toString()

static String toString(double
number)

static Long valueOf(String s)
throws NumberFormat
Exception

To return the value of the invoking object
as a short.

To return a string that contains the decimal
equivalent of the invoking object.

To return a string that contains the decimal
equivalent of number.

To return a Short object that contains the
value specified by the string in s.

7.9 Boolean Class :

The Boolean class is a wrapper class for the boolean data type. The
constructors for Boolean class are as follow :

 Constructors :

Boolean (Boolean num);

Boolean (String str);

Here num is boolean type and str is string representation of a boolean.

The bellow table 7.8 gives a brief description of methods available under
Boolean Class :

Table 7.8 : Methods defined in Boolean Class

7.10 Character Class :

The Character class is a wrapper class for the char data type. The
constructors for Character class are as follow :

 Constructors :

Character (char c);

Here c is char type.

The bellow table 7.9 gives a brief description of methods available under
Character Class :

Method

Boolean BooleanValue ()

Boolean equals(Object obj)

Static Boolean getBoolean
(String propertyName)

int hashCode()

String toString ()

Static Boolean valueOf(Strign
str)

Description

This method return boolean equivalent.

This method return true if the invoking object
is equivalent to obj. Otherwise this method
will return false.

This method return true if the system property
specified by propertyName is true. Otherwise
this method will return false.

This method return the hash code for the
invoking object.

This method return the string equivalent of
the invoking object.

This method return true if str contains the
string "true". Otherwise this method will return
false.

111

Wrapper ClassesTable 7.9 : Methods defined in Character Class

Method

static Boolean isDefined(char
c)

static Boolean isDigit(char c)

static Boolean
isIdentifierIgnorable(char c)

static Boolean
isISoControl(char c)

static Boolean
isJavaIdentifier Part(char c)

Static Boolean
isJavaIdentifier Start(char c)

Static Boolean isLetter (char c)

Static Boolean isLowerOrDigit
(char c)

Static Boolean isLowerCase
(char c)

Static Boolean isSpaceChar
(char c)

Static Boolean
isTitleCase(char c)

Static Boolean isUnicode
IdentifierPart(char c)

Static Boolean isUnicode
IdentifierStart(char c)

Static Boolean isUpperCase
(char c)

Static Boolean isWhitespace
(char c)

Static Boolean toLowerCase
(char c)

Static Boolean toTitleCase
(char c)

Static char to UpperCase(char
c)

Description

To return true if c is defined by Unicode.
Otherwise, this method will return false.

To return true if c is a digit. Otherwise, this
method will return false.

To return true if c should be ignored in an
identifier. Otherwise, this method will return
false.

To return true if c is an ISO control character.
Otherwise, this method will return false.

To return true if c is allowed as part of a
Java identifier. Otherwise, this method will
return false.

To return true if c is allowed as part of first
character of a Java Identifier. Otherwise, this
method will return false.

To return true if c is a letter. Otherwise, this
method will return false.

To return true if c is a letter of a digit.
Otherwise, this method will return false.

To return true if c is a lowercase letter.
Otherwise, this method will return false.

To return true if c is Unicode space character.
Otherwise, this method will return false.

To return true if c is a Unicode titlecase
character. Otherwise, this method will return
false.

To return true if c is allowed as part of a
Unicode identifier. Otherwise, this method
will return false.

To return true if c is allowed as the first
character of a Unicode identifier. Otherwise,
this method will return false.

To return true if c is an uppercase letter.
Otherwise, this method will return false.

To return true if c is whitespace. Otherwise,
this method will return false.

To return lowercase equivalent of c.

To return titlecase equivalent of c.

To return uppercase equivalent of c.

112

Object Oriented
Concepts &

Programming–1
(Core Java)

The following program show the use of some methods defined in Character
class :

class CharDemo

{

 public static void main (String args[])

 {

 char c[] = {'D', 'c', '@', '5', ' '};

 for(int i=0; i<c.length; i++)

 {

 if(Character.isDigit(c[i]))

 System.out.println(c[i]+ "is a digit,");

 if(Character.isLetter(c[i]))

 System.out.println(c[i]+ "is a letter,");

 if(Character.isWhitespace(c[i]))

 System.out.println(c[i]+ "is a whitespace,");

 if(Character.isUpperCase(c[i]))

 System.out.println(c[i]+ "is a uppercase,");

 if(Character.isLowerCase(c[i]))

 System.out.println(c[i]+ "is a lowercase,");

 }

 }

}

Figure 7.5 Output of Program

 Check Your Progress – 5 :
1. Explain Character wrapper Class.

...

...

7.11 String Class :

In Java, String is defined as a sequence of characters. Java provides two
classes for handling String, String and StringBuffer. String class deals with
strings that are not altered after creation. StringBuffer class deals with strings
that need alteration after they are created.

113

Wrapper ClassesThe constructors for String class are as follow :

 Constructors :

String stringName;

stringName = new String("ABC");

String StringName = new String("ABC");

char[] str = {'j','a','v','a'};

String strone = new String(str);

String str = "java";

The bellow table 7.10 gives a brief description of methods available under
String Class :

Table 7.10 : Methods defined in String Class

Method

char charAt(int index)

void getChars(int start, int end,
char target[], int target start)

byte[] getBytes()

boolean equals(Object str)

boolean equalsIgnoreCase
(String str)

boolean regionMatches (int
start, String s2, int s2startindex,
int numchars)

boolean endsWith(String str)

boolean startWith(String str)

int compareTo(String str)

int indexOf(int ch)

int lastindexOF(int ch)

int indexOf(String str)

Description

This method returns the character at the index
position of the invoking string object.

It copies characters from object string starting
at 'start' up to 'end' character in to 'target',
starting at 'target start'

This method returns an array of characters
as bytes from the String object.

This method returns true if str contains the
same string as that in the invoking object.

This method returns true if str contains the
same string as in the invoking object by
ignoring the case

This method compare a region of the invoking
object based on parameters pass.

This method returns true if the invoking String
object end withstr.

This method returns true if the invoking String
object starts with str

This method compare the invoking String
object with str.

This method returns the index of first
occurrence of the character ch in the invoking
string object

This method returns the index of last
occurrence of the character ch in the invoking
string object

This method returns the index of first
occurrence of the string str in the invoking
string object

114

Object Oriented
Concepts &

Programming–1
(Core Java)

The following program show the use of some methods defined in String
class :

class StringDemo

{

 public static void main (String args[])

 {

 String s1 = "This is a Java Text";

 String s2 = "This is a Text";

 char data[] = new char [10];

 s1.getChars(7,13, data, 0);

 System.out.println(data);

 int count = s1.length();

 System.out.println("\n length :" + count);

 System.out.println("\n s1=s2?" + s1.compareTo(s2));

 }

}

int lastindexOF(String str)

String substring(int startIndex)

String substring(int startIndex,
int endIndex)

String concat(String str)

String replace(char existing
Char, char newChar)

String trim()

String toLowerCase()

String toUpperCase()

int length()

This method returns the index of last
occurrence of the string str in the invoking
string object

This method return a substring starting at
startIndex till the end of the invoking String
object

This method return a substring starting at
startIndex up to the endindex of the invoking
String object

This method returns a new String after
appending the str to the invoking String object

This method returns the new string created
by replacing existingChar with newChar

This method returns a new String after
removing the leading and trailing white spaces
of the invoking String object

This method converts the uppercase characters
of invoking String object to lowercase

This method converts the lowercase characters
of invoking String object to uppercase

This method return the number of characters
in the invoking String object

115

Wrapper Classes

Figure 7.6 Output of Program

 Check Your Progress – 6 :
1. Explain String Class.

...

...

2. Java provide abstract class for the wrapper the data type.

(A) Integer (B) Number (C) Data Type (D) String

3. return the byte value of the invoking object as a byte in Byte
class.

(A) byteValue() (B) doubleValue()

(C) byte() (D) ToByte()

4. method compare the numerical value of the invoking object
with that of byte under Short class.

(A) compareTo(Short obj) (B) compareTo(int obj)

(C) compareTo(Float obj) (D) compareTo(Double obj)

5. method return the value of the invoking object as a long under
Integer class.

(A) Long () (B) Longvalue()

(C) IntegerValue() (D) longValue()

6. method return the true if the invoking object contains a value
that is not a number under Double class.

(A) isNan() (B) isnotnumber()

(C) isnumber() (D) isdigit()

7. The isInfinite() method return true if the invoking object has an infinite
value under Float class.

(A) True (B) False

8. Boolean isDigit(char c) method return true if char c is a digit under
Character class.

(A) True (B) False

9. method return lowercase equivalent of character under Character
class.

(A) toLowerCase(char c) (B) LowerCase(char c)

(C) toLowerCase() (D) toSmallCase(char c)

116

Object Oriented
Concepts &

Programming–1
(Core Java)

10. Java provides two classes for handling String, String and StringBuffer.

(A) True (B) False

11. String class deals with strings that can altered after creation

(A) True (B) False

7.12 Converting Numbers to and from Strings :

Java provides an easy way to convert numbers into string. The Byte,
Short, Integer and Long classes provide the parseByte(), parseShort(),
parseInt() and parseLong() methods, respectively. These methods return the
byte, short, int or long equivalent of the numeric string with which they are
called.

The given below program demonstrates the use of parseInt(). It finds
the sum of a list of integers entered by the user. It reads the integers using
readLine () and uses parseInt() to convert these strings into their int equivalents.

The following program show the use convert an integer into binary,
hexadecimal and octal :

class StringConversions

{

 public static void main (String args[])

 {

 int num=19648;

 System.out.println(num + " in binary" + Integer.toBinaryString(num));

 System.out.println(num + "in octal" + Integer.toOctalString (num));

 System.out.println(num + "in hexadecimal" + Integer.toHexString (num));

 }

}

Figure 7.7 Output of Program

7.13 Let Us Sum Up :

In this Unit we have learned about a superclass which is defined by
the abstract class Number that implements the classes that wrap the numeric
type's byte, short, int, long, float and double. Number possesses abstract methods
that return the value of the object in each of the different number formats.
That is, doubleValue () returns the value as a double, floatValue () returns
the value as a float and so on. Double and Float are wrappers for floating–
point values of type double and float respectively. The constructors of float
are Float (double num) ,Float (float num) and Float (String str) throws

117

Wrapper ClassesNumberFormatException. The Float objects can be constructed with values of
type float or double. They can also be constructed from the string representation
of a floating–point number. Whereas, the constructors for Double are shown
as Double (double num), Double (String str) throws Number Format Exception.
Double objects can be constructed with a double value or a string containing
a floating–point value.

Java provides an easy way to convert numbers into string. The Byte,
Short, Integer and Long classes provide the parseByte(), parseShort(), parseInt
() and parseLong() methods, respectively. These methods return the byte,
short, int or long equivalent of the numeric string with which they are called.

7.14 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 7.3

 Check Your Progress 2 :

See Section 7.4

 Check Your Progress 3 :

See Section 7.5

 Check Your Progress 7 :

See Section 7.7

 Check Your Progress 5 :

See Section 7.10

 Check Your Progress 6 :

1 : See Section 7.11 2 : B 3 : A 4 : A 5 : D

6 : A 7 : A 8 : A 9 : A 10 : A 11 : B

7.15 Glossary :

1. Number Class – Java provide Number class with six subclasses. Using
the subclasses we can create the object of basic data type.

2. Byte Class – The Byte class is a wrapper class for the byte data type.

3. Short Class – The Short class is a wrapper class for the short data type.

4. Integer Class – The Integer class is a wrapper class for the int data
type.

5. Long Class – The Long class is a wrapper class for the long data type.

6. Float Class – The Float class is a wrapper class for the float data type.

7. Double Class – The Double class is a wrapper class for the double data
type.

8. Boolean Class – The Boolean class is a wrapper class for the boolean
data type.

9. Character Class – The Character class is a wrapper class for the char
data type.

10. String Class – String is defined as a sequence of characters. Java provides
two classes for handling String, String and StringBuffer.

118

Object Oriented
Concepts &

Programming–1
(Core Java)

7.16 Assignment :

1. Write a note on Number Class.

2. Write a note on Wrapper Class.

7.17 Activities :

1. Write a program to show the use of String Class.

2. Write a program to show the use of Double Class.

3. Write a program to show the use of Long Class.

4. Write a program to show the use of Boolean Class.

7.18 Case Study :

1. Prepare the Chart of five method from each wrapper class.

7.19 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000.

2. Java 2, the Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999.

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000.

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998.

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000.

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

119

UNIT STRUCTURE

8.0 Learning Objectives

8.1 Introduction

8.2 Collection Interface

8.3 List Interface

8.4 LinkedList Class

8.5 ArrayList Class

8.6 Stack Class

8.7 Queue Interface

8.8 Set Interface

8.9 TreeSet Class

8.10 Hashset Class

8.11 Map Interface

8.12 TreeMap Class

8.13 HashMap Class

8.14 Iterator

8.15 Let Us Sum Up

8.16 Suggested Answer for Check Your Progress

8.17 Glossary

8.18 Assignment

8.19 Activities

8.20 Case Study

8.21 Further Readings

8.0 Learning Objectives :

After learning this unit, you will be able to understand the use of :
• Implementation of Data Structure concept using Java Collection Classes
• Collection interface
• List interface
• LinkedList Class
• Array List Class
• Stack Class
• Queue Interface
• TreeSet Class
• HasSet Class
• TreeMap Class
• HasMap Class

JAVA COLLECTION
FRAMEWORK

Unit

08

120

Object Oriented
Concepts &

Programming–1
(Core Java)

• Iterator

• List Iterator

8.1 Introduction :

The Java platform includes a collections framework. A collection is an
object that represents a group of objects. The collection framework provide
a well–designed set of interface and classes for storing and manipulating of
data as a single unit. Java Collections can achieve all the operations that we
perform on a data such as searching, sorting, insertion, manipulation, and
deletion.

The collections framework was designed to meet several goals, such as :

• Reduces programming effort by providing data structures and algorithms
so you don't have to write them yourself.

• Increases performance by providing high–performance implementations
of data structures and algorithms.

• Provides interoperability between unrelated APIs by establishing a common
language to pass collections back and forth.

• Reduces the effort required to learn APIs by requiring you to learn
multiple ad hoc collection APIs.

• Reduces the effort required to design and implement APIs by not requiring
you to produce ad hoc collections APIs.

• Fosters software reuse by providing a standard interface for collections
and algorithms with which to manipulate them.

The entire collections framework is designed around a set of standard
interfaces. A collections framework is a unified architecture for representing
and manipulating collections. In addition to collections, the framework defines
several map interfaces and classes. Maps store key/value pairs. Although maps
are not collections in the proper use of the term, but they are fully integrated
with collections.

8.2 Collection Interface :

Bellow diagram show the hierarchy of Collection framework. The Java.util
package contains all the classes and interfaces for the collection framework.

Figure 8.1 Collection Interface

Iterbale

Collection

List

ArrayList

LinkedList

Vector

TreeSet

ShortedSet

LinkedHashSet

HashSet

SetQueue

Deque

PriorityQueue

ArrayDeque

Stack

class
implements

extends

interface

121

Java Collection
Framework

The parent interface of Collection interface is Iterable interface. We also
see that child interface of Collection interface are List, Queue and Set interfaces.
In this unit we study the interfaces and classes available under the Collection
interface.

The Following points need to be remembered regarding Collection
Framework :

• The Collection interface is a group of objects, with duplicates allowed.

• The List interface extends Collection, allows duplicates and introduces
positional indexing.

• The Set interface extends Collection but forbids duplicates

• The Collection interface is used to represent any group of objects or
elements.

• This interface is implemented by all collection classes.

• The interface supports basic operations like adding and removing.

The bellow table 8.1 gives a brief description of methods available under
Collection Interface :

Table 8.1 : Methods defined in Collection Interface

Method

boolean add(Object obj)

boolean add(Collection c)

Void clear()

boolean contains(Object obj)

boolean containsAll
(collection c)

boolean equals(Object obj)

boolean isEmpty()

Iterator iterator()

boolean remove(Object obj)

boolean removeAll
(Collection c)

boolean retainAll
(Collection c)

Int size()

Object [] toArray()

Object [] toArray
(Objectarray [])

Description

This method add obj to the invoking collection.

Add all the elements of c to the invoking
collection.

Removes all elements from the invoking
collection.

Returns true if obj is an element of the invoking
collection.

Returns true if the invoking collection contains
all elements of c.

Returns true if the invoking collection is equals

Returns true if the invoking collection is empty.

Returns an iterator for the invoking collection.

Remove one instance of obj from the invoking
collection.

Remove all elements of c from the invoking
collection.

Remove all elements from the invoking
collection except those in c.

Returns the number of elements held in the
invoking collection.

Returns an array that contains all the elements
storred in the invoking collection.

Returns an array containing only those collection
elements whose type matches that of the array.

122

Object Oriented
Concepts &

Programming–1
(Core Java)

8.3 List Interface :

The Collection interface extends List interface. The List interface has
four concrete subclasses, LinkList, ArrayList, Vector and Stack classes. The
List interface provides the following facilities :

• Permitting duplicates.

• The interface adds position oriented operations.

• The first element in the list starts at index 0.

• Elements can be added and accessed by their position in this list.

The bellow table 8.2 gives a brief description of methods available under
List Interface :

Table 8.2 : Methods defined in List Interface

8.4 LinkedList Class :

Linked list is a fundamental data structure that contains records. LinkedList
implements the Collection interface. A record contains data as well as a
reference to the next record. A record can be inserted or removed at any point
in the Linked List. Only sequential access is allowed.

It uses a doubly linked list internally to store the elements. It can store
the duplicate elements. It maintains the insertion order. In LinkedList, the
manipulation is fast because no shifting is required. The constructors for short
class are as follow :

Method

void add(index, object obj)

boolean addAll(int index,
Collection c)

object get(int index)

int indexOf(object obj)

int lastIndexOf(Object obj)

listIterator listIterator(int
index)

object remove(int index)

object set(int index, Object
obj)

list subList(int start, int end)

Description

Insert into the invoking list at the index passedin
index.

Inserts all elements of c into the invoking list
at the index passed in index.

Returns the object stored at the speccified index
within the invoking collection.

Returns the index of the first instance of obj
in the invoking list. Return – 1 if obje is not
an element.

Return the index of the last instance of obj in
the invoking list.Return -1 if obje is not an
element.

Return an iterator to the invoking list that begins
at the specified index.

Removes the element at position index from the
invoking list and returns the deleted elements.

Assigns obj to the location specified by index
within the invoking list

Returns a list that includes elements from start
and end.

123

Java Collection
Framework

 Constructors :

LinkedList()

LinkedList(Collection c)

Here C is Collection object.

The bellow table 8.3 gives a brief description of methods available under
LinkedList class :

Table 8.3 : Methods defined in LinkedList Class

The following program show the use of some methods defined in LinkedList
class :

import java.util.*;

class Book

{

 int id;

 String name,author,publisher;

 int quantity;

 public Book(int id, String name, String author, String publisher, int
quantity)

Method

void add(int index, Object
element)

void addFirst(Object o)

void addLast(Object o)

int size()

boolean add(Object o)

boolean contains(Object o)

boolean remove(Object o)

Object getFirst()

Object getLast()

int indexOf(Object o)

int lastIndexOf(Object o)

Description

It is used to insert the specified element at the
specified position index in a list.

It is used to insert the given element at the
beginning of a list.

It is used to append the given element to the
end of a list.

It is used to return the number of elements in
a list

It is used to append the specified element to the
end of a list.

It is used to return true if the list contains a
specified element.

It is used to remove the first occurence of the
specified element in a list.

It is used to return the first element in a list.

It is used to return the last element in a list.

It is used to return the index in a list of the
first occurrence of the specified element, or
-1 if the list does not contain any element.

It is used to return the index in a list of the
last occurrence of the specified element, or -1
if the list does not contain any element.

124

Object Oriented
Concepts &

Programming–1
(Core Java)

 {

 this.id = id;

 this.name = name;

 this.author = author;

 this.publisher = publisher;

 this.quantity = quantity;

 }

}

public class LinkedListExample

{

 public static void main(String[] args)

 {

 //Creating list of Books

 List<Book> list=new LinkedList<Book>();

 //Creating Books

 Book b=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);

 //Adding Books to list

 list.add(b);

 System.out.println(b.id+"\t"+b.name+"\t"+b.author+"\t"+b.publisher+
"\t"+b.quantity);

 }

}

Figure 8.2 Output of Program

8.5 ArrayList Class :

The ArrayList class implements the List interface. It uses a dynamic array
to store element of different data types. The ArrayList class maintains the
insertion order. The elements stored in the ArrayList class can be randomly
accessed. It inherits Abstract List class and implements List interface. Java
ArrayList class can contain duplicate elements. Java ArrayList class maintains
insertion order.Java ArrayList allows random access because array works at

125

Java Collection
Framework

the index basis. In Java ArrayList class, manipulation is slow because a lot
of shifting needs to be occurred if any element is removed from the array list.
The constructors for short class are as follow :

 Constructors :

ArrayList()

ArrayList(Collection c)

ArrayList(int capacity)

Here C is Collection object and capacity represent the no of element
hold by ArrayList class.

The bellow table 8.4 gives a brief description of methods available under
ArrayList class :

Table 8.4 : Methods defined in ArrayList Class

The following program shows how to create ArrayList and add value
in it.

Method

void add(int index, Object
element)

boolean addAll(Collection c)

void clear()

int lastIndexOf(Object o)

Object[] toArray()

Object[] toArray(Object[] a)

boolean add(Object o)

boolean addAll(int index,
Collection c)

Object clone()

int indexOf(Object o)

void trimToSize()

Description

It is used to insert the specified element at the
specified position index in a list.

It is used to append all of the elements in the
specified collection to the end of this list, in
the order that they are returned by the specified
collection's iterator.

It is used to remove all of the elements from
this list.

It is used to return the index in this list of the
last occurrence of the specified element, or -1
if the list does not contain this element.

It is used to return an array containing all of
the elements in this list in the correct order.

It is used to return an array containing all of
the elements in this list in the correct order.

It is used to append the specified element to the
end of a list.

It is used to insert all of the elements in the
specified collection into this list, starting at the
specified position.

It is used to return a shallow copy of an ArrayList.

It is used to return the index in this list of the
first occurrence of the specified element, or
-1 if the List does not contain this element.

It is used to trim the capacity of this ArrayList
instance to be the list's current size.

126

Object Oriented
Concepts &

Programming–1
(Core Java)

//133

import java.util.*;

class Student

{

 int rollno;

 String name;

 int age;

 Student(int rollno,String name,int age)

 {

 this.rollno=rollno;

 this.name=name;

 this.age=age;

 }

}

public class TestCollection3

{

 public static void main(String args[])

 {

 //Creating user-defined class objects

 Student s1=new Student(101,"Sonoo",23);

 Student s2=new Student(102,"Ravi",21);

 //creating arraylist

 ArrayList<Student> al=new ArrayList<Student>();

 al.add(s1);//adding Student class object

 al.add(s2);

 for(Student st:al)

 {

 System.out.println(st.rollno+"\t"+st.name+"\t"+st.age);

 }

 }

}

127

Java Collection
Framework

Figure 8.3 Output of Program

 Check Your Progress – 1 :
1. Explain Byte ArrayList Class.

2. Explain the LinkedList Class

...

...

8.6 Stack Class :

Java Collection framework provides a Stack class which models and
implements Stack data Structure. The stack is the subclass of Vector. It implements
the last–in–first–out data structure, i.e., Stack. The class is based on the basic
principle of last–in–first–out (LIFO). The class provides basic operation push
and pop. The stack contains all of the methods of Vector class. The constructors
for short class are as follow :

 Constructors :

Stack()

The insertion (push) and deletion (Pop) operation show in the bellow
figure.

Figure 8.4 Stack Data Structure

128

Object Oriented
Concepts &

Programming–1
(Core Java)

The bellow table 8.5 gives a brief description of methods available under
Stack class :

Table 8.5 : Methods defined in Stack Class

The following program show the use of some methods defined in Stack
class :

//134_35

import java.util.*;

class Demostack

{

 public static void main(String args[])

 {

 Stack<Integer> l2=new Stack<Integer>();

 l2.push(new Integer(1));

 l2.push(new Integer(2));

 l2.push(new Integer(3));

 l2.push(new Integer(4));

 for(int a:l2)

 System.out.println(a);

 System.out.println("------------------");

 System.out.println(l2);

 System.out.println("------------------");

 System.out.println("Search the index of 3 :" + l2.search(3));

 System.out.println("------------------");

Method

Object push(object element)

Object pop()

Object peek()

Boolean empty()

Int search(object element)

Description

Pushes an element on the top of stack

Removes and returns the top element of the
stack. An 'EmptyStackException' is thrown if we
call pop() when the invoking stack is empty.

Returns the element on the top of the stack, but
does not remove it.

It returns true if nothing is on the top of the
stack. Else rturn fase.

It determines whether an object exists in the
stack. If the elemetn is found, it returns the
positions of the element from the top of the
stack else return -1

129

Java Collection
Framework System.out.println("Popped: "+l2.pop());

 System.out.println("Popped: "+l2.pop());

 System.out.println("------------------");

 System.out.println("Peek: "+l2.peek());

 System.out.println("Peek: "+l2.peek());

 System.out.println("------------------");

 }

}

Figure 8.5 Output of Program

8.7 Queue Interface :

The Queue interface present in the java.util package and extend the
Collection interface. The class is based on the basic principle of last–in–first–
out (FIFO). It is an ordered list of objects with its use limited to insert elements
at the end of the list and deleting elements from the start of the list. Being
an interface the queue needs a concrete classes for the declaration, that are,
PriorityQueue, LinkedList, PriorityBlockingQueue.

The insertion and deletion operation show in the bellow figure.

Figure 8.6 Queue Data Structure

130

Object Oriented
Concepts &

Programming–1
(Core Java)

The bellow table 8.6 gives a brief description of methods available under
Queue interface :

Table 8.6 : Methods defined in Queue interface

The following program show the use of some methods defined in Queue
interface :

import java.util.*;

class Demoqueue

{

 public static void main(String args[])

 {

 Queue<Long> l3=new LinkedList<Long>();

 l3.add(new Long(1));

 l3.add(new Long(2));

 l3.add(new Long(3));

 l3.add(new Long(4));

 for(Long b:l3)

 System.out.println(b);

 System.out.println("------------------");

 //to display element at first position

 System.out.println("First element :" + l3.peek());

 System.out.println("------------------");

Method

Boolean add(object)

Boolean offer(object)

Objet remove()

Object poll()

Object element()

Object peek()

Description

It is used to insert the specified element into
queue and return true upon success.

It is used to insert the specified element into
this queue.

It is used to retrieves and removes the head of
this queue.

It is used to retrieves and removes the head of
this queue, or returns null if this queue is empty.

It is used to retrieves, but does not remove, the
head of the queue.

It is used to retrieves, but does not remove, the
head of this queue, or returns null if this queue
is empty.

131

Java Collection
Framework

 //to remove element from first position

 System.out.println("Remove First Element : " + l3.poll());

 System.out.println("------------------");

 System.out.println(l3);

 }

}

Figure 8.7 Output of Program

 Check Your Progress – 2 :
1. Explain Byte Stack Class.

2. Explain the Queue Class

...

...

8.8 Set Interface :

A Set is an interface under Collection interface that cannot contain
duplicate elements. It models the mathematical set abstraction. The Set interface
contains only methods inherited from Collection and adds the restriction that
duplicate elements are prohibited. We can store at most one null value in Set.
The concept of union, intersection, and the differenence of a set are available
in the set interface and supported by its subclasses. Set is implemented by
HashSet, LinkedHashSet, and TreeSet classes.

The bellow table 8.7 gives a brief description of methods available under
Set interface :

Table 8.7 : Methods defined in Set interface

Method

add()

clear()

contains()

isEmpty()

iterator()

remove()

size()

Description

Adds an object to the collection.

Removes all objects from the collection.

Returns true if a specified object is an element
within the collection.

Returns true if the collection has no elements.

Returns an Iterator object for the collection,
which may be used to retrieve an object.

Removes a specified object from the collection.

Returns the number of elements in the collection.

132

Object Oriented
Concepts &

Programming–1
(Core Java)

8.9 TreeSet Class :

The TreeSet class implements the Set and SortedSet interface. It uses
the tree to storage of its element. It useful when one needs to extract elements
from a collection in a sorted manner. TreeSet offers a strict control over the
order of elements in the collection. The collection is a sorted collection. It
may not offer you the best performance in terms of retrieving elements speedily.
Does not permit null in the collection. Java TreeSet class is non synchronized.
Java TreeSet class maintains ascending order.

The constructors for short class are as follow :

 Constructors :

Public TreeSet()

Public TreeSet(Collection C)

Public TreeSet(Comparator C)

Public TreeSet(SortedSet S)

The bellow table 8.8 gives a brief description of methods available under
Stack class :

Table 8.8 : Methods defined in TreeSet Class

The following program show the use of some methods defined in TreeSet
class :

//138

import java.util.*;

class Treeset1

{

 public static void main(String args[])

 {

 TreeSet<String> t1=new TreeSet<String>();

Method

Comparator comparator()

Object first()

Object last()

SortedSettailSet(Order
fromElement)

SortedSet headset(Object
fromElement)

Description

Returns the comparator used to order this sorted
set, or null if this tree set uses its elements naturl
ordering

Returns the first element currently in ths sorted
set

Return the last element currently in the sorted
set

Return a view of the portion of this set whose
elements is greater than or equal to fromElement.
The returned sorted set.

Return a view of the portion of this set this set
whose elements are strictly less than toElement.
Te returned sorted set in backed by this set.

133

Java Collection
Framework

 t1.add("D");

 t1.add("C");

 t1.add("B");

 t1.add("D");

 t1.add("D");

 t1.add("A");

 t1.add("F");

 System.out.println(t1);

 for(String s:t1)

 System.out.println(s);//iterating

 System.out.println("--");

 System.out.println(t1.first());

 System.out.println("--");

 System.out.println(t1.last());

 System.out.println("--");

 System.out.println(t1.size());

 }

}

Figure 8.8 Output of Program

8.10 Hashset Class :

HashSet class implements the Set interface. It does not guarantee that
the order will remain constant over time. This class permits the null element.
It used for storing the duplicate– free collection. For effectively storing and
retrieving the elements but the order is not guaranteed by this class. To retrieve
the elements in a sorted order. It allows null values. The constructors for short
class are as follow :

134

Object Oriented
Concepts &

Programming–1
(Core Java)

 Constructors :

Public HashSet()

Public HashSet(Collection C)

Public HashSet(int initialCapacity)

 Check Your Progress – 3 :
1. Explain Set interface with subclasses.

...

...

8.11 Map Interface :

Map is just collection of Pairs. The interfaces Map and Collection are
distinct. A map contains values on the basis of key, i.e. key and value pair.
Each key and value pair is known as an entry. A Map contains unique keys.
A Map is useful if you have to search, update or delete elements on the basis
of a key.

Figure 8.9 Map Interface

Map Interface has SortedMap interface and following child class :

• HasMap Class – HashMap is the implementation of Map, but it doesn't
maintain any order.

• LinkedHasMap Class – LinkedHashMap is the implementation of Map.
It inherits HashMap class. It maintains insertion order.

• TreeMap Class – TreeMap is the implementation of Map and SortedMap.
It maintains ascending order.

The bellow table 8.9 gives a brief description of methods available under
Map interface :

Table 8.9 : Methods defined in Map interface

class

implements

extends

interface

Method

Void clear()

Boolean containsKey
(Object k)

Boolean continsValue
(Object v)

Description

Remove all key value pairs from the invoking
map

Returns "true" if the invoking map contains k
as a key.

Returns "true" if the invoking map contains v
as a value.

135

Java Collection
Framework

8.12 TreeMap Class :

TreeMap is implemented from SortedMap. This class guarantees that the
map will be in ascending key order, sorted according to the natural order for
the key's class. TreeMap contains sorted mapping of key/value pairs. TreeMap
Not allow null key and null value pairs to be stored. The constructors for short
class are as follow :

 Constructors :

Public TreeMap()

Public TreeMap(Comparator c)

Public TreeMap(Map p)

Public TreeMap(SortedMap m)

The following program show the use of some methods defined in TreeMap
class :

import java.util.*;

public class TreeMap1

{

##9;public static void main(String args[])

##9;{

Set entrySet()

Boolean equals(object obj)

Object get(object k)

Int hashCode()

Boolean isEmpty()

Set KeySet()

Object put(object k,
object v)

Object get(object k)

Int hashCode()

Boolean isEmpty()

Set KeySet()

Object put(object k,
object v)

Return a set that contains the entries in the map.
The set contains objects of type Map.Entry

Returns "true" if obj is a Map and contains the
same entries

Returns the value associated with the key k.

Returns the hash code for the invoking map.

Returns "true" if the invoing map is empty.

Returns a Set that contains the keys in the
invoking map.

Puts an entry in the invoking map, overwritten
any revious value associated with the key. The
key and value are k and v respectively

Returns the value associated with the key k.

Returns the hash code for the invoking map.

Returns "true" if the invoing map is empty.

Returns a Set that contains the keys in the
invoking map.

Puts an entry in the invoking map, overwritten
any revious value associated with the key. The
key and value are k and v respectively

136

Object Oriented
Concepts &

Programming–1
(Core Java)

##9;##9;TreeMap<String, String> tmap = new TreeMap<String, String>();

##9;##9;tmap.put("EM1","TOM");

##9;##9;tmap.put("EM3","WATSON");

##9;##9;tmap.put("EM2","PETER");

##9;##9;

##9;##9;System.out.println(tmap);

##9;##9;System.out.println("--------");##9;##9;

##9;##9;System.out.println(tmap.put("EM3","DK"));//modify value

##9;##9;System.out.println(tmap);

##9;##9;System.out.println("--------");##9;

##9;##9;System.out.println("Key in Map");

##9;##9;for(String s:tmap.keySet())

##9;##9;##9;System.out.println(s);

##9;##9;System.out.println("--------");##9;

##9;##9;System.out.println("Values in Map");

##9;##9;

##9;##9;for(String s:tmap.values())

##9;##9;##9;System.out.println(s);

##9;##9;System.out.println("--------");##9;

##9;##9;

##9;##9;System.out.println("Value associated with EM2 :
"+tmap.get("EM2"));

##9;##9;System.out.println("\n size is:"+tmap.size());

##9;##9;System.out.println("remove EM2 :"+tmap.remove("EM2"));

##9;##9;System.out.println(tmap);

##9;##9;System.out.println("--------");##9;

##9;}

}

137

Java Collection
Framework

Figure 8.10 Output of Program

8.13 HasMap Class :

The HasMap class uses hashing as a technique to store key/value pairs
so that the values can be searched efficiently according to the key. There order
is not guaraanteed by HashMap. HashMap allow null key and null value pairs
to be stored. It is not an ordered collection which means it does not return
the keys and values in the same order in which they have been inserted into
the HashMap. The constructors for short class are as follow :

 Constructors :

Public HasMap()

Public HasMap(Map m)

Public HasMap(int initialCapacity)

Public HasMap(int initialCapacity, float loadFactor)

The following program show the use of some methods defined in TreeMap
class :

import java.util.*;

public class Hashmap1

{

 public static void main(String args[])

 {

 HashMap<Integer, String> hmap = new HashMap<Integer, String>();

 /*Adding elements to HashMap*/

 hmap.put(12, "Chaitanya");

138

Object Oriented
Concepts &

Programming–1
(Core Java)

 hmap.put(2, "Rahul");

 hmap.put(7, "Singh");

 hmap.put(49, "Ajeet");

 hmap.put(2, "Anuj");

 hmap.put(5, "Rahul");

 System.out.println(hmap);

 for(Map.Entry m:hmap.entrySet())

 {

 System.out.println(m.getKey()+" "+m.getValue());

 }

 }

}

Figure 8.11 Output of Program

 Check Your Progress – 4 :
1. Explain Byte TreeMap Class.

2. Explain the HasMap Class

...

...

3. The collection interface is availabel under package.

(A) Java.IO (B) java.net (C) Java.lang (D) Java.util

4. The Vector class is derived from interface.

(A) Set (B) Queue (C) Stack (D) List

5. The class's record contains data as well as a reference to the
next record.

(A) LinkedList (B) ArrayList (C) Vector (D) Stack

6. The Push and Pop operation available under ______ class.

(A) List (B) HasMap (C) ArrayList (D) Stack

7. The collection is a sorted collection.

(A) TreeSet (B) ArrayList (C) Map (D) LinkedList

8. A contains values on the basis of key..

(A) Map (B) List (C) Queue (D) Set

139

Java Collection
Framework

8. The Iterator allows us to traverse the collection, access the data element.

(A) True (B) False

9. The parent interface of Collection interface is Iterable interface.

(A) True (B) False

10. The List interface Permitting duplicates value.

(A) True (B) False

11. The ArrayList class uses a dynamic array to store element of different
data types.

(A) True (B) False

8.14 Iterator :

The 'Iterator' is an interface which belongs to collection framework. It
allows us to traverse the collection, access the data element and remove the
data elements of the collection. we can traverse a List or Set in forward
direction. Before you can access a collection through an iterator, you must
obtain one. Each of the collection classes provides an iterator() method that
returns an iterator to the start of the collection.

The bellow table 8.10 gives a brief description of methods available under
Map interface :

Table 8.10 : Methods defined in Map interface

The following program show the use of some methods defined in Iterator :

import java.util.*;

public class DemoIterator

{

 public static void main(String[] args)

 {

 ArrayList<Integer> numbers = new ArrayList<Integer>();

 numbers.add(12);

 numbers.add(8);

 numbers.add(2);

 numbers.add(23);

Method

boolean hasNext()

Object next()

void remove()

Description

Returns true if there are more elements.
Otherwise, returns false.

Returns the next element. Throws NoSuch
ElementException if there is not a next element.

Removes the current element. Throws Illegal
StateException if an attempt is made to call
remove() that is not preceded by a call to
next().

140

Object Oriented
Concepts &

Programming–1
(Core Java)

 Iterator<Integer> it = numbers.iterator();

 Iterator<Integer> it1 = numbers.iterator();

 // Print the item

 while(it.hasNext())

 {

 System.out.println(it.next());

 }

 // Remove the item

 while(it1.hasNext())

 {

 Integer i = it1.next();

 if(i < 5)

 {

 it1.remove();

 }

 }

 System.out.println(numbers);

 }

}

Figure 8.12 Output of Program

8.15 Let Us Sum Up :

In this unit we have learned various classes and interfaces available under
the Collection framework. The collection interface derived from the Iterable
interface. The collection framework available under the java.util package. The
Collection interface has three child interfaces named List interface, Queue
interface and Set interface. All the three interfaces has child classes or interface,
used for the implementing Data structure concept for the group of data. Each
child class has unique functionalities. The List interface allowed duplicated
values to store. It works on position based stared with 0 index. Any element
can be added or deleted based on position. The List interface has implemented
by ArrayList class, LinkedList class, Vector class and Stack class. The Queue
interface work on the principal of Fist–in–First–out (FIFO). The Queue interface
has implemented by Priority Queue class, LinkedList class and
PriorityBlockingQueue class. The Set interface does not allowed duplicates
values to store. The Set interface has implemented by HasSet class, TreeSet
and LindedHasSet class.

141

Java Collection
Framework

The Map interface is parallel to collection interface. It works on the
principal of key and value. It contains values on the basis of key. The Map
interface has implemented by HasMap class, LinkdedHasMap class and TreeMap
class. The Iterator is available under the Collection framework. The Iterator
allow us to traverse the collection, access the data element and remove the
data element from the collection.

8.16 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 8.4 & 8.5

 Check Your Progress 2 :

See Section 8.6 & 8.7

 Check Your Progress 3 :

See Section 8.8, 8.9, 8.10

 Check Your Progress 4 :

1 : See Section 8.12 2 : See Section 8.13 3 : D

4 : D 5 : A 6 : D 7 : A 8 : A

9 : A 10 : A 11 : A 12 : A

8.17 Glossary :

1. Collection Interface – Provides the interfaces and classes to manage
the group of data.

2. List Interface – The List interface is derive form collection interface.
It allowed duplicated values to store. The List interface has implemented
by ArrayList class, LinkedList class, Vector class and Stack class.

3. Queue Interface – The Queue interface work on the principal of Fist–
in–First–out (FIFO). The Queue interface has implemented by Priority
Queue class, LinkedList class and PriorityBlockingQueue class

4. Set Interface – The Set interface has implemented by HasSet class,
TreeSet and LindedHasSet class.

5. Map Interface – The Map interface is parallel to collection interface.
It works on the principal of key and value. The Map interface has
implemented by HasMap class, LinkdedHasMap class and TreeMap

8.18 Assignment :

1. Write a note on Collection Interface.

2. Write a note on Queue Interface.

3. Write a note on Map Interface.

8.19 Activities :

1. Write a program to show the use of collection interface.

2. Write a program to show the use of Hasset class.

3. Write a program to show the use of Queue interface.

4. Write a program to show the use of Iterator.

142

Object Oriented
Concepts &

Programming–1
(Core Java)

8.20 Case Study :

1. Prepare the chart of Collection Interface with its child classes and
interfaces.

2. Prepare the chart of Map Interface with its child classes and interfaces.

8.21 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000.

2. Java 2, the Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999.

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000.

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998.

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000.

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

BLOCK SUMMARY :

In this collectively we have learned Object Oriented Concepts we can
say that an object is an identifiable entity with some characteristic features
and behavior. Anything which has some properties and performs some behavior
is called an object. Keeping mind the programming for user's application is
said as object oriented programming. In mean time we understood Classes which
is nothing but a Collection of similar types of objects is called Class. A Class
is also called as an Object Factory as once the class is created we can create
as many objects as we wish using that class.

There is something called Java Method .A Java method is a collection
of statements that are grouped together to perform an operation. A method
definition consists of a method header and a method body like Modifiers, Return
Type, and Method Name, Parameters, Method Body. Creating Objects,

Further we have learned that in general there are two different methods
of passing an argument to a function. These methods are i) Call by value,
ii. Call by reference. Call by value : In call by value method, the value of
an argument is copied to the formal parameter. That is, the changes made in
the actual argument are not reflected into the formal parameter, and Call by
Reference, in Call by Reference method, the changes made to the actual
argument are also reflected in the formal argument.

It is also understood that the constructors are not called in the

main() function. They are automatically executed at the time of object
creation. For Example : the above program using default constructors can be
written as DEFAULT CONSTRUCTOR. The default constructors are those
constructors which do not accept any parameters/arguments. These constructors
are automatically executed at the time of object creation. Another thing is related
to Parameterised Constructors. The parameterised constructors are those
constructors which accept parameters/arguments. At the time of object creation
the values of these arguments/parameters are passed from main () function.

There is learning about the 'this' keyword is used when a function will
need to refer to the object which invoked it. The 'this' keyword can be used
inside any method to refer to the current object. At the end of this Unit we
came to know that the use of this keyword is redundant but perfectly correct.
Inside rectangle (), this will always refer to the invoking object. When a local
variable has the same name as an instance variable, the local variable hides
the instance variable. That is why length and width were not used as the name
of the parameters to the rectangle () constructor inside the rectangle class.
If we would have used in that way, then breadth would have referred to the
formal parameter hiding the instance variable breadth

143

144

Object Oriented
Concepts &

Programming–1
(Core Java)

BLOCK ASSIGNMENT :

 Short Questions :

1. Explain call by value method.

2. What do you mean by call by reference method ?

3. What do you mean by instance variable static ?

4. What are static instance variables also called as ?

5. What ways is an interface similar to a class ?

6. What do mean by implementing interfaces.

7. What do you mean by an Object

8. Define Object Oriented Programming ?

9. Name the existing packages in Java.

10. What do mean by a class is placed in a package ?

 Long Questions :

1. Explain Java programming environment with the help of diagram.

2. Write a note on Java technology.

3. List the four categories of visibility for class members.

4. Write a note on instance variables ?

5. What are the results when a class is placed in a package ?

6. Write a note on call by reference method.

7. Explain in what ways is an interface similar to a class.

8. Write the rules for implementing interfaces.

9. Explain how you can convert numbers into string.

10. Write a program to demonstrate the use of parse Int.

11. What are the results when a class is placed in a package ?

145

146

Object Oriented
Concepts &

Programming–1
(Core Java)

 Enrolment No. :

1. How many hours did you need for studying the units ?

Unit No. 5 6 7 8

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

...

...

...

...

...

...

...

...

Object Oriented Concepts &
Programming–1 (Core Java)

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 3 : INHERITANCE, EXCEPTION HANDLING AND
MULTITHREADING

UNIT 9 INHERITANCE

UNIT 10 EXCEPTION HANDLING

UNIT 11 UTILITIES AND MULTITHREADING

BCAR-204/
DCAR-204

Block Introduction :
This block is last block of this book and has further detail study about

Inheritance. Java Inheritance defines a relationship between a superclass and its
subclasses. In this you study first Concept of Inheritance, Polymorphism and Final
Keyword. After this you understand about Exception handling which deals with
Try and Catch Block, Multiple Catch Statements, Methods defined by Exception,
Throw able, Exceptions, Throws/throw Keyword, Using Finally Keyword and
Nested Try Statements. After this there is last Unit which makes you understand
about Utilities & Multithreading. This will be having rest of the details such as
Comparing Arrays, Creating a Hash Table Multithreading, Thread Life Cycle, the
Thread Class and the Runnable Interface, Thread Priorities, Synchronization,
Deadlock, Suspending, Resuming and Stopping Threads

Block Objectives :
After learning this block, you will be able to :

• Explain the concept of inheritance

• Define Polymorphism

• Compile time and Runtime

• Illustrate super keyword and final keyword

• Explain the types of exception and uncaught exception

• Use try and catch blocks, multiple catch statements

• Illustrate methods defined by exception and throw able

• Discuss defined exceptions

• Describe throws/ throw keyword

• State finally keyword and nested try statements

• Identify utility package

• Describe arrays and hash table

• Explain the thread lifecycle

• Define thread class and runnable interface

• State thread priorities

• Point out synchronisation

• Illustrate deadlock

• Explain suspending, resuming and stopping threads

Block Structure :
Unit 9 : Inheritance

Unit 10 : Exception Handling

Unit 11 : Utilities and Multithreading

INHERITANCE, EXCEPTION
HANDLING AND

MULTITHREADING

147

UNIT STRUCTURE

9.0 Learning Objectives
9.1 Introduction
9.2 Concept of Inheritance
9.3 Polymorphism
9.4 Final Keyword
9.5 Let Us Sum Up
9.6 Suggested Answer for Check Your Progress
9.7 Glossary
9.8 Assignment
9.9 Activities
9.10 Case Study
9.11 Further Readings

9.0 Learning Objectives :

After learning this unit, you will be able to :
• Explain the concept of inheritance

• Define Polymorphism

• Compile time and Runtime

• Illustrate super keyword and final keyword

9.1 Introduction :

Inheritance can be defined as the process where one object acquires the
properties of another. With the use of inheritance, the information is made
manageable in a hierarchical order.

Java Inheritance defines a relationship between a superclass and its
subclasses. This means that an object of a subclass can be used wherever an
object of the superclass can be used. Class Inheritance in java mechanism is
used to build new classes from existing classes. The inheritance relationship
is transitive: if class X extends class Y, then A class Z, which extends class
X, will also inherit from class Y.

9.2 Concept of Inheritance :

Concept of Inheritance

Figure 9.1 Concept of Inheritance

INHERITANCE
Unit

09

Subclass SpecializationBumbleBee Grasshopper

InsectSuperclass Generalization

148

Object Oriented
Concepts &

Programming–1
(Core Java)

"Inheritance is one of the cornerstones of OOP because it allows for
the creation of hierarchical classifications. Using inheritance, you can create
a general class that defines traits common to a set of related objects, that is,
objects with common attributes and behaviours. This class may then be inherited
by other, more specific classes", each adding only those attributes and behaviours
that are unique to the inheriting class.

 Need of Inheritance :

The various needs of inheritance are given below :

1. Closer to Real–World

2. Code Reusability

3. Transitive Nature

As stated earlier, inheritance leads to the definition of generalized classes
that are at the top of an inheritance hierarchy, thus it is an implementation
of generalization. This feature available in C++ makes the data and methods
of a Superclass or base class available to its subclass or derived class. It has
many advantages, the most important of that is the reusability of code. Once
a class has been created, it can be used to create new subclasses.

 Generalisation / Specialisation :

A class that is inherited is referred to as a base class. The class that
does the inheriting is referred to as the derived class. Each instance of a derived
class includes all the members of the base class. The derived class inherits
all the properties of the base class. Therefore, the derived class has a large
set of properties than its base class. However, a derived class may override
some of the properties of the base class.

To inherit a class, the definition of one class can be incorporated into
another by using the extends keyword. This class can then be inherited by
other, more specific classes, each adding those things that are unique to it.
The syntax of inheriting class is given below:

 Syntax :

<access specifier> class <class name(Subclass)> extends <class
name(Superclass)>

For example,

Public class B extends A

Public class C extends B

Public Class D extends C

The public data members and methods (Except constructors) in the
superclass are inherited by the subclass, i.e., their definitions are copied into
the subclass's class definition. No members of the subclass are visible to the
superclass.

Now let us consider an example to illustrate the same:

//Create a superclass

Class SuperClass

{

int x,y;

149

Inheritancevoid showXY()

{

System.out.println ("x and y" + x + " " + y);

}

}

//Create a subclass by extending class A

Class SubClass extends SuperClass

{

int z;

void showZ()

{

System.out.println ("z is:" + z);

}

Void sum()

{

System.out.println ("x+y+z" + (x + y+ z));

}

}

Class DemoInheritance

{

public static void main (String args[])

{

SuperClasssuperob = new SuperClass ();

SubClasssubob= new SubClass ();

//The superclass can refer itself

superob.x=21;

superob.y=4;

System.out.println ("Contents of Superclass")

superob.showXY();

//The subclass has access to all public members of its superclass

subob.x=30;

subob.y=11;

subob.z=13;

System.out.println ("Contents of subclass")

subob.showXY()

subob.showZ();

System.out.println ();

System.out.println ("Sum of x, y and z in subclass");

150

Object Oriented
Concepts &

Programming–1
(Core Java)

subob.sum();
}
}
The output of above program is given below:
Contents of superclass
X and y 21 4
Contents of subclass
x and y 30 11
z is: 13
Sum of x, y and z in subclass
As it is given in the above program, the subclass SubClass includes all

of the members of its superclass SuperClass. That is why subob can access
x and y and call showXY(). Also, inside add (), x and y can be referred
to directly, as if they were part of SubClass. Although a subclass includes all
of the members of its superclass, it cannot access members of the superclass
that have been declared as private.
 Check Your Progress – 1 :
1. Write the syntax of inheriting a class.
2. Explain Implicit Subclass to Super class Conversion with the help of

an example.
...
...
...
...
...

9.3 Polymorphism :

Figure 9.2 Polymorphism

"Polymorphism allows one interface to be used for a set of actions i.e.,
one name may refer to different functionality. Polymorphism allows an object
to accept different requests of a client (it then properly interprets the request
like choosing appropriate method) and responds according to the current state
of the runtime system, all without bothering the user."

There are two types of polymorphism:

1. Compile–time polymorphism

2. Runtime Polymorphism

Polymorphism

Compile Time Run Time

Function
Overloading

Operator
Overloading

Virtual
Function

151

Inheritance1. Compile time Polymorphism :

In compile time Polymorphism, method to be invoked is determined at
the compile time. Compile time polymorphism is supported through the method
overloading concept in java.

Method overloading means having multiple methods with same name but
with different signature (number, type and order of parameters).

Here is the code of the example:

class One

{

public void funOne (int a)

{

System.out.println ("The value of class A is:" + a);

}

public void funOne (int a, int b)

{

System.out.println ("The value of class B is:" + a + "and" + b);

}

}

public class PolyOne

{

public static void main (String [] args)

{

One obj=new One ();

//Here compiler decides that funOne (int) is to be called and "int" will
be printed.

obj.funOne (20);

//Here compiler decides that funOne (int, int) is to be called and "int
and int" will be printed.

obj.funOne (20, 30);

}

}

The output of above program is given below:

The value of class A is: 20

The value of class B is: 20 and 30

2. Runtime Polymorphism :

In runtime polymorphism, the method to be invoked is determined at
the run time. The example of run time polymorphism is method overriding
which is also called dynamic method dispatch is explained below :

 Method Overriding :

If a class inherits a method from its super class, then there is a chance
to override the method provided that it is not marked final.

152

Object Oriented
Concepts &

Programming–1
(Core Java)

Overriding means redefining a method in an inheritance hierarchy. In
a class hierarchy, when a method in a subclass has the same name and type
signature as a method in its superclass then the method in the subclass is said
to override the method in the superclass.

The benefit of overriding is: ability to define a behavior that's specific
to the sub class type which means a subclass can implement a parent class
method based on its requirement.

In object oriented terms, overriding means to override the functionality
of any existing method.

Example :

Let us look at an example.

class Animal

{

public void eat ()

{

System.out.println ("Animals can eat");

}

}

Class Dog extends Animal

{

public void eat ()

{

System.out.println ("Dog can eat and drink");

}

}

public class TestCat

{

public static void main (String args [])

{

Animal a = new Animal (); //Animal reference and object

Animal b= new Dog (); //Animal reference but Rat object

a.eat (); //runs the method in Animal class

b.eat (); //runs the method in Dog class

}

}

This will produce the given output:

Animals can eat

Dog can eat and drink

In the example given above, you can see that even though Dog is a type
of Animal it runs the eat method in the Dog class. The reason for this is:
In compile time the check is made on the reference type. However, in the

153

Inheritanceruntime, JVM figures out the object type and would run the method that belongs
to that particular object.

Therefore, in the above example, the program will compile properly since
Animal class has the method eat. Then at the runtime it runs the method specific
for that object.

 Rules for method overriding :

• "The return type should be the same or a subtype of the return type
declared in the original overridden method in the super class.

• A method declared final keyword example required cannot be overridden.

• The access level cannot be more restrictive than the overridden method's
access level. For example : if the super class method is declared public
then the overriding method in the sub class cannot be either private or
public. However the access level can be less restrictive than the overridden
method's access level.

• The argument list should be exactly the same as that of the overridden
method.

• Instance methods can be overridden only if they are inherited by the
subclass.

• A method declared static cannot be overridden but can be re–declared.

• If a method cannot be inherited then it cannot be overridden.

• A subclass in a different package can only override the non–final methods
declared public or protected.

• An overriding method can throw any uncheck exceptions, regardless of
whether the overridden method throws exceptions or not. However, the
overridden method should not throw checked exceptions that are new
or broader than the ones declared by the overridden method. The overriding
method can throw narrower or fewer exceptions than the overridden
method.

• A subclass within the same package as the instance's superclass can
override any superclass method that is not declared private or final.

• Constructors cannot be overridden."

 Using the super keyword :

When invoking a superclass version of an overridden method the super
keyword is used.

class Animal

{

public void move ()

{System.out.println ("Animals can move");}

}//Animal

Class cow extends Animal

{

public void move ()

{

154

Object Oriented
Concepts &

Programming–1
(Core Java)

super.move (); //invokes the super class method

System.out.println ("Cow can walk and run"):

}

public class TestCow

{

public static void main (String args [])

{

Animal b = new Cow (); //Animal reference but Cow object

b.move (); //runs the method in Cow class

}

}

This would produce following result:

Animals can move

Cow can walk and run

 Check Your Progress – 2 :
1. Write the rules for method overriding.

2. What do you mean by the term polymorphism

...

...

...

...

...

9.4 Final Keyword :

Figure 9.3 Final Keyword

The final keyword has mainly three uses :

1. Creating constants

2. Preventing method overriding

3. Preventing inheritance

Let us discuss these uses in order to understand the concept of final
keyword in detail :

155

Inheritance1. Creating Constants :

Declaring a variable as final makes it constant, doing so prevents the
contents from being modified. This means that you must initialize a final
variable when it is declared.

For example :

Final int FILE_NEW=1

Final int FILE_OPEN=2

Subsequent parts of your program can now use FILE_OPEN, FILE_NEW
etc. as if they were constants. It is a common naming convention to choose
all uppercase identifiers for final variables. Thus, a final variable is essentially
a constant.

2. Preventing method overriding :

The keyword final can also be applied to methods but its meaning is
substantially different than when it is applied to variables. Methods declared
as final cannot be overridden, that is, a method in the superclass cannot be
overridden in the subclass.

3. Preventing inheritance :

In some cases, you may want to prevent a class form being inherited.
To do this, precede the class declaration with final. Declaring a class as final
implicitly declares all of its methods a final, too. It is illegal to declare a class
both abstract and final since an abstract class is incomplete by itself and relies
upon its subclass to provide complete implementations.

 Check Your Progress – 3 :
1. List the uses of final keyword.

2. Write the syntax of final keyword

...

...

...

...

...

3. can be defined as the process where one object acquires the
properties of another.

(A) Object (B) Inheritance (C) Method (D) Function

4. A class that is inherited is referred to as a class.

(A) base (B) super (C) sub (D) none of these

5. Polymorphism allows one to be used for a set of actions

(A) Method (B) Class (C) Interface (D) Function

6. In compile time Polymorphism, method to be is determined
at the compile time.

(A) Inherited (B) Java class (C) Access (D) Invoked

7. methods can be overridden only if they are inherited by the
subclass.

(A) Instance (B) Interface (C) Private (D) None of these

156

Object Oriented
Concepts &

Programming–1
(Core Java)

9.5 Let Us Sum Up :

This Unit No.1 of this Block we have understood "Inheritance is one
of the cornerstones of OOP because it allows for the creation of hierarchical
classifications. Using inheritance, you can create a general class that defines
traits common to a set of related objects", that is, objects with common attributes
and behaviours. The various needs of inheritance are

1. Closer to Real–World,

2. Code Reusability

3. Transitive Nature.

The study of Generalisation/Specialisation has made us understand Syntax,
Create a superclass then Create a subclass by extending class A and also the
subclass has access to all public members of its superclass. Then further studied
that "Polymorphism allows one interface to be used for a set of actions i.e.
one name may refer to different functionality. Polymorphism allows an object
to accept different requests of a client (it then properly interprets the request
like choosing appropriate method) and responds according to the current state
of the runtime system", all without bothering the user. There are two types
of polymorphism, 1. Compile–time polymorphism, 2. Runtime Polymorphism.

We understood Method Overriding, if a class inherits a method from its
super class, then there is a chance to override the method provided that it is
not marked final. Overriding means redefining a method in an inheritance
hierarchy. In a class hierarchy, when a method in a subclass has the same name
and type signature as a method in its superclass then the method in the subclass
is said to override the method in the superclass. We have also understood in
detail all Rules for method overriding. There is also good understanding about
the final keyword has mainly three uses 1. Creating constants, 2. Preventing
method overriding, and 3. Preventing inheritance

9.6 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 9.2

 Check Your Progress 2 :

See Section 9.3

 Check Your Progress 3 :

1 : See Section 9.4 2 : See Section 9.4

3 : B 4 : A 5 : C 6 : D 7 : A

9.7 Glossary :

1. Inheritance – Inheritance is one of the cornerstones of OOP because
it allows for the creation of hierarchical classifications.

2. Overriding – Overriding means redefining a method in an inheritance
hierarchy. In a class hierarchy, when a method in a subclass has the same
name and type signature as a method in its superclass then the method
in the subclass is said to override the method in the superclass.

157

Inheritance9.8 Assignment :

Explain how a subclass has access to all public members of its superclass.

Write a program to create a superclass.

9.9 Activities :

Write a program to explain inheritance

9.10 Case Study :

Create a class Medicine to represent a drug manufactured by a
pharmaceutical company. Provide a function display Label() in this class to
print Name and address of the company.

Derive Tablet, Syrup and Ointment classes from the Medicine class.
Override the display Label() function in each of these classes to print additional
information suitable to the type of medicine. For example, in case of tablets,
it could be "store in a cool dry place", in case of ointments it could be "for
external use only" etc.

Create a class Test Medicine. Write main function to do the following:

1. Declare an array of Medicine references of size 10

2. Create a medicine object of the type as decided by a randomly generated
integer in the range 1 to 3.

3. Refer Java API Documentation to find out random generation feature.

4. Check the polymorphic behaviour of the display Label() method.

9.11 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes,MaryCampione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele &GiladBracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems, 2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

158

UNIT STRUCTURE

10.0 Learning Objectives

10.1 Introduction

10.2 Types of Exceptions

10.3 Uncaught Exception

10.4 Using Try and Catch Block

10.5 Using Multiple Catch Statements

10.6 Using Methods Defined by Exception and Throwable

10.7 User Defined Exceptions

10.8 Using Throws/Throw Keyword

10.9 Using Finally Keyword

10.10 Nested Try Statements

10.11 Let Us Sum Up

10.12 Suggested Answer for Check Your Progress

10.13 Glossary

10.14 Assignment

10.15 Activities

10.16 Case Study

10.17 Further Readings

10.0 Learning Objectives :

After learning this unit, you will be able to :
• Explain the types of exception and uncaught exception

• Use try and catch blocks, multiple catch statements

• Illustrate methods defined by exception and throwable

• Discuss defined exceptions

• Describe throws/ throw keyword

• State finally keyword and nested try statements

10.1 Introduction :

A runtime error that arises during the execution of a program is called
an exception. Various languages don't support handling exceptions and thus,
the errors are to be checked for and taken care of manually through error codes
etc. This approach is quite cumbersome and troublesome.

EXCEPTION HANDLING
Unit

10

159

Exception Handling

Figure 10.1 Exception Handling

An exception can occur for many different reasons, including the following:

• A user has entered invalid data.

• A file that needs to be opened cannot be found.

• A network connection has been lost in the middle of communications,
or the JVM has run out of memory.

Such exceptions can often be caused due to programmer or user errors
and sometimes due to other physical resources failing in some manner.

10.2 Types of Exceptions :

Figure 10.2 Data type in Java

Java provides several predefined Exception classes in the package java.lang.
In order to understand the concept of exception handling, you have to understand
the following categories of exceptions:

1. Checked exceptions

2. Unchecked exceptions

3. Errors

Data Types in Java

Integer

Float

Character

Boolean

Numeric Non Numeric Classes Interfeces Arrays

Primitive
(Intrinsic)

Non primitive
(Derived)

160

Object Oriented
Concepts &

Programming–1
(Core Java)

The checked exceptions must be caught or re–thrown. The unchecked
exceptions do not have to be caught.

1. Checked exceptions : This is basically a user error that the programmer
cannot foresee. For example, if a file is to be opened but the file cannot
be found, an exception occurs. These exceptions cannot simply be ignored
at the time of compilation.

2. Unchecked or Runtime exceptions : This exception could have probably
been avoided by the programmer. Runtime errors are ignored during
compilation as opposed to checked exceptions.

3. Errors : These are not exceptions at all but problems that arise beyond
the control of the user or the programmer. Usually since the programmer
can rarely do anything about an error it is ignored. For example, if a
stack overflow occurs, an error will arise. They are also ignored at the
time of compilation.

 Exception Hierarchy :

All exception classes are subtypes of the java.lang.Exception class. The
exception class is a subclass of the Throwable class. Other than the exception
class there is another subclass called Error which is derived from the Throwable
class.

Normally errors cannot be trapped from the Java program. Such conditions
arise in the case of severe failures which java programs do not handle. Errors
are generated to indicate errors generated by the runtime environment. Example:
JVM is out of Memory. Normally programs cannot recover from errors.

The Exception class has two main subclasses : IOException class and
Runtime Exception Class.

Figure 10.3 Exception Hierarchy

 Common Exceptions :

In java it is possible to define two categories of Exceptions and Errors.

• JVM Exceptions: These errors are either exclusively or logically thrown
by the JVM. Examples :

• NullPointerException,

• ArrayIndexOutOfBounds Exception,

• ClassCastException and many more

• Programmatic exceptions. These exceptions are thrown explicitly by the
application or the API programmers Examples:

• IllegalArgumentException,

• IllegalStateException

Throwable

Error Exception

IOException Runtime Exception

161

Exception Handling Check Your Progress – 1 :
1. Name the subclasses of exception class.

...

...

...

...

...

10.3 Uncaught Exception :

Figure 10.4 Uncaught Exception

When the exceptions are not caught in a try/catch block, then what you
often see in practice is Java prints the exception stack trace and then terminate
your program. "Java actually handles uncaught exceptions according to the
thread in which they occur. When an uncaught exception occurs in a particular
thread, Java looks for what is called an uncaught exception handler, actually
an implementation of the interface UncaughtExceptionHandler". The latter
interface has a method handleException (), which the implementer overrides
to take appropriate action, such as printing the stack trace to the console.

The specific procedure is as follows. When an uncaught exception occurs,
the JVM does the following:

• It calls a special private method, dispatchUncaughtException(), on the
Thread class in which the exception occurs

• It then terminates the thread in which the exception occurred

The dispatch Uncaught Exception method, in turn, calls the thread's get
Uncaught Exception Handler () method to find out the appropriate uncaught
exception handler to use. Normally, this will actually be the thread's parent
Thread Group, whose handle Exception () method by default will print the
stack trace.

Thus, the full process used to determine which uncaught exception
handler is called is shown in Figure below :

162

Object Oriented
Concepts &

Programming–1
(Core Java)

Figure 10.5 Process by which Java decides on which uncaught
exception handler to call for a given thread

 Check Your Progress – 2 :
1. Explain an uncaught exception.

2. Write a program for an uncaught exception handler.

...

...

...

...

...

10.4 Using Try and Catch Block :

Figure 10.6 Try and Catch Block

When an exception arises, an object representing that exception is created
and thrown in the method that caused the error. This mechanism in Java creates
an object which describes an exception condition.

When an exception condition arises, an object representing that exception
is created and thrown in the method which caused the error. When an error
occurs within a method, the method creates an object and hands it off to the
runtime system.

try block

Statement that causes
an exception

catch block

Statement that handles
the exception

Exception object creator
Throws exception object

Yes

Yes

Yes

Yes

No

No ThreadGroup overrides
uncaughtException()?

Use thread specific
handler

Call overriden
uncaughtException()

method.

ThreadGroup has
parent group ?

No

Consider
parent group Call default

uncaught exception
handler

Default uncaught
exception handler

has been set?
No

Call overridden
uncaughtException()

method on TreadGroup.

Thread-specific
handler?

163

Exception HandlingThis exception object is called an exception object which contains
information about the error along with its type and the state of the program
when the error occurred. This method of creating an exception object and
handing it to the runtime system is called throwing an exception.

Java Exception handling is managed using five keywords –

(a) try

(b) catch

(c) throw

(d) throws

(e) finally

The general form of the Exception Handling is

try

{

//do something that might cause an exception

}

catch (ExceptionType variable)

{

//handle the exception

}

finally

{

//always execute these statements

}

The program statements which you want to monitor for exceptions are
written within try block. If an exception occurs within the try block (when
exception is thrown), it has to be handled in some manner in catch block.

Any code which exactly has to be executed, after exiting from try clock
is put in finally block. The catch block is only executed if a particular exception
occurs. Whereas, the finally block is always executed, irrespective of exception
occurs or not. A brief description of these keywords is given below:

 Try :

The code that could generate errors is put in try block. The statements
are executed unless an exception occurs. If an exception is thrown, java breaks
out of the try block by skipping the rest of the statements and searches for
a respective matching catch statement.

If an exception does not occur, java executes all the statements within
that block.

 Catch :

A catch statement is included immediately following the try block; it
specifies the exception type that has to be caught.

164

Object Oriented
Concepts &

Programming–1
(Core Java)

 Finally :

It creates a block of code following the try catch block. It will execute
whether or not an exception is thrown. Each try statement should have at least
one catch or finally clause.

 Check Your Progress – 3 :
1. List the keywords that manage Java exception handling.

...

...

...

...

...

10.5 Using Multiple Catch Statements :

A try block can be followed by multiple catch blocks. The syntax for
multiple catch blocks looks like the following:

try

{

//Protected code

}catch(ExceptionType1 e1)

{

//Catch block

}catch(ExceptionType2 e2)

{

//Catch block

}catch(ExceptionType3 e3)

{

//Catch block

}

The previous statements demonstrate three catch blocks but you can have
any number of them after a single try. The exception is thrown to the first
catch block in the list if it occurs in the protected code. If the data type of
the exception thrown matches ExceptionType1, it gets caught there. If not, the
exception passes down to the second catch statement.

This continues until the exception either is caught or falls through all
catches, in which case the current method stops execution and the exception
is thrown down to the previous method on the call stack.

 Catching Exceptions :

By using a combination of the try and catch keywords a method catches
an exception. A try/catch block is placed around the code that might generate
an exception. Code within a try/catch block is referred to as protected code
and the syntax for using try/catch looks like the following :

165

Exception Handlingtry

{

//Protected code

}catch(ExceptionName e1)

{

//Catch block

}

A catch statement comprises of declaring the type of exception you are
trying to catch. If an exception occurs in protected code, the catch block (or
a block) that follows the try is checked. If the type of exception that occurred
is listed in a catch block, the exception is passed to the catch block much
as an argument is passed into a method parameter.

 Check Your Progress – 4 :
1. Write the syntax for multiple catch blocks.

2. Explain the execution of multiple catch statements.

...

...

...

...

...

10.6 Using Methods Defined by Exception and Throwable :

Following is the list of important methods available in the Throwable
class :

SN Methods with Description

1 "public String getMessage()
Returns a detailed message about the exception that has occurred. This
message is initialised in the Throwable constructor.

2 Public Throwable getCause()
Returns the cause of the exception as represented by a Throwable
object.

3 public String toString()
Returns the name of the class concatenated with the result of get
Message()

4 public void printStackTrace()
Prints the result of to String() along with the stack trace to System.
err, the error output stream.

5 Public Stack Trace Element [] getStackTrace()
Returns an array containing each element on the stack trace. The
element at index 0 represents the top of the call stack and the last
element in the array represents the method at the bottom of the call
stack.

166

Object Oriented
Concepts &

Programming–1
(Core Java)

6 Public Throwable fillInStackTrace()
Fills the stack trace of this Throwable object with the current stack
trace, adding to any previous information in the stack trace".

 Check Your Progress – 5 :
1. Write a note on public Throwable get Cause().

2. Write a program that throws an exception.

...

...

...

...

...

10.7 User Defined Exceptions :

"You can create your own exceptions in Java. Keep the following points
in mind while writing your own exception classes:

• All exceptions must be a child of Throwable.

• If you want to write a checked exception that is automatically enforced
by the Handle or Declare Rule, you need to extend the Exception class.

• If you want to write a runtime exception, you need to extend the Run
time Exception class."

We can define our own Exception class as below :

class MyException() extends Exception{

}

You just need to extend the Exception class to create your own Exception
class. These are considered to be checked exceptions. The following Insufficient
Funds Exception class is a user–defined exception that extends the Exception
class, making it a checked exception. An exception class is like any other class,
containing useful fields and methods.

Example :

// File Name InsufficientFundsException.java

import java.io.*

public class InsufficientFundsException extends Exception

{

private double amount

public InsufficientFundsException(double amount)

{

this.amount = amount

}

public double getAmount()

{

return amount

167

Exception Handling}

}

To demonstrate using our user–defined exception, the following
CheckingAccount class contains a withdraw () method that throws an
InsufficientFundsException.

// File Name CheckingAccount.java

import java.io.*;

public class ChkAccount

{

private double balance;

private intAcNumber;

public ChkAccount(intAcNumber)

{

this.AcNumber = AcNumber;

}

public void deposit(double amount)

{

balance += amount;

}

public void withdraw(double amount) throwsInSufficientFundsException

{

if(amount <= balance)

{

balance –= amount;

}

else

{

double needs = amount – balance

throw new InSufficientFundsException(needs)

}

}

public double getBalance()

{

return balance;

}

public intgetAcNumber()

{

return AcNumber;

}

}

168

Object Oriented
Concepts &

Programming–1
(Core Java)

The following BankDemo program demonstrates invoking the deposit
() and withdraw () methods of CheckingAccount.

// File Name BankDemo.java public class BankDemo

{

public static void main(String [] args)

{

ChkAccount c = new ChkAccount(101);

System.out.println ("Depositing Rs500..."); c.deposit(500.00);

try

{

System.out.println("\nWithdrawing Rs100...")

c.withdraw(100.00);

System.out.println("\nWithdrawing Rs600...")

c.withdraw(600.00)

}catch(InsufficientFundsException e)

{

System.out.println("Sorry but you are short Rs".

+ e.getBalance());

e.printStackTrace();

}

}

}

classInSufficientFundsException extends Exception

{

InSufficientFundsException(double needs)

{

System.out.println("Insufficient fund"+ needs);

}

}

 Check Your Progress – 6 :
1. What points should be kept in mind when writing your own exception

classes ?

...

...

...

...

...

169

Exception Handling10.8 Using Throws/Throw Keywords :

Before catching an exception it is must to be thrown first. This means
that there should be a code somewhere in the program that could catch the
exception. We use throw statement to throw an exception or simply use the
throw keyword with an object reference to throw an exception. A single
argument is required by the throw statement i.e. a throwable object. Throwable
objects are instances of any subclass of the Throwable class.

throw new VeryFastException() Exception

Handling

The reference should be of type Throwable or one of its subclasses.

For instance the example below shows how to throw an exception. Here
we are trying to divide a number by zero so we have thrown an exception
here as

"throw new MyException ("can't be divided by zero")"

classMyException extends Exception {

public MyException(String msg){

super(msg);

}

}

public class Test {

static void divide(intfirst,int second) throws MyException{

if(second==0)

throw new MyException("can't be divided by zero") }

public static void main(String[] args) {

try {

divide(4,0);

}

catch (MyExceptionexc) {

exc.printStackTrace();

}

}//main

}//Test

 Output :

C:\Computer\vinod\Exception>javac Test.java

C:\Computer\vinod\Exception>java Test

MyException: can't be divided by zero

at Test.divide (Test.java:10)

at Test.main(Test.java:15)

The method must declare by using the throws keyword if it does not
handle a checked exception. The throws keyword appears at the end of a
method's signature.

170

Object Oriented
Concepts &

Programming–1
(Core Java)

By using the throw keyword you can throw an either newly instantiated
exception or an exception you just caught. The difference in throws and throw
keywords should be understood.

A method can declare that it throws more than one exception, in which
case the exceptions are declared in a list separated by commas. For example,
the following method declares that it throws a Remote Exception and an
Insufficient Funds Exception.

import java.io.*;

public class className

{

public void withdraw(double amount) throws

RemoteException,InsufficientFundsException

{

// Method implementation

}

//Remainder of class definition

}

Difference between throw and throws keywords

We use the throw keyword in order to force an exception. The throw
keyword (note the singular form) is used to force an exception. The throw
keyword also passes a custom message to your exception handling module.
For instance, in the above example, we have used

Throw new MyException ("can't be divided by zero")

Whereas, we use the throws keyword when we already know that a
particular exception will be thrown or when we pass a possible exception. Point
to note here is that the Java compiler very well knows about the exceptions
thrown by some methods so it insists us to handle them.

We can also use throws clause on the surrounding method instead of
try and catch exception handler. For instance in the above given program, we
have used the following clause which will pass the error up to the next level

static int divide(int first, int second) throws MyException{

 Check Your Progress – 7 :
1. Where is throw keyword declared in a method ?

2. Write a program using throw keyword.

...

...

...

...

...

10.9 Using Finally Keyword :

"The finally keyword is used to create a block of code which follows
a try block. A finally block of code always executes, whether or not an exception
has occurred."

171

Exception HandlingUsing a finally block allows you to run any cleanup–type statements that
you want to execute, no matter what happens in the protected code.

A finally block appears at the end of the catch blocks and has the
following syntax:

try

{

//Protected code

}catch(ExceptionType1 e1)

{

//Catch block

}catch(ExceptionType2 e2)

{

//Catch block

}catch(ExceptionType3 e3)

{

//Catch block

}finally

{

//The finally block always executes.

}

Note the following :

• A catch clause cannot exist without a try statement.

• It is not compulsory to have finally clauses whenever a try/catch block
is present.

• The try block cannot be present without either catch clause or finally
clause.

Any code cannot be present in between the try, catch, finally blocks.

 Check Your Progress – 8 :
1. Write the syntax of finally keyword.

2. Write some points for finally keyword.

...

...

...

...

...

10.10 Nested Try Statements :

In Java we can have nested try and catch blocks. It means that, a try
statement can be inside the block of another try. If an inner try statement does
not have a matching catch statement for a particular exception, the control is
transferred to the next try statement's catch handlers that are expected for a
matching catch statement. This continues until one of the catch statements

172

Object Oriented
Concepts &

Programming–1
(Core Java)

succeeds, or until the entire nested try statements are done in. If no one catch
statements match, then the Java run–time system will handle the exception.

The syntax of nested try–catch blocks is given below:

try {

try {

// ...

}

catch (Exception1 e)

{

//statements to handle the exception

}

}

catch (Exception e2)

{

//statements to handle the exception

}

Example

import java.io.*;

public class NestedTryDemo{

public static void main (String args[])throws IOException {

int number=5,result=0;

try{

FileInputStream fis=null;

fis = new FileInputStream (new File (args[0]))

try{

result=number/0;

System.out.println("The result is"+res);

}

catch(ArithmeticException e){

System.out.println("divided by Zero");

}

}

catch (FileNotFoundException e){

System.out.println("File not found!")

}

catch(ArrayIndexOutOfBoundsException e){

System.out.println("Array index is Out of bound!Argument required"); }

catch(Exception e){

System.out.println("Error.."+e)

173

Exception Handling}

}

}

 Output :

C:\Computer\>javac NestedTry.java

C:\Computer\>java NestedTry

Array index is Out of bound! Argument required

In this given example, we have implemented nested try–catch blocks
concept where an inner try block is kept with in an outer try block, that's catch
handler will handle the arithmetic exception. But before that an Array Index
Out Of Bounds Exception will be raised, if a file name is not passed as an
argument while running the program.

 Check Your Progress – 9 :
1. Write the syntax of nested try catch block.

2. Explain the execution of nested try statements.

...

...

...

...

...

3. A runtime error that arises during the execution of a program is called
an .

(A) Exception (B) Error (C) occurrence (D) problem

4. A network connection has been lost in the middle of communications,
or the has run out of memory..

(A) JDK (B) JRE (C) JAVA (D) PATH

5. Exceptions is not occurred by JVM

(A) NullPointerException,

(B) ArrayIndexOutOfBounds Exception,

(C) ClassCastException

(D) File not found

6. Java Exception handling is managed using keywords

(A) One (B) Two (C) Four (D) Five

7. A statement is included immediately following the try block;
it specifies the exception type that has to be caught.

(a) Try (b) Catch (c) Finally (d) Block

10.11 Let Us Sum Up :

Deals with An exception is a problem that arises during the execution
of a program. It is a runtime error. In some of the languages, which do not
support exception handling, errors must be checked and handled manually
typically through the use of error codes and so on. This approach is quite
cumbersome and troublesome.

174

Object Oriented
Concepts &

Programming–1
(Core Java)

Then there is understanding relating to the predefined Exception, Java
provides several predefined Exception classes in the package java.lang. To
understand how exception handling works in Java, you need to understand these
categories of exceptions:

1. Checked exceptions

2. Unchecked exceptions

3. Errors

"When the exceptions are not caught in a try/catch block, then what you
often see in practice is that Java prints the exception stack trace and then
terminates your program. Java actually handles uncaught exceptions according
to the thread in which they occur. When an uncaught exception occurs in a
particular thread, Java looks for what is called an uncaught exception handler,
actually an implementation of the interface Uncaught Exception Handler. The
latter interface has a method handle Exception (), which the implementer
overrides to take appropriate action, such as printing the stack trace to the
console."

We have understood that Java Exception handling is managed using five
keywords – a. try, b. catch, c. throw, d. throws and finally e. finally.

Catching Exceptions: "A method catches an exception using a combination
of the try and catch keywords. A try/catch block is placed around the code
that might generate an exception. Code within a try/catch block is referred
to as protected code"

User defined Exceptions: While creating your own exceptions in Java,
the following points are to be kept in mind.

• All exceptions must be a child of Throwable.

• If you want to write a checked exception that is automatically enforced
by the Handle or Declare Rule, you need to extend the Exception class.

• If you want to write a runtime exception, you need to extend the Runtime
Exception class.

Using Throws/throw Keywords: "This means that there should be a code
somewhere in the program that could catch the exception. We use throw
statement to throw an exception or simply use the throw keyword with an object
reference to throw an exception. Know after that we understood. The finally
keyword is used to create a block of code that follows a try block. A finally
block of code always executes, whether or not an exception has occurred."

Using a finally block allows you to run any cleanup–type statements that
you want to execute, no matter what happens in the protected code.

We have also understood about NESTED TRY STATEMENT In Java
we can have nested try and catch blocks. It means that, a try statement can
be inside the block of another try. If an inner try statement does not have
a matching catch statement for a particular exception, the control is transferred
to the next try statement's catch handlers that are expected for a matching catch
statement. This continues until one of the catch statements succeeds, or until
the entire nested try statements are done in. If no one catch statements match,
then the Java run–time system will handle the exception

175

Exception Handling10.12 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 10.2

 Check Your Progress 2 :

See Section 10.3

 Check Your Progress 3 :

See Section 10.4

 Check Your Progress 4 :

See Section 10.5

 Check Your Progress 5 :

See Section 10.6

 Check Your Progress 6 :

See Section 10.7

 Check Your Progress 7 :

See Section 10.8

 Check Your Progress 8 :

See Section 10.9

 Check Your Progress 9 :

1 : See Section 10.9 2 : See Section 10.9

3 : A 4 : B 5 : D 6 : D 7 : B

10.13 Glossary :

1. Uncaught Exceptions – When the exceptions are not caught in a try/
catch block, then what you often see in practice is Java prints the
exception stack trace and then terminates your program.

2. Catching Exceptions – A method catches an exception using a combination
of the try and catch keywords.

3. Throw an Exception – This means that there should be a code somewhere
in the program that could catch the exception. We use throw statement
to throw an exception or simply use the throw keyword with an object
reference to throw an exception.

10.14 Assignment :

Write a program which accepts two integers and an operator from the
user. Perform the operation and fire the following user defined exception for
following situations and handle the exceptions with proper error messages:

a. If the numbers are not of integer datatype, fire an exception

b. If the result is negative, fire an exception

c. Handle all the possible exceptions

10.15 Activities :

1. Write a note on catching exceptions.

2. Explain try and catch statements

176

Object Oriented
Concepts &

Programming–1
(Core Java)

10.16 Case Study :

Create a class Number having the following features:

Attributes

int first number

int second number

result double stores the result of arithmetic operations
performed on a and b

Member functions

Number(x, y) constructor to initialize the values of a and b

add() stores the sum of a and b in result

sub() stores difference of a and b in result

mul() stores product in result

div() stores a divided by b in result

Test to see if b is 0 and throw an appropriate exception since division
by zero is undefined.

Display a menu to the user to perform the above four arithmetic operations.

10.17 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, MaryCampione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition.

177

UNIT STRUCTURE

11.0 Learning Objectives

11.1 Introduction

11.2 Comparing Arrays : Java Util

11.3 Creating a Hash Table : Java Util

11.4 Multithreading

11.5 Thread Life Cycle

11.6 The Thread Class and The Runnable Interface

11.7 Thread Priorities

11.8 Synchronisation

11.9 Deadlock

11.10 Suspending, Resuming and Stopping Threads

11.11 Let Us Sum Up

11.12 Suggested Answer for Check Your Progress

11.13 Glossary

11.14 Assignment

11.15 Activities

11.16 Case Study

11.17 Further Readings

11.0 Learning Objectives :

After learning this unit, you will be able to :
• Identify utility package

• Describe arrays and hash table

• Explain the thread lifecycle

• Define thread class and runnable interface

• State thread priorities

• Point out synchronisation

• Illustrate deadlock

• Explain suspending, resuming and stopping threads

11.1 Introduction :

Java Utility package is one of the most commonly used packages in the
java program. The Utility Package of Java consists of the following components:

• Collections framework

• Legacy collection classes

• Event model

UTILITIES &
MULTITHREADING

Unit

11

178

Object Oriented
Concepts &

Programming–1
(Core Java)

• Date and time facilities

• Internationalisation

Miscellaneous utility classes such as string tokeniser, random–number
generator and bit array

In this unit, we will be studying about details of these utility packages
as well as about multithreading.

11.2 Comparing Arrays : Java Util :

This section shows you how to determine the given arrays are same or
not. The given program illustrates you how to compare arrays according to
the content of that in this section, you can see that the given program initializes
two arrays and input five numbers from user through the keyboard. And then
program checks whether the given taken both arrays are same or not. This
comparison operation is performed by using the equals () method of Arrays
class.

public class ComparingArrays{

public Arrays.equals():

Above method compares two arrays.

Arrays is the class of the java.util.*; package. This class and it's methods
are used for manipulating arrays.

Here is the code of the program :

import java.io.*;

import java.util.*;

classArrayDemo{

static void main(String[] args) throws

IOException{ int[] array1 = new int[5];

int[] array2 = new int[5];

BufferedReader br = new BufferedReader(new InputStreamReader
(System.in));

try{

System.out.println("Enter 5 numbers for the first Array : ")

for(int i = 0; i < array1.length; i++){

array1[i] = Integer.parseInt(br.readLine());

}

System.out.println("Enter 5 numbers for the second Array : ")

for(int i = 0; i < array2.length; i++){

array2[i] = Integer.parseInt(br.readLine());

}

}

catch(NumberFormatException ne){

ne.printStackTrace();

}

179

Utilities &
Multithreading

boolean check = Arrays.equals(array1, array2);

if(check == false)

System.out.println("Arrays are not same.")

else

System.out.println("Both Arrays are same").

}

}

 Check Your Progress – 1 :
1. Write a note on Arrays.equals().

2. Explain arrays class.

...

...

...

...

...

11.3 Creating a Hash Table : Java Util :

Figure 11.1 Hash Table

This section explains the implementation of the hash table. "What is the
hash table and how to create that ? Hash Table holds the records according

xmog_base

xmog_java_ref

java::lang::Object

java::lang::Iterable

java::util::Collection java::lang::Cloneable

java::util::AbstractCollection java::util::Set

java::util::AbstractSet java::io::Serializable

java::util::HashSet

180

Object Oriented
Concepts &

Programming–1
(Core Java)

to the unique key value. It stores the non–contiguous key for several values.
Hash Table is created using an algorithm (hashing function) to store the key
and value regarding to the key in the hash bucket. If you want to store the
value for the new key and if that key is already exists in the hash bucket
then the situation known as collision" occurs which is the problem in the hash
table i.e. maintained by the hashing function. The drawback is that hash tables
require a little bit more memory and that you cannot use the normal list
procedures for working with them.

This program simply asks you for the number of entries which have to
enter into the hash table and takes one–by–one key and its value as input.
It shows all the elements with the separate key.

 Code Description :

Hashtable<Integer, String> hashTable = new Hashtable<Integer,
String>():

Above code creates the instance of the Hashtable class. This code is
using the type checking of the elements which will be held by the hash table.

hashTable.put(key, in.readLine()):

Above method puts the values in the hash table regarding to the unique
key. This method takes two arguments in which, one is the key and another
one is the value for the separate key.

Map<Integer, String> map = new TreeMap<Integer, String>
(hashTable):

Above code creates an instance of the TreeMap for the hash table which
name is passed through the constructor of the TreeMap class. This code creates
the Map with the help of the instance of the TreeMap class. This map has
been created in the program for showing several values and it's separate key
present in the hash table. This code has used the type checking.

 Check Your Progress – 2 :
1. What is the drawback for hash tables ?

2. Which method puts the values in hash table ?

...

...

...

...

...

11.4 Multi–Threading :

Figure 11.2 Multithreading

181

Utilities &
Multithreading

Figure 11.3 Thread Life Cycle

Java provides built–in support for multithreaded programming. A
multithreaded program contains two or more parts that can run concurrently.
Each part of such a program is called a thread and each thread defines a separate
path of execution.

A multithreading is a specialised form of multitasking. Multitasking
threads require less overhead than multitasking processes.

There is another term to be defined related to threads: process: A process
consists of the memory space allocated by the operating system that can contain
one or more threads. A thread cannot exist on its own; it must be a part of
a process. A process remains running until all of the non–daemon threads are
done executing.

Multithreading enables you to write very efficient programs that make
maximum use of the CPU, because idle time can be kept to a minimum.

 Check Your Progress – 3 :
1. What do you mean by thread?

2. Explain a process.

...

...

...

...

...

11.5 Thread Life Cycle :

The thread passes many stages in its life cycle including being born,
starting, running and dying. Following diagram shows complete life cycle of
a thread.

New Thread()

Start()
run()

End of execution

Sl
ee

p(
),

wait
()

New

Runnable

Running

Dead

Waiting

Figure 11.4 Thread Life Cycle

182

Object Oriented
Concepts &

Programming–1
(Core Java)

Above mentioned stages are explained here:

• New – At this stage the thread is also referred to as a born thread and
it is where the life cycle of the thread begins. A thread shall remain
in this state until the program starts it.

• Runnable – at this stage a thread is executing its task. After it is started
a thread becomes runnable.

• Waiting – While waiting for another thread to perform its task, a thread
tends to transition into the waiting stage. A thread transitions back to
the runnable state only when another thread signals the waiting thread
to continue executing.

• Timed waiting – A runnable thread can enter the timed waiting state
for a specified interval of time. A thread in this state transition back
to the runnable state when that time interval expires or when the event
it is waiting for occurs.

• Terminated – A runnable thread enters the terminated state when it
completes its task or otherwise terminates.

 Check Your Progress – 4 :
1. Draw a diagram showing complete life cycle of a thread.

2. Explain multithreading.

...

...

...

...

...

11.6 The Thread Class and the Runnable Interface :

Figure 11.5 Thread Class and Runnable Interface

The easiest way to create a thread is to create a class that implements
the Runnable interface.

To implement Runnable, a class need only implement a single method
called run (), which is declared like this:

public void

run()

You will define the code that constitutes the new thread inside run()
method. It is important to understand that run() can call other methods, use
other classes and declare variables, just like the main thread can.

183

Utilities &
Multithreading

After you create a class that implements Runnable, you will instantiate
an object of type Thread from within that class. Thread defines several
constructors. The one that we will use is shown here :

Thread(Runnable threadOb, String threadName)

Here threadOb is an instance of a class that implements the Runnable
interface and the name of the new thread is specified by threadName.

After the new thread is created, it will not start running until you call
its start () method, which is declared within Thread. The start () method
is shown here :

 Check Your Progress – 5 :
1. What is the easiest way to create a thread ?

2. Explain how to implement runnable interface.

...

...

...

...

...

11.7 Thread Priorities :

Every Java thread has a priority that helps the operating system determine
the order in which threads are scheduled.

Java priorities are in the range between MIN_PRIORITY (a constant of
1) and MAX_PRIORITY (a constant of 10). By default, every thread is given
priority NORM_PRIORITY (a constant of 5).

Threads with higher priority are more important to a program and should
be allocated processor time before lower–priority threads. However, thread
priorities cannot guarantee the order in which threads execute and are very
much platform dependent.

 Creating a Thread :

Java defines two ways in which this can be accomplished:

• You can implement the runnable interface.

• You can extend the thread class, itself

 Check Your Progress – 6 :
1. Define the two ways to create a thread.

2. Give the range of Java priorities?

...

...

...

...

...

184

Object Oriented
Concepts &

Programming–1
(Core Java)

11.8 Synchronisation :

Figure 11.6 synchronisation

When two or more threads need access to a shared resource, they need
some way to ensure that the resource will be used by only one thread at a
time.

The process by which this synchronisation is achieved is called thread
synchronisation.

The synchronised keyword in Java creates a block of code referred to
as a critical section. Every Java object with a critical section of code gets
a lock associated with the object. To enter a critical section, a thread needs
to obtain the corresponding object's lock.

This is the general form of the synchronised statement:

synchronised(object)

{

//statements to be synchronised

}

Here, object is a reference to the object being synchronised. A synchronised
block ensures that a call to a method that is a member of object occurs only
after the current thread has successfully entered object's monitor.

Here is an example, using a synchronised block within the run () method:

//The given below program uses a synchronised block

//File Name Call.java

class Callme

{

voidmessage(String msg)

{

System.out.println("[" + msg);

Try

{

Thread. sleep (1000);

}

catch (InterruptedException e)

{

System.out.println ("Interrupted");

}

Syncronization

Syncronized Method Syncronized Block

Syncronized Instance Method Syncronized Static Method

185

Utilities &
Multithreading

System.out.println ("]");

}

}

//File Name: Caller java

class Caller implements Runnable

{

String msg

Callme target;

Thread t;

public Caller (Callme targ, String s)

{

target=targ

msg=s;

t=new thread (this);

t.start ()

}

//synchronize calls to call ()

public void run ()

{

synchronised (target) //synchronised block

{

target.call(msg)

}

}

}

//File Name: Synch.java

Class synch

{

public static void main (String args[])

{

Callme target=new Callme();

Caller ob1=new Caller (target, "Hello");

Caller ob2=new Caller (target, "Synchronised ");

Caller ob3=new Caller (target,"World");

//Wait for threads to end

try

{

ob1.t.join();

ob2.t.join();

186

Object Oriented
Concepts &

Programming–1
(Core Java)

ob3.t.join();

} catch (InterruptedException e)

{

System.out.println ("Interrupted")

}

}

}

The above program will produce the given output:

[Hello]

[World]

[Synchronised]

 Check Your Progress – 7 :
1. Write the general form of synchronised statement.

2. What do you mean by critical section ?

...

...

...

...

...

11.9 Deadlock :

Figure 11.7 Deadlock

A special type of error that you need to avoid that relates specifically
to multitasking is deadlock, which occurs when two threads have a circular
dependency on a pair of synchronised objects.

For example, suppose one thread enters the monitor on object X and
another thread enters the monitor on object Y. If the thread in X tries to call
any synchronised method on Y, it will block as expected. However, if the thread
in Y, in turn, tries to call any synchronised method on X, the thread waits
forever, because to access X, it would have to release its own lock on Y so
that the first thread could complete.

Example :

To understand deadlock fully, it is useful to see it in action. The next
example creates two classes, A and B, with methods foo () and bar(),
respectively, which pause briefly before trying to call a method in the other
class.

Thread 3 Thread 2

Thread 1

Holds R3,
need R1

Holds R2,
need R3

Holds R1,
need R2

187

Utilities &
Multithreading

The main class, named Deadlock, creates an A and a B instance and
then starts a second thread to set up the deadlock condition. The foo () and
bar() methods use sleep() as a way to force the deadlock condition to occur.

Class A

{

Synchronised void foo (B b)

{

String name = Thread.currentThread (). getName ();

System.out.println (name + "entered a.foo");

try

{

Thread.sleep (2000);

} catch (Exception e)

{

System.out.println ("A Interrupted");

}

System.out.println (name + "trying to call B.last ()");

b.last ();

}

Synchronised void last ()

{

System.out.println ("Inside A.last");

}

}

Class B

{

Synchronised void bar (A a)

{

String name = Thread.currentThread ().getName();

System.out.println (name + "entered B.bar");

try

{

Thread.sleep (1000);

} catch (Exception e)

{

System.out.println ("B Interrupted");

}

System.out.println (name + "trying to call A.last ()");

a.last ();

188

Object Oriented
Concepts &

Programming–1
(Core Java)

}

Synchronised void last ()

{

System.out.println ("Inside A.last");

}

}

Class Deadlock implements Runnable

{

A a= new A ();

B b = new B ();

Deadlock ();

{

Thread.currentThread ().setName("Main Thread"); Thread t = new Thread

(this, "Racing Thread"); t.start ();

a.foo (b); //get lock on a in this thread System.out.println

("Back in main thread");

}

public void run ()

{

b.bar (a); //get lock on b in other thread

System.out.println ("Back in other thread");

}

public static void main (String args [])

{

new Deadlock ();

}

}

The output of the above program will be

MainThread entered A.foo

RacingThread entered B.bar

MainThread try to call B.last ()

RacingThread trying to call

A.last ()

As the program is deadlocked, you need to press CTrl–C to end the
program. You can see a full thread and monitor cache dump by pressing Ctrl–
Break.

You will see that Racing Thread owns the monitor on b, while it is waiting
for the monitor on a. At the same time, Main Thread owns a and is waiting
to get b. This program will never complete.

189

Utilities &
Multithreading

As this example illustrates, if your multithreaded program locks up
occasionally, deadlock is one of the first condition that you should check for.

Ordering Locks

A common threading trick to avoid the deadlock is to order the locks.
By ordering the locks, it gives threads a specific order to obtain multiple locks.

 Check Your Progress – 8 :
1. What is the trick to avoid deadlock?

2. What should be checked if the multithreaded program is locked
occasionally ?

...

...

...

...

...

11.10 Suspending, Resuming and Stopping Threads :

While the suspend (), resume () and stop() methods defined by Thread
class seem to be a perfectly reasonable and convenient approach to managing
the execution of threads, they must not be used for new Java programs and
obsolete in newer versions of Java.

The following example illustrates how the wait () and notify () methods
that are inherited from Object can be used to control the execution of a thread.

This example is similar to the program in the previous section. However,
the deprecated method calls have been removed. Let us consider the operation
of this program.

The NewThread class contains a boolean instance variable named
suspendFlag, which is used to control the execution of the thread. It is initialised
to false by the constructor.

The run() method contains a synchronised statement block that checks
suspendFlag. If that variable is true, the wait() method is invoked to suspend
the execution of the thread. The mysuspend() method sets suspendFlag to true.
The myresume() method sets suspendFlag to false and invokes notify() to
wake up the thread. Finally, the main() method has been modified to invoke
the mysuspend() and myresume() methods.

 Check Your Progress – 9 :
1. Write a multithreaded program to create threads and use suspend and

resume methods to transfer control.

2. Explain the execution of suspend, resume and stop threads.

...

...

...

...

...

190

Object Oriented
Concepts &

Programming–1
(Core Java)

3. Java package is one of the most commonly used packages
in the java program.

(A) Net (B) IO (C) Utility (D) Lang

4. is not the components of JAVA Utility

(A) Collections framework (B) Legacy collection classes

(C) Event model (D) Illustrate deadlock

5. at this stage a thread is executing its task. After it is started
a thread becomes .

(A) New (B) Runnable (C) Waiting (D) Terminated

6. To implement Runnable, a class need only implement a single method
called (),

(A) Start (B) Run (C) Terminate (D) Void

7. A runnable thread enters the terminated state when it completes
its task or otherwise .

(A) New (B) Runnable (C) Waiting (D) Terminated

11.11 Let Us Sum Up :

This section shows you how to determine the given arrays are same or
not. The given program illustrates you how to compare arrays according to
the content of that.in this section, you can see that the given program initializes
two arrays and input five numbers from user through the keyboard. And then
the program checks whether the given taken both arrays are same or not. This
comparison operation is performed by using the equals () method of Arrays
class. This section explains the implementation of the hash table. What is the
hash table and how to create that? Hash Table holds the records according
to the unique key value. It stores the non–contiguous key for several values.
Hash Table is created using an algorithm (hashing function) to store the key
and value regarding to the key in the hash bucket. If you want to store the
value for the new key and if that key is already exists in the hash bucket
then the situation known as collision. It occurs when there is the problem in
the hash table maintained by the hashing function.

Java provides built–in support for multithreaded programming. A
multithreaded program contains two or more parts that can run concurrently.
Each part of such a program is called a thread and each thread defines a separate
path of execution.

A multithreading is a Specialized form of multitasking. Multitasking
threads require less overhead than multitasking processes. There is another term
to be defined related to threads: process: A process consists of the memory
space allocated by the operating system that can contain one or more threads.
A thread cannot exist on its own; it must be a part of a process. A process
remains running until all of the non–daemon threads are done executing.

There is also understanding related to Thread life cycle. A thread goes
through various stages in its life cycle. For example, a thread is born, started,
runs and then dies. Following diagram shows complete life cycle of a thread.

There is a mention about Thread Priority, every Java thread has a priority
that helps the operating system determine the order in which threads are
scheduled.

191

Utilities &
Multithreading

Java priorities are in the range between MIN_PRIORITY (a constant of
1) and MAX_PRIORITY (a constant of 10). By default, every thread is given
priority NORM_PRIORITY (a constant of 5).

Threads with higher priority are more important to a program and should
be allocated processor time before lower–priority threads. However, thread
priorities cannot guarantee the order in which threads execute and are very
much platform dependent. There is a learning related to When two or more
threads need access to a shared resource, they need some way to ensure that
the resource will be used by only one thread at a time. The process by which
this synchronization is achieved is called thread synchronization.

The synchronized keyword in Java creates a block of code referred to
as a critical section. Every Java object with a critical section of code gets
a lock associated with the object. To enter a critical section, a thread needs
to obtain the corresponding object's lock.

There is understanding related to a Dead lock, a special type of error
that you need to avoid that relates specifically to multitasking is deadlock, which
occurs when two threads have a circular dependency on a pair of synchronised
objects.

About Suspending, Resuming and Stopping Threads

Further there is a understanding about While the suspend (), resume
() and stop() methods defined by Thread class seem to be a perfectly reasonable
and convenient approach to managing the execution of threads, they must not
be used for new Java programs and obsolete in newer versions of Java.

11.12 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 11.2

 Check Your Progress 2 :

See Section 11.3

 Check Your Progress 3 :

See Section 11.4

 Check Your Progress 4 :

See Section 11.5

 Check Your Progress 5 :

See Section 11.6

 Check Your Progress 6 :

See Section 11.7

 Check Your Progress 7 :

See Section 11.8

 Check Your Progress 8 :

See Section 11.9

192

Object Oriented
Concepts &

Programming–1
(Core Java)

 Check Your Progress 9 :

1 : See Section 11.10 2 : See Section 11.10

3 : C 4 : D 5 : B 6 : B 7 : D

11.13 Glossary :

1. Collision – If you want to store the value for the new key and if that
key is already exists in the hash bucket then the situation known as
collision occurs which is the problem in the hash table maintained by
the hashing function.

2. Multithreading – A multithreading is a Specialized form of multitasking.
Multitasking threads require less overhead than multitasking processes.

3. Synchronized keyword – The synchronized keyword in Java creates a
block of code referred to as a critical section. Every Java object with
a critical section of code gets a lock associated with the object.

11.14 Assignment :

Write a program to create multiple threads

11.15 Activities :

1. Describe the important methods available in thread class.

2. Write a program to remove deadlock

11.16 Case Study :

Every program has at least one thread. Programs without multithreading
executes sequentially. That is, after executing one instruction the next instruction
in sequence is executed. If a function is called then until the completion of
the function the next instruction is not executed. Similarly if there is a loop
then instruction safer loop only gets executed when the loop gets completed.
Consider the following java program having three loops.

11.17 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2,E. Balagurusamy, Tata McGraw Hill, 1998,
reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

BLOCK SUMMARY :

The Unit No. 9 of this Block we have understood Inheritance is one
of the cornerstones of OOP because it allows for the creation of hierarchical
classifications. Using inheritance, you can create a general class that defines
traits common to a set of related objects, that is, objects with common attributes
and behaviors. The various needs of inheritance are 1. Closer to Real–World,
2. Code Reusability ad 3. Transitive Nature

The study of Generalisation/ Specialisation has made us understand
Syntax, Create a superclass then Create a subclass by extending class A and
also the subclass has access to all public members of its superclass. Then further
studied that Polymorphism allows one interface to be used for a set of actions
i.e. one name may refer to different functionality. Polymorphism allows an
object to accept different requests of a client (it then properly interprets the
request like choosing appropriate method) and responds according to the current
state of the runtime system, all without bothering the user. There are two types
of polymorphism, 1. Compile–time polymorphism, 2. Runtime Polymorphism.

We understood Method Overriding, if a class inherits a method from its
super class, then there is a chance to override the method provided that it is
not marked final. Overriding means redefining a method in an inheritance
hierarchy. In a class hierarchy, when a method in a subclass has the same name
and type signature as a method in its superclass then the method in the subclass
is said to override the method in the superclass. We have also understood in
detail all Rules for method overriding. There is also good understanding about
the final keyword has mainly three uses 1. Creating constants, 2.Preventing
method overriding, and 3. Preventing inheritance

Unit No. 10 Deals with an exception is a problem that arises during
the execution of a program. It is a runtime error. In some of the languages,
which do not support exception handling, errors must be checked and handled
manually typically through the use of error codes and so on. This approach
is quite cumbersome and troublesome.

Then there is understanding relating to the predefined Exception, Java
provides several predefined Exception classes in the package java.lang. To
understand how exception handling works in Java, you need to understand these
categories of exceptions :

1. Checked exceptions

2. Unchecked exceptions

3. Errors

193

194

Object Oriented
Concepts &

Programming–1
(Core Java)

"When the exceptions are not caught in a try/catch block, then what you
often see in practice is Java prints the exception stack trace and then terminates
your program. Java actually handles uncaught exceptions according to the thread
in which they occur. When an uncaught exception occurs in a particular thread,
Java looks for what is called an uncaught exception handler, actually an
implementation of the interface Uncaught Exception Handler. The latter interface
has a method handle Exception (), which the implementer overrides to take
appropriate action, such as printing the stack trace to the console."

We have understood that Java Exception handling is managed using five
keywords – a. try, b. catch, c. throw, d. throws and finally e. finally.

Catching Exceptions : A method catches an exception using a combination
of the try and catch keywords. A try/catch block is placed around the code
that might generate an exception. Code within a try/catch block is referred
to as protected code

User defined exceptions : You can create your own exceptions in Java.
Keep the following points in mind while writing your own exception classes:

• All exceptions must be a child of Throwable.

• If you want to write a checked exception that is automatically enforced
by the Handle or Declare Rule, you need to extend the Exception class.

• If you want to write a runtime exception, you need to extend the
RuntimeException class.

Using Throws/throw Keywords: This means that there should be a code
somewhere in the program that could catch the exception. We use throw
statement to throw an exception or simply use the throw keyword with an object
reference to throw an exception. Know after that we understood. The finally
keyword is used to create a block of code that follows a try block. A finally
block of code always executes, whether or not an exception has occurred.

Using a finally block allows you to run any cleanup–type statements that
you want to execute, no matter what happens in the protected code.

We have also understood about Nested Try Statement in Java we can
have nested try and catch blocks. It means that, a try statement can be inside
the block of another try. If an inner try statement does not have a matching
catch statement for a particular exception, the control is transferred to the next
try statement's catch handlers that are expected for a matching catch statement.
This continues until one of the catch statements succeeds, or until the entire
nested try statements are done in. If no one catch statements match, then the
Java run–time system will handle the exception

BLOCK ASSIGNMENT :

 Short Questions :

1. What are checked and unchecked exceptions ?

2. Why super keyword used ?

3. How to prevent deadlocks between threads ?

4. If a class is final class, can we have extended class? State true/false.

5. What is static polymorphism and dynamic polymorphism ?

 Long Questions :

1. Life Cycle of Thread

2. Difference between Overloading and Overriding methods with an example ?

3. Create a class USERTRAIL with following specifications.

val1, val2 type int

Methods:

boolean show () will check if val1 and val2 are greater or less than Zero.

Have constructor which will val1, val2 and check whether if it is less
than 0 then raise a custom Exception (name : Illegal value exception.)

195

196

Object Oriented
Concepts &

Programming–1
(Core Java)

 Enrolment No. :

1. How many hours did you need for studying the units ?

Unit No. 9 10 11

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

...

...

...

...

...

...

...

...

Object Oriented Concepts &
Programming–1 (Core Java)

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 4 : ABSTRACT WINDOW TOOLKIT AND WORKING
WITH FILES

UNIT 12 APPLET

UNIT 13 APPLET GRAPHICS

UNIT 14 ABSTRACT WINDOW TOOLKIT

UNIT 15 WORKING WITH FILES

BCAR-204/
DCAR-204

Block Introduction :
Block Introduction

1. Applet

2. Applet Graphics

3. Abstract Window Toolkit and

4. Working with Files

The learning about window toolkits has great details relating to the
Window fundamentals, Explanation related working with Applet, Applet's graphics
and controls, State layout managers and event handling, Describe adapter classes,
inner classes, anonymous inner classes, Discuss applet fundamentals and applet
lifecycle, Define i/o streams, Describe reading console input and writing console
output, Explain reading and writing files and Discuss serialization. This is also
important as long as bringing confidence level amongst learner about further
Programming part.

Block Objectives :
After learning this block, you will be able to :

• Explain working with Applet and Applet's Graphics

• Explain working with graphics and controls

• State layout managers and event handling

• Describe adapter classes, inner classes, anonymous inner classes

• Discuss applet fundamentals and applet lifecycle.

• Define i/o streams

• Describe reading console input and writing console output

• Explain reading and writing files

• Discuss serialization

Block Structure :
Unit 12 : Applet

Unit 13 : Applet Graphics

Unit 14 : Abstract Window Toolkit

Unit 15 : Working With Files

ABSTRACT WINDOW
TOOLKIT AND

WORKING WITH FILES

197

UNIT STRUCTURE

12.0 Learning Objectives

12.1 Introduction

12.2 Difference between Applet and Application

12.3 Applet Life Cycle

12.4 Creating an Applet

12.5 Applet Tag

12.6 Reading Parameters into Applet

12.7 Implementation of Background Colour

12.8 Implementation of Font in Applet

12.9 Let Us Sum Up

12.10 Suggested Answer for Check Your Progress

12.11 Glossary

12.12 Assignment

12.13 Activities

12.14 Case Study

12.15 Further Readings

12.0 Learning Objectives :

After learning this unit, you will be able to understand the use of :

• Difference between Applet and Application

• Applet Life Cycle

• Applet Tag

• How to creating Applet

• Reading parameters into Applet

• Implementation of Background colour in Applet

• Implementation of Font colour in Applet

12.1 Introduction :

Java applet is a special kind of program that execute in web browser.
Java applet program is downloaded from internet and run on web browser.
Java applet is classically wrapped inside a web page and execute in the context
of web browser. To Wrapped up it used Hypertext Markup language (HTML).
The Java applet does not have any control of local computer.

Downloading an applet code from the internet and executing it on our
local computer is sometimes dangerous, as that applet any have some spurious
code. Therefore, the java developers have introduced some security restrictions
regarding the downloading and usage of the applets.For example, applets are

APPLET
Unit

12

198

Object Oriented
Concepts &

Programming–1
(Core Java)

not allowed to read or write to our local disk. This restriction is necessary,
as an applet may accidentally or wantonly destroy any data stored in the local
machine. Applets are split into small packets named bytecodes and travel across
the network. These byte codes are reassembled by the Java Virtual Machine
(JVM) in the receiving machine and executed by the web browser. The Applet
does not executed directly.

The browser that executes an applet is generally known as applet container.
The JDK includes the appletviewer, for testing applets as we develop them
and before we embed them in the browser.

The applet is a subclass of the java.applet.Applet class. The Applet class
provide an interface between the applet and web browser environment. The
Applet class hierarchy is shown below:

The following program show simple applet :

import java.awt.*;

import java.applet.*;

public class Appletdemo extends Applet

{

public void paint(Graphics g)

{

g.drawString("The First Applet", 65,35);

}

}

Here you may notice that java program does not contain main() method
and System.out.println() method. How to save, compile and execute the applet
program will learn latter on in this unit. Here we need to understand that Applets
use only graphics methods for show any output which we called window based
output. For showing window based output java required graphics supports. To
generate graphics applet required Java's Abstract Window Toolkit (AWT).
Therefore to create applet program we required java.applet and java.awt packages
to be imported.

12.2 Difference between Applet and Application :

Java application runs by JIT under JVM. Java application can be CUI
or GUI interface. Applet can be run on either applet viewer tool or using web
browser. For the security purpose applet does not have rights to access the
local machine resource. Application can be access the local machine's resource.
Applet execute at remote server and run on local machine. Application execute
and run on local machine.

Java.lang.Object Java.awt.Component Java.awt.Container

Java.awt.Panel

Java.awt.AppletFigure 12.1 Applet Hierarchy

199

AppletTable 12.1 : Applet v/s Application

12.3 Applet Life Cycle :

Let us learn about Applet Lifecycle. Applet runs in the browser and their
lifecycle methods are called by JVM after it is loaded and destroyed. You can
see here the lifecycle methods of an Applet :

init(): method of this kind is called to initialised an applet.

start(): method of this kind is called after the initialization of the applet.

stop(): This method would be called multiple times in the life cycle of
an Applet.

destroy(): This method is called once in the life cycle of the applet when
applet is destroyed.

init () method: Now we need to understand that the life cycle of an applet
is going to begin when there a time the applet is first loaded into the browser
and then called the init() method. The init() method is called only one time
in the life cycle on an applet. The init() method is mostly called to read the
PARAM tag in the html file. The init () method retrieves the passed parameter
through the PARAM tag of html file using get Parameter() method. The various
initialization such as initialization of variables and the objects like image, sound
file are loaded in the init () method thereafter the initialization of the init ()
method then user can interact with the Applet and generally applet contains
the init() method.

public void init()

{

……

……

}

Applet

Every Applets must have paint()
method. Paint method is used to paint
the applet.

Applet require web browser for their
execution.

Applet can be run using appletviewer
tool.

An applets written by any developer
in the world and may be dynamically
download from a web server and
execute on a client PC.

Application

Every Application have main()
method, which is starting point of
Application.

Application can be directly executed.

Java interpreters (JIT) run the
application.

We require JVM to run java
application.

Begin Born Running Idle Dead

init () Paint () Stop ()

Start () Start ()

End

Destroy ()

Figure 12.2 Applet Life Cycle

200

Object Oriented
Concepts &

Programming–1
(Core Java)

Start () method: In this method an applet is called after the initialization
method init(). Hence this method may be called multiple times when the Applet
needs to be started or restarted. To understand this we take an example, in
case of the user wants to return to the Applet, then in this situation the start
Method() of an Applet will be called by the web browser and the user will
be back on the applet. In the start method user can interact within the applet.

public void start()
{

……
……

}
The paint() method is called by the applet container after start() method.

This method is used whenever applet has to perform some output operations
on the screen. Typical actions performed here involve drawing with the graphics
object g that is passed to the paint method by the applet container.

public void paint(Graphics g)
{

……
……

}
Stop () method: this stop () method can be called many times in the

life cycle of applet like the start () method or otherwise should be called at
least one time. There is only minor difference between the start() method and
stop () method. Take for example, the stop() method is called by the web
browser on that time or occasion when the user leaves one applet to go to
another applet and the start() method is called on that time, when the user
wants to go back into the first program or Applet.

public void stop()
{

……
……

}
destroy() method: this destroy() method is called only one(once) time

in the life cycle of Applet like init() method. This method is going to be called
only on that time when the browser needs to Shut down.

public void destory()
{

……
……

}

12.4 Creating an Applet :

We already see the applet program in unit 1.1. Now its time to discuss
the program in detail. For creating and executing the applet program we need
to follow the bellow steps :

201

Applet1. writing the applet code and save it in .java file

2. compiling the java file and generate .class file

3. writing the HTML code and save it as .html file

4. invoking the appletviewer tool and execute the command "appletviewer
Appletdemo.html"

The following program show simple applet :

import java.awt.*;

import java.applet.*;

public class Appletdemo extends Applet

{

public void paint(Graphics g)

{

g.drawString("The First Applet", 65,35);

}

}

Save this program with Appletdemo.java and compile it on command
prompt as follow :

javac Appletdemo.java

Now create other file which contains HTML tag. This is below :

<html>

<head>

</head>

<body>

<applet code = "FirstApplet.class" width= 500 height=400>

</applet>

</body>

</html>

Save the above code with named Appletdemo.html

Now for Running an Applet write following on command prompt:

C:> appletviewer Appletdemo.html

In the above program, applet window has a width 500 and height 400
pixel. The Strign "The First Applet" is displayed at the x,y co–ordinate 65,
35 of the display area.

Here note that for the purpose of displaying the figures on the screen,
the upper left corner of the screen is always taken as the origin(0,0). While
the x–coordinate increases horizontally to the right, the y–coordinate increases
vertically downwards, as shown below.

202

Object Oriented
Concepts &

Programming–1
(Core Java)

Figure 12.3 Applet Starting Point

Instead of creating two programs, an applet program and another html
file to execute the applet, the applet element of html file can be embedded
within the applet program itself as a comment. By this way, the html and applet
program can be combined and executed as a single program.

Following program shows how to create Applet. In this program HTML
code is write in .java file.

import java.awt.*;

import java.applet.*;

/*

<applet code = "FirstApplet.class" width= 400 height=300>

</applet>

*/

public class FirstApplet extends Applet

{

public void paint(Graphics g)

{

g.drawString("The First Applet", 65,35);

}

}

Figure 12.4 Output of Program

X increase in this direction
(0, 0)

Y increase in
this direction

203

AppletTo invoke above program, write the following on command prompt

appletviewer FirstApplet.java

Now we need to discuss some important methods of Applet. The bellow
table 12.2 gives a brief description of methods available under Applet Class:

Table 12.2 : Methods defined in Applet Class

 Check Your Progress – 1 :
1. Explain Applet Life Cycle.

...

...

...

...

...

12.5 Applet Tag :

The Applet tag is used to start an applet from both an HTML document
and from an applet viewer.

Syntax of Applet Tag :

<Applet

[CODEBASE = codebase URL]

CODE = appletFile

[ALT = alternate Text]

[NAME = appletInstanceName]

WIDTH = pixels

HEIGHT = pixels

[ALIGN = ALIGNMENT]

[VSPACE = pixels]

[HSPACE = pixels]

Method

String getAppletInfo()

String getParameter(String name)

String[][] getParameterInfo()

URL getCodeBase()

URL getDocumentBase()

boolean isActive()

void resize(int width, int height)

void showStatus(String s)

Description

Returns the details of applet in String

Returns parameter 'name' in string

Returns a string table that is defined
in the applet

Returns the URL associated with the
applet

Returns the URL of the HTML page
that contains the applet.

Returns true if applet started and
returns false if applet is stopped.

Resize the window as per 'width' and
'height'

Show the status 's' in window browser

204

Object Oriented
Concepts &

Programming–1
(Core Java)

>
[<PARAM NAME = attribute 1 VALUE = attribute Vale1>]
[<PARAM NAME = attribute 2 VALUE = attribute Vale2>]
………
</Applet>
CODEBASE
If the applet resides in the same directory in which the html file resides,

this entry may be omitted. Otherwise, this entry is used to specify the URL
of the directory in which the applet resides.

CODE
To specify the name of the class file that has been obtained by compiling

the applet program. This attribute is compulsory.
ALT
This entry is optional. Certain web browsers are non–java enabled

browser. They cannot recognize and execute the applet code. Such browsers
will display this alternate text in the place of the applet's output.

NAME
This entry is optional. This entry specifies a name for the applet. Other

applets on the same page can refer to this applet with the help of this name.
WIDTH and HEIGHT
To specify the width and height of the applet output frame. This frame

is part of the web page.
ALIGN
This entry is optional. This entry specifies the alignment, according to

which the applet's output will appear. Possible values are LEFT, RIGHT, TOP,
TEXTTOP, MIDDLE, ABSMIDDLE, BASELINE, BOTTOM, ABSBOTTOM.

VSPACE
This entry is optional. This entry specifies the amount of vertical blank

space that the web page should have surrounding the applet's output frame.
HSPACE
This entry is optional. This entry specifies the amount of horizontal blank

space that the web page should have surrounding the applet's output frame.
PARAM
The PARAM is used to specify applet specific arguments in an HTML

page.

 Check Your Progress – 2 :
1. Explain steps for creating applet.

2. Explain the various method of applet class.

...

...

...

...

...

205

Applet12.6 Reading Parameters into Applet :

Applet can also read the data using parameters. To read the data applet
tag use "PARAM" attribute. By using the attribute applet bring data into applet.
The getParameter() method returns the value of parameter in String format.
For other than String type data we need to explicit convert string type to concern
type.

Following applet retrieves String values from PARAM tag which is
associated with HTML tag.

import java.awt.*;

import java.applet.*;

/*

<applet code = "ParameterDemo.class" width= 400 height=300>

<param name = "uniname" value = "BAOU">

</applet>

*/

public class ParameterDemo extends Applet

{

public void paint(Graphics g)

{

String s = getParameter("uniname");

g.drawString(s, 100,100);

}

}

Figure 12.5 Output of Program

Following applet retrieves int values from PARAM tag which is associated
with HTML tag.

206

Object Oriented
Concepts &

Programming–1
(Core Java)

import java.awt.*;

import java.applet.*;

/*

<applet code = "DemoSum.class" width= 400 height=300>

<param name = "v1" value = "100">

<param name = "v2" value = "200">

</applet>

*/

public class ParaDemoSum extends Applet

{

public void paint(Graphics g)

{

String s1 = getParameter("v1");

String s2 = getParameter("v2");

g.drawString("The First Value = " + s1 , 50,40);

g.drawString("The Second Value = " + s2 , 50,60);

int n1 = Integer.parseInt(s1);

int n2 = Integer.parseInt(s3);

int total = n1 + n2;

float average = total / 2;

g.drawString("The total = " + total , 50,100);

g.drawString("The average = " + average , 50,120);

}

}

Figure 12.6 Output of Program

207

Applet Check Your Progress – 3 :
1. Explain Applet Tag in detail.

...

...

...

...

...

12.7 Implementation of Background Colour in Applet :

We can set the background colour of applet using the value defined in
'Color' class. The Color values defined in Color class as follow :

Table 12.3 : Color Values Defined in Color Class

Color.black Color.lightGray Color.red

Color.darkGray Color.blue Color.gray

Color.magenta Color.white Color.cyan

Color.green Color.pink Color.yellow

We can also set the foreground colour of applet using the values defined
in 'Color' class. To set or get the background colour of applet, the method
used for the same is define in 'Component' which is mention as follow:

Table 12.4 : Methods for set / get Background colour

Color is achieved through three primary colors – red, green, blue. It's
range is 0 to 255.

The Syntax of the constructor of color

Color(int red, int green, int blue);

Color(int rgbValue);

For Example:

Color c = new Color(255,100,100);

g.setColor(c);

Following applet implements background color of applet.

import java.awt.*;

import java.applet.*;

/*

<applet code = "FirstApplet.class" width= 400 height=300>

</applet>

*/

Method

void setBackground(Color value)

Color getBackground()

Description

'value' colour set as background in
applet.

It returns the color name which set
as a background of applet.

208

Object Oriented
Concepts &

Programming–1
(Core Java)

public class FirstApplet extends Applet

{

public void paint(Graphics g)

{

setBackground(Color.black);

g.drawString("First Applet", 65,35);

}

}

Figure 12.7 Output of Program

12.8 Implementation of Font colour in Applet :

We can also set the foreground colour of applet using the values defined
in 'Color' class. The Color values defined in previous section. To set or get
the foreground colour of applet, the method used for the same is define in
'Component' which is mention as follow:

Table 12.5 : Methods for set / get Foreground colour

Following applet implements foreground color of applet.

import java.awt.*;

import java.applet.*;

/*

<applet code = "FirstApplet.class" width= 400 height=300>

</applet>

Method

Void setForeground(Color value)

Color getForeground()

Description

'value' colour set as foreground in
applet.

It returns the color name which set
as a foreground of applet.

209

Applet*/

public class FirstApplet extends Applet

{

public void paint(Graphics g)

{

setBackground(Color.black);

setForeground(Color.white);

g.drawString("First Applet", 65,35);

}

}

Figure 12.8 Output of Program

 Check Your Progress – 4 :
1. Explain parameter reading in to applet.

...

...

...

...

...

2. Applet is subcalss of .

(A) java.applet.Applet (B) java.applet.AWT

(C) java.applet.IO (D) java.applet.Thread

3. AWT stand for .

(A) Abstract Window Tool (B) ALL Window Toolkit

(C) Abstract Window Toolkit (D) Abstract Window Text

4. The first method of applet life cycle is .

(A) On() (B) paint () (C) start() (D) init()

210

Object Oriented
Concepts &

Programming–1
(Core Java)

5. The method is called by the applet container after start()
method.

(A) stop() (B) paint() (C) start() (D) init()

6. method is used whenever applet has to perform some output
operations on the screen.

(A) stop() (B) paint() (C) start() (D) init()

7. method is called only one(once) time in the life cycle of Applet
like init() method. .

(A) stop() (B) paint() (C) start() (D) destory()

8. To execute the applet tool is used.

(A) java (B) applet (C) appletviewer (D) paint

9. method of applet class returns the details of applet in String.

(A) getAppletInfo() (B) info()

(C) getApplet() (D) Detail()

10. The tag is used to start an applet from both an HTML
document and from an applet viewer.

(A) Head (B) Body (C) Applet (D) Java

11. The method returns the value of parameter in String format.

(A) param() (B) getvalue() (C) applet() (D) getParameter()

12.9 Let Us Sum Up :

In this Unit we have learned about applet which is defined by under
'Java.applet.Applet' package. We also discuss the different between Java
application and Java applet. Java applet does not have any rights to access
resources of local machine. Applet always called from remote machine and
run on local machine's web browser. To execute applet we require 'appletviewer'
tool. Java does not have main() method and system.out.println() method.
Applet is graphical interface which draw using paint() method.

Applet has its own life cycle that called applet life cycle. Applet transfer
from one stage to other stage during its life cycle, the stages are 'Born',
'Running', 'Idle', 'Dead'. Applet need to called various method to transfer from
one stage to other stage like init(), start(), stop(), destroy() methods.

To execute applet we required HTML code containing by .html file. The
appletviewer tool use this HTML code to execute applet in web browser. We
can pass data into applet using "PARAM" attribute. The getParameter() method
is used to get the value of parameter into applet. At the end we see how to
change the background colour and foreground colour of applet using 'Color'
class.

Applet has some advantage and disadvantage. The advantages are, applet
can work on all installed versions of java. Applet can work without any security
approval from the user. Applet is supported by most web browsers. Applet will
cache in most web browsers so will be quick to load when returning to a web

211

Appletpage. Applet can move the work from the server to the client, making a web
solution more scalable with the number of users/clients. The disadvantage are,
Applet requires the java plug–in which is not available by default on all web
browsers. Applet cannot start up until JVM is running. If applet is uncached,
it must be downloaded and this takes time.

12.10 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 12.3

 Check Your Progress 2 :

See Section 12.4

 Check Your Progress 3 :

See Section 12.5

 Check Your Progress 4 :

1 : See Section 12.6 2 : A 3 : C

4 : D 5 : B 6 : B 7 : D

8 : C 9 : A 10 : C 11 : D

12.11 Glossary :

1. Applet – Applet runs on web browser and does not access the local
machine resource.

2. Applet Life Cycle – Applet has four stages, 'Born', 'Running', 'Idle', 'Dead'
under applet life cycle.

3. Applet Tag – The Applet tag is used to start an applet from both an
HTML document and from an applet viewer.

4. Reading data into Applet – The PARAM attribute of applet tag is used
to pass the data in to applet.

5. Color class – Color class is used to set background and foreground color
of applet.

12.12 Assignment :

1. Write a note on Applet life cycle.

2. Write a note on Applet Tag.

3. Explain how to pass the data in to applet

12.13 Activities :

1. Write a program to show the different stage of Applet life cycle.

2. Write a program that set the yellow background colour of applet.

3. Write a program that set the blue background colour and yellow foreground
colour of applet.

12.14 Case Study :

1. Prepare the Chart of four stage of applet life cycle.

212

Object Oriented
Concepts &

Programming–1
(Core Java)

12.15 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000.

2. Java 2, the Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999.

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000.

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998.

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000.

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

213

UNIT STRUCTURE

13.0 Learning Objectives

13.1 Introduction

13.2 Drawing Line

13.3 Drawing Oval

13.4 Drawing Circle

13.5 Drawing Rectangle

13.6 Drawing Arcs

13.7 Drawing Polygons

13.8 Drawing Polyline

13.9 Delegation Event Model

13.10 Let Us Sum Up

13.11 Suggested Answer for Check Your Progress

13.12 Glossary

13.13 Assignment

13.14 Activities

13.15 Case Study

13.16 Further Readings

13.0 Learning Objectives :

After learning this unit, you will be able to understand the use of :

• Applet Graphics

• Can draw line in Applet

• Can Oval and Circle line in Applet

• Can draw Rectangle and Square in Applet

• Can draw Arcs in Applet

• Can draw Polygons and Polyline in Applet

• Delegation Event Model

• Basics of Form Design and Can draw Form using Text field, Text Area
and Button.

13.1 Introduction :

Java provide various kind of tools for designing graphics and user
interface. Such tools are available under the Abstract Window Toolkit (AWT)
package. The AWT package contains large number of classes for the graphics
and user interface. The AWT provides controls related to form designing such
as Textfield, TextArea, Button, Radio Button etc. Here, in this unit we discuss
the various graphics method that generate the shapes. Generally for the graphics

APPLET GRAPHICS
Unit

13

214

Object Oriented
Concepts &

Programming–1
(Core Java)

shapes we need to create the window and then graphics object create the shapes.
To create the window here we use applet. For create the shapes first we creating
applet window. The applet window is closable, it means once we click on close
icon (X) on the applet window, the applet window can be closed. Other way
to creating the window is using Frame class.

Java provides the graphics tools under 'java.awt.Graphics' class. We know
that applet is obtain from 'java.applet.Applet' class. For drawing the graphics
shape we need to pass the Graphics object to the paint () method.

13.2 Drawing Line :
To draw the line in applet we need to use following method.
Syntax :
public void drawLine(int x1, int y1, int x2, int y2);
This method draws the line with current color form (x1,y1) to (x2,y2)

points.
Following program draws Line on applet :
import java.awt.Graphics;
import java.applet.Applet;

/*
<applet code = "Straitline.class" width= 400 height=300>
</applet>
*/

public class Straitline extends Applet
{

public void paint(Graphics g)
{

g.drawLine(10,10,200,200);
}

}

Figure 13.1 Output of Program

215

Applet GraphicsWhen we run the above program it will draw the line form (10, 10)
coordinate to (200, 200) coordinates in applet.

13.3 Drawing Oval :

To draw the Oval in applet we need to use following method. The Oval
also called as Ellipse.

Table 13.1 : Methods drawing the Oval or Circle

Following program draws Empty Oval and filled Oval on applet :

import java.awt.Graphics;

import java.applet.Applet;

/*

<applet code = "Oval.class" width= 400 height=300>

</applet>

*/

public class Oval extends Applet

{

public void paint(Graphics g)

{

g.drawOval(10,25,100,130);

g.fillOval(140,25,100,130);

}

}

Method

public void drawOval(int x, int y, int
width, int height);

public void fillOval(int x, int y, int
width, int height);

Description

This method draws Ovals by rectangle
with its top left corner(x,y) with the
specified width and height.
Here if the value of width and height
are same then it will be draw circle.

This method draws Oval and fills
with color. Here if the value of width
and height parameters are same than
it draws Circle.

216

Object Oriented
Concepts &

Programming–1
(Core Java)

Figure 13.2 Output of Program

13.4 Drawing Circle :

Following program draws Empty Circle and filled Circle on applet. Please
note that to draw the circle we need to use either 'drawOval()' or
'fillOval()' Methods. Here if the value of width and height are same in the
said method then it will be draw circle.

import java.awt.Graphics;

import java.applet.Applet;

/*

<applet code = "Circle.class" width= 400 height=300>

</applet>

*/

public class Circle extends Applet

{

public void paint(Graphics g)

{

g.drawOval(10,25,100,100);

g.fillOval(140,25,100,100);

}

}

217

Applet Graphics

Figure 13.3 Output of Program

13.5 Drawing Rectangle :

Java provides various method to draw different kind of rectangles. To
draw the Oval in applet we need to use following method.

Table 13.2 : Methods drawing the Rectangle or Square

Method

public void drawRect(int x, int y, int
width, int height);

public void drawRoundRect(int x, int
y, int width, int height, int arcw, int
arch);

public void draw3DRect(int x, int y,
int width, int height, Boolean raised);

pubic void fillRect(int x, int y, int
width, int height);

public void fillRoundRect(int x, int y,
int width, int height, int arcw, int
arch);

public void fill3DRect(int x, int y, int
width, int height, Boolean raised);

Description

This method draws rectangle with
corner at (x,y) with specified width
and height

This method draws rounded rectangle.
First four parameters are same as
above. And arcw is the horizontal
diameter of the arc at the corners and
arch is the vertical diameter of the
arc.

This method draws three dimensional
rectangles. First four parameters are
same as above and fifth parameter is
raised. If raised is true, the rectangle
appears to be raised above the surface.

This method draws rectangle and fills
with color.

This method draws rounded rectangle
and fill with color.

This method draws three dimensional
rectangles and fills with color.

218

Object Oriented
Concepts &

Programming–1
(Core Java)

Following program draws Empty Rectangle, filled Rectangle, Rounded
Rectangle and 3D Rectangle on applet :

import java.awt.Graphics;

import java.applet.Applet;

/*

<applet code = "Rectangle.class" width= 400 height=400>

</applet>

*/

public class Rectangle extends Applet

{

public void paint(Graphics g)

{

g.drawRect(10,25,100,130);

g.fillRect(160,25,100,130);

g.drawRoundRect(10,180,100,130,30,30);

g.fill3DRect(160,180,100,130,false);

}

}

Figure 13.4 Output of Program

Following program draws Empty Square, filled Square, Rounded Square
and 3d Square on applet. Please note that to draw the Square we need to use
either 'darwRect()' or 'fillRect()' or 'darwRoundRect()' or 'fill3DRect()'
Methods. Here if the value of width and height are same in the said method
then it will be draw Square.

219

Applet Graphicsimport java.awt.Graphics;

import java.applet.Applet;

/*

<applet code = "Square.class" width= 400 height=400>

</applet>

*/

public class Square extends Applet

{

public void paint(Graphics g)

{

g.drawRect(10,25,100,100);

g.fillRect(160,25,100,100);

g.drawRoundRect(10,180,100,100,30,30);

g.fill3DRect(160,180,100,100,false);

}

}

Figure 13.5 Output of Program

13.6 Drawing Arcs :

To draw the Arcs in applet we need to use following method. The co–
ordinates to draw an arc are specified in bellow figure.

220

Object Oriented
Concepts &

Programming–1
(Core Java)

Figure 13.6 Arcs Angle

Table 13.3 : Methods drawing the Arcs

Following programs draws arc on applet.
import java.awt.Graphics;
import java.applet.Applet;

/*
<applet code = "Arc.class" width= 400 height=300>
</applet>
*/

public class Arc extends Applet
{

public void paint(Graphics g)
{

g.drawArc(10,25,100,130,10,140);
g.fillArc(160,25,100,130,10,190);

}
}

Figure 13.7 Output of Program

Method

public void drawArc(int x, int y, int
width, int height, int startAngle, int
arcAngle);

public void fillArc(int x, int y, int
width, int height, int startAngle, int
arcAngle);

Description

This method draws arc bounded by
a rectangle having its top left corner
at (x,y) with specified width and
height. The arc starts with startAngle
and sweeps an angle arcAngle.

This method draws arc and fills with
color.

221

Applet Graphicsimport java.awt.Graphics;

import java.applet.Applet;

/*

<applet code = "Arc1.class" width= 400 height=300>

</applet>

*/

public class Arc1 extends Applet

{

public void paint(Graphics g)

{

g.drawArc(10,180,100,130,20,260);

g.fillArc(160,180,100,130,20,260);

}

}

Figure 13.8 Output of Program

 Check Your Progress – 1 :
1. Explain various method which used to draw the rectangle.

...

...

...

...

...

222

Object Oriented
Concepts &

Programming–1
(Core Java)

13.7 Drawing Polygons :

Polygon is shape with many corners. Following are the some of the shape
of Polygons.

Figure 13.9 Different Shapes of Polygons

Polygons can be drawn using the following methods. Each method has
two 'int' type arrays. One array is used for all the X co–ordinates and another
array is used for the Y co–ordinates. Using X and Y co–ordinates polygon
is forms. The close polygon is drawn using polygon methods. Any closed ended
shape can be drawn using polygon method.

Table 13.4 : Methods drawing the Polygon

Following programs draws polygon on applet.

import java.awt.Graphics;

import java.applet.Applet;

/*

<applet code = "Polygon.class" width= 400 height=300>

</applet>

*/

public class Polygon extends Applet

{

public void paint(Graphics g)

{

int x[] = {50,10,30,70,90};

int y[] = {10,40,90,90,40};

g.drawPolygon(x,y,5);

int x1[] = {150,110,130,180,200};

int y1[] = {10,40,90,90,40};

g.fillPolygon(x1, y1,5);

}

}

Method

public void drawPolygon(int xPoints[],
int yPoints[], int nPoints);

public void fillPolygon(int xPoints[],
int yPoints[], int nPoints);

Description

This method draws many corners of
polygons. (x,y) point defined by
xPoints[] and yPoints[]. nPoints
represents the number of (x,y) pairs.

This method draws polygons and fills
with color.

223

Applet GraphicsThe output of the above program is as follow :

import java.awt.Graphics;

import java.applet.Applet;

/*

<applet code = "Polygon1.class" width= 300 height=350>

</applet>

*/

public class Polygon1 extends Applet

{

public void paint(Graphics g)

{

int x[] = {110,60,10,10,60,110,160,210,210,160,110,110};

int y[] = {60,10,60,160,210,160,210,160,60,10,10,160};

g.drawPolygon(x,y,12);

}

}

The output of the above program is as follow :

13.8 Drawing Polyline :

The drawPolygon() method is draw the close ended polygon. If we want
to draw open ended polygon then we need to use series of connected lines.
The drawPolyline() method is used for drawing open ended polygon.

Table 13.5 : Methods drawing the Polyline

Method

public drawPolyline(int xPoints[], int
yPoints[], int nPoints);

Description

Draws a sequence of connected lines,
specified by the arrays xPoints, and
yPoints, each pair(x,y) gives one point.
The number of points for the polyline
is nPoints.

224

Object Oriented
Concepts &

Programming–1
(Core Java)

Following programs draws polyline on applet.

import java.awt.Graphics;

import java.applet.Applet;

/*

<applet code = "Polyline.class" width= 300 height=350>

</applet>

*/

public class Polyline extends Applet

{

public void paint(Graphics g)

{

int x[] = {60,10,10,60,110,160,210,210,160};

int y[] = {10,60,160,210,160,210,160,60,10};

g.drawPolyline(x,y,9);

}

}

The output of the above program is as follow :

 Check Your Progress – 2 :
1. Explain various method which used to draw the polygon.

...

...

...

...

...

2. method is used to draw line.

(A) drawLine() (B) Line() (C) StaritLine() (D) PlainLine()

3. method is used to draw Circle.

(A) Oval() (B) Circle()

(C) drawCircle() (D) drawOval()

4. To draw circle the value of heith and with should be same.

(A) Fale (B) True

225

Applet Graphics5. To draw rounded rectangle method is used.

(A) drawRect() (B) drawRoundRect()

(C) RoundRect() (D) Rect()

6. To draw Rectangle the value of heith and with should be same. .

(A) Fale (B) True

7. To draw Three dimension rectangle method is used.

(A) draw3DRect() (B) drawRect

(C) 3DRect() (D) 3D()

8. To draw fill Arc method is used..

(A) fillArc() (B) Arc() (C) drawArc() (D) solidArc()

9. Polygon is shape with many corners.

(A) Fale (B) True

10. The drawPolygon() method is draw the close ended polygon.

(A) Fale (B) True

11. The drawPolygon() method is draw the open ended polygon .

(A) Fale (B) True

13.9 Delegation Event Model :

In java, graphical user interface environment, action are initiated by the
event. The Pressing a button, click of button, key press etc. are event. We
required proper mechanisms that capture such events and to react to the events
by executing a piece of code. Java provide such mechanisms called Delegation
Event Model.

Delegation Event model is based on the concept of an 'Event source'
and 'Event Listeners'. Any object that is interested in receiving event is called
an event listener. Any object that generates these event is called an event
sources.

Delegation event model is based on four concepts

1. The Event classes

2. The event listeners

3. Explicit event enabling

4. Adapters

Event in java are handled by delegation Event Model. In this model,
there is a source, which generates events. There is a listener to the happenings
of an event and initiate an action.

A listener has to register with a source. Any number of listeners can
register with a source except in a few cases. A listener can register with many
event sources when an event takes place. It is notified to the listener, which
are registered with the source. The listener than initiates action.

226

Object Oriented
Concepts &

Programming–1
(Core Java)

Figure 13.10 Delegation Event Model

Let discuss the event in detail. Now we know that an event is an object
that inform the change of state of a source. Here we learn hierarchy of the
event class. The super class of all events is 'java.util.EventObject'. Here we
need to note that the super class of all AWT events is 'java.util.AWTEvent'.

AWTEvent class is an abstract class and contain subclasses. These
subclasses are concrete and available under 'java.awt.event'.

Some of the classed mention in 'java.awt.event' package are describe in
bellow table.

Table 13.5 : Event class defined under java.awt.event

Method

Action Event

Adjustment Event

Component Event

Item Event

Key Event

Mouse Event

Text Event

Window Event

Description

This event occurs when the component
specific action takes place.

This event deals with events generated
by the adjustable objects like scrollbar

This event deals occurs when the
component is moved, resized, visible
or hide.

This event generated when a check
box or list iteam is clicked.

This event generated when any key
strokes.

This event generated by Mouse

This event generated by the change
of object's text

This event generated by the change
of window status

Source

Event
Listener

Register

Event notification

Action

227

Applet Graphics

Figure 13.11 AWT Events

This section helps you learn handling events in Java AWT. Events are
referred to as very intrinsic segments of the Java platform. The example below
gives you a view of the concepts related to event handling and the methods
which can be used to implement an application driven by events.

The objects register themselves as listeners for any event to occur. No
event takes place if there is no listener, that is, nothing happens when an event
takes place if there is no listener. Every listener has the capability of processing
an event irrespective of how many listeners there are. For example, a Simple
Button Event applet registers itself as the listener for the button's action events
that creates a Button instance.

Any class including an applet can implement an Action Listener. You
must always keep in mind that all the listeners are always notified. Moreover,
in case you don't want any further processing of an event you can call AWT
Event. consume () method. There is another method which is used by a listener
to check for the consumption. The method is Consumed () method.

With the consumption of the events by the system once the listener is
notified, the events stop being processed. Consumption only works for Input
Event and its subclasses. You can use the consume () methods for the Key
Event just in case you do not require any input by the user through the use
of a keyboard.

The step by step procedure of Event handling is as follows :

1. The component generates subclasses of an AWT Event when anything
interesting or intriguing takes place.

2. As permitted by the Event sources, any class can act like a Listener.
For example, add ActionListener() method is used for any action to be
performed, where Action is the event type. There is another method by
which you can remove the listener class which is remove XXX Listener()
method, where XXX is the event type.

3. A listener type such as an Action Listener must be implemented for
handling an event.

java.lang.object

java.awt.
AWTEvent

ActionEvent

ItemEvent

ContainerEvent

FocusEvent

PaintEvent

WindowEvent

InputEvent

KeyEvent MouseEvent

228

Object Oriented
Concepts &

Programming–1
(Core Java)

4. Some special listener types require the implementation of multiple methods
such as key Events. The key release, key typed and key press, are the
three methods which are the requisites of implementation and registration
of Key events. A few special classes exist referred to as adapters which
are used in implementing listener interfaces and in stubbing out all the
methods. Such adapter classes can be subclassed and necessary methods
can be overridden.

AWT Event :

Most of the times every event–type has Listener interface as Events
subclass the AWT Event class. However, Paint Event and Input Event do not
have the Listener interface because only the paint() method can be overriden
with Paint Event etc.

Low–level Events :

Low level events represent a low level input or window. Key press, mouse
movement, window opening, etc. are the types of low level events.

For example, on typing the letter 'A', the three events one for pressing,
one for releasing and one for typing are generated. Given below are the various
types of low–level events and operations generated by each event.

FocusEvent Used for Getting/losing focus.

MouseEvent Used for entering, exiting, clicking, dragging, moving,
pressing, or releasing.

ContainerEvent Used for Adding/removing component.

KeyEvent Used for releasing, pressing, or typing (both) a key.

WindowEvent Used for opening, deactivating, closing, Iconifying,
deiconifying, really closed.

ComponentEvent Used for moving, resizing, hiding, showing.

Semantic Events :

The interaction with GUI component is represented by the Semantic
events like changing the text of a text field, selecting a button etc. The different
events generated by different components is shown below:

Table 13.6 : Events generated by different components

ItemEvent Used for state changed.

ActionEvent Used for do the command.

TextEvent Used for text changed.

AdjustmentEvent Used for value adjusted.

Event Sources :

If a component is an event source for something then the same happens
with its subclasses. The different event sources are represented by the following
table.

229

Applet GraphicsTable 13.7 : Event sources

Low–Level Events

Window WindowListener

Container ContainerListener

Component ComponentListener

FocusListener

KeyListener

MouseListener

MouseMotionListener

Semantic Events

Scrollbar AdjustmentListener

TextArea TextListener

TextField

Button ActionListener

List

MenuItem

TextField

Choice ItemListener

Checkbox

Checkbox

CheckboxMenuItem

List

Event Listeners :

Every listener interface has at least one event type. Moreover, it also
contains a method for each type of event the event class incorporates. For
example as discussed earlier, the Key Listener has three methods, one for each
type of event that the Key Event has: keyTyped(), keyPressed() and keyReleased().

The listener interfaces and their methods are as follow :

Table 13.8 : Listener interfaces and their methods

Interface Methods

WindowListener WindowActivated(WindowEvente)

WindowDeiconified(WindowEvente)

WindowOpened(WindowEvente)

WindowClosed(WindowEvente)

WindowClosing(WindowEvente)

WindowIconified(WindowEvente)

WindowDeactivated(WindowEvente)

ActionListener ActionPerformed(ActionEvente)

230

Object Oriented
Concepts &

Programming–1
(Core Java)

AdjustmentListener AdjustmentValueChanged
(AdjustmentEvente)

MouseListener MouseClicked(MouseEvente)

MouseEntered(MouseEvente)

MouseExited(MouseEvente)

MousePressed(MouseEvente)

MouseReleased(MouseEvente)

FocusListener FocusGained(FocusEvente)

FocusLost(FocusEvente)

ItemListener ItemStateChanged(ItemEvente)

KeyListener KeyReleased(KeyEvente)

KeyTyped(KeyEvente)

KeyPressed(KeyEvente)

ComponentListener ComponentHidden(ComponentEvente)

ComponentMoved(ComponentEvente)

ComponentShown(ComponentEvente)

ComponentResized(ComponentEvente)

MouseMotionListener MouseMoved(MouseEvente)

MouseDragged(MouseEvente)

TextListener TextValueChanged(TextEvente)

ContainerListener ComponentAdded(ContainerEvente)

ComponentRemoved(ContainerEvente)

13.10 Let Us Sum Up :

In this Unit we have learned about applet graphics. To work with applet
graphics we need to import 'java.awt.Graphics' package. To draw any shape
we need required applet. The java applet can be import 'java.appelt.Applet'.
To draw the strait line on applet we need to use drawLine() method. Applet
graphics provide method for drawing Oval. To draw Oval, we need to used
drawOval() method. Here in this method if the value of width and height
are the same then this method draw perfect circle. If we want to draw coloured
Oval then graphics provide fillOval() method. To draw rectangle we need to
called drawRect() method. Applet graphics provides various method for rounded
rectangle, fill rectangle and 3d rectangle. Here we also seen that if the height
and width parameter's value of the rectangle are same then it became the square.
Java graphics provide drawArc() method to draw the Arc of any shape.
drawPolygon() method is used to draw various kind of polygon and
drawPolyline() method is used to draw open ended polygon.

231

Applet Graphics13.11 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 13.5

 Check Your Progress 2 :

1 : See Section 13.7 2 : A 3 : D

4 : B 5 : B 6 : A 7 : A

8 : A 9 : A 10 : A 11 : A

13.12 Glossary :

1. Rectangle shape – To draw the shape we can used drawRect(),
Fill Rect(), drawRoundRect() or draw3DRect() methods.

2. Line – To draw the shape we can used drawLine()

3. Oval or Circle – To draw the shape we can used drawOval() or fillOval()
methods

4. Arcs – To draw the shape we can used drawArc() or fillArc() methods.

5. Polygons – To draw the shape we can used drawPolygon() or fillPolygon()
methods.

6. PolyLine – To draw the shape we can used drawPolyline() method.

13.13 Assignment :

1. Write a note Delegation Event Model.

2. Write a note that describe various method for the draw rectangle.

3. Explain to draw the polygons.

13.14 Activities :

1. Write a program to draw the two strait line.

2. Write a program that draw the square.

3. Write a program that draw the two Circle, one within other one.

13.15 Case Study :

1. Prepare the Chart that display various method to draw the different shapes.

13.16 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000.

2. Java 2, the Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999.

3. Programming with Java, Ed. 2, E. Balagurusamy, Tata McGraw Hill,
1998, reprint, 2000.

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998.

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems, 2000.

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

232

UNIT STRUCTURE

14.0 Learning Objectives

14.1 Introduction

14.2 Window Fundamentals

14.3 Working with Graphics

14.4 Controls

14.5 Understanding Layout Managers

14.6 Adapter Classes

14.7 Inner Classes

14.8 Anonymous Inner Classes

14.9 Let Us Sum Up

14.10 Suggested Answer for Check Your Progress

14.11 Glossary

14.12 Assignment

14.13 Activities

14.14 Case Study

14.15 Further Readings

14.0 Learning Objectives :

After learning this unit, you will be able to :

• Define window fundamentals.

• Explain working with graphics and controls.

• State layout managers and event handling.

• Describe adapter classes, inner classes and anonymous inner classes.

• Discuss applet fundamentals and applet lifecycle.

14.1 Introduction :

The Abstract Window Toolkit (AWT) is Java's original platform–
independent windowing, graphics and user–interface widget toolkit. The AWT
is now part of the Java Foundation Classes (JFC) the standard API for providing
a graphical user interface (GUI) for a Java program.

AWT is also the GUI toolkit for a number of Java ME profiles. For
example, Connected Device Configuration profiles require Java runtimes on
mobile telephones to support AWT.

14.2 Window Fundamentals :

A top level window on the screen with no borders or menu bar is the
provision of a window. Among various other provisions, it gives a way to
implement pop–up messages. The default layout for a Window is Border Layout.

ABSTRACT WINDOW
TOOLKIT

Unit

14

233

Abstract Window Toolkit Working with Frames :

A window which contains all the enhancements of the window manager
such as borders, window title and window minimize/maximize/close functionality
is called a frame. A frame can include a menu bar as well. The default layout
of a frame is the Border Layout since it subclasses a window. The very basic
building block of a screen–oriented application is provided by frames allowing
you to change the mouse cursor, have menus and set icon images. The figure
below is an example of a Frame.

Figure 14.1 A Frame

A frame can be created with the help of a program in the Java AWT
package. A frame in Java is similar to the main window into which components
can be added or joined in order to develop an application. The Frame class
represents the top–level windows in Java AWT. The feel and adornments of
a frame are supported by Java. You must provide standalone for creating java
application at the same time GUI to the user.

Generally, in order to create a frame the most familiar method used is
the single string argument constructor of the frame class that contains a single
string argument with just the title of the window frame. Later, a user interface
can be added by constructing and joining various components to the container.

The program illustrated below shall construct a label on the message
frame saying "–you are Welcome to the world of Java. – "The Label. CENTER
defines the center alignment of the label. After creating the frame it needs
to be visualized by set Visible (true) method as it is initially invisible.

add(lbl) :

This method has been used to add the label to the frame. Method add()
adds a component to it's container.

setSize (width, height) :

This is the method of the Frame class that sets the size of the frame
or window. This method takes two arguments width (int), height (int).

setVisible(boolean) :

This method of the Frame class sets the visibility of the frame. The frame
will be invisible if you pass the boolean value false otherwise the frame will
be visible.

234

Object Oriented
Concepts &

Programming–1
(Core Java)

Here is the code of the progam :

import java.awt.*

public class AwtFrame{

public static void main(String[] args){

Frame frm = new Frame("Java AWT Frame")

Label lbl = new Label("–you are Welcome to the world of Java.–
",Label.CENTER)

frm.add(lbl)

frm.setSize(400,400)

frm.setVisible(true)

}

}

 Check Your Progress – 1 :
1. What is a frame ?

2. Write the use of addlbl().

...

...

...

...

...

14.3 Working with Graphics :

Figure 14.2 Applet Graphics

Java provides numerous primitives for drawing lines, squares, circles,
polygons and images. The Font, Font Metrics, Color and System Color classes
provide the ability to alter the displayed output. With the Font class, you adjust
how the displayed text will appear. With Font Metrics, you can find out how
large the output will be for the specific system the user is using. You could
use the Color class to set the color of the text and graphics.

Whereas AWT also includes a number of classes that support more
complex graphics manipulations: displaying images, generating images in memory
and transforming images.

235

Abstract Window ToolkitThe Graphics class provides the means to access various graphics devises
and is an abstract class. This class enables you to display images and draw
on the screen. Since working with graphics requires a comprehensive knowledge
of the platform that the program is run on it makes graphics an abstract class.
Concrete classes that are closely tied to a particular platform are the ones which
do the actual work. These concrete classes are provided by your Java Virtual
Machine vendor.

You can be confident that the platform specific classes are going to work
accurately whenever you run your program, since you can call all the methods
of the Graphics class once you have a graphics object, leaving the worry about
platform specific classes.

You rarely need to create a Graphics object yourself; its constructor is
protected and is only called by the subclasses that extend Graphics. How then
do you get a Graphics object to work with? The sole parameter of the
Component.paint () and Component.update() methods is the current graphics
context. Therefore, a Graphics object is always available when you override
a component's paint () and update() methods.

You can ask for the graphics context of a Component by calling
Component.getGraphics(). However, many components do not have a drawable
graphics context. Canvas and Container objects return a valid Graphics object;
whether or not any other component has a drawable graphics context depends
on the run–time environment.

 Check Your Progress – 2 :
1. Why graphics is considered an abstract class ?

2. Give the use of canvas and container objects.

...

...

...

...

...

14.4 Controls :

Figure 14.3 Controls

236

Object Oriented
Concepts &

Programming–1
(Core Java)

Under this section you shall be informed about some components of Java
AWT which are available in the Java AWT package for developing the user
interface for your program.

1. Labels – the simplest component of the Java Abstract Window Toolkit
is a label. Label does not perform any type of actions and is basically
used to show a text or string in your application. Syntax for defining
the label only and with justification:

Label label_name = new Label ("This is the label text for the day")

Above code simply represents the text for the label.

Label label_name = new Label ("This is the label text for the day"

Label.CENTER);

The Justification of label can be right or left, centered. The Above
declaration used the center justification of the label using the Label.
CENTER.

2. Buttons – are utilized in generating actions and various other events
required for an application. These are components of the Java Abstract
Window Toolkit. The syntax of defining the button is as follows:

Button button_name = new Button ("See this is the label of the button.")

The Button.setLabel (String) and Button.getLabel() method can be used
to change the Button's label or text. Buttons are added to its container
using the add (button_name) method.

3. Check Boxes – allow you to create check boxes in applications. The
syntax of the definition of Checkbox is as follows:

CheckBox checkbox_name = new Checkbox ("Optional check box 1",
false)

The above code constructs the unchecked Checkbox by passing the
boolean valued argument false with the Checkbox label through the Check
box() constructor.

Defined Checkbox is added to it's container using add (checkbox_name)
method. You can change and get the checkbox's label using the setLabel
(String) and getLabel() method. You can also set and get the state of
the checkbox using the setState(boolean) and getState() method provided
by the Checkbox class.

4. Radio Button – proves to be a special case of the Java AWT packages
under the checkbox component where just a single checkbox from a group
of checkbox can be selected at a time.

Syntax for creating radio buttons is as follows :

CheckboxGroup chkgp = new CheckboxGroup()

add (new Checkbox ("1 One", chkgp, false)

add (new Checkbox ("2 Two", chkgp, false)

add (new Checkbox ("3 Three",chkgp, false)

In the above code we are making three check boxes with the label "1
One", "2 Two" and "3 Three". If you mention more than one true valued
for checkboxes then your program takes the last true and shows the last
check box as checked.

237

Abstract Window Toolkit5. Text Area – is the text container component of the Java AWT package.
The Text Area contains plain text. TextArea can be declared as follows:

TextArea txtArea_name = new TextArea()

Now you can make the Text Area very much editable or not using the
setEditable (boolean) method. If you pass the Boolean valued argument
false then the text area will be non–editable otherwise it will be editable.
The text area is by default in an editable mode. Text are set in the text
area using the setText(string) method of the TextArea class.

6. Text Field – being a text container component of the Java AWT package,
the text field component has single line and limited text information.
This is declared as follows :

TextField txtfield = new TextField(20)

By specifying the number in the constructor you will be able to fix the
number of columns in the text field. In the above code we have fixed
the number of columns to 20.

 Check Your Progress – 3 :
1. Write a note on button.

2. Explain the text area component of the AWT package.

...

...

...

...

...

14.5 Understanding Layout Managers :

All Containers, by default, have a layout manager; an object that implements
the Layout Manager interface. If a Container's default layout manager doesn't
go well with your needs, you can easily replace it with another one. The AWT
provide/ supplies layout managers that range from the very simple (FlowLayout
and GridLayout) to the special purpose (BorderLayout and CardLayout) to the
ultra–flexible (GridBagLayout).

General Rules for Using Layout Managers :

You have to openly tell a container not to use a layout manager, it is
linked with its own occasion of a layout manager. This layout manager is
automatically/by default consulted every time the Container might need to
change its appearance. Most layout managers do not require programs to directly
call their respective methods.

How to Choose a Layout Manager / Way :

Layout managers provided by AWT inherit various strengths and
weaknesses. Under this section, common layout scenarios have been discussed
and exactly which AWT layout managers might work for each situation and
scenario has also been given. You can feel free to use layout managers
contributed to the net, such as Packer Layout if you fail to feel that none of
the AWT layout managers is suitable for your situation.

238

Object Oriented
Concepts &

Programming–1
(Core Java)

How to Create a Layout Manager and Associate It with a Container :

A default layout manager is associated with each container. Panels
including Applets are initialized to use a Flow Layout whereas windows (apart
from special purpose ones such as File Dialog) are initialized to use a Border
Layout.

You don't have to worry about doing a thing to use a Container's default
layout manager since each Container's constructor creates a layout manager
instance and initializes the Container to use it.

You must create an instance (example) of the layout manager class that
you require and tell the Container to use it in order to use a non default layout
manager. A basic code that does this is mentioned below. This code creates
a Card Layout manager and sets it up as the layout manager for a Container.

Container. set Layout (new Card Layout ())

Rules Of Thumb for Using Layout Managers :

The Container methods that result in calls to the Container's layout
manager are add (), remove(), removeAll(), layout(), preferredSize() and
minimumSize(). The add (), remove() and removeAll() methods add and remove
Components from a Container; you can call them at any time. The layout()
method, is called as the result of any paint request to a Container, requests
that the Container place and size itself and the components it contains; you
don't usually call it directly.

The preferredSize() and minimumSize() methods return the Container's
ideal size and minimum size, respectively. Until your program does not enforce
these sizes the values returned are merely hints.

You must take special care when calling a Container's preferred Size()
and minimum Size() methods. Unless the container and its components have
just peer objects the values returned by the methods are meaningless.

 Border Layout :

The default layout manager for all Windows is Border Layout, including
Frames and Dialogs. North, south, east, west and center are the five areas it
uses to hold components. All extra space is placed in the center area. Given
below is an applet that places one button in each area.

Figure 14.4 Border Layout

As the above applet shows, a Border Layout has five areas: north, south,
east, west and center. You see that the center area gets the maximum of the
new space that is available (likely) to it on enlarging the window. Whereas,
with the other areas it is different since they expand only up to that space
which is necessary to fill it up.

Below is the code that creates the Border Layout and the components
it manages.

239

Abstract Window ToolkitThe program runs either within an applet, with the help of the Applet
Button, or as an application. The first line shown below is actually unnecessary
(not required) for this example, because it's in a Window subclass and each
Window already has an associated Border Layout instance. However, the first
line would be necessary if the code were in a Panel instead of a Window.

setLayout(new BorderLayout())

setFont(new Font("Helvetica", Font.PLAIN, 14))

add("–North–", new Button("–North–"))

add("–South–", new Button("–South–"))

add("–East–", new Button("–East–"))

add("–West–", new Button("–West–"))

add("–Cente–r", new Button("–Center–"))

By default, a Border Layout puts no space between the components it
manages. In the applet above, any apparent gaps (space) are the result of the
Buttons reserving extra space around their apparent display area. You can
specify gaps (in pixels) using the following constructor:

Public BorderLayout(int horizontalGap, int verticalGap)

 Card Layout :

Let us Use the Card Layout class when you have an area that can contain
different components at different times. Card Layouts are often controlled by
Choices, with the state of the option (choice) determining which Panel (group
of components) the Card Layout displays. Here's an applet that uses a Choice
(option) and Card Layout in this way.

Figure 14.5 Card Layout

As illustrated in the applet above, the Card Layout class helps in
managing two or more components (usually Panel instances) sharing the same
display space. Each component managed by a Card Layout is hypothetically
like a playing card or a trading card in a stack, with only the top card being
visible at any one time. The card being displayed in any of the following
manners can be chosen:

• By means of asking for either the first or last card, in the order they
were added to the container.

• By means of flipping through the deck backwards or forwards.

• By means of specifying a card with a specific name.

The example program uses this scheme. The user can specifically choose
(opt) a card (component) through selecting a name from a pop up list.

Below is the code that creates the Card Layout and the components it
manages.

240

Object Oriented
Concepts &

Programming–1
(Core Java)

The program runs either within an applet, with the help of Applet Button,
or as an application.)

//Where instance variables are declared :

Panel cards;

final static String BUTTONPANEL = "–Panel with Buttons–"

final static String TEXTPANEL = "–Panel with TextField–"

//Where the container is initialised

cards = new Panel();

cards.setLayout (new CardLayout())

...//–reate a Panel named p1. Put buttons in it.

.../–Create a Panel named p2. Put a text field in it.

cards.add(BUTTONPANEL, p1)

cards.add(TEXTPANEL, p2);

Adding a component to a container managed by a CardLayout uses the
two–argument form of the Container add() method: add(String name, Component
comp). Any string identifying the component that is added can be the first
argument (case).

Below are all the Card Layout methods that let you choose(opt) a
component. For each method, the first argument(case) is the container for which
the Card Layout is the layout manager (the container of the cards the Card
Layout controls).

public void first(–Container parent–)

public void next(–Container parent–)

public void previous(–Container parent–)

public void last(–Container parent–)

public void show(–Container parent, String name–)

 Flow Layout :

Flow Layout is the default (in any case) layout manager for all Panels.
It simply lays out components from left to right, starting new rows if necessary.

Figure 14.6 Flow Layout

Above shown the applet shows, Flow Layout puts components in a row,
sized at their preferred size. If the horizontal space (gap) in the container is
too small to put all the components in one row, Flow Layout uses multiple
rows. Within each row, components are centered (the default), left–aligned, or
right–aligned as specified when the Flow Layout is created.

You can see below is the code that creates the Flow Layout and the
components it manages. The program runs either within an applet, with the
help of Applet Button, or as an application.)

241

Abstract Window ToolkitSet Layout (new FlowLayout ())

Set Font (new Font ("Helvetica", Font. PLAIN, 14))

Add (new Button ("Button –1–"))

Add (new Button ("2"))

Add (new Button ("Button –3–"))

Add (new Button ("Long–Named Button 4"))

Add (new Button ("Button 5"))

The Flow Layout class has three constructors:

public Flow Layout()

public Flow Layout(int alignment)

public Flow Layout(int alignment, int horizontal Gap, int vertical Gap)

The alignment argument must have the value Flow Layout. LEFT, Flow
Layout. CENTER, or Flow Layout. RIGHT. The horizontal Gap and vertical
Gap arguments specify the number of pixels to put between components. If
you don't specify a gap value, Flow Layout acts as if you specified 5 for the
gap value.

 Grid Layout :

Grid Layouts simply make a bunch of Components have equal size,
displaying them in the requested number of rows and columns. Here's an applet
that uses a Grid Layout to control the display of five buttons.

Figure 14.7 Grid Layout

Illustrated in the above applet is a Grid Layout placing its components
in a grid of cells. Each component takes all the available space within its cell
and each cell is exactly the same size. Given the space available to the container,
you'll notice that the Grid Layout will change the size of cells so that they
are as large as possible once you resize the Grid Layout window.

Below is the code that creates the Grid Layout and the components it
manages.

The constructor tells the Grid Layout class to create an instance that
has two columns and as many rows as necessary. It's one of two constructors
for Grid Layout. Here are the declarations for both constructors:

public Grid Layout(int rows, int columns)

public Grid Layout(int rows, int columns,

int horizontalGap, int verticalGap)

Among all the arguments at least one must be non zero. The numbers
of pixels among the cells are specified with the help of the horizontal Gap
and vertical Gap arguments. The values shall default to zero if the gaps are
not specified. (In the applet above, any apparent gaps are the result of the
Buttons reserving extra space around their apparent display area.)

242

Object Oriented
Concepts &

Programming–1
(Core Java)

 Grid Bag Layout :

Grid Bag Layout is the most sophisticated, flexible layout manager the
AWT provides. It aligns components by placing them within a grid of cells,
allowing some components to span more than one cell. The rows in the grid
are not necessarily all the same height; similarly, grid columns can have different
widths. Here is an applet that uses a Grid Bag Layout to manage ten buttons
in a panel.

Figure 14.8 GridBag Layout

This layout is the most flexible yet complex layout manager that the
AWT provides. The Grid Bag Layout, as illustrated in the applet above places
the components in a grid of rows and columns, allowing certain components
to span multiple rows or columns. It is not necessary for each row to have
the same height just as each column does not have the same width. Essentially,
Grid Bag Layout places components in squares (cells) in a grid and then uses
the components' preferred sizes to determine how big the cells should be.

You notice that once you enlarge the window brought up by the applet,
it results in the last row getting all the new available vertical space whereas
the horizontal space gets evenly distributed among all the columns. The weight
that the applet assigns to individual components in the Grid Bag Layout
determines the resizing behavior. Notice that each component takes the maximum
space it can and this is also specified by the applet.

By specifying the constraints for each component an applet specifies their
size and characteristics. To specify constraints, you set instance variables in
a Grid Bag Constraints object and tell the Grid Bag Layout (with the set
Constraints() method) to associate the constraints with the component.

 Check Your Progress – 4 :
1. Give the general rules for using Layout Manager.

2. Explain Card Layout.

...

...

...

...

...

243

Abstract Window Toolkit14.6 Adapter Classes :

There are some event listeners that have multiple methods to implement.
That is some of the listener interfaces contain more than one method. For
instance, the Mouse Listener interface contains five methods such as mouse
Clicked, mouse Pressed, mouse Released etc. If you want to use only one
method out of these then also you will have to implement all of them. Hence,
the methods which we do not want to care about can have empty (clear) bodies.
To avoid such thing, we have adapter class.

Now it is fact that Adapter classes help us in avoiding the implementation
(execution of) of the empty method bodies. Usually (Generally) an adapter class
is there for each listener interface having more than one method.

For example, the Mouse Adapter class implements the Mouse Listener
interface. An adapter class can be used by creating (making) a subclass of the
same and then overriding the methods which are of use only. Hence, it avoids
the implementation of all the methods of the listener interface. The following
example shows the implementation of a listener interface directly.

public class MyClass implements MouseListener {

...

someObject.addMouseListener(this);

...

/* –Empty method definition– ok. –*/

public void mouseEntered(MouseEvent e) {

}

/*– Empty method definition–ok –. */

public void mouseExited(MouseEvent e) {

}

/*– Empty method definition–ok– */

public void mousePressed(MouseEvent e) {

}

}

}

In the above program code, the adapter class has been used (untilled).
This class has been used as an anonymous (unknown) inner class to draw a
rectangle within an applet. This example demonstrates the functionality of the
mouse press. That is on every click of the mouse from top left corner, we
are going to get a rectangle on the release of the bottom right.

244

Object Oriented
Concepts &

Programming–1
(Core Java)

 Check Your Progress – 5 :
1. What are adapter classes ?

2. Give the use of adapter classes

...

...

...

...

...

14.7 Inner Classes :

Figure 14.9 Inner Classes

Inner classes cannot have (will not have) static members, only static final
variables. Interfaces are never be inner. Hence Static classes are not inner
classes.

Inner classes may inherit static members that are not compile–time
constants even though they may not declare them.

Nested classes that are not inner classes may declare static members
freely, in accordance with the usual rules of the Java programming language.
Member interfaces are always implicitly static so they are never considered
to be inner classes. A statement (agreement) or expression occurs in a static
context if and only if the innermost method, constructor, instance initialiser,
static initialiser, field initialiser, or explicit constructor invocation (spell) statement
enclosing the statement or expression is a static method, a static initialiser,
the variable initialiser of a static variable or an explicit constructor invocation
(spell) statement.

For Example:

class HasStatic

{

 static int j = 100;

}

class Outer

{

 final int z=10;

 class Inner extends HasStatic

 {

 static final int x = 3;

245

Abstract Window Toolkit static int y = 4;

 }

 static class Inner2

 {

 public static int size=130;

 }

 interface InnerInteface

 {

 public static int size=100;

 }

}

public class InnerClassDemo

{

 public static void main(String[] args)

 {

 Outer outer=new Outer();

 System.out.println(outer.new Inner().z);

 System.out.println(outer.new Inner().x);

 System.out.println(outer.new Inner().j);

 System.out.println(Outer.Inner2.size);

 System.out.println(Outer.InnerInteface.size);

 }

}

Figure 14.10 Output of Program

Hence, in this case it gives compilation problems, as z cannot be used
in inner class "Inner".

Also note that a Method parameter names may not be redeclared as it
is a local variables of the method, or you may say as exception parameters
of catch clauses in a try statement of the method or constructor. However, a
parameter of a method or constructor may be shadowed anyplace inside a class
declaration nested within that method or constructor. Such a nested class
declaration (statement) could declare either a local class or an anonymous class.

246

Object Oriented
Concepts &

Programming–1
(Core Java)

Now coming to Section Nested Inner Classes :

Consider the below program:

class WithDeepNesting

{

 boolean toBe;

 WithDeepNesting(boolean b) { toBe = b;}

 class Nested

 {

 boolean theQuestion;

 class DeeplyNested

 {

 DeeplyNested(){

 theQuestion = toBe || !toBe;

 }

 }

 }

 public static void main(String[] args)

 {

 WithDeepNesting withDeepNesting=new WithDeepNesting(true);

 WithDeepNesting.Nested nested=withDeepNesting.new Nested();

 nested.new DeeplyNested();

 System.out.println(nested.theQuestion);

 }

}

Figure 14.11 Output of Program

We may also note and understand that the Inner classes whose declarations
do not occur in a static context may freely refer to the instance variables of
their enclosing (attached) class. We need to understand an instance variable
is always defined (clear) with respect to an instance. Now in the case of instance
variables of an enclosing class, the instance variable must be defined with
respect to an enclosing instance of that class. So, we can consider the example,
the class Local above has an enclosing instance of class Outer. As a further
example we can say that:

In this every instance of With Deep Nesting. Nested. Deeply Nested has
an enclosing instance of class With Deep Nesting. Nested (its immediately
enclosing instance) and an enclosing instance of class With Deep Nesting (its
2nd lexically enclosing instance). Hence, it is going to prints : true.

247

Abstract Window Toolkit Check Your Progress – 6 :
1. Write a note on inner classes.

2. What could be declared a local or anonymous class ?

...

...

...

...

...

14.8 Anonymous Inner Classes :

An Inner classes have made it possible to code with less lines, coding
became easy task and in the process to obscure the code to the unenlightened
but make it wonderfully well–designed (elegant) to those who understand. A
good friend of mine and coworker told me "we may say that One good Java
programmer is better than comparatively about ten bad Java programmers"
which I heartily agreed with. He then went on to say "And five bad Java
programmers are better than ten bad Java programmers". Hence Inner classes
have widened this divide. We can say that the typical way of using anonymous
inner classes is for writing GUI event handlers, let us take for example,

button.addActionListener (new ActionListener () {

// This is how we define an anonymous inner class

public void actionPerformed(ActionEvent e) {

System.out.println ("–ok the button was pressed!–")

}

});

The amazing thing is that we are actually defining a new class (!) while
calling another method. You can virtually make new classes in all sorts of places
in Java.

new Thread(new Runnable() {

public void run() {

try {

while (true) {

sleep(1000); System.out.print(".")

}

}

catch(InterruptedException ex) { }

}

}).start()

If we try to look at the definition of a Thread, we can see that it takes
a Runnable (to work) as a parameter so it makes sense to create an anonymous
inner class from Runnable (to work) and stick (fix in to) that into the parameter.
However, after looking more carefully inside Thread we notice that the

248

Object Oriented
Concepts &

Programming–1
(Core Java)

run () method defined in Thread, calls the run() method defined in Runnable,
if a Runnable has been passed into the Thread constructor. Instead, it would
be more efficient to do the following, because we would have one less object
on the heap and one less method call per Thread creation:

new Thread() {

public void run() {

try {

while (true) {

sleep(1000); System.out.print(".")

}

}

catch(InterruptedException ex) { }

}

}).start()

This way Thread by itself is made into an anonymous inner class and
we override the run() method so as an alternative (in place of) of Thread.run()
having to check that a Runnable exists (present) we can just execute the code
in run().

An application (use) of anonymous inner class is to pass an array as
a parameter to a method, which is shown below statements :

String[] temp_names = new String[4]

temp_names[0] = "Ashok" temp_names[1] ="Zameer"

temp_names[2] = "Monica"

temp_names[3] = "Shakila"

universityRegistration.addNames(temp_names)

or, alternatively

String[] temp_names = {"Ashok","Zameer" , "Monica","Shakila" }

universityRegistration.addNames(temp_names)

Know we would not need to have a temporary variable which is bad.
We could thus say that:

universityRegistration.addNames(

new String[]({"Ashok","Zameer" , "Monica","Shakila" })

If you wanted to pass in a Collection instead of an array it would look
as follows :

Collection temp_names = new Vector(4)

temp_names.add("Ashok")

temp_names.add("Zameer")

temp_names.add("Monica")

temp_names.add("Shakila")

universityRegistration.addNames(temp_names);

249

Abstract Window ToolkitHere the ability to avoid local temporary variables with an arrays was
always (every time) a strong deciding (decision making) factor in defining
interfaces to my classes because we could get away with(replace with) one
line of code instead of five and the less lines of code the better hence, with
anonymous inner classes we can get the same effect seen above but with
collections:

universityRegistration.addNames (new Vector(4)

{{ add Ashok","Zameer" , "Monica","Shakila" }})

Hence the call to the super constructor always takes place first, so we
could re–write MyVector as follows without changing the functionality in any
way:

public class MyVector extends Vector {

{ // initialiser block

 add ("Ashok","Zameer" , "Monica","Shakila");

}

public MyVector() {

 super(4); // to initialise it with a size of 4

 }

}

In case if we want to make an instance of an anonymous inner class
we can pass the parameters directly to the super class via the parameter list
of the constructor of the anonymous class. In addition to this, any init block
denoted by

{ } is done AFTER the call to the super class constructor is completed,
so the class MyVector could look like this:

Vector myVector =

 new Vector(4) { // defining anonymous inner class

{

add;

}

};

From here the step to addNames(new Vector(4) {{ add("Ashok");
add("Zameer"); add("Monica") add("Shakila");}});

 Check Your Progress – 7 :
1. Define an anonymous inner class.

2. Explain how thread itself is made into an anonymous inner class.

...

...

...

...

...

250

Object Oriented
Concepts &

Programming–1
(Core Java)

3. A window which contains all the enhancements of the window manager
is called a .

(A) Window (B) Box (C) Contorl (D) Frame

4. After creating the frame it needs to be visualized by method.

(A) show() (B) setVisible()

(C) setVisible(true) (D) Visible()

5. The simplest component of the Java Abstract Window Toolkit is a
.

(A) TextField (B) Frame (C) Button (D) label

6. Multiselection can be possible using control.

(A) CheckBox (B) RadioBox (C) TextFiled (D) TextArea

7. Single selection using multiselection can be possible using
control .

(A) CheckBox (B) RadioBox (C) TextFiled (D) TextArea

8. The control contains plain text.

(A) CheckBox (B) RadioBox (C) TextFiled (D) TextArea

9. The default layout manager for all Windows is .

(A) Flow Layout (B) Box Layout

(C) Grid Layout (D) Border Layout

10. layout is used when you have an area that can contain different
components at different times.

(A) Card Layout (B) Box Layout

(C) Grid Layout (D) Border Layout

11. Adapter classes help us in avoiding the implementation of the empty
method bodies.

(A) False (B) True

12. Inner classes cannot have static members.

(A) False (B) True

14.9 Let Us Sum Up :

This Unit made us learn about Abstract Window Toolkit which is nothing
but is Java's original platform–independent windowing, graphics and user–
interface widget toolkit. The AWT is now part of the Java Foundation Classes
(JFC) the standard API for providing a graphical user interface (GUI) for a
Java program. A Window provides a top–level window on the screen, with
no borders or menu bar. It provides a way to implement pop–up messages,
among other things. The default layout for a Window is Border Layout.

Working with Frames : A Frame is a Window with all the window
manager's adornments (window title, borders, window minimize/maximize/close
functionality) added. It may also include a menu bar. Since Frame subclasses
Window, its default layout is Border Layout. Frame provides the basic building
block for screen–oriented applications.

251

Abstract Window ToolkitAs long as working with Graphics is concern Java provides numerous
primitives for drawing lines, squares, circles, polygons and images. The figure
shows a simple drawing. The Font, Font Metrics, Color and System Color
classes provide the ability to alter the displayed output. With the Font class,
you adjust how displayed text will appear. With Font Metrics, you can find
out how large the output will be, for the specific system the user is using.
You could use the Color class to set the color of text and graphics.

We have learned about Controls where in Labels, Buttons, Check Boxes,
Radio Button, Text Area, and Text Field covered. After this we learned about
Layout Manager. In this All Containers, by default, has a layout manager; an
object that implements the Layout Manager interface. If a Container's default
layout manager doesn't go well with your needs, you can easily replace it with
another one. We further came to know about Rule those can be said as you
have to openly tell a container not to use a layout manager, it is linked with
its own occasion of a layout manager. This layout manager is automatically/
by default consulted every time the Container might need to change its appearance.
Most layout managers do not require programs to directly call their respective
methods.

There is also learning about how to choose A Loyout Manager /Way
and D How ti Reate A reate a Layout Manager and Associate it with a container.

We also seen and understood about rules for Layout Manager like Flow
layout, Grid Layout and Grid bag layout. Further we have covered event
handling.

Events are the integral part of the java platform. You can see the concepts
related to the event handling through the example and use methods through
which you can implement the event driven application.

There was also learning related to the step by step procedure of Event
handling and even Events and the operations that generate them and Events
generated by different components.

Further we have also learned some event listeners that have multiple
methods to implement. That is some of the listener interfaces contain more
than one method. For instance, the Mouse Listener interface contains five
methods such as mouse Clicked, mouse Pressed, mouse Released etc. There
is also mention about Inner classes cannot have static members, only static
final variables. 1. Interfaces are never inner. 2. Static classes are not inner
classes. We have also learned about anonymous inner classes. There is in detail
learning about applets, applets life cycle

14.10 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 14.2

 Check Your Progress 2 :

See Section 14.3

 Check Your Progress 3 :

See Section 14.4

252

Object Oriented
Concepts &

Programming–1
(Core Java)

 Check Your Progress 4 :

See Section 14.5

 Check Your Progress 5 :

See Section 14.6

 Check Your Progress 6 :

See Section 14.7

 Check Your Progress 7 :

1 : See Section 14.8 2 : See Section 14.8 3 : D

4 : C 5 : D 6 : A 7 : B 8 : D

9 : D 10 : A 11 : B 12 : B

14.11 Glossary :

1. Frame – A Frame is a Window with all the window manager's adornments
(window title, borders, window minimize/maximize/close functionality)
added.

2. Inner classes – Inner classes may inherit static members that are not
compile–time constants even though they may not declare them.

3. Adapter class – methods which you do not want to care about can have
empty bodies. To avoid such thing, we have adapter class.

14.12 Assignment :

1. Write a program to create Grid Layout.

2. Write the rules of thumb for using Layout managers.

14.13 Activities :

Write programs to illustrate the use of controls?

14.14 Case Study :

A case study on Java Applet: You have to write a Java applet to calculate
the average of a list of integers and their count. Now the input data is stored
in a text file, to this each line contains a single integer. The input file is chosen
via Open File Windows–like Dialog box. In this the average and count (number
of integers in a file) are displayed inside the applet. Now you provide for error
checking of the file name, i.e. the program must display a meaningful message
when the input file name is incorrect, and it should ignore (non consideration)
any lines in the input file that are other than a single integer.

14.15 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

253

Abstract Window Toolkit3. Programming with Java, Ed. 2,E. Balagurusamy, Tata McGraw Hill, 1998,
reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

254

UNIT STRUCTURE

15.0 Learning Objectives

15.1 Introduction

15.2 I/O Streams

15.3 Streams

15.4 Reading Console Input

15.5 Writing Console Output

15.6 Reading and Writing Files

15.7 Serialisation

15.8 Let Us Sum Up

15.9 Suggested Answer for Check Your Progress

15.10 Glossary

15.11 Assignment

15.12 Activities

15.13 Case Study

15.14 Further Readings

15.0 Learning Objectives :

After learning this unit, you will be able to :

• Define i/o streams

• Describe reading console input and writing console output

• Explain reading and writing files

• Discuss serialization

15.1 Introduction :

The Java I/O is said as Java Input /Output and is a part of java.io package.
Now package has an Input Stream and Output Stream. The Java Input Stream
is meant for reading the stream, byte stream and array of byte stream. This
can be used for memory allocation. The Output Stream is used for writing
byte and array of bytes.

In this lesson, we will learn and understand streams that can handle all
kinds of data, from primitive values to advanced objects.

15.2 I/O Streams :

An input source or an output target is represented (shown) by an I/O
Stream. A stream can represent disk files, devices, other programs and memory
arrays and also as many different kinds of sources and destinations target.

Streams support simple bytes, primitive data types, localized characters
and objects as well as many different kinds of data. Some streams simply pass

WORKING WITH FILES
Unit

15

255

Working With Fileson data while the others manipulate and transform the data in useful ways.

No matter how they work internally, all streams present the same simple
model to programs that use them: A stream is a sequence of data. A program
uses an input stream to read data from a source, one item at a time :

Figure 15.1 Reading Information into a Program

A program uses an output stream to write data to a destination, one item
at time :

Figure 15.2 Writing Information from a Program

The data source and data destination pictured in the figure can be anything
that stores, generates or consumes data. Obviously, this comprises of disk files
but a source or destination can also be another program, a peripheral device,
a network socket or an array.

 Check Your Progress – 1 :
1. Explain I/O stream.

...

...

...

...

...

15.3 Streams :

Figure 15.3 Stream

256

Object Oriented
Concepts &

Programming–1
(Core Java)

 Byte Streams :

The Byte streams are used by programs for the purpose of performing
input and output of 8–bit bytes. Here all byte stream classes are descended
from Input Stream and Output Stream.

We must understand that there are many byte stream classes. To demonstrate
how byte streams work, we'll focus on the file I/O byte streams, File Input
Stream and File Output Stream. Now other kinds of byte streams are used in
a lot the same way; they differ mainly in the way they are constructed or made.

 Using Byte Streams :

Now we will search File Input Stream and File Output Stream by
examining an example program named Copy Bytes, which uses byte streams
to copy hello.txt, one byte at a time.

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class Copy Bytes

{

 public static void main (String[] args) throws IOException

 {

 FileInputStream in = null;

 FileOutputStream out = null;

 try

 {

 in = new FileInputStream("hello.txt");

 out = new FileOutputStream("outagain.txt");

 int c;

 while ((c = in.read()) != -1)

 {

 out.write(c);

 }

 }

 finally

 {

 if (in != null)

 {

 in close();

257

Working With Files }

 if (out != null)

 {

 out. close();

 }

 }

 }

}

Figure 15.4 Output of Program

Copy Bytes spends most of its time in a simple loop that reads the input
stream and writes the output stream, one byte at a time, as shown in the
following figure.

Figure 15.5 Simple Byte Stream Input and Output

Notice that read () returns an int value. If the input is a stream of bytes,
why does not read () return a byte value? Using an int as a return type allows
read () to use –1 to indicate that it has reached the end of the stream.

 Always Close Streams :

It is very important to close a stream when it is no longer needed. Copy
Bytes uses a finally block to guarantee that both streams will be closed even
if an error occurs. This practice helps to avoid serious resource leaks.

Copy Bytes being unable to open one or both files is one of the possible
errors found. When that happens, the stream variable corresponding to the file

258

Object Oriented
Concepts &

Programming–1
(Core Java)

never changes from its initial null value. For this reason, Copy Bytes makes
sure that each stream variable contains an object reference before invoking
close.

 Alternate of Byte Streams :

Copy Bytes seems like a normal program but it actually a representation
of a kind of low–level I/O that you should avoid. Since hello.txt contains
character data, the best approach is to use character streams, as discussed in
the next section. There are also streams available for more complicated data
types. Byte streams should only be used for the most primitive I/O.

So why talk about byte streams? As all other stream types are built on
byte streams.

 Character Streams :

The character values are stored by Java platformusing Unicode conventions.
Character stream I/O automatically translates this internal format to and from
the local character set. In Western locales, the local character set is usually
an 8–bit superset of ASCII.

 Using Character Streams :

All character stream classes are descended from Reader and Writer. As
with byte streams, there are character stream classes that specialise in file
I/O : File Reader and File Writer. The Copy Characters example illustrates
these classes.

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

public class Copy Characters

{

 public static void main(String[] args) throws IOException

 {

 FileReader inputStream = null;

 FileWriter outputStream = null;

 try

 {

 inputStream = new FileReader("xanadu.txt");

 outputStream = new FileWriter("characteroutput.txt");

 int c;

 while ((c = inputStream.read()) != -1)

 {

 outputStream.write(c);

259

Working With Files }

 }

 finally

 {

 if(inputStream != null)

 {

 inputStream.close();

 }

 if (outputStream != null)

 {

 outputStream.close();

 }

 }

 }

}

Figure 15.6 Output of Program

Copy Characters is very similar to Copy Bytes. The most important
difference is that Copy Characters uses File Reader and File Writer for input
and output in place of File Input Stream and File Output Stream. Notice that
both Copy Bytes and Copy Characters use an int variable to read to and write
from. However, in Copy Characters, the int variable holds a character value
in its last 16 bits; in Copy Bytes, the int variable holds a byte value in its
last 8 bits.

 Character Streams that use Byte Streams :

Character streams are often "wrappers" for byte streams. In order to
perform the physical I/O, the character stream uses the byte stream while the
translation between characters and bytes is handled by the character stream.
File Reader, for example, uses File Input Stream, while File Writer uses File
Output Stream.

There are two general–purpose byte–to–character "bridge" streams: Input
Stream Reader and Output Stream Writer. Use them to create character streams
when there are no prepackaged character stream classes that meet your needs.
The sockets lesson in the networking trail shows how to create character streams
from the byte streams provided by socket classes.

 Line–Oriented I/O :

Let us modify the Copy Characters example to use line–oriented I/O.
To do this, we have to use two classes we have not seen before, Buffered

260

Object Oriented
Concepts &

Programming–1
(Core Java)

Reader and Print Writer. We will explore these classes in greater depth in
Buffered I/O and Formatting. Right now, we're just interested in their support
for line–oriented I/O.

The Copy Lines example invokes Buffered Reader. Read Line and Print
Writer. println to do input and output one line at a time.

import java.io. File Reader;

import java.io. File Writer;

import java.io. Buffered Reader;

import java.io. Print Writer;

import java.io.IO Exception;

public class CopyLines

{

 public static void main(String[] args) throws IOException

 {

 BufferedReader inputStream = null

 PrintWriter outputStream = null

 try

 {

 inputStream = new BufferedReader(new FileReader("xanadu.txt"))

 outputStream = new PrintWriter(new FileWriter("characteroutput.txt"))

 while((l = inputStream.readLine()) != null)

 {

 output Stream. println(l)

 }

 }

 finally

 {

 if(inputStream != null)

 {

 inputStream.close()

 }

 if(outputStream != null)

 {

 outputStream.close()

 }

261

Working With Files }

 }

}

Figure 15.7 Output of Program

Invoking read Line returns a line of text with the line. With the use
of println Copy Lines outputs each line, which appends the line terminator
for the current operating system. This might not be the same line terminator
that was used in the input file.

There are many ways to structure text input and output beyond characters
and lines. For more information, see scanning and Formatting.

 Buffered Streams :

Most of the examples use unbuffered I/O. This means the underlying
OS handles directly each read or write request. The result is that the program
is made much less efficient as each such request often triggers disk access,
network activity, or some other operation that is relatively expensive.

The Java platform implements buffered I/O streams in order to reduce
this kind of overhead. Buffered input streams read data from a memory area
known as a buffer; the native input API is called only when the buffer is empty.
Similarly, buffered output streams write data to a buffer and the native output
API is called only when the buffer is full.

There are four buffered stream classes, which can be used to wrap
unbuffered streams: Buffered Input Stream and Buffered Output Stream create
buffered byte streams, while Buffered Reader and Buffered Writer create
buffered character streams.

 Flushing Buffered Streams :

It often makes sense to write out a buffer at critical points, without
waiting for it to fill. This is known as flushing the buffer.

Some buffered output classes support autoflush, specified by an optional
constructor argument. Certain key events cause the buffer to be flushed when
autoflush is enabled. For example, an autoflush Print Writer object flushes the
buffer on every invocation of println or format. In order to flush a stream
manually, invoke its flush method. The flush method is valid on any output
stream but has no effect unless the stream is buffered.

 Scanning and Formatting :

To assist you with programming I/O that often involves translating to
and from the neatly formatted data humans like to work with, the Java platform
provides two APIs. The scanner API breaks input into individual tokens associated
with bits of data and the formatting API assembles data into nicely formatted,
human–readable form.

 I/O from the Command Line :

A program is often run from the command line and interacts with the
user in the command line environment. The Java platform supports this kind

262

Object Oriented
Concepts &

Programming–1
(Core Java)

of interaction in two ways: through the Standard Streams and through the
Console.

 Standard Streams :

Standard Streams are a feature of many operating systems. By default,
they read input from the keyboard and write output to the display. They also
support I/O on files and between programs but that feature is controlled by
the command line interpreter, not the program.

The Java platform supports the following three Standard Streams: Standard
Input, accessed through System.in; Standard Output, accessed through System.out;
and Standard Error, accessed through System.err. These objects are defined
automatically and do not need to be opened. Standard Output and Standard
Error are both for output; having error output separately allows the user to
divert regular output to a file and still be able to read error messages. You
might expect the Standard Streams to be character streams, but, for historical
reasons, they are byte streams. System.out and System.err are defined as
PrintStream objects. Although it is technically a byte stream, PrintStream utilizes
an internal character stream object to emulate many of the features of character
streams.

By contrast, System.in is a byte stream with no character stream features.
To use Standard Input as a character stream, wrap System.in in InputStreamReader.

Input Stream Reader cin = new InputStreamReader(System.in);

The java.io package contains nearly every class you might ever need
to perform input and output (I/O) in Java. All these streams represent an input
source and an output destination. The stream in the java.io package supports
many data such as primitives, Object, localized characters etc.

A stream can be defined as a sequence of data. The InputStream is used
to read data from a source and the OutputStream is used for writing data to
a destination.

Java does provide strong, flexible support for I/O as it relates to files
and networks but this tutorial covers very basic functionality related to streams
and I/O. We would see most commonly used example one by one:

 Check Your Progress – 2 :
1. Explain standard streams.

2. Write a program to illustrate the use of byte streams.

...

...

...

...

...

15.4 Reading Console Input :

Java input console is accomplished by reading from System.in. To obtain
a character–based stream that is attached to the console, you wrap System.in
in a Buffered Reader object, to create a character stream. Here is most common
syntax to obtain Buffered Reader:

263

Working With FilesBufferedReader br = new BufferedReader(new InputStreamReader
(System.in));

Once BufferedReader is obtained, we can use read() method to reach
a character or read Line() method to read a string from the console.

Reading Characters from Console

Now let us learn how to read a character from a BufferedReader, we
would use read() method whose sytax is as follows:

int read() throws IOException

Every time that read () is called, then it reads a character from the
input stream and then returns it as an integer value. It returns .1 as soon as
the end of the stream is encountered. As you can see, it can throw an
IOException.

Reading Strings from Console

Now let us see to read a string from the keyboard, first use the version
of readLine() which is a member of the BufferedReader class. Its general form
is shown here:

String readLine() throws IOException

Now the time to understand the following program which demonstrates
BufferedReader and the readLine() method. This program reads and displays
lines of text until you enter the word "end":

// Read a string from console using a BufferedReader.

import java.io.*

class BRReadLines {

public static void main(String args[]) throws IOException

{

// Create a BufferedReader using System.in

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in))

String str

System.out.println("Enter lines of

text.") System.out.println("Enter 'end' to

quit.") do {

str = br.readLine() System.out.println(str)

} while(!str.equals("end"));

}

}

Here is a sample run :

Enter lines of text

Enter 'end' to quit

This is line one

This is line one

264

Object Oriented
Concepts &

Programming–1
(Core Java)

This is line two

This is line two

end

end

 Check Your Progress – 3 :
1. Write a program to read characters from console.

2. Write the syntax to obtain Buffered Reader

...

...

...

...

...

15.5 Writing Console Output :

To write Console output which is most easily accomplished (done) with
print() and println(). These methods are defined by the class Print Stream
that is the type of the object referenced by System.out. Even if System.out
is a byte stream, using it for simple program output is still acceptable.

Because Print Stream is an output stream resultant(derived) from Output
Stream, which also implements the low–level method write(). hence, write()
can be used to write to the console. The easiest form of write() defined by
Print Stream is shown as bellow here:

void write(int byteval)

This method writes to the stream the byte specified by byteval. Although
byteval is declared as an integer, only the low–order eight bits are written.

Example :

Here is a short example that uses write() to output the character "A"

followed by a newline to the screen:

import java.io.*;

//Demonstrate System.out.write().

class WriteDemo

{

 public static void main(String args[])

 {

 int b;

 b = 'A';

 System.out.write(b);

 System.out.write('\n');

 }

}

This would produce simply 'A' character on the output screen.

265

Working With FilesNote: You will not often use write() to perform console output because
print() and println() are substantially easier to use.

 Check Your Progress – 4 :
1. Write the general form of write() defined by Print Stream.

2. How is console output accomplished ?

...

...

...

...

...

15.6 Reading and Writing Files :

Now we explain about, a stream can be defined as a sequence(string)
of data. The InputStream which is used to read data from a source and the
OutputStream is then used for writing data to a destination (output).

Here, is a hierarchy of classes to deal with Input and Output streams.

FilterOutput Buffered Output
Stream Stream

Output Stream FileOutput DataOutput
Stream Stream

Object ByteArray PrintStream
OutputStream

ByteArray Buffered Input
Input Stream Input Stream Stream

FileInputStream DataInput

FilterInputStream Stream

StringBuffer Pushback Input
InputStream Stream

SequenceInputStream

Figure 15.8 Hierarchy of classes to deal with Input and Output Streams

The two important streams are File Input Stream and File Output Stream
which would be discussed in this section:

 File Input Stream :

This stream is used for reading data from the files. Objects can be created
using the keyword new and there are several types of constructors available.

Following constructor takes a file name as a string to create an input
stream object to read the file:

Input Stream f = new File Input Stream("C:/java/hello");

Following constructor takes a file object to create an input stream object
to read the file. First we create a file object using File() method as follows:

File f = new File("C:/java/hello");

Input Stream f = new File InputStream()

266

Object Oriented
Concepts &

Programming–1
(Core Java)

Once you have Input Stream object in hand then there is a list of helper
methods which can be used to read to stream or to do other operations on
the stream.

Table 15.1 : List of helper methods

SN Methods with Description

1. public void close() throws IOException{}

This method closes the file output stream. Releases any system resources
associated with the file. Throws an IOException.

2. protected void finalise() throws IOException {}

This method cleans up the connection to the file. Ensures that the close
method of this file output stream is called when there are no more
references to this stream. Throws an IOException.

3. public int read(int r) throws IOException{}

This method reads the specified byte of data from the InputStream.
Returns an int. Returns the next byte of data and –1 will be returned
if it's end of file.

4. public int read(byte[] r) throws IOException{}

This method reads r.length bytes from the input stream into an array.
Returns the total number of bytes read. If end of file –1 will be returned.

5. public int available() throws IOException{}

Gives the number of bytes that can be read from this file input stream.
Returns an int.

There are other important input streams available :

• Byte Array Input Stream

• Data Input Stream

 File Output Stream :

File Output Stream is used to create a file and write data into it. The
stream would create a file, if it does not already exist, before opening it for
output.

Here are two constructors that can be used to create a File Output Stream
object.

Following constructor takes a file name as a string to create an input
stream object to write the file :

Output Stream f = new File Output Stream("C:/java/hello")

Following constructor takes a file object to create an output stream object
to write the file. First we create a file object using File() method as follows:

File f = new File("C:/java/hello")

Output Stream f = new File Output Stream(f)

Once you have Output Stream object in hand then there is a list of helper
methods which can be used to write to stream or to do other operations on
the stream.

267

Working With FilesSN Methods with Description

1. public void close() throws IOException{}

This method closes the file output stream. Releases any system resources
associated with the file. Throws an IOException.

2. protected void finalise() throws IOException {}

This method cleans up the connection to the file. Ensures that the close
method of this file output stream is called when there are no more
references to this stream. Throws an IOException.

3. public void write(int w) throws IOException{}

This methods writes the specified byte to the output stream.

4. public void write(byte[] w)

Writes w.length bytes from the mentioned byte array to the OutputStream.

There are other important output streams available :

• Byte Array Output Stream

• Data Output Stream

Example :

Following is the example to demonstrate Input Stream and Output Stream:

import java.io.*;

public class file StreamTest

{

 public static void main(String args[])

 {

 try

 {

 byte bWrite [] = {11,21,3,40,5};

 Output Stream os = new File Output Stream("C:/test.txt");

 for(int x=0; x < bWrite.length ; x++)

 {

 os.write(bWrite[x]); // writes the bytes

 }

 os.close();

 InputStream is = new File Input Stream("C:/test.txt"); int size =
is.available();

 for(int i=0; i< size; i++)

 {

 System.out.print((char)is.read() + " ");

268

Object Oriented
Concepts &

Programming–1
(Core Java)

 }

 is.close();

 }

 catch(IOException e)

 {

 System.out.print("Exception");

 }

 }

}

The above code would create file test.txt and would write given numbers
in binary format. Same would be output on the std out screen.

 File Navigation and I/O :

There are several other classes that we would be going through to get
to know the basics of File Navigation and I/O.

• File Class

• File Reader Class

• File Writer Class

 Creating Directories in Java :

There are two useful File utility methods which can be used to create
directories :

• The mkdir() method creates a directory, returning true on success and
false on failure. Failure indicates that the path specified in the File object
already exists, or that the directory cannot be created because the entire
path does not exist yet.

• The mkdirs() method creates both a directory and all the parents of the
directory.

Following example creates "/tmp/user/java/bin" directory:

import java.io.File;

class CreateDir

{

 public static void main(String args[])

 {

 String dirname = "/tmp/user/java/bin";

 File d = new File(dirname);

 //Create directory now. d.mkdirs();

 }

}

Compile and execute above code to create "/tmp/user/java/bin".

269

Working With FilesNote : Java automatically takes care of path separators on UNIX and
Windows as per conventions. If you use a forward slash (/) on a Windows
version of Java, the path will still resolve correctly.

 Reading Directories :

A directory is a File that contains a list of other files and directories.
When you create a File object and it is a directory, the isDirectory() method
will return true.

You can call list() on that object to extract the list of other files and
directories inside. The program shown here illustrates how to use list() to
examine the contents of a directory:

import java.io.File

class DirList {

public static void main(String args[]) {

String dirname = "/java"

File f1 = new File(dirname)

if (f1.isDirectory()) {

System.out.println("Directory of " + dirname)

String s[] = f1.list()

for (int i=0; i < s.length; i++) {

File f = new File(dirname + "/" + s[i])

if (f.isDirectory()) {

System.out.println(s[i] + " is a directory")

} else {

System.out.println(s[i] + " is a file")

}

}

} else {

System.out.println(dirname + " is not a directory")

}

}

}

This would produce following result :

Directory of /mysql

bin is a directory

lib is a directory

demo is a directory

test.txt is a file

README is a file

index.html is a file

include is a directory

270

Object Oriented
Concepts &

Programming–1
(Core Java)

 Check Your Progress – 5 :
1. Write the hierarchy of classes to deal with Input and Output streams.

2. Write a note on File Input Stream.

...

...

...

...

...

15.7 Serialization :

Figure 15.9 Serialization

Let us understand that Java provides a mechanism, called object serialization
where an object can be represented (shown) as a sequence(string) of bytes that
includes the object's data and also information about the object's type and the
types of data stored in the object.

After a serialised object has been written into a file, it can be read from
the file and deserialised, i.e., the type information and bytes that represent the
object and its data can be used to recreate the object in memory.

Most impressive is that the entire process is JVM independent, meaning
an object can be serialised on one platform and deserialised on an entirely
different platform.

Classes ObjectInputStream and ObjectOutputStream are high–level streams
that contain the methods for serialising and deserialising an object.

The ObjectOutputStream class contains many write methods for writing
various data types but one method in particular stands out :

public final void writeObject(Object x) throws IOException

The above method serialises an Object and sends it to the output stream.
Similarly, the ObjectInputStream class contains the following method for
deserialising an object:

public final Object readObject() throws IOException, ClassNotFound
Exception

This method retrieves the next Object out of the stream and deserializes
it.

271

Working With FilesThe return value is Object, so you will need to cast it to its appropriate
data type.

To demonstrate how serialization works in Java, I am going to use the
Employee class that we discussed early on in the book. Suppose that we have
the following Employee class, which implements the Serializable interface

public class Employee implements java.io.Serialisable

{

 public String name;

 public String address;

 public int transient SSN;

 public int number;

 public void mailCheck()

 {

 System.out.println("Mailing a check to " + name+ " " + address);

 }

}

Notice that for a class to be serialised successfully, two conditions must
be met:

• The class must implement the java.io.Serialisable interface.

• All of the fields in the class must be serialisable. If a field is not
serialisable, it must be marked transient.

If you are curious to know if a Java Satandard Class is Serializable or
not, check the documentation for the class. The test is simple: If the class
implements java.io.Serialisable, then it is serialisable; otherwise, it is not.

 Serializing an Object :

The Object Output Stream class is used to serialize an Object.

When the program is done executing, a file named employee.ser is
created. The program does not generate any output but study the code and
try to determine what the program is doing.

Note : When serialising an object to a file, the standard convention in
Java is to give the file a .ser extension.

 Deserialization an Object :

The following Deserialise Demo program deserialises the Employee
object created in the Serialise Demo program. Study the program and try to
determine its output:

import java.io.*;

public class DeserialiseDemo

{

272

Object Oriented
Concepts &

Programming–1
(Core Java)

 public static void main(String [] args)

 {

 Employee e = null;

 try

 {

 FileInputStream fileIn = new FileInputStream("employee.ser");

 ObjectInputStream in = new ObjectInputStream(fileIn);

 e = (Employee) in.readObject();

 in.close();

 fileIn.close();

 }

 catch(IOException i)

 {

 i.printStackTrace();

 return;

 }

 catch(ClassNotFoundException c)

 {

 System.out.println(.Employee class not found.);

 c.printStackTrace();

 return;

 }

 System.out.println("Deserialized Employee...");

 System.out.println("Name: " + e.name);

 System.out.println("Address: " + e.address);

 System.out.println("SSN: " + e.SSN);

 System.out.println("Number: " + e.number);

 }

}

This would produce following result :

Deserialized Employee...

Name:Reyan Ali

Address:Phokka Kuan, Ambehta Peer

SSN:0

Number:101

273

Working With Files Check Your Progress – 6 :
1. Which are the streams that contain methods for serialising and deserialising

an object ?

2. What do you mean by serialisation ?

...

...

...

...

...

3. The Byte streams are used by programs for the purpose of performing
input and output of 8–bit bytes.

(A) True (B) False

4. To read or write the file we need to import package.

(A) java.utill (B) java.awt (C) java.net (D) Java.io

5. The character values are stored by Java platformusing
conventions. .

(A) ASCII (B) Unicode

6. A stream can be defined as a sequence of data.

(A) True (B) False

7. Java input console is accomplished by reading from .

(A) System.input (B) System.take (C) System.out (D) System.in

8. To write Console output method is used.

(A) out() (B) pritnf() (C) cout() (D) println()

9. The InputStream class is an abstract class.

(A) True (B) False

10. The Print Stream class is a subclass of .

(A) IO (B) Stream

(C) Filter output Stream (D) Filter input Stream

11. method is used to read single charater from file.

(A) take() (B) readdata() (C) readchar() (D) read()

12. To get the detail about file class is used.

(A) FileInfo (B) FileReader (C) Reader (D) File

15.8 Let Us Sum Up :

This Unit No. 13 has got importance because details regarding the files
and its Management like Input and output. Java I/O is said as Java Input/ Output
and is a part of java.io package. Now package has a Input Stream and Output
Stream. The Java Input Stream is meant for reading the stream, byte stream
and array of byte stream. This can be used for memory allocation. The Output
Stream is used for writing byte and array of bytes.

An input source or an output target is represented (shown) by an I/O
Stream. A stream can represent disk files, devices, other programs and memory

274

Object Oriented
Concepts &

Programming–1
(Core Java)

arrays and also as many different kinds of sources and destinations target. BYTE
STREAMS: The Byte streams are used by programs for the purpose of performing
input and output of 8–bit bytes. Here all byte stream classes are descended
from Input Stream and Output Stream. The character values are stored by Java
platformusing

Unicode conventions. Character stream I/O automatically translates this
internal format to and from the local character set. In Western locales, the local
character set is usually an 8–bit superset of ASCII.

There is learning related to use line–oriented I/O, unbuffered I/O, flushing
the buffer, Scanning and formatting and standard stream. Next thing came in
learning related to read Console. To write Console output which is most easily
accomplished (done) with print() and println(). These methods are defined
by the class Print Stream that is the type of the object referenced by System.out.
Even even if System.out is a byte stream, using it for simple program output
is still acceptable.Now futher we explain how to read and write files.

The Input Stream which is used to read data from a source and the Output
Stream is then used for writing data to a destination (output).

Serialization where an object can be represented as a sequence (string)
of bytes that includes the object's data and also information about the object's
type and the types of data stored in the object. Next we have understood about
Serializing an Object which is nothing but the Object Output Stream class is
used to serialize an Object and Deserialising an Object.

15.9 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Section 15.2

 Check Your Progress 2 :

See Section 15.3

 Check Your Progress 3 :

See Section 15.4

 Check Your Progress 4 :

See Section 15.5

 Check Your Progress 5 :

See Section 15.6

 Check Your Progress 6 :

See Section 15.7

 Check Your Progress 7 :

1 : See Section 15.8 2 : See Section 15.8 3 : A

4 : D 5 : B 6 : A 7 : D 8 : D

9 : A 10 : C 11 : D 12 : D

15.10 Glossary :

1. Stream – A stream can represent disk files, devices, other programs and
memory arrays and also as many different kinds of sources and destinations
target.

275

Working With Files2. Byte streams – are used by programs for the purpose of performing
input and output of 8–bit bytes.

3. Standard Streams – Standard Streams are a feature of many operating
systems. By default, they read input from the keyboard and write output
to the display. They also support I/O on files and between programs but
that feature is controlled by the command line interpreter, not the program.

4. Serialization – where an object can be represented (shown) as a
sequence(string) of bytes that includes the object's data and also information
about the object's type and the types of data stored in the object

15.11 Assignment :

Write a program to create a file student to store the roll no., name and
marks of 3 subjects of 5 students using the features of Java.

15.12 Activities :

1. Explain how to create directories in Java.

2. Explain the methods that can be used to read to stream.

15.13 Case Study :

Read a file of sums and products (one per line) and write the values
of the expressions to another file. The two file names are expected to be given
as command–line arguments

15.14 Further Reading :

1. Core Java 2, 2 volumes, Cay S. Horstmann, Gary Cornell, The Sun
Microsystems Press, 1999, Indian reprint 2000

2. Java 2, The Complete Reference, Patrick Naughton and Herbert Schildt,
Tata McGraw Hill, 1999

3. Programming with Java, Ed. 2,E. Balagurusamy, Tata McGraw Hill, 1998,
reprint, 2000

4. The Java Tutorial, Ed. 2, 2 volumes, Mary Campione and Kathy Walrath,
Addison Wesley Longmans, 1998

5. The Java Language Specification, Ed. 2, James Gosling, Bill Joy, Guy
Steele & Gilad Bracha, (Ed. 1 1996, Ed. 2 2000), Sun Microsystems,
2000

6. Using Java 2, Joseph L. Weber, Prentice Hall, Eastern Economy Edition,
2000

BLOCK SUMMARY :

Finally lot of learning took place after reading complete block

First Unit of this Block made us learn about Abstract Window Toolkit
which is nothing but is Java's original platform–independent windowing, graphics
and user–interface widget toolkit. The AWT is now part of the Java Foundation
Classes (JFC) the standard API for providing a graphical user interface (GUI)
for a Java program. A Window provides a top–level window on the screen,
with no borders or menu bar. It provides a way to implement pop–up messages,
among other things. The default layout for a Window is Border Layout.

Working with Frames – A Frame is a Window with all the window
manager's adornments (window title, borders, window minimize/maximize/close
functionality) added. It may also include a menu bar. Since Frame subclasses
Window, its default layout is Border Layout. Frame provides the basic building
block for screen–oriented applications. As long as working with Graphics is
concern Java provides numerous primitives for drawing lines, squares, circles,
polygons and images. The figure shows a simple drawing. The Font, Font
Metrics, Color and System Color classes provide the ability to alter the
displayed output. With the Font class, you adjust how displayed text will appear.
With Font Metrics, you can find out how large the output will be, for the
specific system the user is using. You could use the Color class to set the
color of text and graphics.

We have learned about Controls where in Labels, Buttons, Check Boxes,
Radio Button, Text Area, and Text Field covered. After this we learned about
Layout Manager. In this All Containers, by default, has a layout manager; an
object that implements the Layout Manager interface. If a Container's default
layout manager doesn't go well with your needs, you can easily replace it with
another one. We further came to know about Rule those can be said as you
have to openly tell a container not to use a layout manager, it is linked with
its own occasion of a layout manager. This layout manager is automatically/
by default consulted every time the Container might need to change its appearance.
Most layout managers do not require programs to directly call their respective
methods.

We also seen and understood about rules for Layout Manager like Flow
layout, Grid Layout and Grid bag layout. Further we have covered event
handling. Events are the integral part of the java platform. You can see the
concepts related to the event handling through the example and use methods
through which you can implement the event driven application.

Further we have also learned about there are some event listeners that
have multiple methods to implement. That is some of the listener interfaces
contain more than one method. For instance, the Mouse Listener interface
contains five methods such as mouse Clicked, mouse Pressed, mouse Released

276

etc. There is also mention about Inner classes cannot have static members,
only static final variables. 1. Interfaces are never inner. 2. Static classes are
not inner classes. We have also learned about anonymous inner classes. There
is in detail learning about applets, applets life cycle.

Now the Unit no. 13 has got importance because details regarding the
files and it's Management like Input and output. Java I/O is said as Java Input/
Output and is a part of java.io package. Now package has an Input Stream
and Output Stream. The Java Input Stream is meant for reading the stream,
byte stream and array of byte stream. This can be used for memory allocation.
The Output Stream is used for writing byte and array of bytes.

An input source or an output target is represented (shown) by an I/O
Stream. A stream can represent disk files, devices, other programs and memory
arrays and also as many different kinds of sources and destinations target. BYTE
STREAMS : The Byte streams are used by programs for the purpose of
performing input and output of 8–bit bytes. Here all byte stream classes are
descended from Input Stream and Output Stream. The character values are
stored by Java platformusing Unicode conventions. Character stream I/O
automatically translates this internal format to and from the local character set.
In Western locales, the local character set is usually an 8–bit superset of ASCII.
There is learning related to use line–oriented I/O, unbuffered I/O, flushing the
buffer, Scanning and formatting and standard stream. Next thing came in
learning related to read Console. To write Console output which is most easily
accomplished (done) with print() and println(). These methods are defined
by the class Print Stream that is the type of the object referenced by System.out.
Even even if System.out is a byte stream, using it for simple program output
is still acceptable.Now futher we explain how to read and write files. The Input
Stream which is used to read data from a source and the Output Stream is
then used for writing data to a destination (output).

Serialization where an object can be represented as a sequence (string)
of bytes that includes the object's data and also information about the object's
type and the types of data stored in the object. Next we have understood about
Serializing an Object which is nothing but the Object Output Stream class is
used to serialize an Object and Deserialising an Object.

277

BLOCK ASSIGNMENT :

 Short Questions :
1. Why graphics is considered an abstract class ?
2. Give the use of canvas and container objects.
3. Write a note on buttons.
4. Write down the procedure for event handling.
5. What are adapter classes ?
6. Give the use of adapter classes
7. Write a note on inner classes.
8. What could be declared a local or anonymous class ?
9. Define an anonymous inner class.
 Long Questions :
1 Explain the text area component of AWT package
2 Give the general rules for using Layout Manager.
3 Explain Card Layout
4 Explain semantic events
5 Explain how thread itself is made into an anonymous inner class
6 Give the structure of applets.
7 Write a note on the other applet methods
8 Write the hierarchy of classes to deal with Input and Output streams.
9 Write a note on File Input Stream

278

BIBLIOGRAPHY

http://docstore.mik.ua/orelly/java/awt/ch01_05.htm http://www.oreilly.com/
openbook/javawt/book/ch01.pdf

http://www.it.cas.cz/manual/java/uiswing/layout/border.html
http://journals.ecs.soton.ac.uk/java/tutorial/ui/layout/flow.html
http://da2i.univ–lille1.fr/doc/tutorial–java/uiswing/layout/flow.html
http://www.eg.bucknell.edu/~mead/Java–tutorial/ui/swingLayout/grid.html
http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
http://www.roseindia.net/java/example/java/awt/event–handling.shtml
http://www.javabeat.net/inner–classes–in–java/
http://readwall.wap.blog.163.com/w2/blogDetail.do;jsessionid=A378CA

75233AD84B146C854CF4DB0D16.blog57–8010?blogId=fks_0800680870840
88066082083086095085086080065083087085065&showRest=true&p=2&host
ID=readwall

http://www.hostitwise.com/java/japplet.html
http://www.studiesinn.com/learn/Programming–Languages/Java–Language/

Running–an–Applet.html
http://stanwir.seecs.nust.edu.pk/Lectures/java/IOStreams.pdf
http://www.aliftutorials.com/javase/streams/scanfor.html
http://espirit.in/simplified/java/intermediate/stream.html

279

280

Object Oriented
Concepts &

Programming–1
(Core Java)

 Enrolment No. :

1. How many hours did you need for studying the units ?

Unit No. 12 13 14 15

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

...

...

...

...

...

...

...

...

DR.BABASAHEB AMBEDKAR

OPEN UNIVERSITY
'Jyotirmay' Parisar,

Sarkhej-Gandhinagar Highway, Chharodi, Ahmedabad-382 481.
Website : www.baou.edu.in

	Page 1
	Title
	1-4
	1
	2
	3
	4
	5-8
	5
	6
	7
	8
	9-11
	9
	10
	11
	12-15
	12
	13
	14
	15
	Page 2

